3,300 Matching Annotations
  1. Apr 2021
    1. In vitro studies confirmed this notion and found that CRP was able to upregulate both CD32 and CD64 and induced FLS proliferation, invasion, and pro inflammatory expression by increasing production of CCL2, CXCL8, IL-6, MMP2, MMP9 while suppressing an anti-inflammatory cytokine IL-10 expression.

      CRP activates MMP9.

    2. In vitro studies confirmed this notion and found that CRP was able to upregulate both CD32 and CD64 and induced FLS proliferation, invasion, and pro inflammatory expression by increasing production of CCL2, CXCL8, IL-6, MMP2, MMP9 while suppressing an anti-inflammatory cytokine IL-10 expression.

      CRP activates MMP2.

    3. As shown in XREF_FIG, multiplex cytokine assay kits assays showed that addition of CRP dose-dependently upregulated CCL2, CXCL8, IL-6, MMP2, MMP9 in RA-FLS but not in HFLS, although expression of IL-1beta and TNFalpha was not significantly changed (XREF_FIG).

      CRP activates MMP2.

    4. In vitro studies confirmed this notion and found that CRP was able to upregulate both CD32 and CD64 and induced FLS proliferation, invasion, and pro inflammatory expression by increasing production of CCL2, CXCL8, IL-6, MMP2, MMP9 while suppressing an anti-inflammatory cytokine IL-10 expression.

      CRP activates CXCL8.

    5. As shown in XREF_FIG, multiplex cytokine assay kits assays showed that addition of CRP dose-dependently upregulated CCL2, CXCL8, IL-6, MMP2, MMP9 in RA-FLS but not in HFLS, although expression of IL-1beta and TNFalpha was not significantly changed (XREF_FIG).

      CRP activates CXCL8.

    6. In vitro studies confirmed this notion and found that CRP was able to upregulate both CD32 and CD64 and induced FLS proliferation, invasion, and pro inflammatory expression by increasing production of CCL2, CXCL8, IL-6, MMP2, MMP9 while suppressing an anti-inflammatory cytokine IL-10 expression.

      CRP activates IL6.

    7. As shown in XREF_FIG, multiplex cytokine assay kits assays showed that addition of CRP dose-dependently upregulated CCL2, CXCL8, IL-6, MMP2, MMP9 in RA-FLS but not in HFLS, although expression of IL-1beta and TNFalpha was not significantly changed (XREF_FIG).

      CRP activates IL6.

    8. In vitro studies confirmed this notion and found that CRP was able to upregulate both CD32 and CD64 and induced FLS proliferation, invasion, and pro inflammatory expression by increasing production of CCL2, CXCL8, IL-6, MMP2, MMP9 while suppressing an anti-inflammatory cytokine IL-10 expression.

      CRP activates CCL2.

    9. As shown in XREF_FIG, multiplex cytokine assay kits assays showed that addition of CRP dose-dependently upregulated CCL2, CXCL8, IL-6, MMP2, MMP9 in RA-FLS but not in HFLS, although expression of IL-1beta and TNFalpha was not significantly changed (XREF_FIG).

      CRP activates CCL2.

    1. The S100A8 knockdown using shRNA revealed that COX-2 and PGE 2 expression was regulated by S100A8, which suggested that the intracellular increase of microglial S100A8 levels upregulated COX-2 expression and PGE2 secretion, contributing to neuronal death under hypoxic conditions.

      S100A8 increases the amount of PTGS2.

    1. 33 Thus, a strong rationale suggests that exercise induced changes in nitric oxide may mediate an inhibition of IDO activity, possibly leading to a chronic downregulation and stabilization of the KYN pathway as reported by Zimmer et al. 23 The mechanisms underlying both acute and chronic exercise induced elevations in the metabolic flux towards KA could be driven by KAT expression in different tissues or cell types.

      nitric oxide inhibits IDO1.

    1. XREF_BIBR 3-HAA also inhibits nitric oxide synthetase (although not in microglial cells) and nuclear factor kappaB expression; XREF_BIBR, XREF_BIBR of which the former could result in positive feedback and upregulation of IDO activity, which is inhibited by nitric oxide, as well as neuronal dysfunction through impairment of nitric oxide 's neurotransmitter function.

      nitric oxide inhibits IDO1.

    1. Furthermore, overexpression of FBXW7 markedly suppressed beta-catenin and c-Myc expression, whereas the decreased expression levels of VEGF, VEGFR1 and VEGFR2 following overexpression of FBXW7 were increased after treatment of SKOV3 cells with LiCl.

      FBXW7 decreases the amount of MYC.

    2. Furthermore, overexpression of FBXW7 markedly suppressed beta-catenin and c-Myc expression, whereas the decreased expression levels of VEGF, VEGFR1 and VEGFR2 following overexpression of FBXW7 were increased after treatment of SKOV3 cells with LiCl.

      FBXW7 decreases the amount of CTNNB1.

    3. The results of the present study demonstrated that overexpression of FBXW7 suppressed VEGF expression, while overexpression of VEGF partially counteracted the inhibitory effects of FBXW7 overexpression on the invasion, migration, EMT and angiogenesis of OC cells.

      FBXW7 decreases the amount of VEGF.

    4. The results demonstrated that overexpression of FBXW7 downregulated the expression levels of CD31, VEGFR1 and VEGFR, whereas co-transfection with FBXW7 and VEGF plasmids significantly increased their expression levels compared with the Ov-FBXW7+ pc-NC group (XREF_FIG and XREF_FIG), which is consistent with the results of the tube formation assay.

      FBXW7 decreases the amount of VEGFR.

