10,000 Matching Annotations
  1. Sep 2025
  2. learn-us-east-1-prod-fleet02-xythos.content.blackboardcdn.com learn-us-east-1-prod-fleet02-xythos.content.blackboardcdn.com
    1. itedStates issueisjustacatch-phrase,two words,“civilrights.”Howistheblackmangoingtoget “civilrights”beforefirsthewinshisAumanrights?

      I never thought about it like this because in my head civil rights goes had and hand with human right. Yet I can see that to X that the black man doesn't want enough, doesn't see that they deserve more then just civil rights. Just barely becoming "equal" will never be enough for the 400 years of suffering, we as black people need true reparations.

    1. Constitutional rule came to the area that would become Texas in 1812 during the Napoleonic Wars

      Napoleon removed Ferdinand from office suddenly and forcefully. He made a government where a monarch was the head, however they were limited by a constitution and democratically elected government.

    1. To those of the white race who look to the incoming of those of foreign birth and strange tongue and habits of the prosperity of the South, were I permitted I would repeat what I say to my own race: “Cast down your bucket where you are.” Cast it down among the eight millions of Negroes whose habits you know, whose fidelity and love you have tested in days when to have proved treacherous meant the ruin of your firesides. Cast down your bucket among these people who have, without strikes and labour wars, tilled your fields, cleared your forests, builded [sic] your railroads and cities, and brought forth treasures from the bowels of the earth, and helped make possible this magnificent representation of the progress of the South. Casting down your bucket among my people, helping and encouraging them as you are doing on these grounds, and to education of head, hand, and heart, you will find that they will buy your surplus land, make blossom the waste places in your fields, and run your factories. While doing this, you can be sure in the future, as in the past, that you and your families will be surrounded by the most patient, faithful, law-abiding, and unresentful people that the world has seen. As we have proved our loyalty to you in the past, nursing your children, watching by the sick-bed of your mothers and fathers, and often following them with tear-dimmed eyes to their graves, so in the future, in our humble way, we shall stand by you with a devotion that no foreigner can approach, ready to lay down our lives, if need be, in defence of yours, interlacing our industrial, commercial, civil, and religious life with yours in a way that shall make the interests of both races one. In all things that are purely social we can be as separate as the fingers, yet one as the hand in all things essential to mutual prog

      Washington wants his race to work hard and prosper among the white man, that if they unite they can be beneficial just like in the times they nursed their sons and daughters as slaves and worked endlessly, now as partners, can have a social economic impact

    1. The danger is that Western politicians will overreact to the hos- tile rhetoric, stir up public opinion, and shut off contact, thus miss- ing the opportunities that such rhetoric conceals. A better policy would be for Western leaders to keep a clear head, respond calmly to rhetorical attacks, and give up nothing of substance, while remain- ing alert for the change in the weather that will come as the new president realizes the incoherence of his own plans and is pushed back toward an ambivalent partnership with t

      The idea of long term patency in diplomacy is brought up with this article which also stresses how important it is to separate between rhetorical and real policy conduct. It was important because it suggested that leaders may miss genuine engagement chances because of their emotional responses to hostile words. Treisman gives normative recommendations for Western policymakers while giving his viewpoint in a subjective manner. The main conclusions are that effective diplomacy requires an understanding of difference between rhetoric and reality and that judgment should be given importance over response in foreign affairs. This also explains why the way the West reacts to negative comments which either increase tension or create partnership.

    1. Or that the dog at the bottom of the stairs keeps having mild strokes, which causeher to tilt her head inquisitively and also to fall over. She drinks prodigiousamounts of water and pees great volumes onto the folded blankets where shesleeps

      Analogy?

    2. ake up. She’s staring at me with her head slightly tippedto the side, long nose, gazing eyes, toenails clenched to get a purchase on thewood oor. We used to call her the face of love.

      Poetic way to describe owning a dog

    Annotators

    1. the role the audience plays in your writing

      Getting out of our own head and into the head, or psychology, of the target audience adds depth of writing and appeal.

    1. eLife Assessment

      This important study reports that higher genetically predicted BMI is associated with a modestly increased risk of head and neck cancer. The convincing evidence is supported by rigorous Mendelian Randomization approaches, using multiple genetic instruments and models that reduce sensitivity to pleiotropy. However, results from pleiotropy-robust analyses were less consistent, which limits the strength of causal inference. The work will be of interest to researchers studying cancer risk factors and genetic epidemiology.

    2. Reviewer #1 (Public review):

      Summary:

      The authors have conducted the largest to date Mendelian Randomization (MR) analysis of the association between genetically predicted measures of adiposity and risk of head and neck cancer (HNC) overall and by subsites within HNC. MR uses genetic predictors of an exposure, such as gene variants associated with high BMI or tobacco use, rather than data from individual physical exams or questionnaires and if it can be done in its idealized state, there should be no problems with confounding. Traditional epidemiologic studies have reported a variety of associations between BMI (and a few other measures of adiposity) and risk of HNC that typically differs by the smoking status of the subjects. Those findings are controversial given the complex relationship between tobacco and both BMI and HNC risk. Tobacco smokers are often thinner than no-smokers so this could create an artificial ('confounded') association that may not be fully adjusted away in risk models. The findings of a BMI-HNC association are often attributed to residual confounding and this seems ripe for an MR approach if suitable genetic instrumental variables can be created. Here the authors built a variety of genetic instrumental variables for BMI and other measures of adiposity as well as two instrumental variables for smoking habits and then tested their hypotheses in a large case-controls set of HNC and controls with genetic data.

      The authors found that the genetic model for BMI was associated with HNC risk in simple models, but this association disappeared when using models that better accounted for pleiotropy, the condition when genetic variants are associated with more than one trait such as both BMI and tobacco use. When they used both adiposity and tobacco use genetic instruments in a single model, there was a strong association with genetically predicted tobacco use (as is expected) but there was no remaining association with genetic predictors of adiposity. They conclude that high BMI/adiposity is not a risk factor for HNC.

      Strengths:

      The primary strength was the expansive use of a variety of different genetic instruments for BMI/adiposity/body size along with employing a variety of MR model types, several of which are known to be less sensitive to pleiotropy. They also used the largest case-control sample size to date.

      Weaknesses:

      The lack of pleiotropy is an unconfirmable assumption of MR and the addition of those models is therefore quite important as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result and in that case, they are more limited in their ability to test their hypothesis as these models do not show a robust BMI instrumental variable association.

      Comments on the revised manuscript:

      After the first round of review, the authors have improved the manuscript by (1) adding the requested power calculations and adding text to help the reader integrate that additional information; (2) adding the main effects for the tobacco instruments; (3) updating the comparison of their results to the prior literature; (4) and some other edits to the text. They have declined to include the smoking stratified estimates and provide a rationale for this decision that references the potential for collider bias. While true that yet another bias might be introduced, that gets added to the list and the careful reader would know that. Many important questions in cancer etiology can only be addressed via observational approaches and each observational approach has the potential for a long list of biases. The best inference comes from integrating the totality of the data and realizing that most conclusions are subject to updating as we conduct more work and learn more.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Joint Public Review:

      Weaknesses:

      The lack of pleiotropy is an unconfirmable assumption of MR, and the addition of those models is therefore quite important, as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result, and in that case, they can't test their hypotheses as these models do not show a BMI instrumental variable association. The other weakness, which might be remedied, is that the power of the tests here is not described. When a hypothesis is tested with an under-powered model, the apparent lack of association could be due to inadequate sample size rather than a true null. Typically, when a statistically significant association is reported, power concerns are discounted as long as the study is not so small as to create spurious findings. That is the case with their primary BMI instrumental variable model - they find an association so we can presume it was adequately powered. But the primary models they share are not the pleiotropy-robust methods MR-Egger, weighted median, and weighted mode. The tests for these models are null, and that could mean a couple of things: (1) the original primary significant association between the BMI genetic instrument was due to pleiotropy, and they therefore don't have a robust model to explore the effects of the tobacco genetic instrument. (2) The power for the sensitivity analysis models (the pleiotropy-robust methods) is inadequate, and the authors share no discussion about the relative power of the different MR approaches. If they do have adequate power, then again, there is no need to explore the tobacco instrument.

      Reviewing Editor Comments:

      We suggest that the authors add power estimates to assess whether the sample size is sufficient, given the strength and variability of the genetic instruments. It would also be helpful to present effect estimates for the tobacco instruments alone, to clarify their independent contribution and improve the interpretation of the joint models. In addition, the role of pleiotropy should be addressed more clearly, including which model is considered primary. Stratified analyses by smoking status are encouraged, as prior studies indicate that BMI-HNC associations may differ between smokers and non-smokers. Finally, the comparison with previous studies should be revised, as most reported null findings without accounting for tobacco instruments. If this study finds an association, it should not be framed as a replication

      We would like to highlight that post-hoc power calculations are often considered redundant since the statistical power estimated for an observed association is directly related to its p-value[1]. In other words, the uncertainty of the association is already reflected in its 95% confidence interval. However, we understand power calculations may still be of interest to the reader, so we have incorporated them in the revised manuscript. We have edited the text as follows (lines 151-155):“Consequently, we used the total R<sup>2</sup> values to examine the statistical power in our study[42]. However, we acknowledge that the value of post-hoc power calculations is limited, since the statistical power estimated for an observed association is already reflected in the 95% confidence interval presented alongside the point estimate[43].” We have also added supplementary figures 1 and 2.

      We can see that when using the latest HEADSpAcE data we were able to detect BMI-HNC ORs as small as 1.16 with 80% power, while the GAME-ON dataset only permitted the detection of ORs as small as 1.26 using the same BMI instruments (Figure B). We have explained these figures in the results section as follows (lines 257-263): “Using the BMI genetic instruments (total R<sup>2</sup>= 4.8%) and an α of 0.05, we had 80% statistical power to detect an OR as small as 1.16 for HNC risk (Supplementary Figure 1). For WHR (total R<sup>2</sup>= 3.1%) and WC (total R<sup>2</sup>= 4.4%), we could detect odds ratios (ORs) as small as 1.20 and 1.17, respectively. This is an improvement in terms of statistical power compared to the GAME-ON analysis published by Gormley et al.[28], for which there was 80% power to detect an OR as small as 1.26 using the same BMI genetic instruments (Supplementary Figure 2).”

      The reason we use inverse variance weighted (IVW) Mendelian randomization (MR) to obtain our main results rather than the pleiotropy-robust methods mentioned by the reviewer/editors (i.e., MR-Egger, weighted median and weighted mode) is that the former has greater statistical power than the latter[2]. Hence, instead of focussing on the statistical significance of the pleiotropy-robust analyses, we consider it is of more value to compare the consistency of the effect sizes and direction of the effect estimates across methods. Any evidence of such consistency increases our confidence in our main findings, since each method relies on different assumptions. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even though they are not equally powered. It is true that our results for the genetically predicted effects of body mass index (BMI) on the risk of head and neck cancer (HNC) differ across methods. This is precisely what led us to question the validity of our main finding (suggesting a positive effect of BMI on HNC risk). We have now clarified this in the methods section of the revised manuscript as advised. Lines 165-171:

      “Because the IVW method assumes all genetic variants are valid instruments[44], which is unlikely the case, three pleiotropy-robust two-sample MR methods (i.e., MR-Egger[45], weighted median[46] and weighted mode[47]) were used in sensitivity analyses. When the magnitude and direction of effect estimates are consistent across methods that rely on different assumptions, the main findings are more convincing. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even if they are not equally powered.”

      We understand that the reviewer/editors are concerned that we do not have a robust model to explore the role of tobacco consumption in the link between BMI and HNC. However, we have a different perspective on the matter. If indeed, the main IVW finding for BMI and HNC is due to pleiotropy (since some of the pleiotropy-robust methods suggest conflicting results), then the IVW multivariable MR method is a way to explore the potential source of this bias[3]. We were particularly interested in exploring the role of smoking in the observed association because smoking and adiposity are known to influence each other [4-9] and share a genetic basis[10, 11].

      We agree that it would be useful to present the univariable MR effect estimates for smoking behaviour and HNC risk along those obtained using multivariable MR. We have now included the univariable MR estimates for both smoking behaviour variables as a note under Supplementary Table 11 and in the manuscript (lines 316-318): “In univariable IVW MR, both CSI and SI were linked to an increased risk of HNC (CSI OR=4.47 per 1-SD higher CSI, 95%CI 3.31–6.03, p<0.001; SI OR=2.07 per 1-SD higher SI 95%CI 1.60–2.68, p<0.001) (Additional File 2: note in Supplementary Table 11).”

      We understand the appeal of conducting stratified MR analyses by smoking status. However, we anticipate such analyses would hinder the interpretation of our findings as they can induce collider bias which could spuriously lead to different effect estimates across strata[12, 13].

      We thank the reviewer/editors for their comment regarding the way we frame of our findings. We have now edited the discussion section to highlight our study results are different to those obtained in studies that do not account for smoking behaviour. Lines 398-401: “With a much larger sample (N=31,523, including 12,264 cases), our IVW MR analysis suggested BMI may play a role in HNC risk, in contrast to previous studies. However, our sensitivity analyses implied that causality was uncertain.”

      Reviewer #1 (Recommendations for the authors):

      The authors do share a table of the percent variance explained of the different genetic instruments, which vary widely, and that table is very welcome because we can get some sense of their utility. The problem is that they don't translate that into a power estimate for the case-control study size that they use. They say that it is the biggest to date, which is good, but without some formal power estimate, it is not particularly reassuring. A framework for MR study power estimates was reported in PMID: 19174578, but that was using very simple MR constructs in use in 2009, and it isn't clear to me if that framework can be used here. That power paper suggests that weak genetic instruments need very large sample sizes, far larger than what is used in the current manuscript. I am unable to estimate the true strength of the instruments used here, and so I am unsure of whether power is an issue or not.

      We have now included power calculations in our manuscript to address the reviewer’s concerns. Nevertheless, as mentioned above, post-hoc power calculations are of limited value, as statistical power is already reflected in the uncertainty around the point estimates (the 95% confidence intervals). Hence, it is important to avoid drawing conclusions regarding the likelihood of true effects or false negatives based on these calculations.

      Although the hypothesis here is that smoking accounts for the apparent BMI association previously reported for HNC, it would have been preferable to see the estimates for their 2 genetic instruments for tobacco alone. The current results only show the BMI instruments alone and then with the tobacco instruments. I would like to see what the risk estimates are for the tobacco instrument alone, so that I can judge for myself what happens in the joint models. As presented, one can only do that for the BMI instruments.

      We thank the reviewer for this comment. The univariable IVW MR estimate of smoking initiation was OR=2.07 (95%CI 1.60 to 2.68, p<0.001), while the one for comprehensive smoking index was OR=4.47 (95%CI 3.31 to 6.03, p<0.001). We have included this information in the manuscript as requested (please see response to reviewing editor above).

      On line 319, they write that "We did not find evidence against bias due to correlated pleiotropy..." I find this difficult to parse, but I think it means that they should believe that correlated pleiotropy remains a problem. So again, they seem to see their primary model as compromised, and so do I. This limitation is again stated by the authors on lines 351-352.

      We apologise if the wording of the sentence was not easy to understand. When using the CAUSE method, we did not find evidence to reject the null hypothesis that the sharing (correlated pleiotropy) model fits the data at least as well as the causal model. In other words, our CAUSE finding and the inconsistencies observed across our other sensitivity analyses led us to believe that our main IVW MR estimate for BMI-HNC was likely biased by correlated pleiotropy. We believe it is important to explore the source of this bias, which is why we used multivariable MR to investigate the direct effect of BMI on HNC risk while accounting for smoking behaviour.

      In the following paragraphs (lines 358-369), the authors state that their findings are consistent with prior reports, but that doesn't seem to be the case if we take their primary BMI instrument as representing the outcome of this manuscript. Here, they find an association between the BMI instrument and HNC risk, but in each of the other papers they present the primary finding was null without the extensive model changes or the aim of accounting for tobacco with another instrument. I don't see that as replication.

      This is a good point. We have now edited the discussion of our manuscript to avoid giving the impression that our findings replicate those from studies that do not account for smoking behaviour in their analyses. We have edited lines 384-401 as follows:

      “Previous MR studies suggest adiposity does not influence HNC risk[27-29]. Gormley et al.[28] did not find a genetically predicted effect of adiposity on combined oral and oropharyngeal cancer when investigating either BMI (OR=0.89 per 1-SD, 95% CI 0.72–1.09, p=0.26), WHR (OR=0.98 per 1-SD, 95% CI 0.74–1.29, p=0.88) or waist circumference (OR=0.73 per 1-SD, 95% CI 0.52–1.02, p=0.07) as risk factors. Similarly, a large two-sample MR study by Vithayathil et al.[29] including 367,561 UK Biobank participants (of which 1,983 were HNC cases) found no link between BMI and HNC risk (OR=0.98 per 1-SD higher BMI, 95% CI 0.93–1.02, p=0.35). Larsson et al.[27] meta-analysed Vithayathil et al.’s[29] findings with results obtained using FinnGen data to increase the sample size even further (N=586,353, including 2,109 cases), but still did not find a genetically predicted effect of BMI on HNC risk (OR=0.96 per 1-SD higher BMI, 95% CI 0.77–1.19, p=0.69). With a much larger sample (N=31,523, including 12,264 cases), our IVW MR analysis suggested BMI may play a role in HNC risk, in contrast to previous studies. However, our sensitivity analyses implied that causality was uncertain.”

      We also deleted part of a sentence in the discussion section, so lines 416-418 now look as follows: “An important strength of our study was that the HEADSpAcE consortium GWAS used had a large sample size which conferred more statistical power to detect effects of adiposity on HNC risk compared to previous MR analyses[27-29].”

      On lines 384-386 they note a strength is that this is the largest study to date, but I would reiterate that larger and more powerful does not equate to adequately powered.

      This is true. We have included power calculations in the manuscript as requested.

      It's well known that different HNC subsites have different etiologies, as they mention on lines 391-392, and it is implicit in their use of data on HPV positive and negative oropharyngeal cancer. They say that they did not find evidence for heterogeneity in this study, but that would only be true for the null BMI instrument. The effect sizes for their smoking instruments are strikingly different between the subsites.

      We agree and are sorry for the confusion we may have caused by the way we worded our findings. We have edited the text to clarify that the lack of subsite heterogeneity only applied to our results for BMI/WHC/WC-HNC risk. Lines 418-424 now read as follows:

      “Furthermore, the availability of data on more HNC subsites, including oropharyngeal cancers by HPV status, allowed us to investigate the relationship between adiposity and HNC risk in more detail than previous MR studies which limited their subsite analyses to oral cavity and overall oropharyngeal cancers[28, 68]. This is relevant because distinct HNC subsites are known to have different aetiologies[69], although we did not find evidence of heterogeneity across subsites in our analyses investigating the genetically predicted effects of BMI, WHR and WC on HNC risk.”

      Finally, the literature on mutational patterns gives us strong reason to believe that HNC caused by tobacco are biologically distinct from tumors not caused by tobacco. The authors report in the introduction that traditional observational studies of BMI and HNC have reported different findings in smokers versus never smokers, so I would assume there is a possibility that the BMI instrument could have different associations with tumors of the tobacco-induced phenotype and tumors with a non-tobacco induced phenotype. I would assume that authors have access to the data on self-reported tobacco use behavior, even if they can't separate these tumors by molecular types. Stratifying their analysis by tobacco users or not might reveal different results with the BMI instrument.

      We appreciate the reviewer’s comment. We agree that it would have been interesting to present stratified analyses by smoking status along our main findings. However, we decided against this because of the risk of inducing collider bias in our MR analyses i.e., where stratifying on smoking status may induce spurious associations between the adiposity instruments and confounding factors. Multivariable MR is considered a better way of investigating the direct effects of an exposure (adiposity) on an outcome (HNC) accounting for a third variable (smoking)[14], which is why we opted for this method instead.

      References:

      (1) Heinsberg LW, Weeks DE: Post hoc power is not informative. Genet Epidemiol 2022, 46(7):390-394.

      (2) Burgess S, Butterworth A, Thompson SG: Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013, 37(7):658-665.

      (3) Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C et al: Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 2019, 4:186.

      (4) Morris RW, Taylor AE, Fluharty ME, Bjorngaard JH, Asvold BO, Elvestad Gabrielsen M, Campbell A, Marioni R, Kumari M, Korhonen T et al: Heavier smoking may lead to a relative increase in waist circumference: evidence for a causal relationship from a Mendelian randomisation meta-analysis. The CARTA consortium. BMJ Open 2015, 5(8):e008808.

      (5) Taylor AE, Morris RW, Fluharty ME, Bjorngaard JH, Asvold BO, Gabrielsen ME, Campbell A, Marioni R, Kumari M, Hallfors J et al: Stratification by smoking status reveals an association of CHRNA5-A3-B4 genotype with body mass index in never smokers. PLoS Genet 2014, 10(12):e1004799.

      (6) Taylor AE, Richmond RC, Palviainen T, Loukola A, Wootton RE, Kaprio J, Relton CL, Davey Smith G, Munafo MR: The effect of body mass index on smoking behaviour and nicotine metabolism: a Mendelian randomization study. Hum Mol Genet 2019, 28(8):1322-1330.

      (7) Asvold BO, Bjorngaard JH, Carslake D, Gabrielsen ME, Skorpen F, Smith GD, Romundstad PR: Causal associations of tobacco smoking with cardiovascular risk factors: a Mendelian randomization analysis of the HUNT Study in Norway. Int J Epidemiol 2014, 43(5):1458-1470.

      (8) Carreras-Torres R, Johansson M, Haycock PC, Relton CL, Davey Smith G, Brennan P, Martin RM: Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ 2018, 361:k1767.

      (9) Freathy RM, Kazeem GR, Morris RW, Johnson PC, Paternoster L, Ebrahim S, Hattersley AT, Hill A, Hingorani AD, Holst C et al: Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index. Int J Epidemiol 2011, 40(6):1617-1628.

      (10) Thorgeirsson TE, Gudbjartsson DF, Sulem P, Besenbacher S, Styrkarsdottir U, Thorleifsson G, Walters GB, Consortium TAG, Oxford GSKC, consortium E et al: A common biological basis of obesity and nicotine addiction. Transl Psychiatry 2013, 3(10):e308.

      (11) Wills AG, Hopfer C: Phenotypic and genetic relationship between BMI and cigarette smoking in a sample of UK adults. Addict Behav 2019, 89:98-103.

      (12) Coscia C, Gill D, Benitez R, Perez T, Malats N, Burgess S: Avoiding collider bias in Mendelian randomization when performing stratified analyses. Eur J Epidemiol 2022, 37(7):671-682.

      (13) Hamilton FW, Hughes DA, Lu T, Kutalik Z, Gkatzionis A, Tilling K, Hartwig FP, Davey Smith G: Non-linear Mendelian randomization: evaluation of effect modification in the residual and doubly-ranked methods with simulated and empirical examples. Eur J Epidemiol 2025.

      (14) Sanderson E, Davey Smith G, Windmeijer F, Bowden J: An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int J Epidemiol 2019, 48(3):713-727.

    1. Author response:

      Notes to Editors

      We previously received comments from three reviewers at Biological Psychiatry, which we have addressed in detail below. The following is a summary of the reviewers’ comments along with our responses.

      Reviewers 1 and 2 sought clearer justification for studying the cognition-mental health overlap (covariation) and its neuroimaging correlates. In the revised manuscripts, we expanded the Introduction and Discussion to explicitly outline the theoretical implications of investigating this overlap with machine learning. We also added nuance to the interpretation of the observed associations.

      Reviewer 1 raised concerns about the accessibility of the machine learning methodology for readers without expertise in this field. We revised the Methods section to provide a clearer, step-by-step explanation of our machine learning approach, particularly the two-level machine learning through stacking. We also enhanced the description of the overall machine learning design, including model training, validation, and testing.

      In response to Reviewer 2’s request for deeper interpretation of our findings and stronger theoretical grounding, we have expanded our discussion by incorporating a thorough interpretation of how mental health indices relate to cognition, material that was previously included only in supplementary materials due to word limit constraints. We have further strengthened the theoretical justification for our study design, with particular emphasis on the importance of examining shared variance between cognition and mental health through the derivation of neural markers of cognition. Additionally, to enhance the biological interpretation of our results, we included new analyses of feature importance across neuroimaging modalities, providing clearer insights into which neural features contribute most to the observed relationships.

      Notably, Reviewer 3 acknowledged the strength of our study, including multimodal design, robust analytical approach, and clear visualization and interpretation of results. Their comments were exclusively methodological, underscoring the manuscript’s quality.

      Reviewer 1:

      The authors try to bridge mental health characteristics, global cognition and various MRI-derived (structural, diffusion and resting state fMRI) measures using the large dataset of UK Biobank. Each MRI modality alone explained max 25% of the cognitionmental health covariance, and when combined together 48% of the variance could be explained. As a peer-reviewer not familiar with the used methods (machine learning, although familiar with imaging), the manuscript is hard to read and I wonder what the message for the field might be. In the end of the discussion the authors state '... we provide potential targets for behavioural and physiological interventions that may affect cognition', the real relevance (and impact) of the findings is unclear to me.

      Thank you for your thorough review and practical recommendations. We appreciate your constructive comments and suggestions and hope our revisions adequately address your concerns.

      Major questions

      (1) The methods are hard to follow for people not in this specific subfield, and therefore, I expect that for readers it is hard to understand how valid and how useful the approach is.

      Thank you for your comment. To enhance accessibility for readers without a machine learning background, we revised the Methods section to clarify our analyses while retaining important technical details needed to understand our approach. Recognizing that some concepts may require prior knowledge, we provide detailed explanations of each analysis step, including the machine learning pipeline in the Supplementary Methods.

      Line 188: “We employed nested cross-validation to predict cognition from mental health indices and 72 neuroimaging phenotypes (Fig. 1). Nested cross-validation is a robust method for evaluating machine-learning models while tuning their hyperparameters, ensuring that performance estimates are both accurate and unbiased. Here, we used a nested cross-validation scheme with five outer folds and ten inner folds.

      We started by dividing the entire dataset into five outer folds. Each fold took a turn being held out as the outerfold test set (20% of the data), while the remaining four folds (80% of the data) were used as an outer-fold training set. Within each outer-fold training set, we performed a second layer of cross-validation – this time splitting the data into ten inner folds. These inner folds were used exclusively for hyperparameter tuning: models were trained on nine of the inner folds and validated on the remaining one, cycling through all ten combinations.

      We then selected the hyperparameter configuration that performed best across the inner-fold validation sets, as determined by the minimal mean squared error (MSE). The model was then retrained on the full outer-fold training set using this hyperparameter configuration and evaluated on the outer-fold test set, using four performance metrics: Pearson r, the coefficient of determination ( R<sup>2</sup>), the mean absolute error (MAE), and the MSE. This entire process was repeated for each of the five outer folds, ensuring that every data point is used for both training and testing, but never at the same time. We opted for five outer folds instead of ten to reduce computational demands, particularly memory and processing time, given the substantial volume of neuroimaging data involved in model training. Five outer folds led to an outer-fold test set at least n = 4 000, which should be sufficient for model evaluation. In contrast, we retained ten inner folds to ensure robust and stable hyperparameter tuning, maximising the reliability of model selection.

      To model the relationship between mental health and cognition, we employed Partial Least Squares Regression (PLSR) to predict the g-factor from 133 mental health variables. To model the relationship between neuroimaging data and cognition, we used a two-step stacking approach [15–17,61] to integrate information from 72 neuroimaging phenotypes across three MRI modalities. In the first step, we trained 72 base (first-level) PLSR models, each predicting the g-factor from a single neuroimaging phenotype. In the second step, we used the predicted values from these base models as input features for stacked models, which again predicted the g-factor. We constructed four stacked models based on the source of the base predictions: one each for dwMRI, rsMRI, sMRI, and a combined model incorporating all modalities (“dwMRI Stacked”, “rsMRI Stacked”, “sMRI Stacked”, and “All MRI Stacked”, respectively). Each stacked model was trained using one of four machine learning algorithms – ElasticNet, Random Forest, XGBoost, or Support Vector Regression – selected individually for each model (see Supplementary Materials, S6).

      For rsMRI phenotypes, we treated the choice of functional connectivity quantification method – full correlation, partial correlation, or tangent space parametrization – as a hyperparameter. The method yielding the highest performance on the outer-fold training set was selected for predicting the g-factor (see Supplementary Materials, S5).

      To prevent data leakage, we standardized the data using the mean and standard deviation derived from the training set and applied these parameters to the corresponding test set within each outer fold. This standardization was performed at three key stages: before g-factor derivation, before regressing out modality-specific confounds from the MRI data, and before stacking. Similarly, to maintain strict separation between training and testing data, both base and stacked models were trained exclusively on participants from the outer-fold training set and subsequently applied to the corresponding outer-fold test set.

      To evaluate model performance and assess statistical significance, we aggregated the predicted and observed g_factor values from each outer-fold test set. We then computed a bootstrap distribution of Pearson’s correlation coefficient (_r) by resampling with replacement 5 000 times, generating 95% confidence intervals (CIs) (Fig. 1). Model performance was considered statistically significant if the 95% CI did not include zero, indicating that the observed associations were unlikely to have occurred by chance.”

      (2) If only 40% of the cognition-mental health covariation can be explained by the MRI variables, how to explain the other 60% of the variance? And related to this %: why do the author think that 'this provides us confidence in using MRI to derive quantitative neuromarkers of cognition'?

      Thank you for this insightful observation. Using the MRI modalities available in the UK Biobank, we were able to account for 48% of the covariation between cognition and mental health. The remaining 52% of unexplained variance may arise from several sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research from our group and others has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank.

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the Research Domain Criteria (RDoC) framework, brain circuits represent only one level of neurobiological analysis relevant to cognition. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. We have now incorporated these considerations into the Discussion section.

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Regarding our confidence in using MRI to derive neural markers for cognition, we base this on the predictive performance of MRI-based models. As we note in the Discussion (Line 554: “Consistent with previous studies, we show that MRI data predict individual differences in cognition with a medium-size performance (r ≈ 0.4) [15–17, 28, 61, 67, 68].”), the medium effect size we observed (r ≈ 0.4) agrees with existing literature on brain-cognition relationships, confirming that machine learning leads to replicable results. This effect size represents a moderate yet meaningful association in neuroimaging studies of aging, consistent with reports linking brain to behaviour in adults (Krämer et al., 2024; Tetereva et al., 2022). For example, a recent meta-analysis by Vieira and colleagues (2022) reported a similar effect size (r = 0.42, 95% CI [0.35;0.50]). Our study includes over 15000 participants, comparable to or more than typical meta-analyses, allowing us to characterise our work as a “mega-analysis”. And on top of this predictive performance, we found our neural markers for cognition to capture half of the cognition-mental health covariation, boosting our confidence in our approach.

      Krämer C, Stumme J, da Costa Campos L, Dellani P, Rubbert C, Caspers J, et al. Prediction of cognitive performance differences in older age from multimodal neuroimaging data. GeroScience. 2024;46:283–308.

      Tetereva A, Li J, Deng JD, Stringaris A, Pat N. Capturing brain cognition relationship: Integrating task‐based fMRI across tasks markedly boosts prediction and test‐retest reliability. NeuroImage. 2022;263:119588.

      (3) Imagine that we can increase the explained variance using multimodal MRI measures, why is it useful? What does it learn us? What might be the implications?

      We assume that by variance, Reviewer 1 referred to the cognition-mental health covariation mentioned in point 2) above.

      If we can increase the explained cognition-mental health covariation using multimodal MRI measures, it would mean that we have developed a reasonable neuromarker that is close to RDoC’s neurobiological unit of analysis for cognition. RDoC treats cognition as one of the main basic functional domains that transdiagnostically underly mental health. According to RDoC, mental health should be studied in relation to cognition, alongside other domains such as negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. RDoC further emphasizes that each domain, including cognition, should be investigated not only at the behavioural level but also through its neurobiological correlates. This means RDoC aims to discover neural markers of cognition that explain the covariation between cognition and mental health. For us, we approach the development of such neural markers using multimodal neuroimaging. We have now explained the motivation of our study in the first paragraph of the Introduction.

      Line 43: “Cognition and mental health are closely intertwined [1]. Cognitive dysfunction is present in various mental illnesses, including anxiety [2, 3], depression [4–6], and psychotic disorders [7–12]. National Institute of Mental Health’s Research Domain Criteria (RDoC) [13,14] treats cognition as one of the main basic functional domains that transdiagnostically underly mental health. According to RDoC, mental health should be studied in relation to cognition, alongside other domains such as negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. RDoC further emphasizes that each domain, including cognition, should be investigated not only at the behavioural level but also through its neurobiological correlates. In this study, we aim to examine how the covariation between cognition and mental health is reflected in neural markers of cognition, as measured through multimodal neuroimaging.”

      More specific issues:

      Introduction

      (4) In the intro the sentence 'in some cases, altered cognitive functioning is directly related to psychiatric symptom severity' is in contrast to the next sentence '... are often stable and persist upon alleviation of psychiatric symptoms'.

      Thank you for pointing this out. The first sentence refers to cases where cognitive deficits fluctuate with symptom severity, while the second emphasizes that core cognitive impairments often remain stable even during symptom remission. To avoid this confusion, we have removed these sentences.

      (5) In the intro the text on the methods (various MRI modalities) is not needed for the Biol Psych readers audience.

      We appreciate your comment. While some members of our target audience may have backgrounds in neuroimaging, machine learning, or psychiatry, we recognize that not all readers will be familiar with all three areas. To ensure accessibility for those who are not familiar with neuroimaging, we included a brief overview of the MRI modalities and quantification methods used in our study to provide context for the specific neuroimaging phenotypes. Additionally, we provided background information on the machine learning techniques employed, so that readers without a strong background in machine learning can still follow our methodology.

      (6) Regarding age of the study sample: I understand that at recruitment the subjects' age ranges from 40 to 69 years. At MRI scanning the age ranges between about 46 to 82. How is that possible? And related to the age of the population: how did the authors deal with age in the analyses, since age is affecting both cognition as the brain measures?

      Thank you for noticing this. In the Methods section, we first outline the characteristics of the UK Biobank cohort, including the age at first recruitment (40-69 years). Table 1 then shows the characteristics of participant subsamples included in each analysis. Since our study used data from Instance 2 (the second in-person visit), participants were approximately 5-13 years older at scanning, resulting in the age range of 46 to 82 years. We clarified the Table 1 caption as follows:

      Line 113: “Table 1. Demographics for each subsample analysed: number, age, and sex of participants who completed all cognitive tests, mental health questionnaires, and MRI scanning”

      We acknowledge that age may influence cognitive and neuroimaging measures. In our analyses, we intentionally preserved age-related variance in brain-cognition relationships across mid and late adulthood, as regressing out age completely would artificially remove biologically meaningful associations. At the same time, we rigorously addressed the effects of age and sex through additional commonality analyses quantifying age and sex contributions to the relationship between cognition and mental health.

      As noted by Reviewer 1 and illustrated in Figure 8, age and sex shared substantial overlapping variance with both mental health and neuroimaging phenotypes in explaining cognitive outcomes. For example, in Figure 8i, age and sex together accounted for 43% of the variance in the cognition-mental health relationship:

      (2.76 + 1.03) / (2.76 + 1.03 + 3.52 + 1.45) ≈ 0.43

      Furthermore, neuromarkers from the all-MRI stacked model explained 72% of this age/sexrelated variance:

      2.76 / (2.76 + 1.03) ≈ 0.72

      This indicates that our neuromarkers captured a substantial portion of the cognition-mental health covariation that varied with age and sex, highlighting their relevance in age/sex-sensitive cognitive modeling.

      In the Methods, Results, and Discussion, we say:

      Methods

      Line 263: “To understand how demographic factors, including age and sex, contribute to this relationship, we also conducted a separate set of commonality analyses treating age, sex, age2, age×sex, and age2×sex as an additional set of explanatory variables (Fig. 1).”

      Results

      Line 445: “Age and sex shared substantial overlapping variance with both mental health and neuroimaging in explaining cognition, accounting for 43% of the variance in the cognition-mental health relationship. Multimodal neural marker of cognition based on three MRI modalities (“All MRI Stacked”) explained 72% of this age and sex-related variance (Fig. 8i–l and Table S21).”

      Discussion

      Line 660: “We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.”

      (7) Regarding the mental health variables: where characteristics with positive value (e.g. happiness and subjective wellbeing) reversely scored (compared to the negative items, such as anxiety, addition, etc)?

      We appreciate you noting this. These composite scores primarily represent standard clinical measures such as the GAD-7 anxiety scale and N-12 neuroticism scale. We did not reverse the scores to keep their directionality, therefore making interpretability consistent with the original studies the scores were derived from (e.g., Davis et al., 2020; Dutt et al., 2022). Complete descriptive statistics for all mental health indices and detailed derivation procedures are provided in the Supplementary Materials (S2). On Page 6, Supplementary Methods, we say:

      Line 92: “Composite mental health scores included the Generalized Anxiety Disorder (GAD-7), the Posttraumatic Stress Disorder (PTSD) Checklist (PCL-6), the Alcohol Use Disorders Identification Test (AUDIT), the Patient Health Questionnaire (PHQ-9) [12], the Eysenck Neuroticism (N-12), Probable Depression Status (PDS), and the Recent Depressive Symptoms (RDS-4) scores [13, 14]. To calculate the GAD-7, PCL-6, AUDIT, and PHQ-9, we used questions introduced at the online follow-up [12]. To obtain the N-12, PDS, and RDS-4 scores [14], we used data collected during the baseline assessment [13, 14].

      We subcategorized depression and GAD based on frequency, current status (ever had depression or anxiety and current status of depression or anxiety), severity, and clinical diagnosis (depression or anxiety confirmed by a healthcare practitioner). Additionally, we differentiated between different depression statuses, such as recurrent depression, depression triggered by loss, etc. Variables related to self-harm were subdivided based on whether a person has ever self-harmed with the intent to die.

      To make response scales more intuitive, we recorded responses within the well-being domain such that the lower score corresponded to a lesser extent of satisfaction (“Extremely unhappy”) and the higher score indicated a higher level of happiness (“Extremely happy”). For all questions, we assigned the median values to “Prefer not to answer” (-818 for in-person assessment and -3 for online questionnaire) and “Do not know” (-121 for in-person assessment and -1 for online questionnaire) responses. We excluded the “Work/job satisfaction” question from the mental health derivatives list because it included a “Not employed” response option, which could not be reasonably coded.

      To calculate the risk of PTSD, we used questions from the PCL-6 questionnaire. Following Davis and colleagues [12], PCL-6 scores ranged from 6 to 29. A PCL-6 score of 12 or below corresponds to a low risk of meeting the Clinician-Administered PTSD Scale diagnostic criteria. PCL-6 scores between 13 and 16 and between 17 and 25 are indicative of an increased risk and high risk of PTSD, respectively. A score of above 26 is interpreted as a very high risk of PTSD [12, 15]. PTSD status was set to positive if the PCL-6 score exceeded or was equal to 14 and encompassed stressful events instead of catastrophic trauma alone [12].

      To assess alcohol consumption, alcohol dependence, and harm associated with drinking, we calculated the sum of the ten questions from the AUDIT questionnaire [16]. We additionally subdivided the AUDIT score into the alcohol consumption score (questions 1-3, AUDIT-C) and the score reflecting problems caused by alcohol (questions 4-10, AUDIT-P) [17]. In questions 2-10 that followed the first trigger question (“Frequency of drinking alcohol”), we replaced missing values with 0 as they would correspond to a “Never” response to the first question.

      An AUDIT score cut-off of 8 suggests moderate or low-risk alcohol consumption, and scores of 8 to 15 and above 15 indicate severe/harmful and hazardous (alcohol dependence or moderate-severe alcohol use disorder) drinking, respectively [16, 18]. Subsequently, hazardous alcohol use and alcohol dependence status correspond to AUDIT scores of ≥ 8 and ≥ 15, respectively. The “Alcohol dependence ever” status was set to positive if a participant had ever been physically dependent on alcohol. To reduce skewness, we logx+1-transformed the AUDIT, AUDIT-C, and AUDIT-P scores [17].”

      Davis KAS, Coleman JRI, Adams M, Allen N, Breen G, Cullen B, et al. Mental health in UK Biobank – development, implementation and results from an online questionnaire completed by 157 366 participants: a reanalysis. BJPsych Open. 2020;6:e18.

      Dutt RK, Hannon K, Easley TO, Griffis JC, Zhang W, Bijsterbosch JD. Mental health in the UK Biobank: A roadmap to selfreport measures and neuroimaging correlates. Hum Brain Mapp. 2022;43:816–832.  

      (8) In the discussion section (page 23, line 416-421), the authors refer to specific findings that are not described in the results section > I would add these findings to the main manuscript (including the discussion / interpretation).

      We appreciate your careful reading. We agree that our original Results section did not explicitly describe the factor loadings for mental health in the PLSR model, despite discussing their implications later in the paper. We needed to include this part of the discussion in the Supplementary Materials to meet the word limit of the original submission. However, in response to your suggestion, we have now added the results regarding factor loadings to the Results section. We also moved the discussion of the association between mental health features and general cognition from the Supplementary Material to the manuscript’s Discussion.

      Results

      Line 298: “On average, information about mental health predicted the g-factor at  R<sup>2</sup><sub>mean</sub> = 0.10 and r<sub>mean</sub> \= 0.31 (95% CI [0.291, 0.315]; Fig. 2b and 2c and Supplementary Materials, S9, Table S12). The magnitude and direction of factor loadings for mental health in the PLSR model allowed us to quantify the contribution of individual mental health indices to cognition. Overall, the scores for mental distress, alcohol and cannabis use, and self-harm behaviours relate positively, and the scores for anxiety, neurological and mental health diagnoses, unusual or psychotic experiences, happiness and subjective well-being, and negative traumatic events relate negatively to cognition.”

      Discussion

      Line 492: “Factor loadings derived from the PLSR model showed that the scores for mental distress, alcohol and cannabis use, and self-harm behaviours related positively, and the scores for anxiety, neurological and mental health diagnoses, unusual or psychotic experiences, happiness and subjective well-being, and negative traumatic events related negatively to the g-factor. Positive PLSR loadings of features related to mental distress may indicate greater susceptibility to or exaggerated perception of stressful events, psychological overexcitability, and predisposition to rumination in people with higher cognition [72]. On the other hand, these findings may be specific to the UK Biobank cohort and the way the questions for this mental health category were constructed. In particular, to evaluate mental distress, the UK Biobank questionnaire asked whether an individual sought or received medical help for or suffered from mental distress. In this regard, the estimate for mental distress may be more indicative of whether an individual experiencing mental distress had an opportunity or aspiration to visit a doctor and seek professional help [73]. Thus, people with better cognitive abilities and also with a higher socioeconomic status may indeed be more likely to seek professional help.

      Limited evidence supports a positive association between self-harm behaviours and cognitive abilities, with some studies indicating higher cognitive performance as a risk factor for non-suicidal self-harm. Research shows an inverse relationship between cognitive control of emotion and suicidal behaviours that weakens over the life course [73,74]. Some studies have found a positive correlation between cognitive abilities and the risk of nonsuicidal self-harm, suicidal thoughts, and suicidal plans that may be independent of or, conversely, affected by socioeconomic status [75,76]. In our study, the magnitude of the association between self-harm behaviours and cognition was low (Fig. 2), indicating a weak relationship.

      Positive PLSR loadings of features related to alcohol and cannabis may also indicate the influence of other factors. Overall, this relationship is believed to be largely affected by age, income, education, social status, social equality, social norms, and quality of life [79–80]. For example, education level and income correlate with cognitive ability and alcohol consumption [79,81–83]. Research also links a higher probability of having tried alcohol or recreational drugs, including cannabis, to a tendency of more intelligent individuals to approach evolutionary novel stimuli [84,85]. This hypothesis is supported by studies showing that cannabis users perform better on some cognitive tasks [86]. Alternatively, frequent drinking can indicate higher social engagement, which is positively associated with cognition [87]. Young adults often drink alcohol as a social ritual in university settings to build connections with peers [88]. In older adults, drinking may accompany friends or family visits [89,90]. Mixed evidence on the link between alcohol and drug use and cognition makes it difficult to draw definite conclusions, leaving an open question about the nature of this relationship.

      Consistent with previous studies, we showed that anxiety and negative traumatic experiences were inversely associated with cognitive abilities [90–93]. Anxiety may be linked to poorer cognitive performance via reduced working memory capacity, increased focus on negative thoughts, and attentional bias to threatening stimuli that hinder the allocation of cognitive resources to a current task [94–96]. Individuals with PTSD consistently showed impaired verbal and working memory, visual attention, inhibitory function, task switching, cognitive flexibility, and cognitive control [97–100]. Exposure to traumatic events that did not reach the PTSD threshold was also linked to impaired cognition. For example, childhood trauma is associated with worse performance in processing speed, attention, and executive function tasks in adulthood, and age at a first traumatic event is predictive of the rate of executive function decline in midlife [101,102]. In the UK Biobank cohort, adverse life events have been linked to lower cognitive flexibility, partially via depression level [103].

      In agreement with our findings, cognitive deficits are often found in psychotic disorders [104,105]. We treated neurological and mental health symptoms as predictor variables and did not stratify or exclude people based on psychiatric status or symptom severity. Since no prior studies have examined isolated psychotic symptoms (e.g., recent unusual experiences, hearing unreal voices, or seeing unreal visions), we avoid speculating on how these symptoms relate to cognition in our sample.

      Finally, negative PLSR loadings of the features related to happiness and subjective well-being may be specific to the study cohort, as these findings do not agree with some previous research [107–109]. On the other hand, our results agree with the study linking excessive optimism or optimistic thinking to lower cognitive performance in memory, verbal fluency, fluid intelligence, and numerical reasoning tasks, and suggesting that pessimism or realism indicates better cognition [110]. The concept of realism/optimism as indicators of cognition is a plausible explanation for a negative association between the g-factor and friendship satisfaction, as well as a negative PLSR loading of feelings that life is meaningful, especially in older adults who tend to reflect more on the meaning of life [111]. The latter is supported by the study showing a negative association between cognitive function and the search for the meaning of life and a change in the pattern of this relationship after the age of 60 [112]. Finally, a UK Biobank study found a positive association of happiness with speed and visuospatial memory but a negative relationship with reasoning ability [113].”

      (9) In the discussion section (page 24, line 440-449), the authors give an explanation on why the diffusion measure have limited utility, but the arguments put forward also concern structural and rsfMRI measures.

      Thank you for this important observation. Indeed, the argument about voxel-averaged diffusion components (“… these metrics are less specific to the properties of individual white matter axons or bundles, and instead represent a composite of multiple diffusion components averaged within a voxel and across major fibre pathways”) could theoretically apply across other MRI modalities. We have therefore removed this point from the discussion to avoid overgeneralization. However, we maintain our central argument about the biological specificity of conventional tractography-derived diffusion metrics as their particular sensitivity to white matter microstructure (e.g., axonal integrity, myelin content) may make them better suited for detecting neuropathological changes than dynamic cognitive processes. This interpretation aligns with the mixed evidence linking these metrics to cognitive performance, despite their established utility in detecting white matter abnormalities in clinical populations (e.g., Bergamino et al., 2021; Silk et al., 2009). We clarify this distinction in the manuscript.

      Line 572: “The somewhat limited utility of diffusion metrics derived specifically from probabilistic tractography in serving as robust quantitative neuromarkers of cognition and its shared variance with mental health may stem from their greater sensitivity and specificity to neuronal integrity and white matter microstructure rather than to dynamic cognitive processes. Critically, probabilistic tractography may be less effective at capturing relationships between white matter microstructure and behavioural scores cross-sectionally, as this method is more sensitive to pathological changes or dynamic microstructural alterations like those occurring during maturation. While these indices can capture abnormal white matter microstructure in clinical populations such as Alzheimer’s disease, schizophrenia, or attention deficit hyperactivity disorder (ADHD) [117–119], the empirical evidence on their associations with cognitive performance is controversial [114, 120–126].”

      Bergamino M, Walsh RR, Stokes AM. Free-water diffusion tensor imaging improves the accuracy and sensitivity of white matter analysis in Alzheimer’s disease. Sci Rep. 2021;11:6990.

      Silk TJ, Vance A, Rinehart N, Bradshaw JL, Cunnington R. White-matter abnormalities in attention deficit hyperactivity disorder: a diffusion tensor imaging study. Hum Brain Mapp. 2009;30:2757–2765.

      Reviewer 2:

      This is an interesting study combining a lot of data to investigate the link between cognition and mental health. The description of the study is very clear, it's easy to read for someone like me who does not have a lot of expertise in machine learning.

      We thank you for your thorough review and constructive feedback. Your insightful comments have helped us identify conceptual and methodological aspects that required improvement in the manuscript. We have incorporated relevant changes throughout the paper, and below, we address each of your points in detail.

      Comment 1: My main concern with this manuscript is that it is not yet clear to me what it exactly means to look at the overlap between cognition and mental health. This relation is r=0.3 which is not that high, so why is it then necessary to explain this overlap with neuroimaging measures? And, could it be that the relation between cognition and mental health is explained by third variables (environment? opportunities?). In the introduction I miss an explanation of why it is important to study this and what it will tell us, and in the discussion I would like to read some kind of 'answer' to these questions.

      Thank you. It’s important to clarify why we investigated the relationship between cognition and mental health, and what we found using data from the UK Biobank.

      Conceptually, our work is grounded in the Research Domain Criteria (RDoC; Insel et al., 2010) framework. RDoC conceptualizes mental health not through traditional diagnostic categories, but through core functional domains that span the full spectrum from normal to abnormal functioning. These domains include cognition, negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. Within this framework, cognition is considered a fundamental domain that contributes to mental health across diagnostic boundaries. Meta-analytic evidence supports a link between cognitive functioning and mental health (Abramovitch, et al., 2021; East-Richard, et al., 2020). In the context of a large, population-based dataset like the UK Biobank, this implies that cognitive performance – as measured by various cognitive tasks – should be meaningfully associated with available mental health indicators.

      However, because cognition is only one of several functional domains implicated in mental health, we do not expect the covariation between cognition and mental health to be very high. Other domains, such as negative and positive valence systems, arousal and regulatory systems, or social processing, may also play significant roles. Theoretically, this places an upper bound on the strength of the cognition-mental health relationship, especially in normative, nonclinical samples.

      Our current findings from the UK Biobank reflect this. Most of the 133 mental health variables showed relatively weak individual correlations with cognition (mean r \= 0.01, SD = 0.05, min r \= –0.08, max r \= 0.17; see Figure 2). However, using a PLS-based machine learning approach, we were able to integrate information across all mental-health variables to predict cognition, yielding an out-of-sample correlation of r = 0.31 [95% CI: 0.29, 0.32].  

      We believe this estimate approximates the true strength of the cognition-mental health relationship in normative samples, consistent with both theoretical expectations and prior empirical findings. Theoretically, this aligns with the RDoC view that cognition is one of several contributing domains. Empirically, our results are consistent with findings from our previous mega-analysis in children (Wang et al., 2025). Moreover, in the field of gerontology, an effect size of r = 0.31 is not considered small. According to Brydges (2019), it falls around the 70th percentile of effect sizes reported in gerontological studies and approaches the threshold for a large effect (r \= 0.32). Given that most studies report within-sample associations, our out-of-sample results are likely more robust and generalizable (Yarkoni & Westfall, 2017).

      To answer, “why is it then necessary to explain this overlap with neuroimaging measures”, we again draw on the conceptual foundation of the RDoC framework. RDoC emphasizes that each functional domain, such as cognition, should be studied not only at the behavioural level but also across multiple neurobiological units of analysis, including genes, molecules, cells, circuits, physiology, and behaviour.

      MRI-based neural markers represent one such level of analysis. While other biological systems (e.g., genetic, molecular, or physiological) also contribute to the cognition-mental health relationship, neuroimaging provides unique insights into the brain mechanisms underlying this association – insights that cannot be obtained from behavioural data alone.

      In response to the related question, “Could the relationship between cognition and mental health be explained by third variables (e.g., environment, opportunities)?”, we note that developing a neural marker of cognition capable of capturing its relationship with mental health is the central aim of this study. Using the MRI modalities available in the UK Biobank, we were able to account for 48% of the covariation between cognition and mental health.

      The remaining 52% of unexplained variance may stem from several sources. According to the RDoC framework, neuromarkers could be further refined by incorporating additional neuroimaging modalities (e.g., task-based fMRI, PET, ASL, MEG/EEG, fNIRS) and integrating other units of analysis such as genetic, molecular, cellular, and physiological data.

      Once more comprehensive neuromarkers are developed, capturing a greater proportion of the cognition-mental health covariation, they may also lead to new research direction – to investigate how environmental factors and life opportunities influence these markers. However, exploring those environmental contributions lies beyond the scope of the current study.

      We discuss these considerations and explain the motivation of our study in the revised Introduction and Discussion.

      Line 481: “Our analysis confirmed the validity of the g-factor [31] as a quantitative measure of cognition [31], demonstrating that it captures nearly half (39%) of the variance across twelve cognitive performance scores, consistent with prior studies [63–68]. Furthermore, we were able to predict cognition from 133 mental health indices, showing a medium-sized relationship that aligns with existing literature [69,70]. Although the observed mental health-cognition association is lower than within-sample estimates in conventional regression models, it aligns with our prior mega-analysis in children [69]. Notably, this effect size is not considered small in gerontology. In fact, it falls around the 70th percentile of reported effects and approaches the threshold for a large effect at r = 0.32 [71]. While we focused specifically on cognition as an RDoC core domain, the strength of its relationship with mental health may be bounded by the influence of other functional domains, particularly in normative, non-clinical samples – a promising direction for future research.”

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Introduction

      Line 43: “Cognition and mental health are closely intertwined [1]. Cognitive dysfunction is present in various mental illnesses, including anxiety [2, 3], depression [4–6], and psychotic disorders [7–12]. National Institute of Mental Health’s Research Domain Criteria (RDoC) [13,14] treats cognition as one of the main basic functional domains that transdiagnostically underly mental health. According to RDoC, mental health should be studied in relation to cognition, alongside other domains such as negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. RDoC further emphasizes that each domain, including cognition, should be investigated not only at the behavioural level but also through its neurobiological correlates. In this study, we aim to examine how the covariation between cognition and mental health is reflected in neural markers of cognition, as measured through multimodal neuroimaging.”

      Discussion

      Line 481: “Our analysis confirmed the validity of the g-factor [31] as a quantitative measure of cognition [31], demonstrating that it captures nearly half (39%) of the variance across twelve cognitive performance scores, consistent with prior studies [63–68]. Furthermore, we were able to predict cognition from 133 mental health indices, showing a medium-sized relationship that aligns with existing literature [69,70]. Although the observed mental health-cognition association is lower than within-sample estimates in conventional regression models, it aligns with our prior mega-analysis in children [69]. Notably, this effect size is not considered small in gerontology. In fact, it falls around the 70th percentile of reported effects and approaches the threshold for a large effect at r = 0.32 [71]. While we focused specifically on cognition as an RDoC core domain, the strength of its relationship with mental health may be bounded by the influence of other functional domains, particularly in normative, non-clinical samples – a promising direction for future research.”

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. AJP. 2010;167:748–751.

      Abramovitch, A., Short, T., & Schweiger, A. (2021). The C Factor: Cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clinical Psychology Review, 86, 102007.

      East-Richard, C., R. -Mercier, A., Nadeau, D., & Cellard, C. (2020). Transdiagnostic neurocognitive deficits in psychiatry: A review of meta-analyses. Canadian Psychology / Psychologie Canadienne, 61(3), 190–214.

      Wang Y, Anney R, Pat N. The relationship between cognitive abilities and mental health as represented by cognitive abilities at the neural and genetic levels of analysis. eLife. 2025.14:RP105537.

      Brydges CR. Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology. Innovation in Aging. 2019;3(4):igz036.

      Yarkoni T, Westfall J. Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspect Psychol Sci. 2017;12(6):1100-1122.

      Comment 2 Title: - Shouldn't it be "MRI markers" (plural)?

      We used the singular form (“marker”) intentionally, as it refers to the composite neuroimaging marker derived from all three MRI modalities in our stacked model. This multimodal marker represents the combined predictive power of all modalities and captures the highest proportion of the mental health-cognition relationship in our analyses.

      Comment 3: Introduction - I miss an explanation of why it is useful to look at cognition-mental health covariation

      We believe we have sufficiently addressed this comment in our response to Reviewer 2, comment 1 above.

      Comment 4: - "Demonstrating that MRI-based neural indicators of cognition capture the covariation between cognition and mental health will thereby support the utility of such indicators for understanding the etiology of mental health" (page 4, line 56-58) - how/why?

      Previous research has largely focused on developing MRI-based neural indicators that accurately predict cognitive performance (Marek et al., 2022; Vieira et al., 2020). Building on this foundation, our findings further demonstrate that the predictive performance of a neural indicator for cognition is closely tied to its ability to explain the covariation between cognition and mental health. In other words, the robustness of a neural indicator – its capacity to capture individual differences in cognition – is strongly associated with how well it reflects the shared variance between cognition and mental health.

      This insight is particularly important within the context of the RDoC framework, which seeks to understand the etiology of mental health through functional domains (such as cognition) and their underlying neurobiological units of analysis (Insel et al., 2010). According to RDoC, for a neural indicator of cognition to be informative for mental health research, it must not only predict cognitive performance but also capture its relationship with mental health.

      Furthermore, RDoC emphasizes the integration of neurobiological measures to investigate the influence of environmental and developmental factors on mental health. In line with this, our neural indicators of cognition may serve as valuable tools in future research aimed at understanding how environmental exposures and developmental trajectories shape mental health outcomes. We discuss this in more detail in the revised Discussion.

      Line 481: “Our analysis confirmed the validity of the g-factor [31] as a quantitative measure of cognition [31], demonstrating that it captures nearly half (39%) of the variance across twelve cognitive performance scores, consistent with prior studies [63–68]. Furthermore, we were able to predict cognition from 133 mental health indices, showing a medium-sized relationship that aligns with existing literature [69,70]. Although the observed mental health-cognition association is lower than within-sample estimates in conventional regression models, it aligns with our prior mega-analysis in children [69]. Notably, this effect size is not considered small in gerontology. In fact, it falls around the 70th percentile of reported effects and approaches the threshold for a large effect at r = 0.32 [71]. While we focused specifically on cognition as an RDoC core domain, the strength of its relationship with mental health may be bounded by the influence of other functional domains, particularly in normative, non-clinical samples – a promising direction for future research.”

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–660.

      Vieira S, Gong QY, Pinaya WHL, et al. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull. 2020;46(1):17-26.

      Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. AJP. 2010;167:748–751.

      Comment 5: - The explanation about the stacking approach is not yet completely clear to me. I don't understand how the target variable can be the dependent variable in both step one and two. Or are those different variables? It would be helpful to also give an example of the target variable in line 88 on page 5

      Thank you for this excellent question. In our stacking approach, the same target variable, the g-factor, is indeed used across both modeling stages, but with a key distinction in how predictions are generated and integrated.

      In the first-level models, we trained separate Partial Least Squares Regression (PLSR) models for each of the 72 neuroimaging phenotypes, each predicting the g-factor independently. The predicted values from these 72 models were then used as input features for the second-level stacked model, which combined them to generate a final prediction of the g-factor. This twostage framework enables us to integrate information across multiple imaging modalities while maintaining a consistent prediction target.

      To avoid data leakage, both modeling stages were conducted entirely within the training set for each cross-validation fold. Only after the second-level model was trained was it applied to the outer-fold test participants who were not involved in any part of the model training process.

      To improve accessibility, we have revised the Methods section (see Page 10) to clarify this approach, ensuring that the description remains technically accurate while being easier to follow.

      Line 188: “We employed nested cross-validation to predict cognition from mental health indices and 72 neuroimaging phenotypes (Fig. 1). Nested cross-validation is a robust method for evaluating machine-learning models while tuning their hyperparameters, ensuring that performance estimates are both accurate and unbiased. Here, we used a nested cross-validation scheme with five outer folds and ten inner folds.

      We started by dividing the entire dataset into five outer folds. Each fold took a turn being held out as the outerfold test set (20% of the data), while the remaining four folds (80% of the data) were used as an outer-fold training set. Within each outer-fold training set, we performed a second layer of cross-validation – this time splitting the data into ten inner folds. These inner folds were used exclusively for hyperparameter tuning: models were trained on nine of the inner folds and validated on the remaining one, cycling through all ten combinations.

      We then selected the hyperparameter configuration that performed best across the inner-fold validation sets, as determined by the minimal mean squared error (MSE). The model was then retrained on the full outer-fold training set using this hyperparameter configuration and evaluated on the outer-fold test set, using four performance metrics: Pearson r, the coefficient of determination ( R<sup>2</sup>), the mean absolute error (MAE), and the MSE. This entire process was repeated for each of the five outer folds, ensuring that every data point is used for both training and testing, but never at the same time. We opted for five outer folds instead of ten to reduce computational demands, particularly memory and processing time, given the substantial volume of neuroimaging data involved in model training. Five outer folds led to an outer-fold test set at least n = 4 000, which should be sufficient for model evaluation. In contrast, we retained ten inner folds to ensure robust and stable hyperparameter tuning, maximising the reliability of model selection.

      To model the relationship between mental health and cognition, we employed Partial Least Squares Regression (PLSR) to predict the g-factor from 133 mental health variables. To model the relationship between neuroimaging data and cognition, we used a two-step stacking approach [15–17,61] to integrate information from 72 neuroimaging phenotypes across three MRI modalities. In the first step, we trained 72 base (first-level) PLSR models, each predicting the g-factor from a single neuroimaging phenotype. In the second step, we used the predicted values from these base models as input features for stacked models, which again predicted the g-factor. We constructed four stacked models based on the source of the base predictions: one each for dwMRI, rsMRI, sMRI, and a combined model incorporating all modalities (“dwMRI Stacked”, “rsMRI Stacked”, “sMRI Stacked”, and “All MRI Stacked”, respectively). Each stacked model was trained using one of four machine learning algorithms – ElasticNet, Random Forest, XGBoost, or Support Vector Regression – selected individually for each model (see Supplementary Materials, S6).

      For rsMRI phenotypes, we treated the choice of functional connectivity quantification method – full correlation, partial correlation, or tangent space parametrization – as a hyperparameter. The method yielding the highest performance on the outer-fold training set was selected for predicting the g-factor (see Supplementary Materials, S5).

      To prevent data leakage, we standardized the data using the mean and standard deviation derived from the training set and applied these parameters to the corresponding test set within each outer fold. This standardization was performed at three key stages: before g-factor derivation, before regressing out modality-specific confounds from the MRI data, and before stacking. Similarly, to maintain strict separation between training and testing data, both base and stacked models were trained exclusively on participants from the outer-fold training set and subsequently applied to the corresponding outer-fold test set.

      To evaluate model performance and assess statistical significance, we aggregated the predicted and observed gfactor values from each outer-fold test set. We then computed a bootstrap distribution of Pearson’s correlation coefficient (r) by resampling with replacement 5 000 times, generating 95% confidence intervals (CIs) (Fig. 1). Model performance was considered statistically significant if the 95% CI did not include zero, indicating that the observed associations were unlikely to have occurred by chance.”

      Comment 6: Methods - It's not clear from the text and Figure 1 which 12 scores from 11 tests are being used to derive the g-factor. Figure 1 shows only 8 bullet points with 10 scores in A and 13 tests under 'Cognitive tests' in B. Moreover, Supplement S1 describes 12 tests and 14 measures (Prospective Memory test is in the text but not in Supplementary Table 1).

      Thank you for identifying this discrepancy. In the original Figure 1b and in the Supplementary Methods (S1), the “Prospective Memory” test was accidentally duplicated, while it was present in the Supplementary Table 1 (Line 53, Supplementary Table 1). We have now corrected both figures for consistency. To clarify: Figure 1a presents the global mental health and cognitive domains studied, while Figure 1b now accurately lists 1) the 12 cognitive scores from 11 tests used to derive the g-factor (with the Trail Making Test contributing two measures – numeric and alphabetic trails) and 2) the three main categories of mental health indices used as machine learning features.

      We also corrected the Supplementary Materials to remove the duplicate test from the first paragraph. In Supplementary Table 1, there were 11 tests listed, and for the Trail Making test, we specified in the “Core measures” column that this test had 2 derivative scores: duration to complete the numeric path (Trail 1) and duration to complete the alphabetic path (Trail 2).

      Supplementary Materials, Line 46: “We used twelve scores from the eleven cognitive tests that represented the following cognitive domains: reaction time and processing speed (Reaction Time test), working memory (Numeric Memory test), verbal and numerical reasoning (Fluid Intelligence test), executive function (Trail Making Test), non-verbal fluid reasoning (Matrix Pattern Completion test), processing speed (Symbol Digit Substitution test), vocabulary (Picture Vocabulary test), planning abilities (Tower Rearranging test), verbal declarative memory (Paired Associate Learning test), prospective memory (Prospective Memory test), and visual memory (Pairs Matching test) [1].”

      Comment 7: - For the mental health measures: If I understand correctly, the questionnaire items were used individually, but also to create composite scores. This seems counterintuitive, because I would assume that if the raw data is used, the composite scores would not add additional information to that. When reading the Supplement, it seems like I'm not correct… It would be helpful to clarify the text on page 7 in the main text.

      You raise an excellent observation regarding the use of both individual questionnaire items and composite scores. This dual approach was methodologically justified by the properties of Partial Least Squares Regression (PLSR), our chosen first-level machine learning algorithm, which benefits from rich feature sets and can handle multicollinearity through dimensionality reduction. PLSR transforms correlated features into latent variables, meaning both individual items and composite scores can contribute unique information to the model. We elaborate on PLSR's mathematical principles in Supplementary Materials (S5).

      To directly address this concern, we conducted comparative analyses showing that the PLSR model (a single 80/20% training/test split), incorporating all 133 mental health features (both items and composites), outperformed models using either type alone. The full model achieved superior performance (MSE = 0.458, MAE = 0.537, \= 0.112, Pearson r = 0.336, p-value = 6.936e-112) compared to using only composite scores (93 features; MSE = 0.461, MAE = 0.538, R<sup>2</sup> = 0.107, Pearson r = 0.328, p-value = 5.8e-106) or only questionnaire items (40 features; MSE = 0.499, MAE = 0.561, R<sup>2</sup> = 0.033, Pearson r = 0.184, p-value = 2.53e-33). These results confirm that including both data types provide complementary predictive value. We expand on these considerations in the revised Methods section.

      Line 123: “Mental health measures encompassed 133 variables from twelve groups: mental distress, depression, clinical diagnoses related to the nervous system and mental health, mania (including bipolar disorder), neuroticism, anxiety, addictions, alcohol and cannabis use, unusual/psychotic experiences, traumatic events, selfharm behaviours, and happiness and subjective well-being (Fig. 1 and Tables S4 and S5). We included both selfreport questionnaire items from all participants and composite diagnostic scores computed following Davis et al. and Dutt et al. [35,36] as features in our first-level (for explanation, see Data analysis section) Partial Least Squares Regression (PLSR) model. This approach leverages PLSR’s ability to handle multicollinearity through dimensionality reduction, enabling simultaneous use of granular symptom-level information and robust composite measures (for mental health scoring details, see Supplementary Materials, S2). We assess the contribution of each mental health index to general cognition by examining the direction and magnitude of its PLSR-derived loadings on the identified latent variables”

      Comment 8: - Results - The colors in Figure 4 B are a bit hard to differentiate.

      We have updated Figure 4 to enhance colour differentiation by adjusting saturation and brightness levels, improving visual distinction. For further clarity, we split the original figure into two separate figures.

      Comment 9: - Discussion - "Overall, the scores for mental distress, alcohol and cannabis use, and self-harm behaviours relate positively, and the scores for anxiety, neurological and mental health diagnoses, unusual or psychotic experiences, happiness and subjective well-being, and negative traumatic events relate negatively to cognition," - this seems counterintuitive, that some symptoms relate to better cognition and others relate to worse cognition. Could you elaborate on this finding and what it could mean?

      We appreciate you highlighting this important observation. While some associations between mental health indices and cognition may appear counterintuitive at first glance, these patterns are robust (emerging consistently across both univariate correlations and PLSR loadings) and align with previous literature (e.g., Karpinski et al., 2018; Ogueji et al., 2022). For instance, the positive relationship between cognitive ability and certain mental health indicators like help-seeking behaviour has been documented in other population studies (Karpinski et al., 2018; Ogueji et al., 2022), potentially reflecting greater health literacy and access to care among cognitively advantaged individuals. Conversely, the negative associations with conditions like psychotic experiences mirror established neurocognitive deficits in these domains.

      As was initially detailed in Supplementary Materials (S12) and now expanded in our Discussion, these findings likely reflect complex multidimensional interactions. The positive loadings for mental distress indicators may capture: (1) greater help-seeking behaviour among those with higher cognition and socioeconomic resources, and/or (2) psychological overexcitability and rumination tendencies in high-functioning individuals. These interpretations are particularly relevant to the UK Biobank's assessment methods, where mental distress items focused on medical help-seeking rather than symptom severity per se (e.g., as a measure of mental distress, the UK Biobank questionnaire asked whether an individual sought or received medical help for or suffered from mental distress).

      Line 492: “Factor loadings derived from the PLSR model showed that the scores for mental distress, alcohol and cannabis use, and self-harm behaviours related positively, and the scores for anxiety, neurological and mental health diagnoses, unusual or psychotic experiences, happiness and subjective well-being, and negative traumatic events related negatively to the g-factor. Positive PLSR loadings of features related to mental distress may indicate greater susceptibility to or exaggerated perception of stressful events, psychological overexcitability, and predisposition to rumination in people with higher cognition [72]. On the other hand, these findings may be specific to the UK Biobank cohort and the way the questions for this mental health category were constructed. In particular, to evaluate mental distress, the UK Biobank questionnaire asked whether an individual sought or received medical help for or suffered from mental distress. In this regard, the estimate for mental distress may be more indicative of whether an individual experiencing mental distress had an opportunity or aspiration to visit a doctor and seek professional help [73]. Thus, people with better cognitive abilities and also with a higher socioeconomic status may indeed be more likely to seek professional help.

      Limited evidence supports a positive association between self-harm behaviours and cognitive abilities, with some studies indicating higher cognitive performance as a risk factor for non-suicidal self-harm. Research shows an inverse relationship between cognitive control of emotion and suicidal behaviours that weakens over the life course [73,74]. Some studies have found a positive correlation between cognitive abilities and the risk of nonsuicidal self-harm, suicidal thoughts, and suicidal plans that may be independent of or, conversely, affected by socioeconomic status [75,76]. In our study, the magnitude of the association between self-harm behaviours and cognition was low (Fig. 2), indicating a weak relationship.

      Positive PLSR loadings of features related to alcohol and cannabis may also indicate the influence of other factors. Overall, this relationship is believed to be largely affected by age, income, education, social status, social equality, social norms, and quality of life [79–80]. For example, education level and income correlate with cognitive ability and alcohol consumption [79,81–83]. Research also links a higher probability of having tried alcohol or recreational drugs, including cannabis, to a tendency of more intelligent individuals to approach evolutionary novel stimuli [84,85]. This hypothesis is supported by studies showing that cannabis users perform better on some cognitive tasks [86]. Alternatively, frequent drinking can indicate higher social engagement, which is positively associated with cognition [87]. Young adults often drink alcohol as a social ritual in university settings to build connections with peers [88]. In older adults, drinking may accompany friends or family visits [89,90]. Mixed evidence on the link between alcohol and drug use and cognition makes it difficult to draw definite conclusions, leaving an open question about the nature of this relationship.

      Consistent with previous studies, we showed that anxiety and negative traumatic experiences were inversely associated with cognitive abilities [90–93]. Anxiety may be linked to poorer cognitive performance via reduced working memory capacity, increased focus on negative thoughts, and attentional bias to threatening stimuli that hinder the allocation of cognitive resources to a current task [94–96]. Individuals with PTSD consistently showed impaired verbal and working memory, visual attention, inhibitory function, task switching, cognitive flexibility, and cognitive control [97–100]. Exposure to traumatic events that did not reach the PTSD threshold was also linked to impaired cognition. For example, childhood trauma is associated with worse performance in processing speed, attention, and executive function tasks in adulthood, and age at a first traumatic event is predictive of the rate of executive function decline in midlife [101,102]. In the UK Biobank cohort, adverse life events have been linked to lower cognitive flexibility, partially via depression level [103].

      In agreement with our findings, cognitive deficits are often found in psychotic disorders [104,105]. We treated neurological and mental health symptoms as predictor variables and did not stratify or exclude people based on psychiatric status or symptom severity. Since no prior studies have examined isolated psychotic symptoms (e.g., recent unusual experiences, hearing unreal voices, or seeing unreal visions), we avoid speculating on how these symptoms relate to cognition in our sample.

      Finally, negative PLSR loadings of the features related to happiness and subjective well-being may be specific to the study cohort, as these findings do not agree with some previous research [107–109]. On the other hand, our results agree with the study linking excessive optimism or optimistic thinking to lower cognitive performance in memory, verbal fluency, fluid intelligence, and numerical reasoning tasks, and suggesting that pessimism or realism indicates better cognition [110]. The concept of realism/optimism as indicators of cognition is a plausible explanation for a negative association between the g-factor and friendship satisfaction, as well as a negative PLSR loading of feelings that life is meaningful, especially in older adults who tend to reflect more on the meaning of life [111]. The latter is supported by the study showing a negative association between cognitive function and the search for the meaning of life and a change in the pattern of this relationship after the age of 60 [112]. Finally, a UK Biobank study found a positive association of happiness with speed and visuospatial memory but a negative relationship with reasoning ability [113].”

      Karpinski RI, Kinase Kolb AM, Tetreault NA, Borowski TB. High intelligence: A risk factor for psychological and physiological overexcitabilities. Intelligence. 2018;66:8–23.

      Ogueji IA, Okoloba MM. Seeking Professional Help for Mental Illness: A Mixed-Methods Study of Black Family Members in the UK and Nigeria. Psychol Stud. 2022;67:164–177.

      Comment 10: - All neuroimaging factors together explain 48% of the variance in the cognition-mental health relationship. However, this relationship is only r=0.3 - so then the effect of neuroimaging factors seems a lot smaller… What does it mean?

      Thank you for raising this critical point. We have addressed this point in our response to Reviewer 1, comment 2, Reviewer 1, comment 3 and Reviewer 2, comment 1.

      Briefly, cognition is related to mental health at around r = 0.3 and to neuroimaging phenotypes at around r = 0.4. These levels of relationship strength are consistent to what has been shown in the literature (e.g., Wang et al., 2025 and Vieira et al., 2020). We discussed the relationship between cognition and mental health in our response to Reviewer 2, comment 1 above. In short, this relationship reflects just one functional domain – mental health may also be associated with other domains such as negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. Moreover, in the context of gerontology research, this effect size is considered relatively large (Brydges et al., 2019).

      We conducted a commonality analysis to investigate the unique and shared variance of mental health and neuroimaging phenotypes in explaining cognition.  As we discussed in our response to Reviewer 1, comment 2, we were able to account for 48% of the covariation between cognition and mental health using the MRI modalities available in the UK Biobank. The remaining 52% of unexplained variance may arise from several sources.

      One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research from our group and others has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank (Tetereva et al., 2025).

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      We have now incorporated these considerations into the Discussion section.

      Line 481: “Our analysis confirmed the validity of the g-factor [31] as a quantitative measure of cognition [31], demonstrating that it captures nearly half (39%) of the variance across twelve cognitive performance scores, consistent with prior studies [63–68]. Furthermore, we were able to predict cognition from 133 mental health indices, showing a medium-sized relationship that aligns with existing literature [69,70]. Although the observed mental health-cognition association is lower than within-sample estimates in conventional regression models, it aligns with our prior mega-analysis in children [69]. Notably, this effect size is not considered small in gerontology. In fact, it falls around the 70th percentile of reported effects and approaches the threshold for a large effect at r = 0.32 [71]. While we focused specifically on cognition as an RDoC core domain, the strength of its relationship with mental health may be bounded by the influence of other functional domains, particularly in normative, non-clinical samples – a promising direction for future research.”

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Wang Y, Anney R, Pat N. The relationship between cognitive abilities and mental health as represented by cognitive abilities at the neural and genetic levels of analysis. eLife. 2025.14:RP105537.

      Vieira S, Gong QY, Pinaya WHL, et al. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull. 2020;46(1):17-26.

      Brydges CR. Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology. Innovation in Aging. 2019;3(4):igz036.

      Tetereva A, Knodt AR, Melzer TR, et al. Improving Predictability, Reliability and Generalisability of Brain-Wide Associations for Cognitive Abilities via Multimodal Stacking. Preprint. bioRxiv. 2025;2024.05.03.589404.

      Reviewer 3:

      Buianova et al. present a comprehensive analysis examining the predictive value of multimodal neuroimaging data for general cognitive ability, operationalized as a derived g-factor. The study demonstrates that functional MRI holds the strongest predictive power among the modalities, while integrating multiple MRI modalities through stacking further enhances prediction performance. The inclusion of a commonality analysis provides valuable insight into the extent to which shared and unique variance across mental health features and neuroimaging modalities contributes to the observed associations with cognition. The results are clearly presented and supported by highquality visualizations. Limitations of the sample are stated clearly.

      Thank you once more for your constructive and encouraging feedback. We appreciate your careful reading and valuable methodological insights. Your expertise has helped us clarify key methodological concepts and improve the overall rigour of our study.

      Suggestions for improvement:

      (1) The manuscript would benefit from the inclusion of permutation testing to evaluate the statistical significance of the predictive models. This is particularly important given that some of the reported performance metrics are relatively modest, and permutation testing could help ensure that results are not driven by chance.

      Thank you, this is an excellent point. We agree that evaluating the statistical significance of our predictive models is essential.

      In our original analysis, we assessed model performance by generating a bootstrap distribution of Pearson’s r, resampling the data with replacement 5,000 times (see Figure 3b). In response to your feedback, we have made the following updates:

      (1) Improved Figure 3b to explicitly display the 95% confidence intervals.

      (2) Supplemented the results by reporting the exact confidence interval values.

      (3) Clarified our significance testing procedure in the Methods section.

      We considered model performance statistically significant when the 95% confidence interval did not include zero, indicating that the observed associations are unlikely to have occurred by chance.

      We chose bootstrapping over permutation testing because, while both can assess statistical significance, bootstrapping additionally provides uncertainty estimates in the form of confidence intervals. Given the large sample size in our study, significance testing can be less informative, as even small effects may reach statistical significance. Bootstrapping offers a more nuanced understanding of model uncertainty.

      Line 233: “To evaluate model performance and assess statistical significance, we aggregated the predicted and observed g-factor values from each outer-fold test set. We then computed a bootstrap distribution of Pearson’s correlation coefficient (r) by resampling with replacement 5 000 times, generating 95% confidence intervals (CIs) (Fig. 1). Model performance was considered statistically significant if the 95% CI did not include zero, indicating that the observed associations were unlikely to have occurred by chance.”

      (2) Applying and testing the trained models on an external validation set would increase confidence in generalisability of the model.

      We appreciate this excellent suggestion. While we considered this approach, implementing it would require identifying an appropriate external dataset with comparable neuroimaging and behavioural measures, along with careful matching of acquisition protocols and variable definitions across sites. These challenges extend beyond the scope of the current study, though we fully agree that this represents an important direction for future research.

      Our findings, obtained from one of the largest neuroimaging datasets to date with training and test samples exceeding most previous studies, align closely with existing literature: the predictive accuracy of each neuroimaging phenotype and modality for cognition matches the effect size reported in meta-analyses (r ≈ 0.4; e.g., Vieira et al., 2020). The ability of dwMRI, rsMRI and sMRI to capture the cognition-mental health relationship is, in turn, consistent with our previous work in pediatric populations (Wang et al., 2025; Pat et al., 2022).

      Vieira S, Gong QY, Pinaya WHL, et al. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull. 2020;46(1):17-26.

      Wang Y, Anney R, Pat N. The relationship between cognitive abilities and mental health as represented by cognitive abilities at the neural and genetic levels of analysis. eLife. 2025.14:RP105537.

      Pat N, Wang Y, Anney R, Riglin L, Thapar A, Stringaris A. Longitudinally stable, brain-based predictive models mediate the relationships between childhood cognition and socio-demographic, psychological and genetic factors. Hum Brain Mapp. 2022;43:5520–5542.

      (3) The rationale for selecting a 5-by-10-fold cross-validation scheme is not clearly explained. Clarifying why this structure was preferred over more commonly used alternatives, such as 10-by-10 or 5-by-5 cross-validation, would strengthen the methodological transparency.

      Thank you for this important methodological question. Our choice of a 5-by-10-fold crossvalidation scheme was motivated by the need to balance robust hyperparameter tuning with computational efficiency, particularly memory and processing time. Retaining five outer folds allowed us to rigorously assess model performance across multiple data partitions, leading to an outer-fold test set at least n = 4 000 and providing a substantial amount of neuroimaging data involved in model training. In contrast, employing ten inner folds ensured robust and stable hyperparameter tuning that maximizes the reliability of model selection. Thus, the 5-outer-fold with our large sample provided sufficient out-of-sample test set size for reliable model evaluation and efficient computation, while 10 inner folds enabled robust hyperparameter tuning. We now provide additional rationale for this design decision on Page 10.

      Line 188: “We employed nested cross-validation to predict cognition from mental health indices and 72 neuroimaging phenotypes (Fig. 1). Nested cross-validation is a robust method for evaluating machine-learning models while tuning their hyperparameters, ensuring that performance estimates are both accurate and unbiased. Here, we used a nested cross-validation scheme with five outer folds and ten inner folds.

      We started by dividing the entire dataset into five outer folds. Each fold took a turn being held out as the outerfold test set (20% of the data), while the remaining four folds (80% of the data) were used as an outer-fold training set. Within each outer-fold training set, we performed a second layer of cross-validation – this time splitting the data into ten inner folds. These inner folds were used exclusively for hyperparameter tuning: models were trained on nine of the inner folds and validated on the remaining one, cycling through all ten combinations.

      We then selected the hyperparameter configuration that performed best across the inner-fold validation sets, as determined by the minimal mean squared error (MSE). The model was then retrained on the full outer-fold training set using this hyperparameter configuration and evaluated on the outer-fold test set, using four performance metrics: Pearson r, the coefficient of determination ( R<sup>2</sup>), the mean absolute error (MAE), and the MSE. This entire process was repeated for each of the five outer folds, ensuring that every data point is used for both training and testing, but never at the same time. We opted for five outer folds instead of ten to reduce computational demands, particularly memory and processing time, given the substantial volume of neuroimaging data involved in model training. Five outer folds led to an outer-fold test set at least n = 4 000, which should be sufficient for model evaluation. In contrast, we retained ten inner folds to ensure robust and stable hyperparameter tuning, maximising the reliability of model selection.”

      (4) A more detailed discussion of which specific brain regions or features within each neuroimaging modality contributed most strongly to the prediction of cognition would enhance neurobiological relevance of the findings.

      Thank you for this thoughtful suggestion. To address this point, we have included feature importance plots for the top-performing neuroimaging phenotypes within each modality (Figure 5 and Figures S2–S4), demonstrating the relative contributions of individual features to the predictive models. While we maintain our primary focus on cross-modality performance comparisons in the main text, as this aligns with our central aim of evaluating multimodal MRI markers at the integrated level, we outline the contribution of neuroimaging features with the highest predictive performance for cognition in the revised Results and Discussion.

      Methods

      Line 255: “To determine which neuroimaging features contribute most to the predictive performance of topperforming phenotypes within each modality, while accounting for the potential latent components derived from neuroimaging, we assessed feature importance using the Haufe transformation [62]. Specifically, we calculated Pearson correlations between the predicted g-factor and scaled and centred neuroimaging features across five outer-fold test sets. We also examined whether the performance of neuroimaging phenotypes in predicting cognition per se is related to their ability to explain the link between cognition and mental health. Here, we computed the correlation between the predictive performance of each neuroimaging phenotype and the proportion of the cognition-mental health relationship it captures. To understand how demographic factors, including age and sex, contribute to this relationship, we also conducted a separate set of commonality analyses treating age, sex, age<sup>2</sup>, age×sex, and age<sup>2</sup>×sex as an additional set of explanatory variables (Fig. 1).”

