3,300 Matching Annotations
  1. Apr 2021
    1. TLR4 activation by LPS on cardiomyocytes leads to subsequent reduction in myocardial contractility [XREF_BIBR, XREF_BIBR], and the predominant view in the literature is that TLR4 activation on cardiac structural fibroblasts and cardiac macrophages leads to a profibrotic and proinflammatory response, respectively [XREF_BIBR, XREF_BIBR].

      lipopolysaccharide activates TLR4.

    1. Mutant p53 can itself disrupt the balance between stem cell proliferation and differentiation as well as sequester p63 or p73 thereby hindering apoptosis, augmenting proliferation, and driving chemoresistance and metastasis typical of cancer stem cells.

      Mutated TP53 inhibits TP63.

    2. Mutant p53 can itself disrupt the balance between stem cell proliferation and differentiation as well as sequester p63 or p73 thereby hindering apoptosis, augmenting proliferation, and driving chemoresistance and metastasis typical of cancer stem cells.

      Mutated TP53 inhibits TP63.

    1. For instance, ubiquitination of NLRP3 by FBXL12, TRIM1, ARIH2 or the dopamine induced E3 ligase MARCH7 promotes the proteasomal degradation of NLRP3 in resting macrophages, whereas deubiquitylation of NLRP3 LRR domain on K63 by BRCC3 triggers ASC oligomerization and inflammasome activation (XREF_FIG).

      ARIH2 ubiquitinates NLRP3.

    2. For instance, ubiquitination of NLRP3 by FBXL12, TRIM1, ARIH2 or the dopamine induced E3 ligase MARCH7 promotes the proteasomal degradation of NLRP3 in resting macrophages, whereas deubiquitylation of NLRP3 LRR domain on K63 by BRCC3 triggers ASC oligomerization and inflammasome activation (XREF_FIG).

      FBXL12 ubiquitinates NLRP3.

    3. For instance, ubiquitination of NLRP3 by FBXL12, TRIM1, ARIH2 or the dopamine induced E3 ligase MARCH7 promotes the proteasomal degradation of NLRP3 in resting macrophages, whereas deubiquitylation of NLRP3 LRR domain on K63 by BRCC3 triggers ASC oligomerization and inflammasome activation (XREF_FIG).

      NLRP3 inhibits NLRP3.

    4. For instance, ubiquitination of NLRP3 by FBXL12, TRIM1, ARIH2 or the dopamine induced E3 ligase MARCH7 promotes the proteasomal degradation of NLRP3 in resting macrophages, whereas deubiquitylation of NLRP3 LRR domain on K63 by BRCC3 triggers ASC oligomerization and inflammasome activation (XREF_FIG).

      BRCC3 deubiquitinates NLRP3.

    5. Two recent reports demonstrated that chloride intracellular channels (CLICs), especially CLIC1 and CLIC4 mediate NLRP3 activation by promoting Cl - efflux downstream nigericin induced K + efflux and mitochondrial ROS production, which promotes CLIC translocation to the plasma membrane (XREF_FIG).

      CLIC4 activates NLRP3.

    1. For instance, CDK1 mediated pT345-EZH2 and pT487-EZH2 facilitate EZH2 ubiquitination degradation in breast cancer cell, cervical cancer cell and lung cancer cell [XREF_BIBR, XREF_BIBR, XREF_BIBR]; JAK2 phosphorylates Y641-EZH2, leading to E3 ligase beta-TrCP-mediated EZH2 degradation in lymphoma cell [XREF_BIBR]; and CDK5 phosphorylation of EZH2 at T261 residue results in the E3 ubiquitin ligase FBW7 mediated degradation of EZH2 in pancreatic cancer cell [XREF_BIBR].

      CDK5 phosphorylates EZH2 on T261.

    2. In 2018, Li et al. [XREF_BIBR] demonstrated that AMPK phosphorylates EZH2 at T311 residue to inhibit EZH2 binding with SUZ12, thereby attenuating the PRC2 dependent methylation of H3K27 and enhancing PRC2 target genes translation in ovarian and breast cancers.

      AMPK phosphorylates EZH2 on T311.

    3. For instance, EZH2 can promote the invasion and metastasis by suppressing E-cadherin transcriptional expression [XREF_BIBR, XREF_BIBR]; EZH2 can also increase tumorigenesis by silencing tumor suppressors [XREF_BIBR, XREF_BIBR, XREF_BIBR].

      EZH2 decreases the amount of CDH1.

    4. It means that OGT mediated EZH2 GlcNAcylation have several different functions in breast cancer progression.Acetylation is a reversible and important PTM that regulates a series of cellular processes, including proliferation, apoptosis, migration, and metabolism, in cancer cells; it is achieved through the modulation of core histones or non histone proteins by histone acetyltransferases (HATs) or histone deacetylases (HDACs) [XREF_BIBR - XREF_BIBR].

      OGT activates EZH2.

    1. In vitro and in vivo studies confirmed that the abnormal increase of EZH2 can inhibit the expression level of E-cadherin, induce the epithelial stromal transformation of renal cancer cells, and promote the occurrence, development and recurrence of renal cancer.

      EZH2 decreases the amount of CDH1.

    1. The enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of the polycomb repressive complex 2 (PRC2), acts as a histone methyltransferase and induces the trimethylation of histone H3 lysine 27 (H3K27me3) in the promoter of many key genes.

      EZH2 leads to the methylation of Histone_H3 at position 27.

    2. The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and induces the trimethylation of histone H3 lysine 27 (H3K27me3) in the promoter of many key genes; EZH2 acts as a transcriptional repressor and is an epigenetic regulator for several cancers.

      EZH2 leads to the methylation of Histone_H3 at position 27.

    3. The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and induces the trimethylation of histone H3 lysine 27 (H3K27me3) in the promoter of many key genes; EZH2 acts as a transcriptional repressor and is an epigenetic regulator for several cancers.

      EZH2 leads to the methylation of Histone_H3 at position 27.

    4. The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and induces the trimethylation of histone H3 lysine 27 (H3K27me3) in the promoter of many key genes; EZH2 acts as a transcriptional repressor and is an epigenetic regulator for several cancers.

      EZH2 leads to the methylation of Histone_H3 on lysine.

    5. In the present study, we identified that the inhibition of EZH2 with 3-deazaneplanocin A (DZNep) upregulated the transcription of Deptor by decreasing the H3K27me3 methylation level in its promoter region and reduced the activity of mTORC1 and mTORC2, resulting in apoptosis of NRK-52E cells.

      EZH2 decreases the amount of DEPTOR.

    6. These data suggested that EZH2 inhibition increased the transcription of Deptor by modifying H3K27me3 in its promoter region, subsequently inhibited mTORC1 and mTORC2 activities, downregulated the expression of apoptosis suppressor genes, and finally led to apoptosis in renal tubular cells.

      EZH2 decreases the amount of DEPTOR.

    7. In summary, our results showed that EZH2 inhibition increased the transcription level of Deptor by decreasing the level of trimethylation of H3K27 in the Deptor promoter region, subsequently inhibited the activities of mTORC1 and mTORC2, downregulated the expression of HuR and Bcl-2, and finally led to apoptosis in renal tubular cells.

      EZH2 decreases the amount of DEPTOR.