    1. At the same time, limonin down-regulated the expression of NQO1, indicating that limonin may indirectly act on the apoptosis pathway by regulating the expression activity of antioxidant enzymes in vivo, thus exerting its inhibitory effect on tumor cells, which provides an idea for the molecular mechanism that natural products can indirectly exert their anticancer effect by regulating the activity of antioxidant enzymes.

      limonin decreases the amount of NQO1.

    2. At the same time, limonin down-regulated the expression of NQO1, indicating that limonin may indirectly act on the apoptosis pathway by regulating the expression activity of antioxidant enzymes in vivo, thus exerting its inhibitory effect on tumor cells, which provides an idea for the molecular mechanism that natural products can indirectly exert their anticancer effect by regulating the activity of antioxidant enzymes.

      limonin decreases the amount of NQO1.

    1. As shown in XREF_FIG, LPS + ATP promoted the expression of NLRP3 and pro-IL-1beta in THP-1 cells; however, real-time PCR revealed that after treatment with CAPE for 12 h, mRNA levels of NLRP3 and IL-1beta in THP-1 cells were similar to control (XREF_FIG), indicating that CAPE does not affect the transcription of NLRP3 and IL-1beta.

      lipopolysaccharide increases the amount of NLRP3.

    2. As shown in XREF_FIG, LPS + ATP promoted the expression of NLRP3 and pro-IL-1beta in THP-1 cells; however, real-time PCR revealed that after treatment with CAPE for 12 h, mRNA levels of NLRP3 and IL-1beta in THP-1 cells were similar to control (XREF_FIG), indicating that CAPE does not affect the transcription of NLRP3 and IL-1beta.

      ATP increases the amount of NLRP3.

    1. The knockdown of NLRP3 significantly reduces the proliferation, clonogenicity, invasion and migration in both Ishikawa and HEC-1A cells, while in contrast, NLRP3 overexpression enhances the proliferation, migration and invasion in both Ishikawa and HEC-1A cells and furthermore, increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells.

      NLRP3 inhibits Neoplasm Invasiveness.

    2. The knockdown of NLRP3 significantly reduces the proliferation, clonogenicity, invasion and migration in both Ishikawa and HEC-1A cells, while in contrast, NLRP3 overexpression enhances the proliferation, migration and invasion in both Ishikawa and HEC-1A cells and furthermore, increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells.

      NLRP3 inhibits IL1B.

    3. The knockdown of NLRP3 significantly reduces the proliferation, clonogenicity, invasion and migration in both Ishikawa and HEC-1A cells, while in contrast, NLRP3 overexpression enhances the proliferation, migration and invasion in both Ishikawa and HEC-1A cells and furthermore, increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells.

      NLRP3 inhibits CASP1.

    4. The knockdown of NLRP3 significantly reduces the proliferation, clonogenicity, invasion and migration in both Ishikawa and HEC-1A cells, while in contrast, NLRP3 overexpression enhances the proliferation, migration and invasion in both Ishikawa and HEC-1A cells and furthermore, increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells.

      NLRP3 inhibits cell population proliferation.

    5. proposed that significant cell death was observed only when P2X7R and NLRP3 inflammasome were both inhibited by ATP and MCC950, a specific inhibitor of NLRP3 inflammasome, and further research into safety manipulation of NLRP3 inflammasome without enhancing significant dose dependent side effects is required.

      ATP inhibits NLRP3.

    6. TXNIP knockdown or targeting by miR-20b resulted in a pro tumorigenic phenotype with increased cell proliferation, inhibited cell senescence reduced cell cycle modulators (p16 and p21), and decreased NLRP3 inflammasome associated proteins (NLRP3 and cleaved caspase-1).

      TXNIP activates NLRP3.

    7. The knockdown of NLRP3 significantly reduces the proliferation, clonogenicity, invasion and migration in both Ishikawa and HEC-1A cells, while in contrast, NLRP3 overexpression enhances the proliferation, migration and invasion in both Ishikawa and HEC-1A cells and furthermore, increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells.

      NLRP3 activates Neoplasm Invasiveness.

    8. NLRP3 inflammasome activation induced IL-1beta and IL-18 in lung cancer may work through mechanisms other than the caspase-1 pathway, indicating that NLRP3 inflammasome can mediate the release of IL-1beta and IL-18 through caspase-1-dependent or -independent pathways.

      NLRP3 activates IL1B.

    9. Epistasis analysis revealed that NLRP3 variants together with polymorphisms in inflammasome related genes modulate both the frequency of inflammasome activation and the process of IL-1beta and IL-18 maturation thatinfluence HPV infection outcome and cervical cancer progression (XREF_TABLE).

      NLRP3 activates IL1B.

    10. NLRP3 inflammasome activation induced IL-1beta and IL-18 in lung cancer may work through mechanisms other than the caspase-1 pathway, indicating that NLRP3 inflammasome can mediate the release of IL-1beta and IL-18 through caspase-1-dependent or -independent pathways.

      NLRP3 activates IL18.

    11. Epistasis analysis revealed that NLRP3 variants together with polymorphisms in inflammasome related genes modulate both the frequency of inflammasome activation and the process of IL-1beta and IL-18 maturation thatinfluence HPV infection outcome and cervical cancer progression (XREF_TABLE).

      NLRP3 activates IL18.

    12. The knockdown of NLRP3 significantly reduces the proliferation, clonogenicity, invasion and migration in both Ishikawa and HEC-1A cells, while in contrast, NLRP3 overexpression enhances the proliferation, migration and invasion in both Ishikawa and HEC-1A cells and furthermore, increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells.

      NLRP3 activates cell population proliferation.