      Results

      dwMRI

      Line 331: “Overall, models based on structural connectivity metrics performed better than TBSS and probabilistic tractography (Fig. 3). TBSS, in turn, performed better than probabilistic tractography (Fig. 3 and Table S13). The number of streamlines connecting brain areas parcellated with aparc MSA-I had the best predictive performance among all dwMRI neuroimaging phenotypes (R<sup>2</sup><sub>mean</sub> = 0.052, r<sub>mean</sub> = 0.227, 95% CI [0.212, 0.235]). To identify features driving predictions, we correlated streamline counts in aparc MSA-I parcellation with the predicted g_factor values from the PLSR model. Positive associations with the predicted _g-factor were strongest for left superior parietal-left caudal anterior cingulate, left caudate-right amygdala, and left putamen-left hippocampus connections. The most marked negative correlations involved left putamen-right posterior thalamus and right pars opercularis-right caudal anterior cingulate pathways (Fig. 5 and Supplementary Fig. S2).”

      rsMRI

      Line 353: “Among RSFC metrics for 55 and 21 ICs, tangent parameterization matrices yielded the highest performance in the training set compared to full and partial correlation, as indicated by the cross-validation score. Functional connections between the limbic (IC10) and dorsal attention (IC18) networks, as well as between the ventral attention (IC15) and default mode (IC11) networks, displayed the highest positive association with cognition. In contrast, functional connectivity between the limbic (IC43, the highest activation within network) and default mode (IC11) and limbic (IC45) and frontoparietal (IC40) networks, between the dorsal attention (IC18) and frontoparietal (IC25) networks, and between the ventral attention (IC15) and frontoparietal (IC40) networks, showed the highest negative association with cognition (Fig. 5 and Supplementary Fig. S3 and S4)”

      sMRI

      Line 373: “FreeSurfer subcortical volumetric subsegmentation and ASEG had the highest performance among all sMRI neuroimaging phenotypes (R<sup>2</sup><sub>mean</sub> = 0.068, r<sub>mean</sub> = 0.244, 95% CI [0.237, 0.259] and R<sup>2</sup><sub>mean</sub> = 0.059, r<sub>mean</sub> = 0.235, 95% CI [0.221, 0.243], respectively). In FreeSurfer subcortical volumetric subsegmentation, volumes of all subcortical structures, except for left and right hippocampal fissures, showed positive associations with cognition. The strongest relations were observed for the volumes of bilateral whole hippocampal head and whole hippocampus (Fig. 5 and Supplementary Fig. S5 for feature importance maps). Grey matter morphological characteristics from ex vivo Brodmann Area Maps showed the lowest predictive performance (R<sup>2</sup><sub>mean</sub> = 0.008, r<sub>mean</sub> = 0.089, 95% CI [0.075, 0.098]; Fig. 3 and Table S15).”

      Discussion

      dwMRI

      Line 562: “Among dwMRI-derived neuroimaging phenotypes, models based on structural connectivity between brain areas parcellated with aparc MSA-I (streamline count), particularly connections with bilateral caudal anterior cingulate (left superior parietal-left caudal anterior cingulate, right pars opercularis-right caudal anterior cingulate), left putamen (left putamen-left hippocampus, left putamen-right posterior thalamus), and amygdala (left caudate-right amygdala), result in a neural indicator that best reflects microstructural resources associated with cognition, as indicated by predictive modeling, and more importantly, shares the highest proportion of the variance with mental health-g, as indicated by commonality analysis.”

      rsMRI

      Line 583: “We extend findings on the superior performance of rsMRI in predicting cognition, which aligns with the literature [15, 28], by showing that it also explains almost a third of the variance in cognition that mental health captures. At the rsMRI neuroimaging phenotype level, this performance is mostly driven by RSFC patterns among 55 ICA-derived networks quantified using tangent space parameterization. At a feature level, these associations are best captured by the strength of functional connections among limbic, dorsal attention and ventral attention, frontoparietal and default mode networks. These functional networks have been consistently linked to cognitive processes in prior research [127–130].”

      sMRI

      Line 608: “Integrating information about brain anatomy by stacking sMRI neuroimaging phenotypes allowed us to explain a third of the link between cognition and mental health. Among all sMRI neuroimaging phenotypes, those that quantified the morphology of subcortical structures, particularly volumes of bilateral hippocampus and hippocampal head, explain the highest portion of the variance in cognition captured by mental health. Our findings show that, at least in older adults, volumetric properties of subcortical structures are not only more predictive of individual variations in cognition but also explain a greater portion of cognitive variance shared with mental health than structural characteristics of more distributed cortical grey and white matter. This aligns with the Scaffolding Theory that proposes stronger compensatory engagement of subcortical structures in cognitive processing in older adults [138–140].”

      (5) The formatting of some figure legends could be improved for clarity - for example, some subheadings were not formatted in bold (e.g., Figure 2 c)

      Thank you for noticing this. We have updated the figures to enhance clarity, keeping subheadings plain while bolding figure numbers and MRI modality names.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      Evidence, reproducibility and clarity

      The manuscript by Egawa and colleagues investigates differences in nodal spacing in an avian auditory brain stem circuit. The results are clearly presented and data are of very high quality. The authors make two main conclusions:

      (1) Node spacing, i.e. internodal length, is intrinsically specified by the oligodendrocytes in the region they are found in, rather than axonal properties (branching or diameter).

      (2) Activity is necessary (we don't know what kind of signaling) for normal numbers of oligodendrocytes and therefore the extent of myelination.

      These are interesting observations, albeit phenomenon. I have only a few criticisms that should be addressed:

      (1) The use of the term 'distribution' when describing the location of nodes is confusing. I think the authors mean rather than the patterns of nodal distribution, the pattern of nodal spacing. They have investigated spacing along the axon. I encourage the authors to substitute node spacing or internodal length for node distribution.

      Thanks for your suggestion to avoid confusion. We used the phrase "nodal spacing" instead of "nodal distribution" throughout the revised manuscript.

      (2) In Seidl et al. (J Neurosci 2010) it was reported that axon diameter and internodal length (nodal spacing) were different for regions of the circuit. Can the authors help me better understand the difference between the Seidl results and those presented here?

      As a key distinction, our study focuses specifically on the main trunk of the contralateral projection of NM axons. This projection features a sequential branching structure known as the delay line, where collateral branches form terminal arbors and connect to the ventral dendritic layer of NL neurons. This structural organization plays a critical role in influencing the dynamic range of ITD detection by regulating conduction delays along the NM axon trunk.

      The study by Seidl et al. (2010) is a pioneering work that measured diameter of NM axon using electron microscopy, providing highly reliable data. However, due to the technical  limitations of electron microscopy, which does not allow for the continuous tracing of individual axons, it is not entirely clear whether the axons measured in the ventral NL region correspond to terminal arbors of collateral branches or the main trunk of NM axons (see Figure 9E, F in their paper). Instead, they categorized axon diameters based on their distance from NL cell layer, showing that axon diameter increases distally (see Figure 9G in their paper). Notably, the diameters of ventral axons located more than 120 μm away from the NL cell layer is almost identical to those in the midline.

      As illustrated in our Figure 4D and Supplementary Video 2, the main trunk of the contralateral NM projection is predominantly located in these distal regions. Therefore, our findings complement those of Seidl et al. (2010) rather than contradicting them. We made this point as clear as possible in text (page 7, line 3).

      (3) The authors looked only in very young animals - are the results reported here applicable only to development, or does additional refinement take place with aging?

      In this study, we examined chick embryos from E9 to just before hatching (E21) and post-hatch chicks up to P9. Chickens begin to perceive sound around E12 and possess sound localization abilities at the time of hatching (Grier et al., 1967) (added to page 4, line 9). Therefore, by E21, the sound localization circuit is largely established.

      On the other hand, additional refinement of the circuit with aging is certainly possible. A key cue for sound localization, interaural time difference (ITD), depends on the distance between the two ears, which increases as the animal grows. As shown in Figure 2G, internodal length increased by approximately 20% between E18 and P9 while maintaining regional differences. Given that NM axons are nearly fully myelinated by E21 (Figure 4D, 6C), this suggests that myelin extends in proportion to the overall growth of the head and brain volume. We described this possibility in text (page 5, line 21)

      Thus, our study covers not only the early stages of myelination but also the post-functional maturation in the sound localization circuit.

      (4) The fact that internodal length is specified by the oligodendrocyte suggests that activity may not modify the location of nodes of Ranvier - although again, the authors have only looked during early development. This is quite different than this reviewer's original thoughts - that activity altered internodal length and axon diameter. Thus, the results here argue against node plasticity. The authors may choose to highlight this point or argue for or against it based on results in adult birds?

      In this study, we demonstrated that although vesicular release did not affect internodal length, it selectively promoted oligodendrogenesis, thereby supporting the full myelination and hence the pattern of nodal spacing along the NM axons. We believe that this finding falls within the broader scope of 'activity-dependent plasticity' involving oligodendrocytes and nodes.

      As summarized in the excellent review by Bonetto et al. (2021), activity-dependent plasticity in oligodendrocytes encompasses a wide range of phenomena, not limited to changes in internodal length but also including oligodendrogenesis. Moreover, the effects of neuronal activity are not uniform but likely depend on the diversity of both neurons and oligodendrocytes. For example, in the mouse visual cortex, activity-dependent myelination occurs in interneurons but not in excitatory neurons (Yang et al., 2020). Additionally, expression of TeNT in axons affected myelination heterogeneously in zebrafish; some axons were impaired in myelination and the others were not affected at all (Koudelka et al., 2016). In the mouse corpus callosum, neuronal activity influences oligodendrogenesis, which in turn facilitates adaptive myelination (Gibson et al., 2014).

      Thus, rather than refuting the role of activity-dependent plasticity in nodal spacing, our findings emphasize the diversity of underlying regulatory mechanisms. We described these explicitly in text (page 10, line 18).

      Significance

      This paper may argue against node plasticity as a mechanism for tuning of neural circuits. Myelin plasticity is a very hot topic right now and node plasticity reflects myelin plasticity. this seems to be a circuit where perhaps plasticity is NOT occurring. That would be interesting to test directly. One limitation is that this is limited to development.

      This paper does not argue against node plasticity, but rather demonstrates that oligodendrocytes in the NL region exhibit a form of plasticity; they proliferate in response to vesicular release from NM axons, yet do not undergo morphological changes, ensuring adequate oligodendrocyte density for the full myelination of the auditory circuit. Thus, activity-dependent plasticity involving oligodendrocytes would contributes in various ways to each neural circuit, which is presumably attributed to the fact that myelination is driven by complex multicellular interactions between diverse axons and oligodendrocytes. Oligodendrocytes are known to exhibit heterogeneity in morphology, function, responsiveness, and gene profiles (Foerster et al., 2019; Sherafat et al., 2021; Osanai et al., 2022; Valihrach et al., 2022), but functional significance of this heterogeneity remains largely unclear. This paper also provides insight into how oligodendrocyte heterogeneity may contribute to the fine-tuning of neural circuit function, adding further value to our findings. Importantly, our study covers the wide range of development in the sound localization circuit, from the pre-myelination (E9) to the postfunctional maturation (P9), revealing how the nodal spacing pattern along the axon in this circuit emerges and matures.

      Reviewer #2:

      Evidence, reproducibility and clarity

      Egawa et al describe the developmental timeline of the assembly of nodes of Ranvier in the chick brainstem auditory circuit. In this unique system, the spacing between nodes varies significantly in different regions of the same axon from early stages, which the authors suggest is critical for accurate sound localization. Egawa et al set out to determine which factors regulate this differential node spacing. They do this by using immunohistological analyses to test the correlation of node spacing with morphological properties of the axons, and properties of oligodendrocytes, glial cells that wrap axons with the myelin sheaths that flank the nodes of Ranvier. They find that axonal structure does not vary significantly, but that oligodendrocyte density and morphology varies in the different regions traversed by these axons, which suggests this is a key determinant of the region-specific differences in node density and myelin sheath length. They also find that differential oligodendrocyte density is partly determined by secreted neuronal signals, as (presumed) blockage of vesicle fusion with tetanus toxin reduced oligodendrocyte density in the region where it is normally higher. Based on these findings, the authors propose that oligodendrocyte morphology, myelin sheath length, and consequently nodal distribution are primarily determined by intrinsic oligodendrocyte properties rather than neuronal factors such as activity.

      Major points, detailed below, need to be addressed to overcome some limitations of the study.

      Major comments:

      (1) It is essential that the authors validate the efficiency of TeNT to prove that vesicular release is indeed inhibited, to be able to make any claims about the effect of vesicular release on oligodendrogenesis/myelination.

      eTeNT is a widely used genetically encoded silencing tool and constructs similar to the one used in this study have been successfully applied in primates and rodents to suppress target behaviors via genetic dissection of specific pathways (Kinoshita et al., 2012; Sooksawate et al., 2013). However, precisely quantifying the extent of vesicular release inhibition from NM axons in the brainstem auditory circuit is technically problematic.

      One major limitation is that while A3V efficiently infects NM neurons, its transduction efficiency does not reach 100%. In electrophysiological evaluations, NL neurons receive inputs from multiple NM axons, meaning that responses may still include input from uninfected axons. Additionally, failure to evoke synaptic responses could either indicate successful silencing or failure to stimulate NM axons, making a clear distinction difficult. Furthermore, unlike in motor circuits, we cannot assess the effect of silencing by observing behavioral outputs.

      Thus, we instead opted to quantify the precise expression efficiency of GFP-tagged eTeNT in the cell bodies of NM neurons. The proportion of NM neurons expressing GFP-tagged eTeNT was 89.7 ± 1.6% (N = 6 chicks), which is consistent with previous reports evaluating A3V transduction efficiency in the brainstem auditory circuit (Matsui et al., 2012). These results strongly suggest that synaptic transmission from NM axons was globally silenced by eTeNT at the NL region. We described these explicitly in text (page 8, line 2).

      (2) Related to 1, can the authors clarify if their TeNT expression system results in the whole tract being silenced? It appears from Fig. 6 that their approach leads to sparse expression of TeNT in individual neurons, which enables them to measure myelination parameters. Can the authors discuss how silencing a single axon can lead to a regional effect in oligodendrocyte number?

      Figure 6D depicts a representative axon selected from a dense population of GFP-positive axons in a 200-μm-thick slice after A3V-eTeNT infection to bilateral NM. As shown in Supplementary Video 1 and 2, densely labeled GFP-positive axons can be traced along the main trunk. To prevent any misinterpretation, we have revised the description of Figure 6 in the main text and Figure legend (page 31, line 9), and stated the A3V-eTeNT infection efficiency was 89.7 ± 1.6% in NM neurons, as mentioned above. Based on this efficiency, we interpreted that the global occlusion of vesicular release from most of the NM axons altered the pericellular microenvironment of the NL region, which led to the regional effect on the oligodendrocyte density.

      On the other hand, your question regarding whether sparse expression of eTeNT still has an effect is highly relevant. As we also discussed in our reply to comment 4 by Reviewer #1, the relationship between neuronal activity and oligodendrocytes is highly diverse. In some types of axons, vesicular release is essential for normal myelination, and this process was disrupted by TeNT (Koudelka et al., 2016), suggesting that direct interaction with oligodendrocytes via vesicle release may actively promote myelination in these types of axons.

      To clarify whether the phenotype observed in Figure 6 arises from changes in the pericellular microenvironment at the NL region or from the direct suppression of axon-oligodendrocyte interactions, we included a new Supplementary Figure (Figure 6—figure supplement 1). In this figure, we evaluated the node formation on the axon sparsely expressing eTeNT by electroporation into the unilateral NM. The results showed that sparse eTeNT expression did not increase the percentages of heminodes or unmyelinated segments. This finding supports our conclusion that the increased unmyelinated segments by A3V-eTeNT resulted from impaired synaptic transmission at NM terminals and subsequent alterations of  pericellular microenvironment at the NL region.

      (3) The authors need to fully revise their statistical analyses throughout and supply additional information that is needed to assess if their analyses are adequate:

      Thank you for your valuable suggestions to improve the rigor of our statistical analyses. We have reanalyzed all statistical tests using R software. In the revised Methods section and Figure Legends, we have clarified the rationale for selecting each statistical test, specified which test was used for each figure, and explicitly defined both n and N. After reevaluation with the Shapiro-Wilk test, we adjusted some analyses to non-parametric tests where appropriate. However, these adjustments did not alter the statistical significance of our results compared to the original analyses.

      (3.1) the authors use a variety of statistical tests and it is not always obvious why they chose a particular test. For example, in Fig. 2G they chose a Kruskal-Wallis test instead of a two-way ANOVA or MannWhitney U test, which are much more common in the field. What is the rationale for the test choice?

      We have revised the explanation of our statistical test choices to provide greater clarity and precision. For example, in Figure 2G, we first assessed the normality of the data in each of the four groups using the Shapiro-Wilk test, which revealed that some datasets did not follow a normal distribution. Given this, we selected the Kruskal-Wallis test, a commonly used non-parametric test for comparisons across three or more groups. Since the Kruskal-Wallis test indicated a significant difference, we conducted a post hoc Steel-Dwass test to determine which specific group comparisons were statistically significant.

      (3.2) in some cases, the choice of test appears wholly inappropriate. For example, in Fig. 3H-K, an unpaired t-test is inappropriate if the two regions were analysed in the same samples. In Fig. 5, was a ttest used for comparisons between multiple groups in the same dataset? If so, an ANOVA may be more appropriate.

      In the case of Figures 3H-K, we compared oligodendrocyte morphology between regions. However, since the number of sparsely labeled oligodendrocytes differs both between regions and across individual samples, there is no strict correspondence between paired measurements. On the other hand, in Figures 5B, C, and E, we compared the density of labeled cells between regions within the same slice, establishing a direct correspondence between paired data points. For these comparisons, we appropriately used a paired t-test.

      (3.3) in some cases, the authors do not mention which test was used (Fig 3: E-G no test indicated, despite asterisks; G/L/M - which regression test that was used? What does r indicate?)

      We have specified the statistical tests used for each figure in the Methods section and Figure Legends for better clarity. Additionally, we have revised the descriptions for Figure 4G, L, and M and their corresponding Figure Legends to explicitly indicate that Spearman’s rank correlation coefficient (rₛ) was used for evaluation.

      (3.4) more concerningly, throughout the results, data may have been pseudo-replicated. t-tests and ANOVAs assume that each observation in a dataset is independent of the other observations. In figures 1-4 and 6 there is a very large "n" number, but the authors do not indicate what this corresponds to. This leaves it open to interpretation, and the large values suggest that the number of nodes, internodal segments, or cells may have been used. These are not independent experimental units, and should be averaged per independent biological replicate - i.e. per animal (N).

      We have now clarified what “n” represents in each figure, as well as the number of animals (N) used in each experiment, in the Figure Legends.

      In this study, developmental stages of chick embryos were defined by HH stage (Hamburger and Hamilton, 1951), minimizing individual variability. Additionally, since our study focuses on the distribution of morphological characteristics of individual cells, averaging measurements per animal would obscure important cellular-level variability and potentially mislead interpretation of data. Furthermore, we employed a strategy of sparse genetic labeling in many experiments, which naturally results in variability in the number of measurable cells per animal. Given the clear distinctions in our data distributions, we believe that averaging per biological replicate is not essential in this case.

      To further ensure the robustness of our statistical analysis, data presented as boxplots were preliminarily assessed using PlotsOfDifferences, a web-based application that calculates and visualizes effect sizes and 95% confidence intervals based on bootstrapping (https://huygens.science.uva.nl/PlotsOfDifferences/; https://doi.org/10.1101/578575). Effect sizes can serve as a valuable alternative to p-values (Ho, 2018; https://www.nature.com/articles/s41592019-0470-3). The significant differences reported in our study are also supported by clear differences in effect sizes, ensuring that our conclusions remain robust regardless of the statistical approach used.

      If requested, we would be happy to provide PlotsOfDifferences outputs as supplementary source data files, similar to those used in eLife publications, for each figure.

      (3.5) related to the pseudo-replication issue, can the authors include individual datapoints in graphs for full transparency, per biological replicates, in addition or in alternative to bar-graphs (e.g. Fig. 5 and 6).

      We have now incorporated individual data points into the bar graphs in Figures 5 and 6.

      (4) The main finding of the study is that the density of nodes differs between two regions of the chicken auditory circuit, probably due to morphological differences in the respective oligodendrocytes. Can the authors discuss if this finding is likely to be specific to the bird auditory circuit?

      The morphological differences of oligodendrocytes between white and gray matter are well established (i.e. shorter myelin at gray matter), but their correspondence with the nodal spacing pattern along the long axonal projections of cortical neurons is not well understood. Future research may find similarities with our findings. Additionally, as mentioned in the final section of the Discussion, the mammalian brainstem auditory circuit is functionally analogous to the avian ITD circuit. Regional differences in nodal spacing along axons have also been observed in the mammalian system, raising the important question of whether these differences are supported by regional heterogeneity in oligodendrocytes. Investigating this possibility will facilitate our understanding of the underlying logic and mechanisms for determining node spacing patterns along axons, as well as provide valuable insights into evolutionary convergence in auditory processing mechanisms. We described these explicitly in text (page 11, line 34).

      (5) Provided the authors amend their statistical analyses, and assuming significant differences remain as shown, the study shows a correlation (but not causation) between node spacing and oligodendrocyte density, but the authors did not manipulate oligodendrocyte density per se (i.e. cell-autonomously). Therefore, the authors should either include such experiments, or revise some of their phrasing to soften their claims and conclusions. For example, the word "determine" in the title could be replaced by "correlate with" for a more accurate representation of the work. Similar sentences throughout the main text should be amended.

      As you summarized in your comment, our results demonstrated that A3V-eTeNT suppressed oligodendrogenesis in the NL region, leading to a reduction in oligodendrocyte density (Figures 6L, M), which caused the emergence of unmyelinated segments. While this is an indirect manipulation of oligodendrocyte density, it nonetheless provides evidence supporting a causal relationship between oligodendrocyte density and nodal spacing.

      The emergence of unmyelinated segments at the NL region further suggests that the myelin extension capacity of oligodendrocytes differs between regions, highlighting regional differences in intrinsic properties of oligodendrocyte as the most prominent determinant of nodal spacing variation. However, as you correctly pointed out, our findings do not establish direct causation.

      In the future, developing methods to artificially manipulate myelin length could provide a more definitive demonstration of causality. Given these considerations, we have modified the title to replace "determine" with "underlie", ensuring that our conclusions are presented with appropriate nuance.

      (6) The authors fail to introduce, or discuss, very pertinent prior studies, in particular to contextualize their findings with:

      (6.1) known neuron-autonomous modes of node formation prior to myelination, e.g. Zonta et al (PMID 18573915); Vagionitis et al (PMID 35172135); Freeman et al (PMID 25561543)

      (6.2) known effects of vesicular fusion directly on myelinating capacity and oligodendrogenesis, e.g. Mensch et al (PMID 25849985)

      (6.3) known correlation of myelin length and thickness with axonal diameter, e.g. Murray & Blakemore (PMID 7012280); Ibrahim et al (PMID 8583214); Hildebrand et al (PMID 8441812).

      (6.4) regional heterogeneity in the oligodendrocyte transcriptome (page 9, studies summarized in PMID 36313617)

      Thank you for your insightful suggestions. We have incorporated the relevant references you provided and revised the manuscript accordingly to contextualize our findings within the existing literature.

      Minor comments:

      (7) Can the authors amend Fig. 1G with the correct units of measurement, not millimetres.

      Response: 

      Thank you for your suggestion. We have corrected the units in Figure 1G to µm

      (8) The Olig2 staining in Fig 2C does not appear to be nuclear, as would be expected of a transcription factor and as is well established for Olig2, but rather appears to be excluded from the nucleus, as it is in a ring or donut shape. Can the authors comment on this?

      Oligodendrocytes and OPCs have small cell bodies, often comparable in size to their nuclei. The central void in the ring-like Olig2 staining pattern appears too small to represent the nucleus. Additionally, a similar ring-like appearance is observed in BrdU labeling (Figure 5G), suggesting that this staining pattern may reflect nuclear morphology or other structural features.

      Significance

      In our view the study tackles a fundamental question likely to be of interest to a specialized audience of cellular neuroscientists. This descriptive study is suggestive that in the studied system, oligodendrocyte density determines the spacing between nodes of Ranvier, but further manipulations of oligodendrocyte density per se are needed to test this convincingly.

      The main finding of our study is that the primary determinant of the biased nodal spacing pattern in the sound localization circuit is the regional heterogeneity in the morphology of oligodendrocytes due to their intrinsic properties (e.g., their ability to produce and extend myelin sheaths) rather than the density of the cells. This was based on our observations that a reduction of oligodendrocyte density by A3V-eTeNT expression caused unmyelinated segments but did not increase internodal length (Figure 6), further revealing the importance of oligodendrocyte density in ensuring full myelination for the axons with short internodes. Thus, we think that our study could propose the significance of oligodendrocyte heterogeneity in the circuit function as well as in the nodal spacing using experimental manipulation of oligodendrocyte density. 

      Reviewer #3:

      Evidence, reproducibility and clarity

      The authors have investigated the myelination pattern along the axons of chick avian cochlear nucleus. It has already been shown that there are regional differences in the internodal length of axons in the nucleus magnocellularis. In the tract region across the midline, internodes are longer than in the nucleus laminaris region. Here the authors suggest that the difference in internodal length is attributed to heterogeneity of oligodendrocytes. In the tract region oligodendrocytes would contribute longer myelin internodes, while oligodendrocytes in the nucleus laminaris region would synthesize shorter myelin internodes. Not only length of myelin internodes differs, but also along the same axon unmyelinated areas between two internodes may vary. This is an interesting contribution since all these differences contribute to differential conduction velocity regulating ipsilateral and contralateral innervation of coincidence detector neurons. However, the demonstration falls rather short of being convincing. I have some major concerns:

      (1) The authors neglect the possibility that nodal cluster may be formed prior to myelin deposition. They have investigated stages E12 (no nodal clusters) and E15 (nodal cluster plus MAG+ myelin). Fig. 1D is of dubious quality. It would be important to investigate stages between E12 and E15 to observe the formation of pre-nodes, i.e., clustering of nodal components prior to myelin deposition.

      Thank you for your insightful comment regarding the potential role of pre-nodal clusters in determining internodal length. Indeed, studies in zebrafish have suggested that pre-nodal clustering of node components prior to myelination may prefigure internodal length (Vagionitis et al., 2022). We have incorporated a discussion on whether such pre-nodal clusters could contribute to regional differences in nodal spacing in our manuscript (page 9, line 35).

      Whether pre-nodal clusters are detectable before myelination appears to depend on neuronal subpopulation (Freeman et al., 2015). To investigate the presence of pre-nodal clusters along NM axons in the brainstem auditory circuit, we previously attempted to visualize AnkG signals at E13 and E14. However, we did not observe clear structures indicative of pre-nodal clusters; instead, we only detected sparse fibrous AnkG signals with weak Nav clustering at their ends, consistent with hemi-node features. This result does not exclude the possibility of pre-nodal clusters on NM axons, as the detection limit of immunostaining cannot be ruled out. In brainstem slices, where axons are densely packed, nodal molecules are expressed at low levels across a wide area, leading to a high background signal in immunostaining, which may mask weak pre-nodal cluster signals prior to myelination. Regarding the comment on Figure 1D, we assume you are referring to Figure 2D based on the context. The lack of clarity in the high-magnification images in Figure 2D results from both the high background signal and the limited penetration of the MAG antibody. Furthermore, we are unable to verify Neurofascin accumulation at pre-nodal clusters, as there is currently no commercially available antibody suitable for use in chickens, despite our over 20 years of efforts to identify one for AIS research. Therefore, current methodologies pose significant challenges in visualizing pre-nodal clusters in our model. Future advancements, such as exogenous expression of fluorescently tagged Neurofascin at appropriate densities or knock-in tagging of endogenous molecules, may help overcome these limitations.

      However, a key issue to be discussed in this study is not merely the presence or absence of prenodal clusters, but rather whether pre-nodal clusters—if present—would determine regional differences in internodal length. To address this possibility, we have added new data in Figure 6I, measuring the length of unmyelinated segments that emerged following A3V-eTeNT expression.

      If pre-nodal clusters were fixed before myelination and predetermined internodal length, then the length of unmyelinated segments should be equal to or a multiple of the typical internodal length. However, our data showed that unmyelinated segments in the NL region were less than half the length of the typical NL internodal length, contradicting the hypothesis that fixed pre-nodal clusters determine internodal length along NM axons in this region.

      (2) The claim that axonal diameter is constant along the axonal length need to be demonstrated at the EM level. This would also allow to measure possible regional differences in the thickness of the myelin sheath and number of myelin wraps.

      As mentioned in our reply to comment 2 by Reviewer #1, the diameter of NM axons was already evaluated using electron microscopy (EM) in the pioneering study by Seidl et al., (2010). Additionally, EM-based analysis makes it difficult to clearly distinguish between the main trunk of NM axons and thin collateral branches at the NL region. Accordingly, we did not do the EM analysis in this revision. 

      In Figure 4, we used palGFP, which is targeted to the cell membrane, allowing us to measure axon diameter by evaluating the distance between two membrane signal peaks. This approach minimizes the influence of the blurring of fluorescence signals on diameter measurements. Thus, we believe that our method is sufficient to evaluate the relative difference in axon diameters between regions and hence to show that axon diameter is not the primary determinant of the 3-fold difference in internodal length between regions. 

      (3) The observation that internodal length differs is explain by heterogeneity of sources of oligodendrocyte is not convincing. Oligodendrocytes a priori from the same origin remyelinate shorter internode after a demyelination event.

      The heterogeneity in oligodendrocyte morphology would reflect differences in gene profiles, which, in turn, may arise from differences in their developmental origin and/or pericellular microenvironment of OPCs. We made this point as clear as possible in Discussion (page 9, line 21).

      Significance

      The authors suggest that the difference in internodal length is attributed to heterogeneity of oligodendrocytes. In the tract region oligodendrocytes would contribute longer myelin internodes, while oligodendrocytes in the nucleus laminaris region would synthesize shorter myelin internodes. Not only length of myelin internodes differs, but also along the same axon unmyelinated areas between two internodes may vary. This is an interesting contribution since all these differences contribute to differential conduction velocity regulating ipsilateral and contralateral innervation of coincidence detector neurons.

    1. is that it enables my tendency to over-intellectualise stuff, to get lost in abstract argument inside my head, instead of simply paying attention to what is going on right in front of me

      I think this is a really great point to bring up and a great way to connect to the audience he's speaking to. In my experience at least, I know that I tend to overanalyze a lot of my work and knowing that someone else does that too makes me feel more at ease.

    1. ‘I feel like we’ve already met,’ he boomed.

      The blind man already has a image in his head of what the husband looks like, how he is as a person, what he does in life, etc

    1. How much debt do you ask? Well…“Private credit funding of artificial intelligence is running at around $50 billion a quarter, at the low end, for the past three quarters. Even without factoring in the mega deals from Meta and Vantage, they are already providing two to three times what the public markets are providing,” said Matthew Mish, head of credit strategy at UBS.And many new computing hubs are being funded through commercial mortgage-backed securities, tied not to a corporate entity, but to the payments generated by the complexes. The amount of CMBS backed by AI infrastructure is already up 30%, to $15.6 billion, from the full year total in 2024, JPMorgan Chase & Co. estimated this month.

      !

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      The authors observed a decline in autophagy and proteasome activity in the context of Milton knockdown. Through proteomic analysis, they identified an increase in the protein levels of eIF2β, subsequently pinpointing a novel interaction within eIF subunits where eIF2β contributes to the reduction of eIF2α phosphorylation levels. Furthermore, they demonstrated that overexpression of eIF2β suppresses autophagy and leads to diminished motor function. It was also shown that in a heterozygous mutant background of eIF2β, Milton knockdown could be rescued. This work represents a novel and significant contribution to the field, revealing for the first time that the loss of mitochondria from axons can lead to impaired autophagy function via eIF2β, potentially influencing the acceleration of aging.

      Thank you so much for your review and comments.

      Reviewer #2 (Public Review):

      In the manuscript, the authors aimed to elucidate the molecular mechanism that explains neurodegeneration caused by the depletion of axonal mitochondria. In Drosophila, starting with siRNA depletion of Milton and Miro, the authors attempted to demonstrate that the depletion of axonal mitochondria induces the defect in autophagy. From proteome analyses, the authors hypothesized that autophagy is impacted by the abundance of eIF2β and the phosphorylation of eIF2α. The authors followed up the proteome analyses by testing the effects of eIF2β overexpression and depletion on autophagy. With the results from those experiments, the authors proposed a novel role of eIF2β in proteostasis that underlies neurodegeneration derived from the depletion of axonal mitochondria.

      The manuscript has several weaknesses. The reader should take extra care while reading this manuscript and when acknowledging the findings and the model in this manuscript.

      The defect in autophagy by the depletion of axonal mitochondria is one of the main claims in the paper. The authors should work more on describing their results of LC3-II/LC3-I ratio, as there are multiple ways to interpret the LC3 blotting for the autophagy assessment. Lysosomal defects result in the accumulation of LC3-II thus the LC3-II/LC3-I ratio gets higher. On the other hand, the defect in the early steps of autophagosome formation could result in a lower LC3-II/LC3-I ratio. From the results of the actual blotting, the LC3-I abundance is the source of the major difference for all conditions (Milton RNAi and eIF2β overexpression and depletion).

      Thank you so much for your review and comments. As the reviewer pointed out, LC3-II/LC3- I ratio changes do not necessarily indicate autophagy defects. However, since p62 accumulation (Figure 2B, 2E, 3E, Figure 8C, Figure 9C), these results collectively suggest that autophagy is lowered.

      As the reviewer pointed out and we described in v2, milton knockdown, eIF2β overexpression and heterozygosity increase LC3-I abundance. We do not know how these conditions increase LC3-I at this moment. We will investigate the cause of the increase in LC3-I by milton knockdown and how it contribute to impaired autophagy. We added this discussion as:

      Lines 388-393; ‘Our results also suggest that milton knockdown and overexpression of eIF2β affect autophagy via increased LC3-I abundance (Figures 2 and 7), suggesting an unconventional mechanism of autophagy suppression. To our knowledge, the roles of eIF2β in aging and autophagy independent of ISR have not been reported. Our results revealed a novel function of eIF2β to maintain proteostasis during aging, while further investigation is required to elucidate underlying mechanisms.’

      Another main point of the paper is the up-regulation of eIF2β by depleting the axonal mitochondria leads to the proteostasis crisis. This claim is formed by the findings from the proteome analyses. The authors should have presented their proteomic data with much thorough presentation and explanation. As in the experiment scheme shown in Figure 4A, the author did two proteome analyses: one from the 7-day-old sample and the other from the 21-day-old sample. The manuscript only shows a plot of the result from the 7-day-old sample, but that of the result from the 21-day-old sample. For the 21-day-old sample, the authors only provided data in the supplemental table, in which the abundance ratio of eIF2β from the 21-day-old sample is 0.753, meaning eIF2β is depleted in the 21-day-old sample. The authors should have explained the impact of the eIF2β depletion in the 21-day-old sample, so the reader could fully understand the authors' interpretation of the role of eIF2β on proteostasis.

      Thank you for pointing it out. Plots of the 21-day-old proteome results was included in the main figure (Figure 4C) in v2. In this revision, we further analyzed age-dependent changes of eIF2β levels by western blotting (Figure 4G). We found that eIF2β levels increased during aging until 49-day-old then reduced at 63-day-old (Figure 4G in the revised manuscript). At the young age, eIF2β levels were higher in milton knockdown brain compared to the control , and eIF2β levels were lower in milton knockdown brains than those in the control. These results suggest that milton knockdown accelerates age-dependent changes in eIF2β. We added these results and discussion in the revised manuscript.

      Lines 240-243: ‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.’

      Lines 363-368: ‘We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4D and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude.’Our new data indicate that eIF2β levels increase during aging in control flies until 49-day-old, then reduce at 63-day-old (included as Figure 4G in the revised manuscript). These age- dependent changes might explain the reduction in eIF2β levels in Milton knockdown compared to the control in middle age: higher eIF2β levels in milton knockdown flies at a young age than control and lower eIF2β levels in the middle-aged flies may reflect premature aging.

      We included these sentences in the discussion section:

      Lines 240-243:‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.’

      Lines 359-371: ‘Our results suggest that the loss of axonal mitochondria is an event upstream of proteostasis collapse during aging. The number of puncta of ubiquitinated proteins was higher in milton knockdown at 14-day-old, but there was no significant difference at 30-day-old (Figure 1). Proteome analyses also showed that age-related pathways, such as immune responses, are enhanced in young flies with milton knockdown (Table 2). We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4D and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude. Disruption of proteostasis is expected to contribute neurodegeneration38 , and it would be interesting to analyze the sequence of protein accumulation and axonal degeneration in milton knockdown (24,29 and Figure 1) in detail with higher time resolution.’


      With our new data, we revised some of our responses to the first round of reviewer’s comments.

      Reviewer #1 (Public Review):

      The authors observed a decline in autophagy and proteasome activity in the context of Milton knockdown. Through proteomic analysis, they identified an increase in the protein levels of eIF2β, subsequently pinpointing a novel interaction within eIF subunits where eIF2β contributes to the reduction of eIF2α phosphorylation levels. Furthermore, they demonstrated that overexpression of eIF2β suppresses autophagy and leads to diminished motor function. It was also shown that in a heterozygous mutant background of eIF2β, Milton knockdown could be rescued. This work represents a novel and significant contribution to the field, revealing for the first time that the loss of mitochondria from axons can lead to impaired autophagy function via eIF2β, potentially influencing the acceleration of aging. To further support the authors' claims, several improvements are necessary, particularly in the methods of quantification and the points that should be demonstrated quantitatively. It is crucial to investigate the correlation between aging and the proteins eIF2β and eIF2α.

      Thank you so much for your review and comments. We included analyses of protein levels of eIF2α, eIF2β, and eIF2γ at 7 days and 21 days (Figure 4D). The manuscript was revised as below;

      Lines 246-249 ‘As for the other subunits of eIF2 complex, proteome analysis did not detect a significant difference in the protein levels of eIF2α and eIF2γ between milton knockdown and control flies at 7 and 21 days (Figure 4D).’

      NEW TEXT: We analyzed age-dependent changes of eIF2β levels in more detail by western blotting (Figure 4G). We found that eIF2β levels increased during aging until 49-day-old then reduced at 63-day-old (Figure 4G in the revised manuscript). At the young age, eIF2β levels were higher in milton knockdown brain compared to the control , and eIF2β levels were lower in milton knockdown brains than those in the control. These results suggest that Milton knockdown accelerates age-dependent changes in eIF2β.. We added these results and discussion in the revised manuscript.

      NEW TEXT: Lines 240-243: ‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.’

      NEW TEXT: Lines 363-368: ‘We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4D and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude.’

      Reviewer #2 (Public Review):

      In the manuscript, the authors aimed to elucidate the molecular mechanism that explains neurodegeneration caused by the depletion of axonal mitochondria. In Drosophila, starting with siRNA depletion of Milton and Miro, the authors attempted to demonstrate that the depletion of axonal mitochondria induces the defect in autophagy. From proteome analyses, the authors hypothesized that autophagy is impacted by the abundance of eIF2β and the phosphorylation of eIF2α. The authors followed up the proteome analyses by testing the effects of eIF2β overexpression and depletion on autophagy. With the results from those experiments, the authors proposed a novel role of eIF2β in proteostasis that underlies neurodegeneration derived from the depletion of axonal mitochondria.

      The manuscript has several weaknesses. The reader should take extra care while reading this manuscript and when acknowledging the findings and the model in this manuscript.

      The defect in autophagy by the depletion of axonal mitochondria is one of the main claims in the paper. The authors should work more on describing their results of LC3-II/LC3-I ratio, as there are multiple ways to interpret the LC3 blotting for the autophagy assessment. Lysosomal defects result in the accumulation of LC3-II thus the LC3-II/LC3-I ratio gets higher. On the other hand, the defect in the early steps of autophagosome formation could result in a lower LC3-II/LC3-I ratio. From the results of the actual blotting, the LC3-I abundance is the source of the major difference for all conditions (Milton RNAi and eIF2β overexpression and depletion). In the text, the authors simply state the observation of their LC3 blotting. The manuscript lacks an explanation of how to evaluate the LC3-II/LC3-I ratio. Also, the manuscript lacks an elaboration on what the results of the LC3 blotting indicate about the state of autophagy by the depletion of axonal mitochondria.

      Thank you for pointing it out, and we apologize for an insufficient description of the result. We included quantitation of the levels of LC3-I and LC3-II in Figures 2A, 2D, 3D, 7B (Figure 6B in the previous version), and 8B (Figure 7B in the previous version). As the reviewer pointed out, LC3-II/LC3-I ratio changes do not necessarily indicate autophagy defects. However, since p62 accumulation (Figure 2B, 2E, 3E, 7C (Figure 6C in the previous version), 8C (Figure 7C in the previous version)), these results collectively suggest that autophagy is lowered. We revised the manuscript to include this discussion as below:

      Lines 174-186 ‘During autophagy progression, LC3 is conjugated with phosphatidylethanolamine to form LC3-II, which localizes to isolation membranes and autophagosomes. LC3-I accumulation occurs when autophagosome formation is impaired, and LC3-II accumulation is associated with lysosomal defects31,32. p62 is an autophagy substrate, and its accumulation suggests autophagic defects31,32. We found that milton knockdown increased LC3-I, and the LC3-II/LC3-I ratio was lower in milton knockdown flies than in control flies at 14-day-old (Figure 2A). We also analyzed p62 levels in head lysates sequentially extracted using detergents with different stringencies (1% Triton X-100 and 2% SDS). Western blotting revealed that p62 levels were increased in the brains of 14-day-old of milton knockdown flies (Figure 2B). The increase in the p62 level was significant in the Triton X-100- soluble fraction but not in the SDS-soluble fraction (Figure 2B), suggesting that depletion of axonal mitochondria impairs the degradation of less-aggregated proteins.’

      Line 189-190: 'At 30 day-old, LC3-I was still higher, and the LC3-II/LC3-I ratio was lower, in milton knockdown compared to the control (Figure 2D).’

      Line 202-203: ‘However, in contrast with milton knockdown, Pfk knockdown did not affect the levels of LC3-I, LC3-II or the LC3-II/LC3-I ratio (Figure 3D).’

      Line 279-285: ‘Neuronal overexpression of eIF2β increased LC3-II, while the LC3-II/LC3-I ratio was not significantly different (Figure 7A and B). Overexpression of eIF2β significantly increased the p62 level in the Triton X-100-soluble fraction (Figure 7C, 4-fold vs. control, p <0.005 (1% Triton X-100)) but not in the SDS-soluble fraction (Figure 7C, 2-fold vs. control, p\= 0.062 (2% SDS)), as observed in brains of milton knockdown flies (Figure 2B). These data suggest that neuronal overexpression of eIF2β accumulates autophagic substrates.’

      Line 311-319: ‘Neuronal knockdown of milton causes accumulation of autophagic substrate p62 in the Triton X-100-soluble fraction (Figure 2B), and we tested if lowering eIF2β ameliorates it. We found that eIF2β heterozygosity caused a mild increase in LC3-I levels and decreases in LC3-II levels, resulting in a significantly lower LC3-II/LC3-I ratio in milton knockdown flies (Figure 8B). eIF2β heterozygosity decreased the p62 level in the Triton X- 100-soluble fraction in the brains of milton knockdown flies (Figure 8C). The p62 level in the SDS-soluble fraction, which is not sensitive to milton knockdown (Figure 2B), was not affected (Figure 8C). These results suggest that suppression of eIF2β ameliorates the impairment of autophagy caused by milton knockdown.’

      Another main point of the paper is the up-regulation of eIF2β by depleting the axonal mitochondria leads to the proteostasis crisis. This claim is formed by the findings from the proteome analyses. The authors should have presented their proteomic data with much thorough presentation and explanation. As in the experiment scheme shown in Figure 4A, the author did two proteome analyses: one from the 7-day-old sample and the other from the 21-day-old sample. The manuscript only shows a plot of the result from the 7-day-old sample, but that of the result from the 21-day-old sample. For the 21-day-old sample, the authors only provided data in the supplemental table, in which the abundance ratio of eIF2β from the 21-day-old sample is 0.753, meaning eIF2β is depleted in the 21-day-old sample. The authors should have explained the impact of the eIF2β depletion in the 21-day-old sample, so the reader could fully understand the authors' interpretation of the role of eIF2β on proteostasis.

      NEW TEXT: Thank you for pointing it out. We included plots of the 21-day-old proteome results as a part of the main figure (Figure 4C). As the reviewer pointed out, eIF2β protein levels are lower in milton knockdown background at the 21-day-old compared to the control. Since a reduction in the eIF2_β_ ameliorated milton knockdown-induced locomotor defects in aged flies (Figure 7D), the reduction in eIF2β observed in the 21-day-old milton knockdown flies is not likely to negatively contribute to milton knockdown-induced defects. Our new data indicate that eIF2β levels increase during aging in control flies until 49-day-old, then reduce at 63-day-old (included as Figure 4G in the revised manuscript). These age-dependent changes might explain the reduction in eIF2β levels in Milton knockdown compared to the control in middle age: higher eIF2β levels in milton knockdown flies at a young age than control and lower eIF2β levels in the middle-aged flies may reflect premature aging.

      NEW TEXT: We included these sentences in the discussion section:

      NEW TEXT: Lines 240-243:‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.’

      NEW TEXT: Lines 359-371: ‘Our results suggest that the loss of axonal mitochondria is an event upstream of proteostasis collapse during aging. The number of puncta of ubiquitinated proteins was higher in milton knockdown at 14-day-old, but there was no significant difference at 30-day-old (Figure 1). Proteome analyses also showed that age-related pathways, such as immune responses, are enhanced in young flies with milton knockdown (Table 2). We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4D and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude. Disruption of proteostasis is expected to contribute neurodegeneration38 , and it would be interesting to analyze the sequence of protein accumulation and axonal degeneration in milton knockdown (24,29 and Figure 1) in detail with higher time resolution.’

      The manuscript consists of several weaknesses in its data and explanation regarding translation.

      (1) The authors are likely misunderstanding the effect of phosphorylation of eIF2α on translation. The P-eIF2α is inhibitory for translation initiation. However, the authors seem to be mistaken that the down-regulation of P-eIF2α inhibits translation.

      We are sorry for our insufficient explanation in the previous version. As the reviewer pointed out, it is well known that the phosphorylated form of eIF2α inhibits translation initiation. Neuronal knockdown of milton caused a reduction in p-eIF2α (Figure 5D and E (Figure 4J and K in the previous version)), and it also lowered translation (Figure 6 (Figure 5 in the previous version)); the relationship between these two events is currently unclear. We do not think that a reduction in the p-eIF2α suppressed translation; rather, we propose that the unbalance of expression levels of the components of eIF2 complexes negatively affects translation. We revised discussion sections to describe our interpretation more in detail as below:

      Line 374-384: ‘eIF2β is a component of eIF2, which meditates translational regulation and ISR initiation. When ISR is activated, phosphorylated eIF2α suppresses global translation and induces translation of ATF4, which mediates transcription of autophagy-related genes39,40. Since ISR can positively regulate autophagy, we suspected that suppression of ISR underlies a reduction in autophagic protein degradation. We found neuronal knockdown of milton reduced phosphorylated eIF2α, suggesting that ISR is reduced (Figure 5). However, we also found that global translation was reduced (Figure 6). Increased levels of eIF2β might disrupt the eIF2 complex or alter its functions. The stoichiometric mismatch caused by an imbalance of eIF2 components may inhibit ISR induction. Supporting this model, we found that eIF2β upregulation reduced the levels of p-eIF2α (Figure 7).’We have revised the graphical abstract and removed the eIF2 complex since its role in the loss of proteostasis caused by milton knockdown has not been elucidated yet.

      (2) The result of polysome profiling in Figure 4H is implausible. By 10%-25% sucrose density gradient, polysomes are not expected to be observed. The authors should have used a gradient with much denser sucrose, such as 10-50%.

      Thank you for pointing it out. It was a mistake of 10-50%, and we apologize for the oversight. It was corrected (Figure 6 (Figure 5 in the previous version)).

      (3) Also on the polysome profiling, as in the method section, the authors seemed to fractionate ultra-centrifuged samples from top to bottom and then measured A260 by a plate reader. In that case, the authors should have provided a line plot with individual data points, not the smoothly connected ones in the manuscript.

      Thank you for pointing it out. We revised the graph (Figure 6 (Figure 5 in the previous version)).

      (4) For both the results from polysome profiling and puromycin incorporation (Figure 4H and I), the difference between control siRNA and Milton siRNA are subtle, if not nonexistent. This might arise from the lack of spatial resolution in their experiment as the authors used head lysate for these data but the ratio of Phospho-eIF2α/eIF2α only changes in the axons, based on their results in Figure 4E-G. The authors could have attempted to capture the spatial resolution for the axonal translation to see the difference between control siRNA and Milton siRNA.

      Thank you for your comment. We agree that it would be an interesting experiment, but it will take a considerable amount of time to analyze axonal translation with spatial resolution. We will try to include such analyses in the future. For this manuscript, we revised the discussion section to include the reviewer's suggestion as below;

      Lines 355-357: ‘Further analyses to dissect the effects of milton knockdown on proteostasis and translation in the cell body and axon by experiments with spatial resolution would be needed.’

      Recommendations for the authors:

      From the Reviewing Editor:

      As the Reviewing Editor, I have read your manuscript and the associated peer reviews. I have concerns about publishing this work in its current form. I think that your manuscript cannot claim to have found a novel function of eIF2beta because of technical uncertainties and conceptual problems that should be addressed.

      Thank you so much for your review and comments. We addressed all the concerns raised by the reviewers. Point-by-point responses are listed below.

      First, your manuscript is based partly on what appears to be a mistaken understanding of the mechanistic basis of the ISR. Specifically, eIF2 is a heterotrimeric complex of alpha, beta, and gamma subunits. When eIF2a is phosphorylated, the heterotrimer adopts a new conformation. This conformation directly binds and inhibits eIF2B, the decameric GEF that exchanges the GDP bound to the gamma subunit of the eIF2 complex for GTP. Unless I misunderstood your paper, you seem to propose that decreasing levels of phospho-eIF2a will inhibit translation, but this is backward from what we know about the ISR.

      Thank you for your insightful comment, and we are sorry for the confusion. We did not mean to propose that decreasing levels of phospho-eIF2_a_ inhibits translation. We apologize for our insufficient explanation, which might have caused a misunderstanding (Lines 312-318 in the original version). We agree with the reviewer that ‘mismatch due to elevated eIF2-beta could change the behavior of the ISR’. We revised the text in the result section as follows:

      Lines 263-268 (in the Result section) ‘Phosphorylation of eIF2α induces conformational changes in the eIF2 complex and inhibits global translation36. To analyze the effects of milton knockdown on translation, we performed polysome gradient centrifugation to examine the level of ribosome binding to mRNA. Since p-eIF2α was downregulated, we hypothesized that milton knockdown would enhance translation. However, unexpectedly, we found that milton knockdown significantly reduced the level of mRNAs associated with polysomes (Figure 6A and B).’

      Lines 374-384 (in the Discussion section): ‘eIF2β is a component of eIF2, which meditates translational regulation and ISR initiation. When ISR is activated, phosphorylated eIF2α suppresses global translation and induces translation of ATF4, which mediates transcription of autophagy-related genes39,40. Since ISR can positively regulate autophagy, we suspected that suppression of ISR underlies a reduction in autophagic protein degradation. We found neuronal knockdown of milton reduced phosphorylated eIF2α, suggesting that ISR is reduced (Figure 5). However, we also found that global translation was reduced (Figure 6). Increased levels of eIF2β might disrupt the eIF2 complex or alter its functions. The stoichiometric mismatch caused by an imbalance of eIF2 components may inhibit ISR induction. Supporting this model, we found that eIF2β upregulation reduced the levels of p-eIF2α (Figure 7).’

      It may be possible that a stoichiometric mismatch due to elevated eIF2-beta could change the behavior of the ISR, but your paper doesn't adequately address the expression levels of all three eIF2 subunits: alpha, beta, and gamma. The proteomic data shown in Fig 4B is unconvincing on its own because the changes in the beta subunit are subtle. The Western blot in Figure 4C suggests that the KD changes the mass or mobility of the beta subunit, and most importantly, there are no Western blots measuring the levels of eIF2a, eIF2a-phospho, or eIF2-gamma.

      We appreciate the reviewer’s comment and agree that the stoichiometric mismatch due to elevated eIF2β may interfere with ISR. We found overexpression of eIF2β lowered p-eIF2 alpha (Figure S2 in V1), which supports this model. We included this data in the main figure in the revised manuscript (Figure 7D) and revised the text as below:

      Lines 286-289: ‘Since milton knockdown reduced the p-eIF2α level (Figure 5E), we asked whether an increase in eIF2β affects p-eIF2α. Neuronal overexpression of eIF2β did not affect the eIF2α level but significantly decreased the p-eIF2α level (Figure 7D and E).’

      Expression data of eIF2α and eIF2γ from proteomic analyses has been extracted from proteome analyses and included as a table (Figure 4D). Western blots of phospho-eIF2a (Figure S1 in V1) in the main figure (Figure 5B). The result section was revised as below;

      Lines 246-249: ‘As for the other subunits of eIF2 complex, proteome analysis did not detect a significant difference in the protein levels of eIF2α and eIF2γ between milton knockdown and control flies at 7 and 21 days (Figure 4D).’

      NEW TEXT: We also analyzed age-dependent changes of eIF2β by western blotting and found that eIF2β increased during aging until 49-day-old. We included this result as Figure 4G and added these sentences in the result section:

      NEW TEXT: Line 240-243: ‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.

      Reviewer #1 (Recommendations For The Authors):

      L125-128: In this section, while the efficiency of Milton knockdown is referenced from a previous publication, it is necessary to also mention that the Miro knockdown has been similarly reported in the literature. Additionally, the Methods section lacks details on the Miro RNAi line used, and Table 2 does not include the genotype for Miro RNAi. This information should be included for clarity and completeness.

      Thank you for pointing it out. Knockdown efficiency with this strain has been reported (Iijima- Ando et al., PLoS Genet, 2012). We revised the text to include citation and knockdown efficiency as follows:

      Lines 136-147: ‘There was no significant increase in ubiquitinated proteins in milton knockdown flies at 1-day old, suggesting that the accumulation of ubiquitinated proteins caused by milton knockdown is age-dependent (Figure S1). We also analyzed the effect of the neuronal knockdown of Miro, a partner of milton, on the accumulation of ubiquitin-positive proteins. Since severe knockdown of Miro in neurons causes lethality, we used UAS-Miro RNAi strain with low knockdown efficiency, whose expression driven by elav-GAL4 caused 30% reduction of Miro mRNA in head extract24. Although there was a tendency for increased ubiquitin- positive puncta in Miro knockdown brains, the difference was not significant (Figure 1B, p>0.05 between control RNAi and Miro RNAi). These data suggest that the depletion of axonal mitochondria induced by milton knockdown leads to the accumulation of ubiquitinated proteins before neurodegeneration occurs.’

      L132-L136: The current phrasing in this section suggests an increase in ubiquitinated proteins for both Milton and Miro knockdowns. However, since there is no significant difference noted for Miro, it is incorrect to state an increase in ubiquitin-positive puncta. Furthermore, combining the results of Milton knockdown to claim an increase in ubiquitinated proteins prior to neurodegeneration is misleading. At the very least, the expression here needs to be moderated to accurately reflect the findings.

      Thank you for pointing it out. We revised the text as above.

      L137-L141: Results in Figure 1 indicate that Milton knockdown leads to an increase in ubiquitinated proteins at 14 days, while Miro knockdown shows no difference from the control at either 14 or 30 days. Conversely, both the control and Miro exhibit an increase in ubiquitinated proteins with aging, but this trend does not seem to apply to Milton knockdown. This observation suggests that Milton KD may not affect the changes in protein quality control associated with aging. It implies that Milton's function might be more related to protein homeostasis in younger cells, or that changes due to aging might overshadow the effects of Milton knockdown. These interpretations should be included in the Results or Discussion sections for a more comprehensive analysis.

      NEW TEXT: Thank you for your insightful comment. As you mentioned, the accumulation of ubiquitinated proteins significantly increases only in young flies. Age-related pathways, such as immune responses, are highlighted in young milton knockdown flies but not in the aged flies. Our new result indicates that eIF2β increases during aging in control flies (included as Figure 4G in the revised manuscript), and upregulation of eIF2β in milton knockdown is only observed at a young age. These results suggest that milton knockdown does not increase the magnitude of age-dependent changes but accelerates their onset. We revised the text to include those points as follows:

      NEW TEXT: Lines 152-153: ‘These results suggest that depletion of axonal mitochondria may have more impact on proteostasis in young neurons than in old neurons.’

      NEW TEXT: Lines 359-371: ‘Our results suggest that the loss of axonal mitochondria is an event upstream of proteostasis collapse during aging. The number of puncta of ubiquitinated proteins was higher in milton knockdown at 14-day-old, but there was no significant difference at 30-day- old (Figure 1). Proteome analyses also showed that age-related pathways, such as immune responses, are enhanced in young flies with milton knockdown (Table 2). We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4 and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude. Disruption of proteostasis is expected to contribute neurodegeneration38 , and it would be interesting to analyze the sequence of protein accumulation and axonal degeneration in milton knockdown (24,29 and Figure 1) in detail with higher time resolution.’

      L143 : Please remove the erroneously included quotation mark.

      Thank you for pointing it out. We corrected it.

      L145-L147:

      While it is understood that Milton knockdown results in a reduction of mitochondria in axons, as reported previously and seemingly indicated in Figure 1E, this paper repeatedly refers to axonal depletion of mitochondria. Therefore, it would be beneficial to quantitatively assess the number of mitochondria in the axonal terminals located in the lamina via electron microscopy. Such quantification would robustly reinforce the argument that mitochondrial absence in axons is a consequence of Milton knockdown.

      Thank you for pointing it out. We included quantitation of the number of mitochondria in the synaptic terminals (Figure 1E).

      The text and figure legend was revised accordingly:

      Lines 156-157: ‘As previously reported24, the number of mitochondria in presynaptic terminals decreased in milton knockdown (Figure 1E).’

      The knockdown of Milton is known to reduce mitochondrial transport from an early stage, but what about swelling? By observing swelling at 1 day and 14 days, it may be possible to confirm the onset of swelling and discuss its correlation with the accumulation of ubiquitinated proteins.

      Quantitation of axonal swelling has also been included (Figure 1F).

      We appreciate the reviewer's comments on the correlation between the accumulation of ubiquitinated proteins and axonal swelling. Axonal swelling was not observed at 3-days-old (Iijima-Ando et al., PLoS Genetics, 2012), indicating that axonal swelling is an age-dependent event. Dense materials are found in swollen axons more often than in normal axons, suggesting a positive correlation between disruption of proteostasis and axonal damage. It would be interesting to analyze the time course of events further; however, we feel it is beyond the scope of this manuscript. We revised the text to include this discussion as:

      Lines 157-160: ‘The swelling of presynaptic terminals, characterized by the enlargement and roundness, was not reported at 3-day-old24 but observed at this age with about 4% of total presynaptic terminals (Figure 1F, asterisks).’

      Lines 162-167: ‘Dense materials are rarely found in age-matched control neurons, indicating that milton knockdown induces abnormal protein accumulation in the presynaptic terminals (Figure 1G and H). In milton knockdown neurons, dense materials are found in swollen presynaptic terminals more often than in presynaptic terminals without swelling, suggesting a positive correlation between the disruption of proteostasis and axonal damage (Figure 1G).’

      Lines 369-371: ‘Disruption of proteostasis is expected to contribute neurodegeneration38 , and it would be interesting to analyze the sequence of protein accumulation and axonal degeneration in milton knockdown (24,29 and Figure 1) in detail with higher time resolution.’

      L147-L151: Though Figures 1F and 1G provide qualitative representations, it is advisable to quantitatively assess whether dense materials significantly accumulate. Such quantitative analysis would be required to verify the accumulation of dense materials in the context of the study.

      Thank you for pointing it out. We included quantitation of the number of neurons with dense material (Figure 1G). We revised the manuscript as follows:

      Line 162-164: ‘Dense materials are rarely found in age-matched control neurons, indicating that milton knockdown induces abnormal protein accumulation in the presynaptic terminals (Figure 1G and H).’

      Regarding Figure 1B, C:

      Even though the count of puncta in the whole brain appears to be fewer than 400, the magnification of the optic lobe suggests a substantial presence of puncta. Please clarify in the Methods section what constitutes a puncta and whether the quantification in the whole brain is based on a 2D or 3D analysis. Detail the methodology used for quantification.

      Thank you for your comment. We revised the method section to include more details as below:

      Lines 440-443: ‘Quantitative analysis was performed using ImageJ (National Institutes of Health) with maximum projection images derived from Z-stack images acquired with same settings. Puncta was identified with mean intensity and area using ImageJ.’

      What about 1-day-old specimens? Does Milton knockdown already show an increase in ubiquitinated protein accumulation at this early stage? Investigating whether ubiquitin-protein accumulation is involved in aging promotion or is already prevalent during developmental stages is a necessary experiment.

      Thank you for your comment. We carried out immunostaining with an anti-ubiquitin antibody in the brains at 1-day-old. No significant difference was detected between the control and milton knockdown. This result has been included as Figure S1 in the revised manuscript. The result section was revised as below:

      Line 136-139 ‘There was no significant increase in ubiquitinated proteins in milton knockdown flies at 1-day old, suggesting that the accumulation of ubiquitinated proteins caused by milton knockdown is age-dependent (Figure S1).’

      For Figure 1E: In the Electron Microscopy section of the Methods, define how swollen axons were identified and describe the quantification methodology used.

      Thank you for your comment. Swollen axons are, unlike normal axons, round in shape and enlarged. We revised the text as below;

      Lines 157-160: ‘The swelling of presynaptic terminals, characterized by the enlargement and roundness, was not reported at 3-day-old24 but observed at this age with about 4% of total presynaptic terminals (Figure 1F, asterisks).’

      Lines 689-691, Figure 1 legend: ‘Swollen presynaptic terminals (asterisks in (F)), characterized by the enlargement and higher circularity, were found more frequently in milton knockdown neurons.’

      L218-L219: Throughout the text, the expression 'eIF2β is "upregulated" in response to Milton knockdown' is frequently used. However, considering the presented results, it might be more accurate to interpret that under the condition of Milton knockdown, eIF2β is not undergoing degradation but rather remains stable.

      Thank you for pointing it out. We replaced ‘upregulated’ with ‘increased’ throughout the text.

      L234-L235: On what basis is the conclusion drawn that there is a reduction? Given that three experiments have been conducted, it would be possible and more convincing to quantify the results to determine if there is a significant decrease.

      Thank you for pointing it out. We quantified the AUC of polysome fraction and carried out a statistical analysis. There is a significant decrease in polysome in milton knockdown, and this result has been included in Figure 5B. We revised the figure and the legend accordingly.

      L236: 5H-> 4H

      Thank you for pointing it out, and we are sorry for the confusion. We corrected it.

      L238-L239: Since there is no significant difference observed, it may not be accurate to interpret a reduction in puromycin incorporation.

      Thank you for pointing it out. As described above, quantification of polysome fractions showed that milton knockdown significantly reduced polysome (Figure 6B (Figure 5B in the previous version)). We revised the manuscript as below;

      Lines 267-268: ‘However, unexpectedly, we found that milton knockdown significantly reduced the level of mRNAs associated with polysomes (Figure 6A and B).’

      Figure 5D and Figure 6D: Climbing assays have been conducted, but I believe experiments should also be performed to examine whether overexpression or heterozygous mutants of eIF2β induce or suppress degeneration.

      Thank you for pointing it out. We analyzed the eyes with eIF2β overexpression for neurodegeneration. Although there was a tendency of elevated neurodegeneration in the retina with eIF2β overexpression, the difference between control and eIF2β overexpression did not reach statistical significance (Figure S2). This result has been included as Figure S2 in the revised manuscript, and the following sentences have been included in the text:

      Lines 292-297: ‘We asked if eIF2β overexpression causes neurodegeneration, as depletion of axonal mitochondria in the photoreceptor neurons causes axon degeneration in an age- dependent manner24. eIF2β overexpression in photoreceptor neurons tends to increase neurodegeneration in aged flies, while it was not statistically significant (p>0.05, Figure S2).’

      L271-L272: The results in Figure 6B are surprising. I anticipated a greater increase compared to the Milton knockdown alone. While p62 appears to be reduced, it is not clear why these results lead to the conclusion that lowering eIF2β rescues autophagic impairment. Please add a discussion section to address this point.

      Thank you for pointing it out. We apologize for the unclear description of the result. Milton knockdown flies show p62 accumulation (Figure 2), and deleting one copy of eIF2beta in milton knockdown background reduced p62 accumulation (Figure 8C (Figure 7C in the previous version)). We revised the text as below:

      Lines 311-319: ‘Neuronal knockdown of milton causes accumulation of autophagic substrate p62 in the Triton X-100-soluble fraction (Figure 2B), and we tested if lowering eIF2β ameliorates it. We found that eIF2β heterozygosity caused a mild increase in LC3-I levels and decreases in LC3-II levels, resulting in a significantly lower LC3-II/LC3-I ratio in milton knockdown flies (Figure 8B). eIF2β heterozygosity decreased the p62 level in the Triton X-100-soluble fraction in the brains of milton knockdown flies (Figure 8C). The p62 level in the SDS-soluble fraction, which is not sensitive to milton knockdown (Figure 2B), was not affected (Figure 8C). These results suggest that suppression of eIF2β ameliorates the impairment of autophagy caused by milton knockdown.’

      L369: Please specify the source of the anti-ubiquitin antibody used.

      Thank you for pointing it out. We included the antibody information in the method section.

      Figure 7: While the relationship between Milton knockdown and the eIF2β and eIF2α proteins has been elucidated through the authors' efforts, I would like to see an investigation into whether eIF2β is upregulated and eIF2α phosphorylation is reduced in simply aged Drosophila. This would help us understand the correlation between aging and eIF2 protein dynamics.

      Thank you for your comment. We agree that it is an important question, and we are working on it. However, we feel that it is beyond the scope of the current manuscript.

      L645-L646: If the mushroom body is identified using mito-GFP, then include mito-GFP in the genotype listed in Supplementary Table 2.

      We are sorry for the oversight. We corrected it in Supplementary Table 2.

      Additionally, while it is presumed that the mito-GFP signal decreases in axons with Milton RNAi, how was the lobe tips area accurately selected for analysis? Please include these details along with a comprehensive description of the quantification methodology in the Methods section.

      Thank you for your comment. Although the mito-GFP signal in the axon is weak in the milton knockdown neurons, it is sufficient to distinguish the mushroom body structure from the background. We revised the method section to include this information in the method section:

      Line 443-447: ‘For eIF2α and p-eIF2α immunostaining, the mushroom body was detected by mitoGFP expression.’

    1. Mr. Schwartz sat slumped, his shoulders drooping and his head rising barely above the back of his chair.

      Before the court hearing, he was cheerful and optimistic, but after the hearing he sat slumped, with his shoulders dropping and his head rising barely above the back of his chair, indicating that the hearing did not go well.

    1. Reviewer #1: Evidentiary Rating: Potentially Informative

      Written Review: The authors claim that a spin-enhanced fluorescent nanodiamond (FND) lateral flow test for SARS-CoV-2 antigen detection achieves up to 1,100-fold greater sensitivity than conventional gold nanoparticle LFTs using identical antibodies. In a large, blinded clinical evaluation, the assay demonstrated 95.1% sensitivity (Ct ≤ 30) and 100% specificity, enabling SARS-CoV-2 detection on average two days earlier than conventional LFTs and within 0.6 days of RT-qPCR. They assert that this quantum-enhanced diagnostic platform could be adapted to other infectious and non-infectious diseases. 1. The study represents the first large-scale blinded clinical evaluation of spin-enhanced nanodiamond LFTs, moving beyond proof-of-concept to a performance assessment with real clinical samples. 2. The antibody screening process using biolayer interferometry is well executed, but screening on a single recombinant antigen source introduces potential epitope bias; inclusion of diverse antigen sources could further validate pair robustness. 3. The direct head-to-head comparison with in-house AuNP LFTs using identical reagents is a strong methodological choice, eliminating confounding variables common in cross-platform sensitivity claims. 4. While the assay achieves sub-pg/mL LoDs, residual non-specific binding limits ultimate sensitivity exploitation; more work on membrane chemistry or blocking strategies could push performance closer to the theoretical limit. 5. The sample size is adequate for preliminary evaluation, but a larger, more demographically and geographically diverse cohort is necessary to confirm real-world performance, especially in asymptomatic and early infection cases. 6. The assay’s 95.1% sensitivity at Ct ≤ 30 exceeds WHO “desirable” criteria, but the drop in sensitivity at lower viral loads (<10⁴ copies/mL) should be discussed in terms of balancing infectiousness detection with overdiagnosis risk. 7. The ROC, Bayesian regression, and infection dynamics modelling are sophisticated and well described, but providing raw Ct distribution histograms for positive samples would help readers assess viral load representativeness.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to investigate the cellular mechanisms underlying place field formation (PFF) in hippocampal CA1 pyramidal cells by performing in vivo two-photon calcium imaging in head-restrained mice navigating a virtual environment. Specifically, they sought to determine whether BTSP-like (behavioral time scale synaptic plasticity) events, characterized by large calcium transients, are the primary mechanism driving PFFs or if other mechanisms also play a significant role. Through their extensive imaging dataset, the authors found that while BTSP-like events are prevalent, a substantial fraction of new place fields are formed via non-BTSP-like mechanisms. They further observed that large calcium transients, often associated with BTSP-like events, are not sufficient to induce new place fields, indicating the presence of additional regulatory factors (possibly local dendritic spikes).

      Strengths

      The study makes use of a robust and extensive dataset collected from 163 imaging sessions across 45 mice, providing a comprehensive examination of CA1 place cell activity during navigation in both familiar and novel virtual environments. The use of two-photon calcium imaging allows the authors to observe the detailed dynamics of neuronal activity and calcium transients, offering insights into the differences between BTSP-like and non-BTSP-like PFF events. The study's ability to distinguish between these two mechanisms and analyze their prevalence under different conditions is a key strength, as it provides a nuanced understanding of how place fields are formed and maintained. The paper supports the idea that BTSP is not the only driving fore behind PFF, and other mechanisms are likely sufficient to drive PFF, and BTSP events may also be insufficient to drive PFF in some cases. The longer-than-usual virtual track used in the experiment allowed place cells to express multiple place fields, adding a valuable dimension to the dataset that is typically lacking in similar studies. Additionally, the authors took a conservative approach in classifying PFF events, ensuring that their findings were not confounded by noise or ambiguous activity.

      Weaknesses

      The stand out weakness of the paper is the lack of direct measures of BTSP events. Without direct confirmation that large calcium transients correspond to actual BTSP events (including associated complex spikes and calcium plateau potentials), concluding that BTSP is not necessary or sufficient for PFF formation is speculative (although I do believe it).

    2. Reviewer #2 (Public review):

      Summary:

      The authors of this manuscript aim to investigate the formation of place fields (PFs) in hippocampal CA1 pyramidal cells. They focus on the role of behavioral time scale synaptic plasticity (BTSP), a mechanism proposed to be crucial for the formation of new PFs. Using in vivo two-photon calcium imaging in head-restrained mice navigating virtual environments, employing a classification method based on calcium activity to categorize the formation of place cells' place fields into BTSP, non-BTSP-like, and investigated their properties.

      Strengths:

      This work shows that place fields formation could induced by both BSTP and non-BSTP events, and it also provided a new and solid method to classify BTSP and non-BTSP place field formation using calcium image to the field. This work offers novel knowledge and new methods and factual evidence for other researchers in the field.

      The method enabled the authors to reveal that while many PFs are formed by BTSP-like events, a significant number of PFs emerge with calcium dynamics that do not match BTSP characteristics, suggesting a diversity of mechanisms underlying PF formation. The characteristics of place fields under the first two categories are comprehensively described, including aspects such as formation timing, quantity, and width.

      Weaknesses:

      The authors have addressed the weaknesses in the revised version.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Sumegi et al. use calcium imaging in head-fixed mice to test whether new place fields tend to emerge due to events that resemble behavioral time scale plasticity (BTSP) or other mechanisms. An impressive dataset was amassed (163 sessions from 45 mice with 500-1000 neurons per sample) to study spontaneous emergence of new place fields in area CA1 that had the signature of BTSP. The authors observed that place fields could emerge due to BTSP and non-BTSP-like mechanisms. Interestingly, when non-BTSP mechanisms seemed to generate a place field, this tended to occur on a trial with a spontaneous reset in neural coding (a remapping event). Novelty seemed to upregulate non-BTSP events relative to BTSP events. Finally, large calcium transients (presumed plateau potentials) were not sufficient to generate a place field.

      Strengths:

      I found this manuscript to be exceptionally well written, well powered, and timely given the outstanding debate and confusion surrounding whether all place fields must arise from BTSP event. Working at the same institute, Albert Lee (e.g. Epszstein et al., 2011 - which should be cited) and Jeff Magee (e.g. Bittner et al., 2017) showed contradictory results for how place fields arise. These accounts have not fully been put toe-to-toe and reconciled in the literature. This manuscript addresses this gap and shows that both accounts are correct - place fields can emerge due to a pre-existing map and due to BTSP.

      Weaknesses:

      I find only three significant areas for improvement in the present study:

      First, can it be concluded that non-BTSP events occur exclusively due to a global remapping event, as stated in the manuscript "these PFF surges included a high fraction of both non-BTSP- and BTSP-like PFF events, and were associated with global remapping of the CA1 representation"? Global remapping has a precise definition that involves quantifying the stability of all place fields recorded. Without a color scale bar in Figure 3D (which should be added), we cannot know whether the overall representations were independent before and after the spontaneous reset. It would be good to know if some neurons are able to maintain place coding (more often than expected by chance), suggestive of a partial-remapping phenomenon.

      Second, BTSP has a flip side that involves weakening of existing place fields when a novel field emerges. Was this observed in the present study? Presumably place fields can disappear due to this bidirectional-BTSP or due to global remapping. For a full comparison of the two phenomena, the disappearance of place fields must also be assessed.

      Finally, it would be good to know if place fields differ according to how they are born. For example, are there differences in reliability, width, peak rate, out of field firing, etc for those that arise due BTSP vs non-BTSP.

      Comments on revisions:

      The authors have mostly addressed my feedback. Compelling evidence for a fundamental observation.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors aimed to investigate the cellular mechanisms underlying place field formation (PFF) in hippocampal CA1 pyramidal cells by performing in vivo two-photon calcium imaging in head-restrained mice navigating a virtual environment. Specifically, they sought to determine whether BTSP-like (behavioral time scale synaptic plasticity) events, characterized by large calcium transients, are the primary mechanism driving PFFs or if other mechanisms also play a significant role. Through their extensive imaging dataset, the authors found that while BTSP-like events are prevalent, a substantial fraction of new place fields are formed via non-BTSP-like mechanisms. They further observed that large calcium transients, often associated with BTSP-like events, are not sufficient to induce new place fields, indicating the presence of additional regulatory factors (possibly local dendritic spikes).

      Strengths

      The study makes use of a robust and extensive dataset collected from 163 imaging sessions across 45 mice, providing a comprehensive examination of CA1 place-cell activity during navigation in both familiar and novel virtual environments. The use of two-photon calcium imaging allows the authors to observe the detailed dynamics of neuronal activity and calcium transients, offering insights into the differences between BTSP-like and non-BTSP-like PFF events. The study's ability to distinguish between these two mechanisms and analyze their prevalence under different conditions is a key strength, as it provides a nuanced understanding of how place fields are formed and maintained. The paper supports the idea that BTSP is not the only driving force behind PFF, and other mechanisms are likely sufficient to drive PFF, and BTSP events may also be insufficient to drive PFF in some cases. The longer-than-usual virtual track used in the experiment allowed place cells to express multiple place fields, adding a valuable dimension to the dataset that is typically lacking in similar studies. Additionally, the authors took a conservative approach in classifying PFF events, ensuring that their findings were not confounded by noise or ambiguous activity.

      Weaknesses

      Despite the impressive dataset, there are several methodological and interpretational concerns that limit the impact of the findings. Firstly, the virtual environment appears to be poorly enriched, relying mainly on wall patterns for visual cues, which raises questions about the generalizability of the results to more enriched environments. Prior studies have shown that environmental enrichment can significantly influence spatial coding, and it would be important to determine how a more immersive VR environment might alter the observed PFF dynamics. Secondly, the study relies on deconvolution methods in some cases to infer spiking activity from calcium signals without in vivo ground truth validation. This introduces potential inaccuracies, as deconvolution is an estimate rather than a direct measure of spiking, and any conclusions drawn from these inferred signals should be interpreted with caution. Thirdly, the figures would benefit from clearer statistical annotations and visual enhancements. For example, several plots lack indicators of statistical significance, making it difficult for readers to assess the robustness of the findings. Furthermore, the use of bar plots without displaying underlying data distributions obscures variability, which could be better visualized with violin plots or individual data points. The manuscript would also benefit from a more explicit breakdown of the proportion of place fields categorized as BTSP-like versus non-BTSP-like, along with clearer references to figures throughout the results section. Lastly, the authors' interpretation of their data, particularly regarding the sufficiency of large calcium transients for PFF induction, needs to be more cautious. Without direct confirmation that these transients correspond to actual BTSP events (including associated complex spikes and calcium plateau potentials), concluding that BTSP is not necessary or sufficient for PFF formation is speculative.

      Reviewer #2 (Public review):

      Summary:

      The authors of this manuscript aim to investigate the formation of place fields (PFs) in hippocampal CA1 pyramidal cells. They focus on the role of behavioral time scale synaptic plasticity (BTSP), a mechanism proposed to be crucial for the formation of new PFs. Using in vivo two-photon calcium imaging in head-restrained mice navigating virtual environments, employing a classification method based on calcium activity to categorize the formation of place cells' place fields into BTSP, non-BTSP-like, and investigated their properties.

      Strengths:

      A new method to use calcium imaging to separate BTSP and non-BTSP place field formation. This work offers new methods and factual evidence for other researchers in the field.

      The method enabled the authors to reveal that while many PFs are formed by BTSP-like events, a significant number of PFs emerge with calcium dynamics that do not match BTSP characteristics, suggesting a diversity of mechanisms underlying PF formation. The characteristics of place fields under the first two categories are comprehensively described, including aspects such as formation timing, quantity, and width.

      Weaknesses:

      There are some issues about data and statistics that need to be addressed before these research findings can be considered as rigorous conclusions.

      While the authors mentioned 3 features of PF generated by BTSP during calcium imaging in the Introduction, the classification method used features 1 and 2. The confirmation by feature 3 in its current form is important but not strong enough.

      Some key data is missing such as the excluded PFs, the BTSP/non-BTSP of each animal, etc

      Impact:

      This work is likely to provide a new method to classify BTSP and non-BTSP place field formation using calsium image to the field.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript, Sumegi et al. use calcium imaging in head-fixed mice to test whether new place fields tend to emerge due to events that resemble behavioral time scale plasticity (BTSP) or other mechanisms. An impressive dataset was amassed (163 sessions from 45 mice with 500-1000 neurons per sample) to study the spontaneous emergence of new place fields in area CA1 that had the signature of BTSP. The authors observed that place fields could emerge due to BTSP and non-BTSP-like mechanisms. Interestingly, when non-BTSP mechanisms seemed to generate a place field, this tended to occur on a trial with a spontaneous reset in neural coding (a remapping event). Novelty seemed to upregulate non-BTSP events relative to BTSP events. Finally, large calcium transients (presumed plateau potentials) were not sufficient to generate a place field.

      Strengths:

      I found this manuscript to be exceptionally well-written, well-powered, and timely given the outstanding debate and confusion surrounding whether all place fields must arise from BTSP event. Working at the same institute, Albert Lee (e.g. Epszstein et al., 2011 - which should be cited) and Jeff Magee (e.g. Bittner et al., 2017) showed contradictory results for how place fields arise. These accounts have not fully been put toe-to-toe and reconciled in the literature. This manuscript addresses this gap and shows that both accounts are correct - place fields can emerge due to a pre-existing map and due to BTSP.

      We thank the Reviewer for his/her appreciation of the importance of our study. We have included the additional reference.

      Weaknesses:

      I find only three significant areas for improvement in the present study:

      First, can it be concluded that non-BTSP events occur exclusively due to a global remapping event, as stated in the manuscript "these PFF surges included a high fraction of both non-BTSP- and BTSP-like PFF events, and were associated with global remapping of the CA1 representation"? Global remapping has a precise definition that involves quantifying the stability of all place fields recorded. Without a color scale bar in Figure 3D (which should be added), we cannot know whether the overall representations were independent before and after the spontaneous reset. It would be good to know if some neurons are able to maintain place coding (more often than expected by chance), suggestive of a partial-remapping phenomenon.

      We have performed the analysis suggested by the Reviewer and determined what fraction of CA1PCs retained its original tuning property after the representation switch. We found that the remapping was essentially global, as only a small fraction (5.4%) of CA1PCs retained their pre-switch tuning curve after the switch. This is now described in the Results.

      We now state in the figure legend for the former Figure 3D (now Figure 3F) that the color scale applies to all subpanels.

      We would like to note that we do not conclude that non-BTSP events occur exclusively during global remapping – we have found a sizable fraction of PFF by non-BTSP mechanism also in the familiar environment with no signs of change in the population representation. We agree nonetheless that PFF is dominated by BTSP under these conditions, whereas the contribution of non-BTSP is larger during global remapping events.

      Second, BTSP has a flip side that involves the weakening of existing place fields when a novel field emerges. Was this observed in the present study? Presumably place fields can disappear due to this bidirectional BTSP or due to global remapping. For a full comparison of the two phenomena, the disappearance of place fields must also be assessed.

      In this study we focused on the birth of new PFs – yet, PFs not only form but also disappear constantly. The factors driving PF weakening are even less explored and understood than those driving PF birth. In fact, we observed (as illustrated by several examples in our MS) that many PFs weaken, or disappear completely during the course of an imaging session. These effects are sometimes accompanied by a new PFF event elsewhere (e.g. Figure 2 – figure supplement 2E bottom), whereas in other cases they are not (e.g. Figure 5A, middle). Similarly, some BTSP events seem to coincide with disappearance of another PF, but others are not (e.g. Figure 2A bottom, first PF along the track; Figure 3 – figure supplement 1A left, first PF). The picture is further complicated in the case of global remapping events (i.e. representation switches, Figure 3 – figure supplement 2B) that, by definition, include both new PFF and PF disappearance. We feel that exploration of the complex mechanisms at play in PF disappearance is outside the scope of the current study, but could be the subject of an interesting future investigation.

      Finally, it would be good to know if place fields differ according to how they are born. For example, are there differences in reliability, width, peak rate, out-of-field firing, etc for those that arise due to BTSP vs non-BTSP.

      We have analyzed several properties of the PFs and found no significant difference in either their width (BTSP: 46.4 ± 24.4 cm; non-BTSP: 50.4 ± 32.5 cm, p = 0.28) or peak rates (BTSP: 19.0 ± 14.7 a.u./s; non-BTSP: 21.4 ± 16.8 a.u./s, p = 0.27) or the out-of-field firing rates (BTSP: 0.64 ± 0.68 a.u./s; non-BTSP: 0.83 ± 1.25 a.u./s, p = 0.09, all unpaired t-test). We have included these data into the Results section.

      Reviewer #1 (Recommendations for the authors):

      Consider adding additional visual cues or environmental elements to the virtual reality (VR) setup to create a more enriched and immersive environment. Collect data from a couple of mice in the enriched environment and compare the PFF dynamics to the original environment. This would help determine whether the findings on PFF dynamics hold in a setting where spatial coding may be more robust. Including floor cues, distal visual markers, or varying textures might provide a more comprehensive understanding of the factors influencing BTSP-like and non-BTSP-like events.

      We thank the Reviewer for her/his suggestion of analyzing data obtained from a more enriched VR environment compared to the one we used in our study. We have now included data obtained in a profoundly different VR environment, which did not have sparse dominant visual landmarks, but the entire wall was covered with a rich pattern with different shapes of different colors. Our data from 11 imaging sessions from 4 mice revealed BTSP- and non-BTSP-like PFF events with approximately the same ratio to that found in our regular maze. These results are described in the Results section and are presented in a new supplementary figure (Figure 2 – figure supplement 2). 

      Wherever deconvolved spikes were used for analysis, provide a comparison of results obtained directly from the GCaMP ΔF/F signals versus those derived from the deconvolved spiking data. This could illustrate any differences and help readers understand the limitations and reliability of the inference method.

      We have adopted a currently widely accepted method in the field to infer spikes from fluorescent traces using the Suite2p software package. All of our analyses were then performed on the inferred spikes. To address the concerns of the Reviewer, we analyzed the relationship between the peak [Ca<sup>2+</sup>] transients and inferred spike activity (new Figure 3 – figure supplement 1C-E). Our results clearly demonstrate a robust, highly significant correlation between these measures at the level of individual cells (new Figure 3 – figure supplement 1D) and the Spearman correlation coefficients show a distribution that is very different from random distributions (new Figure 3 – figure supplement 1E). From these, we conclude that using directly the fluorescent data would have resulted in largely similar PF detection and identification.

      Improve the visual clarity of figures by enlarging key elements such as arrows that indicate BTSP-like events. Consider using colors that stand out more clearly to guide readers' attention. Include annotations of statistical significance directly on the figures (e.g., adding NS or * indicators) to make it clear which comparisons are statistically significant. This will help readers quickly interpret the data without needing to refer back to the text.

      Based on the suggestion of the Reviewer, we have enlarged the arrows. We have also indicated statistical results on the figures. Because some of the results of factorial ANOVA tests are difficult to be comprehensively indicated on our plots, we kept the description of the statistical results in the legends as well. We hope that these alterations will make data interpretation easier.

