3,300 Matching Annotations
  1. Aug 2021
    1. Mechanistically, knockout of Kindlin-1 promotes cutaneous epithelial stem cells differentiation via inhibiting alpha (v) beta (6) integrin mediated TGF-beta1 liberation and promoting integrin independent Wnt ligand expression to activate Wnt and beta-catenin signaling 82.

      Wnt inhibits CTNNB1.

    2. Mechanistically, knockout of Kindlin-1 promotes cutaneous epithelial stem cells differentiation via inhibiting alpha (v) beta (6) integrin mediated TGF-beta1 liberation and promoting integrin independent Wnt ligand expression to activate Wnt and beta-catenin signaling 82.

      Wnt inhibits Wnt.

    3. Pax3 not only promotes melanogenesis by activating the expression of MITF, but also maintains McSCs quiescence by competing with MITF through binding an enhancer responsible for the expression of dopachrome tautomerase (DCT), an intermediate in the biosynthesis of melanin.

      PAX3 increases the amount of MITF.

    4. Through interacting with PAX3, FOXD3 prevents binding of PAX3 to MITF promoter to repress melanogenesis in zebrafish, quail and chick neural crest cells XREF_BIBR, XREF_BIBR, suggesting that down-regulation of Foxd3 is a crucial step during the early phase of melanoblast lineage specification from neural crest cells.

      MITF binds PAX3.

    5. Inhibition of Wnt signaling by a Wnt antagonist secreted frizzled related protein 4 (sFRP4), which is exclusively expressed in the epithelial cells but not the melanocytes of the hair follicle, results in a decrease of melanocytes differentiation in the regenerating hair follicle 79.

      SFRP4 activates Wnt.

    6. Mechanistically, knockout of Kindlin-1 promotes cutaneous epithelial stem cells differentiation via inhibiting alpha (v) beta (6) integrin mediated TGF-beta1 liberation and promoting integrin independent Wnt ligand expression to activate Wnt and beta-catenin signaling 82.

      Integrins activates TGFB1.

    1. However, blocking CD32 but not CD64 to inhibit CRP induced FLS proliferation, invasiveness, and proinflammatory cytokine CXCL8 production revealed a major role for CD32 signaling in synovial inflammation, although CRP via CD64, not CD32, to induce MMP9 expression was noticed.

      CRP increases the amount of MMP9.

    2. As shown in XREF_FIG, multiplex cytokine assay kits assays showed that addition of CRP dose-dependently upregulated CCL2, CXCL8, IL-6, MMP2, MMP9 in RA-FLS but not in HFLS, although expression of IL-1beta and TNFalpha was not significantly changed (XREF_FIG).

      CRP activates MMP9.

    3. In vitro studies confirmed this notion and found that CRP was able to upregulate both CD32 and CD64 and induced FLS proliferation, invasion, and pro inflammatory expression by increasing production of CCL2, CXCL8, IL-6, MMP2, MMP9 while suppressing an anti-inflammatory cytokine IL-10 expression.

      CRP activates MMP9.

    4. In vitro studies confirmed this notion and found that CRP was able to upregulate both CD32 and CD64 and induced FLS proliferation, invasion, and pro inflammatory expression by increasing production of CCL2, CXCL8, IL-6, MMP2, MMP9 while suppressing an anti-inflammatory cytokine IL-10 expression.

      CRP activates MMP2.

    5. As shown in XREF_FIG, multiplex cytokine assay kits assays showed that addition of CRP dose-dependently upregulated CCL2, CXCL8, IL-6, MMP2, MMP9 in RA-FLS but not in HFLS, although expression of IL-1beta and TNFalpha was not significantly changed (XREF_FIG).

      CRP activates MMP2.

    6. In vitro studies confirmed this notion and found that CRP was able to upregulate both CD32 and CD64 and induced FLS proliferation, invasion, and pro inflammatory expression by increasing production of CCL2, CXCL8, IL-6, MMP2, MMP9 while suppressing an anti-inflammatory cytokine IL-10 expression.

      CRP activates CXCL8.

    7. As shown in XREF_FIG, multiplex cytokine assay kits assays showed that addition of CRP dose-dependently upregulated CCL2, CXCL8, IL-6, MMP2, MMP9 in RA-FLS but not in HFLS, although expression of IL-1beta and TNFalpha was not significantly changed (XREF_FIG).

      CRP activates CXCL8.

    8. In vitro studies confirmed this notion and found that CRP was able to upregulate both CD32 and CD64 and induced FLS proliferation, invasion, and pro inflammatory expression by increasing production of CCL2, CXCL8, IL-6, MMP2, MMP9 while suppressing an anti-inflammatory cytokine IL-10 expression.

      CRP activates IL6.

    9. As shown in XREF_FIG, multiplex cytokine assay kits assays showed that addition of CRP dose-dependently upregulated CCL2, CXCL8, IL-6, MMP2, MMP9 in RA-FLS but not in HFLS, although expression of IL-1beta and TNFalpha was not significantly changed (XREF_FIG).

      CRP activates IL6.

    10. In vitro studies confirmed this notion and found that CRP was able to upregulate both CD32 and CD64 and induced FLS proliferation, invasion, and pro inflammatory expression by increasing production of CCL2, CXCL8, IL-6, MMP2, MMP9 while suppressing an anti-inflammatory cytokine IL-10 expression.

      CRP activates CCL2.

    11. As shown in XREF_FIG, multiplex cytokine assay kits assays showed that addition of CRP dose-dependently upregulated CCL2, CXCL8, IL-6, MMP2, MMP9 in RA-FLS but not in HFLS, although expression of IL-1beta and TNFalpha was not significantly changed (XREF_FIG).

      CRP activates CCL2.