      Replace or supplement bar plots with violin plots or scatter plots that show the distribution of individual data points. This change would offer a clearer picture of data variability and underlying trends, aiding readers in assessing the robustness of the results.

      We have changed the plots and now present all data points.

      Add more detailed quantification in the results section, specifying the total number of newly formed place fields, the proportion that are categorized as BTSP-like versus non-BTSP-like, and how many events did not fit these categories. Explicitly state what fraction of the total recorded place field formations are represented by the 59 non-BTSP-like events mentioned, as this is currently difficult to discern.

      The number of BTSP- and non-BTSP-like PFF events are given in the MS. As described in the Methods, after identifying BTSP- and non-BTSP-like PFF events using the shift and gain criteria, we have manually checked each of these ROIs and the spatial footprint of every new PFF events for these cells and excluded ROIs with non-soma-like shapes and activities with spurious footprints suggesting contamination, creating a ‘cleaned’ dataset. We did not perform such visual inspection and manual curation of every ROI’s spatial footprints that belong to the two additional categories (no gain with shift, gain without shift, 872 events). Since these classes are also overestimated without curation, we cannot provide a precise fraction of the BTSP- and non-BTSP-like PFF events from the total recorded PFF population. However, - assuming that factors leading to exclusion affect all groups equally - we can provide their fractions by comparing the numbers of newly born PFs in all categories before the visual inspections. In the normal maze, we found 806 candidate BTSP-like (52%),164 non-BTSP-like (10%) PFFs and an additional 593 PFs (38%) could not be included in these two groups [40 PFs (3%) with formation lap gain and backward shift but significant backward drift; 238 PFs (15%) with formation lap gain but without backward shift; 315 PFs (20%) with no formation lap gain but with backward shift]. These data have been included in the Methods.

      Ensure that all statements describing specific findings are consistently linked to the appropriate figures and panels. There are instances in the text where results are discussed without clear references, which can make it challenging for readers to verify the data. For example, the section on population remapping in a novel environment should point directly to the relevant figure panels to guide readers.

      We regret that our text was not linked properly to the appropriate figures. We corrected this during the revision.

      Given that BTSP-like events are inferred rather than directly confirmed, it would be prudent to frame conclusions about their sufficiency in more tentative terms, acknowledging the limitations of the current data. Consider adding a discussion of potential future experiments that could confirm whether these large transients truly represent BTSP events, including evidence for complex spikes or calcium plateau potentials.

      The Reviewer is correct that we do not have direct evidence that all large somatic Ca<sup>2+</sup> events represent dendritic plateau potentials. Now we discuss this and other limitations in the MS (Discussion section).

      Reviewer #2 (Recommendations for the authors):

      Although the author has outlined three characteristics of place fields (PFs) generated by behavioral time scale synaptic plasticity (BTSP) during calcium imaging in the Introduction section, as follows: ' First, the prolonged CSB results in large [Ca<sup>2+</sup>] transient during the initial PFF event, typically followed by weaker Ca2+ signals on consecutive traversals through the PF. Second, due to the long and asymmetric temporal kernel of the plasticity (favoring potentiation of inputs active 1-2 seconds before the CSB) a substantial backward shift in the spatial position of the PF center can be observed on linear tracks after the formation lap. Third, the width of the new PF is generally proportional to the running speed of the animal during the PFF event.' Figure 3B, which displays the third feature of classified BTSP and non-BTSP data, serves as an important confirmation of the classification results using the first two features. Even though the Spearman correlation indicated a significant difference, the raw data distributions of BTSP and non-BTSP appear similar, suggesting that a distribution of bootstrap and more stringent confirmation should be conducted to be convincing.

      As described in the MS, because of the difference in the number of events in the two groups, we randomly subsampled the BTSP-like events to the sample size of the non-BTSP-like PFF events 10000 times and performed regression analysis. This bootstrapping revealed that both the r and p values of the fit to the non-BTSP data fell outside the 95% confidence interval of the bootstrapped BTSP values, indicating that the difference between the groups was robust.

      In further analysis during the revision, we found that the PF width variance explained by distance from landmarks is substantially larger than the variance explained by the running speed during the formation lap. We performed a cross-validated analysis by these two factors (Figure 3D), which highlights that speed explains some of the PF width variance of BTSP-like PFFs, but none of the non-BTSP PFFs.

      The proportions of the three types should be provided. page 6: ' Using a conservative approach, we categorized a new PF to be formed by a BTSP-like mechanism if it had both positive gain and negative shift values (Figure 2A; n = 310 new PFs), whereas new PFs exhibiting neither positive gain nor negative shift were considered as non-BTSP-like events (Figure 2B; n = 59). All other newly formed PFs (no-gain with backward shift and gain without backward shift) were excluded from further analysis.' The number of excluded newly formed PFs should be disclosed, as well as the distribution ratio of these three types in each animal.

      The number of BTSP- and non-BTSP-like PFF events are given in the MS. As described in the Methods, after identifying BTSP- and non-BTSP-like PFF events using the shift and gain criteria, we have manually checked each of these ROIs and the spatial footprint of every new PFF events for these cells and excluded ROIs with non-soma-like shapes or spurious activities, creating a ‘cleaned’ dataset. We did not perform such visual inspection and manual curation of every ROI’s spatial footprints that belonged to the two additional categories (no gain with shift, gain without shift, 872 events). Since these classes are also overestimated without curation, we cannot provide a precise fraction of the BTSP- and non-BTSP-like PFF events from the total recorded PFF population. However, - assuming that factors leading to exclusion affect all groups equally - we can provide their fractions by comparing the numbers of newly born PFs in all categories before the visual inspections. In the normal maze, we found 806 candidate BTSP-like (52%),164 non-BTSP-like (10%) PFFs and an additional 593 PFs (38%) could not be included in these two groups [40 PFs (3%) with formation lap gain and backward shift but significant backward drift; 238 PFs (15%) with formation lap gain but without backward shift; 315 PFs (20%) with no formation lap gain but with backward shift]. These data have been included in the Methods.

      Figure 2C, while showing an overall decrease in amplitude from the formation lap to the next lap, could benefit from a pairwise analysis of the corresponding formation lap and the following lap of each session to provide more convincing and detailed results.

      We now present all data with connected lines across consecutive laps to illustrate the changes in each ROI. Our statistical analysis included the pairwise comparison of amplitudes.

      The experiment's time range is broad (11-99 days); it is worth investigating whether different training intervals might influence the results.

      Based on the suggestion of the Reviewer, we have analyzed the elapsed time and the number of sessions from the first training to the recording, and we demonstrate that there is no correlation of these parameters with the number of new PFFs. These data are now presented in Figure 2 – figure supplement 1C.

      It is unclear whether the formation of place fields also generates characteristic features of dendritic properties.

      It is not clear to us which ‘characteristic dendritic features of dendritic properties’ generated by PFF the Reviewer refers to. Since we did not image dendrites of individual CA1PCs, we have no information about dendritic properties of the neurons.

      It may be necessary to add a clearer figure to illustrate the correlation between width and speed following the downsampling of non-BTSP-like events (refer to Figure 3B).

      We have performed extensive additional analysis on the relationship of PF width with various behavioral factors, including the speed of the animal in the formation lap. Inspection of the PF width distributions along the track revealed a close association of PF width with the distance of the animal from the nearest visual landmark in the corridor, so that PFs close to landmarks were narrower than PFs between landmarks. We found that the PF width variance explained by distance from landmarks is substantially larger than the variance explained by the running speed during the formation lap. Nevertheless, there is a clear difference between BTSP-like and non-BTSP-like PFFs: running speed explains some variance in the case of BTSP-like PFFs, but none for non-BTSP-like PFFs.

      We have included these findings into the Results section and created two new panels in Figure 3 (C, D) and Figure 3 – figure supplement 1 (A, B).

      It is recommended that statistical results be labeled in the figures with n.s. or stars for better readability.

      Based on the suggestion of the Reviewer, we have indicated statistical results on the figures. Because some of the results of factorial ANOVA tests are difficult to be comprehensively indicated on our plots, we kept the description of the statistical results in the legends as well. We hope that these alterations will make data interpretation easier. We hope that these alterations will make data interpretation easier.

    1. Tessie Hutchinson was in the center of a cleared space by now, and she held her hands out desperately asthe villagers moved in on her. "It isn't fair," she said. A stone hit her on the side of the head.

      This is a very crucial moment that highlights the human cost of blindly following tradition. Tessie's protest underscores the story's central theme: unquestioned social practices can lead to injustice and harm.

    1. Ah, debate. Like modern day linguistic gladiator fights. This is where literacies come tobattle it out and, in some cases, even die. I joined the debate team really early in my high schoolcareer, and if I had not held a wide range of multiliteracies by then, I would have developed them atthat time. Obviously, I needed very clear communication skills just to be able to compete. Theability to write ten minute speeches, or, for that matter, even four minute speeches, is notsomething everyone possesses. But the intricacies, the “kill words,” the strategies that wouldupstage Sun Tzu—it is in those skills where the real literacy of debate lies. While there is noinstruction manual on winning a debate, doing so requires a very clear understanding of what yourjudges wants to hear, what your adversary is actually communicating (and not just what he wantsto communicate), and much, much more.“Always” (just to name one from the dozens) was a kill word. Since it's not often somethingis “always” true, using that word by accident or on purpose usually meant that an adversary could“kill” you on that claim. But that’s just where it starts. Sometimes people would bait others with killwords just to pull attention from other weaker claims they wereusing. Or better yet, cite untrustworthy sources just so theiropponents could waste the rest of the remaining time citing thedozens they had to back them up. Mirabelli speaks about thestruggle for control in the interactions between waiter andcustomer. As can be seen, this struggle for control is manifested inthe debate world in a much more tangible way. Hand signals,changes in pitch, even moments of silence are all used to gaincontrol of the debate, just as a soccer player fights for control of aball.The best debaters were also literate in the signals someonemade when they were bluffing on a claim, or better yet when theywere about to break down. Losing your cool in a debate, screaming,or using language that was a little too passionate usually resultedin that person losing. One important strategy in any debate isspotting a weak point and then striking that weak point until youropponent is frantic, all the while making sure it still appears you are amicable to the judge. Beingliterate in this kind of knowledge actually prepared me for watching the presidential debates. Iknew exactly what Biden was doing when he was laughing at Paul Ryan's arguments. When Obamastayed quiet while Romney was arguing with him, I knew he was just baiting him to look foolish. Ona much larger scale, the literacy of the private struggle for power in communication has alsoallowed me to spot those kinds of situations in my own life.A lot of what I learned from debate has also gone into my writing. When I was writingclaims for debate, I had to have all these strategic elements in mind. Not supporting any one claimwas a failure of biblical proportions, a failure that would undoubtedly crucify me in front of thejudges. It was that serious. Now, whenever I write, there is always a little voice inside my headasking for evidence, checking for loopholes in my arguments, and really just being a generalnuisance.Now, whenever Iwrite, there is alwaysa little voice insidemy head asking forevidence, checkingfor loopholes in myarguments, andreally just being ageneral nuisance.

      This section shows how being on the debate team helped a writer build new literacies. They learned not just to write and speak clearly, but also to use strategies, read signals, and control arguments, similar to Mirabelli's idea of power struggles in communication. Debate even shaped how the writer approaches writing today, always thinking about evidence and possible weaknesses in their arguments.

    1. Easing open the cover of J.D. Salinger’s Nine Stories that I annotatedtwo decades ago, I can see in the rounded letters of my adolescenthandwriting are notes about Salinger’s life and the underlined head-ing “3 Themes” followed by the bulleted points “communication, inno-cence of children, perversion of adults.”

      I like the idea of writing in a book you are reading verses on another piece of paper. Somehow it makes me feel more engaged with the text.

    1. All six feet and four inches of his body came to life, writhing against the restraints and what looked like a thousand invasions of his orifices and skin. Then his head reared back, and his eyes swung open on me. The pupils were almost nonexistent, the irises sea-green with flecks of black. His eyes stayed open only for the briefest instant, focusing loosely on mine before falling shut. But my God, what an instant.

      Something about this scene is almost terrifying. I like how he later describes his brother as a madman, and I feel like this works so well after the author really hammers home how essentially dead his brother was. Especially because he "comes back to life" at the mention of his brother's name.

    1. In fact, it reminds me of a particular game my son William invented at about age five. At his own initiative he one day drew a large game board, assembled dice and playing pieces, and invited his father to join him in an inventively improvised game with ever-changing and ever more elaborate rules. After two hours of this surreal activity, my husband became restless and began asking every five minutes or so if the game was almost over. William responded by calmly walking into the kitchen, where I was sitting, and asking me to write his father the following note:DEAR DAD—THIS GAME WILL NEVER END. WILLIAMThe rhizome has the same message.

      This is by far the clearest way to illustrate the idea of the rhizome story. It is a rather complex idea to comprehend and this makes it much easier to wrap your head around.

    1. And the king said: “Yes, I am Montezuma.” Then he stood up to welcome Cortés; he came forward, bowed his head low and addressed him in these words: “Our lord, you are weary. The journey has tired you, but now you have arrived on the earth. You have come to your city, Mexico. You have come here to sit on your throne, to sit under its canopy.

      Montezuma welcomed the Cortes.

    1. I relate to X when he says how he feels limited when you don't have the words to express yourself because sometimes I feel like I know what I mean in my head, but I don't know how to put it into words.

    1. Of course, thereis nothing wrong per se with wanting to do good in the world and therebyadopting a positive outlook on life. Yet this positivity becomes problematicwhen it spills over into an excess of belief, hope, and speaking from the heartrather than the head.

      You can believe with your heart a positive outlook can have results in its own right as it wills us and people forward but, you need to think with your head because believing fire won't burn you doesn't mean its not going to. Both sides work in tandem to create spectacular things using belief and logic to find and ask great things.

    1. “Use this,” myfather said, tapping his head, “and not this,”showing us those hands. He always lookedtired when he said it.

      Families sacrifice a lot, especially foreign ones. They want the best for their children and for them to do more with their lives.

    1. The results from our study provide evidence that the use of smartphones in the class-room has a negative effect on levels of course comprehension and the psychologicalstate of students during lecture.

      As educators, we need to come up with a way to help students see how smartphones in the classroom can have a negative effect on the outcome of their learning. I know a math teacher that has a calculator/ phone holder and when they walk in the room they put their phone where the calculator was and then head to their seat.

    1. I replied, in my simplistic Turkish, that to me this sounded like a threat: either cover your head or rape can happen. The driver protested in ornate phrases that nobody was threatening anyone, that to speak of threats in this situation was unfitting, that he could tell from my smiling face that I was a good and trusting person, but that the world was an imperfect place, that some men were less like humans than like animals, and that it was best to send clear signals about what one was or wasn’t looking for. Then he left me at the fish restaurant where I was going to meet some literature professors.If it had been just the two of us in the taxi in a political vacuum, I wouldn’t have begrudged the driver his opinions. It was his car and his country, and he was driving me where I wanted to go. I knew that my limited Turkish, which felt like such a handicap, was in his eyes a marker of privilege—a sign that I could afford to travel and live abroad. Often, the second question drivers asked, after the invariable “Where are you from?,” was “How much did the plane ticket cost?”But the cab wasn’t in a vacuum; it was in a country where the head of state, whose wife wore a head scarf, repeatedly urged all women to have at least three children, preferably four or five. Erdoğan opposed abortion, birth control, and Cesarean section. He said that Islam had set out a clear position for women, but that you couldn’t explain it to feminists, because they “don’t accept the concept of motherhood.” The longer he stayed in office, the more outspoken he became. In 2014, he went so far as to describe birth control as “treason” designed “to dry up our bloodline.” No matter how hard I tried to be tolerant—no matter how sympathetic I felt toward Muslim feminists who didn’t want to be “liberated” from the veil, and who felt just as judged by the secularist establishment as secular women felt by the Muslim patriarchy—I could never forgive Erdoğan for saying those things about women. And, because he said them in the name of Islam, I couldn’t forgive Islam, either.

      familiar

    1. They all agreed that a shift to different forms of teaching and assessment – one-to-one tuition, viva voces and the like – would make it far harder for students to use AI to do the heavy lifting.

      When we talked about the blue books in class, I definitely quietly wished in my head that school could go back to how I remember it ten years ago.

    1. Tin Tin, Brains, Alan and I always like to play in the mud and get caked from head to toe in the stuff, always laughing like crazy and having mud fights - that is, if the buffalo don't mind!

    1. . What shimmers with life on the page may die within minutes in the theater precisely because prose is a language to be spoken to an individual, recreated in an individual reader’s consciousness, usually in solitude, while dramatic dialogue is a special language spoken by living actors to one another, a collective audience overhearing.

      O: Oates seems to be trying to enforce the idea that prose fiction is a space for readers to take in the 'art' of the novel/story/etc., and grow an interpretation. I think the earlier statement, "Where in prose fiction the writer is accustomed to shaping subtleties of meaning by way of carefully composed language," explains this best. While the play on the other hand is given directly to the viewer, with little space to fill in imaginative blanks (although the depth behind acting should not be disregarded.) I find this comparison impactful because it demonstrates the depth of prose fiction that may not be initially realized. A play becomes a predominately collective experience and interpretation, while prose fiction becomes a living document. I can think back to times when I was so immersed in a piece of prose fiction that I began to imagine it in my free time, the characters coming alive in my head, my imagination becoming incredibly involved in the story.

    1. counterpoints tend to be presented just asrigorously as the paper’s central thesis

      I wonder if I can find examples of this online. I have an idea of what the author is discussing but I have a hard time visualizing it in my head.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      We thank the reviewer for his valuable input and careful assessment, which have significantly improved the clarity and rigor of our manuscript.

      Summary:

      Mazer & Yovel 2025 dissect the inverse problem of how echolocators in groups manage to navigate their surroundings despite intense jamming using computational simulations.

      The authors show that despite the 'noisy' sensory environments that echolocating groups present, agents can still access some amount of echo-related information and use it to navigate their local environment. It is known that echolocating bats have strong small and large-scale spatial memory that plays an important role for individuals. The results from this paper also point to the potential importance of an even lower-level, short-term role of memory in the form of echo 'integration' across multiple calls, despite the unpredictability of echo detection in groups. The paper generates a useful basis to think about the mechanisms in echolocating groups for experimental investigations too.

      Strengths:

      (1) The paper builds on biologically well-motivated and parametrised 2D acoustics and sensory simulation setup to investigate the various key parameters of interest

      (2) The 'null-model' of echolocators not being able to tell apart objects & conspecifics while echolocating still shows agents successfully emerge from groups - even though the probability of emergence drops severely in comparison to cognitively more 'capable' agents. This is nonetheless an important result showing the directionof-arrival of a sound itself is the 'minimum' set of ingredients needed for echolocators navigating their environment.

      (3) The results generate an important basis in unraveling how agents may navigate in sensorially noisy environments with a lot of irrelevant and very few relevant cues.

      (4) The 2D simulation framework is simple and computationally tractable enough to perform multiple runs to investigate many variables - while also remaining true to the aim of the investigation.

      Weaknesses:

      There are a few places in the paper that can be misunderstood or don't provide complete details. Here is a selection:

      (1) Line 61: '... studies have focused on movement algorithms while overlooking the sensory challenges involved' : This statement does not match the recent state of the literature. While the previous models may have had the assumption that all neighbours can be detected, there are models that specifically study the role of limited interaction arising from a potential inability to track all neighbours due to occlusion, and the effect of responding to only one/few neighbours at a time e.g. Bode et al. 2011 R. Soc. Interface, Rosenthal et al. 2015 PNAS, Jhawar et al. 2020 Nature Physics.

      We appreciate the reviewer's comment and the relevant references. We have revised the manuscript accordingly to clarify the distinction between studies that incorporate limited interactions and those that explicitly analyze sensory constraints and interference. We have refined our statement to acknowledge these contributions while maintaining our focus on sensory challenges beyond limited neighbor detection, such as signal degradation, occlusion effects, and multimodal sensory integration (see lines 58-64):

      (2) The word 'interference' is used loosely places (Line 89: '...took all interference signals...', Line 319: 'spatial interference') - this is confusing as it is not clear whether the authors refer to interference in the physics/acoustics sense, or broadly speaking as a synonym for reflections and/or jamming.

      To improve clarity, we have revised the manuscript to distinguish between different types of interference:

      • Acoustic interference (jamming): Overlapping calls that completely obscure echo detection, preventing bats from perceiving necessary environmental cues.

      • Acoustic interference (masking): Partial reduction in signal clarity due to competing calls.

      • Spatial interference: Physical obstruction by conspecifics affecting movement and navigation.

      We have updated the manuscript to use these terms consistently and explicitly define them in relevant sections (see lines 84-85, 119-120). This distinction ensures that the reader can differentiate between interference as an acoustic phenomenon and its broader implications in navigation.

      (3) The paper discusses original results without reference to how they were obtained or what was done. The lack of detail here must be considered while interpreting the Discussion e.g. Line 302 ('our model suggests...increasing the call-rate..' - no clear mention of how/where call-rate was varied) & Line 323 '..no benefit beyond a certain level..' - also no clear mention of how/where call-level was manipulated in the simulations.

      All tested parameters, including call rate dynamics and call intensity variations, are detailed in the Methods section and Tables 1 and 2. Specifically:

      • Call Rate Variation: The Inter-Pulse Interval (IPI) was modeled based on documented echolocation behavior, decreasing from 100 msec during the search phase to 35 msec (~28 calls per second) at the end of the approach phase, and to 5 msec (200 calls per second) during the final buzz (see Table 2). This natural variation in call rate was not manually manipulated in the model but emerged from the simulated bat behavior.

      • Call Intensity Variation: The tested call intensity levels (100, 110, 120, 130 dB SPL) are presented in Table 1 under the “Call Level” parameter. The effect of increasing call intensity was analyzed in relation to exit probability, jamming probability, and collision rate. This is now explicitly referenced in the Discussion. We have revised the manuscript to explicitly reference these aspects in the Results and Discussion sections – see lines 346-349, 372-375.

      Reviewer #2 (Public review):

      We are grateful for the reviewer’s insightful feedback, which has helped us clarify key aspects of our research and strengthen our conclusions.

      This manuscript describes a detailed model of bats flying together through a fixed geometry. The model considers elements that are faithful to both bat biosonar production and reception and the acoustics governing how sound moves in the air and interacts with obstacles. The model also incorporates behavioral patterns observed in bats, like one-dimensional feature following and temporal integration of cognitive maps. From a simulation study of the model and comparison of the results with the literature, the authors gain insight into how often bats may experience destructive interference of their acoustic signals and those of their peers, and how much such interference may actually negatively affect the groups' ability to navigate effectively. The authors use generalized linear models to test the significance of the effects they observe.

      In terms of its strengths, the work relies on a thoughtful and detailed model that faithfully incorporates salient features, such as acoustic elements like the filter for a biological receiver and temporal aggregation as a kind of memory in the system. At the same time, the authors' abstract features are complicating without being expected to give additional insights, as can be seen in the choice of a twodimensional rather than three-dimensional system. I thought that the level of abstraction in the model was perfect, enough to demonstrate their results without needless details. The results are compelling and interesting, and the authors do a great job discussing them in the context of the biological literature. 

      The most notable weakness I found in this work was that some aspects of the model were not entirely clear to me. 

      For example, the directionality of the bat's sonar call in relation to its velocity. Are these the same?

      For simplicity, in our model, the head is aligned with the body, therefore the direction of the echolocation beam is the same as the direction of the flight. 

      Moreover, call directionality (directivity) is not directly influenced by velocity. Instead, directionality is estimated using the piston model, as described in the Methods section. The directionality is based on the emission frequency and is thus primarily linked to the behavioral phases of the bat, with frequency shifts occurring as the bat transitions from search to approach to buzz phases. During the approach phase, the bat emits calls with higher frequencies, resulting in increased directionality. This is supported by the literature (Jakobsen and Surlykke, 2010; Jakobsen, Brinkløv and Surlykke, 2013). This phase is also associated with a natural reduction in flight speed, which is a well-documented behavioral adaptation in echolocating bats(Jakobsen et al., 2024).

      To clarify this in the manuscript, we have updated the text to explicitly state that directionality follows phase-dependent frequency changes rather than being a direct function of velocity, see lines 543-545. 

      If so, what is the difference between phi_target and phi_tx in the model equations? 

      𝝓<sub>𝒕𝒂𝒓𝒈𝒆𝒕</sub> represents the angle between the bat and the reflected object (target).

      𝝓<sub>𝑻𝒙</sub> the angle [rad], between the masking bat and target (from the transmitter’s perspective)

      𝝓<sub>𝑻𝒙𝑹𝒙</sub> refers to the angle between the transmitting conspecific and the receiving focal bat, from the transmitter’s point of view.

      𝝓<sub>𝑹𝒙𝑻𝒙</sub> represents the angle between the receiving bat and the transmitting bat, from the receiver’s point of view.

      These definitions have been explicitly stated in the revised manuscript to prevent any ambiguity (lines 525-530). Additionally, a Supplementary figure demonstrating the geometrical relations has been added to the manuscript.

      What is a bat's response to colliding with a conspecific (rather than a wall)? 

      In nature, minor collisions between bats are common and typically do not result in significant disruptions to flight (Boerma et al., 2019; Roy et al., 2019; Goldshtein et al., 2025). Given this, our model does not explicitly simulate the physical impact of a collision event. Instead, during the collision event the bat keeps decreasing its velocity and changing its flight direction until the distance between bats is above the threshold (0.4 m). We assume that the primary cost of such interactions arises from the effort required to avoid collisions, rather than from the collision itself. This assumption aligns with observations of bat behavior in dense flight environments, where individuals prioritize collision avoidance rather than modeling post-collision dynamics. See lines 479-484.

      From the statistical side, it was not clear if replicate simulations were performed. If they were, which I believe is the right way due to stochasticity in the model, how many replicates were used, and are the standard errors referred to throughout the paper between individuals in the same simulation or between independent simulations, or both? 

      The number of repetitions for each scenario is detailed in Table 1, but we included it in a more prominent location in the text for clarity. Specifically, we now state (Lines 110-111):

      "The number of repetitions for each scenario was as follows: 1 bat: 240; 2 bats: 120; 5 bats: 48; 10 bats: 24; 20 bats: 12; 40 bats: 12; 100 bats: 6."

      Regarding the reported standard errors, they are calculated across all individuals within each scenario, without distinguishing between different simulation trials. 

      We clarified in the revised text (Lines 627-628 in Statistical Analysis) 

      Overall, I found these weaknesses to be superficial and easily remedied by the authors. The authors presented well-reasoned arguments that were supported by their results, and which were used to demonstrate how call interference impacts the collective's roost exit as measured by several variables. As the authors highlight, I think this work is valuable to individuals interested in bat biology and behavior, as well as to applications in engineered multi-agent systems like robotic swarms.

      Reviewer #3 (Public review):

      We sincerely appreciate the reviewer’s thoughtful comments and the time invested in evaluating our work, which have greatly contributed to refining our study.

      We would like to note that in general, our model often simplifies some of the bats’ abilities, under the assumption that if the simulated bats manage to perform this difficult task with simpler mechanisms, real better adapted bats will probably perform even better. This thought strategy will be repeated in several of the s below.

      Summary:

      The authors describe a model to mimic bat echolocation behavior and flight under high-density conditions and conclude that the problem of acoustic jamming is less severe than previously thought, conflating the success of their simulations (as described in the manuscript) with hard evidence for what real bats are actually doing. The authors base their model on two species of bats that fly at "high densities" (defined by the authors as colony sizes from tens to tens of thousands of individuals and densities of up to 33.3 bats/m2), Pipistrellus kuhli and Rhinopoma microphyllum. This work fits into the broader discussion of bat sensorimotor strategies during collective flight, and simulations are important to try to understand bat behavior, especially given a lack of empirical data. However, I have major concerns about the assumptions of the parameters used for the simulation, which significantly impact both the results of the simulation and the conclusions that can be made from the data. These details are elaborated upon below, along with key recommendations the authors should consider to guide the refinement of the model.

      Strengths:

      This paper carries out a simulation of bat behavior in dense swarms as a way to explain how jamming does not pose a problem in dense groups. Simulations are important when we lack empirical data. The simulation aims to model two different species with different echolocation signals, which is very important when trying to model echolocation behavior. The analyses are fairly systematic in testing all ranges of parameters used and discussing the differential results.

      Weaknesses:

      The justification for how the different foraging phase call types were chosen for different object detection distances in the simulation is unclear. Do these distances match those recorded from empirical studies, and if so, are they identical for both species used in the simulation? 

      The distances at which bats transition between echolocation phases are identical for both species in our model (see Table 2). These distances are based on welldocumented empirical studies of bat hunting and obstacle avoidance behavior (Griffin, Webster and Michael, 1958; Simmons and Kick, 1983; Schnitzler et al., 1987; Kalko, 1995; Hiryu et al., 2008; Vanderelst and Peremans, 2018). These references provide extensive evidence that insectivorous bats systematically adjust their echolocation calls in response to object proximity, following the characteristic phases of search, approach, and buzz.

      To improve clarity, we have updated the text to explicitly state that the phase transition distances are empirically grounded and apply equally to both modeled species (lines 499-508).

      What reasoning do the authors have for a bat using the same call characteristics to detect a cave wall as they would for detecting a small insect? 

      In echolocating bats, call parameters are primarily shaped by the target distance and echo strength. Accordingly, there is little difference in call structure between prey capture and obstacles-related maneuvers, aside from intensity adjustments based on target strength (Hagino et al., 2007; Hiryu et al., 2008; Surlykke, Ghose and Moss, 2009; Kothari et al., 2014). In our study, due to the dense cave environment, the bats are found to operate in the approach phase most of the time, which is consistent with natural cave emergence, where they are navigating through a cluttered environment rather than engaging in open-space search. For one of the species (Rhinopoma), we also have empirical recordings of individuals flying under similar conditions (Goldshtein et al., 2025). Our model was designed to remain as simple as possible while relying on conservative assumptions that may underestimate bat performance. If, in reality, bats fine-tune their echolocation calls even earlier or more precisely during navigation than assumed, our model would still conservatively reflect their actual capabilities. See lines 500-508.

      The two species modeled have different calls. In particular, the bandwidth varies by a factor of 10, meaning the species' sonars will have different spatial resolutions. Range resolution is about 10x better for PK compared to RM, but the authors appear to use the same thresholds for "correct detection" for both, which doesn't seem appropriate.

      The detection process in our model is based on Saillant’s method using a filterbank, as detailed in the paper (Saillant et al., 1993; Neretti et al., 2003; Sanderson et al., 2003). This approach inherently incorporates the advantages of a wider bandwidth, meaning that the differences in range resolution between the species are already accounted for within the signal-processing framework. Thus, there is no need to explicitly adjust the model parameters for bandwidth variations, as these effects emerge from the applied method.

      Also, the authors did not mention incorporating/correcting for/exploiting Doppler, which leads me to assume they did not model it.

      The reviewer is correct. To maintain model simplicity, we did not incorporate the Doppler effect or its impact on echolocation. The exclusion of Doppler effects was based on the assumption that while Doppler shifts can influence frequency perception, their impact on jamming and overall navigation performance is minor within the modelled context.

      The maximal Doppler shifts expected for the bats in this scenario are of ~ 1kHz. These shifts would be applied variably across signals due to the semi-random relative velocities between bats, leading to a mixed effect on frequency changes. This variability would likely result in an overall reduction in jamming rather than exacerbating it, aligning with our previous statement that our model may overestimate the severity of acoustic interference. Such Doppler shifts would result in errors of 2-4 cm in localization (i.e., 200-400 micro-seconds) (Boonman, Parsons and Jones, 2003).

      We have now explicitly highlighted this in the revised version (see 548-581).

      The success of the simulation may very well be due to variation in the calls of the bats, which ironically enough demonstrates the importance of a jamming avoidance response in dense flight. This explains why the performance of the simulation falls when bats are not able to distinguish their own echoes from other signals. For example, in Figure C2, there are calls that are labeled as conspecific calls and have markedly shorter durations and wider bandwidths than others. These three phases for call types used by the authors may be responsible for some (or most) of the performance of the model since the correlation between different call types is unlikely to exceed the detection threshold. But it turns out this variation in and of itself is what a jamming avoidance response may consist of. So, in essence, the authors are incorporating a jamming avoidance response into their simulation. 

      We fully agree that the natural variations in call design between the phases contribute significantly to interference reduction (see our discussion in a previous paper in Mazar & Yovel, 2020). However, we emphasize that this cannot be classified as a Jamming Avoidance Response (JAR). In our model, bats respond only to the physical presence of objects and not to the acoustic environment or interference itself. There is no active or adaptive adjustment of call design to minimize jamming beyond the natural phase-dependent variations in call structure. Therefore, while variation in call types does inherently reduce interference, this effect emerges passively from the modeled behavior rather than as an intentional strategy to avoid jamming. 

      The authors claim that integration over multiple pings (though I was not able to determine the specifics of this integration algorithm) reduces the masking problem. Indeed, it should: if you have two chances at detection, you've effectively increased your SNR by 3dB.  

      The reviewer is correct. Indeed, integration over multiple calls improves signal-tonoise ratio (SNR), effectively increasing it by approximately 3 dB per doubling of observations. The specifics of the integration algorithm are detailed in the Methods section, where we describe how sensory information is aggregated across multiple time steps to enhance detection reliability.

      They also claim - although it is almost an afterthought - that integration dramatically reduces the degradation caused by false echoes. This also makes sense: from one ping to the next, the bat's own echo delays will correlate extremely well with the bat's flight path. Echo delays due to conspecifics will jump around kind of randomly. However, the main concern is regarding the time interval and number of pings of the integration, especially in the context of the bat's flight speed. The authors say that a 1s integration interval (5-10 pings) dramatically reduces jamming probability and echo confusion. This number of pings isn't very high, and it occurs over a time interval during which the bat has moved 5-10m. This distance is large compared to the 0.4m distance-to-obstacle that triggers an evasive maneuver from the bat, so integration should produce a latency in navigation that significantly hinders the ability to avoid obstacles. Can the authors provide statistics that describe this latency, and discussion about why it doesn't seem to be a problem? 

      As described in the Methods section, the bat’s collision avoidance response does not solely rely on the integration process. Instead, the model incorporates real-time echoes from the last calls, which are used independently of the integration process for immediate obstacle avoidance maneuvers. This ensures that bats can react to nearby obstacles without being hindered by the integration latency. The slower integration on the other hand is used for clustering, outlier removal and estimation wall directions to support the pathfinding process, as illustrated in Supplementary Figure 1.

      Additionally, our model assumes that bats store the physical positions of echoes in an allocentric coordinate system (x-y). The integration occurs after transforming these detections from a local relative reference frame to a global spatial representation. This allows for stable environmental mapping while maintaining responsiveness to immediate changes in the bat’s surroundings.

      See lines 600-616 in the revised version.

      The authors are using a 2D simulation, but this very much simplifies the challenge of a 3D navigation task, and there is an explanation as to why this is appropriate. Bat densities and bat behavior are discussed per unit area when realistically it should be per unit volume. In fact, the authors reference studies to justify the densities used in the simulation, but these studies were done in a 3D world. If the authors have justification for why it is realistic to model a 3D world in a 2D simulation, I encourage them to provide references justifying this approach. 

      We acknowledge that this is a simplification; however, from an echolocation perspective, a 2D framework represents a worst-case scenario in terms of bat densities and maneuverability:

      • Higher Effective Density: A 2D model forces all bats into a single plane rather than distributing them through a 3D volume, increasing the likelihood of overlap in calls and echoes and making jamming more severe. As described in the text: the average distance to the nearest bat in our simulation is 0.27m (with 100 bats), whereas reported distances in very dense colonies are 0.5m (Fujioka et al., 2021), as observed in Myotis grisescens (Sabol and Hudson, 1995) and Tadarida brasiliensis (Theriault et al., no date; Betke et al., 2008; Gillam et al., 2010)

      • Reduced Maneuverability: In 3D space, bats can use vertical movement to avoid obstacles and conspecifics. A 2D constraint eliminates this degree of freedom, increasing collision risk and limiting escape options.

      Thus, our 2D model provides a conservative difficult test case, ensuring that our findings are valid under conditions where jamming and collision risks are maximized. Additionally, the 2D framework is computationally efficient, allowing us to perform multiple simulation runs to explore a broad parameter space and systematically test the impact of different variables.

      To address the reviewer’s concern, we have clarified this justification in the revised text and will provide supporting references where applicable (see Methods lines 450455).

      The focus on "masking" (which appears to be just in-band noise), especially relative to the problem of misassigned echoes, is concerning. If the bat calls are all the same waveform (downsweep linear FM of some duration, I assume - it's not clear from the text), false echoes would be a major problem. Masking, as the authors define it, just reduces SNR. This reduction is something like sqrt(N), where N is the number of conspecifics whose echoes are audible to the bat, so this allows the detection threshold to be set lower, increasing the probability that a bat's echo will exceed a detection threshold. False echoes present a very different problem. They do not reduce SNR per se, but rather they cause spurious threshold excursions (N of them!) that the bat cannot help but interpret as obstacle detection. I would argue that in dense groups the mis-assignment problem is much more important than the SNR problem. 

      There is substantial literature supporting the assumption that bats can recognize their own echoes and distinguish them from conspecific signals (Schnitzler, Bioscience and 2001, no date; Kazial, Burnett and Masters, 2001; Burnett and Masters, 2002; Kazial, Kenny and Burnett, 2008; Chili, Xian and Moss, 2009; Yovel et al., 2009; Beetz and Hechavarría, 2022)). However, we acknowledge that false echoes may present a major challenge in dense groups. To address this, we explicitly tested the impact of the self-echo identification assumption in our study see Results Figure 1: The impact of confusion on performance, and lines 399-404 in the Discussion.

      Furthermore, we examined a full confusion scenario, where all reflected echoes from conspecifics were misinterpreted as obstacle reflections (i.e., 100% confusion). Our results show that this significantly degrades navigation performance, supporting the argument that echo misassignment is a critical issue. However, we also explored a simple mitigation strategy based on temporal integration with outlier rejection, which provided some improvement in performance. This suggests that real bats may possess additional mechanisms to enhance self-echo identification and reduce false detections. See lines 411-420 in the manuscript for further discussion. 

      We actually used logarithmically frequency modulated (FM) chirps, generated using the MATLAB built-in function chirp(t, f0, t1, f1, 'logarithmic'). This method aligns with the nonlinear FM characteristics of Pipistrellus kuhlii (PK) and Rhinopoma microphyllum (RM) and provides a realistic approximation of their echolocation signals. We acknowledge that this was not sufficiently emphasized in the original text, and we have now explicitly highlighted this in the revised version to ensure clarity (see Lines 509-512 in Methods).

      The criteria set for flight behavior (lines 393-406) are not justified with any empirical evidence of the flight behavior of wild bats in collective flight. How did the authors determine the avoidance distances? Also, what is the justification for the time limit of 15 seconds to emerge from the opening? Instead of an exit probability, why not instead use a time criterion, similar to "How long does it take X% of bats to exit?"  :

      While we acknowledge that wild bats may employ more complex behaviors for collision avoidance, we chose to implement a simplified decision-making rule in our model to maintain computational tractability.

      The avoidance distances (1.5 m from walls and 0.4 m from other bats) were selected as internal parameters to support stable and realistic flight trajectories while maintaining a reasonable collision rate. These values reflect a trade-off between maneuverability and behavioral coherence under crowding. To address this point, we added a sensitivity analysis to the revised manuscript. Specifically, we tested the effect of varying the conspecific avoidance distance from 0.2 to 1.6 meters at bat densities of 2 to 40 bats/3m². The only statistically significant impact was at the highest density (40 bats/3m²), where exit probability increased slightly from 82% to 88% (p = 0.024, t = 2.25, DF = 958). No significant changes were observed in exit time, collision rate, or jamming probability across other densities or conditions (GLM, see revised Methods). These results suggest that the selected avoidance distances are robust and not a major driver of model performance, see lines 469-47.

      The 15-second exit limit was determined as described in the text (Lines 489-491): “A 15-second window was chosen because it is approximately twice the average exit time for 40 bats and allows for a second corrective maneuver if needed.” In other words, it allowed each bat to circle the ‘cave’ twice to exit even in the most crowded environment. This threshold was set to keep simulation time reasonable while allowing sufficient time for most bats to exit successfully.

      We acknowledge that the alternative approach suggested by the reviewer— measuring the time taken for a certain percentage of bats to exit—is also valid. However, in our model, some outlier bats fail to exit and continue flying for many minutes, such simulations would lead to excessive simulation times making it difficult to generate repetitions and not teaching us much – they usually resulted from the bat slightly missing the opening (see video S1. Our chosen approach ensures practical runtime constraints while still capturing relevant performance metrics.

      What is the empirical justification for the 1-10 calls used for integration?  

      The "average exit time for 40 bats" is also confusing and not well explained. Was this determined empirically? From the simulation? If the latter, what are the conditions?

      Does it include masking, no masking, or which species? 

      Previous studies have demonstrated that bats integrate acoustic information received sequentially over several echolocation calls (2-15), effectively constructing an auditory scene in complex environments (Ulanovsky and Moss, 2008; Chili, Xian and Moss, 2009; Moss and Surlykke, 2010; Yovel and Ulanovsky, 2017; Salles, Diebold and Moss, 2020). Additionally, bats are known to produce echolocation sound groups when spatiotemporal localization demands are high (Kothari et al., 2014). Studies have documented call sequences ranging from 2 to 15 grouped calls (Moss and Surlykke, 2010), and it has been hypothesized that grouping facilitates echo segregation.

      We did not use a single integration window - we tested integration sizes between 1 and 10 calls and presented the results in Figure 3A. This range was chosen based on prior empirical findings and to explore how different levels of temporal aggregation impact navigation performance. Indeed, the results showed that the performance levels between 5-10 calls integration window (Figure 3A)

      Regarding the average exit time for 40 bats, this value was determined from our simulations, where it represents the mean time for successful exits under standard conditions with masking. We have revised the text to clarify these details see, lines 489-491.

      Reviewer #1 (Recommendations for the authors):

      (1) Data Availability:

      As it stands now, this reviewer cannot vouch for the uploaded code as it wasn't accessible according to F.A.I.R principles. The link to the code/data points to a private company's file-hosting account that requires logging in or account creation to see its contents, and thus cannot be accessed.

      This reviewer urges the authors to consider uploading the code onto an academic data repository from the many on offer (e.g. Dryad, Zenodo, OSF). Some repositories offer an option to share a private link (e.g. Zenodo) to the folder that can then be shared only with reviewers so it is not completely public.

      This is a computational paper, and the credibility of the results is based on the code used to generate them.

      The code is available at GitHub as required:

      https://github.com/omermazar/Colony-Exit-Bat-Simulation

      (2) Abstract:

      Line 22: 'To explore whether..' - replace 'whether' with 'how'?

      The sentence was rephrased as suggested by the reviewer.

      (2) Main text:

      Line 43: '...which may share...' - correct to '...which share...', as elegantly framed in the authors' previous work - jamming avoidance is unavoidable because all FM bats of a species still share >90% of spectral bandwidth despite a few kHz shift here and there.

      The sentence was rephrased as suggested by the reviewer.

      Line 49: The authors may wish to additionally cite the work of Fawcett et al. 2015 (J. Comp. Phys A & Biology Open)

      Thank you for the suggestion. We have included a citation to the work of Fawcett et al. (2015) in the revised manuscript.

      Line 61: This statement does not match the recent state of the literature. While the previous models may have assumed that all neighbours can be detected, there are models that specifically study the role of limited interaction arising from the potential inability to track all neighbours, and the effect of responding to only one/few neighbours at a time e.g. Bode et al. 2011 R. Soc. Interface, Jhawar et al. 2020 Nature Physics.

      We have added citations to the important studies suggested by the reviewer, as detailed in the Public Review above.

      Line 89: '..took all interference signals into account...' - what is meant by 'interference signals' - are the authors referring to reflections, unclear.

      We have revised the sentence and detailed the acoustic signals involved in the process: self-generated echoes, calls from conspecifics, and echoes from cave walls and other bats evoked by those calls, see lines 99-106.

      Figure 1A: The colour scheme with overlapping points makes the figure very hard to understand what is happening. The legend has colours from subfigures B-D, adding to the confusion.

      What does the yellow colour represent? This is not clear. Also, in general, the color schemes in the simulation trajectories and the legend are not the same, creating some amount of confusion for the reader. It would be good to make the colour schemes consistent and visually separable (e.g. consp. call direct is very similar to consp. echo from consp. call), and perhaps also if possible add a higher resolution simulation visualisation. Maybe it is best to separate out the colour legends for each sub-figure.

      The updated figure now includes clearer, more visually separable colors, and consistent color coding across all sub-panels. The yellow trajectory representing the focal bat’s flight path is now explicitly labeled, and we adjusted the color mapping of acoustic signals (e.g., conspecific calls vs. echoes) to improve distinction. We also revised the figure caption accordingly and ensured that the legend is aligned with the updated visuals. These modifications aim to enhance interpretability and reduce ambiguity for the reader.

      Figure C3: What is 'FB Channel', this is not explained in the legend.

      FB Channel’ stands for ‘Filter Bank Channel’. This clarification has been added to the caption of Figure 1. 

      Figure 3: Visually noticing that the colour legend is placed only on sub-figure A is tricky and readers may be left searching for the colour legend. Maybe lay out the legend horizontally on top of the entire figure, so it stands out?

      We have adjusted the placement of the color legend in Figure 3 to improve visibility and consistency.

      Line 141: '..the probability of exiting..' - how is this probability calculated - not clear.

      We have clarified in the revised text that the probability of exiting the cave within 15 seconds is defined as the number of bats that exited the cave within that time divided by the total number of bats in each scenario, see lines 159160.

      Line 142: What are the sample sizes here - i.e. how many simulation replicates were performed?

      We have clarified the number of repetitions in each scenario the revised text, as detailed in the Public Review above.

      Line 151: 'The jamming probability,...number of jammed echoes divided by the total number of reflected echoes' - it seems like these are referring to 'own' echoes or first-order reflections, it is important to clarify this.

      The reviewer is right. We have clarified it in the revised text, see lines 173175.

      Line 153: '..with a maximum difference of ...' - how is this difference calculated? What two quantities are being compared - not clear.

      We have revised the text to clarify that the 14.3% value reflects the maximum difference in jamming probability between the RM and PK models, which occurred at a density of 10 bats. The values at each density are shown in Figure 2D, see lines 175-177.

      Line 221: '..temporal aggregation helps..' - I'm assuming the authors meant temporal integration? However, I would caution against using the exact term 'temporal integration' as it is used in the field of audition to mean something different. Perhaps something like 'sensory integration' , or 'multi-call integration'

      To avoid ambiguity and better reflect the process modeled in our work, we have replaced the term "temporal aggregation" with "multi-call integration" throughout the revised manuscript. This term more accurately conveys the idea of combining information from multiple echolocation calls without conflicting with existing terminology.

      (4) Discussion

      Lines 302: 'Our model suggests...increasing the call-rate..' - not clear where this is explicitly tested or referred to in this manuscript. Can't see what was done to measure/quantify the effect of this variable in the Methods or anywhere else.

      We have rephrased this paragraph as detailed in the Public Review above, see lines 346-349.

      Line 319: 'spatial interference' - unclear what this means. This reviewer would strongly caution against creating new terms unless there is an absolute need for it. What is meant by 'interference' in this paper is hard to assess given that the word seems to be used as a synonym for jamming and also for actual physical wave-based interference.

      We have rephrased this paragraph as detailed in the Public Review above, see line 119-120, 366-367.

      Line 323: '..no benefit beyond a certain level...' - also not clear where this is explicitly tested. It seems like there was a set of simulations run for a variety of parameters but this is not written anywhere explicitly. What type of parameter search was done, was it all possible parameter combinations - or only a subset? This is not clear.

      We have rephrased this paragraph as detailed in the Public Review above, see lines 372-375.

      Line 324: '..ca. 110 dB-SPL.' - what reference distance?

      All call levels were simulated and reported in dB-SPL, referenced at 0.1 meters from the emitting bat. We have clarified it in the revised text in the relevant contexts and specifically in line 529.

      (5) Methods

      Line 389 : '...over a 2 x 1.5 m2 area..' It took a while to understand this statement and put it in context. Since there is no previous description of the entire L-arena, the reviewer took it to mean the simulations happened over the space of a 2 x 1.5 m2 area. Include a top-down description of the simulation's spatial setup and rephrase this sentence.

      To address the confusion, we revised the text to clarify that the full simulation environment represents a corridor-shaped cave measuring 14.5 × 2.5 meters, with a right-angle turn located 5.5 meters before the exit, as shown in Figure 1A. The 2 × 1.5 m area refers specifically to the small zone at the far end of the cave where bats begin their flight. The revised description now includes a clearer spatial overview to prevent ambiguity, see lines 456-460.

      Line 398: Replace 'High proximity' with 'Close proximity'

      Replaced.

      Line 427: 'uniform target strength of -23 dB' - at what distance is this target strength defined? Given the reference distance can vary by echolocation convention (0.1 or 1 m), one can't assess if this is a reasonable value or not.

      The reference distance for the reported target strength is 1 meter, in line with standard acoustic conventions. We have revised the text to clarify this explicitly (line 531).

      Also, independent of the reference distance, particularly with reference to bats, the target strength is geometry-dependent, based on whether the wings are open or not. Using the entire wingspan of a bat to parametrise the target strength is an overestimate of the available reflective area. The effective reflective area is likely to be somewhere closer to the surface area of the body and a fraction of the wingspan together. This is important to note and/or mention explicitly since the value is not experimentally parametrised.

      For comparison, experimentally based measurements used in Goetze et al. 2016 are -40 dB (presumably at 1 m since the source level is also defined at 1 m?), and Beleyur & Goerlitz 2019 show a range between -43 to -34 dB at 1 m.

      We agree with the reviewer that target strength in bats is strongly influenced by their geometry, particularly wing posture during flight. In our model, we simplified this aspect by using a constant target strength, as the detailed temporal variation in body and wing geometry is pseudo-random and not explicitly modeled. We acknowledge that this is a simplification, and have now stated this limitation clearly in the revised manuscript. We chose a fixed value of –23 dB at 1 meter to reflect a plausible mid-range estimate, informed by anatomical data and consistent with values reported for similarly sized species (Beleyur and Goerlitz, 2019). To support this, we directly measured the target strength of a 3D-printed RM bat model, obtaining –32dB. 

      Moreover, a sensitivity analysis across a wide range (–49 to –23 dB) confirmed that performance metrics remain largely stable, indicating that our conclusions are not sensitive to this parameter, and suggesting that our results hold for different-sized bats. See lines 384-390, 533-538, and Supplementary Figures 3 and 4 in the revised article. 

      Line 434: 'To model the bat's cochlea...'. Bats have two cochleas. This model only describes one, while the agents are also endowed with the ability to detect sound direction - which requires two ears/cochleas.... There is missing information about the steps in between that needs to be provided.

      We appreciate the reviewer’s observation. Indeed, our model is monaural, and simulates detection using a single cochlear-like filter bank receiver. We have clarified this in the revised text to avoid confusion. This paragraph specifically describes the detection stage of the auditory processing pipeline. The localization process, which builds on detection and includes directional estimation, is described in the following paragraph (see line 583 onward), as discussed in the next comment and response.

      Line 457: 'After detection, the bat estimates the range and Direction of Arrival...' This paragraph describes the overall idea, but not the implementation. What were the inputs and outputs for the range and DOA calculation performed by the agent? Or was this information 'fed' in by the simulation framework? If there was no explicit DOA step that the agent performed, but it was assumed that agents can detect DOA, then this needs to be stated.

      In the current simulation, the Direction of Arrival (DOA) was not modeled via an explicit binaural processing mechanism. Instead, based on experimental studies (Simmons et al., 1983; Popper and Fay, 1995).  we assumed that bats can estimate the direction of an echo with an angular error that depends on the signal-to-noise ratio (SNR). Accordingly, the inputs to the DOA estimation were the peak level of the desired echo, noise level, and the level of acoustic interference. The output was an estimated direction of arrival that included a random angular error, drawn from a normal distribution whose standard deviation varied with the SNR. We have revised the relevant paragraph (Lines 583-592) to clarify this implementation.

      Line 464: 'To evaluate the impact of the assumption...' - the 'self' and 'non-self' echoes can be distinguished perhaps using pragmatic time-delay cues, but also using spectro-temporal differences in individual calls/echoes. Do the agents have individual call structures, or do all the agents have the same call 'shape'? The echolocation parameters for the two modelled species are given, but whether there is call parameter variation implemented in the agents is not mentioned.

      In our relatively simple model, all individuals emit the same type of chirp call, with parameters adapted only based on the distance to the nearest detected object. However, individual variation is introduced by assigning each bat a terminal frequency drawn from a normal distribution with a standard deviation of 1 kHz, as described in the revised version -lines 519-520. This small variation is not used explicitly as a spectro-temporal cue for echo discrimination.

      In our model, all spectro-temporal variations—whether due to call structure or variations resulting from overlapping echoes from nearby reflectors—are processed through the filter bank, which compares the received echoes to the transmitted call during the detection stage. As such, the detection process itself can act as a discriminative filter, to some extent, based on similarity to the emitted call.

      We acknowledge that real bats likely rely on a variety of spectro-temporal features for distinguishing self from non-self-echoes—such as call duration, received level, multi-harmonic structure, or amplitude modulation. In our simulation, we focus on comparing two limiting conditions: full recognition of self-generated echoes versus full confusion. Implementing a more nuanced self-recognition mechanism based on temporal or spectral cues would be a valuable extension for future work.

      (6) References

      Reference 22: Formatting error - and extra '4' in the reference.

      The error has been fixed.

      (7) Thoughts/comments

      Even without 'recogntion' of walls & conspecifics, bats may be able to avoid obstacles - this is a neat result. Also, using their framework the authors show that successful 'blind' object-agnostic obstacle avoidance can occur only when supported by some sort of memory. In some sense, this is a nice intermediate step showing the role of memory in bat navigation. We know that bats have good long-term and long-spatial scale memory, and here the authors show that short-term spatial memory is important in situations where immediate sensory information is unreliable or unavailable.

      We appreciate the reviewer’s thoughtful summary. Indeed, one of the main takeaways of our study is that successful obstacle avoidance can occur even without explicit recognition of walls or conspecifics—provided that a clustered multi-call integration is in place. Our model shows that when immediate sensory information is unreliable, integrating detections over time becomes essential for effective navigation. This supports the broader view that memory, even on short timescales, plays an important role in bat behavior.

      (8) Reporting GLM results

      The p-value, t-statistic, and degrees of freedom are reported consistently across multiple GLM results. However, the most important part which is the effect size is not consistently reported - and this needs to be included in all results, and even in the table. The effect size provides an indicator of the parameter's magnitude, and thus scientific context.

      We agree that the effect size provides essential scientific context. In fact, we already include the effect size explicitly in Table 1, as shown in the “Effect Size” column for each tested parameter. These values describe the magnitude of each parameter’s effect on exit probability, jamming probability, and collision rate. In the main text, effect sizes are presented as concrete changes in performance metrics (e.g., “exit probability increased from 20% to 87%,” or “with a decrease of 3.5%±8% to 5.5%±5% (mean ± s.e.)”), which we believe improves interpretability and scientific relevance.  

      To further clarify this in the main text, we have reviewed the reported results and ensured that effect sizes are mentioned more consistently wherever GLM outcomes are discussed. Additionally, we have added a brief note in the table caption to emphasize that effect sizes are provided for all tested parameters.

      The 'tStat' appears multiple times and seems to be the output of the MATLAB GLM function. This acronym is specific to the MATLAB implementation and needs to be replaced with a conventionally used acronym such as 't', or the full form 't-statistic' too. This step is to keep the results independent of the programming language used.

      We have replaced all instances of tStat with the more conventional term ‘t’ throughout the manuscript to maintain consistency with standard reporting practices.

      Reviewer #2 (Recommendations for the authors):

      In addition to my public review, I had a few minor points that the authors may want to consider when revising their paper.

      (1) Figures 2, 3, and 4 may benefit from using different marker styles, in addition to different colors, to show the different cases.

      Thank you for the suggestion. In Figures 2–4, the markers represent means with standard error bars. To maintain clarity and consistency across all conditions, we have chosen to keep a standardized marker style – and we clarify this in the legend. We found that varying only the colors is sufficient for distinguishing between conditions without introducing visual clutter.

      (2) The text "PK" in the inset for Figure 2A is very difficult to read. I would suggest using grey as with "RM" in the other inset.

      We have updated the insert in Figure 2A to improve legibility.

      (3) Are the error bars in Figure 3 very small? I wasn't able to see them. If that is the case, the authors may want to mention this in the caption.

      You are correct—the error bars are present in all plots but appear very small due to the large number of simulation repetitions and low variability. We have revised the caption to explicitly mention this.

      (4) The species name of PK is spelled inconsistently (kuhli, khulli, and kuhlii).

      We have corrected the species name throughout the manuscript.

      (5) Table 1 is a great condensation of all the results, but the time to exit is missing. It may be helpful if summary statistics on that were here as well.

      We have added time-to-exit to the effect size column in Table 1, alongside the other performance metrics, to provide a more complete summary of the simulation results.

      (6) I may have missed it, but why are there two values for the exit probability when nominal flight speed is varied?

      The exit probability was not monotonic with flight speed, but rather showed a parabolic trend with a clear optimum. Therefore, we reported two values representing the effect before and after the peak. We have clarified this in the revised table and updated the caption accordingly.

      (7) Table 2 has an extra header after the page break on page 18.

      The extra header in Table 2 after the page break has been removed in the revised manuscript.

      (8) The G functions have 2 arguments in their definitions and Equation 1, but only one argument in Equations 2 and 3. I wasn't able to see why.

      Thank you for pointing this out. You are correct—this was a typographical error. We have corrected the argument notation in Equations 2 and 3 and explicitly included the frequency dependence of the gain (G) functions in both equations.

      (9) D_txrx was not defined but it was used in Equation 2.

      The variable D_txrx is defined in the equation notation section as: D<sub>₍ₜₓ</sub>r<sub>ₓ</sub> – the distance [m] between the transmitting conspecific and the receiving focal bat, from the transmitter’s perspective. We have now ensured that this definition is clearly linked to Equation 2 in the revised text. Moreover, we have added a supplementary figure that illustrates the geometric configuration defined by the equations to further support clarity, as described in the Public Review above.

      (10) It was hard for me to understand what was meant by phi_rx and phi_tx. These were described as angles between the rx or tx bats and the target, but I couldn't tell what the point defining the angle was. Perhaps a diagram would help, or more precise definitions.

      We have revised the caption to provide clearer and more precise definitions Additionally, we have included a geometric diagram as a supplementary figure, as noted in the Public Review above, to visually clarify the spatial relationships and angle definitions used in the equations, see lines 498-499.

      (11) Was the hearing threshold the same for both species?

      Yes. We have clarified it in the revised version.

      (12) Collision avoidance is described as turning to the "opposite direction" in the supplemental figure explaining the model. Is this 90 degrees or 180 degrees? If 90 degrees, how do these turns decide between right and left?

      In our model, the bat does not perform a fixed 90° or 180° turn. Instead, the avoidance behavior is implemented by setting the maximum angular velocity in the direction opposite to the detected echo. For example, if the obstacle or conspecific is detected on the bat’s right side, the bat begins turning left, and vice versa.

      This turning direction is re-evaluated at each decision step, which occurs after every echolocation pulse. The bat continues turning in the same direction if the obstacle remains in front, otherwise it resumes regular pathfinding. We have clarified this behavior in the updated figure caption and model description, see lines 478-493.

      Reviewer #3 (Recommendations for the authors):

      (1) Lines 27-31: These sentences mischaracterize the results. This claim appears to equate "the model works" with "this is what bats actually do." Also, the model does not indicate that bats' echolocation strategies are robust enough to mitigate the effects of jamming - this is self-evident from the fact that bats navigate successfully via echolocation in dense groups.

      Thank you for the comment. Our aim was not to claim that the model confirms actual bat behavior, but rather to demonstrate that simple and biologically plausible strategies—such as signal redundancy and basic pathfinding—are sufficient to explain how bats might cope with acoustic interference in dense settings. We have revised the wording to better reflect this goal and to avoid overinterpreting the model's implications.

      See abstract in the revised version.  

      (2) Line 37: This number underestimates the number of bats that form some of the largest aggregations of individuals worldwide - the free-tailed bats can form aggregations exceeding several million bats.

      We have revised the text to reflect that some bat species, such as free-tailed bats, are known to form colonies of several million individuals, which exceed the typical range. The updated sentence accounts for these extreme cases, see lines 36-37.

      (3) The flight densities explained in the introduction and chosen references are not representative of the literature - without providing additional justification for the chosen species, it can be interpreted that the selection of the species for the simulation is somewhat arbitrary. If the goal is to model dense emergence flight, why not use a species that has been studied in terms of acoustic and flight behavior during dense emergence flights---such as Tadarida brasiliensis?

      Our goal was to develop a general model applicable to a broad class of FMecholocating bat species. The two species we selected—Pipistrellus kuhlii (PK) and Rhinopoma microphyllum (RM)—span a wide range of signal characteristics: from wideband (PK) to narrowband (RM), providing a representative contrast in call structure. 

      Although we did not include Tadarida brasiliensis (TB) specifically, its echolocation calls are acoustically similar to RM in terminal frequency and fall between PK and RM in bandwidth. Therefore, we believe our findings are likely to generalize to TB and other FM-bats.

      Moreover, as noted in a previous response, the average inter-bat distance in our highest-density simulations (0.27 m) is still smaller than those reported for Tadarida brasiliensis during dense emergences—further supporting the relevance of our model to such scenarios.

      To support broader applicability, we also provide a supplementary graphical user interface (GUI) that allows users to modify key echolocation parameters and explore their impact on behavior—making the framework adaptable to additional species, including TB.

      (4) Line 78: It is not clear how (or even if) the simulated bats estimate the direction of obstacles. The explanation given in lines 457-463 is quite confusing. What is the acoustic/neurological mechanism that enables this direction estimation? If there is some mechanism (such as binaural processing), how does this extrapolate to 3D?

      This comment echoes a similar concern raised by a previous reviewer. As explained earlier, in the current simulation, the Direction of Arrival (DOA) was not modeled via an explicit binaural processing mechanism. The complete  is detailed in  to Reviewer #1, Line 457. This implementation is now clarified in the revised text, and a detailed description of the localization process is also provided in the Methods section (lines 583-592).

      (5) The authors propose they are modeling the dynamic echolocation of bats in the simulation (line 79), but it appears (whether this is due to a lack of information in the manuscript or true lack in the simulation) that the authors only modeled a flight response. How did the authors account for bats dynamically changing their echolocation? This is unclear and from what I can tell may just mean that the bats can switch between foraging phase call types depending on the distance to a detected obstacle. Can the authors elaborate more on this?

      The echolocation behavior of the bats—including dynamic call adjustments— was implemented in the simulation and is described in detail in the Methods section (lines 498-520 and Table 2). To avoid redundancy, the Results chapter originally referred to this section, but we have now added a brief explanation in the Results to clarify that the bats’ call parameters (IPI, duration, and frequency range) adapt based on the distance to detected objects, following empirically documented echolocation phases ("search," "approach," "buzz"). These dynamics are consistent with established bat behavior during navigation in cluttered environments such as caves.

      (6) Figure 1 C3: "Detection threshold": what is this and how was it derived?

      The caption also mentions yellow arrows, but they are absent from the figure. C4: Each threshold excursion is marked with an asterisk, but there are many more excursions than asterisks. Why are only some marked? Unclear.

      C3: The detection threshold is determined dynamically. It is set to the greater of either 7 dB above the noise level (0 dB-SPL)(Kick, 1982; Saillant et al., 1993; Sanderson et al., 2003; Boonman et al., 2013) or the maximal received level minus 70 dB, effectively applying a dynamic range of 70 dB. This clarification has been added to the Methods section. The yellow arrow has been added.

      C4: Thank you for this important observation. Only peaks marked with asterisks represent successful detections—those that were identified in both the interference-free and full detection conditions, as explained in the Methods. Other visible peaks result from masking signals or overlapping echoes from nearby reflectors, but they do not meet the detection criteria. To keep the figure caption concise, we have elaborated on this process more clearly in the revised Methods section. We added this information to the legend

      (7) Figure 2: A line indicating RM, No Masking is absent

      Thank you for pointing this out. The missing line for RM, No Masking has now been added in the revised version of Figure 2.

      (8) Line 121: "reflected off conspecifics". Does this mean echoes due to conspecifics?

      The phrase "reflected off conspecifics" refers to echoes originating from the bat’s own call and reflected off the bodies of nearby conspecifics. We have clarified the wording in the revised text to avoid confusion

      (9) Line 125: Why are low-frequency channels stimulated by higher frequencies? This needs further clarification.

      The cochlear filter bank in our model is implemented using gammatone filters, each modeled as an 8th-order Butterworth filter. Due to the non-ideal filter response and relatively broad bandwidths—especially in the lower-frequency channels—strong energy from the beginning of the downward FM chirp (at higher frequencies) can still produce residual activation in lower-frequency channels. While these stimulations are usually below the detection threshold, they may still be visible as early sub-threshold responses. Given the technical nature of this explanation (a property of the filter implementation) and it does not influence the detection outcomes, we have chosen not to elaborate on it in the figure caption or Methods.

      (10) Lines 146-150: This is an interesting finding. Is there a theoretical justification for it?

      This outcome arises directly from the simulation results. As noted in the Discussion (lines 359-365), although Pipistrellus kuhlii (PK) shows a modest advantage in jamming resistance due to its broader bandwidth, the redundancy in sensory information across calls—enabled by frequent echolocation—appears to compensate for these signal differences. As a result, the small variations in echo quality between species do not translate into significant differences in performance. We speculate that if the difference in jamming probability had been larger, performance disparities would likely have emerged.

      (11) Line 151: The authors define a jammed echo as an echo entirely missed due to masking. Is this appropriate? Doesn't echo mis-assignment also constitute jamming?

      We agree that echo mis-assignment can also degrade performance; however, in our model, we distinguish between two outcomes: (1) complete masking (echo not detected), and (2) detection with a localization error. As explained in the Methods (lines 500–507), we run the detection analysis twice—once with only desired echoes (“interference-free detection”) and once including masking signals (“full detection”). If a previously detected echo is no longer detected, it is classified as a jammed echo. If the echo is still detected but the delay shifts by more than 100 µs compared to the interference-free condition, it is also considered jammed. If the delay shift is smaller, it is treated as a detection with localization error rather than full jamming. We have clarified this distinction in the revised Methods section.

      (12) Figure 2-E: Detection probability statistics are of limited usefulness without accompanying false alarm rate (FAR) statistics. Do the authors have FAR numbers?

      We understand FAR to refer to instances where masking signals or other acoustic phenomena are mistakenly interpreted as real echoes from physical objects. As explained in the manuscript, we implemented two model versions: one without confusion, and one with full confusion.

      Figure 2E reports detection performance under the non-confusion model, in which only echoes from actual physical reflectors are used, and no false detections occur—hence, the false alarm rate is effectively zero in this condition. In the full-confusion model, all detected echoes—including those originating from masking signals or conspecific calls—are treated as valid detections, which may include false alarms. However, we did not explicitly quantify the false alarm rate as a separate metric in this simulation.

      We agree that tracking FAR could be informative and will consider incorporating it into future versions of the model.

      (13) Line 161: RM bats suffered from a significantly higher probability of the "desired conspecific's echoes" being jammed. What does "desired conspecific's echoes" mean? This is unclear.

      The term “desired conspecific's echoes” refers to echoes originating from the bat’s own call, reflected off nearby conspecifics, which are treated as relevant reflectors for collision avoidance. We have revised the wording in the text for clarity.

      (14) Line 188: Why didn't the size of the integration window affect jamming probability? I couldn't find this explained in the discussion.

      The jamming probability in our analysis is computed at the individual-echo level, prior to any temporal integration. Since the integration window is applied after the detection step, it does not influence whether a specific echo is masked (i.e., jammed) or not. Therefore, as expected, we did not observe a significant effect of integration window size on jamming probability.

      (15) Line 217-218: Why do the authors think this would be?

      Thank you for the thoughtful question. We agree that, in theory, increasing call intensity should raise the levels of both desired echoes and masking signals proportionally. However, in our model, the environmental noise floor and detection threshold remain constant, meaning that higher call intensities increase the signal-to-noise ratio (SNR) more effectively for weaker echoes, especially those at longer distances or with low reflectivity. This could lead to a higher likelihood of those echoes crossing the detection threshold, resulting in a small but measurable reduction in jamming probability.

      Additionally, the non-linear behavior of the filter-bank receiver—including such as thresholding at multiple stages—can introduce asymmetries in how increased signal levels affect the detection of target versus masking signals.

      That said, the effect size was small, and the improvement in jamming probability did not translate into any significant gain in behavioral performance (e.g., exit probability or collision rate), as shown in Figure 3C.

      (16) Line 233: I'm not sure I understand how a slightly improved aggregation model that clustered detected reflectors over one-second periods is different. Doesn't this just lead to on average more calls integrated into memory?

      While increasing the memory duration does lead to more detections being available, the enhanced aggregation model (we now refer to as multi-call clustering) differs fundamentally from the simpler one. As detailed in the Methods, it includes additional processing steps: clustering spatially close detections, removing outliers, and estimating wall directions based on the spatial structure of clustered echoes. In contrast, the simpler model treats each detection as an isolated point without estimating obstacle orientation. These additional steps allow for more robust environmental interpretation and significantly improve performance under high-confusion conditions. We have clarified it in revised text (lines 606-616) and added a Supplementary Figure 2B.

      (17) Table 1: What about conspecific target strength?

      We have now added the conspecific target strength as a tested parameter in Table 1, along with its tested range, default value, and measured effect sizes. A detailed sensitivity analysis is also presented in Supplementary Figure 4, demonstrating that variations in conspecific target strength had relatively minor effects on performance metrics.  

      (18) Figure 3-A: The x-axis is the number of calls in the integration window. But the leftmost sample on each curve is at 0 calls. Shouldn't this be 1?

      “0 calls” refers to the case where only the most recent call is used for pathfinding—without integrating any information from prior calls. The x-axis reflects the number of previous calls stored in memory, so a value of 0 still includes the current call. We’ve clarified this terminology in the figure caption.

      (19) Lines 282-283: This statement needs to be clarified that it is with the constraints of using a 2D simulation with at most 33 bats/m^2. It also should be clarified that it is assumed the bat can reliably distinguish between its own echoes and conspecific echoes, which is a very important caveat.

      We have revised the text to clarify that the results are based on a 2D simulation with a maximum tested density of 33 bats/m². We also now explicitly state that the model assumes bats can distinguish between their own echoes and those generated by conspecifics—an assumption we recognize as a simplification. These clarifications help place the results within the scope and constraints of the simulation. Moreover, as described in the text (and noted in previous response): the average distance to the nearest bat in our simulation is 0.27m (with 100 bats), whereas reported distances in very dense colonies are 0.5m

      (20) Line 294: What is this sentence referring to?

      The sentence refers to the finding that, even under high bat densities, a substantial portion of the echoes—particularly those reflected from nearby obstacles (e.g., 1 m away)—were jammed due to masking. Nevertheless, the bats in the simulation were still able to navigate successfully using partial sensory input. We have clarified the sentence in the revised text to make this point more explicit, see line 333-336.

      (21) Line 302: Was jamming less likely when IPI was higher or lower? I could not find this demonstrated anywhere in the manuscript.

      We agree that the original text was not sufficiently clear on this point. While we did not explicitly test fixed IPI values as a parameter, the model does simulate the natural behavior of decreasing IPI as bats approach obstacles. This behavior is supported by empirical observations and is incorporated into the echolocation dynamics of the simulation. We have clarified this point in the revised text (see Lines 346-351) and explained that while lower IPI introduces more acoustic overlap, it also increases redundancy and improves detection through temporal integration.

      (22) Lines 313-314: This is an interesting assumption, but it is not evident that is substantiated by the references.

      The claim is based on well-established principles in signal processing and bioacoustics. Wideband signals—such as those emitted by PK bats— distribute their energy over a broader frequency range, which makes them inherently more resistant to narrowband interference and masking. This concept is commonly applied in both biological and artificial sonar systems and is supported by empirical studies in bats and theory in acoustic sensing.

      For example, Beleyur & Goerlitz (2019) demonstrate that broader bandwidth calls improve detection in cluttered and jamming-prone environments. Similarly, Ulanovsky et al. (2004) and Schnitzler & Kalko (200) discuss how FM bats' wideband calls enhance temporal and spatial resolution, helping to reduce the impact of overlapping signals from conspecifics. These findings align with communication theory where spread-spectrum techniques improve robustness in noisy environments.

      We agree with the reviewer that this is an important point and we have updated the manuscript to clarify this rationale and cite the relevant literature accordingly – lines 631-363,

      (23) Lines 318-319: What is the justification for "probably"? Isn't this just a supposition?

      We agree with the reviewer’s point and have rephrased the sentence

      (24) Line 320: How does this 63% performance match the sentence in line 295?

      The sentence in Line 295 refers to the overall ability of the bats to navigate successfully despite high jamming levels, highlighting the robustness of the strategy under challenging conditions. The figure in Line 320 (63%) quantifies this performance under the most extreme simulated scenario (100 bats / 3 m²), where both spatial and acoustic interferences are maximal. We have rephrased the text in the revised version (lines 324-327).

      (25) Lines 341-345: It seems like this is more likely to be the main takeaway of the paper.

      As noted in the Public Review above, there is substantial literature supporting the assumption that bats can recognize their own echoes and distinguish them from those of conspecifics (e.g., Schnitzler, Bioscience, 2001; Kazial et al., 2001, 2008; Burnett & Masters, 2002; Chiu et al., 2009; Yovel et al., 2009; Beetz & Hechavarría, 2022). Therefore, we consider our assumption of selfrecognition to be well-supported, at least under typical conditions. That said, we agree that the impact of echo confusion on performance is significant and highlights a critical challenge in dense environments.

      To our knowledge, this is the first computational model to explicitly simulate both self-recognition and full echo confusion under high-density conditions. We believe that the combination of modeled constraints and the demonstrated robustness of simple sensorimotor strategies, even under worst-case assumptions, is what makes this contribution both novel and meaningful.

      (26) Lines 349-350: What is the aggregation model? What is meant by "integration"?

      We have revised the text to clarify that the “aggregation model” refers to a multi-call clustering process that includes clustering of detections, removal of outliers, and estimation of wall orientation, as described in detail in the revised Methods and Results sections.

      (27) Line 354: Again, why isn't this the assumption we're working under?

      As addressed in our response to Comment 25, our primary model assumes that bats can recognize their own echoes—an assumption supported by substantial empirical evidence. The alternative "full confusion" model was included to explore a worst-case scenario and highlight the behavioral consequences of failing to distinguish self from conspecific echoes. We assume that real bats may experience some degree of echo misidentification; however, our assumption of full confusion represents a worst-case scenario.

      (28) Line 382: "Under the assumption that..." I agree that bats probably can, but if we assume they can differentiate them all, where's the jamming problem?

      The assumption that bats can theoretically distinguish between different signal sources applies after successful detection. However, the jamming problem arises during the detection and localization stages, where acoustic interference can prevent echoes from crossing the detection threshold or distort their timing.

      (29) Lines 386-387: The paper referenced focused on JAR in the context of foraging. What changes were made to the simulation to switch to obstacle avoidance?

      While the simulation framework in Mazar & Yovel (2020) was developed to study jamming avoidance during foraging, the core components—such as the acoustic calculations, receiver model, and echolocation behavior—remain applicable. For the current study, we adapted the simulation extensively to address colony-exit behavior. These modifications include modeling cave walls as acoustic reflectors, implementing a pathfinding algorithm, integrating obstacle-avoidance maneuvers, and adapting the integration window and integration processes. These updates are detailed throughout the Methods section.

      (30) Line 400-402: Something doesn't add up with the statement: each decision relies on an integration window that records estimated locations of detected reflectors from the last five echolocation calls, with the parameter being tested between 1 and 10 calls. Can the authors reword this to make it less confusing?

      We have reworded the sentence to clarify that the default integration window includes five calls, while we systematically tested the effect of using 1 to 10 calls, see lines 486-487.

      (31) Line 393: "30 deg/sec" why was this value chosen?

      The turning rate of 30 deg/sec was manually selected to approximate the curvature of natural foraging flight paths observed in Rhinopoma microphyllum using on-board tags. Moreover, in Mazar & Yovel (2020), we showed that the flight dynamics of simulated bats in a closed room closely matched those of Pipistrellus kuhlii flying in a room of similar dimensions. However, in the current simulation, bats rarely follow a random-walk trajectory due to the structured environment and frequent obstacle detection. As a result, this parameter has no meaningful impact on the simulation outcomes.

      (32) Line 412: "Harmony" --- do you mean harmonic? And what is the empirical evidence that RM bats use the 2nd harmonic compared to the 1st?

      Perhaps showing a spectrogram of a real RM signal would be helpful.

      The typo-error was corrected. For reference See (Goldshtein et al., 2025)

      (33) Table 2: Something is incorrect with the table. The first row on the next page is the wrong species name. Also, where are the citations for these parameter values?

      The table header has been corrected in the revised version. The parameter values for flight and echolocation behavior were derived from existing literature and empirical data: Pipistrellus kuhlii parameters were based on Kalko (1995), and Rhinopoma microphyllum parameters were extracted from our own recordings using on-board tags, as described in Goldstein et al. (2025). We have added the appropriate citations to Table 2.

      (34) Line 442: How was the threshold level chosen?

      The detection threshold in each level is set to the greater of either 7 dB above the noise level (0 dB-SPL) or the maximal received level minus 70 dB, effectively applying a dynamic range of 70 dB.

      (35) Line 445: 100 micros: This is about 3cm. The resolution of PK is about 1cm. For RM it's about 10cm. So, this window is generous for PK, but too strict for RM.

      To keep the model simple and avoid introducing species-specific detection thresholds, we selected a biologically plausible compromise that could reasonably apply to both species. This simplification ensures consistency across simulations while remaining within the known behavioral range.

      (36) Line 448: What is the spectrum of the Gaussian noise, and did it change between PK and RM?

      We used the same white Gaussian noise with a flat spectrum across the relevant frequency range (10–80 kHz) for both species. We have clarified this in the revised text in lines 570-572.

      (37) Line 451: 4 milliseconds is 1.3m. Is this appropriate?

      The 4 milliseconds window was selected based on established auditory masking thresholds described in Mazar & Yovel (2020), and supported by (Popper and Fay, 1995) ch. 2.4.5, ((Blauert, 1997),  ch. 3.1 and (Mohl and Surlykke, 1989). These values provide conservative lower bounds on bats’ ability to cope with masking (Beleyur and Goerlitz, 2019). For simplicity, we used constant thresholds within each window, see lines 574-576.  

      (38) Line 452: Citation for the forward and backward masking durations?

      See the  to the previous comment.

      (39) Lines 460-461: This is unclear. How does the bat get directional information? The authors claim to be able to measure direction-of-arrival for each detection, but it is not clear how this is done

      As noted in our response to Reviewer 1 (Comment on Line 457), directional information is not computed via an explicit binaural model. Instead, we assume the bat estimates the direction of arrival with an angular error that depends on the SNR, based on established studies (e.g., Simmons et al., 1983; Popper & Fay, 1995). We have clarified this in the revised text in lines 583-592.

      (40) Line 467: It seems like the authors are modeling pulse-echo ambiguity, at least in this one alternative model, which is good! However the alternative model doesn't get much attention in the paper. Is there a reason for this?

      We would like to clarify that we did not model pulse-echo. In our confusion model, all echoes received within the IPI are attributed to the bat’s most recent call. This includes echoes that may in fact originate from conspecific calls, but the model does not assign self-echoes to earlier pulses or span multiple IPIs. Therefore, while the model captures echo confusion, it does not include true pulse-echo ambiguity. We have clarified this point in the revised text in lines 551-553.

      (41) Line 41: "continuous" is more appropriate than "constant".

      Thank you, we have rephrased the text accordingly.

      (42) Line 69: "band width" should be one word.

      Thank you, we have corrected it to “bandwidth”.

      (43) Line 79: "bats" should be in the possessive.

      Thank you, the text has been rephrased.

      (44) Line 128: "convoluted" don't you mean "convolved"?

      We have replaced “convoluted” with the correct term “convolved” in the revised text.

      (45) Please check your references, as there are some incomplete citations and typos.

      Thank you, we have reviewed and corrected all references for completeness and consistency.

      References

      Beetz, M.J. and Hechavarría, J.C. (2022) ‘Neural Processing of Naturalistic Echolocation Signals in Bats’, Frontiers in Neural Circuits, 16, p. 899370. Available at: https://doi.org/10.3389/FNCIR.2022.899370/BIBTEX.

      Beleyur, T. and Goerlitz, H.R. (2019) ‘Modeling active sensing reveals echo detection even in large groups of bats’, Proceedings of the National Academy of Sciences of the United States of America, 116(52), pp. 26662–26668. Available at: https://doi.org/10.1073/pnas.1821722116.

      Betke, M. et al. (2008) ‘Thermal Imaging Reveals Significantly Smaller Brazilian Free-Tailed Bat Colonies Than Previously Estimated’, Journal of Mammalogy, 89(1), pp. 18–24. Available at: https://doi.org/10.1644/07-MAMM-A-011.1.

      Blauert, J. (1997) ‘Spatial Hearing: The Psychophysics of Human Sound Localization (rev. ed.)’.

      Boerma, D.B. et al. (2019) ‘Wings as inertial appendages: How bats recover from aerial stumbles’, Journal of Experimental Biology, 222(20). Available at: https://doi.org/10.1242/JEB.204255/VIDEO-3.

      Boonman, A. et al. (2013) ‘It’s not black or white-on the range of vision and echolocation in echolocating bats’, Frontiers in Physiology, 4 SEP(September), pp. 1–12. Available at: https://doi.org/10.3389/fphys.2013.00248.

      Boonman, A.M., Parsons, S. and Jones, G. (2003) ‘The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses’, The Journal of the Acoustical Society of America, 113(1), p. 617. Available at: https://doi.org/10.1121/1.1528175.

      Burnett, S.C. and Masters, W.M. (2002) ‘Identifying Bats Using Computerized Analysis and Artificial Neural Networks’, North American Symposium on Bat Research, 9.

      Chili, C., Xian, W. and Moss, C.F. (2009) ‘Adaptive echolocation behavior in bats for the analysis of auditory scenes’, Journal of Experimental Biology, 212(9), pp. 1392–1404. Available at: https://doi.org/10.1242/jeb.027045.

      Fujioka, E. et al. (2021) ‘Three-Dimensional Trajectory Construction and Observation of Group Behavior of Wild Bats During Cave Emergence’, Journal of Robotics and Mechatronics, 33(3), pp. 556–563. Available at: https://doi.org/10.20965/jrm.2021.p0556.

      Gillam, E.H. et al. (2010) ‘Echolocation behavior of Brazilian free-tailed bats during dense emergence flights’, Journal of Mammalogy, 91(4), pp. 967–975. Available at: https://doi.org/10.1644/09-MAMM-A-302.1.

      Goldshtein, A. et al. (2025) ‘Onboard recordings reveal how bats maneuver under severe acoustic interference’, Proceedings of the National Academy of Sciences, 122(14), p. e2407810122. Available at: https://doi.org/10.1073/PNAS.2407810122.

      Griffin, D.R., Webster, F.A. and Michael, C.R. (1958) ‘THE ECHOLOCATION OF FLYING INSECTS BY BATS ANIMAL BEHAVIOUR , Viii , 3-4’.

      Hagino, T. et al. (2007) ‘Adaptive SONAR sounds by echolocating bats’, International Symposium on Underwater Technology, UT 2007 - International Workshop on Scientific Use of Submarine Cables and Related Technologies 2007, pp. 647–651. Available at: https://doi.org/10.1109/UT.2007.370829.

      Hiryu, S. et al. (2008) ‘Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field’, The Journal of the Acoustical Society of America, 124(2), pp. EL51–EL56. Available at: https://doi.org/10.1121/1.2947629.

      Jakobsen, L. et al. (2024) ‘Velocity as an overlooked driver in the echolocation behavior of aerial hawking vespertilionid bats’. Available at: https://doi.org/10.1016/j.cub.2024.12.042. Jakobsen, L., Brinkløv, S. and Surlykke, A. (2013) ‘Intensity and directionality of bat echolocation signals’, Frontiers in Physiology, 4 APR(April), pp. 1–9. Available at: https://doi.org/10.3389/fphys.2013.00089.

      Jakobsen, L. and Surlykke, A. (2010) ‘Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit’, 107(31). Available at:

      https://doi.org/10.1073/pnas.1006630107.

      Kalko, E.K. V. (1995) ‘Insect pursuit, prey capture and echolocation in pipistrelle bats (Microchirptera)’, Animal Behaviour, 50(4), pp. 861–880.

      Kazial, K.A., Burnett, S.C. and Masters, W.M. (2001) ‘ Individual and Group Variation in Echolocation Calls of Big Brown Bats, Eptesicus Fuscus (Chiroptera: Vespertilionidae) ’, Journal of Mammalogy, 82(2), pp. 339–351. Available at: https://doi.org/10.1644/15451542(2001)082<0339:iagvie>2.0.co;2.

      Kazial, K.A., Kenny, T.L. and Burnett, S.C. (2008) ‘Little brown bats (Myotis lucifugus) recognize individual identity of conspecifics using sonar calls’, Ethology, 114(5), pp. 469– 478. Available at: https://doi.org/10.1111/j.1439-0310.2008.01483.x.

      Kick, S.A. (1982) ‘Target-detection by the echolocating bat, Eptesicus fuscus’, Journal of Comparative Physiology □ A, 145(4), pp. 431–435. Available at: https://doi.org/10.1007/BF00612808/METRICS.

      Kothari, N.B. et al. (2014) ‘Timing matters: Sonar call groups facilitate target localization in bats’, Frontiers in Physiology, 5 MAY. Available at: https://doi.org/10.3389/fphys.2014.00168.

      Mohl, B. and Surlykke, A. (1989) ‘Detection of sonar signals in the presence of pulses of masking noise by the echolocating bat , Eptesicus fuscus’, pp. 119–124.

      Moss, C.F. and Surlykke, A. (2010) ‘Probing the natural scene by echolocation in bats’, Frontiers in Behavioral Neuroscience. Available at: https://doi.org/10.3389/fnbeh.2010.00033.

      Neretti, N. et al. (2003) ‘Time-frequency model for echo-delay resolution in wideband biosonar’, The Journal of the Acoustical Society of America, 113(4), pp. 2137–2145. Available at: https://doi.org/10.1121/1.1554693.

      Popper, A.N. and Fay, R.R. (1995) Hearing by Bats. Springer-Verlag.

      Roy, S. et al. (2019) ‘Extracting interactions between flying bat pairs using model-free methods’, Entropy, 21(1). Available at: https://doi.org/10.3390/e21010042.

      Sabol, B.M. and Hudson, M.K. (1995) ‘Technique using thermal infrared-imaging for estimating populations of gray bats’, Journal of Mammalogy, 76(4). Available at: https://doi.org/10.2307/1382618.

      Saillant, P.A. et al. (1993) ‘A computational model of echo processing and acoustic imaging in frequency- modulated echolocating bats: The spectrogram correlation and transformation receiver’, The Journal of the Acoustical Society of America, 94(5). Available at: https://doi.org/10.1121/1.407353.

      Salles, A., Diebold, C.A. and Moss, C.F. (2020) ‘Echolocating bats accumulate information from acoustic snapshots to predict auditory object motion’, Proceedings of the National Academy of Sciences of the United States of America, 117(46), pp. 29229–29238. Available at: https://doi.org/10.1073/PNAS.2011719117/SUPPL_FILE/PNAS.2011719117.SAPP.PDF.

      Sanderson, M.I. et al. (2003) ‘Evaluation of an auditory model for echo delay accuracy in wideband biosonar’, The Journal of the Acoustical Society of America, 114(3), pp. 1648– 1659. Available at: https://doi.org/10.1121/1.1598195.

      Schnitzler, H., Bioscience, E.K.- and 2001, undefined (no date) ‘Echolocation by insecteating bats: we define four distinct functional groups of bats and find differences in signal structure that correlate with the typical echolocation ’, academic.oup.comHU Schnitzler, EKV KalkoBioscience, 2001•academic.oup.com [Preprint]. Available at: https://academic.oup.com/bioscience/article-abstract/51/7/557/268230 (Accessed: 17 March 2025).

      Schnitzler, H.-U. et al. (1987) ‘The echolocation and hunting behavior of the bat,Pipistrellus kuhli’, Journal of Comparative Physiology A, 161(2), pp. 267–274. Available at: https://doi.org/10.1007/BF00615246.

      Simmons, J.A. et al. (1983) ‘Acuity of horizontal angle discrimination by the echolocating bat , Eptesicus fuscus’. Simmons, J.A. and Kick, S.A. (1983) ‘Interception of Flying Insects by Bats’, Neuroethology and Behavioral Physiology, pp. 267–279. Available at: https://doi.org/10.1007/978-3-64269271-0_20.

      Surlykke, A., Ghose, K. and Moss, C.F. (2009) ‘Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus’, Journal of Experimental Biology, 212(7), pp. 1011–1020. Available at: https://doi.org/10.1242/JEB.024620.

      Theriault, D.H. et al. (no date) ‘Reconstruction and analysis of 3D trajectories of Brazilian free-tailed bats in flight’, cs-web.bu.edu [Preprint]. Available at: https://csweb.bu.edu/faculty/betke/papers/2010-027-3d-bat-trajectories.pdf (Accessed: 4 May 2023).

      Ulanovsky, N. and Moss, C.F. (2008) ‘What the bat’s voice tells the bat’s brain’, Proceedings of the National Academy of Sciences of the United States of America, 105(25), pp. 8491– 8498. Available at: https://doi.org/10.1073/pnas.0703550105. Vanderelst, D. and Peremans, H. (2018) ‘Modeling bat prey capture in echolocating bats : The feasibility of reactive pursuit’, Journal of theoretical biology, 456, pp. 305–314.

      Yovel, Y. et al. (2009) ‘The voice of bats: How greater mouse-eared bats recognize individuals based on their echolocation calls’, PLoS Computational Biology, 5(6). Available at: https://doi.org/10.1371/journal.pcbi.1000400.

      Yovel, Y. and Ulanovsky, N. (2017) ‘Bat Navigation’, The Curated Reference Collection in Neuroscience and Biobehavioral Psychology, pp. 333–345. Available at: https://doi.org/10.1016/B978-0-12-809324-5.21031-6.

    1. stop occasionally to answer these questions on paper or in your head. Use them to identify sections you may need to reread, read more carefully, or ask your instructor about later.

      good way to understand what the author is getting at

  3. myclasses.sunyempire.edu myclasses.sunyempire.edu
    1. visual instruction was limited

      ...and still is. One of the biggest learning curves I had during my internships was how hard it was to actually effectively implement movies and videos into the class. As a student, I just thought my teacher was showing us a video so they didn't have to teach a full lesson, or so that they could grade papers. I thought the questions they asked were logical and just thought of on the spot.

      I was at a different district working under a Social Studies teacher that always showed movies in their class. It was to the points that the kids didn't want to do it (even though the did not have to fill anything out). The other teachers were saying negative things about the head teacher and I was confused. Once I saw there was not much constructive activity to go along with the movie, I was worried about its effectiveness.

      I taught an Immigration unit and showed a video of Ellis Island. I attempted to make Guided Notes for them to fill out. I thought listening to it in pieces would be best. Turns out I needed to have them watch it through once, and then replay the specific clips multiple times. Creating thought provoking questions students could answer after the video was also more difficult than I thought. All of this to say that it is actually not much easier to teach using videos because you need to make sure you are using them in moderation, with the appropriate activities, and in a way that engages students. There are so many factors that videos may not work in a classroom.

    2. Many reasons have been given as to why instructional television was not adopted to a greaterextent

      I wonder if one of the reasons is student attention. I know when I am sitting watching a video, it doesn't hold my attention as closely as a live person talking to me. Is there also an interaction piece to this? Sitting and watching a talking head on TV and not being able to ask that person to re-phrase their comment can make learning more difficult for some.

    1. Reading the About Us page is typically a good place to begin. For instance, in a section called “Living our values,” IBM includes the following: Dedication to every client’s success Innovation that matters — for our company and for the world Trust and responsibility in all relationships If you were applying for a job at IBM, you would want to consider what soft skills you possess that fit this framework — customer service, attentiveness, initiative and loyalty — and weave them into your resume.

      I usually tend skip the About Us part and head straight to the required skills section to see how I can align my skills with those the job role demands. I think moving forward I am certainly going t dedicate some time to look into this and make sure the organization's values align with mine, which would maybe also prove to be useful during behavioral interview rounds.

    1. Reading like a writer changes the question from what to how, as in,“How does this say what it says?”Reading like a writer involves asking questions of the piece ofwriting in order to understand what it’s trying to do and how it’s tryingto do it.

      Reading like a writer is like not just getting a story in my head but thinking about the authors point of you and getting into the author's head.

    2. Usually, we spend most of our time reading for meaning, taking inand assessing the ideas presented in a piece of writing.

      Usually when I read, it was just a story in my head.

    1. " Yes, some nights she does, in snatches. bows her poor head against the wall and snatches a little sleep. [Pause.] Still speak? Yes, some nights she does, when she fancies none can hear. " This specific section right here can be broke down to presence vs absence, strange of voice, and strand of time. All three work perfectly. When they say she sleeps in "snatches" it means her naps are not restful its like a continuous pattern of awake and then sleep which creates presence vs absence. Then when it says "bows her poor head against the wall" makes her seem tired and restless like she is consistently clinging on to life in a sense? or even a sense of being trapped? which this is a strand of time because this event feels repeated and it feels continuous, and it makes me feel like Shes hardly even there and it makes me think that she is suffering. Then when it says "Still speak? Yes, some nights she does, when she fancies none can hear." It shows she speaks to herself when nobody else is listening It makes her voice seem eerie or ghostly and it really makes me wonder if she is fading away, however still trying to cling to life. Her voice is like half present, shes halfway here, clinging for life.

    1. perhaps to protect myselffrom my doubts, I stopped taking English seriously.

      I find that this is common amongst a lot of people. I can even say so for myself, when I wouldn’t do as well as I thought I did on a test or in a class I would get discouraged. It made me grow resentment towards a class I once enjoyed. That led me to procrastinate even more and made me dread doing the work for that class. Although failing can really mess with your head, I think this story points out the importance of determination despite all the discouragement

    1. Then Hrothgar departed, his earl-throng attending him, Hrothgar retires. Folk-lord of Scyldings, forth from the building; The war-chieftain wished then Wealhtheow to look for, The queen for a bedmate. To keep away Grendel 5 The Glory of Kings had given a hall-watch, God has provided a watch for the hall. As men heard recounted: for the king of the Danemen He did special service, gave the giant a watcher: And the prince of the Geatmen implicitly trusted His warlike strength and the Wielder’s protection. Beowulf is selfconfident; he prepares for rest. 10 His armor of iron off him he did then, His helmet from his head, to his henchman committed His chased-handled chain-sword, choicest of weapons, And bade him bide with his battle-equipments. The good one then uttered words of defiance, 15 Beowulf Geatman, ere his bed he upmounted: “I hold me no meaner in matters of prowess, In warlike achievements, than Grendel does himself; Beowulf boasts of his ability to cope with Grendel. Hence I seek not with sword-edge to sooth him to slumber, Of life to bereave him, though well I am able.

      Then Hrothgar left with his friend, the lord of Scyldings, from the building. With the War-Chieftan wishing them good fortune in their journey. The Kings had created a watcher, as the people had recalled, the king of the Danemen did a special service and gave the watcher his trust because of his warlike strength. The Watchers armor was then taken off, he gave his helmet to his henchman and his chain sword and thanked him for holding his items, then someone said words of Defiance Beowulf Geatman stood from his bed and said”I am no meaner in prowess, or in war time achievements than Grendel. So I seek to not defeat Grendel with a sword even though I could.

  4. www.newyorker.com www.newyorker.com
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their careful assessment and enthusiastic appreciation of our work.

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __In this article, Thomas et al. use a super-resolution approach in living cells to track proteins involved in the fusion event of sexual reproduction. They study the spatial organization and dynamics of the actin fusion focus, a key structure in cell-cell fusion in Schizosaccharomyces pombe. The researchers have adapted a high-precision centroid mapping method using three-color live-cell epifluorescence imaging to map the dynamic architecture of the fusion focus during yeast mating. The approach relies on tracking the centroid of fluorescence signals for proteins of interest, spatially referenced to Myo52-mScarlet-I (as a robust marker) and temporally referenced using a weakly fluorescent cytosolic protein (mRaspberry), which redistributes strongly upon fusion. The trajectories of five key proteins, including markers of polarity, cytoskeleton, exocytosis and membrane fusion, were compared to Myo52 over a 75-minute window spanning fusion. Their observations indicate that secretory vesicles maintain a constant distance from the plasma membrane whereas the actin network compacts. Most importantly, they discovered a positive feedback mechanism in which myosin V (Myo52) transports Fus1 formin along pre-existing actin filaments, thereby enhancing aster compaction.

      This article is well written, the arguments are convincing and the assertions are balanced. The centroid tracking method has been clearly and solidly controlled. Overall, this is a solid addition to our understanding of cytoskeletal organization in cell fusion.

      Major comments: No major comment.

      Minor comments: _ Page 8 authors wrote "Upon depletion of Myo52, Ypt3 did not accumulate at the fusion focus (Figure 3C). A thin, wide localization at the fusion site was occasionally observed (Figure 3C, Movies S3)" : Is there a quantification of this accumulation in the mutant?

      We will provide the requested quantification. The localization is very faint, so we are not sure that quantification will capture this faithfully, but we will try.

      _ The framerate of movies could be improved for reader comfort: For example, movie S6 lasts 0.5 sec.

      We agree that movies S3 and S6 frame rates could be improved. We will provide them with slower frame rate.

      Reviewer #1 (Significance (Required)):

      This study represents a conceptual and technical breakthrough in our understanding of cytoskeletal organization during cell-cell fusion. The authors introduce a high-precision, three-color live-cell centroid mapping method capable of resolving the spatio-temporal dynamics of protein complexes at the nanometer scale in living yeast cells. This methodological innovation enables systematic and quantitative mapping of the dynamic architecture of proteins at the cell fusion site, making it a powerful live-cell imaging approach. However, it is important to keep in mind that the increased precision achieved through averaging comes at the expense of overlooking atypical or outlier behaviors. The authors discovered a myosin V-dependent mechanism for the recruitment of formin that leads to actin aster compaction. The identification of Myo52 (myosin V) as a transporter of Fus1 (formin) to the fusion focus adds a new layer to our understanding of how polarized actin structures are generated and maintained during developmentally regulated processes such as mating.

      Previous studies have shown the importance of formins and myosins during fusion, but this paper provides a quantitative and dynamic mapping that demonstrates how Myo52 modulates Fus1 positioning in living cells. This provides a better understanding of actin organization, beyond what has been demonstrated by fixed-cell imaging or genetic perturbation.

      Audience: Cell biologists working on actin dynamics, cell-cell fusion and intracellular transport. Scientists involved in live-cell imaging, single particle tracking and cytoskeleton modeling.

      I have expertise in live-cell microscopy, image analysis, fungal growth machinery and actin organization.

      We thank the reviewer for their appreciation of our work.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __ A three-color imaging approach to use centroid tracking is employed to determine the high resolution position over time of tagged actin fusion focus proteins during mating in fission yeast. In particular, the position of different protein components (tagged in a 3rd color) were determined in relation to the position (and axis) of the molecular motor Myo52, which is tagged with two different colors in the mating cells. Furthermore, time is normalized by the rapid diffusion of a weak fluorescent protein probe (mRaspberry) from one cell to the other upon fusion pore opening. From this approach multiple important mechanistic insights were determined for the compaction of fusion focus proteins during mating, including the general compaction of different components as fusion proceeds with different proteins having specific stereotypical behaviors that indicate underlying molecular insights. For example, secretory vesicles remain a constant distance from the plasma membrane, whereas the formin Fus1 rapidly accumulates at the fusion focus in a Myo52-dependent manner.

      I have minor suggestions/points: (1) Figure 1, for clarity it would be helpful if the cells shown in B were in the same orientation as the cartoon cells shown in A. Similarly, it would be helpful to have the orientation shown in D the same as the data that is subsequently presented in the rest of the manuscript (such as Figure 2) where time is on the X axis and distance (position) is on the Y axis.

      We have turned each image in panel B by 180° to match the cartoon in A. For panel D, we are not sure what the reviewer would like. This panel shows the coordinates of each Myo52 position, whereas Figure 2 shows oriented distance (on the Y axis) over time (on the X axis). Perhaps the reviewer suggests that we should display panel D with a rotation onto the Y axis rather than the X axis. We feel that this would not bring more clarity and prefer to keep it as is.

      (2) Figure 2, for clarity useful to introduce how the position of Myo52 changes over time with respect to the fusion site (plasma membrane) earlier, and then come back to the positions of different proteins with respect to Myo52 shown in 2E. Currently the authors discuss this point after introducing Figure 2E, but better for the reader to have this in mind beforehand.

      We have added a sentence at the start of the section describing Figure 2, pointing out that the static appearance of Myo52 is due to it being used as reference, but that in reality, it moves relative to the plasma membrane: “Because Myo52 is the reference, its trace is flat, even though in reality Myo52 also moves relative to other proteins and the plasma membrane (see Figure 2E)”. This change is already in the text.

      (3) First sentence of page 8 "..., peaked at fusion time and sharply dropped post-fusion (Figure S3)." Figure S3 should be cited so that the reader knows where this data is presented.

      Thanks, we have added the missing figure reference to the text.

      (4) Figure 3D-H, why is Exo70 used as a marker for vesicles instead of Ypt3 for these experiments? Exo70 seems to have a more confusing localization than Ypt3 (3C vs 3D), which seems to complicate interpretations.

      There are two main reasons for this choice. First, the GFP-Ypt3 fluorescence intensity is lower than that of Exo70-GFP, which makes analysis more difficult and less reliable. Second, in contrast to Exo70-GFP where the endogenous gene is tagged at the native genomic locus, GFP-Ypt3 is expressed as additional copy in addition to endogenous untagged Ypt3. Although GFP-Ypt3 was reported to be fully functional as it can complement the lethality of a ypt3 temperature sensitive mutant (Cheng et al, MBoC 2002), its expression levels are non-native and we do not have a strain in which ypt3 is tagged at the 5’ end at the native genomic locus. For these reasons, we preferred to examine in detail the localization of Exo70. We do not think it complicates interpretations. Exo70 faithfully decorates vesicles and exhibits the same localization as Ypt3 in WT cells (see Figure 2D) and in myo52-AID (see Figure 3C-D). We realize that our text was a bit confusing as we opposed the localization of Exo70 and Ypt3, when all we wanted to state was that the Exo70-GFP signal is stronger. We have corrected this in the text.

      (5) Page 10, end of first paragraph, "We conclude...and promotes separation of Myo52 from the vesicles." This is an interesting hypothesis/interpretation that is consistent with the spatial-temporal organization of vesicles and the compacting fusion focus, but the underlying molecular mechanism has not be concluded.

      This is an interpretation that is in line with our data. Firm conclusion that the organization of the actin fusion focus imposes a steric barrier to bulk vesicle entry will require in vitro reconstitution of an actin aster driven by formin-myosin V feedback and addition of myosin V vesicle-like cargo, which can be a target for future studies. To make clear that it is an interpretation and not a definitive statement, we have added “likely” to the sentence, as in: “We conclude that the distal position of vesicles in WT cells is a likely steric consequence of the architecture of the fusion focus, which restricts space at the center of the actin aster and promotes separation of Myo52 from the vesicles”.

      (6) Figure 5F and 5G, the results are confusing and should be discussed further. Depletion of Myo52 decreases Fus1 long-range movements, indicating that Fus1 is being transported by Myo52 (5F). Similarly, the Fus1 actin assembly mutant greatly decreases Fus1 long-range movements and prevents Myo52 binding (5G), perhaps indicating that Fus1-mediated actin assembly is important. It seems the author's interpretations are oversimplified.

      We show that Myo52 is critical for Fus1 long-range movements, as stated by the reviewer. We also show that Fus1-mediated actin assembly is important. The question is in what way.

      One possibility is that FH2-mediated actin assembly powers the movement, which in this case represents the displacement of the formin due to actin monomer addition on the polymerizing filament. A second possibility is that actin filaments assembled by Fus1 somehow help Myo52 move Fus1. This could be for instance because Fus1-assembled actin filaments are preferred tracks for Myo52-mediated movements, or because they allow Myo52 to accumulate in the vicinity of Fus1, enhancing their chance encounter and thus the number of long-range movements (on any actin track). Based on the analysis of the K1112A point mutant in Fus1 FH2 domain, our data cannot discriminate between these three different options, which is why we concluded that the mutant allele does not allow us to make a firm conclusion. However, the Myo52-dependence clearly shows that a large fraction of the movements requires the myosin V. We have clarified the end of the paragraph in the following way: “Therefore, analysis of the K1112A mutant phenotype does not allow us to clearly distinguish between Fus1-powered from Myo52-powered movements. Future work will be required to test whether, in addition to myosin V-dependent transport, Fus1-mediated actin polymerization also directly contributes to Fus1 long-range movements.”

      (7) Figure 6, why not measure the fluorescence intensity of Fus1 as a proxy for the number of Fus1 molecules (rather than the width of the Fus1 signal), which seems to be the more straight-forward analysis?

      The aim of the measurement was to test whether Myo52 and Fus1 activity help focalize the formin at the fusion site, not whether these are required for localization in this region. This is why we are measuring the lateral spread of the signal (its width) rather than the fluorescence intensity of the signal. We know from previous work that Fus1 localizes to the shmoo tip independently of myosin V (Dudin et al, JCB 2015), and we also show this in Figure 6. However, the precise distribution of Fus1 is wider in absence of the myosins.

      We can and will measure intensities to test whether there is also a quantitative difference in the number of molecules at the shmoo tip.

      (8) Figure 7, the authors should note (and perhaps discuss) any evidence as to whether activation of Fus1 to facilitate actin assembly depends upon Fus1 dissociating from Myo52 or whether Fus1 can be activated while still associated with Myo52, as both circumstances are included in the figure.

      This is an interesting point. We have no experimental evidence for or against Fus1 dissociating from Myo52 to assemble actin. However, it is known that formins rotate along the actin filament double helix as they assemble it, a movement that seems poorly compatible with processive transport by myosin V. In Figure 7, we do not particularly want to imply that Myo52 associates with Fus1 linked or not with an actin filament. The figure serves to illustrate the focusing mechanism of myosin V transporting a formin, which is more evident when we draw the formin attached to a filament end. We have now added a sentence in the figure legend to clarify this point: “Note that it is unknown whether Myo52 transports Fus1 associated or not with an actin filament.”

      (9) Figure 7, the color of secretory vesicles should be the same in A and B.

      This is now corrected.

      Reviewer #2 (Significance (Required)):

      This is an impactful and high quality manuscript that describes an elegant experimental strategy with important insights determined. The experimental imaging strategy (and analysis), as well as the insight into the pombe mating fusion focus and its comparison to other cytoskeletal compaction events will be of broad scientific interest.

      We thank the reviewer for their appreciation of our work.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Fission yeast cell-cell fusion during mating is mediated by an actin-based structure called the 'fusion focus', which orchestrates actin polymerization by the mating-specific formin, Fus1, to direct polarized secretion towards the mating site. In the current study, Thomas and colleagues quantitatively map the spatial distribution of proteins mediating cell-cell fusion using a three-color fluorescence imaging methodology in the fission yeast Schizosaccharomyces pombe. Using Myo52 (Type V myosin) as a fluorescence reference point, the authors discover that proteins known to localize to the fusion focus have distinct spatial distributions and accumulation profiles at the mating site. Myo52 and Fus1 form a complex in vivo detected by co-immunoprecipitation and each contribute to directing secretory vesicles to the fusion focus. Previous work from this group has shown that the intrinsically disordered region (IDR) of Fus1 plays a critical role in forming the fusion focus. Here, the authors swap out the IDR of fission yeast Fus1 for the IDR of an unrelated mammalian protein, coincidentally called 'fused in sarcoma' (FUS). They express the Fus1∆IDR-FUSLC-27R chimera in mitotically dividing fission yeast cells, where Fus1 is not normally expressed, and discover that the Fus1∆IDR-FUSLC-27R chimera can travel with Myo52 on actively polymerizing actin cables. Additionally, they show that acute loss of Myo52 or Fus1 function, using Auxin-Inducible Degradation (AID) tags and point mutations, impair the normal compaction of the fusion focus, suggesting that direct interaction and coordination of Fus1 and Myo52 helps shape this structure.

      Major Comments:

      (1) In the Results section for Figure 2, the authors claim that actin filaments become shorter and more cross-linked they move away from the fusion site during mating, and suggest that this may be due to the presence of Myo51. However, the evidence to support this claim is not made clear. Is it supported by high-resolution electron microscopy of the actin filaments, or some other results? This needs to be clarified.

      Sorry if our text was unclear. The basis for the claim that actin filaments become shorter comes from our observation that the average position of tropomyosin and Myo51, both of which decorate actin filaments, is progressively closer to both Fus1 and the plasma membrane. Thus, the actin structure protrudes less into the cytosol as fusion progresses. The basis for claiming that Myo51 promotes actin filament crosslinking comes mainly from previously published papers, which had shown that 1) Myo51 forms complexes with the Rng8 and Rng9 proteins (Wang et al, JCB 2014), and 2) the Myo51-Rng8/9 not only binds actin through Myo51 head domain but also binds tropomyosin-decorated actin through the Rng8/9 moiety (Tang et al, JCB 2016; reference 27 in our manuscript). We had also previously shown that these proteins are necessary for compaction of the fusion focus (Dudin et al, PLoS Genetics 2017; reference 28 in our manuscript). Except for measuring the width of Fus1 distribution in myo51∆ mutants, which confirms previous findings, we did not re-investigate here the function of Myo51.

      We have now re-written this paragraph to present the previous data more clearly: “The distal localization of Myo51 was mirrored by that of tropomyosin Cdc8, which decorates linear actin filaments (Figure 2B) (Hatano et al, 2022). The distal position of the bulk of Myo51-decorated actin filaments was confirmed using Airyscan super-resolution microscopy (Figure 2B, right). Thus, the average position of actin filaments and decreasing distance to Myo52 indicates they initially extend a few hundred nanometers into the cytosol and become progressively shorter as fusion proceeds. Previous work had shown that Myo51 cross-links and slides Cdc8-decorated actin filaments relative to each other (Tang et al, 2016) and that both proteins contribute to compaction of the fusion focus in the lateral dimension along the cell-cell contact area (perpendicular to the fusion axis) (Dudin et al, 2017). We confirmed this function by measuring the lateral distribution of Fus1 along the cell-cell contact area (perpendicular to the fusion axis), which was indeed wider in myo51∆ than WT cells (see below Figure 6A-B).”

      (2) In Figure 4, the authors comment that disrupting Fus1 results in more disperse Myo52 spatial distribution at the fusion focus, raising the possibility that Myo52 normally becomes focused by moving on the actin filaments assembled by Fus1. This can be tested by asking whether latrunculin treatment phenocopies the 'more dispersed' Myo52 localization seen in fus1∆ cells? If Myo52 is focused instead by its direct interaction with Fus1, the latrunculin treatment should not cause the same phenotype.

      This is in principle a good idea, though it is technically challenging because pharmacological treatment of cell pairs in fusion is difficult to do without disturbing pheromone gradients which are critical throughout the fusion process (see Dudin et al, Genes and Dev 2016). We will try the experiment but are unsure about the likelihood of technical success.

      We note however that a similar experiment was done previously on Fus1 overexpressed in mitotic cells (Billault-Chaumartin et al, Curr Biol 2022; Fig 1D). Here, Fus1 also forms a focus and latrunculin A treatment leads to Myo52 dispersion while keeping the Fus1 focus, which is in line with our proposal that Myo52 becomes focused by moving on Fus1-assembled actin filaments. Similarly, we showed in Figure 5B that Latrunculin A treatment of mitotic cells expressing Fus1∆IDR-FUSLC-27R also results in Myo52, but not Fus1 dispersion.

      (3) The Fus1∆IDR-FUSLC-27R chimera used in Figure 5 is an interesting construct to examine actin-based transport of formins in cells. I was curious if the authors could provide the rates of movement for Myo52 and for Fus1∆IDR-FUSLC-27R, both before and after acute depletion of Myo52. It would be interesting to see if loss of Myo52 alters the rate of movement, or instead the movement stems from formin-mediated actin polymerization.

      We will measure these rates.

      (4) Also, Myo52 is known to interact with the mitotic formin For3. Does For3 colocalize with Myo52 and Fus1∆IDR-FUSLC-27R along actin cables?

      This is an interesting question for which we do not have an answer. For technical reasons, we do not have the tools to co-image For3 with Fus1∆IDR-FUSLC-27R because both are tagged with GFP. We feel that this question goes beyond the scope of this paper.

      (5) If Fus1∆IDR-FUSLC-27R is active, does having ectopic formin activity in mitotic cells affect actin cable architecture? This could be assessed by comparing phalloidin staining for wildtype and Fus1∆IDR-FUSLC-27R cells.

      We are not sure what the purpose of this experiment is, or how informative it would be. If it is to evaluate whether Fus1∆IDR-FUSLC-27R is active, our current data already demonstrates this. Indeed, Fus1∆IDR-FUSLC-27R recruits Myo52 in a F-actin and FH2 domain-dependent manner (shown in Figure 5B and 5G), which demonstrates that Fus1∆IDR-FUSLC-27R FH2 domain is active. Even though Fus1∆IDR-FUSLC-27R assembles actin, we predict that its effect on general actin organization will be weak. Indeed, it is expressed under endogenous fus1 promoter, leading to very low expression levels during mitotic growth, such that only a subset of cells exhibit a Fus1 focus. Furthermore, most of these Fus1 foci are at or close to cell poles, where linear actin cables are assembled by For3, such that they may not have a strong disturbing effect. Because analysis of actin cable organization by phalloidin staining is difficult (due to the more strongly staining actin patches), cells with clear change in organization predicted to be rare in the population, and the gain in knowledge not transformative, we are not keen to do this experiment.

      Minor Comments:

      Prior studies are referenced appropriately. Text and figures are clear and accurate. My only suggestion would be Figure 1E-H could be moved to the supplemental material, due to their extremely technical nature. I believe this would help the broad audience focus on the experimental design mapped out in Figure 1A-D.

      We are relatively neutral about this. If this suggestion is supported by the Editor, we can move these panels to supplement.

      Reviewer #3 (Significance (Required)):

      Significance: This study provides an improved imaging method for detecting the spatial distributions of proteins below 100 nm, providing new insights about how a relatively small cellular structure is organized. The use of three-color cell imaging to accurately measure accumulation rates of molecular components of the fusion focus provides new insight into the development of this structure and its roles in mating. This method could be applied to other multi-protein structures found in different cell types. This work uses rigorously genetic tools such as knockout, knockdown and point mutants to dissect the roles of the formin Fus1 and Type V myosin Myo52 in creating a proper fusion focus. The study could be improved by biochemical assays to test whether Myo52 and Fus1 directly interact, since the interaction is only shown by co-immunoprecipitation from extracts, which may reflect an indirect interaction.

      Indeed, future studies should dissect the Fus1-Myo52 interaction, to determine whether it is direct and identify mutants that impair it.

      I believe this work advances the cell-mating field by providing others with a spatial and temporal map of conserved factors arriving to the mating site. Additionally, they identified a way to study a mating specific protein in mitotically dividing cells, offering future questions to address.

      This study should appeal to a range of basic scientists interested in cell biology, the cytoskeleton, and model organisms. The three-colored quantitative imaging could be applied to defining the architecture of many other cellular structures in different systems. Myosin and actin scientists will be interested in how this work expands the interplay of these two fields.

      I am a cell biologist with expertise in live cell imaging, genetics and biochemistry.

      We thank the reviewer for their appreciation of our work.

    1. Reviewer #3 (Public review):

      Summary:

      The authors use calcium recordings from STN to measure STN activity during spontaneous movement and in a multi-stage avoidance paradigm. They also use optogenetic excitation, optogenetic inhibition, and lesion approaches to increase or decrease the activity of STN during the avoidance paradigm. The paper reports a large amount of data and makes many claims, some seem well supported to this Reviewer, others not so much.

      Strengths:

      Well-supported claims include data showing that during spontaneous movements, especially contraversive ones, STN calcium activity is increased using bulk photometry measurements. Single-cell measures back this claim but also show that it is only a modest minority of STN cells that respond strongly, with most showing no response during movement, and a similar number showing smaller inhibitions during movement.

      Similar data during cued active avoidance procedures show that STN calcium activity sharply increases in response to auditory cues, and during cued movements to avoid a footshock. Optogenetic and lesion experiments are consistent with an important role for STN in generating cue-evoked avoidance. And a strength of these results is that multiple bi-directional approaches were used.

      Weaknesses:

      I found the experimental design and presentation convoluted and the results over-interpreted.

      (1) I really don't understand or accept this idea that delayed movement is necessarily indicative of cautious movements. Is the distribution of responses multi-modal in a way that might support this idea, or do the authors simply take a normal distribution and assert that the slower responses represent 'caution'? Even if responses are multi-modal and clearly distinguished by 'type', why should readers think this that delayed responses imply cautious responding instead of say: habituation or sensitization to cue/shock, variability in attention, motivation, or stress; or merely uncertainty which seems plausible given what I understand of the task design where the same mice are repeatedly tested in changing conditions. This relates to a major claim (i.e., in the work's title).

      (2) Related to the last, I'm struggling to understand the rationale for dividing cells into 'types' based the their physiological responses in some experiments (e.g., Figure 7).

      (3) The description and discussion of orienting head movements were not well supported, but were much discussed in the avoidance datasets. The initial speed peaks to cue seem to be the supporting data upon which these claims rest, but nothing here suggests head movement or orientation responses.

      (4) Similar to the last, the authors note in several places, including abstract, the importance of STN in response timing, i.e., particularly when there must be careful or precise timing, but I don't think their data or task design provides a strong basis for this claim.

      (5) I think that other reports show that STN calcium activity is recruited by inescapable foot shock as well. What do these authors see? Is shock, independent of movement, contributing to sharp signals during escapes?

      (6) In particular, and related to the last point, the following work is very relevant and should be cited: https://elifesciences.org/reviewed-preprints/104643#tab-content. Note that the focus of this other paper is on a subset of VGLUT2+ Tac1 neurons in paraSTN, but using VGLUT2-Cre to target STN will target both STN and paraSTN.

      (7) In multiple other instances, claims that were more tangential to the main claims were made without clearly supporting data or statistics. E.g., claim that STN activation is related to translational more than rotational movement; claim that GCaMP and movement responses to auditory cues were small; claims that 'some animals' responded differently without showing individual data.

      (8) In several figures, the number of subjects used was not described. This is necessary. Also necessary is some assessment of the variability across subjects. The only measure of error shown in many figures relates to trial-to-trial or event variability, which is minimal because, in many cases, it appears that hundreds of trials may have been averaged per animal, but this doesn't provide a strong view of biological variability. When bar/line plots are used to display data, I recommend showing individual animals where feasible.

      (9) Can the authors consider the extent to which calcium imaging may be better suited to identify increases compared to decreases and how this may affect the results, particularly related to the GRIN data when similar numbers of cells show responses in both directions (e.g., Figure 3)?

      (10) Raw example traces are not provided.

      (11) The timeline of the spontaneous movement and avoidance sessions was not clear, nor was the number of events or sessions per animal nor how this was set. It is not clear if there was pre-training or habituation, if many or variable sessions were combined per animal, or what the time gaps between sessions were, or if or how any of these parameters might influence interpretation of the results.

      (12) It is not clear if or how the spread of expression outside of the target STN was evaluated, and if or how many mice were excluded due to spread or fiber placements.

    1. Reviewer #1 (Public review):

      Summary:

      The authors introduce a densely-sampled dataset where 6 participants viewed images and sentence descriptions derived from the MS Coco database over the course of 10 scanning sessions. The authors further showcase how image and sentence decoders can be used to predict which images or descriptions were seen, using pairwise decoding across a set of 120 test images. The authors find decodable information widely distributed across the brain, with a left-lateralized focus. The results further showed that modality-agnostic models generally outperformed modality-specific models, and that data based on captions was not explained better by caption-based models but by modality-agnostic models. Finally, the authors decoded imagined scenes.

      Strengths:

      (1) The dataset presents a potentially very valuable resource for investigating visual and semantic representations and their interplay.

      (2) The introduction and discussion are very well written in the context of trying to understand the nature of multimodal representations and present a comprehensive and very useful review of the current literature on the topic.

      Weaknesses:

      (1) The paper is framed as presenting a dataset, yet most of it revolves around the presentation of findings in relation to what the authors call modality-agnostic representations, and in part around mental imagery. This makes it very difficult to assess the manuscript, whether the authors have achieved their aims, and whether the results support the conclusions.

      (2) While the authors have presented a potential use case for such a dataset, there is currently far too little detail regarding data quality metrics expected from the introduction of similar datasets, including the absence of head-motion estimates, quality of intersession alignment, or noise ceilings of all individuals.

      (3) The exact methods and statistical analyses used are still opaque, making it hard for a reader to understand how the authors achieved their results. More detail in the manuscript would be helpful, specifically regarding the exact statistical procedures, what tests were performed across, or how data were pooled across participants.

      (4) Many findings (e.g., Figure 6) are still qualitative but could be supported by quantitative measures.

      (5) Results are significant in regions that typically lack responses to visual stimuli, indicating potential bias in the classifier. This is relevant for the interpretation of the findings. A classification approach less sensitive to outliers (e.g., 70-way classification) could avoid this issue. Given the extreme collinearity of the experimental design, regressors in close temporal proximity will be highly similar, which could lead to leakage effects.

      (6) The manuscript currently lacks a limitations section, specifically regarding the design of the experiment. This involves the use of the overly homogenous dataset Coco, which invites overfitting, the mixing of sentence descriptions and visual images, which invites imagery of previously seen content, and the use of a 1-back task, which can lead to carry-over effects to the subsequent trial.

      (7) I would urge the authors to clarify whether the primary aim is the introduction of a dataset and showing the use of it, or whether it is the set of results presented. This includes the title of this manuscript. While the decoding approach is very interesting and potentially very valuable, I believe that the results in the current form are rather descriptive, and I'm wondering what specifically they add beyond what is known from other related work. This includes imagery-related results. This is completely fine! It just highlights that a stronger framing as a dataset is probably advantageous for improving the significance of this work.

    1. Where higher education forwomen was advocated for material reasons, stress was laid on the need to equip middle-class women toearn a living as teachers and protect them from the risk of downward mobilit

      For Jourdain, it allowed her to 1) pursue a career in higher education; 2) enrol for a doctorate in Paris 3) write a dissertation 4) be hired as Vice-head at St. Hughe

    1. Recall that the purpose of a vectored interrupt mechanism is to reduce the need for a single interrupt handler to search all possible sources of interrupts to determine which one needs service. In practice, however, computers have more devices (and, hence, interrupt handlers) than they have address elements in the interrupt vector. A common way to solve this problem is to use interrupt chaining, in which each element in the interrupt vector points to the head of a list of interrupt handlers. When an interrupt is raised, the handlers on the corresponding list are called one by one, until one is found that can service the request. This structure is a compromise between the overhead of a huge interrupt table and the inefficiency of dispatching to a single interrupt handler.

      This passage explains vectored interrupts and how they handle multiple devices efficiently. Since there are often more devices than vector entries, interrupt chaining links multiple handlers to a single vector entry. When an interrupt occurs, handlers are checked in order until the correct one services the request, balancing speed and memory usage.

  5. Aug 2025
    1. A slimy rock cod with bulging eyes that pleaded not to be thrown into a pan of hot oil

      The humor was superb and I could really imagine the fish's eyes popping out of his head.

  6. pressbooks.library.torontomu.ca pressbooks.library.torontomu.ca
    1. The lighting department is, well, responsible for all the lights required to shoot a scene. As should be obvious, lights require electricity. And electricity can be dangerous. Especially when you have 100 crew people running around trying to get a shot before lunch. So, the head of the lighting department is a skilled electrician, known as the gaffer

      the lighting department can be very dangerous someone could get electrocuted. i never knew that a skilled electrician is called a gaffer. Although this is why you need skilled electricians in the first place for safety.

    1. With the first reading, you want to get an overall sense of what the writer is saying, keeping in mind the essay’s title and the facts that you know about the writer from the essay’s head-note

      Personally, I don't necessarily agree with this take--I think your first read-through of any article or essay should be a full analysis and your second read-through should focus on the nuances you missed... the reason for this is because a 'lazy read-through' is not as efficient.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, Wang et al. use a combination of genetic tools, novel experimental approaches and biomechanical models to quantify the contribution of passive leg forces in Drosophila. They also deduce that passive forces are not sufficient to support the body weight of the animal. Overall, the contribution of passive forces reported in this work is much less than what one would expect based on the size of the organism and previous literature from larger insects and mammals. This is an interesting finding, but some major caveats in their approach remain unanswered.

      Strengths:

      (1) The authors combine experimental measurements and modeling to quantify the contributions of passive forces at limb joints in Drosophila.

      (2) The authors replicate a previous experimental strategy (Hooper et al 2009, J. Neuro) to suspend animals in air for measuring passive forces and, as in previous studies, find that passive forces are much stronger than gravitational forces acting on the limbs. While in these previous studies using large insects, a lot of invasive approaches for accurately quantifying passive forces are possible (e.g., physically cutting of nerves, directly measuring muscle forces in isolated preparations, etc), the small size of Drosophila makes this difficult. The authors overcome this using a novel approach where they attach additional weight to the leg (changes gravitational force) and inactivate motor neurons (remove active forces). With a few approximations and assumptions, the authors then deduce the contribution of passive forces at each joint for each leg.

      (3) The authors find interesting differences in passive forces across different legs. This could have behavioral implications.

      (4) Finally, the authors compare experimental results of how a free-standing Drosophila is lowered ("falls down") on silencing motor neurons, to a biomechanical "OpenSim" model for deducing the role of passive forces in supporting the body weight of the fly. Using this approach, they conclude that passive forces are not sufficient to support the body weight of the fly.

      Weaknesses:

      (1) Line 65 "(Figure 1A). Inactivation causes a change in the leg's rest position; however, in preliminary experiments, the body rotation did not have a large effect on the rest positions of the leg following inactivation. This result is consistent with the one already reported for stick insects and shows that passive forces within the leg are much larger than the gravitational force on a leg and dominate limb position [1]." This is the direct replication of the previous work by Hooper et al 2009 and therefore authors should ideally show the data for this condition (no weight attached).

      (2) The authors use vglut-gal4, a very broad driver for inactivating motor neurons. The driver labels all glutamatergic neurons, including brain descending neurons and nerve cord interneurons, in addition to motor neurons. Additionally, the strength of inactivation might differ in different neurons (including motor neurons) depending on the expression levels of the opsins. As a result, in this condition, the authors might not be removing all active forces. This is a major caveat that authors do not address. They explore that they are not potentially silencing all inputs to muscles by using an additional octopaminergic driver, but this doesn't address the points mentioned above. At the very least, the authors should try using other motor neuron drivers, as well as other neuronal silencers. This driver is so broad that authors couldn't even use it for physiology experiments. Additionally, the authors could silence VGlut-labeled motor neurons and record muscle activity (potentially using GCaMP as has been done in several recent papers cited by the authors, Azevedo et al, 2020) as a much more direct readout.

      (3) Figure 4 uses an extremely simplified OpenSim model that makes several assumptions that are known to be false. For example, the Thorax-Coxa joint is assumed to be a ball and socket joint, which it is not. Tibia-tarsus joint is completely ignored and likely makes a major contribution in supporting overall posture, given the importance of the leg "claw" for adhering to substrates. Moreover, there are a couple of recent open-source neuromechanical models that include all these details (NeuromechFly by Lobato-Rios et al, 2022, Nat. Methods, and the fly body model by Vaxenburg et al, 2025, Nature). Leveraging these models to rule in or rule out contributions at other joints that are ignored in the authors' OpenSim model would be very helpful to make their case.

      (4) Figure 5 shows the experimental validation of Figure 4 simulations; however, it suffers from several caveats.

      a) The authors track a single point on the head of the fly to estimate the height of the fly. This has several issues. Firstly, it is not clear how accurate the tracking would be. Secondly, it is not clear how the fly actually "falls" on VGlut silencing; do all flies fall in a similar manner in every trial? Almost certainly, there will be some "pitch" and "role" in the way the fly falls. These will affect the location of this single-tracked point that doesn't reflect the authors' expectations. Unless the authors track multiple points on the fly and show examples of tracked videos, it is hard to believe this dataset and, hence, any of the resulting interpretations.

      b) As described in the previous point, the "reason" the fly falls on silencing all glutamatergic neurons could be due to silencing all sorts of premotor/interneurons in addition to the silencing of motor neurons.

      c) (line 175) "The first finding is that there was a large variation in the initial height of the fly (Figure 5C), consistent with a recent study of flies walking on a treadmill[20]." The cited paper refers to how height varies during "walking". However, in the current study, the authors are only looking at "standing" (i.e. non-walking) flies. So it is not the correct reference. In my opinion, this could simply reflect poor estimation of the fly's height based on poor tracking or other factors like pitch and role.

      d) "The rate at which the fly fell to the ground was much smaller in the experimental flies than it was in the simulated flies (Figure 5E). The median rate of falling was 1.3 mm/s compared to 37 mm/s for the simulated flies (Figure 5F). (Line 190) The most likely reason for the longer than expected time for the fly to fall is delays associated with motor neuron inactivation and muscle inactivation." I don't believe this reasoning. There are so many caveats (which I described in the above points) in the model and the experiment, that any of those could be responsible for this massive difference between experiment and modeling. Simply not getting rid of all active forces (inadequate silencing) could be one obvious reason. Other reasons could be that the model is using underestimates of passive forces, as alluded to in point 3.

      (5) Final figure (Figure 6) focuses on understanding the time course of neuronal silencing. First of all, I'm not entirely sure how relevant this is for the story. It could be an interesting supplemental data. But it seems a bit tangential. Additionally, it also suffers from major caveats.

      a) The authors now use a new genetic driver for which they don't have any behavioral data in any previous figures. So we do not know if any of this data holds true for the previous experiments. The authors perform whole-cell recordings from random unidentified motor neurons labeled by E49-Gal4>GtACR1 to deduce a time constant for behavioral results obtained in the VGlut-Gal4>GtACR1 experiments.

      b) The DMD setup is useful for focal inactivation, however, the appropriate controls and data are not presented. Line 200 "A spot of light on the cell body produces as much of the hyperpolarization as stimulating the entire fly (mean of 11.3 mV vs 13.1 mV across 9 neurons). Conversely, excluding the cell body produces only a small effect on the MN (mean of 2.6 mV)." First of all, the control experiment for showing that DMD is indeed causing focal inactivation would be to gradually move the spot of light away from the labeled soma, i.e. to the neighboring "labelled" soma and show that there is indeed focal inactivation. Instead authors move it quite a long distance into unlabeled neuropil. Secondly, I still don't get why the authors are doing this experiment. Even if we believe the DMD is functioning perfectly, all this really tells us is that a random subset motor neurons (maybe 5 or 6 cells, legend is missing this info) labeled by E49-Gal4 is strongly hyperpolarized by its own GtACR1 channel opening, rather than being impacted because of hyperpolarizations in other E49-Gal4 labeled neurons. This has no relevance to the interpretation of any of the VGlut-Gal4 behavioral data. VGLut-Gal4 is much broader and also labels all glutamatergic neurons, most of which are inhibitory interneurons whose silencing could lead to disinhibition of downstream networks.

    2. Author response:

      Reviewer 1:

      (1) Line 65 "(Figure 1A). Inactivation causes a change in the leg's rest position; however, in preliminary experiments, the body rotation did not have a large effect on the rest positions of the leg following inactivation. This result is consistent with the one already reported for stick insects and shows that passive forces within the leg are much larger than the gravitational force on a leg and dominate limb position [1]." This is the direct replication of the previous work by Hooper et al 2009 and therefore authors should ideally show the data for this condition (no weight attached).

      We did not present this data – the effect of inactivation on the leg’s rest position in unweighted leg - because it was already reported in the case of stick insects. However, we understand the reviewer’s point that it is important to present the data showing this replication. We will do the same in the revised version.

      (2) The authors use vglut-gal4, a very broad driver for inactivating motor neurons. The driver labels all glutamatergic neurons, including brain descending neurons and nerve cord interneurons, in addition to motor neurons. Additionally, the strength of inactivation might differ in different neurons (including motor neurons) depending on the expression levels of the opsins. As a result, in this condition, the authors might not be removing all active forces. This is a major caveat that authors do not address. They explore that they are not potentially silencing all inputs to muscles by using an additional octopaminergic driver, but this doesn't address the points mentioned above. At the very least, the authors should try using other motor neuron drivers, as well as other neuronal silencers. This driver is so broad that authors couldn't even use it for physiology experiments. Additionally, the authors could silence VGlut-labeled motor neurons and record muscle activity (potentially using GCaMP as has been done in several recent papers cited by the authors, Azevedo et al, 2020) as a much more direct readout.

      This reviewer critique is related to the use of vglut-gal4 –a broad driver– to inactivate motor neurons (MNs). The reviewer argues that the use of a broad driver might result in some effects that are not due to MN inactivation. Conversely, it is possible that not all MNs are inactivated. These critiques raise important points that we will address in the revision by 1) performing experiments with other MN drivers as suggested by the reviewer, 2) performing experiments in flies that are inactivated by freezing. These measurements will provide other estimates of passive forces allowing us to better triangulate the range of values for the passive forces. Moreover, it appears that one of the reviewer’s main concern is that the passive forces are overestimated because of the residual active forces. We will discuss this possibility in detail. It is important to note that in the end what we hope to accomplish is to provide a useful estimate of the passive forces. It is unlikely that the passive force will be a precise number like a physical constant as the passive forces likely depend on recent history.

      (3) Figure 4 uses an extremely simplified OpenSim model that makes several assumptions that are known to be false. For example, the Thorax-Coxa joint is assumed to be a ball and socket joint, which it is not. Tibia-tarsus joint is completely ignored and likely makes a major contribution in supporting overall posture, given the importance of the leg "claw" for adhering to substrates. Moreover, there are a couple of recent open-source neuromechanical models that include all these details (NeuromechFly by Lobato-Rios et al, 2022, Nat. Methods, and the fly body model by Vaxenburg et al, 2025, Nature). Leveraging these models to rule in or rule out contributions at other joints that are ignored in the authors' OpenSim model would be very helpful to make their case.

      Our OpenSim model predates the newer mechanical model. In the revised manuscript, we will revisit the model in light of recent developments.

      (4) Figure 5 shows the experimental validation of Figure 4 simulations; however, it suffers from several caveats.

      a) The authors track a single point on the head of the fly to estimate the height of the fly. This has several issues. Firstly, it is not clear how accurate the tracking would be. Secondly, it is not clear how the fly actually "falls" on VGlut silencing; do all flies fall in a similar manner in every trial? Almost certainly, there will be some "pitch" and "role" in the way the fly falls. These will affect the location of this single-tracked point that doesn't reflect the authors' expectations. Unless the authors track multiple points on the fly and show examples of tracked videos, it is hard to believe this dataset and, hence, any of the resulting interpretations.

      b) As described in the previous point, the "reason" the fly falls on silencing all glutamatergic neurons could be due to silencing all sorts of premotor/interneurons in addition to the silencing of motor neurons.

      c) (line 175) "The first finding is that there was a large variation in the initial height of the fly (Figure 5C), consistent with a recent study of flies walking on a treadmill[20]." The cited paper refers to how height varies during "walking". However, in the current study, the authors are only looking at "standing" (i.e. non-walking) flies. So it is not the correct reference. In my opinion, this could simply reflect poor estimation of the fly's height based on poor tracking or other factors like pitch and role.

      d) "The rate at which the fly fell to the ground was much smaller in the experimental flies than it was in the simulated flies (Figure 5E). The median rate of falling was 1.3 mm/s compared to 37 mm/s for the simulated flies (Figure 5F). (Line 190) The most likely reason for the longer than expected time for the fly to fall is delays associated with motor neuron inactivation and muscle inactivation." I don't believe this reasoning. There are so many caveats (which I described in the above points) in the model and the experiment, that any of those could be responsible for this massive difference between experiment and modeling. Simply not getting rid of all active forces (inadequate silencing) could be one obvious reason. Other reasons could be that the model is using underestimates of passive forces, as alluded to in point 3.

      (4a) Although we agree that measuring different points on the body would allow us to estimate the moments, we disagree that the height of the fly cannot be evaluated from the measurement of a single point. The measurements have been performed using the same techniques that we used to assess the fly’s height in a different study where we estimated the resolution of our imaging system to be ~20 mm(Chun et. al. 2021). We will include these details in the revised manuscript. The video showing the falling experiments are not available or referenced in the manuscript. These will be made available.

      b) We will repeat the “falling” experiment with a more restrictive driver.

      c) We disagree with the reviewer on this point. The system has a resolution of ~20 mm and is sufficient to make conclusion about the difference in the height of the fly. We will clarify this point in the revised manuscript.

      d) We do not follow the reviewer’s rationale here. The passive forces in the model (along with any residual forces) are the same in the model as well as in the experiment. Moreover, there will be a delay between light onset, neuronal inactivation and muscle inactivation. These processes are not instantaneous. In Figure 6, we estimate these delays and have concluded that they will cause substantial delay. In the revised manuscript, we will discuss other reasons for the delay suggested by the reviewer.

      (5) Final figure (Figure 6) focuses on understanding the time course of neuronal silencing. First of all, I'm not entirely sure how relevant this is for the story. It could be an interesting supplemental data. But it seems a bit tangential. Additionally, it also suffers from major caveats.

      a) The authors now use a new genetic driver for which they don't have any behavioral data in any previous figures. So we do not know if any of this data holds true for the previous experiments. The authors perform whole-cell recordings from random unidentified motor neurons labeled by E49-Gal4>GtACR1 to deduce a time constant for behavioral results obtained in the VGlut-Gal4>GtACR1 experiments.

      b) The DMD setup is useful for focal inactivation, however, the appropriate controls and data are not presented. Line 200 "A spot of light on the cell body produces as much of the hyperpolarization as stimulating the entire fly (mean of 11.3 mV vs 13.1 mV across 9 neurons). Conversely, excluding the cell body produces only a small effect on the MN (mean of 2.6 mV)." First of all, the control experiment for showing that DMD is indeed causing focal inactivation would be to gradually move the spot of light away from the labeled soma, i.e. to the neighboring "labelled" soma and show that there is indeed focal inactivation. Instead authors move it quite a long distance into unlabeled neuropil. Secondly, I still don't get why the authors are doing this experiment. Even if we believe the DMD is functioning perfectly, all this really tells us is that a random subset motor neurons (maybe 5 or 6 cells, legend is missing this info) labeled by E49-Gal4 is strongly hyperpolarized by its own GtACR1 channel opening, rather than being impacted because of hyperpolarizations in other E49-Gal4 labeled neurons. This has no relevance to the interpretation of any of the VGlut-Gal4 behavioral data. VGLut-Gal4 is much broader and also labels all glutamatergic neurons, most of which are inhibitory interneurons whose silencing could lead to disinhibition of downstream networks.

      (5 a) However, we can address the reviewer critique by recording from the Vglut line while using a MN line to target the recordings to MNs.

      b) Once we use the Vglut driver to perform these recordings, it will help assess how much of the MN inactivation is due to the GtACR expressed in the MN versus other neurons.

      Reviewer 2:

      While (as mentioned above) the study's conclusions are well-supported by the results and modeling, limitations arise because of the assumptions made. For instance, using a linear approximation may not hold at larger joint angles, and future studies would benefit from accounting for nonlinearities. Future studies could also delve into the source of passive forces, which is important for more deeply understanding the anatomical and physical basis of the results in this study. For instance, assessments of muscle or joint properties to correlate stiffness values with physical structure might be an area of future consideration.

      We agree with these comments but believe that these studies represent avenues for future work.

      Reviewer 3:

      (1) Passive torques are measured, but only some short speculative statements, largely based on previous work, are offered on their functional significance; some of these claims are not well supported by experimental evidence or theoretical arguments. Passive forces are judged as "large" compared to the weight force of the limb, but the arguably more relevant force is the force limb muscles can generate, which, even in equilibrium conditions, is already about two orders of magnitude larger. The conclusion that passive forces are dynamically irrelevant seems natural, but contrasts with the assertion that "passive forces [...] will have a strong influence on limb kinematics". As a result, the functional significance of passive joint torques in the fruit fly, if any, remains unclear, and this ambiguity represents a missed opportunity. We now know the magnitude of passive joint torques - do they matter and for what? Are they helpful, for example, to maintain robust neuronal control, or a mechanical constraint that negatively impacts performance, e.g., because they present a sink for muscle work?

      To us, measuring passive forces was the first step to understanding neural/biomechanical control of limb. In general, we agree with these comments and would like to understand the role of passive forces in overall control of limb. A complete discussion of the role of the significance of passive forces in the control of limb is beyond the scope of this study. We would like to note that it is unlikely that the active forces are two orders of magnitude larger during unloaded movement of the limb. However, these issues will have to be settled in future work.

      (2) The work is framed with a scaling argument, but the assumptions that underpin the associated claims are not explicit and can thus not be evaluated. This is problematic because at least some arguments appear to contradict textbook scaling theory or everyday experience. For example, active forces are assumed to scale with limb volume, when every textbook would have them scale with area instead; and the asserted scaling of passive forces involves some hidden assumptions that demand more explicit discussion to alert the reader to associated limitations. Passive forces are said to be important only in small animals, but a quick self-experiment confirms that they are sufficient to stabilize human fingers or ankles against gravity, systems orders of magnitude larger than an insect limb, in seeming contradiction with the alleged dominance of scale. Throughout the manuscript, there are such and similar inaccuracies or ambiguities in the mechanical framing and interpretation, making it hard to fairly evaluate some claims, and rendering others likely incorrect.

      We interpret this comment as making two separate points. The first one is that the reviewer says that our statement that active forces depend on the third power of the limb or L<sup>3</sup> is incorrect. We agree and apologize for this oversight. Specifically, on L6-7 we say, “both inertial forces and active forces scale with the mass if the limb which in turn scales with the volume of the limb and therefore depends on the third power of limb length (L<sup>3</sup>)”. Instead, this statement should read “inertial forces scale with the mass if the limb which in turn scales with the volume of the limb and therefore depends on the third power of limb length (L<sup>3</sup>)”. However, this oversight does not affect the scaling argument as the scaling arguments in the rest of the manuscript only involves inertial forces and not active forces.

      The second point is about the scaling law that governs passive forces. In the current manuscript, we have assumed that the passive forces scale as L<sup>2</sup> based on previous work. The reviewer has pointed out that this assumption might be incorrect or at the very least needs a rationale. We agree with this assessment: passive forces that arise in the muscle are likely to scale as L<sup>2</sup> but passive forces that arise in the joint might not. In the revised manuscript, we will discuss this concern.

      Response to the public comment:

      There was a comment from a reader: “None of our work cited in various places in this preprint (i.e., Zakotnik et al. 2006, Guschlbauer et al. 2007, Page et al. 2008, Hooper et al. 2009, Hooper 2012, Ache and Matheson 2012, Blümel et al. 2012, Ache and Matheson 2013, von Twickel et al. 2019, and Guschlbauer et al. 2022) claims or implies that passive forces could be sufficient to support the weight of an insect or any animal. To claim or suggest otherwise (as done in lines 33-35) is incorrect and sets up a misleading straw man that misrepresents our work. All statements in the preprint regarding our work related to this specific matter need to be removed or edited accordingly. For instance, the investigations, calculations, and interpretations in Hooper et al. 2009 are solely about limbs that are not being used in stance or other loaded tasks (indeed, the article's title specifically refers to "unloaded" leg posture and movements). Trying to use this work to predict whether passive muscle forces alone can support a stick insect against gravity requires considering much more than the oversimplified calculation given in lines 290-292. Other “back of the envelope calculations” (lines 299-300) are likely also insufficient and erroneous. The discussion in lines 289-304 needs to be edited accordingly”

      We thank the reader for their comment. However, we interpret these studies differently. The studies above rightly focused on unloaded legs because it would be difficult to study passive forces in an intact insect without genetic tools. The commenter correctly points out that these studies do not comment on whether passive forces are strong enough to support the weight of the fly. However, we disagree that our arguments based on their results are unreasonable or strawman. We think that our interpretation of their measurements is correct. Moreover, we were motivated by Yox et. el. 1982 who states in so many words: “Stiffness of the muscles in the joints of all the legs might be sufficient to support a resting arthropod. A more rigorous analysis of all supporting limbs and joint angles would be required to prove this hypothesis”. We were inspired by this comment. In the revised manuscript, we will make it clear that the statement made in Line 33 is based on Yox. et. al. and our interpretation of measurements made by others.

    1. At the other end of the spectrum is pure monopoly, the market structure in which a single firm accounts for all industry sales of a particular good or service. The firm is the industry. This market structure is characterized by barriers to entry—factors that prevent new firms from competing equally with the existing firm.

      In my country, there are many monopolies in different industries. For example, Samsung dominates semiconductors and electronics, while KakaoTalk leads in messaging, taxi services, and even its own payment system. Due to the preemption of few head coorporations, they are in charge of control of the market prices, which makes me question about how small businesses compete and survive.

    1. Yes, she beat me this morning

      This is like a claim of assault, and it's been blamed on Rebekah, it would seem. The note explains that there is a requirement of absolutely no real evidence, other than the girl simply saying that it happened, which is important. A historical note shows that no evidence was needed back then. If someone felt they were assaulted in their sleep, or saw it in a vision it was generally accepted, and it could put someone in serious danger. The seemingly obvious logic of the era still has me scratching my head to this very moment.

    1. If all of that makes your head spin, you’re not alone. In short, back in 1983, 90% of all American media was controlled by more than 50 distinct companies. By 2012, that same percentage was controlled by just 5. By 2019, it was down to 4: Comcast, Disney, AT&T and National Amusements

      i never knew back then the media was controlled by 50 different companies that shortened it dramatically down to just 4.

    1. Why You Should Subscribe

      The answer to "Why you should subscribe" is to hand over your money to a person hiding behind an avatar that itself has a bag over its head. Want to know more? Cut and paste the "About" page into ChatGPT and ask (1) if the biography credible, and (2) can all the assertions of activity in the public sector be verified by official or press records.

      A fool and their money are soon separated.

    1. s traditionally been difficult for Americans to under-stand how compromise is possible or necessary on some questions in globalpolitics." When to compromise, and on what principles, thus remains asource of debate

      Ukraine comes up in my head - Trump is suddenly Putin's stooge for meeting with him in Alaska but is nothing when he meets with Zelenskyy and EU leaders the next week.

      Ultimately a result of partisanship and immense privilege of watching all of these conflicts on the sidelines for centuries

    Annotators

    1. https://www.youtube.com/watch?v=9bR-bsvi0Nk

      Annotating on hypothesis as a resource for others in the Fellowship of the Sacred Commons

      Four Sessoins in September

      Gifting was way of life in Brehon Life Cumann was the original Commons Even in feudal times, the people had a Cumann Capitalism destroyed the Cumann - it is anti-commons The state regulates the market Commons as a social welfare system 1980's globalisation - nations can no longer regulate Restore the Cumann and use it to regulate the present into the future No place for Religion No place for Ideaology Local - Translocal - Cosmo-Local Web3 - Crypto as models

      SESSION 1 Macro History Review Patterns Cyclical Humanity COmmons arrises when Market and State become hegemonic Commons can also become hegenomic Transition now What kind of commons? Physical Commons Social Commons Digital Commons Phy-gital Commons An interesting time in humanity Who are the commoners? Thesis and Empirical Evidence of 20 years observation of Seed Forms Verifiable Data that something is happening Coherent Speculation

      Commons in Feudalism Commons in Capitalism

      Alan Paige Fisk - The structure of social life Communal Shareholding - Family Equality Matching - Gifting Authority Ranking - Protect & Reward The Market

      Humanity wants to create Mode A at a higher level of com-lexity - people, family, but we want it at civilisational scale

      Religion was the first attempot to civilise civilisation - to civilise warriors - Caim Aideain -

      Capitalism is mass ideaology

      Immination of the Eschaton Life is a vale of tears but we can go to heaven The age of the Father - The Age of the Son - The Age of the Spirit - live like monks, we do not need church

      Paradise is in the future Reformation Mass Utopia - past present future

      BUT THIS IS OVER!!! 1789 to 1989

      The Age of Cosmo-Local Networks

      Software Currencies Our Hopes are invested in Blockchain which is a form of Jesus

      Civilisations Spiral - there is always somethign left behind It bifurcates - a reaction against the failure of the previous cycle

      In Rome, work was slavery In Christianity - work is sacred to make heaven on earth

      Commonsres think translocally - cosmically We do nto need the nation state

      Fair BnB can replace Air BnB - it does not need the nation state

      The Spirit as modes of exchange

      Matter and Spirit are at the same level - the physical is sacred

      Ideaology and Materialism can be integrated

      Michel's very traumatic childhood

      Marxism explained his suffering HIs abandonment of Trotsky-ism Shifted to self change Looking at the world world his marxist glasses Joined a Reich commune Women compete for the Alpa Males - and Michel was not an alpa male

      People are confused when they have no methodology at all In order to be free, one has to know how one is determined

      A tourist sees a building, but a local sees the people who inhabited the building as a culture over time

      We learn from people that we disagree with

      Listenign to right wing people - I do nto agree with you, AND I get you

      3D is light and shadow - it is perspecival which also then creates a shadow

      Christian Atheism Conservative Communism

      Michel was cancelled in 2018 - it was his shock Universities used to be mostly men, now there are two women for every man in univesities

      Something has gone wrong with the Left and Masculinity

      The network state world is antithetical to family

      In a society that has to struggle, the male is dominant When that society becomes richer, the female becomes dominant (Dominus = Lord)

      Rich women have an advantage over poor women becase their kids will survive In an egqlitarian sopciety, all kids survive, so the rich women discourage other women to have children

      Being a mother, growing life has to have prestige

      when reproduction rates are low, society suicides itself

      Commons is a practice and an institution

      Network State Movement = collect money with crypto and then buy land - create a new corporate state - be a shareholder not a citizen

      Commons as cosmo local domain relevancies

      Crypto has the idea of contribution to the common good

      Michel started to read the Dark Masters when he was canceleld in 2018

      We can only want what oher peopel want - so we compete Then we need a scapegoat - we find a common enemy Religion is a way to sacreficie people Sacrifice is a potion regulated through religion - until Christ appears to end the sacrifice

      In feudal times, a merchant could not wear fur, it was only for royalty

      In egalitarisn societies, everyone can have everything, but the only way to solve the demand is mass production with mass consumption

      A rich woman can own an expensive bag yet in five years, everyoine can have it

      Capitalism regulates this through over-consumpotion

      Capitalism is now violent - billions of little cuts for thousands of years

      LEFT : Man is good instituions are bad RIGHT: Man is bad institutions are good

      We can be egalitarian by confronting our dark nature - we are envious - we are animalistic - we needed the ten commandments - but we were given 30 of them

      We began to go into thertapy in the 1970's to confront ourselves

      IN the 1980's we invited medication to suppporess the symptoms

      Generations have nto done their own inner work

      The Woke accuse old white men in the way they used to blame the Jews - scapegoating machineries

      Neo-Liberalals now medicate the psyche - medicalisation of symptoms

      We need to become somatic - we have to work it out in the body, thropugh the body - spirtituality arises in somatic experiences

      Michel then looked to the East - a supermarket of therapy

      Rashneesh Commune - preparign the world for neo-liberalism

      Forget guilt and shame - forget the others - follwo your own path - follow your own bliss - transcend yourself - become selfish - go fot it - have the life youw ant - INDIVIDUALLISTIC

      But if you did not have money - you cooudl not joiun that club

      People prostituted themselves to go to the Ashram for €75 a day - it was for upper middle class people

      How it becase a mastery of seduction - you want this

      Watch Wild Wild Country - OSHO

      Michel then looked at the traditions of the West - Templar - Rosicrucian -

      He had to reconcile hismelf with Western Civilisation

      Catholics were hostile to slavery - the church bought slaves from the ottomans - a low number of salves in Europe (it aboloshed slavery)

      Buddhists had slaves since the 1930's

      A Christian has to love their neighbour

      Keith Chandler - beyond civilisation - relationship between order and chaos

      Tribal people are not alienated, family is known as are enemies Civilisations are alienated - solider, slave, serf, religion

      Commons is not utopian New relationship with nature Social contracts Not paradise Not classless The transition is messy

      We can do better than destroying ourselves

      We are in a new phase of history

      Commons is a realistic hypothesis of cnage It's real already

      In the 14th century: we had purgatory so then we could lend money, we had the printing press to spead ideas and we had double entry book-keeping to create capitalism : THEY WERE SEED FORMS

      Social Change needs SEED FORMS - e,g, Commons

      P2P WIKI - 40,000 entries

      Ken Wilbur - Integral Studies

      Levels Schema Quadrants

      Golden Rosicrucians in Holland

      Gnostic Dialoistic New Christian - Saklas - Jehovah - Yeldabaoth - Pleroma - Monad - Barbelo - Aeon - Archon

      With Gnostics, MIchel could not accept a hateful world and decided to be creative - he was tired of introspection

      Transhumanism Documentary

      Head of Digital Strategy for a Telco 90's + Burnout

      William James - once born people - twice born people - we have to do a lot of work - crisis, we com eout of it - so many things - a richer integratveo capacity -dark night of the soul to be integrated 1998 (Age of 42)

      The world is tragic and I can do something without teh rage of being 18

      P2P Foundation - sabbatical

      Came back to his engagement - tremendous energy until 2018 - massive productivity

      10,000 academic references 4,000 google scholar references

      2018 - shared critical video of jordan petersen - fascist - disagreed with him, but Michelw as cancelled

      Michel is a librarian

      People reacted - where am I?? Its like Salma Rushdie beign attacked without reading him

      Nobody defended him from the extremists

      "You cannat talk becase youa re white" Deminised - defunded - debanked depaypalled - blacklisted - height of popularity to zero - unjust - questioning is thsi the left - am I still on the left?

      A good thing - he did not know anythign about the right

      From Trotsky to New Right and all in between - no labs

      He is a conservative communist - we need to improve and preserve - there are no contradictions

      In 2016 - counter culture switches to the right

      We lost the leftist opinion - it was a mourning

      Leftism used to be a brotherhood - now to go being a white person, we are sub-human

      Genital mutilation is not normal

      The woke right commits genocide and the jews cannot be criticised

      Identity is layered - over many years in a real life

      Life experiecne made him a compelx layered being

      In the USA, the Reds fear china, the blues fear the internet They are tribes - only 4% of blues marry reds In the USA, they are physically separating by relocaing to theri own states

      Ruling classs 1% Managers class with many factions

      After world war 2, one had to be Kenseyian - this was the faction supported

      In 1973, Oil Crisis - maybe Friedman??? the new neo-liberal elites that becase hegemonic

      Occupy 2014 - against the 1%

      6,000% increase in woke vocabularoty in press

      Elites decide to shift to anotehr faction - e.g Holland hegemonic abolished guilds - but then the peopel stopped fightign fot the elite

      We are in an accelerated disintegration of the western model

      Importance of Web3 and P2P

      Course on The Commons

      Michel's Higher Standpoint now

      Integrative Capacity Motivation (not rage and resentment) Activism is high on the dark triad Capacity to see relatvie truths of different human groups A new breed of people who are politically homeless Pragmatic - making sense

      MIchel's dream (web 3) social change if we have willing alliacnes from the top, the middle and the top

      Monasteries - Roman Elite - People

      Attract capital from sections of the elite who have the money

      There is huge capital flow

      if you are a parasite, they will come after you If you share, you will be welcome everywhere

      A SEED FORM dependent on our participation

      Event in Brussels - Commons Hob Brussels

      706 - cultural events in people's own houses

      Michel has something to say and wants to share it

      In timews like this, going deep is very important Too much action Deep Exchange Make time to step back NOT ACT ACTUALLY

      THINK DONT ACT!

    1. Discontent began a small rumble in the earthly mind. Then Doubt pushed through with its spiked head. And once Doubt ruptured the web, All manner of demon thoughts Jumped through— We destroyed the world we had been given

      us as people never appreciate what we have we want what others have and the world can be a bad place because we are never content with what we have

    1. I shall never forget his first speech at the convention--the extraordinary emotion it excited in my own mind--the powerful impression it created upon a crowded auditory, completely taken by surprise--the applause which followed from the beginning to the end of his felicitous remarks

      the word choice in this sentence sets a scenery, makes me feel the emotion and I was able to see an image in my head while I was reading it

    1. eLife Assessment

      In this valuable study, the authors use a cutting-edge method to perform voltage imaging of CA1 pyramidal cells in head-fixed mice running on a track while local field potentials (LFPs) were recorded in the contralateral hemisphere. The authors provide solid evidence of synchronous ensembles of CA1 pyramidal neurons that are associated with contralaterally recorded theta rhythms but not with contralaterally recorded sharp wave-ripples during exploration of a novel environment. The paper will be of interest to scientists who are interested in hippocampal neuronal coding of novel environments, particularly those with experimental questions that can benefit from this cutting-edge imaging technique.

    1. And so people said he had no respect for the gods of the clan. Hisenemies said his good fortune had gone to his head. They called him the little bird nzawho so far forgot himself after a heavy meal that he challenged his chi.

      His downfall was caused by his own hands and will. His emotions got the better of him.

    2. Some farmers had not planted their yams yet. They were the lazy easy-going oneswho always put off clearing their farms as long as they could. This year they were thewise ones. They sympathised with their neighbours with much shaking of the head, butinwardly they were happy for what they took to be their own foresight.Okonkwo planted what was left of his seed-yams when the rains finally returned.He had one consolation. The yams he had sown before the drought were his own, theharvest of the previous year. He still had the eight hundred from Nwakibie and the fourhundred from his father's friend. So he would make a fresh start

      Bad luck around every corner! Okonkwo couldn't catch a break. Will his high motivation lead to his downfall?

    3. In the morning the market place was full. There must have been about tenthousand men there, all talking in low voices. At last Ogbuefi Ezeugo stood up in themidst of them and bellowed four times, "Umuofia kwenu," and on each occasion he faceda different direction and seemed to push the air with a clenched fist. And ten thousandmen answered "Yaa!" each time. Then there was perfect silence. Ogbuefi Ezeugo was apowerful orator and was always chosen to speak on such occasions. He moved his handover his white head and stroked his white beard. He then adjusted his cloth, which waspassed under his right arm-pit and tied above his left shoulder."Umuofia kwenu," he bellowed a fifth time, and the crowd yelled in answer. Andthen suddenly like one possessed he shot out his left hand and pointed in the direction ofMbaino, and said through gleaming white teeth firmly clenched: "Those sons of wildanimals have dared to murder a daughter of Umuofia." He threw his head down andgnashed his teeth, and allowed a murmur of suppressed anger to sweep the crowd. Whenhe began again, the anger on his face was gone, and in its place a sort of smile hovered,more terrible and more sinister than the anger. And in a clear unemotional voice he toldUmuofia how their daughter had gone to market at Mbaino and had been killed. Thatwoman, said Ezeugo, was the wife of Ogbuefi Udo, and he pointed to a man who sat nearhim with a bowed head. The crowd then shouted with anger and thirst for blood.Many others spoke, and at the end it was decided to follow the normal course ofaction. An ultimatum was immediately dispatched to Mbaino asking them to choosebetween war - on the one hand, and on the other the offer of a young man and a virgin ascompensation.Umuofia was feared by all its neighbours. It was powerful in war and in magic,and its priests and medicine men were feared in all the surrounding country. Its mostpotent war-medicine was as old as the clan itself. Nobody knew how old. But on onepoint there was general agreement--the active principle in that medicine had been an oldwoman with one leg. In fact, the medicine itself was called agadi-nwayi, or old woman. Ithad its shrine in the centre of Umuofia, in a cleared spot. And if anybody was sofoolhardy as to pass by the shrine after dusk he was sure to see the old woman hoppingabout.And so the neighbouring clans who naturally knew of these things fearedUmuofia, and would not go to war against it without first trying a peaceful settlement.And in fairness to Umuofia it should be recorded that it never went to war unless its casewas clear and just and was accepted as such by its Oracle - the Oracle of the Hills and theCaves. And there were indeed occasions when the Oracle had forbidden Umuofia to wage

      Supernatural forces also operate in this story

    Annotators

    1. The following verbs are too vague or difficult to measure: appreciate, cover, realize, be aware of, familiarize, study, become acquainted with, gain knowledge of, comprehend, know, learn, and understand.

      Struggled with this in high school. The teacher asks, "Do you understand?" and no one truly does, but we shake our head anyways.

    1. Reviewer #1 (Public review):

      In their manuscript, Michelson et al use a combination of mesoscopic 1p and single-cell resolution 2p imaging to characterise cortical encoding of grooming behaviour. Despite their subcortical locus of control (and non-reliance on cortex), the authors report that grooming movements are accompanied by widespread activation of dorsal cortex. Different grooming movements elicit distinct spatiotemporal cortical activity patterns. They find that cortical engagement is greater at the beginning of grooming episodes than at their end. They also report greater cortical activation for atypical unilateral grooming movements seen under head-restraint in comparison to cortical activity during bilateral movements typical of unrestrained or spontaneous grooming.

      While this is not the first study to report cortical representations of subcortically controlled behaviours, and the authors themselves cite many previous reports of cortical activation during locomotion and even grooming (Sjöbom et al 2020), the value of the present study lies in their use of imaging to reveal the widespread nature of cortical activation during execution of a complex, innate behaviour. I also appreciate the systematic approach used by the authors to break down grooming episodes into their constituent movements and reveal their transition structure.

      I do have concerns, however, that some of the authors' claims are insufficiently supported by their results, and more analysis is required to convincingly rule out alternative interpretations.

      (1) One possible explanation for the gradual decline in cortical activity is that unilateral movements associated with greater cortical activation dominate early in grooming episodes, whereas bilateral movements that elicit weaker cortical activity dominate later (Figure 3G and 2C). The authors could check whether cortical activity associated with the *same* grooming movement is constant or declines during such episodes. A related point: doesn't the regression analysis shown in Figure 3, Supplement 2, assume that a stationary relationship between movement and spatiotemporal patterns of cortical activity?

      (2) From the decline in cortical responses during long grooming episodes, the authors suggest that "mesoscale cortical activity mostly reflects the initiation of subcortically-mediated behaviors, rather than the behavior itself". The authors have taken a lot of trouble to come up with a rich, detailed segmentation and clustering of the grooming behaviour into its constituent movements (Figure 1). Therefore, I am somewhat surprised that they make this claim solely from analysis of averaged cortical activity during nearly minute-long grooming episodes rather than a higher time resolution analysis of transitions between distinct grooming movements (like the prior study by Sjöbom et al and related work in striatal encoding of innate movement sequences by Markowitz et al).

      (3) The authors find that unilateral, atypical grooming movements elicit cortical activity that is distinct from the more naturalistic bilateral movements. They interpret this as reflecting the temporal transition structure of the behaviour. However, an alternative explanation is that the differences (or similarities) in evoked activity simply reflect differences (or similarities) in the kinematics of these movements, with bilateral movements appearing more similar to each other than to unilateral movements. A related point: there is little description of the "non-grooming forelimb movements". Were these kinematically similar to the unilateral forelimb movements, which may explain why they cluster together in Figure 4H?

      (4) Page 13, last paragraph: the authors suggest that similar encoding of non-grooming forelimb movements and unilateral grooming movements may reflect a shared reliance on the cortex. This is rather speculative. Several studies have demonstrated that voluntary unilateral movements employed for reaching or lever pressing are not generally reliant on the cortex (Whishaw et al, Beh Brain Res, 1991; Kawai et al, 2015). There isn't, in my opinion, a broad consensus for the authors' statement that "reaching for food is a cortex-dependent action". Rather than extrapolating from past studies, could the authors not experimentally assess whether unilateral grooming movements are more sensitive to cortical silencing than bilateral ones, possibly revealing a cortical locus of control?

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Michelson, Gupta, and Murphy use calcium imaging to map the distribution of neural activity across the cerebral cortex of grooming, head-restrained mice. Animals groomed spontaneously and in response to wetting of the face. Individual movement elements, such as bilateral strokes across the face, resembled those observed in freely-moving animals. Sequencing of movement elements was structured, but did not consist of full "syntactic grooming chains." Widefield imaging across the cortex revealed distinct patterns of activity for distinct movement elements. Individual neurons responded strongly during movement and had largely similar properties across cortical areas.

      Strengths:

      In my opinion, this is a solid paper that will be of interest to the mouse sensorimotor neuroscience community. The experiments are technically sound, the text is well-written, and the figures are clear. The activity maps are presented in standardized Allen Atlas coordinates, and I expect they will be very useful for future studies of orofacial and limb movement.

      Weaknesses:

      While the manuscript provides a valuable description of cortical activity during head-restrained grooming, I think it could engage a bit more with contemporary theories and debates in cortical physiology and motor control. The Abstract nicely highlights an apparent paradox: the motor cortex sends strong projections to the spinal cord, and is strongly modulated during behaviors like grooming. Nevertheless, blocking corticospinal traffic by inactivating or lesioning the motor cortex leaves such behaviors intact. There are several potential resolutions to this paradox. First, cortical activity during grooming could be confined to an "output-null" subspace that is responsible for monitoring sensorimotor events and preparing voluntary movements, but does not drive muscle activity (c.f. work in the macaque: Kaufman et al., Nature Neuroscience 2014; Churchland & Shenoy, Nature Reviews Neuroscience 2024). Second, cortical activity during grooming could be transmitted to lower centers, but gated out through inhibition. Third, it is possible that cortical activity in intact animals does contribute to muscle activation during grooming, but following a lesion or inactivation, other descending pathways compensate for the cortical deficit. The authors might wish to discuss their findings in light of these considerations.

      In the first paragraph of the Introduction, it could be made clearer which results are specific to mice. The Niell & Stryker finding, for example, holds in mice, but not marmosets (Liska et al., eLife 2024).

      The "hotspots" in Figure 3G appear to be more anterior during bilateral elliptical than unilateral elliptical movements. How do the authors interpret this finding?

      The distribution of single-neuron responses looks relatively similar across cortical areas, including forelimb, hindlimb, and trunk somatosensory cortex, and primary and secondary forelimb motor cortex. What do the authors make of this?

    3. Reviewer #3 (Public review):

      Summary:

      The authors use a combination of a head-fixed grooming paradigm, single-photon mesoscale, and wide-field-of-view two-photon calcium imaging to characterize cortical activity patterns during evoked grooming. Previous work has shown that grooming behavior does not require cortex, but that there are neuronal representations of grooming in motor cortex. The authors extend these findings by showing cortex-wide activation patterns at the meso-scale that relate to distinct grooming elements. This activation is strongest at grooming onset, but declines over the course of extended grooming periods. They also find similar activity patterns during licking/drinking behavior. Two-photon imaging further revealed that individual neurons across the cortex are preferentially activated by grooming. While their activity also declines after grooming onset, they remain active throughout grooming periods. This work extends previous findings by revealing that grooming and other subcortically-generated behaviors may be represented not only in motor cortex, but across dorsal cortex, both on the mesoscale and single neuron levels. These findings may lead to further investigation into the role of cortical activity during subcortically generated behaviors.

      Strengths:

      (1) Detailed characterization of grooming behavior in a head-fixed paradigm.

      (2) Combination of single photon mesoscale and two-photon wide field-of-view imaging to characterize grooming (and licking)-related activity across dorsal cortex on multiple levels

      Weaknesses:

      (1) The behavior observed in the head-fixed grooming paradigm only partially resembles spontaneous grooming, lacking typical elements of the syntactic chain, while additionally evoking non-typical behaviors, resembling unilateral reaches, making the interpretation of the observations and their relevance to natural behaviors difficult. Furthermore, the nature of the non-typical movements (which may be cortex-dependent while typical grooming is not) is not explored.

      (2) Two important findings in relation to the neural representations of individual grooming behaviors remain unclear:

      a) The authors state that individual grooming behaviors did not have distinct neuronal representations (except unilateral grooming; Figure 4G) - it remains unclear how this fits with the observation of distinct activation maps during the different grooming behaviors. Should this differential activation not also correspond to distinct activation patterns of 'grooming' neurons across the cortex? Or do they mean that the activity in the 'grooming' neurons is not consistent across grooming instances and therefore no distinct representation can be detected?

      b) The authors state that the 'typical' grooming behaviors do not have consistent activation patterns across animals (Figure 3 and supplements). It remains, therefore, unclear what the averaged activation maps really represent. Furthermore, this observation leaves several open questions: Are the activation patterns consistent in individual animals? Do differences across animals emerge due to differences in their behavior? And most importantly, can the actual behavior be decoded from the activation patterns?

      (3) Multiple statements/conclusions are not supported by quantification of the data, but only by qualitative assessments, e.g.: lines 433-435: "In general, the maximally activated networks involved in licking and unilateral grooming behaviors 'appeared' to be the most consistent across animals compared to the bilateral grooming movements (Figure 3G)."; 436-437: "Averaged cortical activation maps associated with licking and elliptical behaviors were 'qualitatively similar' between evoked and spontaneous sessions, where the water drop was not applied".; 480-482: "The unique explained variance maps for the licking behavior 'differed' in the drinking context compared to the grooming context (Figure 3-figure supplement 3F)." The lack of quantification leaves the significance of these observations unclear.

      (4) It remains unclear what the ongoing activity in 'grooming' neurons represents, since there is no detailed analysis of the relationship between activity and the detailed kinematics of the grooming movements.

      The authors show that neuronal representations of grooming and other subcortical behaviors can be found across dorsal cortex and that these representations are at least to some degree specific to distinct behavioral elements. While this study does not reveal functional insights into the role of cortical representations of subcortically-generated behaviors, it is a step towards more in-depth studies. In the future, it will be important to determine whether these representations are efference copies or sensory-driven, or whether they affect the behavior, and if so, under which circumstances.