    1. In presence of Wnt, there is the stimulation of cells in the canonical pathway as GSK-3beta phosphorylates lipoprotein receptor related protein 6 (LRP6) rather than beta-catenin, which is necessary for Axin to bind to LRP6 together with GSK-3beta and APC [XREF_BIBR].

      GSK3B phosphorylates CTNNB1.

    2. These results suggest that upon Wnt3A stimulation, p-Tyr216 GSK-3beta and dephospho-Ser9 GSK-3beta, both of which are known to be active forms of GSK-3beta, are critical for beta-catenin accumulation along with Tyr416 phosphorylation of Src and Tyr42 phosphorylation of RhoA (XREF_FIG C).

      SRC phosphorylates RHOA on Y42.

    3. However, in consistent to the previous report [XREF_BIBR], we revealed that si-RhoA impaired beta-catenin accumulation and reconstitution of RhoA restored beta-catenin accumulation (XREF_FIG A), suggesting that RhoA activity and beta-catenin stability are very closely linked, although the underlying mechanism by which RhoA induces beta-catenin accumulation in response to Wnt3A remains to be revealed.

      RHOA inhibits CTNNB1.

    4. In this study, we found that Wnt3A induces interaction of p-Tyr42 RhoA and beta-catenin and p-Tyr42 RhoA delivers beta-catenin to the nucleus, where p-Tyr42 RhoA as well as beta-catenin regulates expression of specific genes such as Vim by binding to Vim promoter.

      CTNNB1 binds RHOA.

    5. However, in consistent to the previous report [XREF_BIBR], we revealed that si-RhoA impaired beta-catenin accumulation and reconstitution of RhoA restored beta-catenin accumulation (XREF_FIG A), suggesting that RhoA activity and beta-catenin stability are very closely linked, although the underlying mechanism by which RhoA induces beta-catenin accumulation in response to Wnt3A remains to be revealed.

      RHOA activates CTNNB1.

    1. The present study found that upregulation of KLK8 leads to plakoglobin dependent nuclear translocation of p53, which binds to HIF-1alpha, and further enhances the transactivation effect of HIF-1alpha on the TGF-beta1 promoter and consequently upregulates TGF-beta1 expression at the transcriptional level.

      KLK8 increases the amount of TGFB1.

    2. It was found that the mRNA and protein expression levels of KLK8 were significantly upregulated in a dose dependent manner in high glucose treated HCAECs compared with those of normal glucose treated HCAECs, suggesting that high glucose stimulated KLK8 expression at the transcriptional level.

      glucose increases the amount of KLK8.

    3. The present study found that upregulation of KLK8 leads to plakoglobin dependent nuclear translocation of p53, which binds to HIF-1alpha, and further enhances the transactivation effect of HIF-1alpha on the TGF-beta1 promoter and consequently upregulates TGF-beta1 expression at the transcriptional level.

      TP53 binds HIF1A.

    4. High glucose may promote the plakoglobin dependent cooperation of p53 with HIF-1alpha and Smad3, subsequently increasing the expression of TGF-beta1 and the pro EndMT target genes of the TGF-beta1 and Smad signaling pathway in a KLK8 dependent manner both in vitro and in vivo.

      glucose activates TP53.

    5. Taken together, these in vitro and in vivo results suggest that high glucose may promote plakoglobin dependent cooperation of p53 with HIF-1alpha and Smad3, subsequently increasing the expression of TGF-beta1 and its pro EndMT target genes in a KLK8 dependent manner.

      glucose activates TP53.

    6. The in vitro and in vivo findings further demonstrated that high glucose may promote plakoglobin dependent cooperation of p53 with HIF-1alpha and Smad3, subsequently increasing the expression of TGF-beta1 and the pro EndMT target genes of the TGF-beta1 and Smad signaling pathway in a KLK8 dependent manner.

      glucose activates TP53.

    7. The in vitro and in vivo findings further demonstrated that high glucose may promote plakoglobin dependent cooperation of p53 with HIF-1alpha and Smad3, subsequently increasing the expression of TGF-beta1 and the pro EndMT target genes of the TGF-beta1 and Smad signaling pathway in a KLK8 dependent manner.

      glucose activates TP53.

  2. Jul 2021
    1. Specifically, PTEN antagonized the PI3K and AKT signaling and downstream effector FoxO3a phosphorylation and subsequently enhanced nuclear translocation of FoxO3a to drive proautophagy gene program, but these changes were diminished upon PTEN inhibition.

      PTEN leads to the dephosphorylation of FOXO3.

    2. Mechanistically, blockage of PTEN could enhance FoxO3a phosphorylation modification to restrict its nuclear translocation and ATG transcription via activating the PI3K and AKT pathway, leading to the suppression of the autophagic program.

      PTEN leads to the dephosphorylation of FOXO3.

    1. The S100A8 knockdown using shRNA revealed that COX-2 and PGE 2 expression was regulated by S100A8, which suggested that the intracellular increase of microglial S100A8 levels upregulated COX-2 expression and PGE2 secretion, contributing to neuronal death under hypoxic conditions.

      S100A8 increases the amount of PTGS2.

    1. This PTEN/ARID4B/PI3K signalling axis identifies a novel player in the PTEN mediated suppression of the PI3K pathway and provides a new opportunity to design novel therapeutics to target this axis to promote the tumour suppressive functions of PTEN.

      PTEN inhibits PI3K.

    1. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      IL23R inhibits ITGAE.

    2. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      IL23R inhibits ITGA1.

    3. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      IL17F inhibits ITGAE.

    4. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      IL17F inhibits ITGA1.

    5. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      CCR6 inhibits ITGAE.

    6. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      CCR6 inhibits ITGA1.