    1. Reviewer #2 (Public review):

      General comments

      We thank the reviewers and editor for their thoughtful feedback. We are glad that the minor comments appear resolved. In this revision, we added subject-specific analyses, further FC comparisons, and clarified our rationale for stimulation parameters. We acknowledge that two concerns remain: (1) the 1 mA-2 mA sequence may introduce confounds, and (2) electric field modeling was not included due to technical limitations. We now explicitly note these as limitations in the manuscript and provide justification and discussion accordingly.

      Major comments

      R.2.1. For the anesthetized monkeys, the anode location differs between subjects, with the electrode positioned to stimulate the left DLFPC in monkey R and the right DLPFC in monkey N. The authors mention that this discrepancy does not result in significant differences in the electric field due to the monkeys' small head size. However, this is incorrect, as placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side. Running an electric field simulation would confirm this. Additionally, the small electrode size suggested by the Easy cap configuration for NHP appears sufficient to stimulate the targeted regions focally. If this interpretation is correct, the authors should provide additional evidence to support their claim, such as a computational simulation of the EF distribution.

      R.2.1 Authors' answer: We thank the Reviewer for the comments. First, regarding the reviewer's statement that placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side, we would like to clarify that we did not use a typical 4 x 1 concentric ring high-definition setup (which consists of a small centre electrode surrounded by four return electrodes), but a two-electrode montage, with one electrode over the left or right PFC and the other one over the contralateral occipital cortex. According to EF modelling papers, a 4 x 1 high-definition setup would produce an EF that is focused and limited to the cortical area circumscribed by the ring of the return electrodes (Datta et al. 2009; Alam et al. 2016). Therefore, targeting the left or right DLPFC with a 4 x 1 setup would produce an EF confined to the targeted hemisphere of the PFC. In contrast, we expect the brain current flow generated with our 2-electrode setup to be broader, despite the small size of the electrodes, because there is no constraint from return electrodes. Thus, with our setup, the current is expected to flow between the PFC and the occipital cortex (see also our responses to comments R3.3., R.E.C.#2.1. and R.E.C.#2.2.).

      Second, we would like to point out that in awake experiments, in which we stimulated the right PFC of both monkeys, there was no gross evidence of left or right asymmetry in the computed functional connectivity patterns (Figure 3A, Figure 3 - figure supplement 2A; Figure 5A). These results, showing that our stimulation montages did not induce asymmetric dynamic FC changes in NHPs, support the idea that our setups did not generate EFs that were spatially focused enough to alter brain activity in one hemisphere substantially more than the other.

      Third, it is also worth noting that current evidence suggests that human brains are significantly more lateralized than those of macaques. Macaque monkeys have been found to have some degree of lateralized networks, but these are of lower complexity, and the lateralization is less pronounced and functionally organized than in humans. (Whey et al., 2014; Mantini et al., 2013). This suggests that, even if the stimulation were focal enough to stimulate the left or the right part of the PFC only, the behavioural effects would likely be similar.

      Follow-up comment: Thank you for the detailed response and for referencing both experimental data and prior literature. While I appreciate the discussion on the lack of functional asymmetry and reduced lateralization in macaques, my original concern was about the physical distribution of the electric field (EF) due to different anode placements. Functional connectivity outcomes do not necessarily reflect EF symmetry, and without EF modeling, it's difficult to determine whether the stimulation affected both hemispheres equally. I understand the challenges of NHP-specific modeling, but even a simplified simulation or acknowledgment of this limitation in the manuscript would help clarify the interpretability of your results.

      R.2.2. For the anesthetized monkeys, the authors applied 1 mA tDCS first, followed by 2 mA tDCS. A 20-minute stimulation duration of 1 mA tDCS is strong enough to produce after-effects that could influence the brain state during the 2 mA tDCS. This raises some concerns. Previous studies have shown that 1 mA tDCS can generate EF of over 1 V/m in the brain, and the effects of stimulation are sensitive to brain state (e.g., eye closed vs. eye open). How do the authors ensure that there are no after-effects from the 1 mA tDCS? This issue makes it challenging to directly compare the effects of 1 mA and 2 mA stimulation.<br /> R.2.2 Authors' answer: We agree with the reviewer's comment that 1 mA tDCS may induce aftereffects, as has been observed in several human studies (e.g., (Jamil et al. 2017, 2020). Although the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses, it's still possible that the stimulation produced some effects below the threshold of significance that may contribute, albeit weakly, to the changes observed during

      Follow-up comment: Thank you for the clarification and for acknowledging the potential for 1 mA after-effects. While I appreciate the authors' transparency and the amendment to the manuscript, I still find it important that the limitation be clearly stated in the Discussion section. The fact that 2 mA stimulation always followed 1 mA introduces a potential confound, making it difficult to attribute observed changes uniquely to 2 mA. If a counterbalanced design was not feasible, I would recommend explicitly noting this as a limitation in the interpretation of dose-dependent effects.

      R.2.3. The occurrence rate of a specific structural-functional coupling pattern among random brain regions shows significant effects of tDCS. However, these results seem counterintuitive. It is generally understood that non-invasive brain stimulation tends to modulate functional connectivity rather than structural or structural-functional connectivity. How does the occurrence rate of structural-functional coupling patterns provide a more suitable measure of the effectiveness of tDCS than functional connectivity alone? I would recommend that the authors present the results based on functional connectivity itself. If there is no change in functional connectivity, the relevance of changes in structural-functional coupling might not translate into a meaningful alteration in brain function, making it unclear how significant this finding is without corresponding functional evidence.

      R.2.3. Authors' answer: First of all, we would like to make it clear that the occurrence rate of patterns as a function of their SFC is not intended to be used or seen as a 'better' measure of the efficacy of tDCS. Instead, it is one aspect of the effects of tDCS on whole-brain functional cortical dynamics, obtained from refined measures (phase-coherences), that specifically addresses the coupling between structure and function. This type of analysis is further motivated by its increasing use in the literature due to its suspected relationship to wakefulness (e.g., (Barttfeld et al. 2015, Demertzi et al. 2019; Castro et al. 2023)). Also, in our analysis, the structure is kept constant: the connectivity matrix used to correlate the functional brain states is always the same (CoCoMac82). Thus, the influence of tDCS on the structure-function side can only be explained by modulating the functional aspects, as suggested by intuition and previous results.

      Then, we agree with the reviewer that studying the functional changes induced by tDCS alone could be valuable. However, usual metrics used in FC analysis are usually done statistically: FC-states are either computed through averaging spatial correlations over time, then analyzed through graph-theoretical properties for instance (or by just directly computing the element-wise differences), or either by considering the properties of the different visited FC-states by computing spatial correlations over a sliding time-window, and then similar analysis can be done as previously explained. But these are static metrics, if the states visited are essentially the same (which is expected from non-invasive neuromodulations that haven't already demonstrated strong and/or characteristic impact), but the dynamical process of visiting said states changes, one would see no difference in that regard. As such, in the case of resting-state fMRI, differences in FCs are hard to interpret given that between-sessions within-condition differences are usually found with some degree of variance for the respective conditions. Trying then to interpret between-condition differences is quite tricky in the case of subtle modulations of the system's activity. On the other hand, more subtle differences can be captured by considering more detailed analysis, such as using phase-based methods like we did, by incorporating some statistical learning component with regard to the dynamicity of the system (supervised learning for instance like we did followed by temporal & transition-based methodology), and by adding some dimensions along which one will be able to give some interpretation to the analysis. In our case we were interested in characterizing resting-state differences between stimulation conditions, which have nuanced and subtle interactions with the biological system. As such, classical measures of differences between FC states are likely to not be refined and precise enough. In fact, we propose additional files investigating those classically used measures such as differences in average FC matrices, or changes in functional graph properties (like modularity, efficiency and density) of the visited FC states. These figures show that, for the first case, comparing region-to-region specific FCs provides very few statistically significant results. With respect to the second part, we show that virtually no differences are observed in the properties of the functional states visited. These results suggest, as expected, that the actual brain states visited across the different stimulation conditions are topologically quite similar, and that only very few region-specific pairwise functional connectivities are particularly modulated by specific tDCS montages while, on the other hand, the actual dynamical process dictating how the brain activity passes from one state to another is in fact being influenced as shown by the dynamical analysis presented in the main figures in a more apparent and meaningful way (in that it is dependent on the montage, somewhat consistent with regard to the post-stimulations conditions, and can be made sense of by considering the theoretical effect of near-anodal versus near-cathodal neuromodulatory effects).

      Actions in the text: We have added new supplementary files showing the effects of the stimulations on FC matrices and on classical functional graph properties in awake and anesthesia datasets (Supplementary Files 3 & 4). We have added new sentences about these new analyses on the effects of the stimulations on FC matrices and on classical functional graph properties in the Results section:<br /> Follow-up comment: Thank you for the detailed and comprehensive response. The clarification regarding the use of SFC dynamics and the additional analyses provided are convincing.

      R2.4. The authors recorded data from only two monkeys, which may limit the investigation of the group effects of tDCS. As the number of scans for the second monkey in each consciousness condition is lower than that in the first monkey, there is a concern that the main effects might primarily reflect the data from a single monkey. I suggest that the authors should analyze the data for each monkey individually to determine if similar trends are observed in both subjects.

      R.2.4. Authors' answer: We agree that the small number of subjects is a limitation of our study. However, we have already addressed these aspects by reporting statistical analyses that consider them, using linear models of such variables, and running them through ANOVA tests. In addition, we experimentally ensured that we recorded a relatively high number of sessions over a period of several years. Regardless, we agree that our study would benefit from further investigation into this matter. We have therefore prepared complementary figures showing the main analysis performed separately for the two monkeys as proposed, as well as further investigations into the inter-condition variability outmatching the inter-individual variability, itself being also outmatched by intra-individual changes.

      Actions in the text: We have added a supplementary file showing the main analyses performed separately for the two monkeys (Supplementary File 2) and further investigations into the inter-condition variability (Supplementary Files 3 & 4). We have added new sentences about these analyses performed separately for the two monkeys in the Results section:

      Follow-up comment: Thank you for addressing this concern and for providing the individual monkey analysis. The additional figures and statistical explanations are helpful and appreciated.

      R2.5. Anodal tDCS was only applied to anesthetized monkeys, which limits the conclusion that the authors are aiming for. It raises questions about the conclusion regarding brain state dependency. To address this, it would be better to include the cathodal tDCS session for anesthetized monkeys. If cathodal tDCS changes the connectivity during anesthesia, it becomes difficult to argue that the effects of cathodal tDCS vary depending on the state of consciousness as discussed in this paper. On the other hand, if cathodal tDCS would not produce any changes, the conclusion would then focus on the relationship between the polarity of tDCS and consciousness. In that case, the authors could maintain their conclusion but might need to refine it to reflect this specific relationship more accurately.

      R.2.5. Authors' answer: We agree with the reviewer that it would have been interesting to investigate the effects of cathodal tDCS in anesthetized monkeys. However, due to the challenging nature of the experimental procedures under anesthesia, we had to limit the investigations to only one stimulation modality. We chose to deliver anodal stimulation because, from a translational point of view, we aimed to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness. It also made much more sense to increase the cortical excitability of the prefrontal cortex in an attempt to wake up the sedated monkeys rather than doing the opposite.

      Actions in the text: We have added a new sentence in the Results section:

      "Due to the challenging nature of the experimental procedures under anesthesia, we limited the investigations to only one stimulation modality. We chose to deliver anodal stimulation to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness and to increase the cortical excitability of the PFC in an attempt to wake up the sedated monkeys."

      Follow-up comment: Thank you for clarifying the rationale behind applying only anodal stimulation under anesthesia. While I appreciate the experimental constraints and the translational motivation, I would still encourage the authors to explicitly acknowledge in the Discussion that the absence of a cathodal condition under anesthesia limits the ability to dissociate polarity-specific effects from state-dependent effects. This clarification would help temper the conclusions and better reflect the scope of the current dataset.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      In this work, the authors apply TDCS to awake and anesthetized macaques to determine the effect of this modality on dynamic connectivity measured by fMRI. The question is to understand the extent to which TDCS can influence conscious or unconscious states. Their target was the PFC. During the conscious states, the animals were executing a fixation task. Unconsciousness was achieved by administering a constant infusion of propofol and a continuous infusion of the muscle relaxant cisatracurium. They observed the animals while awake receiving anodal or cathodal hd-TDCS applied to the PFC. During the cathodal stimulation, they found disruption of functional connectivity patterns, enhanced structure-function correlations, a decrease in Shannon entropy, and a transition towards patterns that were more commonly anatomically based. In contrast under propofol anesthesia anodal hd-TDCS stimulation appreciably altered the brain connectivity patterns and decreased the correlation between structure and function. The PFC stimulations altered patterns associated with consciousness as well as those associated with unconsciousness.

      Strengths: 

      The authors carefully executed a set of very challenging experiments that involved applying tDCS in awake and anesthetized non-human primates while conducting functional imaging.

      We thank the Reviewer for summarising our study and for his appreciation of the highly challenging experiments we performed.

      Weaknesses:

      The authors show that tDCS can alter functional connectivity measured by fMRI but they do not make clear what their studies teach the reader about the effects of tDCS on the brain during different states of consciousness. No important finding is stated contrary to what is stated in the abstract. It is also not clear what the work teaches us about how tDCS works nor is it clear what are the "clinical implications for disorders of consciousness." The deep anesthesia is akin to being in a state of coma. This was not discussed.  

      While the authors have executed a set of technically challenging experiments, it is not clear what they teach us about how tDCS works, normal brain neurophysiology, or brain pathological states such as disorders of consciousness.

      We thank the reviewer for his comments. We agree that we could better highlight the value and implications of our work, and we take this opportunity to improve our manuscript according to the suggestions.

      Actions in the text: We have added several new paragraphs in the Discussion section, considering these comments and other related remarks from the Reviewing Editor (see below our answer to the first comment of the Reviewing Editor: REC#1).

      Reviewer #2 (Public review): 

      General comments: 

      The authors investigated the effects of tDCS on brain dynamics in awake and anesthetized monkeys using functional MRI. They claim that cathodal tDCS disrupts the functional connectivity pattern in awake monkeys while anodal tDCS alters brain patterns in anesthetized monkeys. This study offers valuable insight into how brain states can influence the outcomes of noninvasive brain stimulation. However, there are several aspects of the methods and results sections that should be improved to clarify the findings.

      We thank the Reviewer for the summary and appreciation of our study.  

      Major comments 

      For the anesthetized monkeys, the anode location differs between subjects, with the electrode positioned to stimulate the left DLFPC in monkey R and the right DLPFC in monkey N. The authors mention that this discrepancy does not result in significant differences in the electric field due to the monkeys' small head size. However, this is incorrect, as placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side. Running an electric field simulation would confirm this. Additionally, the small electrode size suggested by the Easy cap configuration for NHP appears sufficient to stimulate the targeted regions focally. If this interpretation is correct, the authors should provide additional evidence to support their claim, such as a computational simulation of the EF distribution.

      We thank the Reviewer for the comments. First, regarding the reviewer’s statement that placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side, we would like to clarify that we did not use a typical 4 x 1 concentric ring high-definition setup (which consists of a small centre electrode surrounded by four return electrodes), but a two-electrode montage, with one electrode over the left or right PFC and the other one over the contralateral occipital cortex. According to EF modelling papers, a 4 x 1 high-definition setup would produce an EF that is focused and limited to the cortical area circumscribed by the ring of the return electrodes (Datta et al. 2009; Alam et al. 2016). Therefore, targeting the left or right DLPFC with a 4 x 1 setup would produce an EF confined to the targeted hemisphere of the PFC. In contrast, we expect the brain current flow generated with our 2-electrode setup to be broader, despite the small size of the electrodes,  because there is no constraint from return electrodes. Thus, with our setup, the current is expected to flow between the PFC and the occipital cortex (see also our responses to comments R3.3., R.E.C.#2.1. and R.E.C.#2.2.). 

      Second, we would like to point out that in awake experiments, in which we stimulated the right PFC of both monkeys, there was no gross evidence of left or right asymmetry in the computed functional connectivity patterns (Figure 3A, Figure 3 - figure supplement 2A; Figure 5A). These results, showing that our stimulation montages did not induce asymmetric dynamic FC changes in NHPs, support the idea that our setups did not generate EFs that were spatially focused enough to alter brain activity in one hemisphere substantially more than the other.

      Third, it is also worth noting that current evidence suggests that human brains are significantly more lateralized than those of macaques. Macaque monkeys have been found to have some degree of lateralized networks, but these are of lower complexity, and the lateralization is less pronounced and functionally organized than in humans. (Whey et al., 2014; Mantini et al., 2013). This suggests that, even if the stimulation were focal enough to stimulate the left or the right part of the PFC only, the behavioural effects would likely be similar.

      We strongly agree with the reviewer that conducting an EF simulation would be valuable to confirm our expectations and to gain a comprehensive view of the characteristics of the EFs generated with our different setups in NHPs. However, the challenge is in the fact that EF computational models have been developed for humans, and their use in NHPs is not straightforward due to significant anatomical differences. For example, macaque monkeys are distinct from humans in terms of brain size, shape and cortical organisation, skull thickness, and the presence of muscles, as well as different tissue conductivities (Lee et al. 2015; Datta et al.2016; Mantell et al. 2023). We plan to address this in future work.

      Actions in the text: In the Materials and Methods section, we have modified the sentence: “Because of the small size of the monkey's head and because we did not use return electrodes to restrict the current flow (as is achieved with typical high-definition montages (Datta et al. 2009; Alam et al. 2016)), we expected that tDCS stimulation with the two symmetrical montages would result in nearly equivalent electric fields across the monkey’s head and produce roughly similar effects on brain activity.” 

      We also added a new sentence about EF simulation: 

      “This would need to be confirmed by running an electric field simulation. However, computational electric field models have been developed for humans, and their use in NHPs is not straightforward due to anatomical specificities. Indeed, monkeys differ from humans in terms of brain size, shape and cortical organization, skull thickness, tissue conductivities and the presence of muscles (Lee et al. 2015; Datta et al. 2016; Mantell et al. 2023). Modelling of EFs generated with the specific tDCS montages employed in this study will be performed in future work.”

      For the anesthetized monkeys, the authors applied 1 mA tDCS first, followed by 2 mA tDCS. A 20-minute stimulation duration of 1 mA tDCS is strong enough to produce after-effects that could influence the brain state during the 2 mA tDCS. This raises some concerns. Previous studies have shown that 1 mA tDCS can generate EF of over 1 V/m in the brain, and the effects of stimulation are sensitive to brain state (e.g., eye closed vs. eye open). How do the authors ensure that there are no after-effects from the 1 mA tDCS? This issue makes it challenging to directly compare the effects of 1 mA and 2 mA stimulation.

      We agree with the reviewer's comment that 1 mA tDCS may induce aftereffects, as has been observed in several human studies (e.g., (Jamil et al. 2017, 2020). Although the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses, it's still possible that the stimulation produced some effects below the threshold of significance that may contribute, albeit weakly, to the changes observed during and after 2 mA stimulation. We have, therefore, amended the paper in line with the reviewer's comments.

      Actions in the text: We have added the following text in the Result section: 

      “While several human studies have reported that 1 mA transcranial stimulation induces aftereffects (e.g., (Jamil et al. 2017, 2020; Monte-Silva et al. 2010), the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses. However, it is still possible that the 1 mA stimulation produced some effects below the threshold of significance that may contribute to the changes observed during and after the 2 mA stimulation.”

      The occurrence rate of a specific structural-functional coupling pattern among random brain regions shows significant effects of tDCS. However, these results seem counterintuitive. It is generally understood that noninvasive brain stimulation tends to modulate functional connectivity rather than structural or structural-functional connectivity. How does the occurrence rate of structural-functional coupling patterns provide a more suitable measure of the effectiveness of tDCS than functional connectivity alone? I would recommend that the authors present the results based on functional connectivity itself. If there is no change in functional connectivity, the relevance of changes in structural-functional coupling might not translate into a meaningful alteration in brain function, making it unclear how significant this finding is without corresponding functional evidence.

      First, of all, we would like to make it clear that the occurrence rate of patterns as a function of their SFC is not intended to be used or seen as a ‘better’ measure of the efficacy of tDCS. Instead, it is one aspect of the effects of tDCS on whole-brain functional cortical dynamics, obtained from refined measures (phase-coherences), that specifically addresses the coupling between structure and function. This type of analysis is further motivated by its increasing use in the literature due to its suspected relationship to wakefulness (e.g., (Barttfeld et al. 2015, Demertzi et al. 2019; Castro et al. 2023)). Also, in our analysis, the structure is kept constant: the connectivity matrix used to correlate the functional brain states is always the same (CoCoMac82). Thus, the influence of tDCS on the structure-function side can only be explained by modulating the functional aspects, as suggested by intuition and previous results.

      Then, we agree with the reviewer that studying the functional changes induced by tDCS alone could be valuable. However, usual metrics used in FC analysis are usually done statistically: FC-states are either computed through averaging spatial correlations over time, then analyzed through graph-theoretical properties for instance (or by just directly computing the element-wise differences), or either by considering the properties of the different visited FC-states by computing spatial correlations over a sliding time-window, and then similar analysis can be done as previously explained. But these are static metrics, if the states visited are essentially the same (which is expected from non-invasive neuromodulations that haven’t already demonstrated strong and/or characteristic impact), but the dynamical process of visiting said states changes, one would see no difference in that regard. As such, in the case of resting-state fMRI, differences in FCs are hard to interpret given that between-sessions within-condition differences are usually found with some degree of variance for the respective conditions. Trying then to interpret between-condition differences is quite tricky in the case of subtle modulations of the system’s activity. On the other hand, more subtle differences can be captured by considering more detailed analysis, such as using phase-based methods like we did,  by incorporating some statistical learning component with regard to the dynamicity of the system (supervised learning for instance like we did followed by temporal & transition-based methodology), and by adding some dimensions along which one will be able to give some interpretation to the analysis.  In our case we were interested in characterizing resting-state differences between stimulation conditions, which have nuanced and subtle interactions with the biological system. 

      As such, classical measures of differences between FC states are likely to not be refined and precise enough. In fact, we propose additional files investigating those classically used measures such as differences in average FC matrices, or changes in functional graph properties (like modularity, efficiency and density) of the visited FC states. These figures show that, for the first case, comparing region-to-region specific FCs provides very few statistically significant results. With respect to the second part, we show that virtually no differences are observed in the properties of the functional states visited. 

      These results suggest, as expected, that the actual brain states visited across the different stimulation conditions are topologically quite similar, and that only very few region-specific pairwise functional connectivities are particularly modulated by specific tDCS montages while, on the other hand, the actual dynamical process dictating how the brain activity passes from one state to another is in fact being influenced as shown by the dynamical analysis presented in the main figures in a more apparent and meaningful way (in that it is dependent on the montage, somewhat consistent with regard to the post-stimulations conditions, and can be made sense of by considering the theoretical effect of near-anodal versus near-cathodal neuromodulatory effects).

      Actions in the text: We have added new supplementary files showing the effects of the stimulations on FC matrices and on classical functional graph properties in awake and anesthesia datasets (Supplementary Files 3 & 4).

      We have added new sentences about these new analyses on the effects of the stimulations on FC matrices and on classical functional graph properties in the Results section:

      “In addition, we performed the main analyses separately for the two monkeys, explored the inter-condition variability (Supplementary File 2), and computed classical measures of functional connectivity such as average FC matrices and functional graph properties (modularity, efficiency and density) of the visited FC states (Supplementary File 3).... In contrast, classical FC metrics did not show significant differences across stimulation conditions, highlighting the value of dynamic FC metrics to capture the neuromodulatory effects of tDCS.”

      “Analyses of the two monkeys separately showed that the changes in slope and Shannon entropy were bigger in one of the two monkeys but went in the same direction (Supplementary File 2), while classical FC metrics did not capture any statistical differences between the different stimulation conditions (Supplementary File 3).”

      The authors recorded data from only two monkeys, which may limit the investigation of the group effects of tDCS. As the number of scans for the second monkey in each consciousness condition is lower than that in the first monkey, there is a concern that the main effects might primarily reflect the data from a single monkey. I suggest that the authors should analyze the data for each monkey individually to determine if similar trends are observed in both subjects.

      We agree that the small number of subjects is a limitation of our study. However, we have already addressed these aspects by reporting statistical analyses that consider them, using linear models of such variables, and running them through ANOVA tests. In addition, we experimentally ensured that we recorded a relatively high number of sessions over a period of several years. Regardless, we agree that our study would benefit from further investigation into this matter. We have therefore prepared complementary figures showing the main analysis performed separately for the two monkeys as proposed, as well as further investigations into the inter-condition variability outmatching the inter-individual variability, itself being also outmatched by intra-individual changes. 

      Actions in the text: We have added a supplementary file showing the main analyses performed separately for the two monkeys (Supplementary File 2) and further investigations into the inter-condition variability (Supplementary Files 3 & 4).

      We have added new sentences about these analyses performed separately for the two monkeys in the Results section:

      “In addition, we performed the main analyses separately for the two monkeys, explored the inter-condition variability (Supplementary File 2), and computed classical measures of functional connectivity such as average FC matrices and functional graph properties (modularity, efficiency and density) of the visited FC states (Supplementary File 3). The separate analyses showed that the changes in slope and Shannon entropy were substantially more pronounced in one of the two monkeys, corroborating some of the effects captured in the ANOVA tests.”

      “Analyses of the two monkeys separately showed that the changes in slope and Shannon entropy were bigger in one of the two monkeys but went in the same direction (Supplementary

      File 2)”.

      Anodal tDCS was only applied to anesthetized monkeys, which limits the conclusion that the authors are aiming for. It raises questions about the conclusion regarding brain state dependency. To address this, it would be better to include the cathodal tDCS session for anesthetized monkeys. If cathodal tDCS changes the connectivity during anesthesia, it becomes difficult to argue that the effects of cathodal tDCS vary depending on the state of consciousness as discussed in this paper. On the other hand, if cathodal tDCS would not produce any changes, the conclusion would then focus on the relationship between the polarity of tDCS and consciousness. In that case, the authors could maintain their conclusion but might need to refine it to reflect this specific relationship more accurately. 

      We agree with the reviewer that it would have been interesting to investigate the effects of cathodal tDCS in anesthetized monkeys. However, due to the challenging nature of the experimental procedures under anesthesia, we had to limit the investigations to only one stimulation modality. We chose to deliver anodal stimulation because, from a translational point of view, we aimed to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness. It also made much more sense to increase the cortical excitability of the prefrontal cortex in an attempt to wake up the sedated monkeys rather than doing the opposite.

      Actions in the text: We have added a new sentence in the Results section:

      “Due to the challenging nature of the experimental procedures under anesthesia, we limited the investigations to only one stimulation modality. We chose to deliver anodal stimulation to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness and to increase the cortical excitability of the PFC in an attempt to wake up the sedated monkeys.”

      Reviewer #3 (Public review): 

      Summary: 

      This study used transcranial direct current stimulation administered using small 'high-definition' electrodes to modulate neural activity within the non-human primate prefrontal cortex during both wakefulness and anaesthesia. Functional magnetic resonance imaging (fMRI) was used to assess the neuromodulatory effects of stimulation. The authors report on the modification of brain dynamics during and following anodal and cathodal stimulation during wakefulness and following anodal stimulation at two intensities (1 mA, 2 mA) during anaesthesia. This study provides some possible support that prefrontal direct current stimulation can alter neural activity patterns across wakefulness and sedation in monkeys. However, the reported findings need to be considered carefully against several important methodological limitations. 

      Strengths: 

      A key strength of this work is the use of fMRI-based methods to track changes in brain activity with good spatial precision. Another strength is the exploration of stimulation effects across wakefulness and sedation, which has the potential to provide novel information on the impact of electrical stimulation across states of consciousness.

      We thank the Reviewer for the summary and for highlighting the strengths of our study. 

      Weaknesses: 

      The lack of a sham stimulation condition is a significant limitation, for instance, how can the authors be sure that results were not affected by drowsiness or fatigue as a result of the experimental procedure?

      We agree with the reviewer that adding control conditions could have strengthened our study. Control conditions usually consist of a sham condition or active control conditions. However, as mentioned in response to one of Reviewer 2 comments (R.2.5), we had to make choices as we could not perform as many experiments due to their demanding nature, especially under anesthesia. 

      In the awake state, we acquired data with two experimental conditions; the monkeys were exposed to either anodal (F4/O1) or cathodal (O1/F4) PFC tDCS. As anodal tDCS of the PFC induced only minor changes in brain dynamics, it could be considered as an active control condition for the cathodal condition, which had striking effects on the cortical dynamics. It is also worth noting that doubts have been raised about the neurobiological inertia of certain sham protocols. Indeed, different sham protocols have been employed in the literature, some of which may produce unintended effects (Fonteneau et al. 2019). Therefore, active control conditions, such as reversing the polarity of the stimulation or targeting a different brain region, have been proposed to provide better control (Fonteneau et al. 2019). Furthermore, in the context of experiments performed under anesthesia, the relevance of a sham control condition typically used to achieve adequate blinding is questionable. 

      With regard to drowsiness and fatigue as a result of the experimental procedure, we agree with the reviewer that this is a common problem in functional imaging due to the length of the recording sessions. We assumed, as was done in previous work (Uhrig, Dehaene, and Jarraya 2014; Wang et al. 2015), that the monkeys' performance on the fixation task during acquisition would capture these periods of fatigue. Therefore, only sessions with fixation rates above 85% were included in our analysis. 

      Actions in the text: We have now specified, in the Materials and Methods section, the fact that only runs with a high fixation rate (> 85%) were included in the study: 

      “To ensure that the results were not biased by fatigue or drowsiness due to the lengthy

      In the anaesthesia condition, the authors investigated the effects of two intensities of stimulation (1 mA and 2 mA). However, a potential confound here relates to the possibility that the initial 1 mA stimulation block might have caused plasticity-related changes in neural activity that could have interfered with the following 2 mA block due to the lack of a sufficient wash-out period. Hence, I am not sure any findings from the 2 mA block can really be interpreted as completely separate from the initial 1 mA stimulation period, given that they were administered consecutively. Several previous studies have shown that same-day repeated tDCS stimulation blocks can influence the effects of neuromodulation (e.g., Bastani and Jaberzadeh, 2014, Clin Neurophysiol; Monte-Silva et al., J. Neurophysiology). 

      We agree with the reviewer’s comment that the initial 1 mA stimulation block might have induced changes in neural activity and that the 20-minute post 1 mA block would not be long enough to wash out these changes. This comment is very similar to the second comment made by Reviewer 2 (R.2.2). Although our experimental data do not support this possibility (as the differences between the 1 mA post-stimulation and baseline conditions were not significant), it is still conceivable that the stimulation produced some effects below the threshold of significance and that these might weakly contribute to the changes observed during and after the 2 mA stimulation. 

      Actions in the text: We have modified the paper according to the reviewers' comments (please see our answer and actions in the text to R.2.2.).

      The different electrode placement for the two anaesthetised monkeys (i.e., Monkey R: F3/O2 montage, Monkey N: F4/O1 montage) is problematic, as it is likely to have resulted in stimulation over different brain regions. The authors state that "Because of the small size of the monkey's head, we expected that tDCS stimulation with these two symmetrical montages would result in nearly equivalent electric fields across the monkey's head and produce roughly similar effects on brain activity"; however, I am not totally convinced of this, and it really would need E-field models to confirm. It is also more likely that there would in fact be notable differences in the brain regions stimulated as the authors used HD-tDCS electrodes, which are generally more focal.

      We thank the Reviewer for the remark, which is very similar to the second comment from Reviewer 2. Please see our answer to the first comment of Reviewer 2 

      Actions in the text: We have modified the paper according to the reviewers' comments (please see the actions taken in response to R.2.1.).

      Given the very small sample size, I think it is also important to consider the possibility that some results might also be impacted by individual differences in response to stimulation. For instance, in the discussion (page 9, paragraph 2) the authors contrast findings observed in awake animals versus anaesthetised animals. However, different monkeys were examined for these two conditions, and there were only two monkeys in each group (monkeys J and Y for awake experiments [both male], and monkeys R and N [male and female] for the anaesthesia condition). From the human literature, it is well known that there is a considerable amount of inter-individual variability in response to stimulation (e.g., Lopez-Alonso et al., 2014, Brain Stimulation; Chew et al., 2015, Brain Stimulation), therefore I wonder if some of these differences could also possibly result from differences in responsiveness to stimulation between the different monkeys? At the end of the paragraph, the authors also state "Our findings also support the use of tDCS to promote rapid recovery from general anesthesia in humans...and suggest that a single anodal prefrontal stimulation at the end of the anesthesia protocol may be effective." However, I'm not sure if this statement is really backed-up by the results, which failed to report "any behavioural signs of awakening in the animals" (page 7)?

      We thank the Reviewer for this comment. Because working with non-human primates is expensive and labor intensive, the sample sizes in classical macaque experiments are generally small (typically 2-4 subjects per experiment). Our sample size (i.e. 2 rhesus macaques in awake experiments and 2 macaques under sedation, 11 +/- 9 scan sessions per animal, 288 and 136 runs in the awake and anesthesia state, respectively) is comparable to other previous work in non-human primates using fMRI (Milham et al. 2018; Yacoub et al. 2020; Uchimura, Kumano, and Kitazawa 2024). In addition, we would like to point out that the baseline cortical dynamics we found before stimulation, whether in the awake or sedated state, are comparable to previous studies (Barttfeld et al. 2015; Uhrig et al. 2018; Tasserie et al. 2022). This suggests our results are reproducible across datasets, despite the small sample size.

      That being said, we agree with the reviewer that inter-individual variability in response to stimulation can be considerable, as shown by a large body of literature in the field. It seems possible that the two monkeys studied in each condition responded differently to the stimulation. But even if that’s the case, our results suggest that at least in one of the two monkeys, cathodal PFC stimulation in the awake state and anodal PFC stimulation under propofol anesthesia induced striking changes in brain dynamics, which we believe is a significant contribution to the field. 

      In fact, supplementary analysis, as proposed by Reviewer 2 (cf R2.4), investigating how the different measurables we’ve used were differently affected by tDCS show that indeed monkey Y’s case is more apparent and significant than monkey J’s. Still, the effects observed in monkey J’s case are still congruent with what is observed in monkey Y’s and at the population level (though less flagrant). We also show that these inter-individual variabilities are outmatched by the inter-condition variability, (as indicated by our initially strong statistical results at the population levels), thus showing that, even though we have different responses depending on the subject, the effects observed at the population level cannot be only accounted for by the differences in subjects’ specificities.

      Lastly, the Reviewer questioned whether our results support that a single anodal prefrontal stimulation at the end of the anesthesia protocol could effectively promote rapid recovery from general anesthesia, because the stimulation did not wake the animals in our experiments. It should be emphasized that in our case, the monkeys were stimulated while they were still receiving continuous propofol perfusion. In contrast, during the recovery process from anesthesia, the delivery of the anesthetic drug is stopped. It is therefore conceivable that anodal PFC tDCS, which successfully enriched brain dynamics in sedated monkeys in our experiments, may accelerate the recovery from anesthesia when the drug is no longer administered. 

      Actions in the text: We have added a line in the Materials and Methods to compare to other studies:

      “Our sample size is comparable to previous work in NHP using fMRI (Milham et al. 2018; Yacoub et al. 2020; Uchimura, Kumano, and Kitazawa 2024).”

      Reviewing Editor Comments: 

      In some cases, authors opt to submit a revised manuscript. Should you choose to do so, please be aware that the reviewers have indicated that their appraisal is unlikely to change unless some of the suggested field modelling is incorporated into the work. This may change the evaluation of the strength of evidence, but the final wording will be subject to reviewer discretion. Details for responding to the reviews are provided at the bottom of this email.

      Reviewer #1 (Recommendations for the authors): 

      The work should discuss the implications of their experiments for using tDCS to arouse a patient from a coma. The anesthetized animal is effectively in a drug-induced coma. While they observed connectivity changes, these changes did not map nicely onto behavioral changes. 

      I would suggest that the authors spell out more clearly what they view as the clinical implications of their work in terms of new insights into how tDCS may be used to either understand and or treat disorders of consciousness.

      We thank the Reviewer for his thoughtful comments. We appreciate the opportunity to clarify and expand on the key findings and implications of our work, particularly regarding the new insights into how tDCS can be used to understand and treat disorders of consciousness. We therefore provide a broader perspective on the clinical implications of our experiments regarding coma and disorders of consciousness. We also agree with the Reviewer that the absence of behavioral changes but the presence of functional differences should be more clearly addressed. 

      Actions in the text: We have added a few lines about the relevance of anesthesia as a model for disorders of consciousness in the Introduction part:

      “Anesthesia provides a unique model for studying consciousness, which, similarly to DOC, is characterized by the disruption or even  the loss of consciousness (Luppi 2024). Additionally, anesthesia mechanisms involve several subcortical nuclei that are key components of the brain's sleep and arousal circuits (Kelz and Mashour 2019).”

      In the Discussion section, we have modified and expanded a paragraph about the effects of tDCS in DOC patients and how this technique could be further used to study consciousness: From another clinical perspective, our results demonstrating that 2 mA anodal PFC tDCS decreased the structure-function correlation and modified the dynamic repertoire of brain patterns during anesthesia (Figures 6 and 7) are consistent with the beneficial effects of such stimulation in DOC patients (Thibaut et al., 2014; Angelakis et al., 2014; Thibaut et al., 2017; Zhang et al., 2017; Martens et al., 2018; Cavinato et al., 2019; Wu et al., 2019; Hermann et al., 2020; Peng et al., 2022; Thibaut et al., 2023). Although some clinical trials investigated the effects of stimulating other brain regions, such as the motor cortex (Martens et al., 2019; Straudi et al., 2019) or the parietal cortex (Huang et al., 2017; Guo et al., 2019; Zhang et al., 2022; Wan et al., 2023; Wang et al., 2020), the DLPFC appears to be the most effective target for patients with a minimally conscious state (Liu et al., 2023). In terms of neuromodulatory effects in DOC patients, DLPFC tDCS has been reported to increase global excitability (Bai et al., 2017), increase the P300 amplitude (Zhang et al., 2017; Hermann et al., 2020), improve the fronto-parietal coherence in the theta band (Bai et al., 2018), enhance the putative EEG markers of consciousness (Bai et al., 2018; Hermann et al., 2020) and reduce the incidence of slow-waves in the resting state (Mensen et al., 2020). Our findings further support the PFC as a relevant target for modulating consciousness level and align with growing evidence showing that the PFC plays a key role in conscious access networks (Mashour, Pal, and Brown 2022; Panagiotaropoulos 2024). Nevertheless, we hypothesize that other brain targets for tDCS may be of interest for consciousness restoration, potentially using multi-channel tDCS (Havlík et al., 2023). Among transcranial electrical stimulation techniques, tDCS has the great advantage of facilitating either excitation or inhibition of brain regions, depending on the polarity of the stimulation (Sdoia et al., 2019) exploited this advantage to investigate the causal involvement of the DLPFC in conscious access to a visual stimulus during an attentional blink paradigm. While conscious access was enhanced by anodal stimulation of the left DLPFC compared to sham stimulation, opposite effects were found with cathodal stimulation compared to sham over the same locus. Finally, this literature and our findings suggest that tDCS constitutes a non-invasive, reversible, and powerful tool for studying consciousness.”

      We have added a new paragraph about patients with cognitive-motor dissociation and dissociation between consciousness and behavioral responsiveness:

      “Changes in the state of consciousness are generally closely associated with changes in behavioural responsiveness, although some rare cases of dissociation have been described. Cognitive-motor dissociation (CMD) is a condition observed in patients with severe brain injury, characterized by behavior consistent with unresponsive wakefulness syndrome or a minimally conscious state minus (Thibaut et al., 2019). However, in these patients, specific cortical brain areas activate in response to mental imagery tasks (e.g., imagining playing tennis or returning home) in a manner indistinguishable from that of healthy controls, as shown through fMRI or EEG (Thibaut et al., 2019; Owen et al., 2006; Monti et al., 2010; Bodien et al., 2024). Thus, although CMD patients are behaviorally unresponsive, they demonstrate cognitive awareness that is not outwardly apparent. It is worth noting that both the structure-function correlation and the rate of the pattern closest to the anatomy were shown to be significantly reduced in unresponsive patients showing command following during mental imagery tasks compared to those who do not show command following (Demertzi et al., 2019). These observations would be compatible with our findings in anesthetized macaques exposed to 2 mA anodal PFC tDCS. The richness of the brain dynamics would be recovered (at least partially, in our experiments), but not the behaviour. This hypothesis also fits with a recent longitudinal fMRI study on patients recovering from coma (Crone et al., 2020). The researchers examined two groups of patients: one group consisted of individuals who were unconscious at the acute scanning session but regained consciousness and improved behavioral responsiveness a few months later, and the second group consisted of patients who were already conscious from the start and only improved behavioral responsiveness at follow-up. By comparing these two groups, the authors could distinguish between the recovery of consciousness and the recovery of behavioral responsiveness. They demonstrated that only initially conscious patients exhibited rich brain dynamics at baseline. In contrast, patients who were unconscious in the acute phase and later regained consciousness had poor baseline dynamics, which became more complex at follow-up. Complete recovery of both consciousness and responsiveness under general anesthesia is possible through electrical stimulation of the central thalamus (Redinbaugh et al., 2020; Tasserie et al., 2022).”

      Reviewer #2 (Recommendations for the authors): 

      Method 

      (1) The authors mentioned that they used HD-tDCS in their experiments; however, they used 1 x 1 tDCS, which is not HD-tDCS but rather single-channel tDCS.

      We thank the Reviewing Editor for pointing out this ambiguous wording. We understand that "HD-tDCS", which we used in our paper to refer to high-density 1x1 tDCS (because we used small carbon electrodes instead of the large sponge electrodes employed in conventional tDCS), may cause some confusion with high-definition tDCS, which uses compact ring electrodes and most commonly refers to a 4x1 montage (1 active central electrode over the target area and 4 return electrodes placed around the central electrode).

      Therefore, to avoid any confusion, we will use the term "tDCS" rather than “HD-tDCS” to qualify the technique used in this paper and suppress mentions of high-density or high-definition tDCS.

      Actions in the text: We have replaced the abbreviation “HD-tDCS” with “tDCS” throughout the paper. We have also suppressed the sentence about high-definition tDCS in the Introduction (“While conventional tDCS relies on the use of relatively large rectangular pad electrodes, high-density tDCS (HD-tDCS) utilizes more compact ring electrodes, allowing for increased focality, stronger electric fields, and presumably, greater neurophysiological changes (Datta et al. 2009; Dmochowski et al. 2011)”) and the two related citations in the References section.

      (2) Please provide the characteristics of electrodes, including their size, shape, and thickness.

      We thank the Reviewing Editor for this recommendation. We now provide the complete characteristics of the tDCS electrodes used in the paper.

      Actions in the text: We have added a sentence describing the characteristics of the tDCS electrodes in the Materials and Methods section:

      “We used a 1x1 electrode montage with two carbon rubber electrodes (dimensions: 1.4 cm x 1.85 cm, 0.93  cm thick) inserted into Soterix HD-tES MRI electrode holders (base diameter: 25 mm; height: 10.5 mm), which are in contact with the scalp. These electrodes (2.59 cm2) are smaller than conventional tDCS sponge electrodes (typically 25 to 35 cm<sup>2</sup>).”

      (3) Could the authors clarify why they chose to stimulate the right DLPFC? Is there a specific rationale for this choice? Additionally, could the authors explain how they ensured that the stimulation targeted the DLPFC, given that the monkey cap might differ from human configurations? In many NHP studies, structural MRI is used to accurately determine electrode placement. Considering that a single channel F4 - O2 montage was used, even a small displacement of the frontal electrode laterally could result in the electric field not adequately covering the DLPFC. Could the authors provide structural MRI images and details of electrode positioning to help readers better understand targeting accuracy?

      We thank the Reviewing Editor for the thoughtful comments and recommendations. We appreciate the opportunity to further clarify our rationale for stimulating the right DLPFC and also the suggestion to provide structural MRI images and details of electrode positioning, which we think will improve the quality of the paper by showing targeting accuracy.

      First, we would like to clarify that our initial decision to stimulate the right PFC in most animals was driven by experimental constraints. Indeed, we had limited access to the left PFC in three of the four macaques, either due to the presence of cement (spreading asymmetrically from the centre of the head) used to fix the head post in awake animals or due to a scar in one of the two animals studied under anesthesia. 

      Second, we agree with the Reviewing Editor on the importance of showing details of electrode positioning and evidence of targeting accuracy across MRI sessions. Therefore, we now provide structural images showing the positions of anodal and cathodal electrodes in almost all acquired sessions: 10 sessions (out of 10) under anesthesia and 30 sessions in the awake state (out of 34 sessions, because we could not acquire structural images in four sessions). These images show that, in anesthesia experiments, the anodal electrode was positioned over the dorsal prefrontal cortex and the cathodal electrode was placed over the contralateral occipital cortex (at the level of the parieto–occipital junction) in both monkeys. In the awake state, the montage still targeted the prefrontal cortex and the occipital cortex, but with a slightly different placement. One of the electrodes was placed over the prefrontal cortex, closer to the premotor cortex than in anesthesia experiments, while the other one was placed over the occipital cortex (V1), slightly more posterior than in anesthesia experiments. These images therefore show that the placement was relatively accurate across sessions and reproducible between monkeys in each of the two arousal conditions.

      Actions in the text: We have added a supplementary file showing electrode positioning in 40 of the 44 acquired MRI sessions (Supplementary File 1). We have also added a new supplement figure (Figure 1 - figure supplement 1) showing electrode positioning in representative MRI sessions of the awake and anesthetized experiments in the main manuscript. 

      We added a few sentences referring to these figures in the Result section: 

      “Representative structural images showing electrode placements on the head of the two awake monkeys are shown in Figure 1 - figure supplement 1A). Supplementary File 1 displays the complete set of structural images, showing that the two electrodes were accurately placed over the prefrontal cortex and the occipital cortex in a reproducible manner across awake sessions.”

      Figure 1 - figure supplement 1. Structural images displaying electrode placements on the head of monkeys. A) Awake experiments. Representative sagittal, coronal and transverse MRI sections, and the corresponding skin reconstruction images showing the position of the prefrontal and the occipital electrodes on the head of monkeys J. and Y. B) Anesthesia experiments. Representative sagittal, coronal and transverse MRI sections, and the corresponding skin reconstruction images showing the position of the prefrontal and occipital electrodes over the occipital cortex on the head of monkeys R. and N.

      Supplementary File 1 (see attached file). Structural images showing the position of the tDCS electrodes on the monkey's head across sessions. Sagittal, coronal and transverse MRI sections, and corresponding skin reconstruction images showing the position of the prefrontal and occipital electrodes on the monkey's head for each MRI session (except for 4 sessions in which no anatomical scan was acquired). The two electrodes were accurately placed over the prefrontal cortex and the occipital cortex in a reproducible manner across sessions and between the two monkeys studied in each arousal state. In anesthesia experiments, the anodal electrode was placed over the dorsal prefrontal cortex, while the cathodal electrode was positioned over the parieto-occipital junction. In awake experiments, the prefrontal electrode was positioned over the dorsal prefrontal cortex/pre-motor cortex, while the occipital electrode was placed over the visual area 1. The position of the two electrodes differed slightly between the anesthetized and awake experiments due to different body positions (the prone position of the sedated monkeys prevented a more posterior position of the occipital electrode) and also due to the presence of a headpost on the head of the two monkeys in awake experiments (the monkeys we worked with in anesthesia experiments did not have an headpost).

      (4) If the authors did not analyze the data for the passive event-related auditory response, it may be helpful to remove the related sentence to avoid potential confusion for readers.

      We thank the Reviewing Editor for the comment. Although we understand the reviewer’s point of view, we decide to keep this information in the paper to inform the reader that the macaques were passively engaged in an auditory task, as this could have some influence on the brain state. In the Materials and Methods section, we already mentioned that the analysis of the cerebral responses to the auditory paradigm is not part of the paper. We have modified the sentence to make it clearer and to avoid potential confusion for readers.

      Actions in the text: We have modified the sentence referring to the passive event-related auditory response in the Materials and Methods section:

      “All fMRI data were acquired while the monkeys were engaged in a passive event-related auditory task, the local-global paradigm, which is based on local and global deviations from temporal regularities (Bekinschtein et al. 2009; Uhrig, Dehaene, and Jarraya 2014). The present paper does not address how tDCS perturbs cerebral responses to local and global deviants, which will be the subject of future work.”

      (5) Could the authors clarify what x(t) represents in the equation? Additionally, it would be better to number the equations.

      We apologize for the confusion,  x(t) represents the evolution of the BOLD signals over time. We have numbered the equations as suggested. 

      Actions in the text: We have added explanations about the notation and numerotation of equations.

      (6) It would be much better to provide schematic illustrations to explain what the authors did for analyzing fMRI data.

      We thank the Reviewing Editor for the suggestion and now provide a new figure as suggested.  

      Actions in the text: We have added a new figure (Figure 2) graphically showing the overall analysis performed. We have added a sentence about the new Figure 2 in the Results section:  “A graphical overview of the overall analysis is shown in Figure 2.” We have renumbered Figure 2 - supplement figures accordingly.

      Figure 2. fMRI Phase Coherence analysis. A) Left) Animals were scanned before, during and after PFC tDCS stimulation in the awake state (two macaques) or under deep propofol anesthesia (two macaques). Right) Example of Z-scored filtered BOLD time series for one macaque, 111 time points with a TR of 2.4 s. B) Hilbert transform of the z-scored BOLD signal of one ROI into its time-varying amplitude A(t) (red) and the real part of the phase φ (green). In blue, we recover the original z-scored BOLD signal as A(t)cos(φ). C) Example of the phase of the Hilbert transform for each brain region at one TR. D) Symmetric matrix of cosines of the phase differences between all pairs of brain regions. E) We concatenated the vectorized form of the triangular superior of the phase difference matrices for all TRs for all participants, in all the conditions for both datasets separately obtaining using the K-means algorithm, the brain patterns whose statistics are then analyzed in the different conditions.

      Results 

      (1) In Figures 3A, 5A, and 6A showing brain connectivity, it is difficult to relate the connectivity variability among the brain regions. Instead of displaying connection lines for nodes, it would be more effective if the authors highlighted significant, strong connectivity within specific brain regions using additional methods, such as bootstrapping.

      We thank the Reviewing Editor for the comment and suggestion. The connection lines indeed represent all the synchronizations above 0.5 and all the anti-synchronization below -0.5 between all pairs of brain regions. As suggested, another element we haven’t addressed is the heterogeneity in coherences between individual brain regions. We hence propose additional supplementary figures showing, for all centroids mentioned in main figures, the variance in phase-based connectivity of the distributions of coherence of all brain regions to the rest of the brain. High value would then indicate a wide range of values of coherence, while low would indicate the different coherence a region has with the rest of the brain have similar values. Thus, a brain with uniform color would indicate high homogeneity in coherence among brain regions, while sharp changes in colors would reveal that certain regions are more subject to high variance in their coherence distributions. We expect this new figure to more clearly expose the connectivity variability among the brain regions.

      Actions in the text: We have added new figures showing, for all centroids mentioned in the main figures, the variances in phase-based connectivity of the distributions of coherence  (Figure 3 - figure supplement 3;  Figure 5 - figure supplement 2; Figure 6 - figure supplement 3; Figure 7 - figure supplement 2). One of them is shown below for the only awake analysis (Figure 3 - figure supplement 3).

      Figure 3 - figure supplement 3. Variance in inter-region phase coherences of brain patterns. Low values (red and light red) indicate that the distribution of synchronizations between a brain region and the rest of the brain has relatively low variance, while high values (blue and light blue) indicate relatively high variance. Are displayed both supra (top) and subdorsal (bottom) views for each brain pattern from the main figure, ordered similarly as previously: from left (1) to right (6) as their respective SFC increases. 

      We added a few sentences about variances in phase-based connectivity of the distributions of coherence in the Result section: 

      “Further investigation of the variances in inter-region phase coherences of brain patterns, presented in Figure 3 - figure supplement 3, revealed two main findings. First, all the patterns exhibited some degree of lateral symmetry. Second, except for the pattern with the highest SFC, most patterns displayed high heterogeneity in their coherence variances and striking inter-pattern differences. These observations reflect both the segmentation of distinct functional networks across patterns and a topological organization within the patterns themselves: some regions showed a broader spectrum of synchrony with the rest of the brain, while others exhibited narrower distributions of coherence variances. For instance, unlike other brain patterns, pattern 5 was characterized by a high coherence variance in the frontal premotor areas and low variance in the occipital cortex, whereas pattern 3 had a high variance in the frontal and orbitofrontal regions. In addition, we performed the main analyses separately for the two monkeys, explored the inter-condition variability (Supplementary File 2), and computed classical measures of functional connectivity such as average FC matrices and functional graph properties (modularity, efficiency and density) of the visited FC states (Supplementary File 3).”

      “The variance in inter-regional phase coherence across brain patterns showed notably that pattern 4, in contrast to most other patterns, was characterized by a high variance in frontal premotor areas and a low variance in the occipital cortex (Figure 5 - figure supplement 2)." 

      “The variance in inter-region phase coherences of the brain patterns is displayed in Figure 6 - figure supplement 3 and showed a striking heterogeneity between the patterns. For example, pattern 5 had a low overall variance (except in the frontal cortex), while pattern 1 was the only pattern with a high variance in the occipital cortex.”

      “The variance in inter-region phase coherences of brain patterns is displayed in Figure 6 - figure supplement 2.”

      (2) For both conditions, only 2 to 3 out of 6 patterns showed significant effects of tDCS on the occurrence rate. Is it sufficient to claim the authors' conclusion?

      We thank the Reviewer Editor for the comment. We would like to point out that similar kinds of differences in the occurrence rates of specific brain patterns (particularly in patterns at the extremities of the SFC scale) have already been reported previously. Prior works in patients suffering from disorders of consciousness, in healthy humans or in non-human primates,  have shown, by using a similar method of analysis, that not all brain states are equally disturbed by loss of consciousness, even in different modalities of unconscious transitioning (Luppi et al. 2021; Z. Huang et al. 2020; Demertzi et al. 2019; Castro et al. 2023; Golkowski et al. 2019; Barttfeld et al. 2015). Therefore, yes we believe that our conclusions are still supported by the results.

      (3) If the authors want to assert that the brain state significantly influences the effects of tDCS as discussed in the manuscript, further analysis is necessary. First, it would be great to show the difference in connectivity between two consciousness conditions during the baseline (resting state) to see how resting state connectivity or structural connectivity varies. Second, demonstrating the difference in connectivity between the awake and anesthetized conditions (e.g., awake during cathodal vs. anesthetized cathodal) to show how the connectivity among the brain regions was changed by the brain state during tDCS. This would strengthen the authors' conclusion.

      We thank the reviewer for this comment. Firstly, we’d like to clarify that the structural connectivity doesn’t change from one session to another in the same animal and minimally between subjects. Secondly, we agree with the Reviewing Editor that it is informative to show the differences between the baselines and this is what we have done. The results are shown in Figures 5 and 7. Regarding the comparison of the stimulating conditions across arousal levels, the only contrast that we could make is to compare 2 mA anodal awake with 2 mA anodal anesthetized (during and post-stimulation). However, as 2 mA anodal stimulation in the awake state did not affect the connectivity much (compared to the awake baseline), the results would be almost similar to the comparison of the awake baseline with 2 mA anodal anesthetized, which is shown in Figure 7. Therefore, we believe that this would result in minimal informative gains and even more redundancy. 

      Reviewer #3 (Recommendations for the authors): 

      Introduction, par 2: HD-tDCS does not necessarily produce stronger electric fields (E-fields) in the brain. The E-field is largely montage-dependent, and some configurations such as the 4x1 configuration can actually have weaker E-fields compared to conventional tDCS designs (i.e., with two sponge electrodes) as electrodes are often closer together resulting in more current being shunted by skull, scalp, and CSF. I would consider re-phrasing this section.

      We agree with the Reviewer Editor that high-definition tDCS does not necessarily produce stronger electric fields in the brain and apologize for the confusion caused by our use of HD-tDCS to refer to high-density tDCS. To avoid any confusion, we have removed the sentence mentioning that HD-tDCS produces stronger electric fields. 

      Actions in the text: We have removed the sentence about high-definition tDCS in the Introduction (“While conventional tDCS relies on the use of relatively large rectangular pad electrodes, high-density tDCS (HD-tDCS) utilizes more compact ring electrodes, allowing for increased focality, stronger electric fields, and presumably, greater neurophysiological changes (Datta et al. 2009; Dmochowski et al. 2011)”) and the two related citations in the References section.

    1. eLife Assessment

      This valuable study combines anatomical tracing and slice physiology to examine how anterior thalamic and retrosplenial inputs converge in the presubiculum, a key region in the navigation circuit. The authors show that near-simultaneous co-activation of retrosplenial and thalamic inputs drives supra-linear presubiculum responses, revealing a potential cellular mechanism for anchoring the brain's head direction system to external visual landmarks. Their thorough experimental approach and analyses provide convincing evidence for the cellular basis of how the brain's internal compass may be anchored to the external world, laying the groundwork for future experimental testing in vivo.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors use anatomical tracing and slice physiology to investigate the integration of thalamic (ATN) and retrosplenial cortical (RSC) signals in the dorsal presubiculum (PrS). This work will be of interest to the field, as postsubiculum is thought to be a key region for integrating internal head direction representations with external landmarks. The main result is that ATN and RSC inputs drive the same L3 PrS neurons, which exhibit superlinear summation to near-coincident inputs. Moreover, this activity can induce bursting in L4 PrS neurons, which can pass the signals LMN (perhaps gated by cholinergic input).

      Strengths:

      The slice physiology experiments are carefully done. The analyses are clear and convincing, and the figures and results are well composed. Overall, these results will be a welcome addition to the field.

      Weaknesses:

      The conclusions about the circuit-level function of L3 PrS neurons sometimes outstrip the data, and their model of the integration of these inputs is unclear. I would recommend some revision of the introduction and discussion. I also had some minor comments about the experimental details and analysis.

      Specific major comments:

      (1) I found that the authors' claims sometimes outstrip their data, given that there were no in vivo recordings during behavior. For example, in the abstract that their results indicate "that layer 3 neurons can transmit a visually matched HD signal to medial entorhinal cortex", and in the conclusion they state "[...] cortical RSC projections that carry visual landmark information converge on layer 3 pyramidal cells of the dorsal presubiculum". However, they never measured the nature of the signals coming from ATN and RSC to L3 PrS (or signals sent to downstream regions). Their claim is somewhat reasonable with respect to ATN, where the majority of neurons encode HD, but neurons in RSC encode a vast array of spatial and non-spatial variables other than landmark information (e.g., head direction, egocentric boundaries, allocentric position, spatial context, task history to name a few), so making strong claims about the nature of the incoming signals is unwarranted.

      (2) Related to the first point, the authors hint at, but never explain, how coincident firing of ATN and RSC inputs would help anchor HD signals to visual landmarks. Although the lesion data (Yoder et al. 2011 and 2015) support their claims, it would be helpful if the proposed circuit mechanism was stated explicitly (a schematic of their model would be helpful in understanding the logic). For example, how do neurons integrate the "right" sets of landmarks and HD signals to ensure a stable anchoring? Moreover, it would be helpful to discuss alternative models of HD-to-landmark anchoring, including several studies that have proposed that the integration may (also?) occur in RSC (Page & Jeffrey, 2018; Yan, Burgess, Bicanski, 2021; Sit & Goard, 2023). Currently, much of the Discussion simply summarizes the results of the study, this space could be better used in mapping the findings to the existing literature on the overarching question of how HD signals are anchored to landmarks.

      Comments on revised version:

      The authors addressed all of my major points and most of my minor points in the revised submission.

    1. Instead, the theory-data cycle is like a gamble: Researchers place a public bet in advance that the study will come out in favor of the theory. They are willing to risk being wrong every time they collect data.

      In the text it states "They are willing to risk being wrong every time they collect data". Upon reading about the theory data cycle It immediately clicks in my head that I use this cycle probably every day whether it was thinking of a plan to get my mom to say yes to something or if it was being used in an actual science class. I got the urge to look up on google and see if "All" scientist use this cycle when trying to be a producer of researcher, to my surprise it says No..What other ways (and how) are they doing things with out going through numerous trials and errors?

    2. Instead, the theory-data cycle is like a gamble: Researchers place a public bet in advance that the study will come out in favor of the theory. They are willing to risk being wrong every time they collect data.

      In the text it states "They are willing to risk being wrong every time they collect data". Upon reading about the theory data cycle It immediately clicks in my head that I use this cycle probably every day whether it was thinking of a plan to get my mom to say yes to something or if it was being used in an actual science class. I got the urge to look up on google and see if "All" scientist use this cycle when trying to be a producer of researcher, to my surprise it says No..What other ways (and how) are they doing things with out going through numerous trials and errors?

    1. Everyyear, countless first-year college students decide to major in aerospace engineering orastrophysics or some other math-heavy subject, only to have that dream crushed when theyrealize they can’t even pass an entry-level math course like Calc II (not even with the help of atutor).

      Calc II is not entry-level, many people fail it and still go into engineering, this is head-in-assed

    Annotators

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC- 2025-03073

      Corresponding author(s): Shaul Yogev

      1. General Statements [optional]

      We kindly thank our reviewers for their enthusiasm, thoughtful feedback, and constructive suggestions on how to strengthen our manuscript. Below, we provide a point-by-point response to reviewer comments and outline the experiments we will do to address every concern that has been raised.

      2. Description of the planned revisions

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This interesting study uses an unbiased genetic screen in C. elegans to identify SAX-1/NDR kinase as a regulator of dendritic branch elimination. Loss of SAX-1 results in an excess branching phenotype that is striking and highly penetrant. The authors identify several additional regulators of branch elimination (SAX-2, MOB-1, RABI-1, RAB-11.2) by using a candidate genetic screen aimed at factors that interact physically or genetically with SAX-1. They propose that SAX-1 acts by promoting membrane retrieval based on the nature of these interactors and the results of an imaging-based in vivo assay for endocytic puncta.

      Major comments.

      1. My biggest concern is that the phenotypes are only observed in temperature-sensitive dauer-constitutive mutant backgrounds, and not in wild-type dauers. That is, wild-type animals exiting dauer do not require SAX-1 for dendrite elimination. While this does not undermine the importance of the results, it does require more explanation. The authors write that "the requirement for sax-1... relies on specific physiological states of the dauer stage," but I do not understand what this means. Are they saying that daf-7 and daf-2 dauers are in a different "physiological state" than wild-type dauers? In what way? What is the evidence for this? A more rigorous explanation is needed. We agree that this is puzzling, and we thank the reviewer for recognizing that this does not undermine the importance of the results. There is ample evidence that daf-2 and daf-7 differ from starvation-induced dauers. For example, a recent preprint finds that the transcriptomes of these two mutants at dauer cluster much closer to each other than to starvation-induced dauers (Corchado et al. 2024). Older work has noted other differences, such as the time the dauer entry decision is made (Swanson and Riddle 1981), the synchronicity of dauer exit, the ability to force dauer entry in daf-d mutants, as well as additional dauer-unrelated phenotypes (reviewed in Karp 2018). We agree with the reviewer that this merits further clarifications and will perform the experiments suggested by the reviewer below:

      To me, the simplest genetic explanation is that daf-7 and daf-2 are partially required for branch retraction in a manner redundant with sax-1, and the ts mutants are not fully wild-type at 15C. Thus, the sax-1 requirement is revealed only in these mutant backgrounds. Can the authors examine starvation-induced dauers of daf-7 or daf-2 raised continuously at 15C?

      We will do this experiment.

      daf-7 and daf-2 ts strains can form "partial dauers" that have a dauer-like appearance but are not SDS resistant. Could the difference between partial dauers and full dauers account for the difference in sax-1-dependence? The authors could use SDS selection of the daf-7 strain at 25C to ensure they are examining full dauers.

      We tested daf-7 mutants with 1% SDS when we set up the system – they are fully dauer at 25°C and are SDS sensitive after exit. We will repeat this important control with daf-7; sax-1 double mutants.

      The Bargmann lab has created a daf-2 FLP-OUT strain (ky1095ky1087) that allows cell-type-specific removal of daf-2. Could this be used to test for a cell-autonomous role of daf-2 in IL2Q related to branch elimination?

      We can attempt this experiment. However, since IL2 promoters turn on prior to dauer, the interpretation would not be straightforward – it would be hard to exclude that a cell autonomous defect in dauer entry does not account for the IL2 dauer exit phenotype, even if branching appears normal.

      These ideas are not a list of specific experiments the authors need to complete, rather they are meant to illustrate some possible approaches to the question. Whatever approach they use, it is important for them to more rigorously explain why SAX-1 is not required for branch removal in wild-type animals.

      We completely agree. We will carry out the 15°C experiment, examine morphological characteristics and test SDS resistance. In addition, we will test neuronal markers that differ between dauers and non-dauers to determine whether the mutants are full or partial dauers at the relevant timepoints.

      The SAX-2 localization (Fig. 4) and endocytosis assay (Fig. 6) results were not clear to me from the data shown. Overall a more rigorous analysis and presentation of the data would be important to make these conclusions convincing. This may involve refining the data presentation in the figures, modifying the claims (e.g., "we propose" vs "we find"), or saving some of the data to be more fully explored in a future paper. In my view, these figures are the biggest weak point of the manuscript and also are not important for the central conclusions (which are well supported and convincing), indeed these results are barely mentioned in the Abstract or last paragraph of Introduction.

      We agree that the analysis and presentation of Figures 4 and 6 need to be improved. The presentation has already been updated, and the figures are clearer now. In the revision, we will increase sample size to provide stronger conclusions, consolidate some of the analysis and further improve presentation. While we agree with the reviewer that conclusions from these figures are not as strong as those drawn from genetic experiments, they do complement and support the conclusions of those other figures.

      • In Fig. 4D, why is SAX-2 visible throughout the entire neuron and why is the "punctum" marked with an arrow also seen in the tagRFP channel? One gets the impression that some of the puncta may be background, bleed-through, or artifacts due to cell varicosities.

      There is no bleed-through: this is most evident by looking at the brightest signals in the cell body (now labelled with an asterisk in a zoomed-out image) and noting that they do not bleed between channels. In sax-1 mutants, the SAX-2::GFP puncta are very obvious and distinguishable from the tagRFP channel. In control, SAX-2::GFP is very faint in the dendrite, so we increased the contrast to allow visualization. The reviewer is correct that under these conditions, some puncta look like the cytosolic fill. In the revision, we will re-analyze the data and will not consider these as bona-fide SAX-2 puncta, but rather cytosolic SAX-2 that accumulates due to constrictions and varicosities in the dendrite.

      • Related to both Fig. 4 and Fig. 6, where does SAX-1 localize in IL2Q in dauer and post-dauer? Does its expression or localization change during branch retraction? Does it co-localize with SAX-2 or endocytic puncta?

      We generated an endogenously tagged sax-1 with a 7xspGFP11 tag; however, this was below detection in the IL2s. For the revisions, we can test an overexpressed cDNA construct.

      **Referee cross-commenting**

      I think we all touched on similar points. I wanted to follow up on Reviewer 3's comment, "Is the failure to eliminate branches an indication of incomplete dauer recovery? Do sax-1 mutants retain additional characteristics of dauer morphology in post dauer adults." I thought this was an excellent point. It made me wonder if that might explain why the defect is only seen in daf-7 and daf-2 mutant backgrounds - maybe these strains retain partial dauer traits even after exit. Is there a specific experiment that they could do? Did you have specific characteristics of dauer morphology in mind for them to check? (Ideally something in the nervous system that can be scored quantitatively.)

      Please see response to point #1 regarding experiments we will do to confirm the “dauer state” of daf-7 and daf-7; sax-1 double mutants.

      Reviewer #1 (Significance (Required)):

      A major strength of this work is the pioneering use of a novel system to study neuronal branch retraction. C. elegans has provided a powerful model for studying how dendrite branches form, but much less attention has been paid to how excess neuronal branches are removed. The post-dauer remodeling of IL2Q neurons provides an exciting and dramatic physiological example to explore this question.

      This paper is notable for taking the first steps towards developing this innovative model. It does exactly what is needed at the outset of a new exploration - a forward genetic screen to discover the main regulators of the process. Using a combination of classical and modern genetic approaches, the authors bootstrap their way to a sizeable list of factors and a solid understanding of the properties of this system, for example that retraction of higher vs lower order dendrites show different genetic requirements.

      We thank the reviewer for recognizing the novelty and significance of our work.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors establish C. elegans IL2 neurons as a system in which to study dendrite pruning. They use the system to perform a genetic screen for pruning regulators and find an allele of sax-1. Unexpectedly sax-1 is only required for post-dauer pruning in two different genetic backgrounds that induce dauer formation, but not starvation-induced dauer formation. Sax-1/NDR kinase reduction has previously been associated with increased outgrowth and branching in other systems, so this is a new role for this protein. However, the authors show that proteins that work with Sax-1 in other systems, like sax-2/fry, also play a role in this pathway. The genetic experiments are beautiful and the findings are all clearly explained and strongly supported. The authors also examine sax-2 localization, which localizes sax-1 in other systems, and show it in puncta in dendrites that increase with dauer exit, consistent with function at the time of pruning. They also show that membrane trafficking regulators associated with NDR kinases function in the same pathway here, hinting that endocytosis may play a role during pruning as in Drosophila. The link to endocytosis was a little weak (see Major point below). Overall, this study describes a new system to study pruning and identifies NDR/fry/Rabs as regulators of pruning during dauer exit. The work is very high quality and both the imaging and genetics are extremely well done.

      We thank the reviewer for their positive assessment of the manuscript.

      Major points

      1. The only place where there were any questions about the data was the last figure (6G and I). Here they use uptake of GFP secreted from muscle as a readout of endocytosis in IL2 neurons. They nicely show that more internalized puncta accumulate as animals exit dauer. The claim that this is reduced in sax-1 mutants doesn't seem to match the images shown well. In the image there are many more puncta in the GFP channel and much more accumulation of the RFP-tagged receptor everywhere. It seems like some additional analysis of this data is important to fully capture what is going on and whether this really represents an endocytic defect. We agree and will provide additional data in Figure 6. The specific discrepancy between the image and the quantification is because we showed a single focal plane rather than a projection. This does not capture all the puncta in a neurite. The current version shows a projection, making it evident that the mutants has fewer puncta compared to the control.

      Reviewer #2 (Significance (Required)):

      Neurite pruning is important in all animals with neurons. Genetic approaches have primarily been applied to the problem using Drosophila, so identifying a new model system in which to study it is an important step. Using this system, a pathway known to function in a different context is linked to pruning. Thus the study provides new insights into both pruning and this pathway.

      We thank the reviewer for the positive assessment of our study’s significance.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      Summary: Figueroa-Delgado et al. use a C. elegans neuro plasticity model to examine how dendrites are eliminated upon recovery from the stress induced larval stage, dauer. The authors performed a mutagenesis screen to identify novel regulators of dendrite elimination and revealed some surprising results. Branch elimination mechanism varies between 2{degree sign}, 3{degree sign}, and 4{degree sign} branches. The NDR kinase, SAX-1 and it's interactors (SAX-2 and MOB-2) are required for elimination of second and third order branches but not fourth order branches. Interestingly they showed that branch elimination varies depending on the stimulus of dendrite outgrowth such that the NDR kinase is required for branch elimination after genetically inducing the dauer stage but is not required if dauers are produced through food deprivation. The authors go a step further to include a small candidate screen looking at various pathways of membrane remodeling and identify additional regulators of dendrite elimination related to membrane trafficking including RABI-1, RAB-8, RAB-10, and RAB-11.2.

      We thank the reviewer for their time and suggestions below

      Major comments:

      • While I find the data promising and exciting, several of the experiments have concerningly low sample sizes. Fig 3G, Fig 4G, Fig 5J and L, and Fig 6I all contain data sets that are fewer than 10 animals. Sample sizes should be stated specifically in the figure legends for all data represented in the graphs. We thank the reviewer for finding the data exciting. We agree that the sample sizes in some panels is low and will increase it in the revised version. Sample sizes are now specifically listed in the figure legends.

      • All statements based on data not shown should be amended to include the data as a supplemental figure or edited to omit the statement based on withheld data. We agree. Some “not shown” data are already added to the current version of the manuscript and the rest will be added to the fully revised version, or the statements will be omitted.

      • Rescue experiments (Fig 2J) should demonstrate failure to rescue from neighboring tissue types (hypodermis and muscle) to conclude cell autonomous rescue rather than a broadly acting factor. Thank you for the suggestion. We will use a hypodermal promoter and a muscle promoter driving SAX-1 cDNA expression to strengthen the claim of cell autonomy.

      • Fig 4 needs quantification of higher order branches and SAX-2 proximity to branch nodes as these are discussed in the text. We will add this quantification.

      Minor comments:

      • Fig 1C-F, It appears like the shy87 allele produces animals of significantly different body sizes. It would improve rigor to normalize the dendrite coverage to body size in the quantification. We do not see a biologically meaningful size difference between shy87 and control, it may be the specific image shown. We will confirm this by measuring animal size for the final revision.

      • Is the failure to eliminate branches an indication of incomplete dauer recovery? Do sax-1 mutants retain additional characteristics of dauer morphology in post dauer adults. This important point was also raised by Reviewer 1. We will test SDS sensitivity, morphological markers, and molecular markers to determine the dauer “state” of the mutants used in this study. The results will be included in the final revision.

      • The text references multiple transgenic lines tested in Fig 2I-J but only one line is shown. Additional lines were visually examined under a fluorescent compound microscope but not imaged or quantified. We will add this quantification to the final revision.

      • Fig 4F, Additional timepoints would enhance the sax-1 localization result and might provide insight into mechanism of action for sax-1. We will add the localization in post-dauer adults.

      • Fig 6I Control and sax-1(ky491) example images should be provided in the supplement. We will add these images to the final revision.

      **Referee cross-commenting**

      I agree that we shared many of the same concerns.

      There are several general assays for dauer characteristics that could be used here to determine if the post-dauer animals retain other characteristics of the dauer stage in addition to IL2 branches (SDS resistance, alae remodeling, pharyngeal bulb morphology, nictation behavior). The nictation behavior has been connected very nicely with IL2 neurons (Junho Lee's group). Additionally, FLP dendrites occupy the same space as the IL2 branches and outgrowth in post-dauers occurs in coordination with IL2 branch elimination - this might be another optional experiment, to check if FLP growth is impeded by persistent IL2 branches. All of these could be quantified similar to how the authors have already established with their IL2 model (FLP dendrite branches) or with a binary statistic.

      Please see responses to Reviewer 1 and 3 above for the list of experiments to determine whether the animals fail to completely enter or exit dauer.

      Reviewer #3 (Significance (Required)):

      SIGNIFICANCE ============ These results describe a new role for the NDR kinase complex in dendrite pruning that has clinical significance to our understanding of human brain development and human health concerns in which pruning is dysregulated, such as observed in the case of autism. The authors use an established neuro-plasticity, C. elegans model (Schroeder et al. 2013) which provides a tractable and reproduceable platform for discovering the mechanism of dendrite pruning. These results would influence future work in the fields of cell biology of the neuron and disease models of brain development.

      My expertise is in the field of C. elegans neuroscience and stress biology and have sufficient expertise to evaluate all aspects of this work.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer #1

      • In Fig. 4C, the distinction between puncta in the primary or higher-order dendrites is not clear to me, and several puncta that I would have scored as primary are marked as higher-order.

      We apologize for a mistake in the arrowhead color and overall presentation of this figure. It has been fixed in the current version.

      • Related to this, in Fig. 4B are the two arrows meant to be white as in the top panel, or yellow as in the bottom panel?

      We thank Reviewer #1 for their observation, and we apologize for our oversight. We fixed this in the current version.

      • In Fig. 4, where in the head are we looking? It would help to show a more low-magnification view of the entire cell.

      We added zoomed-out images and indicated where the zoomed in insets are taken from. We thank the reviewer for helping us improve the clarity of the data.

      • The main sax-1 phenotype is increased SAX-2 puncta in dauer, but the branch retraction defect is in post-dauers. How is this relevant to the phenotype?

      This is a very good point. The increase in SAX-2 puncta in sax-1 mutants is stronger during dauer-exit than in dauer, consistent with this being the time when SAX-1 functions. We agree that some earlier activity of SAX-1 cannot be excluded, and we do not assume that the effect on SAX-2 completely accounts for the pruning defects. This is now acknowledged in the text. However, given that both proteins function together in pruning, and given that the effect is strongest during dauer exit, we do believe that this data is informative and worth showing.


      • The number of SAX-2 puncta in sax-1 mutants decreases almost to normal in post dauers. Is there a correlation between the number of remaining branches and the number of SAX-2 puncta? That is, do the many wild-type animals with "excess" SAX-2 puncta also fail to retract branches?

      There is no correlation. In other words, the number of SAX-2 puncta does not instruct the extent of pruning. Please note the quantifications underestimate the number of SAX-2 puncta in the mutants, since they were only done on the primary dendrite. This is necessary because the mutant and control have different arbor size, so only branch order that can be appropriately compared are primary dendrites.

      • The control post-dauer data in Fig. 4F and 4H are identical (re-used data) but the corresponding control dauer data in Fig. 4F and 4G are different. What is going on here?

      We thank the reviewer for raising this point and apologize for the oversight in data presentation. In the revised manuscript, we now show all control and experimental data integrated into a single graph, ensuring that each dataset is represented accurately to provide a comparison between dauer and post dauer recovery conditions.


      • Why are sample sizes so small for both strains in Fig. 4G compared to Fig. 4F and 4H?

      We sincerely apologize for this mistake, some of the data was erroneously grouped in the original submission. The revised version contains an updated number of neurons, presented on the same graph, and in the final revision we will further increase sample size. We apologize again for this error.

      • In Fig. 6C, why are the tagRFP (blue) puncta larger than the neurite? Aren't these meant to represent vesicles inside the surrounding neurite? One gets the impression that this is bleed-through from the GFP channel.

      Based on EM, both an endocytic punctum and the diameter of the neuron are smaller than a single pixel. The apparent difference in size in fluorescence microscopy is because the puncta are brighter (they contain more membrane) and thus appear larger. In the current version, the improved presentation of the figure contains zoomed out images that clearly show that there is no bleed-through.

      • In Fig. 6E and 6F, why are there no tagRFP (blue) puncta? Is CD8 not endocytosed at all if it lacks the nanobody sequence? One would expect the tagRFP (blue) signal to be the same in both strains and simply to lack yellow if the nanobody is not present.

      CD8 lacks clear endocytosis motifs, which is why it is advantageous for labelling neurites and testing endocytosis when paired with an endocytic signal (Lee and Luo 1999; Kozik et al. 2010). Conversely, extracellular GFP binding to a membrane GFP antibody can induce endocytosis (for example, see (Tang et al., 2020)), likely by inducing clustering, although we are not familiar with work that explored the mechanism. In the updated version we included a rare example of an mCD8 punctum.

      • The authors report a decrease in endocytic events in sax-1, but qualitatively it looks like there are vastly more puncta inside the neuron in Fig. 6H than in 6G.

      We apologize for the presentation in the original version of Figure 6. This impression was because we showed single focal planes that only captured some of the signal. In the revised version we show projections, which makes it evident that there are fewer endocytic events in the mutant.

      • In Fig. 6E and 6H, why are there so many GFP (yellow) puncta outside the neuron? What are these structures and why are they absent in the strain with the nanobody?

      These puncta are secreted or muscle-associated GFP that has not been internalized by IL2Q neurons. They are present in all strains in this figure, this can be clearly seen in the zoomed-out images that have been added to the updated figure.

      • What is the large central blue structure in Fig. 6H - is this the soma? - and why are puncta in this region not counted?

      This is indeed the soma. In the updated version this can be clearly seen in the zoom-out. The large puncta in the soma were not counted because they may arise from the fusion of an unknown number of smaller puncta, and their precise number cannot be determined at the resolution of fluorescence microscopy.

      • minor: there is text reading "40-" in the bottom panel of Fig. 6H. It is visible when printed but not on screen - adjust levels in Photoshop to reveal it.

      We thank the reviewer for catching this oversight, it is now fixed.

      Minor points:

      1. At several points the authors emphasize the relationship of neurite remodeling to stress, e.g. Abstract and Discussion: "we adapted C. elegans IL2 sensory dendrites as a model [of...] stress-mediated dendrite pruning". It seems unnecessary and potentially misleading to treat this as a neuronal stress response. First, it conflates organismal and cellular stress - there is no reason to think that IL2 neurons are under cellular stress in dauer. In fact parasitic nematodes go through dauer-like stages as part of healthy development and probably have similar remodeling of IL2. Second, dendrite pruning occurs during dauer exit, which is the opposite of a stress response - it reflects a return to favorable conditions. We agree. We modified the abstract and discussion to avoid conflating organismal stress (the alleviation of which is relevant for triggering pruning) and cellular stress. Thank you for pointing this out.

      In Fig. 1A, C. elegans is shown going directly from L1 to dauer in response to unfavorable conditions, which is incorrect. Animals proceed through L2 (in many cases actually an alternative L2d pre-dauer) and then molt into dauer (an alternative L3 stage) after completing L2.

      We updated the schematic to include the L2d stage where commitment to dauer entry or resumption to reproductive development is made.

      In Fig. 1B, please check if it is correct that hypodermis contacts the pharynx basement membrane as drawn. The schematic in the top panel makes it look like there is a single secondary branch and the quaternary branches are similar in length to the primary dendrite. The schematic in the bottom panel makes it look like the entire neuron is a small fraction of the length of the pharynx. Could these be drawn closer to scale?

      The hypodermis does contact the pharynx basement membrane. We redrew the schematic for clarity.

      Reviewer #2

      For context, it might be helpful to know whether branching of other dendrites is increased in sax-1 mutants (as expected based on phenotypes in other animals) or decreased like IL2 neurons.

      We examined the branching pattern of PVD, a polymodal nociceptive neuron (new Supplemental Figure 3). We find no significant difference between control and sax-1 or sax-2 mutants, suggesting that these genes function in the context of pruning. Recent work (Zhao et al. 2022) confirms that sax-1 is not required for PVD branching.

      Minor:

      "shy87 mutant dauers showed a minor reduction in secondary and tertiary branches compared to control (Figure 1G). These results indicate that shy87 is specifically required for the elimination of dauer-generated dendrite branches." Maybe temper the specificity claim some as the reduction in branches is definitely there.

      We agree, the claim was tempered.

      "three complimentary approaches" should be complementary

      Thank you for noticing. We fixed this.

      "In control animals, SAX-2 was mostly concentrated in the cell body (data not shown)" It might be nice to include some overview images that show the cell body for completeness.

      We added zoomed-out images to the revised figure, thank you for the suggestion.

      Reviewer #3


      Minor comments:


      • Fig 1G-H, are shy87 second and third order branch counts statistically different between dauer and post dauer adults? This comparison would strengthen the claim that these order branches fail to eliminate all together rather than undergo a partial elimination. We added this to Figure S2. The shy87 mutants show a complete failure in eliminating secondary branches (i.e. no difference between dauer and post-dauer) and a strong but incomplete defect in eliminating tertiary branches.

      • Fig 4B-E Indicate branch order in the images, this is unclear and a point that is focused on in the text. Done.

      • Discussion of Fig 1G from the text claims that shy87 is specifically required for branch elimination yet the data shows significant defects in branch outgrowth as well. This raises the question, are the branches abnormally stabilized that results in early underdevelopment and late atrophy? Authors should acknowledge alternative hypotheses. We agree and will revise the text accordingly. The difference between shy87 and control dauers, while statistically significant, is relatively minor and can only be detected by careful quantification, it is not apparent from looking at the images (in contrast for example to rab-8 and rab-10 mutants, where we acknowledge in the text that their branching defects might affect subsequent pruning.

      • Authors reference a branch elimination process but don't outline what this would entail and where their results fit in. We apologize for being unclear. Given that sax-1 and sax-2 function together, one would intuitively expect to see SAX-2 being reduced in sax-1 mutants, yet the opposite is observed. On potential explanation is that SAX-1 does not directly control SAX-2 abundance, but that clearance of SAX-2 is part of the pruning process that both proteins regulate. This would explain the enrichment of SAX-2 in sax-1 mutants. However, additional models cannot be excluded, and we acknowledge this in the revised text.

      References:

      Corchado, Johnny Cruz, Abhishiktha Godthi, Kavinila Selvarasu, and Veena Prahlad. 2024. “Robustness and Variability in Caenorhabditis Elegans Dauer Gene Expression.” Preprint, bioRxiv, August 26. https://doi.org/10.1101/2024.08.15.608164.

      Karp, Xantha. 2018. “Working with Dauer Larvae.” WormBook, August 9, 1–19. https://doi.org/10.1895/wormbook.1.180.1.

      Kozik, Patrycja, Richard W Francis, Matthew N J Seaman, and Margaret S Robinson. 2010. “A Screen for Endocytic Motifs.” Traffic (Copenhagen, Denmark) 11 (6): 843–55. https://doi.org/10.1111/j.1600-0854.2010.01056.x.

      Lee, T., and L. Luo. 1999. “Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis.” Neuron 22 (3): 451–61.

      Swanson, M. M., and D. L. Riddle. 1981. “Critical Periods in the Development of the Caenorhabditis Elegans Dauer Larva.” Developmental Biology 84 (1): 27–40. https://doi.org/10.1016/0012-1606(81)90367-5.

      Tang, Rui, Christopher W Murray, Ian L Linde, et al. n.d. “A Versatile System to Record Cell-Cell Interactions.” eLife 9: e61080. https://doi.org/10.7554/eLife.61080.

      Zhao, Ting, Liying Guan, Xuehua Ma, Baohui Chen, Mei Ding, and Wei Zou. 2022. “The Cell Cortex-Localized Protein CHDP-1 Is Required for Dendritic Development and Transport in C. Elegans Neurons.” PLOS Genetics 18 (9): e1010381. https://doi.org/10.1371/journal.pgen.1010381.


      4. Description of analyses that authors prefer not to carry out

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      This interesting study uses an unbiased genetic screen in C. elegans to identify SAX-1/NDR kinase as a regulator of dendritic branch elimination. Loss of SAX-1 results in an excess branching phenotype that is striking and highly penetrant. The authors identify several additional regulators of branch elimination (SAX-2, MOB-1, RABI-1, RAB-11.2) by using a candidate genetic screen aimed at factors that interact physically or genetically with SAX-1. They propose that SAX-1 acts by promoting membrane retrieval based on the nature of these interactors and the results of an imaging-based in vivo assay for endocytic puncta.

      Major comments.

      1. My biggest concern is that the phenotypes are only observed in temperature-sensitive dauer-constitutive mutant backgrounds, and not in wild-type dauers. That is, wild-type animals exiting dauer do not require SAX-1 for dendrite elimination.

      While this does not undermine the importance of the results, it does require more explanation. The authors write that "the requirement for sax-1... relies on specific physiological states of the dauer stage," but I do not understand what this means. Are they saying that daf-7 and daf-2 dauers are in a different "physiological state" than wild-type dauers? In what way? What is the evidence for this? A more rigorous explanation is needed.

      To me, the simplest genetic explanation is that daf-7 and daf-2 are partially required for branch retraction in a manner redundant with sax-1, and the ts mutants are not fully wild-type at 15C. Thus, the sax-1 requirement is revealed only in these mutant backgrounds. Can the authors examine starvation-induced dauers of daf-7 or daf-2 raised continuously at 15C?

      daf-7 and daf-2 ts strains can form "partial dauers" that have a dauer-like appearance but are not SDS resistant. Could the difference between partial dauers and full dauers account for the difference in sax-1-dependence? The authors could use SDS selection of the daf-7 strain at 25C to ensure they are examining full dauers.

      The Bargmann lab has created a daf-2 FLP-OUT strain (ky1095ky1087) that allows cell-type-specific removal of daf-2. Could this be used to test for a cell-autonomous role of daf-2 in IL2Q related to branch elimination?

      These ideas are not a list of specific experiments the authors need to complete, rather they are meant to illustrate some possible approaches to the question. Whatever approach they use, it is important for them to more rigorously explain why SAX-1 is not required for branch removal in wild-type animals. 2. The SAX-2 localization (Fig. 4) and endocytosis assay (Fig. 6) results were not clear to me from the data shown. Overall a more rigorous analysis and presentation of the data would be important to make these conclusions convincing. This may involve refining the data presentation in the figures, modifying the claims (e.g., "we propose" vs "we find"), or saving some of the data to be more fully explored in a future paper. In my view, these figures are the biggest weak point of the manuscript and also are not important for the central conclusions (which are well supported and convincing), indeed these results are barely mentioned in the Abstract or last paragraph of Introduction.

      • In Fig. 4, where in the head are we looking? It would help to show a more low-magnification view of the entire cell.
      • In Fig. 4D, why is SAX-2 visible throughout the entire neuron and why is the "punctum" marked with an arrow also seen in the tagRFP channel? One gets the impression that some of the puncta may be background, bleed-through, or artifacts due to cell varicosities.
      • In Fig. 4C, the distinction between puncta in the primary or higher-order dendrites is not clear to me, and several puncta that I would have scored as primary are marked as higher-order.
      • Related to this, in Fig. 4B are the two arrows meant to be white as in the top panel, or yellow as in the bottom panel?
      • The main sax-1 phenotype is increased SAX-2 puncta in dauer, but the branch retraction defect is in post-dauers. How is this relevant to the phenotype?
      • The number of SAX-2 puncta in sax-1 mutants decreases almost to normal in post dauers. Is there a correlation between the number of remaining branches and the number of SAX-2 puncta? That is, do the many wild-type animals with "excess" SAX-2 puncta also fail to retract branches?
      • The control post-dauer data in Fig. 4F and 4H are identical (re-used data) but the corresponding control dauer data in Fig. 4F and 4G are different. What is going on here?
      • Why are sample sizes so small for both strains in Fig. 4G compared to Fig. 4F and 4H?
      • In Fig. 6C, why are the tagRFP (blue) puncta larger than the neurite? Aren't these meant to represent vesicles inside the surrounding neurite? One gets the impression that this is bleed-through from the GFP channel.
      • In Fig. 6E and 6F, why are there no tagRFP (blue) puncta? Is CD8 not endocytosed at all if it lacks the nanobody sequence? One would expect the tagRFP (blue) signal to be the same in both strains and simply to lack yellow if the nanobody is not present.
      • In Fig. 6E and 6H, why are there so many GFP (yellow) puncta outside the neuron? What are these structures and why are they absent in the strain with the nanobody?
      • What is the large central blue structure in Fig. 6H - is this the soma? - and why are puncta in this region not counted?
      • The authors report a decrease in endocytic events in sax-1, but qualitatively it looks like there are vastly more puncta inside the neuron in Fig. 6H than in 6G.
      • minor: there is text reading "40-" in the bottom panel of Fig. 6H. It is visible when printed but not on screen - adjust levels in Photoshop to reveal it.
      • Related to both Fig. 4 and Fig. 6, where does SAX-1 localize in IL2Q in dauer and post-dauer? Does its expression or localization change during branch retraction? Does it co-localize with SAX-2 or endocytic puncta?

      Minor points:

      1. At several points the authors emphasize the relationship of neurite remodeling to stress, e.g. Abstract and Discussion: "we adapted C. elegans IL2 sensory dendrites as a model [of...] stress-mediated dendrite pruning". It seems unnecessary and potentially misleading to treat this as a neuronal stress response. First, it conflates organismal and cellular stress - there is no reason to think that IL2 neurons are under cellular stress in dauer. In fact parasitic nematodes go through dauer-like stages as part of healthy development and probably have similar remodeling of IL2. Second, dendrite pruning occurs during dauer exit, which is the opposite of a stress response - it reflects a return to favorable conditions.
      2. In Fig. 1A, C. elegans is shown going directly from L1 to dauer in response to unfavorable conditions, which is incorrect. Animals proceed through L2 (in many cases actually an alternative L2d pre-dauer) and then molt into dauer (an alternative L3 stage) after completing L2.
      3. In Fig. 1B, please check if it is correct that hypodermis contacts the pharynx basement membrane as drawn. The schematic in the top panel makes it look like there is a single secondary branch and the quartenary branches are similar in length to the primary dendrite. The schematic in the bottom panel makes it look like the entire neuron is a small fraction of the length of the pharynx. Could these be drawn closer to scale?

      Referee cross-commenting

      I think we all touched on similar points. I wanted to follow up on Reviewer 3's comment, "Is the failure to eliminate branches an indication of incomplete dauer recovery? Do sax-1 mutants retain additional characteristics of dauer morphology in post dauer adults." I thought this was an excellent point. It made me wonder if that might explain why the defect is only seen in daf-7 and daf-2 mutant backgrounds - maybe these strains retain partial dauer traits even after exit. Is there a specific experiment that they could do? Did you have specific characteristics of dauer morphology in mind for them to check? (Ideally something in the nervous system that can be scored quantitatively.)

      Significance

      A major strength of this work is the pioneering use of a novel system to study neuronal branch retraction. C. elegans has provided a powerful model for studying how dendrite branches form, but much less attention has been paid to how excess neuronal branches are removed. The post-dauer remodeling of IL2Q neurons provides an exciting and dramatic physiological example to explore this question.

      This paper is notable for taking the first steps towards developing this innovative model. It does exactly what is needed at the outset of a new exploration - a forward genetic screen to discover the main regulators of the process. Using a combination of classical and modern genetic approaches, the authors bootstrap their way to a sizeable list of factors and a solid understanding of the properties of this system, for example that retraction of higher vs lower order dendrites show different genetic requirements.

    1. My first dis-invitation was last year in Norman, Oklahoma. I had donated a school visit to a charity auction. The winning bid came from a middle school librarian, who was excited to have me talk to her students about poetry, writing process, and reaching for their dreams. Except, two days before the visit, a parent challenged one of my books for "inappropriate content." She demanded it be pulled from all middle school libraries in the district. And also that no student should hear me speak. The superintendent, who hadn't read my books, agreed, prohibiting me from speaking to any school in the district. The librarian scrambled and I spoke community-wide at the nearby Hillsdale Baptist Freewill College. (The challenged book, by the way, was later replaced in the middle school libraries.) The timing was exceptional, if unintentional. It was Banned Books Week 2009, and my publisher, Simon & Schuster, had recently created a broadside of a poem I'd written for the occasion. My "Manifesto" was currently being featured in bookstores and libraries across the country. Segue to August 2010. Simon & Schuster repackaged "Manifesto" just about the time another dis-invitation took place. Humble, Texas is a suburb of Houston, and every other year the Humble Independent School District organizes a teen literature festival. I was invited to headline the January 2011 event. The term "invitation" would later be debated, as no formal contract was signed. But through a series of email exchanges, the invitation was extended, I agreed, we settled on an honorarium, and I blocked out the date on my calendar (thus turning down other invitations). According to the National Coalition Against Censorship, removing an author from an event because someone disagrees with their ideas or content in their books meets the definition of censorship. This time it was a middle school librarian who initiated the dis-invitation. Apparently concerned about my being in the vicinity of her students, she got a couple of parents riled and they approached two members of the school board. Again, no one read my books. Rather, according to the superintendent, he relied on his head librarian's research—a website that rates content. He ordered my "removal" from the festival roster, despite several librarians rallying in my defense.

      This text is a personal narrative from a writer who describes their experience and censorship and book banning. This all serves as a direct ,clear statement of the authors position on the issue.

    2. My first dis-invitation was last year in Norman, Oklahoma. I had donated a school visit to a charity auction. The winning bid came from a middle school librarian, who was excited to have me talk to her students about poetry, writing process, and reaching for their dreams. Except, two days before the visit, a parent challenged one of my books for "inappropriate content." She demanded it be pulled from all middle school libraries in the district. And also that no student should hear me speak. The superintendent, who hadn't read my books, agreed, prohibiting me from speaking to any school in the district. The librarian scrambled and I spoke community-wide at the nearby Hillsdale Baptist Freewill College. (The challenged book, by the way, was later replaced in the middle school libraries.) The timing was exceptional, if unintentional. It was Banned Books Week 2009, and my publisher, Simon & Schuster, had recently created a broadside of a poem I'd written for the occasion. My "Manifesto" was currently being featured in bookstores and libraries across the country. Segue to August 2010. Simon & Schuster repackaged "Manifesto" just about the time another dis-invitation took place. Humble, Texas is a suburb of Houston, and every other year the Humble Independent School District organizes a teen literature festival. I was invited to headline the January 2011 event. The term "invitation" would later be debated, as no formal contract was signed. But through a series of email exchanges, the invitation was extended, I agreed, we settled on an honorarium, and I blocked out the date on my calendar (thus turning down other invitations). According to the National Coalition Against Censorship, removing an author from an event because someone disagrees with their ideas or content in their books meets the definition of censorship. This time it was a middle school librarian who initiated the dis-invitation. Apparently concerned about my being in the vicinity of her students, she got a couple of parents riled and they approached two members of the school board. Again, no one read my books. Rather, according to the superintendent, he relied on his head librarian's research—a website that rates content. He

      Hopkins being uninvited from the school event because a student's parent pointed out that her books may be inappropriate, For middle school students. Having her books removed from all middle schools in the district and her being prohibited from speaking at one is unfair.

    1. Reviewer #1 (Public review):

      Summary:

      The authors have studied how a virus (EMCV) uses its RNA (Type 2 IRES) to hijack the host's protein-making machinery. They use cryo-EM to extract structural information about the recruitment of viral Type 2 IRES to ribosomal pre-IC. The authors propose a novel interaction mechanism in which the EMCV Type 2 IRES mimics 28S rRNA and interacts with ribosomal proteins and initiator tRNA (tRNAi).

      Strengths:

      (1) Getting structural insights about the Type 2 IRES-based initiation is novel.

      (2) The study allows a good comparison of other IRES-based initiation systems.

      (3) The manuscript is well-written and clearly explains the background, methods, and results.

      Weaknesses:

      (1) The main weakness of the work is the low resolution of the structure. This limits the possibility of data interpretation at the molecular level.

      However, despite the moderate resolution of the cryo-EM reconstructions, the model fits well into the density. The analysis of the EMCV IRES-48S PIC structure is thorough and includes meaningful comparisons to previously published structures (e.g., PDB IDs - 7QP6 and 7QP7). These comparisons showed that Map B1 represents a closed conformation, in contrast to Map A in the open state (Figure 2). Additionally, the proposed 28S rRNA mimicry strategy supported by structural superposition with the 80S ribosome and sequence similarity between the I domain of the IRES and the h38 region of 28S rRNA (Fig. 4) is well-justified.

      (2) The lack of experimental validation of the functional importance of regions like the GNRA and RAAA loops is another limitation of this study.

      (3) Minor modifications related to data processing and biochemical studies will further validate and strengthen the findings.

      a) In the cryo-EM data section, the authors should include an image showing rejected particles during 2D classification. This would help readers understand why, despite having over 22k micrographs with sufficient particle distribution and good contrast, only a smaller number of particles were used in the final reconstruction. Additionally, employing map-sharpening tools such as Ewald sphere correction, Bayesian polishing, or reference-based motion correction might further improve the quality of the maps. Targeting high-resolution structures would be particularly informative.

      b) The strategic modelling of different IRES domains into the density, particularly the domain into the region above the 40S head, is appreciable. However, providing the full RNA tertiary structure (RNAfold) of the EMCV IRES (nucleotides 280-905) would better explain the logic behind the model building and its molecular interpretation.

      c) Although the authors compare their findings with other types of IRESs (Types 1, 3, and 4), there is no experimental validation of the functional importance of regions like the GNRA and RAAA loops. Including luciferase-based assays or mutational studies of these regions for validation of structural interpretations is strongly recommended.

    2. Author response:

      Reviewer #1 (Public review):

      Summary:

      The authors have studied how a virus (EMCV) uses its RNA (Type 2 IRES) to hijack the host's protein-making machinery. They use cryo-EM to extract structural information about the recruitment of viral Type 2 IRES to ribosomal pre-IC. The authors propose a novel interaction mechanism in which the EMCV Type 2 IRES mimics 28S rRNA and interacts with ribosomal proteins and initiator tRNA (tRNAi).

      Strengths:

      (1) Getting structural insights about the Type 2 IRES-based initiation is novel.

      (2) The study allows a good comparison of other IRES-based initiation systems.

      (3) The manuscript is well-written and clearly explains the background, methods, and results.

      We thank Reviewer 1 for appreciating our efforts and finding structural insights about the type 2 IRES-based initiation presented in this study as novel.

      Weaknesses:

      (1) The main weakness of the work is the low resolution of the structure. This limits the possibility of data interpretation at the molecular level.

      However, despite the moderate resolution of the cryo-EM reconstructions, the model fits well into the density. The analysis of the EMCV IRES-48S PIC structure is thorough and includes meaningful comparisons to previously published structures (e.g., PDB IDs - 7QP6 and 7QP7). These comparisons showed that Map B1 represents a closed conformation, in contrast to Map A in the open state (Figure 2). Additionally, the proposed 28S rRNA mimicry strategy supported by structural superposition with the 80S ribosome and sequence similarity between the I domain of the IRES and the h38 region of 28S rRNA (Fig. 4) is welljustified.

      We agree that the low resolution of the map has compromised the data interpretation at the molecular level, and we thank the reviewer for appreciating our findings at this resolution. Due to the compromise in resolution, we have reported findings related to stretches or regions such as loops and stems, rather than individual nucleotides and interactions.  

      (2) The lack of experimental validation of the functional importance of regions like the GNRA and RAAA loops is another limitation of this study.

      We agree with the lack of any additional experiments other than Cryo-EM for probing the importance of regions such as GNRA and RAAA loops in this study. However, we have cited earlier reports that demonstrate the importance of these regions for overall IRES activity. The essentiality of RAAA loop for type 2 IRES was demonstrated in earlier report López de Quinto and Martínez-Salas, 1997 (Cited in manuscript). Further, the conservation of this loop across the type 2 IRES family adds to the importance of this loop (Manuscript Figure 6B). This loop and its flanking G-C stem are similar to h38 of 28S rRNA, and it appears that RAAA loop adopts a mimicry mechanism to interact with the 40S ribosomal protein- uS19, thus highlighting its importance for interaction with 40S. Experiments destabilising the G-C stem also compromise IRES activity, as shown in the case of FMDV IRES (Fernández et al 2011). Previous studies related to the mutation of the GNRA or GCGA loop in EMCV IRES have shown a deficiency in IRES activity (Roberts and Belsham, 1997; Robertson et al 1999), suggesting the importance of these regions in the viral IRES biology, and these reports are cited in the manuscript. Not only EMCV IRES, but mutation in the GUAA (representative of GNRA) loop of FMDV IRES also showed significant reduction in IRES activity (López de Quinto and Martínez-Salas, 1997). In our study, we observe that GCGA loop interacts with tRNA<sub>i</sub> in EMCV IRES-48S PIC, thus implicating the importance of this loop. Moreover, incubation of FMDV IRES with 40S ribosomes has shown a decrease in SHAPE reactivity in domain 3 apex (position 170- 200 nucleotides) (Lozano et al 2018), which corresponds to EMCV IRES domain I apex. Further, we will attempt to address the concern of lack of experimental validation of GNRA and RAAA loops by performing biochemical assays.

      (3) Minor modifications related to data processing and biochemical studies will further validate and strengthen the findings.

      a) In the cryo-EM data section, the authors should include an image showing rejected particles during 2D classification. This would help readers understand why, despite having over 22k micrographs with sufficient particle distribution and good contrast, only a smaller number of particles were used in the final reconstruction. Additionally, employing mapsharpening tools such as Ewald sphere correction, Bayesian polishing, or reference-based motion correction might further improve the quality of the maps. Targeting high-resolution structures would be particularly informative.

      We thank the reviewer for the suggestions, and we would employ suggested processes that may help improve the quality of the maps further. We will include image for rejected 2D classes in the revised manuscript. We agree with the Reviewer’s query related to the substantial number of micrographs and smaller number of particles for the final reconstruction. The total number of micrographs is the summation of multiple datasets, prepared and collected at various times. Among these, around 8000 micrographs have extremely poor particle number and distribution. As a result, the number of particles per micrograph is heterogeneous in the compiled dataset. We obtained only 237054 ‘good particles’ after multiple rounds of 2D & 3D classifications, and the final reconstruction has 28439 particles (~12%). This class was obtained after masked classification for IRES and ternary complex density. Hence, only the particles that show the best density for both IRES and ternary complex are used for reconstructing this map. Another set of particles that have only a portion of IRES and tRNA but NO density for eIF2 forms another map (26792 particles, 11.3%). Thus, we obtained a total of 55231 particles (23.3%) with IRES density.  

      b) The strategic modelling of different IRES domains into the density, particularly the domain into the region above the 40S head, is appreciable. However, providing the full RNA tertiary structure (RNAfold) of the EMCV IRES (nucleotides 280-905) would better explain the logic behind the model building and its molecular interpretation.

      We thank the reviewer for appreciating the modelling of the domain I apex in the cryo-EM density. We tried to predict the full tertiary structure of the IRES, however, inclusion of the full-length sequence from 280-905 gave models of extremely low confidence, and few domains do not abide by the secondary structure of EMCV IRES as reported in Duke et al 1992. Hence, we used individual domains of EMCV IRES and predicted the tertiary structure independent of other IRES domains. Furthermore, 3D models of FMDV IRES domains 2, 3, and 4 (corresponding to EMCV IRES domains- H, I, and J-K) were predicted from SHAPE reactivity values and RNAComposer server (Figure 3 in Lozano et al 2018). The predicted architecture of domain 3 apex (FMDV IRES) coincides with our I domain apex model (EMCV IRES).

      c)  Although the authors compare their findings with other types of IRESs (Types 1, 3, and 4), there is no experimental validation of the functional importance of regions like the GNRA and RAAA loops. Including luciferase-based assays or mutational studies of these regions for validation of structural interpretations is strongly recommended.

      We have discussed the possibility of how the other IRESs, such as type 1 and type 5 (Aichi virus), might use similar strategies as EMCV IRES to assemble the 48S PIC, given the similarity in the motif sequence and position across the viral IRESs. Like EMCV IRES, the type 1 IRES (e.g. Poliovirus, Coxsackie virus) also harbours the GNRA loop, preceded by a C-rich loop at its longest domain, known for long-range RNA-RNA interactions. The segment harbouring GNRA loop is highly conserved across the type 1 family of IRESs (Kim et al 2015).The Aichi viral IRES (type 5) harbours a GNRA loop in its longest domain, which is domain J. Deletion of the GNRA loop has compromised the IRES activity; however, substitution mutations in this region either elevated the IRES activity or it remained unaltered (Yu et al 2011). We have hypothesized that these IRESs (type 1 and type 5) might use the GNRA motifs in their longest domain (domain IV in type 1, and domain J in type 5) similar to that of EMCV IRES, where GNRA is present in the longest domain (I) and preceded by a C-rich loop. Thus, GNRA can potentially mediate long-range interactions with tRNA<sub>i</sub> as all these IRESs require eIF2-ternary complex for the formation of 48S PIC. Parallelly, like EMCV IRES, type 1 and type 5 IRESs also have similar placement of GNRA motif-containing domain before the eIF4G-binding domain (domain J-K in EMCV IRES, domain V in poliovirus, domain K in Aichi virus). Hence, we suggest the possibility of a similar strategy by these IRESs to interact with tRNA<sub>i</sub> during the formation of 48S PIC.  

      Reviewer #2 (Public review):

      Summary:

      The field of protein translation has long sought the structure of a Type 2 Internal Ribosome Entry Site (IRES). In this work, Das and Hussain pair cryo-EM with algorithmic RNA structure prediction to present a structure of the Type 2 IRES found in Encephalomyocarditis virus (EMCV). Using medium to low resolution cryo-EM maps, they resolve the overall shape of a critical domain of this Type 2 IRES. They use algorithmic RNA prediction to model this domain onto their maps and attempt to explain previous results using this model.

      Strengths:

      (1) This study reveals a previously unknown/unseen binding modality used by IRESes: a direct interaction of the IRES with the initiator tRNA.

      (2) Use of an IRES-associated factor to assemble and pull down an IRES bound to the small subunit of the ribosome from cellular extracts is innovative.

      (3) Algorithmic modeling of RNA structure to complement medium to low resolution cryoEM maps, as employed here, can be implemented for other RNA structures.

      We thank Reviewer 2 for positive and encouraging comments on our work, appreciating our ‘innovative’ approach of using IRES-associated factor to assemble and pull down IRES-bound ribosomal complex.  

      Weaknesses:

      (1) Maps at the resolution presented prevent unambiguous modelling of the EMCV-IRES. This, combined with the lack of any biochemical data, calls into question any inferences made at the level of individual nucleotides, such as the GNRA loop and CAAA loop (Figure 4).

      We understand the concerns raised by the reviewer related to the resolution of the EMCV IRES-48S PIC map. However, we would like to mention that we refrained from commenting on individual nucleotides or molecular interactions in the manuscript. Instead, we discuss about loops, RNA stretches or motifs that could be inferred with more confidence as shown in Manuscript Figure 4. The EMCV IRES can directly interact with the 40S ribosome using its domain H and I (Chamond et al 2014), however, the details this interaction was unknown. We observe that the CAAA loop of domain I apex interacts with 40S ribosome based on the placement of portion of domain I in the cryo-EM map. This is also reflected in the earlier reported SHAPE data (Supplementary figures 2, and 8 in Chamond et al 2014), where a decrease in reactivity is evident in the presence of 40S ribosome. In addition, incubation of EMCV IRES with rabbit reticulocyte lysate (RRL) offered protection to domain I apex regions, which included the CAAA loop (Figure 4b in Maloney and Joseph, 2024).

      Furthermore, this decrease in SHAPE reactivity pattern is also evident for FMDV IRES domain 3 apex (like domain I in EMCV IRES) in the presence of 40S ribosome (Lozano et al 2018).

      Thus, these studies are consistent with the placement of IRES model in the cryo-EM map.

      We aim to improve the resolution of the maps for better clarity and add biochemical experiments to justify the possible interactions.

      (2) The EMCV IRES contains an upstream AUG at position 826, where the PIC can assemble (Pestova et al 1996; PMID 8943341). It is unclear if this start codon was mutated in this study. If it were not mutated, placement of AUG-834 over AUG-826 in the P-site is unexplained.

      We thank the reviewer for bringing up this point, as we missed mentioning this in the manuscript. The EMCV IRES does not require scanning and directly positions the AUG-834 at the P site (Pestova et al 1996). In Pestova et al 1996, the intensity of the toeprint at AUG-834 is much more intense than that of AUG-826. Further, AUG-834 lies in the Kozak context, whereas AUG-826 has a poor Kozak context. Furthermore, the synthesis of the polypeptide requires placement of AUG-834 at the P site. In our cryo-EM map, we observed that the tRNA<sub>i</sub> is in a P<sub>IN</sub> state, which indicates the recognition of the start codon, and we reasoned that it is more likely that AUG-834 is placed at the P site than AUG-826. We will mention this in the revised manuscript, as we had NOT mutated AUG-826.

      (3) The claims the authors make about (i) the general overall shape and binding site of the IRES, (ii) its gross interaction with the two ribosomal proteins, (iii) the P-in state of the 48S, (iv) the rearrangement of the ternary complex are all warranted. Their claims about individual nucleotides or smaller stretches of the IRES-without any supporting biochemical data-is not warranted by the data.

      We thank the reviewer for warranting major claims, and we wish to make further improvements to support our assessment of small stretches and individual nucleotides.

      Reviewer #3 (Public review):

      Summary:

      Type II IRES, such as those from encephalomyocarditis virus (EMCV) and foot-and-mouth disease virus (FMDV), mediate cap-independent translation initiation by using the full complement of eukaryotic initiation factors (eIFs), except the cap-binding protein eIF4E. The molecular details of how IRES type II interacts with the ribosome and initiation factors to promote recruitment have remained unclear. Das and Hussain used cryo-electron microscopy to determine the structure of a translation initiation complex assembled on the EMCV IRES. The structure reveals a direct interaction between the IRES and the 40S ribosomal subunit, offering mechanistic insight into how type II IRES elements recruit the ribosome.

      Strengths:

      The structure reveals a direct interaction between the IRES and the 40S ribosomal subunit, offering mechanistic insight into how type II IRES elements recruit the ribosome.

      Weaknesses:

      While this reviewer acknowledges the technical challenges inherent in determining the structure of such a highly flexible complex, the overall resolution remains insufficient to fully support the authors' conclusions, particularly given that cryo-EM is the sole experimental approach presented in the manuscript.

      The study is biologically significant; however, the authors should improve the resolution or include complementary biochemical validation.

      We thank Reviewer 3 for acknowledging the technical challenges in this study and finding our study biologically significant. We understand the concerns related to low resolution and the requirement of complementary biochemical validation for our reported observations and interpretations in the manuscript. We are attempting to improve the resolution and complement the interpretations with biochemical experiments.

    1. Reviewer #1 (Public review):

      Summary:

      Praegel et al. explore the differences in learning an auditory discrimination task between adolescent and adult mice. Using freely-moving (Educage) and head-fixed paradigms, they compare behavioral performance and neuronal responses over the course of learning. The mice were initially trained for seven days on an easy pure frequency tone Go/No-go task (frequency difference of one octave), followed by seven days of a harder version (frequency difference of 0.25 octave). While adolescents and adults showed similar performance on the easy task, adults performed significantly better on the harder task. Quantifying the lick bias of both groups, the authors then argue that the difference in performance is not due to a difference in perception, but rather to a difference in cognitive control. The authors then used neuropixel recordings across 4 auditory cortical regions to quantify the neuronal activity related to the behavior. At the single cell level, the data shows earlier stimulus-related discrimination for adults compared to adolescents in both the easy and hard tasks. At the neuronal population level, adults displayed a higher decoding accuracy and lower onset latency in the hard task as compared to adolescents. Such differences were not only due to learning, but also to age as concluded from recordings in novice mice. After learning, neuronal tuning properties had changed in adults but not in adolescent. Overall, the differences between adolescent and adult neuronal data correlates with the behavior results in showing that learning a difficult task is more challenging for younger mice.

      Strengths:

      The behavioral task is well designed, with the comparison of easy and difficult tasks allowing for a refined conclusion regarding learning across age. The experiments with optogenetics and novice mice are completing the research question in a convincing way.

      The analysis, including the systematic comparison of task performance across the two age groups, is most interesting and reveals differences in learning (or learning strategies?) that are compelling.

      Neuronal recording during both behavioral training and passive sound exposure is particularly powerful, and allows interesting conclusions.

      Weaknesses:

      The weaknesses listed by this reviewer were addressed by adequate revisions.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to find out how and how well adult and adolescent mice discriminate tones of different frequencies and whether there are differences in processing at the level of the auditory cortex that might explain differences in behavior between the two groups. Adolescent mice were found to be worse at sound frequency discrimination than adult mice. The performance difference between the groups was most pronounced when the sounds are close in frequency and thus difficult to distinguish and could, at least in part, be attributed to the younger mice' inability to withhold licking in no-go trials. By recording the activity of individual neurons in the auditory cortex when mice performed the task or were passively listening as well as in untrained mice the authors identified differences in the way that the adult and adolescent brains encode sounds and the animals' choice that could potentially contribute to the differences in behavior.

      Strengths:

      The study combines behavioural testing in freely-moving and head-fixed mice, optogenetic manipulation and high density electrophysiological recordings in behaving mice to address important open questions about age differences in sound-guided behavior and sound representation in the auditory cortex.

      Weaknesses:

      The weaknesses listed by this reviewer were addressed by adequate revisions.

    3. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):

      Summary:

      Praegel et al. explore the differences in learning an auditory discrimination task between adolescent and adult mice. Using freely-moving (Educage) and head-fixed paradigms, they compare behavioral performance and neuronal responses over the course of learning. The mice were initially trained for seven days on an easy pure frequency tone Go/No-go task (frequency difference of one octave), followed by seven days of a harder version (frequency difference of 0.25 octave). While adolescents and adults showed similar performance on the easy task, adults performed significantly better on the harder task. Quantifying the lick bias of both groups, the authors then argue that the difference in performance is not due to a difference in perception, but rather to a difference in cognitive control. The authors then used neuropixel recordings across 4 auditory cortical regions to quantify the neuronal activity related to the behavior. At the single cell level, the data shows earlier stimulus-related discrimination for adults compared to adolescents in both the easy and hard tasks. At the neuronal population level, adults displayed a higher decoding accuracy and lower onset latency in the hard task as compared to adolescents. Such differences were not only due to learning, but also to age as concluded from recordings in novice mice. After learning, neuronal tuning properties had changed in adults but not in adolescent. Overall, the differences between adolescent and adult neuronal data correlates with the behavior results in showing that learning a difficult task is more challenging for younger mice.

      Strengths:

      The behavioral task is well designed, with the comparison of easy and difficult tasks allowing for a refined conclusion regarding learning across age. The experiments with optogenetics and novice mice are completing the research question in a convincing way.

      The analysis, including the systematic comparison of task performance across the two age groups, is most interesting, and reveals differences in learning (or learning strategies?) that are compelling.

      Neuronal recording during both behavioral training and passive sound exposure is particularly powerful, and allows interesting conclusions.

      Weaknesses:

      The presentation of the paper must be strengthened. Inconsistencies, missing information or confusing descriptions should be fixed.

      We have carefully re-read the manuscript and reviewed it for inconsistencies. We made several corrections in the figures. For example, we removed redundant lines from violin plots and statistics, applied consistent labels, matched y- and x-limits of graphics, and adjusted labels. We also clarified descriptions of some experiment by adding explanations to the text.

      The recording electrodes cover regions in the primary and secondary cortices. It is well known that these two regions process sounds quite differently (for example, one has tonotopy, the other not), and separating recordings from both regions is important to conclude anything about sound representations. The authors show that the conclusions are the same across regions for Figure 4, but is it also the case for the subsequent analysis? Comparing to the original manuscript, the authors have now done the analysis for AuDp and AUDv separately, and say that the differences are similar in both regions. The data however shows that this is not the case (Fig S7). And even if it were the case, how would it compatible with the published literature?

      To address this and previous concerns about regional differences, the manuscript now includes 4 figures (4-1, 4-3, 6-2, 7-1) and 5 supplemental tables (3,4, 5, 6, 8) that explicitly compare results across brain regions.

      Following the reviewer’s request for subsequent analysis, we now added a new supplemental figure (Fig. S6-2) and two new supplementary tables (Tables S5, S6). We show that similar to expert mice (supplementary Table 3, and supplementary Table 4), the firing properties of adolescent and adult novice mice differ across auditory subregions (supplementary Table 5). We also show that the different auditory subregions have different firing properties (supplementary Table 6). With respect to task engagement, we show that (similar to Fig. S4-2) the neuronal discriminability in different auditory subregions is similar in both novice and expert mice (Fig. S6-2).

      Following the comment on Fig. S7-1, we made three changes to the revised manuscript. First, we now highlight that the differences firing properties between adolescent and adult neurons in AUDp and AUDv were distinct, but not significantly different within age-group comparisons. Second, we clearly state that the learning related changes in the measured parameters are different between AUDp and AUDv. Note, however, the greater changes in adult neurons after learning remains consistent between AUDp and AUDv. Third, we softened our original claim but still highlighted the stronger learning-induced plasticity in adults.

      Regarding the concern that different regions should show different patterns due to their known differences (e.g. tonotopy). Of course we agree that different areas differ functionally (as shown in our own previous work and here as well). However, it is still plausible, and biologically reasonable, that developmental changes may proceed in a similar direction across different areas, even if their baseline coding properties differ.

      Reviewer #2 (Public review):

      Summary:

      The authors aimed to find out how and how well adult and adolescent mice discriminate tones of different frequencies and whether there are differences in processing at the level of the auditory cortex that might explain differences in behavior between the two groups. Adolescent mice were found to be worse at sound frequency discrimination than adult mice. The performance difference between the groups was most pronounced when the sounds are close in frequency and thus difficult to distinguish and could, at least in part, be attributed to the younger mice' inability to withhold licking in no-go trials. By recording the activity of individual neurons in the auditory cortex when mice performed the task or were passively listening as well as in untrained mice the authors identified differences in the way that the adult and adolescent brains encode sounds and the animals' choice that could potentially contribute to the differences in behavior.

      Strengths:

      The study combines behavioural testing in freely-moving and head-fixed mice, optogenetic manipulation and high density electrophysiological recordings in behaving mice to address important open questions about age differences in sound-guided behavior and sound representation in the auditory cortex.

      Weaknesses:

      For some of the analyses that the authors conducted it is unclear what the rationale behind them is and, consequently, what conclusion we can draw from them.

      We have carefully re-read the manuscript and reviewed it for analyses that lacked a clear rationale or conclusion. To address this, we have made several changes to clarify the reasoning and strengthen the interpretation of the results.

      Reviewer #1 (Recommendations for the authors):

      It would have helped if the authors had highlighted the changes they made to the manuscript compared to the original version - especially since many replies to the reviewers' comments were as vague as "...we fixed some of the wording so it adheres to the data shown", or "we refined our interpretation", without further details.

      The revised version has improved substantially, and the main claims have been discussed in a more objective way. Important new analyses have been added to allow for a refined interpretation of the results. However, the presentation of the data could still be strengthened significantly (in response to comment A from last review).

      We apologize for the lack of detail in some of our previous responses. Our intention was to keep the replies concise, assuming that the side-by-side version with tracked changes would make the edits sufficiently clear. However, we understand the need for greater transparency. Thus, below we provide the following five lists describing the major changes: (1) List of specific reviewer recommendations, (2) list of corrections in figures, (3) list of clarity issues, (4) list of fixed mistakes, (5) list of new figures. We hope this breakdown makes the revisions clearer and more accessible.

      List of specific reviewer recommendations:

      l.108 mentions a significant change in the vertical line of Fig 1F - Could this significance be indicated and quantified in the figure?

      We quantified and indicated the significance of the vertical line in Fig. 1f and Fig. 1i.

      Fig.1G - the thick and thin lines should be defined, as well as the grey and white dots (same values for adolescents, not for adults).

      (a) We removed the thin inner lines from the violin plot. We define the bar (thick line) of the violin plot in an additional sentence in the methods section under data analysis (LL820-823). b) We adjusted the marker outlines in the adult data (Fig. 1G).

      the figure axis legends should be consistent (trails in Fig D vs # trails in Fig 1F)

      We adjusted the axis legend to # trials in Fig. 1D.

      l.110: is d' always calculated based on the 100 last trials of a session, or is it just for Figure 1F? -etc...

      d’ is always calculated based on the last 100 trials. To clarify this, we added a description in the methods section (L830).

      List of corrections in the figures:

      (1) We removed the internal lines from violin plots in throughout Fig. 1-7.

      (2) We removed the underline of the statistics throughout Fig. 1-7.

      (3) We consistently applied ‘adolescent’ and ‘adult’ figure labels and titles with lowercase letters throughout Fig. 1-7.

      (4) We applied consistent labelling of ‘time (ms)’ throughout Fig. 1-7.

      (5) We matched the size of dashed lines throughout Fig. 1-6.

      (6) We adjusted the x-label of Fig. 1d, Fig. S-1-1 a, Fig. 3c, Fig. 3h-i, Fig, 4d to ‘# trials’.

      (7) We removed the x-label of ‘Experimental Group’ from Fig. 1 to enhance consistency with other figures.

      (8) We removed misaligned dots from the violin plots in Fig. 1g, Fig. 2f, Fig. 3f,g.

      (9) We corrected the plot in Fig. S1-1b.

      (10) We adjusted the y-limits of Fig. S1-1c to be consistent with Fig. S1-1d,e.

      (11) We adjusted the x-labels and y-labels of Fig, 2, Fig. S3-1, Fig, S3-2 and Fig. 3b to ‘freq. (kHz)’.

      (12) We added the age of adolescent and adult mice to the schematic timeline in Fig. 2a.

      (13) We added a label of the reinforcement delay to the schematic trial structure in Fig. 3b.

      (14) We added within-group statistics to Fig. 3e and the figure legend.

      (15) We adjusted the x-label of Fig. 3d to ‘# sessions’.

      (16) We adjusted the x-label of Fig. 3d and Fig. S3-1b to ‘# licks’.

      (17) We changed the y-label in Fig. S3-1a, and Fig. S3-2d, e to ‘lick ratio’ to avoid confusion with the lick rate (Hz) that was calculated in Fig. 4 and Fig. 6.

      (18) We replaced the titles ‘CAMKII’ with ‘dTomato’ in Fig. S3-2 to correctly highlight that both the experimental and control injection were CAMKII injections.

      (19) We adjusted the x-labels and y-labels of Fig, 2, Fig. S3-1, Fig, S3-2 and Fig. 3b to ‘freq. (kHz)’.

      (20) We adjusted the y-label of Fig. S4-1c to ‘# neurons’.

      (21) We matched the x-ticks in Fig. 4e,f.

      (22) We matched the x-ticks in Fig. 6d-g.

      (23) We changed the x-label in Fig. 4g, S4-2 and S6-2 to ‘duration (ms)’ to match the figure label with the manuscript.

      (24) We consistently label ‘Hit’, ‘Miss’, ‘FA’ and ‘CR’ with capital letters in Fig. 4d-e.

      (25) We replaced the double figure label ‘C.’ in Fig. S4-2 with ‘D.’.

      (26) We adjusted the dot-size in Fig. 5 to be equal for all graphs.

      (27) We added ticks to the experimental timeline in Fig. 6a.

      (28) We corrected the y-label in Fig.7c. Now it correctly reflects 5 attenuations from 72-32 dB SPL.

      (29) We matched the y-label of Fig. 7e-h and Fig. S7-1.

      List of clarity issues:

      (1) We replaced the term ‘lower response bias’ with ‘higher lick bias’ (L24) to accurately describe the more negative (lower) criterion-bias, which highlights a higher tendency to lick.

      (2) We replaced the term ‘response bias’ with ‘lick bias’ to consistently describe the calculated criterion-bias (L24, L149, L164, L455, L456, L468).

      (3) We clarify that the age-related differences were ‘more pronounced’ instead of simply ‘higher’ to accurately reflect not simply the increase in adolescent lick-bias, but also the decrease in adult lick-bias (L31).

      (4) We clarified that adolescent sound representations are not merely ’distinct’, but ‘not fully mature’ in L83.

      (5) We clarified in L180 that the impulsive responses we observed in adolescent mice could be related to being ‘less impacted by punishments’.

      (6) We clarified the differences in firing properties of auditory sub-regions analyzed in Supplementary Table 3 (L287-295).

      (7) We explained and clarified the reference to Fig. 3j (LL252-253).

      (8) We added statistics to Fig.S4-2 to support our claim that there are no differences in the onset-latency, duration of discriminability and maximal discriminability between different sub-regions within age-groups (LL 314-315).

      (9) We expanded our explanation of the results in Table 3 (LL370-379).

      (10) We separated the reference to Fig. 6b and Fig. 6c to clarify their meaning (LL358-361).

      (11) We clarified the differences in basic firing properties during the FRA protocol in Fig. 7 (LL409-418).

      (12) We expanded our explanation of the differences of the learning related firing properties in AUDp and AUDv of Fig. S7-1 (LL426-433).

      (13) We changed the term ‘plasticity profiles’ to ‘learning related plasticity’ to further clarify our limitation that L5/6 and L2/3 may exhibit distinct learning related changes (L496).

      (14) We changed the term ‘sluggish’ (L481) to ‘delayed’ to more precisely explain differences between adolescent and adult tuning properties.

      (15) We clarified that the running d’ was calculated in bins of 25 trials, instead of ‘the last 25 trials’ (LL845-846).

      List of fixed mistakes:

      (1) We corrected and matched the age to more accurately reflect the age mice were recorded (P37-42 and P77-82).

      (2) We corrected the attenuation range from 72-42 to 72-32 dB SPL to correctly reflect the 5 attenuations used in the protocol.

      (3) We corrected the number of channels shown in the voltage trace from 10 to 11 (Fig. S4-1a)

      (4) We corrected the number of neurons recorded in novice adolescent mice in the legend of Fig. 6 from 140 to 130 (Fig. 6b).

      (5) We removed redundant, or double brackets, commas, dots, and semi-colons in the figure legends.

      (6) We corrected the LME statistics Table 2.

      List of new figures and tables:

      (1) We added a new supplementary figure to accompany Figure 6. Specifically, Fig. S6-2, shows the interaction of the three measured discriminability properties (onset delay, duration of discriminability, and maximal discriminability) in novice compared to expert mice in the easy and hard task (Go compared to No Go). The figure compares the different auditory sub-regions (similar to Fig. S4-2). We show that the discriminability properties within different groups is not significantly different among the four different sub-regions.

      (2) Supplementary Table 5: We compared the firing properties in different auditory subregions in novice mice, and found (similar to expert mice) that the firing properties differ between adult and adolescent mice across the four different sub-regions.

      (3) Supplementary Table 6: We compared the firing properties between different subregions, separately for adolescent and adult novice mice. Similar to expert mice, we found that different auditory subregions differ in their auditory firing properties.

      Reviewer #2 (Recommendations for the authors):

      The authors largely addressed my suggestions.

      Comparing hit vs correct rejection trials in the population decoding analysis (L313-314): The authors acknowledge that comparing these two trial types conflates choice and stimulus decoding but I am not convinced that the changes to the manuscript text make this clear enough to the reader.

      Thank you for pointing this out. We have made additional revisions to clarify this, and other issues more explicitly, as follows:

      (1) We have expanded the explanation of how our population decoding analysis conflates stimulus and choice, and we acknowledge the limitations of this approach in the Abstract (L28), the Results section (L324-326, LL367-370) and the Discussion (LL516-519).

      (2) We replaced the analysis of impulsivity on the head-fixed task. Instead of analyzing all it is, we focus only on ITIs following FA trials (Fig. S3-1c,d). This is more consistent with the analysis in the Educage (Fig. S2-1), where we show that adolescents exhibit increased impulsivity after FA trials. We found a similar result for ITIs following FA trials in the head-fixed task.

      (3) To provide complementary insight, we now further justify our use of the Fisher separation metric alongside decoding accuracy in Figure 5, with a clearer rationale provided in LL343-345

      (4) We also clarified our reasoning for focusing on 62 dB SPL in the FRA-based analysis in LL400-403.

    1. Author response:

      We thank all three anonymous reviewers for their thoughtful evaluations of our manuscript and for recognizing the conceptual advance in combining agent-based behavioral simulations with systems neuroscience models. We are especially encouraged by the acknowledgement of the framework’s potential to support simulation of neural control of individual animal behavior in realistic sensory environments.

      Below, we respond to each reviewer’s public comments in turn. Throughout, we have aimed to clarify our rationale for modeling choices, acknowledge limitations, and outline concrete steps for improvement in the revised manuscript.

      Furthermore, the call for a better description of the model implementation as voiced by all three reviewers and additional requests from community members has prompted us to formulate a separate technically detailed description of the publicly available larvaworld software package as well as of the readily implemented models in form of a preprint paper (Sakagiannis et al., 2025, bioRxiv, DOI: https://doi.org/10.1101/2025.06.15.659765).

      Reviewer #1:

      We are happy to read that this reviewer considers the proposed behavioral architecture ‘a significant step forward in the field’, and that she/he recognizes the strengths of our work in the modular and hierarchical approach that provides connections to influential theories of motor control in the brain, in the experimental evidence it is based on, and in the valuable abstractions that we have chosen for the larval behavioral modeling.

      The reviewer raises important points about the simplifications we have made, both conceptually and in the specific implementation of larval behaviors. Our main goal in this study is to introduce a conceptual framework that integrates agent-based modeling with systems neuroscience models in a modular fashion. To serve this purpose, we aimed for a minimal yet representative implementation at the motor layer of the architecture, calibrated to larval locomotion kinematics. This choice enables efficient simulation while allowing us to test top-down modulation and adaptive mechanisms in higher layers without the computational overhead of a full neuromechanical model. In addition to chemotaxis, we have recently used this simplified approach to model thermotaxis in larvae (Kafle et al., 2025, iScience, DOI: https://doi.org/10.1016/j.isci.2025.112809).

      The reviewer notes the absence of explicit segmental neuromuscular control or central pattern generators (CPGs). We deliberately abstracted from these mechanisms, representing the larval body as two segments with basic kinematic control, to focus on reproducing overall locomotor patterns. This bisegmental simplification, which we illustrate in Supplemental Video “Bisegmental larva-body simplification”, retains the behavioral features relevant to our current aims. However, the modular structure of the framework means that more detailed neuromechanical models—incorporating CPG dynamics or connectome-derived circuit models—can be integrated in future work without altering the architecture as a whole.

      We fully agree that real neural circuits are more complex than a strict subsumption architecture implies. In the Drosophila larva, there is clear evidence for ascending sensory feedback from the motor periphery to premotor and higher brain circuits, as well as neuromodulatory influences. These add layers of complexity beyond the predominantly descending control in our present model. At the same time, both larval and adult connectome data show that across-level descending and ascending connections are sparse compared to the dense within-layer connectivity. We see value in casting our model as a hierarchical control system precisely to make the strengths and limitations of such an abstraction explicit. The revised manuscript will include further discussion of these points.

      In summary, our design choices reflect a trade-off: by limiting the biological detail in the lower layers, we gain computational efficiency and maintain a clear modular structure that can host models at different levels of abstraction. This ensures that the architecture remains both a tool for immediate behavioral simulation and a scaffold for integrating richer neural and biomechanical models as they become available.

      Reviewer #2:

      We thank the reviewer for recognizing the novelty of our locomotory model, particularly the implementation of peristaltic strides based on our new analyses of empirical larval tracks, and for providing constructive feedback that will help us improve the manuscript.

      The reviewer highlights the need for clearer explanations of the chemotaxis and odor preference modules. We expand these sections in the revised manuscript with more explicit descriptions of model structure, parameterization, and calibration. As mentioned above, we have also prepared a separate preprint dedicated to the larvaworld Python package, which contains detailed implementation notes and hands-on tutorials that allow users to adapt or extend individual modules.

      Regarding the comparison to empirical behavior in chemotaxis, our present analysis is indeed primarily qualitative. However, we would like to emphasize that the temporal profile of odor concentration at the larval head in our simulations matches that measured in Gomez-Marin et al. (Nature Comm., 2011, DOI: https://doi.org/10.1038/ncomms1455) using only one additional free parameter, while all parameters of the basic locomotory model had been fitted to a separate exploration dataset before and were kept fixed in the chemotaxis experiments. In addition to the simulation of chemotaxis in the present paper, we recently used larvaworld in a practical model application to estimate a species-specific parameter of thermotaxis from experiments across different drosophilids (Kafle et al., 2025, iScience, DOI: https://doi.org/10.1016/j.isci.2025.112809).

      The preference index in our simulations was computed using the same definition as in the established experimental group assay for larval memory retention, enabling a direct quantitative comparison between simulated and empirical results. Variability in the simulated outcomes arose naturally from inter-individual differences in body length and locomotory parameters, derived from real larval measurements, as well as from the random initial orientation of each individual in the arena. These factors contributed to variation in individual tracks and ultimately produced preference index values that closely matched those observed experimentally. In the revised manuscript, we also discuss handedness, as highlighted by the reviewer, as another meaningful expression of inter-individual variability in Drosophila larvae and insects more generally.

      Finally, we acknowledge the reviewer’s concern about the scalability and broader applicability of the model. While the present paper focuses on three specific behavioral paradigms (exploration, chemotaxis, odor preference), the modular structure of the architecture is designed for flexibility: modules at any layer can be exchanged for more detailed or alternative implementations, and new sensory modalities or behaviors can be integrated without redesigning the system. The larvaworld package, associated codebase, and documentation are openly available to encourage adoption and adaptation by the larval research community.

      Reviewer #3:

      This public review provides an excellent account of our central aim to build an easily configurable, well-documented platform for organism-scale behavioral simulation and we are happy to read that the reviewer considers this an excellent goal.

      We thank the reviewer for her/his account of our well-organized code using contemporary Python tooling. We are currently further improving code readability and code documentation, and we will release a new version of the larvaworld Python package. We further agree with the reviewer’s assessment that understanding the model calibration currently requires reading of the appendix. For the revised manuscript we thus aim at improving our description of all calibration and modeling steps along the way. We will also make sure to improve the description of the experimental datasets used for calibration.

      We recognize that our description of the paper’s scientific contribution could be clearer. In revision, we will sharpen the Introduction and Discussion to highlight our main contributions:

      (1) Promoting a shift from isolated neural circuit modeling to integrated agent-based simulations in realistic environments.

      (2) Proposing the layered behavioral architecture, adopting the subsumption paradigm for modular integration.

      (3) Providing the larvaworld software as a ready-to-use, extensible modeling platform.

      (4) Implementing an empirically calibrated locomotory model and demonstrating its integration with navigation and learning modules in replicated behavioral paradigms.

      We agree with the reviewer that the next challenge is to integrate the empirically based behavioral simulations presented here with functional brain models capable of reproducing or predicting experimental findings at the level of cellular neurophysiology, including the effects of cell-type-specific manipulations such as gene knock-down or optogenetic activation/inhibition. However, based on our experience with systems-level modeling, we deliberately invested in behavioral simulation because functional models of the nervous system—including our own—often lack translation into simulated agent behavior. In many cases, model output is limited to one or more variables that can at best be interpreted as a behavioral bias, and most often represents an “average animal” that fails to capture inter-individual differences. By linking our spiking mushroom body model to behavioral simulations in a group of individual agents during memory retention tests (Figure 6C,D), we were able to achieve a first successful direct comparison between simulated and experimental behavior metrics—in this case, the behavioral preference index reported in Jürgensen et al. (iScience, 2024, DOI: https://doi.org/10.1016/j.isci.2023.108640).

      Finally, we reiterate that the layered behavioral architecture is designed to promote a modular modeling paradigm. Our adoption of a subsumption architecture does not conflict with the concept of behavioral primitives; on the contrary, the notion that such primitives follow (semi-)autonomous motor programs and can be combined into more complex behaviors was the starting point for our implementation of the architecture in the fly larva. In our view, a genuinely contradictory paradigm for neural control of behavior would require a non-modular, strictly non-hierarchical organization of the nervous system and, by extension, of behavioral control.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review)

      Comment 

      Koonce et al. have generated a web-based visualization tool for exploring C. elegans neuronal morphology, contact area between neurons, and synaptic connectivity data. Here, the authors integrate volumetric segmentation of neurons and visualization of contact area patterns of individual neurons generated from Diffusion Condensation and C-PHATE embedding based on previous work from adult volumetric electron microscopy (vEM) data, extended to available vEM data for earlier developmental stages, which effectively summarizes modularity within the collated C. elegans contactomes to date. Overall, NeuroSC's relative ease of use for generating visualizations, its ability to quickly toggle between developmental stages, and its integration of a concise visualization of individual neurons' contact patterns strengthen its utility.

      We thank that reviewer for this positive assessment of our work.

      Comment

      NeuroSC provides an accessible and convenient platform. However, many of the characteristics of NeuroSC overlap with that of an existing tool for visualizing connectomics data, Neuroglancer, which is a widely-used and shared platform with data from other organisms. The authors do not make clear their motivation for generating this new tool rather than building on a system that has already collated previous connectomics data. Although the field will benefit from any tool that collates connectomics data and makes it more accessible and user-friendly, such a tool is only useful if it is kept up-to-date, and if data formatting for submitting electron microscopy data to be added to the tool is made clear. It is unclear from this manuscript whether NeuroSC will be updated with recently published and future C. elegans connectomes, or how additional datasets can be submitted to be added in the future.

      We have added new language to more explicitly state the motivations for developing NeuroSC (Introduction, lines 98-111, and discussion lines 375-384). In a new discussion section, we also include comparisons of the features of NeuroSC with other existing tools, like Neuroglancer and Webknossos, (lines 393-417).

      Briefly, the functional features of NeuroSC are substantially different (and do not exist) in other web-based tools for navigating EM datasets, including NeuroGlancer. This is because the intended use of NeuroSC is substantially different (and purposefully synergistic) to the intended use, and tools available, in NeuroGlancer. 

      NeuroGlancer is a versatile tool designed primarily for web-based visualizations and sharing of large EM datasets. NeuroSC was not designed to enable this type of access to the primary EM data (purposefully done because these features were already available through tools like NeuroGlancer). 

      Instead, the explicit goal of NeuroSC is to provide a platform specifically optimized for examining neuronal relationships across connectomic datasets. NeuroSC builds on the segmentations emerging from programs like NeuroGlancer, but the tools are tailored to explore relationships such as contact profiles in the context of neuronal morphologies and synaptic positions, and across datasets that represent different animals or different developmental stages. 

      To achieve this, all datasets in NeuroSC were optimized to facilitate comparisons across different connectomes of segmented neuronal features, including: 1) alignment of the neurons that are compared upon the display of the segmentations; 2) synchronization of the 3D windows; 3) implementation of a ‘universal color code’ across datasets for each neuron and relationship for easy visual comparisons; 4) use of the specific neuronal names to label instances of the same cells across all available datasets. The use of precise neuronal names among separate data sets allows integration of these objects with other catalogued datasets, including genomic and neuronal activity profiles.

      The formatting and display of the datasets used in NeuroSC was accompanied by the development of new tools including: 1) Rendering of the contact profiles of all neurons in the context of the morphology of the cell and the synapses and 2) C-PHATE diagrams to inspect multidimensional relationship hierarchies based on these contact profiles. In NeuroSC, C-PHATEs can be navigated and compared across multiple stages of development while visualizing neuronal reconstructions, allowing users to compare neuronal relationships across individual datasets.

      We agree with the reviewer that these tools are most useful when integrated. With that intention in mind, we designed NeuroSC as a series of modular, open-source tools that could be integrated into other programs, including Neuroglancer. In that sense our intent was not to produce another free-standing tool, but a set of tools that, if useful, could be integrated to other existing web-based connectomic resources to enhance the user experience of navigating complex EM datasets and draw biological meaning from the relationships between the neurons. Additionally, we intentionally designed NeuroSC to enable the ability to integrate new methods of understanding neuron relationships as they arise. We have dedicated a more detailed section to the discussion (lines 369- 417) to better convey this intention and directly address the unique abilities of NeuroSC as a complementary tool to the powerful existing tools, including Neuroglancer.

      Comment

      The interface for visualizing contacts and synapses would be improved with better user access to the quantitative underlying data. When contact areas or synapses are added to the viewer, adding statistics on the magnitude of the contact area, the number of synapses, and the rank of these values among the neuron's top connections, would make the viewer more useful for hypothesis generation. Furthermore, synapses are currently listed individually, with names that are not very legible to the web user. Grouping them by pre- and postsynaptic neurons and linking these groups across developmental stages would also be an improvement.

      [what do they even mean by linking?]

      We thank the reviewer for this insightful comment and have implemented several improvements to address these suggestions. Specifically, we have added new features to enhance user access to quantitative data within the NeuroDevSCAN viewer:

      Cell, Patch, and Synapse Statistics: Users can now see a statistics panel when clicking on a rendered neuron, contact patch, or a synapse. These panels provide the following information, respectively, and are highlighted in lines 303-315):

      Cell Stats: Click on a cell rendering to show cell stats which displays the total volume and surface area of the selected neuron within the defined neuropil area of our datasets (see Methods). 

      Contact Stats: Click on a patch rendering to show ‘contact stats’. This pop up displays quantifications of the selected contact relationship. Rank compares the summed surface area of contacts ("patches") between these two neurons relative to all other contact relationships for the primary neuron for the cell and the whole nerve ring. A rank of 1, for example, means this neuron pair shares the largest contact surface area of the examined relationship. “Total surface area” is displayed in nanometers, and is the summed surface area of all patches of this identity. Contact percentages are presented in two ways: (1) as the proportion of the primary cell's total surface area occupied by the contact in question, and (2) as the proportion of the total surface area of the nerve ring occupied by that same contact. (Showcased in figure S5). 

      Synapse Stats: A click on a synapse rendering now shows ‘synapse stats’, which displays the number of synapses of the selected identity within the primary neuron, including any polyadic synapse combinations involving the primary neurons. (Showcased in figure S7).

      (1) Grouping and Readability Improvements: While individual synapses are still visualized, their display has been improved for legibility. We have condensed the lengthy naming scheme to improve clarity and codified the synapse type by using superscript letters C, E, U to represent chemical, electrical and undefined synapses, respectively. This is explained and shown in figure S7, we added arrows to indicate the directionality of presumed information flow at each synapse. 

      (2) Developmental Linkage: We can link objects across datasets via cellular identity, but each synapse in the dataset does not yet have an identity attributed to its spatial coordinates, preventing us from linking specific synapses across development beyond their connectivity (ie, that a given synapses connects cell X to cell Y, for instance), also addressed in R1.11.  

      Together, these improvements substantially enhance the utility of the viewer for hypothesis generation by making key quantitative data readily accessible.

      Comment

      While the DC/C-PHATE visualizations are a useful tool for the user, it is difficult to understand when grouping or splitting of cell contact patterns is biologically significant. DC is a deterministic algorithm applied to a contactome from a single organism, and the authors do not provide quantitative metrics of distances between individual neurons or a number of DC iterations on the C-PHATE plot, nor is the selection process for the threshold for DC described in this manuscript. In the application of DC/C-PHATE to larval stage nerve ring strata organization shown by the authors, qualitative observations of C-PHATE plots colored based on adult data seem to be the only evidence shown for persistent strata during development (Figure 3) or changing architectural motifs across stages (Figure 4). Quantitation of differences in neuron position within the DC hierarchy, or differences in modularity across stages, is needed to support these conclusions. Furthermore, illustrating the quantitative differences in C-PHATE plots used to make these conclusions will provide a more instructive guide for users of NeuroSC in generating future hypotheses.

      There are several ways to visualize DC outputs, and one way to quantitatively compare DC clustering events of neurons is via Sankey diagrams. To make the inclusion of these resources more clear, we have highlighted them in lines 175-178 (Supplemental Tables 3-6). ‘DC outputs for each strata across animals can also be inspected using Sankey diagrams (Supplemental Tables 3-6). These spreadsheets detail the neuron members at each iteration of DC, allowing the user to derive quantitative comparisons of clustering events.’

      As the reviewer points out, DC is a deterministic algorithm that will iteratively cluster neurons based on the similarity of their contact profiles. To better explain the selection process for the threshold, the number of DC iterations and the quantitative metrics between the neurons, we have added new text in the Diffusion Condensation methods section.  Briefly:

      Number of DC iterations: During diffusion Condensation (DC) we track the modularity of the resulting clusters at each iteration and select the iteration with the highest modularity to define the clusters that represent the strata  (Moyle et al., 2021), (Brugnone et al., 2019). Mathematically, modularity is calculated by comparing the actual number of edges within clusters to the expected number of such edges in a randomized network with the same degree distribution (Newman et al., 2006). A higher modularity value implies that nodes within the same cluster are more densely connected to each other than to nodes in other clusters. We now better explain this in lines 562-567.

      Threshold for merging points: The threshold (epsilon) used to merge data points in each iteration is set as a small fraction of the spatial extent of the data: for each coordinate dimension (x, y, z), we compute the range (maximum minus minimum), take the maximum of these three values, and divide it by 10,000. This process is performed iteratively for each round of clustering until all data points cluster into a single point. We have updated the manuscript to clarify this threshold selection and included this information in the revised algorithm description and pseudocode. We now better explain this in lines 556-559.

      Distances between neurons in DC C-PHATE: In our previous description in Box 1 algorithm 1, we had provided a general algorithm for DC for any high dimensional dataset. We have now revised the algorithm to indicate how we used DC for these EM datasets. 

      Distances between neurons are determined by the pixel overlap between their segmented shapes in the EM dataset. We use these distances to build a graph with weighted edges, in which the weight of the edge represents the pixel overlap (the adjacency in the actual EM segmentation). Affinities between neurons, which are a proxy for their distance in the graph, are then computed as now revised in Box 1, Algorithm 1. This process is done iteratively as neurons cluster. To better communicate this, we have changed the text in lines 533-538.  

      Comment

      R1.5. While the case studies presented by the authors help to highlight the utility of the different visualizations offered by the NeuroSC platform, the authors need to be more careful with the claims they make from these correlative observations. For example, in Figure 4, the authors use C-PHATE clustering patterns to make conclusions about changes in clustering patterns of individual neurons across development based on single animal datasets. In this and many other cases presented in this study with the limited existing datasets, it is difficult to differentiate between developmental changes and individual variability between the neurite positions, contacts, and synapse differences within these data. This caveat needs to be clearly addressed.

      We now better explain in the manuscript that the selected case study, of the AVF neuron outgrowth, is not one of just correlation based solely on an EM dataset. Instead, the case study represents the NeuroSC-driven exploration of a biologically significant event supported by several independent datasets, as now explained in lines 257-276.

      Briefly, we agree with the reviewer that examining differences across individual EM datasets is insufficient evidence to make conclusions about developmental changes. But the strength of NeuroSC is in its ability to combine and compare multiple datasets, bolstering observations that are not possible by looking at just one dataset, and providing new insights on the way to new hypotheses. We now better explain that we are not looking at single connectomes in isolation and then deriving conclusions, but instead using NeuroSC to compare across 9 EM datasets. We better explain how the tools in NeuroSC, including C-PHATE, enabled comparisons across these multiple connectomes to identify apparent differences in neuronal relationships. We then explain that by using NeuroSC, we could examine these variations in neuronal relationships at the level of individual, cell biological differences of neuronal morphologies between the developmental datasets. This could be due, as pointed by the reviewer, to differences due to development, or just differences between individual animals. In the case of AVF, that features are absent in all early specimens, then arise and persist in all specimens after a certain time point, which lead us to hypothesize they result from a developmental event. Because the segmented objects in NeuroSC are linked to neuronal identities, we are also able to cross reference our observations from the EM datasets with information in other datasets and the literature. In the specific case of postembryonic development of AVF outgrowth, we can now tie the knowledge, from developmental lineage information and molecular profiles, that AVF is a postembryonically born neuron (Sulston et al. 1977, Sun et al 2022, Poole et al 2024, wormatlas.org) to the outgrowth dynamics of its neurites using the postembryonic EM datasets. Our findings using  NeuroSC provide a proof of concept of the utility of the resource and extended our understanding of how the outgrowth of this neuron affects the relationships between the neural circuits in the nerve ring.

      Comment

      R1.6. Given that recent studies have also quantified contact area between neurons across multiple connectomes (Cook et al., Current Biology, 2023; Yim et al., Nature Communications, 2024), and that the authors use a slightly different approach to quantify contact area, a direct comparison between contact area values obtained in this study with prior studies seems appropriate.

      We acknowledge that there are multiple different approaches to calculate adjacencies. In the papers cited above, there are 3 different algorithms used:

      (1) Brittin 2019 (python parse Track EM, boundary thresholds), used in Cook et al 2023, Moyle 2021, and this study).

      (2) Witvliet 2021 (Matlab 2D masks), used in Cook et al 2023.

      (3) Yim 2024 (3D masks), used in Yim et al 2024.

      To briefly describe the different approaches, and the methods we chose for this paper:

      Algorithm 1 (used in this study) defines adjacency based on distances between boundary points in TrakEM2 segmentations, allowing threshold tuning to accommodate differences in resolution and image quality across datasets—an important feature for consistent cross-dataset comparisons.

      Algorithm 2 infers contact via morphological dilation of VAST segmentations, identifying adjacency through overlapping expanded boundaries. 

      Algorithm 3 uses voxelwise contact detection with directional surface area measurements and normalization to account for dataset size differences. 

      In NeuroSC, we use algorithm 1, mostly because we had tested the rigor of this method in (Moyle et al. 2021), where we have shown that results were robust across a range of thresholds. This flexibility enables tailored application across datasets of varying quality and scale, critical for NeuroSC’s mission of curating data sets across differing methodologies to allow for direct relationship comparisons. We detail the methodology for defining thresholds for each dataset in methods section lines 492-521, defined in Supplementary table 1. Another difference between our analysis and the previously cited work is that for our analysis we also chose to include all individually resolved neurons, including post-embryonic cells, without collapsing them into left/right or dorsal/ventral symmetry classes. In this way our approach retains the full cellular resolution of the nervous system. 

      Comment

      Neuroglancer is not mentioned at all in the manuscript, despite it being a very similar and widely accepted platform for vEM data visualization across model organisms. An explicit comparison of NeuroSC and Neuroglancer would be appropriate, given the similarity of the tools. Currently, published C. elegans data (Witvliet et al., 2021; Yim et al., 2024) use Neuroglancer-based viewers, and directly comparing NeuroSC and highlighting its strengths relative to Neuroglancer would strengthen the paper.

      In the original manuscript we had not mentioned tools like Neuroglancer because we envisioned them as distinct, in intended use and output, from NeuroSC. But, as explained in R1.2 comment, in the revised version we have included a section in the Introduction lines 98-108 and in the Discussion (lines 369- 417) that compares these types of web-based tools and highlights synergies. 

      Comment

      Assigning shorthand names to strata, such as "shallow reflex circuit" (page 4, line 172), may oversimplify this group of neurons. Either more detailed support for shorthand names of C-PHATE modules should be included, or less speculative names for strata should be used.

      We appreciate this comment and understand that the original language used in the manuscript to describe strata categorizations may run the risk of oversimplification. We have now clarified the text to communicate that: 1) Strata are labeled by numbers (Strata 1, Strata 2, Strata 3 and Strata 4), rather than functional features of the neurons forming part of the strata, and that 2) the assignment of ‘strata’ is just one level of classification available via DC/CPHATE (as explained below). 

      To be sure, we have observed and published (Moyle et. al. Nature 2021) that within a given stratum, many neurons share the functional identities that we have used as summary descriptors for the strata (eg, shallow reflex circuits for Stratum 1; sensory and integrative circuits in Strata 3 and Strata 4; command interneurons in Strata 2, etc). However, those cell types are not the only members of the strata. We have adjusted the language in lines 197-204 to reflect this more clearly. “Stratum 1, which contains most neurons contributing to shallow reflex circuits that control aversive head movements in response to noxious stimuli, displayed the fewest changes among the developmental connectomes (Figure 3B–F; Supplementary Table 3). In contrast, C. elegans exhibit tractable behaviors that adapt to changing environmental conditions (Flavell et al., 2020). Strata 3 and 4 contain most neurons involved in circuits associated with such learned behaviors, including mechano- and thermo-sensation. This is reflected in Strata 3 and 4 showing the most change in neuronal relationships across postembryonic development.“

      Comment

      The authors state that NeuroSC can be applied to other model organisms. Since model organisms with greater neuron numbers include more individual neurons per cell class, the authors should support this by quantitatively demonstrating how DC/C-PHATE relationships correlate with shared functional roles among C. elegans neurons.

      We now clarify in the manuscript that, like in other organisms, C. elegans neurons are also grouped into functional classes with shared characteristics. In the context of the cylindrical nerve ring of the animal, these neuronal classes are sometimes bilaterally symmetric (forming left-right pairs), four-fold symmetric and six-fold symmetric. We now explain in the discussion that the DC/CPHATE analyses group these neuron classes and their relationships (lines 442-451). In the specific section mentioned by the reviewer, we now also add new text to contextualize this concept and how it might relate to the possible use of these tools in organisms with larger nervous systems: ‘However, our previous work has demonstrated that DC/CPHATE clustering of C. elegans neurons consistently pulls out clusters of shared neuron classes and shared functional roles Moyle et al. (2021). Building on this foundation, we envision applying similar clustering approaches to larger connectomes, aiming to identify classes and functionally related neuronal groups in more complex nervous systems. We suggest that contact profiles, along with neuron morphologies and synaptic partners, can act as ‘fingerprints’ for individual neurons and neuron classes. These ‘fingerprints’ can be aligned across animals of the same species to create identities for neurons. Frameworks for systematic connectomics analysis in tractable model systems such as C. elegans are critical in laying a foundation for future analyses in other organisms with up to a billion-fold increase in neurons (Toga et al., 2012).’

      Comment

      Lack of surface smoothing in NeuroSC leads to processes sometimes appearing to have gaps, which could be remedied by smoothing with a surface mesh. 

      We thank the reviewer for the suggestion, and understand the visibility of gaps in certain neuron processes can be distracting. But this was an intentional choice, with our main goal being to show the most accurate representation of the available data segmentation and avoid any rendering interpretations. In this way, we render the data with the highest fidelity we can and as close as possible to the ground truth of the EM segmentation. We have added language to describe this in the methods, lines 490-491, and in Figure legend 5b.

      Comment

      Toggling between time points while maintaining the same neurons and contact area in NeuroSC is a really valuable feature. The tool would be improved even more by extending this feature to synapses, specifically by allowing the user to add an entire group of synapses to the viewer at once (e.g. "all synapses between AIM and PVQ"), and to keep this synapse group invariant when toggling between developmental stages.

      We thank the reviewer for this suggestion. In response we have now implemented a new feature to ‘clone’ a rendered scene across time while preserving the original elements to ease comparisons. Once the user has rendered a scene, they can use the in-viewer developmental slider to clone the renderings and assigned colors, but display the renderings of the newly selected timepoint. These renderings populate a new window tab which can be dragged to align developmental stage windows side by side. We have added a sentence to account for this in lines 315-317 and to the legend of supplemental Figure S11. 

      Reviewer #2 (Public review)

      Comment

      The ability to visualize the data from both a connectomics and contactomics perspective across developmental time has significant power. The original C. elegans connectome (White et al., 1986) presented their circuits as line drawings with chemical and electrical synapses indicated through arrows and bars. While these line drawings remain incredibly useful, they were also necessary simplifications for a 2D publication and they lack details of the complex architecture seen within each EM image. Koonce et al take advantage of segmented image data of each neuronal process within the nerve ring to create a web interface where users can visualize 3D models for their neuron of choice. The C-PHATE visualization allows users to explore similarities among different neurons in terms of adjacency and then go directly to the 3D model for these neurons. The 3D models it generates are beautiful and will likely be showing up in many future presentations and publications. The tool doesn't require any additional downloading and is open source.

      We thank that reviewer for this positive assessment of our work.

      Comment

      While it's impossible to create one tool that will satisfy all potential users, I found myself wanting to have numbers associated with the data. For example, knowing the number of connections or the total surface area of contacts between individual neurons wasn't possible through the viewer, which limits the utility of taking deep analytical dives. While connectivity data is readily accessible through other interfaces such as Nemanode and WormWiring, a more thorough integration may be helpful to some users.

      We thank the reviewer for this feedback and in response have now implemented displays with quantitative information in NeuroSC. Now, upon hovering over a contact patch or synapse, the user will see the quantitative data of the relationship. For contact patches, you will see the total area shared between two neurons in that dataset. On hovering over a synapse, you will see how many synapses there are in total with the same members and throughout the dataset. We agree that this improves user analyses, (see also R1.3 response).

      Comment

      There were several issues with the user interface that made it a bit clunky to use. For example, as I added additional neurons to the filter search box, the loading time got longer and longer. I ran an experiment uploading all of the amphid neurons, one pair at a time. Each additional neuron pair added an additional 5-10 seconds to the loading. By the time I got to the last pair, it took over a minute to load. Issues like these, some of which may be unavoidable given the size of the data, could be conveyed through better documentation. I did not find the tutorial very helpful and the supplementary movies lacked any voiceover, so it wasn't always clear what they were trying to show.

      We appreciate that some of the more complex models can take a while to load. One of our core goals is to keep the high resolution of our models to most accurately represent the EM data, so we had to compromise between resolution and loading times. But to address this concern we have now added a ‘loading’ prompt that reassures the user when there is a wait. We also added, as suggested, text guidance throughout all of the supplemental videos (Supplemental Videos 1-4).

      Reviewer #3 (Public review)

      Comment

      A web-based app, NeuroSC, that individual researchers can use to interrogate the structure and organization of the C. elegans nerve ring across development In the opinion of this reviewer, only minor revisions are required.

      We thank that reviewer for this positive assessment of our work.

      Comment

      Contact is defined by length, why not contact area? How are these normalized for changes in the overall dimensions of neurons during development?

      To clarify our methodology: the adjacency algorithm that we use generates a 2D adjacency profile by summing the number of adjacent boundary points per EM section, which are then summed across all EM z slices.

      Contact area can be derived by multiplying the adjacency length in each slice by pixel resolution and z-thickness. Prompted by the reviewer we have now also calculated and display contact surface areas, along with their ranks among all contact relationships for a given neuron. These can be inspected directly via the interface by clicking on a rendered cell or contact patch (Figure S5 and lines 308-312). We believe these additional surface area metrics enhance the interpretability and utility of the viewer.

      We apply normalization at the level of the adjacency threshold to account for dataset-specific differences such as contrast, boundary definition, and age-related changes in neuropil packing density. This normalization is applied before running the adjacency algorithm. We do not normalize by individual neuron size, as the contact data are intended to reflect relational differences between neurons, rather than absolute morphological scaling. In fact, our addition of a scale-spheroid within each rendered model emphasizes the large increase in spatial scale that the nerve ring experiences during larval growth.  

      Comment

      Figure 1, C&D, explanation unclear for how the adjacency matrix is correlated with C-Phate schematic in D.

      We thank the reviewer for the comment and have clarified this section by adding greater detail to the explanation of how an adjacency matrix is computed (lines 149-155), as well as a description now in the figure legend 1C. Additionally, we revised Figure 1C and D to simplify neuron representations/colors and to simplify the adjacency heat map gradient. We also extended the area of contact between neurons on Figure 1C to better reflect what would be considered a “contact”. Lastly, in the figure, we changed the color and placement for the z plane arrow and label from black to white, to make it more visible, to highlight the method of computing adjacency for each z slice. 

      Comment

      Figure 4, panels F & G, unclear why AVF is shown in panel G (L3) but not panel F (L1). Explanation (see below) should be provided earlier, i.e., AVF is not generated until the end of the L1.

      We have now clarified this important point by adding labels to Figure 4 panels F and G, ‘Pre-AVF outgrowth’ and ‘Post-AVF outgrowth’ respectively. Briefly, the point is that AVF grows into the nerve ring after the L2 stage, and that is why it is absent in panel F (L1 stage, now with the label ‘Pre-AVF outgrowth’).  

      Comment

      Line 146 What is the justification for the statement: "By end of Larval Stage 1 (L1), neuronal differentiation has concluded...."? This statement is confusing since this sentence also states that "90% of neurons in the neuropil...have entered the nerve ring..." which would suggest that at least 10% additional NR neurons have NOT fully differentiated.

      We have fixed this sentence in the text. Now the sentence reads ‘By Larval stage 1 (L1) 90% of the neurons in the neuropil (161 neurons out of the 181 neurons) have grown into the nerve ring and adopted characteristic morphologies and positions. 

      Lines 171-175 What is meant by the statement that "degree of these changes mapped onto...plasticity? What are examples of "behavioral plasticity?"

      We have added the following new lines of text (lines 200-204) and now additionally cite a review discussing C. elegans behaviors to clarify and give context to behavioral plasticity. ‘C. elegans exhibit tractable behaviors which can adapt due to changing environmental conditions  (Flavell et. al. Genetics 2020). Strata 3 and 4 contain most neurons belonging to circuits associated with such learned behaviors, including chemo, mechano and thermo sensation. This is seemingly reflected by strata 3 and 4 harboring the most readily recognized set of changes in neuronal relationships across postembryonic development.’  

      Comment

      Lines 189-190 The meaning of this sentence is unclear, "The logic in....merge events."

      This sentence has been deleted and we have instead refocused our descriptions of C-PHATES comparisons by neuronal clustering trajectories and cluster members (rather than iterations).

      Comment

      Lines 193-208 This section reports varying levels of convergence across larval development in C-Phate maps for the interneurons AIML and PVQL. Iterations leading to convergence varied: 16 (L1), 14 (L2), 22 (L3), 20 (l4), 14 (adult). The authors suggest that these differences are biologically significant and reflect the reorganization of AIML and PVQL contact relationships especially between the L4 and adult. Are these differences in iterations significant?

      We agree this could be confusing and instead of focusing on comparing the iteration at which each merging event occurs, we now focus on examining the differences in members of clusters, before and after the merge event. Cluster membership is easier to interpret than the differences in the number of DC iterations (lines 224-229).

      Lines 240-241 States that AVF neurons "terminally differentiate in the embryo" which is not correct. AVF neurons are generated from neuronal precursors (P0 and P1) at the end of the L1 stage which accounts for their outgrowth into the NR during the L2 stage. 

      We thank the reviewer for the correction and have edited the text to read: ‘AVF neurons are generated from neuronal precursors (P0 and P1) at the end of the L1 stage (Sulston et al. (1983); Sun and Hobert (2023); Poole et al. (2024); Hall and Altun (2008); Sulston and Horvitz (1977). AVF neurons do not grow into the nerve ring until the L2 stage, and continue to grow until the Adult stage (lines 261-266).’

      Comment

      Lines 289-315. A detailed and highly technical description of website architecture would seem more appropriate for the Methods section.

      We agree and have moved this section to the methods as suggested (lines 663-690).

      Comment

      Line 307 "source data is" should be "source data are"

      Thank you- we have fixed this grammatical error.

      Comment

      Line 324 "circuits identities" should be "circuit identity".

      Thank you- we have fixed this grammatical error.

      Comment

      Trademark/copyright conflict with these sites? https://compumedicsneuroscan.com/about/ https://www.neuroscanai.com/

      We thank the reviewer for drawing our attention to this. To avoid potential conflicts, we have proactively altered the name to NeuroSC throughout the paper.

    1. Then Siawosh called before him a scribe, and wrote a letter, perfumed with musk, unto Kay-Kavous his father. And when he had invoked the blessings of Heaven upon his head, he told him all that was come to pass, and how he had conquered the foes of Iran. And Kay Kavous, when he had read the letter, rejoiced, and wrote an answer unto his son, and his gladness shone in his words, and you would have said it was a letter like to the tender green of spring.
      • the ethical virtues of pietas are displayed in Siawosh’s devotion. Ritual respect understood from the perfumed letters to show adherence to the cultural order.
      • Yet again, loyalty and honesty are highlighted, along with diplomacy
      • “Tender green of spring”—refers to a metaphor for the joyand prospering of righteousness. This is a shift into the emotionaspects of the character.
    2. Now when they were come there they rested them a while, and feasted in the house of Zal. And while they revelled there came out to join them riders from Cabul and from Ind, and wherever there was a king of might he sent over his army to aid them. Then when a month had rolled above their heads they took their leave of Zal and of Zabolestan, and went forward till they came unto Balkh. And at Balkh the men of Turan met them, and Garsivaz, the brother of Afrasiyab, was at their head. Now when he saw the hosts of Iran, he knew that the hour to fight was come. So the two armies made them in order, and they waged battle hot and sore, and for three days the fighting raged without ceasing, but on the fourth victory passed over to Iran.
      • There is divine disfavor here—kingship is seen with Iran’s moral victory. Zoroastrian ideals are embedded in the religious perspective—truth and what it means to be righteous over ideas of evil. Courage and discipline are placed over Garsivaz’s loyalty to Afrasiyab because it supports the wrongdoing.
      • There are geographical and symbolic Persians rhymthmic prose utilized in words like— balkh and Zabolestan.
      • In regards to the patriarchal status, kings are the center of all power. There are emphasis on authority and succession.
    1. Intrapersonal communication is communication with oneself using internal vocalization or reflective thinking.

      Intrapersonal communication (the way you talk to yourself in your mind) is a form of communication that I have always thought to be incredibly important. Ever sense I was a child, I have always had a "think before I do" mentality and it has carried through to adulthood. It has helped me in many situation to reason through problems in my head and avoid conflict and confusion with others. it also plays a huge role in how we see ourselves and the world around us. Learning to communicate with yourself kindly and productively, plays a key role in how we communicate to others.

    2. There are five forms of communication: intrapersonal, interpersonal, group, public, and mass communication. Intrapersonal communication is communication with oneself and occurs only inside our heads. Interpersonal communication is communication between people whose lives mutually influence one another and typically occurs in dyads, which means in pairs. Group communication occurs when three or more people communicate to achieve a shared goal. Public communication is sender focused and typically occurs when one person conveys information to an audience. Mass communication occurs when messages are sent to large audiences using print or electronic media.

      Essentially, Intrapersonal is thoughts withing your head/personal self Interpersonal communication is within friends/family/ to one person, Group communication is generally with multiple others than yourself, sometimes towards a shared goal Public communication is the X post, facebook post, or instagram pic you posted last week, Mass communication is used in situations like newspapers, PSAs, and school rallies

    1. head

      noun Bagian atas tubuh manusia atau hewan yang berisi otak, mata, mulut, dan organ sensorik lainnya. Contoh: He nodded his head in agreement. Dia menganggukkan kepalanya sebagai tanda setuju. verb Bergerak atau pergi ke suatu tempat. Contoh: They will head to the meeting after lunch. Mereka akan pergi ke rapat setelah makan siang.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Sumary:

      This study evaluates whether species can shift geographically, temporally, or both ways in response to climate change. It also teases out the relative importance of geographic context, temperature variability, and functional traits in predicting the shifts. The study system is large occurrence datasets for dragonflies and damselflies split between two time periods and two continents. Results indicate that more species exhibited both shifts than one or the other or neither, and that geographic context and temp variability were more influential than traits. The results have implications for future analyses (e.g. incorporating habitat availability) and for choosing winner and loser species under climate change. The methodology would be useful for other taxa and study regions with strong community/citizen science and extensive occurrence data.

      We thank Reviewer 1 for their time and expertise in reviewing our study. The suggestions are very helpful and will improve the quality of our manuscript.

      Strengths:

      This is an organized and well-written paper that builds on a popular topic and moves it forward. It has the right idea and approach, and the results are useful answers to the predictions and for conservation planning (i.e. identifying climate winners and losers). There is technical proficiency and analytical rigor driven by an understanding of the data and its limitations.

      We thank Reviewer 1 for this assessment.

      Weaknesses:

      (1) The habitat classifications (Table S3) are often wrong. "Both" is overused. In North America, for example, Anax junius, Cordulia shurtleffii, Epitheca cynosura, Erythemis simplicicollis, Libellula pulchella, Pachydiplax longipennis, Pantala flavescens, Perithemis tenera, Ischnura posita, the Lestes species, and several Enallagma species are not lotic breeding. These species rarely occur let alone successfully reproduce at lotic sites. Other species are arguably "both", like Rhionaeschna multicolor which is mostly lentic. Not saying this would have altered the conclusions, but it may have exacerbated the weak trait effects.

      We thank the reviewer for their expertise on this topic. We obtained these habitat classifications from field guides and trait databases, and reviewed our primary sources to clarify the trait classifications. We reclassified the species according to the expertise of this reviewer and perform our analysis again; please see details below.

      (2) The conservative spatial resolution (100 x 100 km) limits the analysis to wide- ranging and generalist species. There's no rationale given, so not sure if this was by design or necessity, but it limits the number of analyzable species and potentially changes the inference.

      It is really helpful to have the opportunity to contextualize study design decisions like this one, and we thank the reviewer for the query. Sampling intensity is always a meaningful issue in research conducted at this scale, and we addressed it head-on in this work.

      Very small quadrats covering massive geographical areas will be critically and increasingly afflicted by sampling weaknesses, as well as creating a potentially large problem with pseudoreplication. There is no simple solution to this problem. It would be possible to create interpolated predictions of species’ distributions using Species Distribution Models, Joint Species Distribution Models, or various kinds of Occupancy Models. None of these approaches then leads to analyses that rely on directly observed patterns. Instead, they are extrapolations, and those extrapolations typically fail when tested, although they have still been tested (for example, papers by Lee-Yaw demonstrate that it is rare for SDMs to predict things well; occupancy models often perform less well than SDMs and do not capture how things change over time - Briscoe et al. 2021, Global Change Biology). The result of employing such techniques would certainly be to make all conclusions speculative, rather than directly observable. 

      Rather than employing extrapolative models, we relied on transparent techniques that are used successfully in the core macroecology literature that address spatial variation in sampling explicitly and simply. Moreover, we constructed extensive null models that show that range and phenology changes, respectively, are contrary to expectations that arise from sampling difference. 100km quadrats make for a reasonable “middle-ground” in terms of the effects of sampling, and we added a reference to the methods section to clarify this (see details below).

      (3) The objective includes a prediction about generalists vs specialists (L99-103) yet there is no further mention of this dichotomy in the abstract, methods, results, or discussion.

      Thank you for pointing this out - it is an editing error that should have been resolved prior to submission. We replaced the terms specialist and generalist with specific predictions based on traits (see details below).

      (4) Key references were overlooked or dismissed, like in the new edition of Dragonflies & Damselflies model organisms book, especially chapters 24 and 27.

      We thank Reviewer 1 for making us aware of this excellent reference. We have reviewed the text and include it as a reference, in addition to other references recommended by Reviewer 1 and other reviewers (see details below).

      Reviewer #2 (Public review):

      Summary:

      This paper explores a highly interesting question regarding how species migration success relates to phenology shifts, and it finds a positive relationship. The findings are significant, and the strength of the evidence is solid. However, there are substantial issues with the writing, presentation, and analyses that need to be addressed. First, I disagree with the conclusion that species that don't migrate are "losers" - some species might not migrate simply because they have broad climatic niches and are less sensitive to climate change. Second, the results concerning species' southern range limits could provide valuable insights. These could be used to assess whether sampling bias has influenced the results. If species are truly migrating, we should observe northward shifts in their southern range limits. However, if this is an artifact of increased sampling over time, we would expect broader distributions both north and south. Finally, Figure 1 is missed panel B, which needs to be addressed.

      We thank Reviewer 2 for their time and expertise in reviewing our study.

      It is possible that some species with broad niches may not need to migrate, although in general failing to move with climate change is considered an indicator of “climate debt”, signaling that a species may be of concern for conservation (ex. Duchenne et al. 2021, Ecology Letters). We revised the discussion to acknowledge potential differences in outcomes (please see details below).

      We used null models to test whether our results regarding range shifts were robust, and if they varied due to increased sampling over time. We found that observed northern range limit shifts are not consistent with expectations derived from changes in sampling intensity (Figure S1, S2). 

      We thank Reviewer 2 for pointing out this error in Figure 1. This conceptual figure was a challenge to construct, as it must illustrate how phenology and range shifts can occur simultaneously or uniquely to enable a hypothetic odonate to track its thermal niche over time. In a previous version of the figure, we had a second panel and we failed to remove the reference to that panel when we simplified the figure. We have updated the figure and figure caption (please see details below).

      Reviewer #3 (Public review):

      Summary:

      In their article "Range geographies, not functional traits, explain convergent range and phenology shifts under climate change," the authors rigorously investigate the temporal shifts in odonate species and their potential predictors. Specifically, they examine whether species shift their geographic ranges poleward or alter their phenology to avoid extreme conditions. Leveraging opportunistic observations of European and North American odonates, they find that species showing significant range shifts also exhibited earlier phenological shifts. Considering a broad range of potential predictors, their results reveal that geographical factors, but not functional traits, are associated with these shifts.

      We thank Reviewer 3 for their expertise and the time they spent reviewing our study. Their suggestions are very helpful and will improve the quality of our manuscript.

      Strengths:

      The article addresses an important topic in ecology and conservation that is particularly timely in the face of reports of substantial insect declines in North America and Europe over the past decades. Through data integration the authors leverage the rich natural history record for odonates, broadening the taxonomic scope of analyses of temporal trends in phenology and distribution to this taxon. The combination of phenological and range shifts in one framework presents an elegant way to reconcile previous findings improving our understanding of the drivers of biodiversity loss.

      We thank Reviewer 3 for this assessment.

      Weaknesses:

      The introduction and discussion of the article would benefit from a stronger contextualization of recent studies on biological responses to climate change and the underpinning mechanism.

      The presentation of the results (particularly in figures) should be improved to address the integrative character of the work and help readers extract the main results. While the writing of the article is generally good, particularly the captions and results contain many inconsistencies and lack important detail. With the multitude of the relationships that were tested (the influence of traits) the article needs more coherence.

      We thank Reviewer 3 for these suggestions. We revised the introduction and discussion to better contextualize species’ responses to climate change and the mechanisms behind them (see details below). We carefully reviewed all figures and captions, and made changes to improve the clarity of the text and the presentation of results (see details below).

      Reviewer #1 (Recommendations for the authors):

      Comment:

      (1) Following weakness #1 in the public review, the authors should review the habitat classifications, consult with an odonatologist, and reclassify many species from Both to Lentic and redo the analysis.

      Thank you for pointing out this disagreement among expert habitat classifications that we cited and other literature. We reclassified species’ habitat preferences based on classifications by Hof et al., a source that was consistent with your suggestions, and identified additional species as Lentic that our other references had identified as Both. We performed our analysis with this new dataset and, as you suspected, our results did not change qualitatively: species habitat preferences did not predict their range shifts.

      Hof, Christian, Martin Brändle, and Roland Brandl. "Lentic odonates have larger and more northern ranges than lotic species." Journal of Biogeography 33.1 (2006): 63-70.

      Comment:

      (2) Following weakness #2, would it be worthwhile or interesting to analyze a smaller ranging group (e.g. cut the quad size in half, 50 x 50 km) to bring in more species and potentially change the inference? Or is the paper too tightly constructed to allow this, even as a secondary piece?

      Thank you for this comment, as it highlights an important consideration for macroecological analyses, and the importance of balancing multiple factors for determining quadrat size. Issues exist with identifying drivers of range boundaries among species with narrow ranges when they are analyzed separately from wide-ranging species, and examining larger quadrats can actually help clarify drivers (Szabo, Algar, and Kerr 2009). The smaller quadrats are, the higher the likelihood that the species is actually there but was never observed, or that the quadrat only covers unsuitable habitat and the species is absent from the entire (or almost entire) quadrat. Too many absences creates issues with violating model assumptions, and creates noise that makes it difficult to identify drivers of species’ range and phenology shifts.

      Moreover, we constructed extensive null models that show that range and phenology changes, respectively, are contrary to expectations that arise from sampling difference. 100km quadrats make for a reasonable “middle-ground”, and we have included a brief explanation of this in the text: “We assigned species presences to 100×100 km quadrats, a scale that is large enough to maintain adequate sampling intensity but still relevant to conservation and policy (Soroye et al., 2020), to identify the best sampled species.”  (Lines 170-172).

      Szabo, Nora D., Adam C. Algar, and Jeremy T. Kerr. "Reconciling topographic and climatic effects on widespread and range‐restricted species richness." Global Ecology and Biogeography 18.6 (2009): 735-744.

      Comment:

      (3) Following weakness #3, are specialists the ones that "failed to shift" (L18)? If so please specify. The prediction about generalists vs specialists needs to be removed or incorporated in other parts of the paper.

      Thank you for pointing this out, we intended to suggest that species with more generalist habitat requirements might be better able to shift, but ultimately found that traits did not predict species’ shifts. We corrected our prediction regarding habitat generalists as follows: “We predicted that species able to use both lentic and lotic habitats would shift their phenologies and geographies more than those able to use just one habitat type, as generalists outperform specialists as climate and land uses change (Ball-Damerow et al., 2015, 2014; Hassall and Thompson, 2008; Powney et al., 2015; Rapacciuolo et al., 2017).” (Lines 128-132).

      Comment:

      (4) Following weakness #4, cite Pinkert et al at lines 70-73 and Rocha-Ortega et al at lines 73-77 along with https://doi.org/10.1098/rspb.2019.2645. Add Sandall et al https:// doi.org/10.1111/jbi.14457 to L69 references.

      Thank you for the excellent reference suggestions, we have added them as suggested (Lines 80, 86, 77).

      Comment:

      Other comments/suggestions:

      (1) Title: consider adding temp variability 'Range geography and temperature variability, not functional traits,...'.

      Thank you for this suggestion, we have added temperature variability to the title: “Range geography and temperature variability explain cross-continental convergence in range and phenology shifts in a model insect taxon”.

      Comment:

      (2) L125: is (northern) Mexico included in North America?

      Yes, we did include observations from Northern Mexico, and have specified this in the text: “We retained ~1,100,000 records from Canada, the United States, and Northern Mexico, comprising 76 species (Figure 2).” (Lines 174-176).

      Comment:

      (3) L128: I'd label this section 'Temperature variability' rather than 'Climate data'.

      Thank you, we agree that this is a more appropriate title for this section, and have replaced ‘Climate data’ with ‘Temperature variability’ (Line 185).

      Comment:

      (4) Table 2: why are there no estimates for the traits?

      We apologise, this information should have been included in the main body of the manuscript, but was only explained in the Table 2 caption. We have added the following explanation: “Non-significant variables, specifically all functional traits, were excluded from the final models.”. (Line 312-323).

      Comment:

      (5) Figure 2: need to identify the A-D panels.

      We apologise for this error and have clarified the differences between panels in the figure caption:

      “Figure 2: Richness of 76 odonate species sampled in North America and Europe in the historic period (1980-2002; panes A and C) and the recent period (2008-2018; panes B and D). Species richness per 100 × 100 km quadrat is shown in panes A and B, while panes C and D show species richness per 200 × 200 km quadrat. Dark red indicates high species richness, while light pink indicates low species richness.” (Lines 1002-1006).

      Comment:

      (6) L163-173: I am not familiar with this analysis but it sounds interesting and promising, I am not sure if this can be clarified further. Why the -25 to 25, and -30 to 30, doesn't the -35 to 35 cover these? And what is meant by "include only phenology shifts that could be biologically meaningful", that larger shifts would not be meaningful or tied to climate change?

      We used different cutoffs for phenology shifts to inspect for outliers that were likely to be errors, potentially do to insufficient sampling to calculate phenology. We clarified in the text as follows:

      “We retained emergence estimates between March 1st and September 1st, as well as species and quadrats that showed a difference in emergence phenology of -25 to 25 days, -30 to 30 days, or -35 to 35 days between both time periods, to include only phenology shifts that could be biologically meaningful to environmental climate change (i.e. exclude errors).” (Lines 169-173).

      Comment:

      (7) L193-200: I agree but would make a distinction between ecological vs functional traits, as other studies view geographic traits as ecological manifestations of functional biology, e.g. https://doi.org/10.1016/j.biocon.2019.07.001 and https://doi.org/10.1016/ j.biocon.2023.110098.

      Thank you for this suggestion, and for making us aware of the thinking around range geographies as ecological traits. We have specified throughout the manuscript that the ‘traits’ we are considering are ‘functional traits’, changed the methods subsection title to “Range geographies and functional traits” (Line 252), and added a brief discussion of ecological traits: “Geographic range and associated climatic characteristics are often considered ecological traits, as they are consequences of functional traits and their interactions with geographic features (Bried and Rocha-Ortega, 2023; Chichorro et al., 2019).” (Lines 256-259).

      Comment:

      (8) L203: What's the rationale for egg-laying habitat as "biologically relevant to spatial and temporal responses to climate change"? That one's not as obvious as the others and needs a sentence more. Also, I am wondering why other traits were not considered here, like color lightness and voltinism. And why not wing size instead of body size, or better yet the two combined (wing loading) as a proxy for dispersal ability?

      We agree that our rationale for using this trait should be better explained, and we have included the following explanation: “Egg laying habitat was assigned according to whether species use exophytic egg-laying habitat (i.e. eggs laid in water or on land, relatively larger in number), or endophytic egg-laying habitat (i.e. eggs laid inside plants, usually fewer in number); species using exophytic habitats are associated with greater northward range limit shifts (Angert et al., 2011).” (Lines 271-275).

      We considered traits that have been found to be important for range and phenology shifts among odonates, as well as being key traits for expectations for species responses to climate change. Flight duration and body size are correlated with dispersal ability (Powney et al. 2015). Body size is also correlated with competitive ability (Powney et al. 2015), potentially making it an important predictor of a species’ ability to establish and maintain populations in expanding range areas. Traits correlated with range shifts also include breeding habitat type (Powney et al. 2015; Bowler et al. 2021) and egg laying habitat (Angert et al. 2011). Ideally, we would have used dispersal data from mark/release/recapture studies, but it was not available for many of the species included in this study. After finding that none of the functional traits we included were related to range shifts, there was no reason to believe that a further investigation of traits would be meaningful.

      Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ. 2011. Do species’ traits predict recent shifts at expanding range edges? Ecology Letters 14:677–689. doi:10.1111/j.1461-0248.2011.01620.x

      Bowler DE, Eichenberg D, Conze K-J, Suhling F, Baumann K, Benken T, Bönsel A, Bittner T, Drews A, Günther A, Isaac NJB, Petzold F, Seyring M, Spengler T, Trockur B, Willigalla C, Bruelheide H, Jansen F, Bonn A. 2021. Winners and losers over 35 years of dragonfly and damselfly distributional change in Germany.Diversity and Distributions 27:1353–1366. doi:10.1111/ddi.13274

      Powney GD, Cham SSA, Smallshire D, Isaac NJB. 2015. Trait correlates of distribution trends in the Odonata ofBritain and Ireland. PeerJ 3:e1410. doi:10.7717/peerj.1410

      Comment:

      (9) L210: I count at least 5 migratory species in table S3, so although maybe not enough to analyze it's misleading to say "nearly all" were non-migratory, revise to "most" or "vast majority".

      Thank you for pointing this out, we have made the suggested correction (Line 277).

      Comment:

      (10) L252-254: save this for the Discussion and write a more generalized statement for results to avoid citations in the results.

      Thank you for this suggestion, we have moved this to the discussion (Lines 517-527).

      Comment:

      (11) Figures S5 & S6: these are pretty important, I'd consider elevating them to the main document as one figure with two panels.

      Thank you for this suggestion, we agree these figures should be elevated to the main text, and have made them into a panel figure (Figure 4).

      Comment:

      (12) L305-307: great point and recommendation!

      Thank you very much for this positive feedback!

      Comment:

      (13) L335-336: another place to cite https://doi.org/10.1098/rspb.2019.2645 which includes a thermal sensitivity index and would add an odonate citation behind the statement.

      Thank you for this excellent suggestion, we have added this citation (line 480). (Rocha-Ortega et al. 2020)

      Comment:

      (14) L352-353: again see also https://doi.org/10.1098/rspb.2019.2645.

      Thank you for highlighting this reference, we have added it to Line 505 as suggested.

      Comment:

      (15) L355: revise "populations that coexist" to "species that co-occur" (big difference between population and species levels and between coexistence and co-occurrence).

      Thank you very much for pointing this out, we have made the suggested change (Line 507).

      Comment:

      (16) L359-365: are the winners and losers depicted in Figures S5 & S6? If so reference the figure (which I suggest combining and promoting to the main text), if not create a table listing the analyzed species and their winner/loser status.

      We agree that this is an excellent place to bring up Figures S5 and S6 from the supplemental. We have moved them to the main document as one figure and referenced it at line 510.

      Reviewer #2 (Recommendations for the authors):

      Comment:

      (1) Line 53-55: The claim that "These relationships generalize poorly taxonomically and geographically" is valid, but the study only tests Odonata on two continents.

      Thank you for this comment – the word ‘generalize’ may imply that our study tries to find a general pattern across many groups. We have changed the language to: “However, these relationships are inconsistent across taxa and regions, and cross-continental tests have not been attempted (Angert et al., 2011; Buckley and Kingsolver, 2012; Estrada et al., 2016; MacLean and Beissinger, 2017).” (Lines 57-59).

      Comment:

      (2) Line 58-59: Is this statement only true for Odonata? It does not seem to hold for plants, for example.

      Thank you for this comment – this statement references a meta-analysis of multiple animal and plant taxa, but the evidence for the importance of range location comes from animal taxa. We have specified that we are referring to animal species to clarify (Line 60).

      Comment:

      (3) Line 87-91: This section is difficult to understand and needs clarification.

      We have clarified this section as follows: “While warm-adapted species with more equatorial distributions could expand their ranges poleward following warming (Devictor et al., 2008), they could also increase in abundance in this new range area relative to species that historically occupied those areas and are less heat-tolerant (Powney et al., 2015).” (Lines 95-121).

      Comment:

      (4) Line 99-100: Please define "generalist" and "specialist" more clearly here (e.g., based on climate niche?).

      Thank you for pointing this out, we intended to suggest that species with more generalist habitat requirements might be better able to shift, but ultimately found that traits did not predict species’ shifts. We corrected our prediction regarding habitat generalists as follows: “We predicted that species able to use both lentic and lotic habitats would shift their phenologies and geographies more than those able to use just one habitat type, as generalists outperform specialists as climate and land uses change (Ball-Damerow et al., 2015, 2014; Hassall and Thompson, 2008; Powney et al., 2015; Rapacciuolo et al., 2017).” (Lines 128-132).

      Comment:

      (5) Line 122: Replace the English letter "X" in "100x100 km" with the correct mathematical symbol.

      We have made the suggested replacement throughout the manuscript.

      Comment:

      (6) Line 148: To address sampling effects, you could check the paper: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.15524. Additionally, maximum and minimum values are sensitive to extreme data points, so using 95% percentiles might be more robust.

      Thank you for sharing this paper, as it offers a valuable perspective on the study of species’ ranges. While our dataset is substantially composed of observations from adult sampling protocols, unlike the suggested paper which compares adults and juveniles, this is an interesting alternative approach.

      For our purposes it is meaningful to include outliers, as otherwise we may have missed individuals at the leading edge of range expansions. Our intent here was to detect range limits, as opposed to finding the central tendency of species distributions. This approach is widely accepted in the macroecology literature (i.e. Devictor et al., 2012, 2008; Kerr et al. 2015).

      We have included the following discussion of our approach in the methods section:

      “We followed widely accepted methods to determine species range boundaries (Devictor et al., 2012, 2008; Kerr et al., 2015), although other methods exist that are appropriate for different data types and research questions i.e. (Ni and Vellend, 2021). We assigned species presences to 100×100 km quadrats, a scale that is large enough to maintain adequate sampling intensity but still relevant to conservation and policy (Soroye et al., 2020), to identify the best sampled species.” (Lines 168-173).

      Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL,Wagner DL, Gall LF, Sikes DS, Pantoja A. 2015. Climate change impacts on bumblebees converge across continents. Science 349:177–180. doi:10.1126/science.aaa7031

      Soroye P, Newbold T, Kerr J. 2020. Climate change contributes to widespread declines among bumble bees across continents. Science 367:685–688. doi:10.1126/science.aax8591

      Devictor V, Julliard R, Couvet D, Jiguet F. 2008. Birds are tracking climate warming, but not fast enough.Proceedings of the Royal Society B: Biological Sciences 275:2743–2748. doi:10.1098/rspb.2008.0878

      Devictor V, van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliölä J, Herrando S, Julliard R, Kuussaari M,Lindström Å, Reif J, Roy DB, Schweiger O, Settele J, Stefanescu C, Van Strien A, Van Turnhout C,

      Vermouzek Z, WallisDeVries M, Wynhoff I, Jiguet F. 2012. Differences in the climatic debts of birds and butterflies at a continental scale. Nature Clim Change 2:121–124. doi:10.1038/nclimate1347

      Comment:

      (7) Line 195: The species' climate niche should also be considered a product of evolution.

      Thank you for this suggestion. To address this comment and a comment from another reviewer, we changed the text to the following: “Geographic range and associated climatic characteristics are often considered ecological traits, as they are consequences of functional traits and their interactions with geographic features (Bried and Rocha-Ortega, 2023; Chichorro et al., 2019).” (Lines 256-259).

      Comment:

      (8) Line 244: This speculative statement belongs in the Discussion section.

      Thank you for this suggestion, we have moved this statement to the discussion (Lines 451-453).

      Comment:

      (9) Line 252-254: The projection of Coenagrion mercuriale's range contraction is not part of your results and should be clarified or removed.

      Following this suggestion and a similar suggestion from another reviewer, we moved this text to the discussion (Line 517-527).

      Comment:

      (10) Line 314-316: If the species can tolerate warmer temperatures better, why would they migrate?

      We apologize for the confusion, and we have reworded the section as follows: “Emerging mean conditions in areas adjacent to the ranges of southern species may offer opportunities for range expansions of these relative climate specialists, which can then tolerate climate warming in areas of range expansion better than more cool-adapted historical occupants (Day et al., 2018).” (Lines 445-448).

      Comment:

      (11) Line 334-335: Species' tolerance to temperature likely depends on their traits, which were not tested in this study. This should be noted.

      We agree, and we have removed the wording “rather than traits” from this sentence (Line 479).

      Reviewer #3 (Recommendations for the authors):

      Comment:

      (1) Title: The title is too general not specifying that your results are on odonates only, but also stressing the implicit role of climate change to a degree the tests do not support.

      Following this comment and a suggestion from another reviewer we changed the title to the following: “Range geography and temperature variability explain cross-continental convergence in range and phenology shifts in a model insect taxon”. We wanted to emphasize our use of Odonates as a model species that we used to ask broad questions, while being more specific about the climatic variable that we examined (temperature variability).

      Comment:

      (2) L32: consider including Novella-Fernandez et al. 2023 (NatCommun) which addresses this topic in Odonates.

      Thank you for suggesting this very interesting paper, we have added it as a citation (Line 31-32).

      Comment:

      (3) L35: consider including Grewe et al. 2013 (GEB) and Engelhardt et al. 2022(GCB).

      Thank you for these excellent suggestions, we have added the citations (Line 35).

      Comment:

      (4) L47: rather write 'result from' instead of 'driven by'.

      We agree this is a better characterization and have corrected the wording (Line 48-49).

      Comment:

      (5) L49-52: There has been a recent study on this topic for birds (Neate-Clegg et al., 2024 NEE). However, specifying this to insects would make it not less relevant. This review for odonates might be helpful in this regard (Pinkert et al.. 2022, Chapter: "Odonata as focal taxa for biological responses to climate change" IN Dragonflies & Damselflies: Córdoba-Aguilar et al. (2022) Model Organisms for Ecological and Evolutionary Research.

      Thank you for again suggesting excellent references, we have added them to line 52-53, as well as adding the Pinkert citation to lines 61 and 82.

      Comment:

      (6) L53-66: Combine into one paragraph about drivers. With traits first and the environment second. The natural land cover perspective may be too complicated in this context. Consider focusing on generalities of the impact of changes within species' ranges.

      As suggested we have combined these into one paragraph about drivers (Line 59).

      Comment:

      (7) L67-69: The book from before would be a much stronger reference for this claim. Kalkmann et al (2018) do not address the emphasis of global change research in insects on bees and butterflies. Also, I would highlight that most of the current work is at a national scale, rather than cross-continental.

      Thank you for this suggestion, we have added the suggested reference and included that “…recently assembled databases of odonate observations provide a rare opportunity to investigate species’ spatiotemporal responses at larger taxonomic and spatial scales, particularly as most work has been done at national scales.” (Lines 75-77).

      Comment:

      (8) L68: consider rephrasing this part to '..provide a rare opportunity to investigate spatiotemporal biotic responses at larger taxonomic and spatial scales'

      We appreciate this suggestion and really like the wording. We have changed the phrase to read as follows: “While global change research on insects often emphasizes butterfly and bee taxa, recently assembled databases of odonate observations provide a rare opportunity to investigate species’ spatiotemporal responses at larger taxonomic and spatial scales, particularly as most work has been done at national scales.” (Lines 74-77).

      Comment:

      (9) L69: This characteristic is not unique to odonates and would hamper drawing general conclusions. Honestly, I think the detailed and comprehensive data on them is the selling point.

      Thank you for this suggestion, we have edited the sentence to emphasize their use as an indicator species: “Due to their use of aquatic and terrestrial habitat across life different stages, dragonflies and damselflies are also considered indicator species for both terrestrial and aquatic insect responses to changing climates (Hassall, 2015; Pinkert et al., 2022; Šigutová et al., 2025), giving the study of these species broad relevance for conservation.” (Lines 78-81)

      Comment:

      (10) L73: Indicator for what? The first part of the sentence would suggest lesser surrogacy for responses of other taxa. Reconsider this statement. They are well- established indicators for habitat intactness and freshwater biodiversity. Darwell et al. suggested their diversity can serve as a surrogate for the diversity of both terrestrial and aquatic taxa.

      Thank you for this suggestion, we have edited the sentence to emphasize their use as an indicator species: “Due to their use of aquatic and terrestrial habitat across life different stages, dragonflies and damselflies are also considered indicator species for both terrestrial and aquatic insect responses to changing climates (Hassall, 2015; Pinkert et al., 2022; Šigutová et al., 2025), giving the study of these species broad relevance for conservation.” (Lines 78-81)

      Comment:

      (11) L76: Fritz et al., is a study on mammals, not odonates.

      Thank you for pointing out this error, the reference has been removed (Line 84-85).

      Comment:

      (12) L84: Lotic habitats are generally better connected than lentic ones. Lentic species are considered to have a greater propensity for dispersal DUE to the lower inherent spatiotemporal stability (implying lower connectivity) compared to lotic habitats.

      Thank you for your comment, we have rewritten this section as follows: “For example, differences in habitat connectivity and dispersal ability may constrain range shifts for lentic species (those species that breed in slow moving water like lakes or ponds) and lotic species (those living in fast moving-water) in different ways (Kalkman et al., 2018). More southerly lentic species may expand their range boundaries more than lotic species, as species accustomed to ephemeral lentic habitats better dispersers (Grewe et al., 2013), yet lotic species have also been found to expand their ranges more often than lentic species, potentially due to the loss of lentic habitat in some areas (Bowler et al., 2021).” (Lines 88-95).

      Comment:

      (13) L90: I would be cautious with this interpretation. If only part of the range is considered (here a country in the northern Hemisphere) southern species are moving more of their range into and northern species more of their range out of the study area in response to warming (implying northward shifts).

      We have clarified this section as follows: “While warm-adapted species with more equatorial distributions could expand their ranges poleward following warming (Devictor et al., 2008), they could also increase in abundance in this new range area relative to species that historically occupied those areas and are less heat-tolerant (Powney et al., 2015).” (Lines 95-121)

      Comment:

      (14) L117: Odonata Central contains many county centroids as occurrence records. These could be an issue for your use case. I may have overlooked the steps you took to address this, but I think this requires at least more detail and possibly further removal/checks using for instance CoordinateCleaner. The functions implemented in this package allow you to filter records based on political units to avoid exactly this source of error.

      Thank you for this suggestion, we weren’t aware of this issue with Odonata Central. We used the CoordinaterCleaner tool in R to filter all odonate records that we used in our analyses. Less than 1% of observations in our dataset were identified as having potential problems by the tool, so we would not expect this to affect our inferences. However, in future we will employ this tool when using similar datasets.

      Comment:

      (15) L119: Please add a brief explanation of why this was necessary. I am ok with something along the lines in the supplement.

      We moved this information from the supplemental to the main text as follows: “If a species was found on both continents, we only retained observations from the continent that was the most densely sampled. If we merged data for one species found on both continents, we could not perform a cross-continental comparison. However, if the same species on different continents was treated as different species, this would lead to uninterpretable outcomes (and the creation of pseudo-replication) in the context of phylogenetic analyses. In addition, species found on both continents did not have sufficient data to meet criteria for the phenology analysis.” (Lines 161-167).

      Comment:

      (16) L132: This is the letters 'X' or 'x' are not multiplier symbols! Please change to the math symbol (×), everywhere.

      Thank you for pointing out this error, we have made the correction throughout the manuscript.

      Comment:

      (17) L133: add 'main' before 'flight period'

      Thank you for this suggestion, we have made the change. (Line 190)

      Comment:

      (18) L135: I suggest using the coefficient of variation, as it is controlled for the mean. Otherwise, what you see is partly the signature of temperature and not of its variation. For me, it's very difficult to understand what this variation of the variation means and at least needs more explanation.

      Thank you very much for this suggestion, we agree that using the coefficient of variation is a better fit for the question that we’re asking. We re-ran out analyses with the coefficient of variation as the measure of climate variability: all the results reported in the manuscript are now updated for that analysis (Line 377, Table 2), and we have also updated the methods section (Line 191). The results are qualitatively the same to our previous analysis, but we agree that they are now easier to interpret.            

      Comment:

      (19) L155: Please adequately reference all R packages (state the name, and a reference for them including the authors' names, title, and version).

      Thank you for pointing out this omission, we have added reference information for the glm function in base R (Line 298) and ensured all other packages are properly referenced.

      Comment:

      (20) L207: Mention the literature sources here (again).

      We agree that they should be referenced here again, and we have done so (Lines 267-268).

      Comment:

      (21) L209: You could use the number of grid cells as a proxy for range size.

      Following this excellent suggestion, we re-analysed our data using range size, calculated as the number of quadrats occupied by a species in the historical time period, as a predictor. Range size was not significant in our models, but we believe this is the best way to analyze our data, and so have updated our methods (Lines 261-263) and results (375-378).

      Comment:

      (22) L218: It would be preferable to say 'species-level' instead of 'by-species'.

      Thank you for this suggestion, we agree that this is clearer and made the change (Line 298).

      Comment:

      (23) L219-220: this is unclear. Please rephrase.

      We have clarified as follows: “We used both species-level frequentist (GLM; glm function in R) and Bayesian (Markov Chain Monte Carlo generalized linear mixed model, MCMCglmm; Hadfield, 2010) models to improve the robustness of the results.” (Lines 298-300).

      Comment:

      (24) L224: At least for Europe there is a molecular phylogeny available, which you should preferably use (Pinkert et al. 2018, Ecography). Otherwise, I am ok with using what is available

      We apologize that the nature of the phylogeny that we used was not clear; the phylogeny that we used was built similarly to that in Pinkert et al. 2018, Ecography. It created a molecular phylogeny with a morphological/taxonomic tree as the backbone tree, so that species could only move within their named genera or families. We clarified this in the manuscript as follows:

      “We used the molecular phylogenetic tree published by the Odonate Phenotypic Database (Waller et al., 2019), which used a morphological and taxonomic phylogeny as the backbone tree, allowing species to move within their named genera or families according to molecular evidence (Waller and Svensson, 2017).” (Lines 302-305).

      Comment:

      (25) L233: You said so earlier (1st sentence of this paragraph).

      Thank you for pointing this out, we removed the repetitive sentence (Line 323).

      Comment:

      (26) L236-238: To me, it makes more sense to test this prior to fitting the phylogenetic models.

      MCMC-GLMM is considerably less familiar to most researchers than general linear models or there derivatives/descendants, such as PGLS. We report models both with and without phylogenetic relationships included for the sake of transparency, and we are happy to acknowledge that no interpretation here changes substantially relative to these decisions. However, failing to report models that included possible (if small) effects of phylogenetic relatedness might cause some readers to question what those models might have implied. For the moment, we are opting for the most transparent reporting approach here.

      Comment:

      (27) L241: Rather say directly XX of XX species in our data....

      (28) L245: Same here. Provide the actual numbers, please.

      Thank you for this suggestion, we made this change on Line 332 and Line 334.

      Comment:

      (29) L247-249: Then not necessary.

      This issue highlights a challenge in the global biology literature and around the issue of biodiversity monitoring for understanding global change impacts on species. Almost no studies have been able to report simultaneous range and phenology shifts, and the literature addresses these biotic responses to global change predominantly as distinct phenomena. Differences in numbers of species for which these observations exist, even among the extremely widely-observed odonates, seems to us to be a meaningful issue to report on. If the reviewer prefers that we abbreviate or remove this sentence, we are happy to do so.

      Comment:

      (30) L251:261: That is discussion as you interpret your results.

      Following your suggestion and the suggestion of another reviewer, we moved the following lines to the discussion section: “Species that did not shift their ranges northwards or advance their phenology included Coenagrion mercuriale, a European species that is listed as near threatened by the IUCN Red List (IUCN, 2021), and is projected to lose 68% of its range by 2035 (Jaeschke et al., 2013).” (Lines 517-527).

      Comment:

      (31) 252: Good to mention, but why is the discussion limited to C. mercurial?

      We feel that it is important to link the broad-scale results to the specific biological characteristics of individual species, and C. mercurial is an IUCN threatened species. We are happy to expand links to natural history of this group and have added the following: “This group also includes Coenagrion resolutum, a common North American damselfly (Swaegers et al., 2014), for which we could not find evidence of decline. This may be due in part to the greater area of intact habitat available in North American compared to Europe, enabling C. resolutum to maintain larger populations that are less vulnerable to stochastic climate events. Still, this and other species failing to shift in range or phenology should be assessed for population health, as this species could be carrying an unobserved extinction debt.” (Lines 527-533).

      Comment:

      (32) L264: Insert 'being' before 'consistently'.

      Thank you for the suggestion, we made this change (Line 373).

      Comment:

      (33) L271: .'. However,'.

      Thank you for pointing out this grammatical error, we have corrected it (Line 382).

      Comment:

      (34) L273: 'affected' instead of 'predicted'

      Thank you for the suggestion, we made this change (Line 383).

      Comment:

      (35) L279: 'despite pronounced recent warming' sounds not relevant in this context.

      Thank you for this suggestion, we removed this portion of the sentence (Line 408).

      Comment:

      (36) L281: Rather 'the model performance did not improve....'

      Thank you for the suggestion, we made this change (Line 409).

      Comment:

      (37) L288: Add 'but' before 'not'.

      Thank you for the suggestion, we made this change (Line 416).

      Comment:

      (38) L311-316: Reconsider the causality here. maybe rather rephrase to are associated instead. Greater dispersal ability and developmental plasticity might well lead to higher growth rates, rather than the other way around.

      We agree that plasticity/evolution at range edges is important to consider and have included it as an alternative explanation: “Adaptive evolution and plasticity may enable higher population growth rates in newly-colonized areas (Angert et al., 2020; Usui et al., 2023), but this possibility can only be directly tested with long term population trend data.” (Line 449-451).  

      Comment:

      (39) L313-316: Maybe delete the second 'should be able to'.

      This phrase has been changed in response to other reviewer comments and now reads as follows:

      “Emerging mean conditions in areas adjacent to the ranges of southern species may offer opportunities for range expansions of these relative climate specialists, which can then tolerate climate warming in areas of range expansion better than more cool-adapted historical occupants (Day et al., 2018).” (Lines 445-448).

      Comment:

      (40) L331: Limit this statement ending with 'in North American and European Odonata'.

      Thank you for this suggestion, we made this addition (Lines 475-476).

      Comment:

      (41) L346-347: There are too many of these more-research-is-needed statements in the discussion (at least three in the last paragraphs). Please consider finishing the paragraphs rather with a significance statement.

      Thank you for this suggestion, we have changed the final sentence here to the following: “The extent to which species’ traits actually determine rates of range and phenological shifts, rather than occasionally correlated with them, is worth considering further, but functional traits do not systematically drive patterns in these shifts among Odonates in North America and Europe.” (Lines 480-483).

      We also made additional changes, removing a ‘more-research is needed’ statement from the following paragraph (Line 443), as well as from line 499.

      Comment:

      (42) L349: See also Franke et al. (2022, Ecology and Evolution).

      Thank you for highlighting this excellent reference! We have added it to Line 501.

      Comment:

      (43) L363: Maybe a bit late in the text, but it is important to note that there is the third dimension 'abundance trends' or rather a common factor related to range and phenology shifts. I feel this fits better with the discussion of population growth.

      Thank you for this suggestion, we have addressed the importance of abundance trends in the following sentences: “Further mechanistic understanding of these processes requires abundance data.” (Lines 442-443); “It remains unclear if range and phenology shifts relate to trends in abundance, but our results suggest that there are clear ‘winners’ and ‘losers’ under climate change.” (Lines 509-510).

      Comment:

      (44) L375-377: This last sentence is very similar to L371-373. Please reduce the redundancy. Focus more on specifically stating the process instead of vaguely saying 'new insights into patterns' and 'suggesting processes'. Rather, deliver a strong concluding message here.

      Thank you for this suggestion, we feel that we now have a much stronger concluding message: “By considering both the seasonal and range dynamics of species, emergent and convergent climate change responses across continents become clear for this well-studied group of predatory insects.” (Lines 545-547).

      Comment:

      (45) Table 1: To me, the few estimates presented here do not justify a table. rather include them in the text. OR combine them with Table 2. Also, why not include the traits as predictors (from the range shift models) in these models as well?

      We have clarified in the text that the results displayed in Table 1 are from the analysis of the relationship between range and phenology shifts: “The effect of species’ range shifts on phenology range shifts was significant in our model investigating the relationship between these responses, indicating that species shifting their northern range limits to higher latitudes also showed stronger advances in their emergence phenology (Figure 3).” (Lines 341-344).

      As there were no significant effects in the model of phenology change drivers, we have not shown results of this model: “Emergence phenology shifts were not affected by species’ traits, range geography, nor climate variability; due to this, model results are not displayed here.” (Lines 383-384).

      Comment:

      (46) Table 2: L712-713: What does this mean? Are phenology shifts not used as a predictor of range shifts? (why then this comment?). Or do you want to say phenological shifts are not related to Southern range etc? Why do you present a phylosig here but not in Table 1? Why not include the traits as predictors (from the range shift models) in these models as well? Consider using the range size as a continuous predictor instead of 'Widespread'.

      We are glad the reviewer pointed this out to us. We did not emphasize this issue sufficiently. We DID evaluate traits as predictors both of geographical range and phenological shifts, and species-specific biological traits did not significantly affect models predicting either of those sets of responses. We state this on Lines 312-323, but we have also noted in the discussion (Lines 473-476) that the most commonly assessed traits, like body size, do not alter observed trends here. Instead, where species are found, rather than the characteristics of species, is the key determinant of their overall responses.

      Following this excellent suggestion, we re-analysed our data using range size, calculated as the number of quadrats occupied by a species in the historical time period, as a predictor. Range size was not significant in our models, but we believe this is the best way to analyze our data, and so have updated our methods (Lines 261-263) and results (375-378).

      Comment:

      (47) Figure 1: I don't see any grey points in the figure. Also, there is no A or B. If you are referring to the symbols then write cross and triangle instead and not use capital letters which usually refer to component plots of composite figures. Also, I highly recommend providing a similar figure based on your data (maybe each species as a dot for T1 and another symbol for T2). Given the small number of species, you could try to connect these points with arrows. For the set with only range shifts maybe play the T2-dots at the center of the 'Emergence' axis.

      Thank you for pointing out this error: a previous version of Figure 1 included grey points and multiple panels. We have removed this text from the figure caption to be consistent with the final version of the figure (Line 989).

      The graphical depictions of the conceptual and empirical discoveries in this paper were challenging to create. The reviewer might be suggesting effectively decomposing Figure 3 (change in range on the y axis vs change in phenology among all species into two sets of points on the same graph, where each pair of points is a before and after value for each species. This would make for a very busy figure indeed. We have modified the conceptual Figure 1 to illustrate more clearly, we believe, that species can (in principle) remain within tolerable niche spaces by shifting their activity periods in time (phenology) or in space (geographical range) or both.

      Comment:

      (48) Figure 2: Please add a legend. Also black is a poor background color. The maps appear to be stretched. Please check aspect ratios. Now here are capital letters without an explanation in the caption. From the context I assume the upper panel maps are for the data used to calculate range shifts at the bottom panel maps are for data used to calculate the phenological shifts.

      We apologise for the error in the figure caption and have clarified the differences between panels in the text, as well as changing the map background colour and fixing the aspect ratio:

      “Figure 2: Richness of 76 odonate species sampled in North America and Europe in the historic period (1980-2002; panes A and C) and the recent period (2008-2018; panes B and D). Species richness per 100 × 100 km quadrat is shown in panes A and B, while panes C and D show species richness per 200 × 200 km quadrat. Dark red indicates high species richness, while light pink indicates low species richness.” (Lines 1002-1006).

      Comment:

      (49) Figure 3: Why this citation? Of terrestrial taxa? Please explain. Consider adding some stats here, such as the r-squared value for each of the relationships.

      We have better explained the citation in the figure caption, as well as adding r-squared values:

      “Figure 3: Relationship between range shifts and emergence phenology shifts among North American and European odonate species (N = 66; model R2 = 17.08 for glm, 14.9% for MCMCglmm). For reference, the shaded area shows mean latitudinal range shifts of terrestrial taxa as reported by Lenoir et al. (2020; calculated as the yearly mean dispersal rate of 1.11 +/- 0.96 km per year over 38 years).” (Lines 679-682)

      Comment:

      (50) L801: What are these underscored references?

      This was an issue with the reference software and has been resolved.

      Comment:

      (51) Table S1: L848: Consider starting with 'Samples of 76 North American and European odonate species from between ...'. Please use a horizontal line to separate the content from the table header. Add a horizontal line below the last row. Same for all tables.

      Thank you for this suggestion, we have edited the caption for Figure S1 as suggested (Line 1124). We have also made the suggested line additions to Table S1, S2, and S3.

      Comment:

      (52) Table S3: This is confusing. In Table 1 (main text) both 'southern range' and 'widespread' are used as predictors. Please explain.

      We originally included information on species range geography, including southern versus northern range, and widespread versus not, into one categorical variable. Following additional comments we re-analysed our data using range size, calculated as the number of quadrats occupied by a species in the historical time period, as a predictor. Now the methods section text (Lines 261-263) and Table 1 report results of that variable with distribution options northern, southern, or both. 

      Comment:

      (53) Figure S5 and S6: It would be more coherent if the colors refer to the continents and the suborders are indicated by shading. I would love to see a combination of the two figures with species ordered by the phylogenetic relationship and a dot matrix indicating the traits in the main text! This could really be a good starting point for a synthesis figure.

      The reviewer presents an interesting challenge for us. We have a choice, as we understand things, to present a figure showing phylogeny and traits (as requested here), or an ordered list of species relative to effect sizes in the two main responses to global change. The latter choice centers on the discoveries of the paper, while the former would be valuable for dragonfly biology but would depict information that proved to be biologically uninformative relative to our discovery. That is to say, there is no phylogenetic trend and biological traits among species did not affect results. We have gone some way toward illustrating that issue by retaining phylogeny in the MCMC-GLMM models, but we feel that a figure illustrating phylogeny and traits would (for most readers, at least) illustrate noise, rather than signal. For this reason, we have opted to take on the previous reviewer’s suggestion for a modified, main-text Figure 4, which we include below.

      Figure 4: Distribution of Northern range limit shifts (Panel A, kilometers) and emergence phenology shift (Panel B, Julian day) of 76 European and North American odonate species between a recent time period (2008 - 2018) and a historical time period (1980 - 2002). Anisoptera (dragonflies) are shown in pink, Zygoptera (damselflies) are shown in blue.

      Change last: Figure 3: Relationship between range shifts and emergence phenology shifts among North American and European odonate species (N = 66; model R2 = 17.08 for glm, 14.9% for MCMCglmm). For reference, the shaded area shows mean latitudinal range shifts of terrestrial taxa as reported by Lenoir et al. (2020; calculated as the yearly mean dispersal rate of 1.11 +/- 0.96 km per year over 38 years).

    1. CBS head William S. Paley to an industry groupin 1946, whi identified the recent public criticism of commerciallysupported radio programming as “the most urgent single problem of ourindustry.”

      As head of CBS, Paley argued that commercial broadcasting was valuable and deserved defense.

    1. I had the lonely child’s habit of making up stories and holding conversations with imaginary persons, and I think from the very start my literary ambitions were mixed up with the feeling of being isolated and undervalued.

      I was not a lonely child but I did make up stories and have imaginary conversations in my head. It came from a feeling of thinking no one would understand what i wanted to talk about.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The manuscript "Drosophila Visuomotor Integration: An Integrative Model and Behavioral Evidence of Visual Efference Copy" provides an integrative model of the visuomotor control in Drosophila melanogaster. This model presents an experimentally derived model based on visually evoked wingbeat pattern recordings of three strategically selected visual stimulus types with well-established behavioral response characteristics. By testing variations of these models, the authors demonstrate that the virtual model behavior can recapitulate the recorded wing beat behavioral results and those recorded by others for these specific stimuli when presented individually. Yet, the novelty of this study and their model is that it allows predictions for natural visual scenes in which multiple visual stimuli occur simultaneously and may have opposite or enhancing effects on behavior. Testing three models that would allow interactions of these visual modalities, the authors show that using a visual efference copy signal allows visual streams to interact, replicating behavior recorded when multiple stimuli are presented simultaneously. Importantly, they validated the prediction of this model in real flies using magnetically tethered flies, e.g., presenting moving bars with varying backgrounds. In conclusion, the presented manuscript presents a commendable effort in developing and demonstrating the validity of a mixture model that allows predictions of the behavior of Drosophila in natural visual environments.

      Strengths:

      Overall, the manuscript is well-structured and clear in its presentation, and the modeling and experimental research are methodically conducted and illustrated in visually appealing and easy-to-understand figures and their captions.

      The manuscript employs a thorough, logical approach, combining computational modeling with experimental behavioral validation using magnetically tethered flies. This iterative integration of simulation and empirical behavioral evidence enhances the credibility of the findings.

      The associated code base is well documented and readily produces all figures in the document.

      Suggestions:

      However, while the experiments provide evidence for the use of a visual efference copy, the manuscript would be even more impressive if it presented specific predictions for the neural implementation or even neurophysiological data to support this model. Or, at the very least, a thorough discussion. Nonetheless, these models and validating behavioral experiments make this a valuable contribution to the field; it is well executed and addresses a significant gap in the modeling of fly behavior and holistic understanding of visuomotor behaviors.

      We appreciate the reviewer’s thoughtful comments on the strengths and weaknesses of our manuscript. We agree that biophysically realistic model reflecting the structure of neural circuits as well as physiological data from them would be invaluable. However, we are currently unable to provide physiological evidence for EC-based suppression, nor provide circuit architecture for efference copy-based suppression of the stability circuit because the neural pathway underlying this behavior remains unidentified. Extensive recordings from the HS/VS system have revealed cell-type-specific motor-related inputs during both spontaneous and loom-evoked flight turns (Fenk et al., 2021; Kim et al., 2017, 2015). These studies predicted suppression of the optomotor stability response during such turns, and our new experiments confirmed this suppression specifically during loom-evoked turns (Figures 5, 6). However, these neurons are primarily involved in the head optomotor response, not the body optomotor response. We hope to extend our current model in future studies to incorporate more cellular-level detail, as the feedforward circuits underlying stability behavior become more clearly defined.

      Here are a few points that should be addressed:

      (1) The biomechanics block (Figure 2) should be elaborated on, to explain its relevance to behavior and relation to the underlying neural mechanisms.

      We appreciate this suggestion. The mathematical representation of the biomechanics block has been developed by other groups in previous studies (Fry et al., 2003; Ristroph et al., 2010). We used exactly the same model, and its parameters were identical to those used in one of those studies (Fry et al., 2003; Ristroph et al., 2010), in which the parameters were estimated from the stabilizing response in response to magnetic “stumbling” pulses. In the previous version of the manuscript, we had a description of the biomechanics block in the Method section (see Equation 4). In response to the reviewer’s comment, we have made a few changes in Figure 2A and expanded the associated description in the main text, as follows.

      (Line 160) “To test the orientation behavior of the model, we developed an expanded model, termed “virtual fly model” hereafter. In this model, we added a biomechanics block that transforms the torque response of the fly to the actual heading change according to kinematic parameters estimated previously (Michael H Dickinson, 2005; Ristroph et al., 2010) (Figure 2A, see Equation 4 in Methods and Movie S1). The virtual fly model, featuring position and velocity blocks that are conditioned on the type of the visual pattern, can now change its body orientation, simulating the visual orientation behavior of flies in the free flight condition.”

      (2) It is unclear how the three integrative models with different strategies were chosen or what relevance they have to neural implementation. This should be explained and/or addressed.

      Thank you for this valuable comment. We selected the three models based on previous studies investigating visuomotor integration across multiple species, under conditions where multiple sensory cues are presented simultaneously.

      The addition-only model represents the simplest hypothesis, analogous to the “additive model” proposed by Tom Collett in his 1980 study (Collett, 1980). We used this model as a baseline to illustrate behavior in the absence of any efference copy mechanism. Notably, some modeling studies have proposed linear (additive) integration for multimodal sensory cues at the behavioral level (Liu et al., 2023; Van der Stoep et al., 2021). However, experimental evidence demonstrating strictly linear integration—either behaviorally or physiologically—remains limited. In our study, new data (Figure 5) show that bar-evoked and background movement-evoked locomotor responses are combined linearly, supporting the addition-only model.

      The graded efference copy model has been most clearly demonstrated in the cerebellum-like circuit of Mormyrid fish during electrosensation (Bell, 1981; Kennedy et al., 2014). In this system, the efference copy signal forms a negative image of the predicted reafferent input and undergoes plastic changes as the environment changes—an idea that inspired our modifiable efference copy model (Figure 4–figure supplement 1). The all-or-none efference copy model is exemplified in the sensory systems of smaller organisms, such as the auditory neurons of crickets during stridulation (Poulet and Hedwig, 2006). Notably, in crickets, the motor-related input is referred to as corollary discharge rather than efference copy. Typically, “efference copy” refers to a graded, subtractive motor-related signal, while “corollary discharge” denotes an all-or-none signal, both counteracting the sensory consequences of self-generated actions. In this manuscript, we use the term efference copy more broadly, encompassing both types of motor-related feedback signals (Sommer and Wurtz, 2008).

      In response to this comment, we have made the following changes in the main text to enhance its accessibility to general readers.

      (Line#268) “This integration problem has been studied across animal sensory systems, typically by analyzing motor-related signals observed in sensory neurons (Bell, 1981; Collett, 1980; Kim et al., 2017; Poulet and Hedwig, 2006). Building on the results of these studies, we developed three integrative models. The first model, termed the “addition-only model”, assumes that the outputs of the object (bar) and the background (grating) response circuits are summed to control the flight orientation (Figure 4B, see Equation 14 in Methods).”

      (Line#272) “In the second and third models, an EC is used to set priorities between different visuomotor circuits (Figure 4C,D). In particular, the EC is derived from the object-induced motor command and sent to the object response system to nullify visual input associated with the object-evoked turn (Bell, 1981; Collett, 1980; Poulet and Hedwig, 2006). These motor-related inputs fully suppress sensory processing in some systems (Poulet and Hedwig, 2006), whereas in others they selectively counteract only the undesirable components of the sensory feedback (Bell, 1981; Kennedy et al., 2014).”

      (3) There should be a discussion of how the visual efference could be represented in the biological model and an evaluation of the plausibility and alternatives.

      Thank you for this helpful comment. We have now added the following discussion to share our perspective on the circuit-level implementation of the visual efference copy in Drosophila.

      (Line#481) “Efference copy in Drosophila vision

      Under natural conditions, various visual features in the environment may concurrently activate multiple motor programs. Because these may interfere with one another, it is crucial for the central brain to coordinate between the motor signals originating from different sensory circuits. Among such coordination mechanisms, the EC mechanisms were hypothesized to counteract so-called reafferent visual input, those caused specifically by self-movement (Collett, 1980; von Holst and Mittelstaedt, 1950). Recent studies reported such EC-like signals in Drosophila visual neurons during spontaneous as well as loom-evoked flight turns (Fenk et al., 2021; Kim et al., 2017, 2015). One type of EC-like signals were identified in a group of wide-field visual motion-sensing neurons that were shown to control the neck movement for the gaze stability (Kim et al., 2017). The EC-like signals in these cells were bidirectional depending on the direction of flight turns, and their amplitudes were quantitatively tuned to those of the expected visual input across cell types. Although amplitude varies among cell types, it remains inconclusive whether it also varies within a given cell type to match the amplitude of expected visual feedback, thereby implementing the graded EC signal. A more recent study examined EC-like signal amplitude in the same visual neurons for loom-evoked turns, across events (Fenk et al., 2021). Although the result showed a strong correlation between wing response and the EC-like inputs, the authors pointed that this apparent correlation could stem from noisy measurement of all-or-none motor-related inputs.

      Thus, these studies did not completely disambiguate between graded vs. all-or-none EC signaling. Another type of EC-like signals observed in the visual circuit tuned to a moving spot exhibited characteristics consistent with all-or-none EC. That is, it entirely suppressed visual signaling, irrespective of the direction of the self-generated turn (Kim et al., 2015; Turner et al., 2022). 

      Efference-copy (EC)–like signals have been reported in several Drosophila visual circuits, yet their behavioral role remains unclear. Indirect evidence comes from a behavioral study showing that the dynamics of spontaneously generated flight turns were unaffected by unexpected background motion (Bender and Dickinson, 2006a). Likewise, our behavioral experiments showed that, during loom-evoked turns, responses to background motion are suppressed in an all-or-none manner (Figures 6 and 7). Consistent with this, motor-related inputs recorded in visual neurons exhibit nearly identical dynamics during spontaneous and loom-evoked turns (Fenk et al., 2021). Together, these behavioral and physiological parallels support the idea that a common efference-copy mechanism operates during both spontaneous and loom-evoked flight turns.

      Unlike loom-evoked turns, bar-evoked turn dynamics changed in the presence of moving backgrounds (Figure 5), a result compatible with both the addition-only and graded EC models. However, when the static background was updated just before a bar-evoked turn—thereby altering the amplitude of optic flow—the turn dynamics remained unaffected (Figures 5 and 7), clearly contradicting the addition-only model. Thus, the graded EC model is the only one consistent with both findings. If a graded EC mechanism were truly at work, however, an unexpected background change should have modified turn dynamics because of the mismatch between expected and actual visual feedback (Figure 4–figure supplement 1)—yet we detected no such effect at any time scale examined (Figure 7–figure supplement 1). This mismatch would be ignored only if the amplitude of the graded EC adapted to environmental changes almost instantaneously—a mechanism that seems improbable given the limited computational capacity of the Drosophila brain. In electric fish, for example, comparable adjustments take more than 10 minutes (Bell, 1981; Muller et al., 2019). Further investigation is needed to clarify how reorienting flies ignore optic flow generated by static backgrounds, potentially by engaging EC mechanisms not captured by the models tested in this study.

      Why would Drosophila rely on the all-or-none EC mechanism instead of the graded one for loom-evoked turns? A graded EC must be adjusted adaptively depending on the environment, as the amplitude of visual feedback varies with both the dynamics of self-generated movement and environmental conditions (e.g., empty vs. cluttered visual backgrounds) (Figure 4—figure supplement 1). Recent studies on electric fish have suggested that a large array of neurons in a multi-layer network is crucial for generating a modifiable efference copy signal matched to the current environment (Muller et al., 2019). Given their small-sized brain, flies might opt for a more economical design for suppressing unwanted visual inputs regardless of the visual environment. Circuits mediating such a type of EC were identified in the cricket auditory system during stridulation (Poulet and Hedwig, 2006), for example. Our study strongly suggests the existence of a similar circuit in the Drosophila visual system. 

      We tested the hypothesis that efference-copy (EC) signals guide action selection by suppressing specific visuomotor reflexes when multiple visual features compete. An alternative motif with a similar function is mutual inhibition between motor pathways (Edwards, 1991; Mysore and Kothari, 2020). In Drosophila, descending neurons form dense lateral connections (Braun et al., 2024), offering a substrate for such competitive interactions. Determining whether—and how—EC and mutual inhibition operate will require recordings from the neurons that ensure visual stability, which remain unidentified. Mapping these pathways and assessing how they are modulated by visual and behavioral context are important goals for future work.”

      Reviewer #2 (Public Review):

      It has been widely proposed that the neural circuit uses a copy of motor command, an efference copy, to cancel out self-generated sensory stimuli so that intended movement is not disturbed by the reafferent sensory inputs. However, how quantitatively such an efference copy suppresses sensory inputs is unknown. Here, Canelo et al. tried to demonstrate that an efference copy operates in an all-or-none manner and that its amplitude is independent of the amplitude of the sensory signal to be suppressed. Understanding the nature of such an efference copy is important because animals generally move during sensory processing, and the movement would devastatingly distort that without a proper correction. The manuscript is concise and written very clearly. However, experiments do not directly demonstrate if the animal indeed uses an efference copy in the presented visual paradigms and if such a signal is indeed non-scaled. As it is, it is not clear if the suppression of behavioral response to the visual background is due to the act of an efference copy (a copy of motor command) or due to an alternative, more global inhibitory mechanism, such as feedforward inhibition at the sensory level or attentional modulation. To directly uncover the nature of an efference copy, physiological experiments are necessary. If that is technically challenging, it requires finding a behavioral signature that unambiguously reports a (copy of) motor command and quantifying the nature of that behavior.

      We thank the reviewer for this insightful and constructive comment. We agree that our current behavioral evidence does not directly identify the underlying circuit mechanism, and that direct recordings from visual neurons modulated by an efference copy would be critical for distinguishing between potential mechanisms.

      A prerequisite for such physiological investigations would be the identification of both (1) the feedforward neurons directly involved in the optomotor response, and (2) the neurons conveying motor-related signals to the optomotor circuit. Despite efforts by several research groups, the location of the feedforward circuit mediating the optomotor response remains elusive. This limitation has prevented us from obtaining direct cellular evidence of flight turn-associated suppression of optomotor signaling.

      In light of the reviewer’s suggestion, we expanded our investigation to strengthen the behavioral evidence for efference copy (EC) mechanisms. In addition to our earlier experiments involving unexpected changes in the static background, we examined how object-evoked flight turns influence the optomotor stability reflex and vice versa (Figures 5 and 6). To quantify the interaction between different visuomotor behaviors, we systematically varied the temporal relationship between two types of visual motion—loom versus moving background, or moving bar versus moving background—and measured the resulting behavioral responses.

      Our findings support pattern- and time-specific suppressive mechanisms acting between flight turns associated with the different visual patterns. Specifically:

      The responses to a moving bar and a moving background add linearly, even when presented in close temporal proximity.

      Loom-evoked turns and the optomotor stability reflex mutually suppress each other in a time-specific manner.

      For both loom- and moving bar-evoked flight turns, changes in the static background had no measurable effect on the dynamics of the object-evoked responses.

      These results provide a detailed behavioral characterization of a suppressive interaction between distinct visuomotor responses. This, in turn, offers correlative evidence supporting the involvement of an efference copy-like mechanism acting on the visual system. While similar efference copy mechanisms have been documented in other parts of the visual system, we acknowledge that our findings do not exclude alternative explanations. In particular, it is still possible that lateral inhibition within the central brain or ventral nerve cord contributes to the suppression we observed.

      Ultimately, definitive proof will require identifying the specific neurons that convey efference copy signals and demonstrating that silencing these neurons abolishes the behavioral suppression. Until such experiments are feasible, our behavioral approach provides an important contribution toward understanding the nature of sensorimotor integration in this system.

      Reviewer #3 (Public Review):

      Summary:

      Canelo et al. used a combination of mathematical modeling and behavioral experiments to ask whether flies use an all-or-none EC model or a graded EC model (in which the turn amplitude is modulated by wide-field optic flow). Particularly, the authors focus on the bar-ground discrimination problem, which has received significant attention in flies over the last 50-60 years. First, they use a model by Poggio and Reichardt to model flight response to moving small-field bars and spots and wide-field gratings. They then simulate this model and compare simulation results to flight responses in a yaw-free tether and find generally good agreement. They then ask how flies may do bar-background discrimination (i.e. complex visual environment) and invoke different EC models and an additive model (balancing torque production due to background and bar movement). Using behavioral experiments and simulation supports the notion that flies use an all-or-none EC since flight turns are not influenced by the background optic flow. While the study is interesting, there are major issues with the conceptual framework.

      Strengths:

      They ask a significant question related to efference copies during volitional movement.

      The methods are well detailed and the data (and statistics) are presented clearly.

      The integration of behavioral experiments and mathematical modeling of flight behavior.

      The figures are overall very clear and salient.

      Weaknesses:

      Omission of saccades: While the authors ask a significant question related to the mechanism of bar-ground discrimination, they fail to integrate an essential component of the Drosophila visuomotor responses: saccades. Indeed, the Poggio and Reichardt model, which was developed almost 50 years ago, while appropriate to study body-fixed flight, has a severe limitation: it does not consider saccades. The authors identify this major issue in the Discussion by citing a recent switched, integrate-and-fire model (Mongeau & Frye, 2017). The authors admit that they "approximated" this model as a smooth pursuit movement. However, I disagree that it is an approximation; rather it is an omission of a motor program that is critical for volitional visuomotor behavior. Indeed, saccades are the main strategy by which Drosophila turn in free flight and prior to landing on an object (i.e. akin to a bar), as reported by the Dickinson group (Censi et al., van Breugel & Dickinson [not cited]). Flies appear to solve the bar-ground discrimination problem by switching between smooth movement and saccades (Mongeau & Frye, 2017; Mongeau et al., 2019 [not cited]). Thus, ignoring saccades is a major issue with the current study as it makes their model disconnected from flight behavior, which has been studied in a more natural context since the work of Poggio.

      Thank you for this helpful comment. We agree that including saccadic turns is essential and qualitatively improves the model. In the revised manuscript, we therefore expanded our bar-tracking model to incorporate an integrate-and-saccade strategy, now presented in Figure 2—figure supplement

      The manuscript now introduces this result as follows:

      (Line#190) “Finally, one important locomotion dynamics that a flying Drosophila exhibits while tracking an object is a rapid orientation change, called a “saccade” (Breugel and Dickinson, 2012; Censi et al., 2013; Heisenberg and Wolf, 1979). For example, while tracking a slowly moving bar, flies perform relatively straight flights interspersed with saccadic flight turns (Collett and Land, 1975; Mongeau and Frye, 2017). During this behavior, it has been proposed that visual circuits compute an integrated error of the bar position with respect to the frontal midline and triggers a saccadic turn toward the bar when the integrated value reaches a threshold (Frighetto and Frye, 2023; Mongeau et al., 2019; Mongeau and Frye, 2017). We expanded our bar fixation model to incorporate this behavioral strategy (Figure 2--figure supplement 2). The overall structure of the modified model is akin to the one proposed in a previous study (Mongeau and Frye, 2017), and the amplitude of a saccadic turn was determined by the sum of the position and velocity functions (Figure 2--figure supplement 2A; see Equation 13 in Methods). When simulated, our model successfully reproduced experimental observations of saccade dynamics across different object velocities (Figure 2--figure supplement 2B-D) (Mongeau and Frye, 2017). Together, our models faithfully recapitulated the results of previous behavioral observations in response to singly presented visual patterns (Collett, 1980; Götz, 1987; H. Kim et al., 2023; Maimon et al., 2008; Mongeau and Frye, 2017).”

      Apart from Figures 1 and 2, most of our data—whether from simulations or behavioral experiments—use brief visual patterns lasting 200 ms or less. These stimuli trigger a single, rapid orientation change reminiscent of a saccadic flight turn. In this part of the paper, we essentially have examined how multiple visuomotor pathways interact to determine the direction of object-evoked turns when several visual patterns occur simultaneously.

      Critically, recent work showed that a group of columnar neurons (T3) appear specialized for saccadic bar tracking through integrate-and-fire computations, supporting the notion of parallel visual circuits for saccades and smooth movement (Frighetto & Frye, 2023 [not cited]).

      Thanks for bringing up this critical issue. We have now added this paper in the following part of the manuscript.

      (Line#193) “During this behavior, it has been proposed that visual circuits compute an integrated error of the horizontal bar position with respect to the frontal midline and triggers a saccadic turn toward the bar when the integrated value reaches a threshold (Frighetto and Frye, 2023; Mongeau and Frye, 2017).”

      (Line#462) “Visual systems extract features from the environment by calculating spatiotemporal relationships of neural activities within an array of photoreceptors. In Drosophila, these calculations occur initially on a local scale in the peripheral layers of the optic lobe (Frighetto and Frye, 2023; Gruntman et al., 2018; Ketkar et al., 2020).”

      A major theme of this work is bar fixation, yet recent work showed that in the presence of proprioceptive feedback, flies do not actually center a bar (Rimniceanu & Frye, 2023). Furthermore, the same study found that yaw-free flies do not smoothly track bars but instead generate saccades. Thus prior work is in direct conflict with the work here. This is a major issue that requires more engagement by the authors.

      Thank you for your thoughtful comments and for drawing our attention to this important paper. In our experiments, bar fixation on oscillating vertical objects emerges during the “alignment” phase of the magneto-tether protocol. The pattern movement dynamics was similar those used by Rimniceanu & Frye (2023), yet the two studies differ in a key respect: Rimniceanu & Frye employed a motion-defined bar, whereas we presented a dark vertical bar against a uniform or random-dot background. The alignment success rate—defined as the proportion of trials in which the fly’s body angle is within ±25° of the target—was about 50 % (data not shown). Our alignment pattern consisted of three vertical stripes spanning ~40° horizontally; when we replaced it with a single, narrower stripe, the success rate was lowered (data not shown). These observations suggest that bar fixation in the magnetically tethered assay is less robust than in the rigid-tethered assay, although flies still orient toward highly salient vertical objects.

      We also observed that bar-evoked turns were elicited more reliably when the bar moved rapidly (45° in 200 ms) in the magneto-tether assay, although the turn magnitude was significantly smaller than the actual bar displacement (Figure 3).

      In response to the reviewer’s comment, we now added the following description in the paper regarding the bar fixation behavior, citing Rimniceanu&Frye 2023.

      (Line#239) “Another potential explanation arises from recent studies demonstrating that proprioceptive feedback provided during flight turns in a magnetically tethered assay strongly dampens the amplitude of wing and head responses (Cellini and Mongeau, 2022; Rimniceanu et al., 2023).”

      Relevance of the EC model: EC-related studies by the authors linked cancellation signals to saccades (Kim et al, 2014 & 2017). Puzzlingly, the authors applied an EC model to smooth movement, when the authors' own work showed that smooth course stabilizing flight turns do not receive cancellation signals (Fenk et al., 2021). Thus, in Fig. 4C, based on the state of the field, the efference copy signal should originate from the torque commands to initiate saccades, and not from torque to generate smooth movement. As this group previously showed, cancellation signals are quantitatively tuned to that of the expected visual input during saccades. Importantly, this tuning would be to the anticipated saccadic turn optic flow. Thus the authors' results supporting an all-or-none model appear in direct conflict with the author's previous work. Further, the addition-only model is not particularly helpful as it has been already refuted by behavioral experiments (Rimneceanu & Frye, Mongeau & Frye).

      Thank you for this constructive comment. Efference copy is best established for brief, discrete actions like flight saccades. While motor-related modulation of visual processing has been reported across short- and long-duration behaviours (Chiappe et al., 2010; Fujiwara et al., 2017; Kim et al., 2015, 2017; Maimon et al., 2010; Turner et al., 2022), only flight saccade-associated signals exhibit the temporal profile appropriate to cancel reafferent input. However, von Holst & Mittelstaedt (1950) originally formulated efference copy to explain the smooth optomotor response of hoverflies. In HS/VS recordings in previous studies, however, we could not detect membrane-potential changes tied to baseline wing-beat amplitude (data not shown), but further work is needed. 

      Note that visually evoked flight turns analyzed in this paper have relatively fast dynamics. Fenk et al. (2021) showed that HS cells carry EC-like motor signals during both loom-evoked turns and spontaneous saccades. Building on this, we tested whether object-evoked rapid turns modulate other visuomotor pathways. Although Fenk et al. also found that optomotor turns lack motor input to HS cells, the authors did not test whether the optomotor pathway suppresses other reflexes, such as loom-evoked turns. Our new behavioral data (Figure 6) show that optomotor turns indeed suppress loom-evoked turns, suggesting a potential EC signal arising from the optomotor pathway that inhibits loom-responsive visual neurons.

      In Kim et al. (2017), the authors argued that HS/VS neurons receive a “quantitatively tuned” efference copy that varies across cell types: yaw-sensitive LPTCs are strongly suppressed, roll-sensitive cells receive intermediate input, and pitch-sensitive cells receive little or none. We also showed that when the amplitude of ongoing visual drive changes, the amplitude of saccade-related potentials (SRPs) scales linearly. This proportionality does not imply a genuinely graded EC, however, because SRP amplitude could vary solely through changes in driving force (Vm – Vrest) with a fixed EC conductance. Crucially, SRPs do not fully suppress feed-forward visual signalling, arguing against an all-or-none EC mechanism.

      How, then, can the cellular and behavioural data be reconciled? Silencing HS/VS neurons—or their primary inputs, the T4/T5 neurons—does not markedly diminish the optomotor response in flight (Fenk et al., 2014; Kim et al., 2017), indicating the presence of additional, as-yet-unidentified pathways.

      Physiological recordings from other visual neurons that drive the optomotor response in flying Drosophila are therefore needed to determine how strongly they are suppressed during loom-evoked turns.

      Behavioral evidence for all-or-none EC model: The authors state "unless the stability reflex is suppressed during the flies' object evoked turns, the turns should slow down more strongly with the dense background than the sparse one". This hypothesis is based on the fact that the optomotor response magnitude is larger with a denser background, as would be predicted by an EMD model (because there are more pixels projected onto the eye). However, based on the authors' previous work, the EC should be tuned to optic flow and thus the turning velocity (or amplitude). Thus the EC need not be directly tied to the background statistics, as they claim. For instance, I think it would be important to distinguish whether a mismatch in reafferent velocity (optic flow) links to distinct turn velocities (and thus position). This would require moving the background at different velocities (co- and anti-directionally) at the onset of bar motion. Overall, there are alternative hypotheses here that need to be discussed and more fully explored (as presented by Bender & Dickinson and in work by the Maimon group).

      We appreciate the reviewer’s important suggestion. In response, we performed the recommended experiment. In Figures 5 and 6 of the revised manuscript, we now present how bar- or loom-evoked flight turns affect the response to a moving background pattern. These experiments revealed that bar-evoked turns do not suppress the optic flow response, whereas loom-evoked turns strongly suppress it. Specifically, when background motion began 100 ms after the onset of loom expansion, the response to the background was significantly suppressed. Although weak residual responses to the background motion were observed in this case, this could be due to background motion occurring outside of the suppression interval, which may correspond in duration to the duration of flight turns (Figure 6C,D). 

      The lack of suppression of the optic flow response during and after bar-evoked turns appears to suggest that the responses are added linearly (Figure 5), seemingly contradicting the lack of dynamic change when the background dot density was altered (Figure 7, Figure 7–figure supplement 1). That is, the experimental result in Figure 5 supports either an addition-only or a graded efference copy (EC) model. However, the result in Figure 7 supports an all-or-none EC model. If a graded EC were used, the amplitude of the EC should be updated almost instantaneously when the static background changes.

      Another possibility is that the optic flow during self-generated turns in a static background is extremely weak compared to the optic flow input generated by physically moving the pattern, perhaps due to the rapid nature of head movements. Indeed, detailed kinematic analysis of head movement during spontaneous saccades in blow flies revealed that the head reaches the target angle before the body completes the orientation change, making the effective speed of reafferent optic flow higher than the speed of body rotation (Hateren and Schilstra, 1999). To test these hypotheses, further experiments will be needed for bar-evoked flight turns.

      Publishing the reviewed preprint:

      (1) The Reviewed Preprint (including the full text of the preprint we reviewed, the eLife assessment, and public reviews) will typically be published in two weeks' time.

      Please let us know if you would like to provide provisional author responses to be posted at the same time (if so, please send these by email). Please do not resubmit within the next two/three weeks, as we will need to publish the first version of the Reviewed Preprint first.

      If there are any factual errors in the eLife assessment or public reviews, or other issues we should be aware of, please let us know as soon as possible.

      (2) After publication of the Reviewed Preprint, you can use the link below to submit a revised version. There is no deadline to resubmit. Before resubmitting, please ensure that you update the preprint at the preprint server to correspond with the revised version. Upon submitting a revised version, we will ask the editors and reviewers if it's appropriate to update their assessment and public reviews, which will be included alongside the revised Reviewed Preprint. At that time we will also post the recommendations to the authors and the author responses you provide with the revised version. In the author response, please respond to the public reviews (where relevant) and the recommendations to the authors.

      (3) Alternatively, you can proceed with the current version of the Reviewed Preprint (once published), without revisions, and request an eLife Version of Record. See the Author Guide for further information: https://elife-rp.msubmit.net/html/elife-rp_author_instructions.html#vor. However, most authors decide to request a Version of Record after a round of revision.

      (4) After publication of eLife's Reviewed Preprint, you also have the option to submit/publish in another journal instead: if you choose to do this, please let us know so we can update our records.

      The reviewers identified two key revisions that could improve the assessment of the paper:

      (1) Consideration of saccades within the model framework (outlined by reviewer 3).

      (2) Addition of physiology data to support the conclusions of the paper (outlined by reviewer 2). If this is not feasible within the timescale of revisions, the paper would need to be revised to clarify that the model leads to a hypothesis that would need to be tested with future physiology experiments.

      Thank you for these comments.

      Regarding revision point #1, we have added Figure 2–figure supplement 2, where we incorporated our position-velocity model (estimated in Figure 1) into the framework of the integrate-and-saccade model. A detailed description of this model is now provided in the main text (Lines 190–203).

      For revision point #2, obtaining electrophysiological evidence for efference copy remains challenging, as neither the visual neurons nor the efference-copy neuron has been identified for the wing optomotor response. As suggested by the reviewers, we have revised the title of the paper to reduce emphasis on efference copy and have noted electrophysiological recordings as a direction for future work.

      old title: A visual efference copy-based navigation algorithm in Drosophila for complex visual environments

      new title: Integrative models of visually guided steering in Drosophila

      Specific recommendations are detailed below.

      Reviewer #2 (Recommendations For The Authors):

      To directly demonstrate if an efference copy is non-scaled, the following experiments can be helpful: record from HS/VS cells and examine the relation between the amplitude of the succade-suppression signal vs. succade amplitude.

      Thanks for raising this important point. We previously carried out the suggested analysis for loom-evoked saccades in Fenk et al. (2021). There, significant correlations emerged between wing-response amplitude and saccade-related potentials (Figures 2F and 3C). However, we did not interpret the strong correlation (r ≈ 0.8) as evidence for a graded efference copy, because the amplitude of saccade-related potentials appeared to be bimodal. Upon presentation of the looming stimulus, flies either executed large evasive turns or showed minimal changes in wing-stroke amplitude. Large wing responses were accompanied by strong, saturated suppression of HS-cell membrane potential, whereas trials without wing responses produced only weak modulations—reflected in the bimodal distribution of saccade-related potential amplitudes (Figure 3C). 

      Importantly, in rigidly tethered preparations—where these potentials are typically measured—the absence of proprioceptive feedback can itself drive wingbeat amplitudes to saturation during saccades. We therefore reasoned that the lack of intermediate-sized flight saccades would naturally yield correspondingly saturated saccade-related potentials, even if a graded EC system is in play. 

      In Kim et al. (2017), we also performed a comprehensive analysis of spontaneous saccade-related potentials across all HS/VS cell types. When we later examined the relationship between saccade amplitude and the corresponding saccade-related potentials in each cell type, we could not find any statistically significant correlation (unpublished data).

      measure how much a weak visual stimulus and a strong visual stimulus are suppressed by the suppression signal. If the signal is non-scaled, visual stimuli should always be suppressed independently of their intensities.

      Thank you for this important suggestion. As mentioned in our response to the previous comment, we believe it is not feasible to record from neurons responsible for the body optomotor response at this point, as their identity remains unknown. Regarding the HS/VS cells, our previous study showed that HS cells are not always fully suppressed. The changes in saccade-related potential amplitude can be described as a linear function of the pre-saccadic visually-evoked membrane potential (Figure 7 in Kim et al., 2017). 

      As suggested by Fenk et al. 2014 (doi: 10.1016/j.cub.2014.10.042), HS cells might also be responsive to a moving bar. If that is the case, and if you present a bar and background (either sparse or dense) in a closed-loop manner to a head-fixed fly, HS cells might be sensitive only to the bar but not to the background (independently of the density).

      Thanks for pointing out this important issue. HS cells indeed respond strongly to the horizontal movement of a vertical bar, as expected given that their receptive fields are formed by the integration of local optic flow vectors. In one of our previous studies (Supplemental Figure 1 in Kim et al., 2015), we showed that the response amplitude to a single vertical bar is roughly equivalent to that elicited by a vertical grating composed of 12 bars of the same size. Therefore, we believe that HS cells are likely to contribute to the head response to a moving vertical bar. In a body-fixed flight simulator, HS cells would respond only to the bar if the bar runs in a closed loop with a static background. In this scenario, HS cells are likely to play a role in the head optomotor response.

      Note also that the role of HS cells in the wing optomotor response remains unresolved. Unilateral activation of HS cells has been shown to elicit locomotor turns in walking Drosophila (Fujiwara et al., 2017), as well as in flying individuals (unpublished data from our lab). However, a previous study also showed that strong silencing of HS/VS cells significantly reduced the head optomotor response, but not the wing optomotor response (Kim et al., 2017).

      If neurophysiology is technically challenging, an alternative way might pay attention to a head movement that exclusively follows the background (Fox et al., 2014 (doi: 10.1242/jeb.080192)). Because HS cells are thought to promote head rotation to background motion, a non-scaled suppression signal on HS cells would always suppress the head rotation independently of the background density.

      Thanks for this helpful comment. We have analyzed head movements during bar-evoked flight turns (Figure 7–figure supplement 1B) and found no significant changes across different background dot densities. We think that this might suggest that HS cells are unlikely to receive suppressive inputs during bar-evoked turns, akin to the lack of modulation during optomotor turns.

      Another way to separate a potential efference copy from other mechanisms (more global inhibition) is the directionality. A global inhibition would suppress the response to the background even if the background moves in the same direction as self-motion, but the efference copy would not.

      Thanks for this important point. In Heisenberg and Wolf, 1979, it was proposed that modulation might be bidirectional, with behavioral effects observed only for perturbations in the “unexpected” direction. In our new data on loom-evoked turns (Figure 6), the suppression appears equally strong for background motion in either direction, supporting an all-or-none suppression mechanism.

      Besides, in general, it is unclear if you think an efference copy operates both in smooth pursuits and saccades or if such a signal is only present during saccades. Your previous neurophysiological work supports the latter. Are your behavioral results consistent with the previous saccade suppression idea, or do you propose a new type of efference copy that also operates in smooth pursuits?

      Thanks for raising this important point. von Holst and Mittelstaedt (1950) originally introduced the concept of efference copy to explain the smooth optomotor response. We previously analyzed electrophysiological recordings from HS cells for membrane-potential changes associated with slow deviations in wing-steering angle but found none. However, this negative result does not entirely rule out modulation of visual processing during smooth flight turns, given the slow drift in membrane potential observed in most whole-cell recordings.

      In this study, We examined only the interactions among visuomotor pathways during these rapid flight turns as the dynamics of visually evoked turns are almost as rapid as spontaneous saccades. Our data reveal that interactions between distinct visuomotor reflexes are more diverse than previously appreciated.

      Minor comments:

      Line 108, 109: match the description between here and the labels in Fig. 1F.

      Thank you for indicating this issue. We have defined the general equation to obtain the position and velocity components in the main text lines 108,109, but due to a slight asymmetry in the data (Fig. 1E) we used the approach indicated in Fig. 1F. and explained in lines 113-117.

      Fig.1 F: If the position-dependent component is due to fatigue, the tuning curve's shape is likely changed (shrunk or extended) depending on the stimulus speed. How can you generalize the tuning curve shown here? Does the result hold even if the stimulus speed/contrast/spatial frequency is changed?

      We appreciate this indication. We believed that fatigue may be the reason why the wing response to the grating stimulus showed that significant decay (Fig. 1E). As you mention, the stimulus speed would increase the amplitude of the fly’s response up to a saturation point. We addressed this in our model by multiplying the derived value by the angular velocity of the grating.

      Regarding the contrast, and spatial frequency we did not test it experimentally, instead, we simulated our model for changing visual feedback (Fig. 4A, B), which can be seen as increasing/decreasing contrast of a grating. An increase in the contrast would increase the response of the fly to the grating and so will contribute to dampening the response to the foreground object (Fig. 4C).

      Line 233-255: Here, the description sounds like you will consider several parallel objects (e.g., two stripes) in the visual field instead of the combination of the figure and background (which is referred to in the following paragraph).

      Thank you for pointing it out. Indeed it was slightly ambiguous. We have addressed this by explaining the specific situation of a combination of an object and the background in lines 231-233.

      Figure 6C: you kept the foreground visual field between sparse and dense random dot backgrounds to keep the bar's saliency. Is it sure that this does not influence the difference in the fly's response to these two backgrounds (in Figure 6B)?

      This is a good point that we have also discussed internally. We also carried out similar experiments with a fully covered background and found no significant differences (Figure 7–figure supplement 1).

      Reviewer #3 (Recommendations For The Authors):

      Identify and analyze flight saccade dynamics in the raw trajectories (e.g., Fig. 3B). There should be some since the bar is near the 'sweet spot' for triggering saccades (see Mongeau & Frye, 2017).

      Thank you for bringing up this interesting point. In previous work, it was reported that the fly fixated on a vertical bar through saccadic turns rather than smooth-tracking (Mongeau & Frye, 2017). When the bar width was thin (<15 deg) there was barely one saccade per second (Mongeau & Frye, 2017, Fig. 4). In our magno tether essay (Fig. 3A, B) the object width was 11.25 degrees, and the object moved for a short time window, and so the fly only generated the saccade related to the onset of the object. It could not be considered as a saccade some small turns of a few degrees that are likely related to small perturbations in comparison to those previously reported (Mongeau & Frye, 2017). Additionally, in our protocol (Fig. 3A) from onset time (‘go’ mark), only a single object moved, within an empty background, so in principle there is no trigger for a switch to a smooth movement. We addressed this in lines x-x.

      Consider updating the Poggio model with flight saccades (switched, integrate-and-fire).

      We appreciate this suggestion. Following previous work (Mongeau et al., 2017), we expanded our model to include a saccade mechanism: the torque produced by the summed position- and velocity-dependent components is now replaced by an integrate-and-fire saccade (Figure 2—figure supplement 2). We optimized the saccade interval and amplitude so that both vary linearly with stimulus amplitude and faithfully reproduce the kinematic properties reported previously (Mongeau et al., 2017).  

      Please engage more with the literature, especially work that directly conflicts with your conclusions (see above). Also, highly relevant work by Bender & Dickinson was not sufficiently discussed. Spot results presented in Fig. 3 should be contextualized in light of the work of Mongeau et al., 2019, who performed similar experiments and identified a switch in saccade valence.

      We appreciate your pointing out the relevant previous work. We have added references to the following papers and tried to describe the relationship between our data and previous ones.

      Bender & Dickinson 2006

      (Line#162) “This simulation experiment is reminiscent of the magnetically tethered flight assay, where a flying fly remains fixed at a position but is free to rotate around its yaw axis (Bender and Dickinson, 2006b; Cellini et al., 2022; G. Kim et al., 2023; Mongeau and Frye, 2017).”

      (Line#218) “We tested the predictions of our models with flies flying in an environment similar to that used in the simulation (Figure 3A). A fly was tethered to a short steel pin positioned vertically at the center of a vertically oriented magnetic field, allowing it to rotate around its yaw axis with minimal friction (Bender and Dickinson, 2006b; Cellini et al., 2022; G. Kim et al., 2023).”

      (Line#238) “To determine if our assay imposes additional friction compared to other assays used in previous studies, we analyzed the dynamics of spontaneous saccades during the “freeze” phase (Figure 3–figure supplement 1A). We found their duration and amplitude to be within the range reported previously (Bender and Dickinson, 2006b; Mongeau and Frye, 2017) (Figure 3–figure supplement 1B-D). 

      Mongeau et al., 2019

      (Line#196) “During this behavior, it has been proposed that visual circuits compute an integrated error of the bar position with respect to the frontal midline and triggers a saccadic turn toward the bar when the integrated value reaches a threshold (Frighetto and Frye, 2023; Mongeau et al., 2019; Mongeau and Frye, 2017). We expanded our bar fixation model to incorporate this behavioral strategy (Figure 2–figure supplement 2).”

      This paper shows that the dynamics of saccadic flight turns elicited by a rotating bar or spot determine whether flies display attraction or aversion. In that study, the visual stimulus—a bar or spot—rotated slowly at a constant 75 deg s⁻¹. By contrast, in our Figure 3 the object moves much faster, driving the neural “integrator” to saturation and triggering an almost immediate flight turn. In Mongeau et al. (2019), saccades occur at variable times and their amplitudes and directions are more stochastic, again reflecting the slower stimulus speed. Because these differences all arise from the disparity in object speed, we did not cite Mongeau et al. (2019) in Figure 3 or the associated text.

      In addition to the two papers cited above, we have incorporated several relevant studies on the Drosophila visuomotor control identified through the reviewers’ insightful comments. Examples include:

      Frighetto G, Frye MA. 2023 (Line#195, 464)

      Rimniceanu et al., 2023 (Line#241)

      Cellini & Mongeau 2020 (Line#91)

      Cellini & Mongeau 2022 (Line#241)

      Cellini et al., 2022 (LIne#91, 162, 218)

      Many citations are not in the proper format (e.g. using numbers rather than authors' last name).

      Thank you for letting us know. We have changed the remaining citations to the proper format.

    1. I thought, “I have a deep understanding of trig, and so if faced with e.g. sin(-θ), I can visualize the triangle in my head and realize that it’s equal to -sinθ. I will re-derive these identities from scratch during a test.” But it never really worked out that way. This is the trig equivalent to decoding a sentence letter by letter on the fly. It takes a lot of memory and brain power, and you can’t spot these patterns in a problem if you don’t know the identities. I always felt it was unfair when a solution relied on a double angle identity “trick.” My virtuous and pure, unmemorized knowledge didn’t seem to be sufficient during the exam

      i did this and it worked and i now remember exactly zero trig

    1. Although the JARPA II Research Plan sets forth possible samplesizes for fin and humpback whales that contemplate both six-year and12-year research periods, the plan explains that researchers chose to usethe 12-year research period for both species. It states that a six-year periodwould be “preferable since the research programme will be reviewed everysix years” but would require “large” sample sizes. The Research Planstates that a 12-year period was thus chosen as a “precautionaryapproach”. In the oral proceedings, Japan offered an additional reasonfor the choice of a 12-year period : that a shorter period is unnecessary forthese two species because implementation of the RMP for fin and hump-back whales is not yet under consideration

      This is one of those points where the explanation sounds neat on paper but feels off the moment you think about it. Japan calls the twelve-year period a “precautionary approach” because it avoids the big spike in lethal catches that a six-year plan would require. But in environmental law, “precaution” usually means doing less harm, not quietly spreading it over a longer period. Here, it’s almost flipped on its head—stretching out the killing so it’s less visible year to year, but still adding up over time.

      It also has the handy side effect of lowering the pressure to show results any time soon. A six-year plan would force more immediate scrutiny; a twelve-year plan buys breathing space. That might be convenient for a whaling programme under international criticism, but it doesn’t scream scientific necessity.

      If the Court had really dug in, it could have asked: is this about what’s best for the science, or what’s easiest politically? And if you’re going to claim “precaution,” it should line up with how that principle works elsewhere—like in the CBD or the Rio Declaration—where it’s about stopping potential damage, not extending the timetable for it.

      Instead, the Court pointed out the weak science behind the twelve-year choice, but let the “precautionary” label stand. That leaves the door open for other states to dress up strategic choices as conservation-minded planning. And honestly, once you see it this way, the whole twelve-year period feels less like a careful scientific design and more like a slow-burn version of the same problem.

    Annotators

    1. As this classic scene illustrates, in postwar years the television set becamea central figure in representations of family relationships

      I feel like this is still true today, many sitcoms are sill about family dynamic. The first thing that popped into my head was Modern Family.

    1. Reviewer #2 (Public review):

      This work introduces a new version of the state-of-the-art idtracker.ai software for tracking multiple unmarked animals. The authors aimed to solve a critical limitation of their previous software, which relied on the existence of "global fragments" (video segments where all animals are simultaneously visible) to train an identification classifier network, in addition to addressing concerns with runtime speed. To do this, the authors have both re-implemented the backend of their software in PyTorch (in addition to numerous other performance optimizations) as well as moving from a supervised classification framework to a self-supervised, contrastive representation learning approach that no longer requires global fragments to function. By defining positive training pairs as different images from the same fragment and negative pairs as images from any two co-existing fragments, the system cleverly takes advantage of partial (but high-confidence) tracklets to learn a powerful representation of animal identity without direct human supervision. Their formulation of contrastive learning is carefully thought out and comprises a series of empirically validated design choices that are both creative and technically sound. This methodological advance is significant and directly leads to the software's major strengths, including exceptional performance improvements in speed and accuracy and a newfound robustness to occlusion (even in severe cases where no global fragments can be detected). Benchmark comparisons show the new software is, on average, 44 times faster (up to 440 times faster on difficult videos) while also achieving higher accuracy across a range of species and group sizes. This new version of idtracker.ai is shown to consistently outperform the closely related TRex software (Walter & Couzin, 2021\), which, together with the engineering innovations and usability enhancements (e.g., outputs convenient for downstream pose estimation), positions this tool as an advancement on the state-of-the-art for multi-animal tracking, especially for collective behavior studies.

      Despite these advances, we note a number of weaknesses and limitations that are not well addressed in the present version of this paper:

      (1) The contrastive representation learning formulation

      Contrastive representation learning using deep neural networks has long been used for problems in the multi-object tracking domain, popularized through ReID approaches like DML (Yi et al., 2014\) and DeepReID (Li et al., 2014). More recently, contrastive learning has become more popular as an approach for scalable self-supervised representation learning for open-ended vision tasks, as exemplified by approaches like SimCLR (Chen et al., 2020), SimSiam (Chen et al., 2020\), and MAE (He et al., 2021\) and instantiated in foundation models for image embedding like DINOv2 (Oquab et al., 2023). Given their prevalence, it is useful to contrast the formulation of contrastive learning described here relative to these widely adopted approaches (and why this reviewer feels it is appropriate):

      (1.1) No rotations or other image augmentations are performed to generate positive examples. These are not necessary with this approach since the pairs are sampled from heuristically tracked fragments (which produces sufficient training data, though see weaknesses discussed below) and the crops are pre-aligned egocentrically (mitigating the need for rotational invariance).

      (1.2) There is no projection head in the architecture, like in SimCLR. Since classification/clustering is the only task that the system is intended to solve, the more general "nuisance" image features that this architectural detail normally affords are not necessary here.

      (1.3) There is no stop gradient operator like in BYOL (Grill et al., 2020\) or SimSiam. Since the heuristic tracking implicitly produces plenty of negative pairs from the fragments, there is no need to prevent representational collapse due to class asymmetry. Some care is still needed, but the authors address this well through a pair sampling strategy (discussed below).

      (1.4) Euclidean distance is used as the distance metric in the loss rather than cosine similarity as in most contrastive learning works. While cosine similarity coupled with L2-normalized unit hypersphere embeddings has proven to be a successful recipe to deal with the curse of dimensionality (with the added benefit of bounded distance limits), the authors address this through a cleverly constructed loss function that essentially allows direct control over the intra- and inter-cluster distance (D\_pos and D\_neg). This is a clever formulation that aligns well with the use of K-means for the downstream assignment step.

      No concerns here, just clarifications for readers who dig into the review. Referencing the above literature would enhance the presentation of the paper to align with the broader computer vision literature.

      (2) Network architecture for image feature extraction backbone

      As most of the computations that drive up processing time happen in the network backbone, the authors explored a variety of architectures to assess speed, accuracy, and memory requirements. They land on ResNet18 due to its empirically determined performance. While the experiments that support this choice are solid, the rationale behind the architecture selection is somewhat weak. The authors state that:

      "\[W\]e tested 23 networks from 8 different families of state-of-the-art convolutional neural network architectures, selected for their compatibility with consumer-grade GPUs and ability to handle small input images (20 × 20 to 100 × 100 pixels) typical in collective animal behavior videos."

      (2.1) Most modern architectures have variants that are compatible with consumer-grade GPUs. This is true of, for example, HRNet (Wang et al., 2019), ViT (Dosovitskiy et al., 2020), SwinT (Liu et al., 2021), or ConvNeXt (Liu et al., 2022), all of which report single GPU training and fast runtime speeds through lightweight configuration or subsequent variants, e.g., MobileViT (Mehta et al., 2021). The authors may consider revising that statement or providing additional support for that claim (e.g., empirical experiments) given that these have been reported to outperform ResNet18 across tasks.

      (2.2) The compatibility of different architectures with small image sizes is configurable. Most convolutional architectures can be readily adapted to work with smaller image sizes, including 20x20 crops. With their default configuration, they lose feature map resolution through repeated pooling and downsampling steps, but this can be readily mitigated by swapping out standard convolutions with dilated convolutions and/or by setting the stride of pooling layers to 1, preserving feature map resolution across blocks. While these are fairly straightforward modifications (and are even compatible with using pretrained weights), an even more trivial approach is to pad and/or resize the crops to the default image size, which is likely to improve accuracy at a possibly minimal memory and runtime cost. These techniques may even improve the performance with the architectures that the authors did test out.

      (2.3) The authors do not report whether the architecture experiments were done with pretrained or randomly initialized weights.

      (2.4) The authors do not report some details about their ResNet18 design, specifically whether a global pooling layer is used and whether the output fully connected layer has any activation function. Additionally, they do not report the version of ResNet18 employed here, namely, whether the BatchNorm and ReLU are applied after (v1) or before (v2) the conv layers in the residual path.

      (3) Pair sampling strategy

      The authors devised a clever approach for sampling positive and negative pairs that is tailored to the nature of the formulation. First, since the positive and negative labels are derived from the co-existence of pretracked fragments, selection has to be done at the level of fragments rather than individual images. This would not be the case if one of the newer approaches for contrastive learning were employed, but it serves as a strength here (assuming that fragment generation/first pass heuristic tracking is achievable and reliable in the dataset). Second, a clever weighted sampling scheme assigns sampling weights to the fragments that are designed to balance "exploration and exploitation". They weigh samples both by fragment length and by the loss associated with that fragment to bias towards different and more difficult examples.

      (3.1) The formulation described here resembles and uses elements of online hard example mining (Shrivastava et al., 2016), hard negative sampling (Robinson et al., 2020\), and curriculum learning more broadly. The authors may consider referencing this literature (particularly Robinson et al., 2020\) for inspiration and to inform the interpretation of the current empirical results on positive/negative balancing.

      (4) Speed and accuracy improvements

      The authors report considerable improvements in speed and accuracy of the new idTracker (v6) over the original idTracker (v4?) and TRex. It's a bit unclear, however, which of these are attributable to the engineering optimizations (v5?) versus the representation learning formulation.

      (4.1) Why is there an improvement in accuracy in idTracker v5 (L77-81)? This is described as a port to PyTorch and improvements largely related to the memory and data loading efficiency. This is particularly notable given that the progression went from 97.52% (v4; original) to 99.58% (v5; engineering enhancements) to 99.92% (v6; representation learning), i.e., most of the new improvement in accuracy owes to the "optimizations" which are not the central emphasis of the systematic evaluations reported in this paper.

      (4.2) What about the speed improvements? Relative to the original (v4), the authors report average speed-ups of 13.6x in v5 and 44x in v6. Presumably, the drastic speed-up in v6 comes from a lower Protocol 2 failure rate, but v6 is not evaluated in Figure 2 - figure supplement 2.

      (5) Robustness to occlusion

      A major innovation enabled by the contrastive representation learning approach is the ability to tolerate the absence of a global fragment (contiguous frames where all animals are visible) by requiring only co-existing pairs of fragments owing to the paired sampling formulation. While this removes a major limitation of the previous versions of idtracker.ai, its evaluation could be strengthened. The authors describe an ablation experiment where an arc of the arena is masked out to assess the accuracy under artificially difficult conditions. They find that the v6 works robustly up to significant proportions of occlusions, even when doing so eliminates global fragments.

      (5.1) The experiment setup needs to be more carefully described.<br /> What does the masking procedure entail? Are the pixels masked out in the original video or are detections removed after segmentation and first pass tracking is done?<br /> What happens at the boundary of the mask? (Partial segmentation masks would throw off the centroids, and doing it after original segmentation does not realistically model the conditions of entering an occlusion area.)<br /> Are fragments still linked for animals that enter and then exit the mask area?<br /> How is the evaluation done? Is it computed with or without the masked region detections?

      (5.2) The circular masking is perhaps not the most appropriate for the mouse data, which is collected in a rectangular arena.

      (5.3) The number of co-existing fragments, which seems to be the main determinant of performance that the authors derive from this experiment, should be reported for these experiments. In particular, a "number of co-existing fragments" vs accuracy plot would support the use of the 0.25(N-1) heuristic and would be especially informative for users seeking to optimize experimental and cage design. Additionally, the number of co-existing fragments can be artificially reduced in other ways other than a fixed occlusion, including random dropout, which would disambiguate it from potential allocentric positional confounds (particularly relevant in arenas where egocentric pose is correlated with allocentric position).

      (6) Robustness to imaging conditions

      The authors state that "the new idtracker.ai can work well with lower resolutions, blur and video compression, and with inhomogeneous light (Figure 2 - figure supplement 4)." (L156).

      Despite this claim, there are no speed or accuracy results reported for the artificially corrupted data, only examples of these image manipulations in the supplementary figure.

      (7) Robustness across longitudinal or multi-session experiments

      The authors reference idmatcher.ai as a compatible tool for this use case (matching identities across sessions or long-term monitoring across chunked videos), however, no performance data is presented to support its usage.

      This is relevant as the innovations described here may interact with this setting. While deep metric learning and contrastive learning for ReID were originally motivated by these types of problems (especially individuals leaving and entering the FOV), it is not clear that the current formulation is ideally suited for this use case. Namely, the design decisions described in point 1 of this review are at times at odds with the idea of learning generalizable representations owing to the feature extractor backbone (less scalable), low-dimensional embedding size (less representational capacity), and Euclidean distance metric without hypersphere embedding (possible sensitivity to drift).

      It's possible that data to support point 6 can mitigate these concerns through empirical results on variations in illumination, but a stronger experiment would be to artificially split up a longer video into shorter segments and evaluate how generalizable and stable the representations learned in one segment are across contiguous ("longitudinal") or discontiguous ("multi-session") segments.

    1. ). Of course, our national debt remains a politicized issue; people embed their ideological aims in their urgent warnings about Treasuries and interest rates. The Harvard professor Kenneth Rogoff told me that “progressives have had their head in the sand about the deficit,” partly because they’re bad at admitting there are trade-offs; he published a paper in the August 2024 issue of the American Economic Review showing that long-term real rates tend to move back to a historical equilibrium. “It was like saying climate change might have partly natural causes,” he said. He watched his thesis get mangled as it moved through the ideology machine. “People think, Well, you’re in favor of ‘austerity’ because you think there’s a trade-off.”

      Terrible

    1. But their cheers died away when the Dragon's bodybecame wracked by violent convulsions. Finally themighty drake froze in mid-air, and an evil, iridescentlight appeared in its eyes. The skin of the mighty wyrmflowed like water, and within it evil faces formed,cackling maniacally and singing the praise of Tzeentch.Foul tentacles and wicked spikes emerged from theDragon's flesh and finally the once-noble head ofGalrauch split into two all the way down to his neck, sothat the Dragon was turned into a two-headedmonstrosity.

      So killing a Lord of Change causes him to possess you? Boy, you can't win against Chaos.

    Annotators

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This manuscript investigates beta burst dynamics in the primate motor cortex during movement and recovery from stroke. The authors differentiate between "global" beta bursts, which are synchronous across cortical and often subcortical regions, and more spatially confined "local" bursts. Global bursts are associated with reduced spiking variability, slower movements, and are more frequent after stroke, while local bursts increase during recovery and grasp execution. The study provides compelling evidence that beta bursts with different spatial and temporal characteristics may play distinct roles in motor control and recovery.

      We thank the reviewer for their assessment that the manuscript proves compelling evidence for distinct roles of local and global beta bursts on motor control and recovery.  

      Strengths:

      The major strength of this paper lies in its conceptual advance: the identification and characterization of distinct global and local beta bursts in the primate motor cortex. This distinction builds upon and considerably extends previous work on the heterogeneity of beta bursts. The paper is methodologically rigorous, using simultaneous cortical and subcortical recordings, detailed behavioral tracking, and thorough analyses of spikeLFP interactions. The use of stroke models and neurotypical animals provides converging evidence for the functional dissociation between burst types. The observation that local bursts increase with motor recovery and occur during grasping is particularly novel and may prove valuable for developing biomarkers of motor function.

      We thank the reviewer for recognizing the strengths of this manuscript. 

      Weaknesses:

      There are several conceptual and methodological limitations that should be addressed. First, the burst detection method relies on an amplitude threshold (median + 1 SD), which is susceptible to false positives and variability (Langford & Wilson, 2025). The classification into global or local bursts then depends on the number of co-bursting channels, compounding the arbitrariness. Second, the imposition of a minimum of three co-bursting cortical channels may bias against the detection of truly local bursts. 

      We thank the reviewer for bringing up these methodological details. We plan to conduct a follow-up analysis using alternative burst detection methods to verify that the paper’s main results hold when using different burst detection methodologies. We anticipate this will improve confidence in our results. 

      Third, the classification is entirely cortical; subcortical activity is considered post hoc rather than integrated into the classification, despite the key role of subcortical-cortical synchrony in motor control. 

      We thank the reviewer for this comment. First, because the different animals had subcortical recording sites in different locations, we hesitate to use subcortical activity in the classification of bursts since we were not sure we would be identifying the same burst-phenomenon (e.g. thalamo-cortical bursts vs. capsule-cortical bursts may differ). Second, we believe that having a cortical-only criteria allows the designation of local vs. global bursts to be more widely applied in preparations that only have access to cortical data (e.g. surface ECoG recordings, EEG, Utah array recordings). Thus, in this study we chose to analyze the subcortical data post-hoc (after burst detection and classification) to support our “global” vs. “local” designation of burst types 

      Fourth, the apparent dissociation between global and local bursts raises important questions about their spatial distribution across areas like M1 and PMv, which are not thoroughly analyzed. 

      We thank the reviewer for this comment. In our study’s stroke animals, we chose to study PMv due to its role in compensating for damage to M1, thus we hesitate to make any comparisons between PMv (which was recorded in stroke animals) and M1 (recorded in healthy unimpaired animals). Furthermore, animals are doing different tasks (e.g. reaching vs. reaching and grasping) which may also influence the spatial distribution. We agree that future work should certainly investigate the spatial distribution of global vs. local beta bursts across areas of sensorimotor cortex and subcortex, and that this comparison would be best done in healthy animals with both reaching and grasping behaviors.  

      Finally, while the authors interpret local bursts during grasping as novel, similar findings have been reported (e.g., Szul et al., 2023; Rayson et al., 2023), and a deeper discussion of these precedents would strengthen the argument.

      Thank you for these references! We will review them and incorporate them into our discussion of our results. 

      Impact:

      This work is likely to have a substantial impact on the field of motor systems neuroscience. The distinction between global and local beta bursts offers a promising framework for understanding the dual roles of beta in motor inhibition and sensorimotor computation. The findings are relevant not only for basic research but also for translational efforts in stroke rehabilitation and neuromodulation, particularly given the emerging interest in beta burst-based biomarkers and stimulation targets. The dataset and analytical framework will be useful to researchers investigating beta dynamics, spike-field relationships, and recovery from neural injury.

      We thank the reviewers for their assessment that our work will likely have a substantial impact on the field of motor systems neuroscience. 

      Reviewer #2 (Public review):

      Summary:

      The paper by Khanna et al. describes global vs local beta synchrony between a cortical premotor area (PMv) and subcortical structures during motor tasks in the non-human primate, specifically investigating the progression following M1 injury. They found that increases in global beta synchrony between PMv and subcortical structures during the sub-acute phase of injury, and that global synchrony was associated with relatively slower motor movements. As recovery progressed, they report a shift from global synchrony to local synchrony and a subsequent reduction in the movement time. The authors suggest that global changes in subcortical and cortical beta synchrony may generally underpin a variety of movement disorders, including Parkinson's disease, and that shifting from global to local (or reducing global synchrony) might improve functional outcomes.

      Strengths:

      Ischemic insults and other acquired brain injuries have a significant public health impact. While there is a large body of clinical and basic science studies describing the behavioral, neurophysiological, and mechanistic outcomes of such injury, there is a significant lack studies looking at longitudinal, behaviorally-related neurophysiological measures following cortical injury, so any information has outsized contribution to understanding how brain injury disrupts underlying neural activity and how this may contribute to injury presentation and recovery.

      A significant percentage of pre-clinical stroke studies tend to focus on peri-infarct or other cortical structures and their role in recovery. The addition of subcortical recordings allows for the investigation of the role of thalamo-basal gangliar-cortical loops that may be contributing to the degree of impairment or to the recovery process is important for the field. Here, there are longitudinal (up to 3 months post-injury) recordings in the ventral premotor area (PMv) and either the internal capsule or sensorimotor thalamus that can be synchronized with phases of behavioral recovery.

      The methods are well described and can act as a framework for assessing synchrony across other data sets with similar recording locations. Limitations in methodology, recordings, and behavior were noted.

      We thank the reviewer for their comments on the strengths of this paper.  

      Weaknesses:

      A major limitation of this paper is that it is a set of case studies rather than a welldesigned, well-controlled study of beta synchrony following motor cortex injury. While non-human primate neurophysiological studies are almost always limited by extremely low animal numbers, they are made up for by the fact that they can acquire significant numbers of units or channels, and in the case of normal behavior, can obtain many behavioral trials over months of individual sessions. Here, there were two NHPs used, but they had different subcortical implant locations (thalamus vs internal capsule). They had different injury outcomes, with one showing a typical recovery curve following injury while one had complications and worsening behavior before ultimately recovering. Further, there were significant differences in the ability to record at different times, with one NHP having poor recordings early in the recovery process while one had poor recordings late in the process. Due to the injury, the authors report sessions in which they were not able to record many trials (~10). Assuming that recovery after a cortical injury is an evolving process, breaking analysis into "Early" and "Late" phases reduces the interpretation of where these shifts occur relative to recovery on the task, especially given different thresholds for recovery were used between animals. Because of this, despite a careful analysis of the data and an extensive discussion, the conclusions derived are not particularly compelling. To overcome this, the authors present data from neurotypical NHPs, but with electrodes in M1 rather than PMv, doing a completely different task with no grasping component, again making accurate conclusions about the results difficult. Even with low numbers, the study would have been much stronger if there were within-animal longitudinal data prior to and after the injury on the same task, so the impact of M1 injury could be better assessed.

      We thank the reviewer for these comments. Below we address some of these in more detail: 

      Different subcortical implant locations: We would like to clarify that the subcortical recordings were only used to confirm that global beta bursts (as characterized by cortical recordings alone) did indeed occur on subcortical sites coincidentally with cortical site more frequently than local beta bursts. Neither the beta burst categories nor the beta bursts themselves were influenced by the subcortical recordings.  

      Different injury outcomes: There is difficulty in creating strokes that result in identical deficits across animal as we and others have noted in previous work[1.3]. As a field, we are still understanding what factors give rise to variability in recovery curves. For example, one recent study noted that biological sex is a factor in predicting differences in recovery rates[4], and another noted that baseline white matter hyperintensities is also predictive of post-stroke recovery [5]. Overall, our methodology that creates structurally-consistent lesions can still result in very different functional outcomes depending on a variety of factors. Given this state of the field, we have done our best to match the recovery curves between our two animals, especially the initial recovery curves before Monkey H’s secondary decline. 

      Differences in ability to record at different times: We note this as a strength. One concern with these studies that induce stroke at the same time as implanting electrode arrays is that it is well appreciated that single-unit neuron yield right after array implantation is low and then improves in the following weeks [6]. There is always that concern that having more units later in recovery may drive results, but in this case, since one animal showed the opposite trend we are more confident that results are not driven by increases in unit-yield. We also note that we broadly see similar unit quality metrics in the early and late stages in both animals (Fig. S7).  

      Breaking continuous recovery curve into early and late: We note that this division was only made for one main analysis in the paper (Fig. 5CD): assessment of mean firing and variance of single-unit firing rates.  Without this split our analyses would be underpowered and inconclusive, thus we would not be able to provide any comment on how firing rates change, even coarsely, with recovery. 

      Presentation of data from M1 of healthy animals doing a different task: We agree that the strongest data would be longitudinally recorded from the same animals/brain areas pre-stroke and then post-stroke. However, we also view our inclusion of separate healthy animals doing a different task as evidence that our global vs. local segregation of beta bursts generalizes beyond the reach-to-grasp task to reaching-only tasks.  

      Overall, we appreciate the reviewer pointing out these notes about our data. In some cases we do not think these notes are concerning, in others, we acknowledge that have done the best we can given the state of the neurophysiology stroke recovery field. 

      It is unclear to what extent the subpial aspiration used is a stroke model. While it is much more difficult to perform a pure ischemic motor injury using electrocoagulatory methods in animal models that do not have a lissencephalic cortex, the suction ablation method that the authors use leads to different outcomes than an ischemic injury alone. For instance, in rat models, ischemic vs suction ablation leads to very different electrophysiological profiles and differences in underlying anatomical reorganization (see Carmichael and Chesselet, 2002), even if the behavioral outcomes were similar. There is a concern that the effects shown may be an artifact of the lesion model rather than informing underlying mechanisms of recovery.

      We thank the reviewer for bringing this up. 

      Clarification of our stroke model methodology: We wish to highlight that when we create stroke, we first do surface vessel occlusion as the first step. This is designed to match true ischemic injury. After a waiting period, the injured tissue is then aspiration to reduce the effects of edema and secondary mass effect in the model. 

      Carmichael and Chesselet 2002: The rodent work cited did show differential effects of a suction ablation method (without any surface vessel occlusion first) versus an ischemic method. The effects observed in this work were in the first 5 days following stroke. In our case, we started recording on day 7 and examined recovery over extended periods (weeks to months). 

      Effects of acute insult on rehabilitation: From a rehabilitation perspective, it remains unclear how the acute insult affects outcomes weeks and months later. One line of evidence to suggest that the manner that the acute insult occurs may not matter for rehabilitation is the observation that one therapeutic approach (vagus nerve stimulation) has been found to successfully improve rehabilitation outcomes in a range of injury models (intracranial hemorrhage, stroke, spinal cord injury). We agree that additional work is required in this area.

      Human stroke data shows similar results reported: Lastly, we note that neurophysiology performed in humans with clinical strokes supports the results we seek here (e.g.[7], see discussion section for full elaboration) suggesting that our stroke model methodology is similar enough to clinical stroke to result in similar results. 

      The injury model leads to seemingly mild impairments in grasp (but not reach), with rapid and complete recovery occurring within 2-3 weeks from the time of injury. Because of the rapid recovery, relating the physiological processes of recovery to beta synchronization becomes challenging to interpret - Are the global bursts the result of the loss of M1 input to subcortical structures? Are they due to the lack of M1 targets, so there is a more distributed response? Is this due to other post-injury sub-acute mechanisms? How specific is this response - is it limited to peri-infarct areas (and to what extent is the PMv electrode truly in peri-infarct cortex), or would this synchrony be seen anywhere in the sensorimotor networks? Are the local bursts present because global synchrony wanes over time as a function of post-injury homeostatic mechanisms, or is local beta synchrony increasing as new motor plans are refined and reinforced during task re-acquisition? How coupled are they related to recovery - if it is motor plan refinement, the shift from global to local seemingly should lag the recovery?  

      We think these are all wonderful questions that could be addressed in follow-up studies! 

      While the study has significant limitations in design that reduce the impact of the results, it should act as a useful baseline/pilot data set in which to build a more complete picture of the role of subcortical-cortical beta synchrony following cortical injury.

      We agree that this is a study that should be treated as a starting point for further investigation. 

      Reviewer #3 (Public review):

      Summary:

      Khanna et al. use a well-conceived and well-executed set of experiments and analyses primarily to document the interaction between neural oscillations in the beta range (here, 13-30 Hz) and recovery of function in an animal model of stroke. Specifically, they show that cortical "beta bursts", or short-term increases in beta power, correlate strikingly with the timeline of behavioral recovery as quantified with a reach-to-grasp task. A key distinction is made between global beta bursts (here, those that synchronize between cortical and subcortical areas) and local bursts (which appear on only a few electrodes). This distinction of global vs. local is shown to be relevant to task performance and movement speed, among other quantities of interest.

      A secondary results section explores the relationship between beta bursts and neuronal firing during the grasp portion of the behavioral task. These results are valuable to include, though mostly unsurprising, with global beta in particular associated with lower mean and variance in spike rates.

      Last, a partial recapitulation of the primary results is offered with a neurologically intact (uninjured) animal. No major contradictions are found with the primary results.

      Highlights of the Discussion section include a thoughtful review of atypical movements executed by individuals with Parkinson's disease or stroke survivors, placing the current results in an appropriate clinical context. Potential physiological mechanisms that could account for the observed results are also discussed effectively.

      Strengths:

      Overall, this is a very interesting paper. The ultimate impact will be enhanced by the authors' choice to analyze beta bursts, which remain a relatively under-explored aspect of neural coding.

      The reach-and-grasp task was also a well-considered choice; the combination of a relatively simple movement (reaching towards a target in the same location each time) and a more complex movement (a skilled object-manipulation grasp) provides an internal control of sorts for data analysis. In addition, the task's two sub-movements provide a differential in terms of their likelihood to be affected by the stroke-like injury: proximal muscles (controlling reach) are likely to be less affected by stroke, while distal muscles (controlling grasp) are highly likely to be affected. Lastly, the requirement of the task to execute an object lift maximizes its difficulty and also the potential translational impact of the results on human injury.

      The above comments about the task exemplify a strength that is more generally evident: a welcome awareness of clinical relevance, which is in evidence several times throughout the Results and Discussion.

      Weaknesses:

      The study's weaknesses are mostly minor and, for the most part, correctable.

      One concern that may not be correctable in this study: the results about the spatial extent of beta activity seem constrained by relatively poor-quality data. It seems half or more of the electrodes are marked as too noisy to provide useful data in Figure 3. If this reflects the wider reality for all analyses, as mentioned, it may not be correctable for the present study. In that case, perhaps some of the experiments or analyses can be revisited or expanded for a future study, when better electrode yields are available.

      We thank the reviewer for their comments. We note that we have chosen to be particularly conservative with which channels we considered noise-free and acceptable for analysis as our animals were not head-posted (see methods: “On each day, trials were manually inspected alongside camera data for any movement or chewing artifacts (note that animals were not head-posted) and were discarded from neural data analysis if there were any artifacts”). After re-visiting our analysis, we note that the data shown in Fig. 3 (spatial distribution of local bursts) is not representative from a data quality perspective – this data was from a session that had a particularly large number of channels discarded due to artifacts. We plan to correct this to show a more representative figure. 

      Other concerns:

      In some places, there is a lack of clarity in the presentation of the results. This is not serious but should be addressed to aid readers' comprehension.

      We thank the reviewer for this comment and for their numerous suggestions in the notes to the authors. We plan to address as many of these as we can to improve clarity and comprehension.  

      Lastly, given the central role of beta oscillations within the study, it would be better for completeness to include even a brief exploration of sustained beta power (rather than bursts), and the modulation of sustained beta (or lack thereof) in the study's areas of concern: behavioral recovery, task performance, etc.

      We thank the reviewer for this suggestion – we plan to include this in our revisions.  

      References cited in response to public reviewer comments: 

      (1) Ganguly, K., Khanna, P., Morecraft, R. J. & Lin, D. J. Modulation of neural co-firing to enhance network transmission and improve motor function after stroke. Neuron 110, 2363–2385 (2022).

      (2) Khanna, P. et al. Low-frequency stimulation enhances ensemble co-firing and dexterity after stroke. Cell 184, 912-930.e20 (2021).

      (3) Darling, W. G. et al. Sensorimotor Cortex Injury Effects on Recovery of Contralesional Dexterous Movements in Macaca mulatta. Exp Neurol 281, 37–52 (2016).

      (4) Bottenfield, K. R. et al. Sex differences in recovery of motor function in a rhesus monkey model of cortical injury. Biology of Sex Differences 12, 54 (2021).

      (5) Schwarz, A. et al. Association that Neuroimaging and Clinical Measures Have with Change in Arm Impairment in a Phase 3 Stroke Recovery Trial. Ann Neurol 97, 709– 719 (2025).

      (6) Gulati, T. et al. Robust Neuroprosthetic Control from the Stroke Perilesional Cortex. J. Neurosci. 35, 8653–8661 (2015).

      (7) Silberstein, P. et al. Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128, 1277–1291 (2005).

    1. TABLE 8-4Bedside Rules That Decrease Probability of Serious Conditions (“Stop Rules”)
      • Ottawa ankle rule

        • Condition Diagnosis: Ankle fracture
        • Clinical Scenario: Ankle injury

      The Ottawa Ankle Rule is a clinical decision aid used to determine if a patient with an ankle injury requires an X-ray to check for a fracture. It is satisfied (meaning a negative result and no need for an X-ray) if the patient has none of the following:

      Ankle X-ray is required if there is pain in the malleolar zone and any of the following:

      • Bone tenderness along the distal 6 cm of the posterior edge of the tibia or the tip of the medial malleolus.

      • Bone tenderness along the distal 6 cm of the posterior edge of the fibula or the tip of the lateral malleolus.

      • Inability to bear weight both immediately after the injury and for four steps during the initial evaluation.

      A foot X-ray is required if there is pain in the midfoot zone and any of the following:

      • Bone tenderness at the base of the fifth metatarsal.

      • Bone tenderness at the navicular bone.

      • Inability to bear weight both immediately after the injury and for four steps during the initial evaluation.

      The key takeaway, high diagnostic accuracy of a negative Ottawa ankle rule. When the rule is satisfied (meaning none of the criteria are met), the Likelihood Ratio is very low. This low LR means that the probability of an ankle fracture is dramatically reduced, allowing a clinician to confidently withhold an X-ray.


      • Original Wells score

        • Condition Diagnosis: Deep venous thrombosis
        • Clinical Scenario: Acute calf pain and swelling
        • Definition: Clinicians combine a Wells score ≤0 with a negative quantitative D-dimer before stopping workup.

      "Original Wells rule" for DVT:

      Criteria for Deep Vein Thrombosis (DVT)

      • Active cancer (ongoing treatment, or within the last 6 months, or palliative): +1 point

      • Paralysis, paresis, or recent plaster immobilization of the lower limbs: +1 point

      • Recently confined to bed for 3+ days or major surgery within the previous 12 weeks: +1 point

      • Localized tenderness along the distribution of the deep venous system: +1 point

      • Entire leg swelling: +1 point

      • Calf swelling at least 3cm larger than the asymptomatic leg (measured 10cm below the tibial tuberosity): +1 point

      • Pitting edema confined to the symptomatic leg: +1 point

      • Collateral superficial veins (non-varicose veins): +1 point

      • Previously documented DVT: +1 point

      • Alternative diagnosis at least as likely as DVT: -2 points

      The total score is then used to categorize the patient's risk of having a DVT:

      • A score of 0 or less: Low probability for DVT.

      • A score of 1 or 2: Moderate probability.

      • A score of 3 or more: High probability.


      • HINTS peripheral

        • Condition Diagnosis: Posterior circulation stroke
        • Clinical Scenario: Acute sustained vertigo, nausea, and vomiting

      The term "HINTS peripheral" refers to the specific combination of findings on the HINTS exam that are consistent with a benign, peripheral cause of vertigo, such as vestibular neuritis or labyrinthitis. - Head Impulse Test (HI-): This test assesses the vestibulo-ocular reflex (VOR).

      - **Peripheral finding:** The test is **abnormal** (or "positive"). This means that when the clinician rapidly turns the patient's head, the patient's eyes cannot stay fixed on the target (e.g., the clinician's nose) and must make a corrective "saccade" (a quick, jerky movement) to catch up. An abnormal Head Impulse Test is a reassuring sign because it indicates a problem with the peripheral vestibular system.
      
      • Nystagmus (-N-): This test assesses for involuntary eye movements.

        • Peripheral finding: The nystagmus is unidirectional and horizontal. This means the eyes beat in one direction regardless of where the patient is looking. This is a reassuring sign. Conversely, nystagmus that changes direction with the gaze or is vertical is a sign of central pathology.
      • Test of Skew (-TS): This test assesses for vertical eye misalignment.

        • Peripheral finding: The test is negative. There is no vertical misalignment of the eyes when the clinician quickly covers and uncovers them. This is a reassuring sign. The presence of a vertical correction ("skew deviation") is a sign of a central problem.

      In summary, a "HINTS peripheral" finding means all three components of the HINTS exam are consistent with a peripheral cause: an abnormal Head Impulse Test, unidirectional nystagmus, and a negative Test of Skew. This is a powerful combination that allows a clinician to confidently "stop" the stroke workup and focus on managing the benign vestibular disorder.


      • Alvarado score

        • Condition Diagnosis: Acute appendicitis
        • Clinical Scenario: Acute abdominal pain Alvarado score: often remembered by the mnemonic MANTRELS: for assessing likely hood of appendicitis.
      • Migration of pain to the right iliac fossa (1 point)

      • Anorexia (1 point)

      • Nausea or vomiting (1 point)

      • Tenderness in the right iliac fossa (2 points)

      • Rebound tenderness (1 point)

      • Elevated temperature (>37.3°C or 99.1°F) (1 point)

      • Leukocytosis (>10,000/mm³) (2 points)

      • Shift of leukocytes to the left (>70% neutrophils) (1 point)

      A low Alvarado score (specifically, a score of 4 or less) has a very low Likelihood Ratio (LR = 0.1). This means that if a patient's symptoms, signs, and labs result in a score of 4 or less, the probability of them having acute appendicitis is dramatically decreased.


      • Heckerling score

        • Condition Diagnosis: Pneumonia
        • Clinical Scenario: Acute cough and fever
        • Definition: The clinician scores 1 point for each of the following findings if present:
          • temperature >37.8°C
          • heart rate >100 beats/min
          • crackles
          • diminished breath sounds
          • absence of asthma.

      score of 0 or 1 has a low likelyhood of pneumonia.


      • Probe-to-bone test**

        • Condition Diagnosis: Osteomyelitis
        • Clinical Scenario: Diabetic foot ulcer
        • Definition: The clinician gently probes the foot ulcer with a blunt metal probe and identifies a rock-hard, gritty base without intervening soft tissue (positive test) or fails to observe this (negative test).

      Negative test has low likelyhood of osteomyelitis.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Tesmer and colleagues uses fiber photometry recordings, sophisticated analysis of movement, and deep learning algorithms to provide compelling evidence that activity in hypothalamic hypocretin/orexin neurons (HONs) correlates with net body movement over multiple behaviors. By examining projection targets, the authors show that hypocretin/orexin release differs in projection targets to the locus coeruleus and substantia nigra, pars compacta. Ablation of HONs does not cause differences in the power spectra of movements. Movement tracking ability of HONs is independent of HON activity that correlates with blood glucose levels. Finally, the authors show that body movement is not encoded to the same extent in other neural populations.

      Strengths:

      The major strengths of the study are the combination of fiber photometry recordings, analysis of movement in head-fixed mice, and sophisticated classification of movement using deep learning algorithms. The experiments seem to be well performed, and the data are well presented, visually. The data support the main conclusions of the manuscript.

      Weaknesses:

      To some degree, it is already known that hypocretin/orexin neurons correlate with movement and arousal, although this manuscript studies this correlation with unprecedented sophistication and scale.

      Taken together, this study is likely to be impactful to the field and our understanding of HONs across behavioral states.

    2. Reviewer #4 (Public review):

      Summary:

      Using head-fixed approach, the authors show a rapid impact of movement on the activity level of hypothalamic orexin/hypocretin neurons.

      Strengths:

      The head-fixed approach is great to isolate specific movements and their impact on neuronal activity.

      Weaknesses:

      Many of the weaknesses that were noted in the previous round of review have been addressed.

    1. AbstractUncovering the epigenomic regulation of immune responses is essential for a comprehensive understanding of host defence mechanisms, though remains poorly investigated in farmed fish. We report the first annotation of the innate immune regulatory response in the turbot genome (Scophthalmus maximus), integrating RNA-Seq with ATAC-Seq and ChIP-Seq (H3K4me3, H3K27ac and H3K27me3) data from head kidney (in vivo) and primary leukocyte cultures (in vitro) 24 hours post-stimulation with viral (poly I:C) and bacterial (inactive Vibrio anguillarum) mimics. Among the 8,797 differentially expressed genes (DEGs), we observed enrichment of transcriptional activation pathways in response to Vibrio and immune pathways - including interferon stimulated genes - for poly I:C. We identified notable differences in chromatin accessibility (20,617 in vitro, 59,892 in vivo) and H3K4me3-bound regions (11,454 in vitro, 10,275 in vivo) between stimulations and controls. Overlap of DEGs with promoters showing differential accessibility or histone mark binding revealed significant coupling of the transcriptome and chromatin state. DEGs with activation marks in their promoters were enriched for similar functions to the global DEG set, but not always, suggesting key regulatory genes being in poised state. Active promoters and putative enhancers were enriched in specific transcription factor binding motifs, many common to viral and bacterial responses. Finally, an in-depth analysis of immune response changes in chromatin state surrounding key DEGs encoding transcription factors was performed. This multi-omics investigation provides an improved understanding of the epigenomic basis for the turbot immune responses and provides novel functional genomic information, leverageable for disease resistance selective breeding.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf077), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer name: Aijun Ma

      In the manuscript "Multiomics uncovers the epigenomic and transcriptomic response to viral and bacterial stimulation in turbot", many investigations were applied to uncover the immune regulatory response in the turbot. This multi-omics investigation provided an improved understanding of the epigenomic basis of turbot immune response and offers novel functional genomic information. However, some aspects need to be considered in order to improve the manuscript, as indicated below. 1 Line 16: In this sentence, authors used "the innate immune regulatory response" to describe the response of these two stimuli in a tissue and cell. Innate immunity is a very strict term, and it is not appropriate to use it here. 2 Line 34-36: poly I:C and inactive Vibrio anguillarum were just like PAMP, the response to these two stimulations cannot represent the process of disease defense. The sentence "which can be leveraged for disease resistance selective breeding" was listed in conclusions, that was not accurate. Suggest moving this sentence to the outlook section. 3 Line 80-87: Head kidney is a key lymphoid organ in most marine fishes, and plays central role in fish immunity. It is inappropriate to only talk about its innate immune function. Vibrio is a common bacterium in seawater, while Vibrio anguillarum is an opportunistic pathogen. Strictly speaking, experimental fish will inevitably meet Vibrio during the breeding process before the experiment. Suggest reorganizing the sentences of this paragraph.

    2. AbstractUncovering the epigenomic regulation of immune responses is essential for a comprehensive understanding of host defence mechanisms, though remains poorly investigated in farmed fish. We report the first annotation of the innate immune regulatory response in the turbot genome (Scophthalmus maximus), integrating RNA-Seq with ATAC-Seq and ChIP-Seq (H3K4me3, H3K27ac and H3K27me3) data from head kidney (in vivo) and primary leukocyte cultures (in vitro) 24 hours post-stimulation with viral (poly I:C) and bacterial (inactive Vibrio anguillarum) mimics. Among the 8,797 differentially expressed genes (DEGs), we observed enrichment of transcriptional activation pathways in response to Vibrio and immune pathways - including interferon stimulated genes - for poly I:C. We identified notable differences in chromatin accessibility (20,617 in vitro, 59,892 in vivo) and H3K4me3-bound regions (11,454 in vitro, 10,275 in vivo) between stimulations and controls. Overlap of DEGs with promoters showing differential accessibility or histone mark binding revealed significant coupling of the transcriptome and chromatin state. DEGs with activation marks in their promoters were enriched for similar functions to the global DEG set, but not always, suggesting key regulatory genes being in poised state. Active promoters and putative enhancers were enriched in specific transcription factor binding motifs, many common to viral and bacterial responses. Finally, an in-depth analysis of immune response changes in chromatin state surrounding key DEGs encoding transcription factors was performed. This multi-omics investigation provides an improved understanding of the epigenomic basis for the turbot immune responses and provides novel functional genomic information, leverageable for disease resistance selective breeding.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf077), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer name: Elisabeth Busch-Nentwich

      This is a careful analysis of a large and high-quality dataset that will be a very useful resource for researchers across disciplines. I commend the authors on their extensive metadata, and comprehensive and well annotated data tables, which make this a truly accessible resource. I don't have any major criticism. A few minor points: 1. Typo in Figure 1 (it's immature, not inmature) 2. In Fig 3 Upset plots could be a bit easier to parse 3. Fig 5 doesn't have a legend for the blue gradient (but it's pretty self-explanatory)

    3. AbstractUncovering the epigenomic regulation of immune responses is essential for a comprehensive understanding of host defence mechanisms, though remains poorly investigated in farmed fish. We report the first annotation of the innate immune regulatory response in the turbot genome (Scophthalmus maximus), integrating RNA-Seq with ATAC-Seq and ChIP-Seq (H3K4me3, H3K27ac and H3K27me3) data from head kidney (in vivo) and primary leukocyte cultures (in vitro) 24 hours post-stimulation with viral (poly I:C) and bacterial (inactive Vibrio anguillarum) mimics. Among the 8,797 differentially expressed genes (DEGs), we observed enrichment of transcriptional activation pathways in response to Vibrio and immune pathways - including interferon stimulated genes - for poly I:C. We identified notable differences in chromatin accessibility (20,617 in vitro, 59,892 in vivo) and H3K4me3-bound regions (11,454 in vitro, 10,275 in vivo) between stimulations and controls. Overlap of DEGs with promoters showing differential accessibility or histone mark binding revealed significant coupling of the transcriptome and chromatin state. DEGs with activation marks in their promoters were enriched for similar functions to the global DEG set, but not always, suggesting key regulatory genes being in poised state. Active promoters and putative enhancers were enriched in specific transcription factor binding motifs, many common to viral and bacterial responses. Finally, an in-depth analysis of immune response changes in chromatin state surrounding key DEGs encoding transcription factors was performed. This multi-omics investigation provides an improved understanding of the epigenomic basis for the turbot immune responses and provides novel functional genomic information, leverageable for disease resistance selective breeding.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf077), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer name: Laura Caquelin

      1. Summary of the Study This study provides the first multi-omics investigation of the innate immune response in turbot (Scophthalmus maximus). By integrating RNA-Seq, ATAC-Seq, and ChIP-Seq data, researchers identified changes in gene expression, chromatin accessibility, and histone modifications after viral and bacterial stimulation. The findings reveal a significant coupling between the transcriptome and chromatin state, offering insights for the selection of disease resistance in aquaculture.

      2. Scope of reproducibility

      According to our assessment the primary objective is: Association of ATAC-Seq and ChIP-Seq data with RNA-Seq data

      ● Outcome: Overlap of promoter DARs and DHMRs with DEG promoters ● Analysis method outcome: Hypergeometric test ● Main result: "DARs and DHMRs were much more overrepresented at the promoter regions of upregulated rather than downregulated DEGs" (Table 4, Supplementary Table 11; Lines 403-405, Page 9)

      1. Availability of Materials a. Data ● Data availability: Raw data are available, but generated data from the study are shared with the journal and not yet publicly available ● Data completeness: Complete ● Access Method: Manuscript's supplementary files/Private journal dropbox ● Repository: - ● Data quality: Structured, but lacks variable definitions in supplementary files, making it difficult to interpret and use. b. Code ● Code availability: Not available for the primary result ● Programming Language(s): Excel ● Repository link: - ● License: - ● Repository status: - ● Documentation: README lacks information on hypergeometric test.

      2. Computational environment of reproduction analysis

      ● Operating system for reproduction: MacOS 14.7.4 ● Programming Language(s): Excel ● Code implementation approach: Excel formulas based on methodology description provided by authors ● Version environment for reproduction: Excel version 16.94

      1. Results

      5.1 Original study results ● Results 1: Table 4 and supplementary table 11

      5.3 Steps for reproduction

       Reproduce supplementary table 11 to perform hypergeometric test * Issue 1: No code or instructions for constructing Table 4 in manuscript and README text. ▪ Resolved: Authors shared methodology upon request Authors' Clarification: The hypergeometric test wasn't carried out with any particular script but with the following public online tool, that can be replicated in excel: https://systems.crump.ucla.edu/hypergeometric/ The tool basically runs the following excel formulas: Cumulative distribution function (CDF) of the hypergeometric distribution in Excel =IF(k>=expected,1-HYPGEOM.DIST(k-1,s,M,N,TRUE),HYPGEOM.DIST(k,s,M,N,TRUE)) =IF(k>=((sM)/N),1-HYPGEOM.DIST(k-1,s,M,N,TRUE),HYPGEOM.DIST(k,s,M,N,TRUE)) expected = (sM)/N direction =IF(k=expected,"match",IF(k<expected,"de-enriched","enriched")) fold change =IF(k<expected,expected/k,k/expected)

      where k is the number of successes (intersection of DAR/DHMR in promoters + DEG), s the sample size (DEG), M the number of successes in the population (DAR/DHMR in promoters) and N the population size (28.602 genes). For each condition, the count of downregulated and upregulated DEG (s) was taken from supplementary table 4. Similarly, the count of downregulated and upregulated DAR/DHMR (M) was taken from supplementary table 10, considering only differential peaks that are annotated as "promoter-TSS" in the annotation column (column M). The population size (N) was the total list of genes that were DEG, DAR or DHMR (combining the data on supplementary tables 4 and 11, eliminating duplicates). Finally, the intersection of of DAR and DEG (k) for each condition was retrieved with the following venn diagram online tool: https://bioinformatics.psb.ugent.be/webtools/Venn/" * Issue 2: Discrepancies in DEG counts from supplementary table 11 ▪ Resolved: Investigated variable definitions (using the wrong variable - strand), confirmed that log2FoldChange determines up/down-regulation * Issue 3: Filling in DAR/DHMR values ▪ Unresolved: Unclear correspondence between "promoters" rows and excel file sheets. Does H3K27me3 correspond to the promoters? * Issue 4: Using the Venn diagram tool to find intersections ▪ Unresolved: Worked for one condition (ATC vivo poly (down)) but failed for ATAC vitro-vibrio and ATAC-vivo-vibrio. Tool returns a "Request Entity Too Large" error. * Issue 5: Define the population size ▪ Unresolved: The instructions for defining the population size are not clear. In supplementary table 4, it seems that the variable "Gene ID (ENSEMBL)" should be used, but in supplementary table 10, should the variable "Nearest PromoterID" or "Gene symbol" be used?  Using supplementary table 11 values to perform hypergeometric test Having failed to obtain the values required to reproduce supplementary table 11, the data already provided were used to obtain the "enrichment" and "p-value" values using the excel function provided. * Issue 1: Comparison of p-values ▪ Resolved: For Up condition, extremely small p-values are not displayed correctly due to Excel's limitations in scientific notation. Excel may either display them as zero or in an incomplete scientific format (e.g., 0.00E+00). Using the tool on the web.

      5.4 Statistical comparison Original vs Reproduced results ● Results: Based on the available data in supplementary table 11, the "enrichment" and "p-value" values have been successfully reproduced in most cases. ● Comments: The full table could not be reproduced, particularly the data corresponding to DAR/DHMR, DAR/DHMR+DEG and population size values, due to missing information or unclear definitions in the supplementary files. ● Errors detected: The enrichment value for the Up condition of promoters-vitro-vibrio was incorrectly reported in the manuscript/table. Based on the Excel formula and the online tool used, the correct value appears to be 2.28 instead of 2.82. ● Statistical Consistency: All the values that could be reproduced from the available data matched the original results, except for the detected error.

      1. Conclusion
      2. Summary of the computational reproducibility review The study's results were partially reproduced. Key values such as enrichment and p-values were successfully replicated, but some dataset elements (DAR/DHMR, DAR/DHMR+DEG, and size population) could not be verified due to insufficient methodological details provided in the manuscript. An error in the enrichment value for the Up condition of promoters-vitro-vibrio was identified (2.28 instead of 2.82). The p values used for statistical inference were however successfully reproduced.

      3. Recommendations for authors o Improve data documentation: Define variables in supplementary files. o Provide all code and scripts: Share the excel formulas used for table 4/supplementary table 11. o Clarify statistical methodology: Include detailed methods description for the hypergeometric test. o Enhance reproducibility workflow: Provide a structured README with all necessary steps.

    1. the

      If you feel sick with a cold, the best thing recommended is to stay in bed, relax, drink some Kitkat hot cocoa and snuggle down with a head full of sticky mush and wonderful dreams.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary The authors focused on medaka retinal organoids to investigate the mechanism underlying the eye cup morphogenesis. The authors succeeded to induce lens formation in fish retinal organoids using 3D suspension culture with minimal growth factor-containing media containing the Hepes. At day 1, Rx3:H2B-GFP+ cells appear in the surface region of organoids. At day 1.5, Prox1+cells appear in the interface area between the organoid surface and the core of central cell mass, which develops a spherical-shaped lens later. So, Prox1+ cells covers the surface of the internal lens cell core. At day 2, foxe3:GFP+ cells appear in the Prox1+ area, where early lens fiber marker, LFC, starts to be expressed. In addition, foxe3:GFP+ cells show EdU+ incorporation, indicating that foxe3:GFP+ cells have lens epithelial cell-characters. At day 4, cry:EGFP+ cells differentiate inside the spherical lens core, whose the surface area consists of LFC+ and Prox1+ cells. Furthermore, at day 4, the lens core moves towards the surface of retinal organoids to form an eye-cup like structure, although this morphogenesis "inside out" mechanism is different from in vivo cellular "outside -in" mechanism of eye cup formation. From these data, the authors conclude that optic cup formation, especially the positioning of the lens, is established in retinal organoids though the different mechanism of in vivo morphogenesis.

      Overall, manuscript presentation is nice. However, there are still obscure points to understand background mechanism. My comments are shown below.

      Major comments 1) At the initial stage of retinal organoid morphogenesis, a spherical lens is centrally positioned inside the retinal organoids, by covering a central lens core by the outer cell sheet of retinal precursor cells. I wonder if the formation of this structure may be understood by differential cell adhesive activity or mechanical tension between lens core cells and retinal cell sheet, just like the previous study done by Heisenberg lab on the spatial patterning of endoderm, mesoderm and ectoderm (Nat. Cell Biol. 10, 429 - 436 (2008)). Lens core cells may be integrated inside retinal cell mass by cell sorting through the direct interaction between retinal cells and lens cells, or between lens cells and the culture media. After day 1, it is also possible to understand that lens core moves towards the surface of retinal organoids, if adhesive/tensile force states of lens core cells may be change by secretion of extracellular matrix. I wonder if the authors measure physical property, adhesive activity and solidness, of retinal precursor cells and lens core cells. If retinal organoids at day 1 are dissociated and cultured again, do they show the same patterning of internal lens core covering by the outer retinal cell sheet? *Response: The question, whether different adhesive activity is involved in cell sorting and lens formation is indeed very intriguing. To address this point, we will include additional experiment (see Revision Plan, experiment 1). This experiment will be based on the dissociation and re-aggregation of lens-forming organoids as suggested by the reviewer. To monitor cell type specific sorting, we will employ a lens progenitor reporter line Foxe3::GFP and the retina-specific Rx2::H2B-RFP. If different adhesive activities of lens and retinal progenitor cells are involved and drive the process of cell sorting, dissociation and re-aggregation will result in cell sorting based on their identity. *

      2) Optic cup is evaginated from the lateral wall of neuroepithelium of the diencephalon. In zebrafish, cell movement occurs from the pigment epithelium to the neural retina during eye morphogenesis in an FGF-dependent manner. How the medaka optic cup morphogenesis is coordinated? I also wonder if the authors conduct the tracking of cell migration during optic cup morphogenesis to reveal how cell migration and cell division are regulated in lens of the Medaka retinal organoids. It is also interesting to examine how retinal cell movement is coordinated during Medaka retinal organoids. Response: Looking into the detail of how optic cup-looking tissue arrangement of ocular organoids is achieved on cellular level is of course interesting. Our previous study showed that optic vesicles of medaka retinal organoids do not form optic cups (for details please see Zilova et al., 2021, eLIFE). We assume that the formation of cup-looking structure of the ocular organoids is mediated by the following processes: establishment of retina and lens domains at the specific region of the organoid – retina on the surface and lens in the center (see Figure S2 d and Figure 3e, and Figure 4). Further dislocation of the centrally formed lens towards the organoid periphery through the retina layer, places the lens to the periphery while retinal cells stay static. We assume that the “cup-like” shape is acquired by extrusion of the lens from the center of the organoid. To clarify this process with respect to tissue rearrangements and cell movements, we will include additional experiments (see Revision Plan, experiment 2) and follow lens- and retina-fated cells (by employing lens-specific Foxe3::GFP and retina-specific Rx2::H2B-RFP reporter lines) through the process of lens extrusion to dissect individual contribution of retinal/lens cells to this process (cross-reference with Reviewer #2).

      3) The authors showed that blockade of FGF signaling affects lens fiber differentiation in day 1-2, whereas lens formation seems to be intact in the presence of FGF receptor inhibitor in day 0-1. I suggest the authors to examine which tissue is a target of FGF signaling in retinal organoids, using markers such as pea3, which is a downstream target of ERK branch of FGF signaling. Since FGF signaling promotes cell proliferation, is the lens core size normal in SU5402-treated organoids from day 0 to day 1?

      Response: Assessing the activity of FGF signaling (cross-reference to Reviewer #3) in the organoids is indeed an important point. To address which tissue is the target of FGF signaling we will include additional experiments and assess the phosphorylation status of ERK (pERK) and expression of the ERK downstream target pea3, as suggested by the reviewer (see Revision Plan, experiment 3). That will allow to identify the tissue within the organoid responding to the Fgf signaling.

      Lens core size of organoids treated with SU5402 from day 0 to day 1 is fully comparable to the control (please see Figure 6b).

      • *

      4) Fig. 3f and 3g indicate that there is some cell population located between foxe3:GFP+ cells and rx2:H2B-RFP+ cells. What kind of cell-type is occupied in the interface area between foxe3:GFP+ cells and rx2:H2B-RFP+ cells?

      Response: That is for sure an interesting question. We are aware of this population of cells. We currently do not have data that would with certainty clarify the fate of those cells. We are currently following up on that question with the use of scRNA sequencing, however we will not be able to address this question in the current manuscript.* * 5) Fig. 5e indicates the depth of Rx3 expression at day 1. Is the depth the thickness of Rx3 expressing cell sheet, which covers the central lens core in the organoids? If so, I wonder if total cell number of Rx3 expressing cell sheet may be different in each seeded-cell number, because thickness is the same across each seeded-cell number, but the surface area size may be different depending on underneath the lens core size. Please clarify this point.

      *Response: Yes. Figure 5e indicates the thickness of the cell sheet expressing Rx3 that lies on the surface of the organoid. Indeed, the number of Rx3-expressing cells (and lens cells) scales with the size of the organoid as stated in the submitted manuscript. *

      • *

      6) Noggin application inhibits lens formation at day 0-1. BMP signaling regulates formation of lens placode and olfactory placode at the early stage of development. It is interesting to examine whether Noggin-treated organoid expands olfactory placode area. Please check forebrain territory markers.

      Response: What tissue differentiates at the expense of the lens in BMP inhibitor-treated organoids is of course an intriguing question. To address the identity of cells differentiated under this condition we will include an additional experiment (see Revision Plan, experiment 4 as suggested by the reviewer). We will check for the expression of Lhx2, Otx2 and Huc/D to address this point.

      I have no minor comments

      **Referees cross-commenting**

      I agree that all reviewers have similar suggestions, which are reasonable and provided the same estimated time for revision.

      Reviewer #1 (Significance (Required)):

      Strength: This study is unique. The authors examined eye cup morphogenesis using fish retinal organoids. Eye cup normally consists of the lens, the neural retina, pigment epithelium and optic stalk. However, retinal organoids seem to be simple and consists of two cell types, lens and retina. Interestingly, a similar optic cup-like structure is achieved in both cases; however, underlying mechanism is different. It is interesting to investigate how eye morphogenesis is regulated in retinal organoids,under the unconstrained embryo-free environment.

      Limitation: Description is OK, but analysis is not much profound. It is necessary to apply a bit more molecular and cellular level analysis, such as tracking of cell movement and visualization of FGF signnaling in organoid tissues.

      Advancement: The current study is descriptive. Need some conceptual advance, which impact cell biology field or medical science.

      Audience: The target audience of current study are still within ophthalmology and neuroscience community people, maybe translational/clinical rather than basic biology. To beyond specific fields, need to formulate a general principle for cell and developmental biology.



      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this study from Stahl et al., the authors demonstrate that medaka pluripotent embryonic cells can self-organise into eye organoids containing both retina and lens tissues. While these organoids can self-organize into an eye structure that resembles the vertebrate eye, they are built from a fundamentally different morphogenetic process - an "inside-out" mechanism where the lens forms centrally and moves outward, rather than the normal "outside-in" embryonic process. This is a very interesting discovery, both for our understanding of developmental biology and the potential for tissue engineering applications. The study would benefit from some additional experiments and a few clarifications.

      The authors suggest that the lens cells are the ones that move from the central to a more superficial position. Is this an active movement of lens cells or just the passive consequence of the retina cells acquiring a cup shape? Are the retina cells migrating behind the lens or the lens cells pushing outwards? High-resolution imaging of organoid cup formation, tracking retina cells in combination with membrane labeling of all cells would help elucidate the morphogenetic processes occurring in the organoids. Membrane labeling would also be useful as Prox1 positive lens cells appear elongated in embryos while in the organoids, cell shapes seem less organised, less compact and not elongated (for example as shown in Fig 3f,g).

      Response: Looking into the detail of how optic cup-looking tissue arrangement of ocular organoids is achieved on cellular level is of course interesting. We assume that the formation of cup-looking structures of the ocular organoids is mediated by following processes: establishment of retina and lens domains at a specific region of the organoid – retina on the surface and lens in the center (see Figure S2 d and Figure 3e, and Figure 4). Further dislocation of centrally formed lenses towards the organoid periphery through the retina layer, place the lens to the periphery while retinal cells stay static. We assume that the “cup-like” shape is acquired by extrusion of the lens. To clarify this process with respect to tissue rearrangements and cell movements, we will include additional experiments (see Revision Plan, experiment 2). We will follow lens- and retina-fated cells (by employing lens-specific Foxe3::GFP and retina-specific Rx2::H2B-RFP reporter lines) through the process of lens extrusion to dissect the individual contribution of retinal/lens cells to this process (cross-reference with Reviewer #1).

      The organoids could be a useful tool to address how cell fate is linked to cell shape acquisition. In the forming organoids, retinal tissue initially forms on the outside, while non-retinal tissue is located in the centre; this central tissue later expresses lens markers. Do the authors have any insights into why fate acquisition occurs in this pattern? Is there a difference in proliferation rates between the centrally located cells and the external ones? Could it be that highly proliferative cells give rise to neural retina (NR), while lower proliferating cells become lens? *Response: The question how is the retinal and lens domain established in this specific manner is indeed intriguing and very interesting. We dedicated a part of the discussion to this topic. We discuss the role of the diffusion limit and the potential contribution of BMB and FGF signaling to this arrangement. Additional experiments (see Revision Plan, experiment 3) addressing the source and target tissues of FGF and BMP signaling in the organoid will ultimately bring more clarity to our understanding of the tissue arrangements in the organoid. *

      *Although analysis of the proliferation rate of the cells at the surface and in the central region of the organoid might possibly show some differences in the proliferation rates between lens and retinal cells, we do not have any indications, that the proliferation rate itself would be instructive or superior to the cell fate decisions. *

      What happens in organoids that do not form lenses? Do these organoids still generate foxe3 positive cells that fail to develop into a proper lens structure? And in the absence of lens formation, does the retina still acquire a cup shape?

      *Response: Lens formation is primarily dependent on acquisition/specification of Foxe3-expressing lens placode progenitors. If those are not present, a lens does not develop. Once Foxe3-expressing progenitors are established, a lens is formed in unperturbed conditions (measured by the presence of expression of crystallin proteins). In such conditions, organoids that do not have a lens, do not carry Foxe3-expressing cells. *

      *In the absence of the lens, the organoid is composed of retinal neuroepithelium, that does not form an optic cup (for details of such phenotypes please see Zilova et al., 2021, eLIFE). *

      The author suggest that lens formation occurs even in the absence of Matrigel. Is the process slower in these conditions? Are the resulting organoids smaller? While there are indeed some LFC expressing cells by day2, these cells are not very well organised and the pattern of expression seems dotty. Moreover, LFC staining seems to localise posterior to the LFC negative, lens-like structure (e.g. Fig.S1 3o'clock). How do these organoids develop beyond day 4? Do they maintain their structural integrity at later stages? The role of HEPES in promoting organoid formation is intriguing. Do the authors have any insights into why it is important in this context? Have the authors tried other culture conditions and does culture condition influence the morphogenetic pathways occurring within the organoids? *Response: We thank the reviewer for pointing this out. We were not clear in the wording and describing of our observation. Indeed, Matrigel is not required for acquisition of lens fate, which can be demonstrated with the expression of lens-specific markers. However, the presence of Matrigel has a profound impact on the structural aspects of organoid formation. Matrigel is essential for organization of retinal-committed cells into the retinal epithelium (Zilova et al., 2021, eLIFE). The absence of the structure of the retinal epithelium can indeed negatively impact on the cellular organization and the overall lens structure. To clarify the contribution of the Matrigel to the speed of organoid lens development and to the overall structure of the organoid lens we will perform additional experiments (see Revision Plan, experiment 5). With the use of Foxe3::GFP reporter line we will measure the onset of the lens-specific gene expression. In addition, we will use the immunohistochemistry to assess the gross morphology and size of the organoids grown without the Matrigel (cross-reference with Reviewer #3). *

      *The role of the HEPES in lens formation is indeed very intriguing and currently under investigation. As HEPES is mainly used to regulate pH of the culture media and pH might have an impact on multiple cellular processes, it will require significant time investment to dissect molecular mechanism underlying the effect of HEPES on the process of lens formation (cross reference with Reviewer #3) and therefore cannot be addressed in the current manuscript. *

      **Referees cross-commenting** Pleased to see that all the other reviewers are positive about the study and raise similar concerns and comments

      Reviewer #2 (Significance (Required)):

      This is a very interesting paper, and it will be important to determine whether this alternative morphogenetic process is specific to medaka or if similar developmental routes can be recapitulated in organoid cultures from other vertebrate species.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary: The manuscript by Stahl and colleagues reports an approach to generate ocular organoids composed of retinal and lens structures, derived from Medaka blastula cells. The authors present a comprehensive characterisation of the timeline followed by lens and retinal progenitors, showing these have distinct origins, and that they recapitulate the expression of differentiation markers found in vivo. Despite this molecular recapitulation, morphogenesis is strikingly different, with lens progenitors arising at the centre of the organoid, and subsequently translocating to the outside.

      Comments:

      -The manuscript presents a beautiful set of high quality images showing expression of lens differentiation markers over time in the organoids. The set of experiments is very robust, with high numbers of organoids analysed and reproducible data. The mechanism by which lens specification is promoted in these organoids is, however, poorly analysed, and the reader does not get a clear understanding of what is different in these experiments, as compared to previous attempts, to support lens differentiation. There is a mention to HEPES supplementation, but no further analysis is provided, and the fact that the process is independent of ECM contradicts, as the authors point out, previous reports. The manuscript would benefit from a more detailed analysis of the mechanisms that lead to lens differentiation in this setting.

      *Response: The role of the HEPES in lens formation is indeed very intriguing and under current investigation. As HEPES is mainly used to regulate pH of the culture media and pH might have an impact on multiple cellular processes it will require a significant time investment to dissect molecular mechanism underlying the effect of HEPES on the process of lens formation (cross reference with Reviewer #2) and therefore unfortunately cannot be addressed in the current manuscript. *

      *To clarify the contribution of the Matrigel to the organoid lens development we will perform additional experiments (see Revision Plan, experiment 5). With the use of Foxe3::GFP reporter line we will measure the onset of the lens-specific gene expression. In addition, we will use the immunohistochemistry to assess the gross morphology and size of the organoids grown without the Matrigel (cross-reference with Reviewer #2). * -The markers analysed to show onset of lens differentiation in the organoids seem to start being expressed, in vivo, when the lens placode starts invaginating. An analysis of earlier stages is not presented. This would be very informative, allowing to determine whether progenitors differentiate as placode and neuroepithelium first, to subsequently continue differentiating into lens and retina, respectively. Could early placodal and anterior neural plate markers be analysed in the organoids? This would provide a more complete sequence of lens vs retina differentiation in this model.

      Response: Yes. The figures show the expression of lens and retinal markers in the embryo in later developmental stages and the timing of their expression can be documented with higher temporal resolution. In the revised version of the manuscript, we will provide the information about the onset of expression of Rx3::H2B-GFP (retina) and Foxe3::GFP (lens) (see attached figure). Rx3 represents one of the earlies markers labeling the presumptive eye field within the region of the anterior neural plate (S16, late gastrula). FoxE3::GFP expression can be detected within the head surface ectoderm before the lens placode is formed showing that Foxe3 is a suitable marker of placodal progenitors in medaka.

      *We are convinced that the onset of Rx3 and Foxe3-driven reporters is early enough to make the claim about the separate origin of the lens (placodal) and retinal (anterior neuroectoderm) tissues within the ocular organoids. *

      -The analysis of BMP and Fgf requirement for lens formation and differentiation is suggestive, but the source of these signals is not resolved or mentioned in the manuscript. Are BMP4 and Fgf8 expressed by the organoids? Where are they coming from?

      Response: Indeed, addressing the source of BMP and FGF activation would bring more clarity in understanding the mechanism of retina/lens specification within the ocular organoids (cross reference with Reviewer #1). To address this point, we will include additional experiments (see Revision Plan, experiment 3). We will analyze the expression of respective ligands (Bmp4 and Fgf8) and activation of downstream effectors of BMP and FGF signaling pathways within the ocular organoids as suggested by Reviewer #1 and Reviewer #3.

      • *

      -The fact that the lens becomes specified in the centre of the organoid is striking, but it is for me difficult to visualise how it ends up being extruded from the organoid. Did the authors try to follow this process in movies? I understand that this may be technically challenging, but it would certainly help to understand the process that leads to the final organisation of retinal and lens tissues in the organoid. There is no discussion of why the morphogenetic mechanism is so different from the in vivo situation. The manuscript would benefit from explicitly discussing this. Response: Following the extruding lens in vivo is indeed very relevant suggestion. To clarify the process of ocular organoid formation in the respect of tissue rearrangements and cell movements, we will include additional experiment (see Revision Plan, experiment 2). We will follow lens- and retina-fated cells (by employing lens-specific Foxe3::GFP and retina-specific Rx2::H2B-RFP reporter lines) through the process of lens extrusion (cross-reference with Reviewer #1 and Reviewer #2).

      **Referees cross-commenting**

      We all seem to have similar comments and concerns. I think overall the suggestions are feasible and realistic for the timeframe provided.

      Reviewer #3 (Significance (Required)):

      This study describes a reproducible approach to differentiate ocular organoids composed of lens and retinal tissues. The characterisation of lens differentiation in this model is very detailed, and despite the morphogenetic differences, the molecular mechanisms show many similarities to the in vivo situation. The manuscript however does not highlight, in my opinion, why this model may be relevant. Clearly articulating this relevance, particularly in the discussion, will enhance the study and provide more clarity to the readers regarding the significance of the study for the field of organoid research, ocular research and regenerative studies.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Asthenospermia, characterized by reduced sperm motility, is one of the major causes of male infertility. The "9 + 2" arranged MTs and over 200 associated proteins constitute the axoneme, the molecular machine for flagellar and ciliary motility. Understanding the physiological functions of axonemal proteins, particularly their links to male infertility, could help uncover the genetic causes of asthenospermia and improve its clinical diagnosis and management. In this study, the authors generated Ankrd5 null mice and found that ANKRD5-/- males exhibited reduced sperm motility and infertility. Using FLAG-tagged ANKRD5 mice, mass spectrometry, and immunoprecipitation (IP) analyses, they confirmed that ANKRD5 is localized within the N-DRC, a critical protein complex for normal flagellar motility. However, transmission electron microscopy (TEM) and cryo-electron tomography (cryo-ET) of sperm from Ankrd5 null mice did not reveal any structural abnormalities.

      Strengths:

      The phenotypes observed in ANKRD5-/- mice, including reduced sperm motility and male infertility, are conversing. The authors demonstrated that ANKRD5 is an N-DRC protein that interacts with TCTE1 and DRC4. Most of the experiments are thoughtfully designed and well executed.

      Weaknesses:

      The cryo-FIB and cryo-ET analyses require further investigation, as detailed below. The molecular mechanism by which the loss of ANKRD5 affects sperm flagellar motility remains unclear. The current conclusion that Ankrd5 knockout reduces axoneme stability is not well-supported. Specifically, are other axonemal proteins diminished in Ankrd5 knockout sperm? Conducting immunofluorescence analyses and revisiting the quantitative proteomics data may help address these questions.

      Reviewer #2 (Public review):

      Summary:

      The manuscript investigates the role of ANKRD5 (ANKEF1) as a component of the N-DRC complex in sperm motility and male fertility. Using Ankrd5 knockout mice, the study demonstrates that ANKRD5 is essential for sperm motility and identifies its interaction with N-DRC components through IP-mass spectrometry and cryo-ET. The results provide insights into ANKRD5's function, highlighting its potential involvement in axoneme stability and sperm energy metabolism.

      Strengths:

      The authors employ a wide range of techniques, including gene knockout models, proteomics, cryo-ET, and immunoprecipitation, to explore ANKRD5's role in sperm biology.

      Weaknesses:

      (1) Limited Citations in Introduction: Key references on the role of N-DRC components (e.g., DRC1, DRC2, DRC3, DRC5) in male infertility are missing, which weakens the contextual background.

      (2) Lack of Functional Insights: While interacting proteins outside the N-DRC complex were identified, their potential roles and interactions with ANKRD5 are not adequately explored or discussed.

      (3) Mitochondrial Function Uncertainty: Immunofluorescence suggests possible mitochondrial localization for ANKRD5, but experiments on its role in energy metabolism (e.g., ATP production, ROS) are insufficient, especially given the observed sperm motility defects.

      (4) Glycolysis Pathway Impact: Proteomic analysis indicates glycolysis pathway disruptions in Ankrd5-deficient sperm, but the link between these changes and impaired motility is not well explained.

      (5) Cryo-ET Data Limitations: The structural analysis of the DMT lacks clarity on how ANKRD5 influences N-DRC or RS3. The low quality of RS3 data hinders the interpretation of ANKRD5's impact on axoneme structure.

      (6) Discussion of Findings: The manuscript could benefit from a deeper discussion on the broader implications of ANKRD5's interactions and its role in sperm energy metabolism and motility mechanisms.

      Reviewer #1 (Recommendations for the authors):

      EMD-35210/35211 are 16-nm maps while the Ankrd5 null map is 8-nm repeat. To generate a difference map, the authors should use maps of the same periodicity.

      Thank you for your suggestion. We have replaced the old 16-nm maps with an 8nm map and updated the images (Fig. 7). The 8nm repeats DMT density map we used was obtained by summing two 16nm repeats DMTs that were staggered 8nm apart from each other (EMD-35229). The replacement of the 16nm repeats DMT density map with the 8nm repeats DMT density map has no effect on our scientific findings and experimental conclusions.

      "We were able to detect the N-DRC structure in WT sperm, but we failed to find the density of N-DRC adjacent to RS3 in Ankrd5 null sperm". Do the authors imply that the N-DRC is lost in Ankrd5 null sperm? To draw a conclusion, they need to compare the 96-nm map of WT sperm axoneme with that of Ankrd5 null sperm axoneme. Quantitative proteomics shows that the levels of most N-DRC components in Ankrd5 null sperm are comparable with those of WT sperm. Why are the quantitative proteomics results not consistent with the structural observation?

      We are very sorry for this improper description. Our original description was not rigorous, which led to misunderstanding. Our original intention is to say that the quality of the density map causes the N-DRC to be difficult to recognize, rather than that the N-DRC has disappeared. In addition, attempts to classify 96nm repeats DMT structure during our data processing failed. In the process of classification, we found that the density of RS was not good. So we changed the picture and the description.

      We have changed the description in the text: "During the STA process, many particles were misaligned or deformed in the classification results, revealing various degrees of deformation—particularly affecting the B-tube (Figure 9,Fig. S9E). We could retain only ~10% of the DMT particles to obtain the final density map for ANKRD5-KO sperm (Fig. S9E), whereas ~70% were usable in WT dataset as reported previously [59]. The mutant DMT density map also displayed roughness at its periphery, indicating substantial structural heterogeneity (Fig. S9E). Even after discarding a large fraction of deformed particles, the final density map still showed evident artifacts, implying that although the mutant DMT preserves the fundamental features of both tubes, its shape is highly heterogeneous (Fig. S9E). Furthermore, attempts to classify the 96-nm repeats did not yield a clear density for radial spokes (RSs) (Fig. S9F), indicating that ANKRD5 deficiency may affect the stability of other accessory structures, such as RSs [24-26]. In the raw tomograms, RSs in ANKRD5-KO sperm appeared less regularly arranged than those in WT(Fig. S9A and C)."

      Figure S9. The states of DMT particles in sperm of Ankrd5-KO mouse. (A) and (C) Tomogram slices of WT and Ankrd5-KO in Dynamo (The data for WT mouse sperm was EMPIARC-200007). DMT and RS are marked with white dashed lines and white arrows, respectively. (B) and (D) Comparison of DMT particle states between WT and Ankrd5-KO in Dynamo. The visual angles of the DMT particles shown in (B) and (D) show that the DMT fibers within the white box in (A) and (B) are divided equally into 10 slices along the direction of the white arrow, respectively. The DMT particle shapes of WT and Ankrd5-KO are marked by white dashed lines on the right of (B) and (D). The white arrow in (D) identifies the junction of A-tube and B-tube that is suspected to be disconnected. (E) Deformed particles discarded in 3D classification and final aligned DMT artifacts. (F) 3D classification of attempted RS locations.

      In the process of obtaining DMT with a period of 8nm, we discarded about 90% of the particles (some were mis-aligned particles and some were deformed particles). Although the final DMT density showed complete A-tube and B-tube, both the particles in our calculation process and the projection of the final structure showed strong particle heterogeneity.

      Our results show that in ANKRD5-KO mice, the structure of sperm DMT itself has no apparent effect in tube A and tube B, and we found that DMT in the original tomography were not smooth. We speculate that loss of ANKRD5 may reduce the interaction between N-DRC and neighboring DMTs, resulting in nonuniform force on the axoneme during sperm swimming, which may limit our ability to obtain an average structure of the more dynamic components (RS, N-DRC, ODA, IDA). Therefore, when trying to classify 96nm repeat DMTS, we can only see the density of suspected RS3 and RS2, but it is difficult to obtain the confident 96nm repeat DMT density. It is difficult to further discuss the effects of ANKRD5 on RS3 and N-DRC. To test this conjecture, we further classified the density of suspected RS3, and the results obtained exhibited a variety of mixed states (Fig. S9). To avoid confusion, we have already removed the discussion of RS3 and the related images from the original text.

      It's not clear whether N-DRC proteins and ODA, IDA, RS proteins are affected in DMT of Ankrd5 null sperm. Immunofluorescence staining would help to resolve this problem.

      Thank you for your suggestion. The levels of N-DRC proteins and ODA, IDA, RS were detected by immunofluorescence, and no difference was found between ANKRD5-null sperm and control. We added figure S6 as a new figure and added the following description in red font on page 7 of the article:

      Figure S6. Immunofluorescence results of ANKRD5-null sperm and control. DRC11 serves as a marker protein for N-DRC (nexin-dynein regulatory complex), NME5 as a marker for RS (radial spoke), DNALI1 as a marker for IDA (inner dynein arm), and DNAI1 as a marker for ODA (outer dynein arm).

      In addition, ODA and RS were also marked in the figure when we further analyzed the Cryo-ET data (Figure 7 and Figure S9).

      Does Ankrd5 express in other cilia cells except for sperm?

      We stained mouse respiratory cilia using immunofluorescence and found that the protein was also expressed in mouse respiratory cilia. To support this finding, we added Figure S3 as a new figure and included a description in red font on page 6 of the article.

      Page 7, "However, in the process of manual selection of DMT fibers, we found that they were not as smooth as WT particles." This description is too subjective. Please show the data.

      Thank you for your suggestion. We have added a supplementary figure showing the difference between mutant samples and WT samples during particle picking (Fig. S9).

      Abstract, "These findings establish that ANKRD5 is critical for maintaining axoneme stability, "Page 7, "This suggests that the knockout of Ankrd5 may affect the structural stability of the axoneme," I do not see direct evidence that Ankrd5 KO reduces the axoneme stability.

      Our phrasing was not sufficiently precise. These findings suggest that ANKRD5 plays a crucial role in limiting the relative sliding between adjacent microtubule doublets during axoneme bending, rather than directly contributing to the stability of the axoneme. This sentence has already been modified in the abstract and marked in red. We have added the description in the text: "These findings suggest that ANKRD5 may weaken the N-DRC’s "car bumper" role, reducing the buffering effect between adjacent DMTs and thereby destabilizing axoneme structures during intense axoneme motility." and "To further investigate the RS, IDA, and ODA structures of the axonemes, we conducted immunofluorescence assays in both Ankrd5<sup>-/-</sup> mice and the control group. No significant differences were detected between the two groups (Fig. S6)."

      Page 8, "but our study offers new perspectives for male contraceptive research". Could the authors expand this a bit - how this study may offer new perspectives for male contraceptive research?

      We sincerely appreciate the reviewer's insightful feedback regarding the translational potential of our findings. This is indeed a critical aspect that we sought to highlight. In response, we have added a paragraph on page 9 (marked in red) to further emphasize this point. We have added the description in the text: "The potential for male contraceptive development arises from ANKRD5's critical structural role mediated through its ANK domain, which facilitates interaction with the N-DRC complex in sperm flagella. Recent structural evidence suggests the protein's positively charged surface may engage with glutamylated tubulin in adjacent microtubules[41], presenting a druggable interface. Targeted disruption of this interaction through small-molecule inhibitors could transiently impair sperm motility. Sperm function relies more on ANKRD5 than respiratory cilia, so inhibiting ANKRD5 has less impact on the latter. This makes ANKRD5 a promising drug target. This tissue-specific phenotypic uncoupling is not uncommon among axonemal-associated proteins, such as DNAH17 and IQUB[65,66]."

      Abstract, "reveals its interaction with TCTE1 and DRC4/GAS8", please provide the alias symbol DRC5 for TCTE1 for clarity.

      Thank you for your suggestion, I have revised the abstract by replacing "TCTE1" with "DRC5/TCTE1" to clarify the alias. The changes have been highlighted in red in the manuscript for easy reference.

      Introduction, "Fertilization relies on successful spermatogenesis and normal sperm motility (4), which occurs in the testes." Does spermatogenesis or normal sperm motility occur in the testes?

      Thank you for pointing out the ambiguity in the sentence. We have revised the sentence in the Introduction and highlighted it in red as follows: Fertilization relies on successful spermatogenesis and normal sperm motility..

      Introduction, "The axoneme exhibits a 9+2 microtubule doublet structure". The description is not accurate. The "2" are singlet microtubules.

      Thank you for your suggestion. We have revised the sentence to accurately describe the axoneme structure and highlight in red as follows: The axoneme features a 9+2 architecture, comprising nine doublet microtubules encircling a central pair of singlet microtubules, with the N-DRC forming cross-bridges between adjacent doublets.

      Page 4, "control sperm successfully fertilized both cumulus-intact eggs". "control" should be a capital "C".

      We thank the reviewer for noting this oversight. The correction has been implemented on page 5 with the term highlighted in red (now reading: "Control sperm successfully fertilized both cumulus-intact eggs"), and we have verified capitalization consistency throughout the manuscript.

      Page 6, "applied RELION, M, and other software". "other software" is not an appropriate description, please be precise.

      We have revised the description as suggested. Specifically, on page 7, the phrase "and other software" has been replaced with "Dynamo and Warp/M," and this change is highlighted in red for clarity.

      Reviewer #2 (Recommendations for the authors):

      Several components of the N-DRC complex (e.g., DRC1, DRC2, DRC3, DRC5) have been reported to be associated with male infertility in both humans and mice. However, the introduction lacks proper citations for these studies. Adding these references would provide a more comprehensive background for readers.

      Thank you for your suggestion to strengthen the comprehensiveness of the research background by incorporating additional literatures. More literatures related to DRC1, DRC2, DRC3, and DRC5 were cited in the background of this paper. We have rewritten and reorganized the language of the last paragraph of the introduction, and the entire paragraph is highlighted in red. The content of the paragraph is as follows:

      "It was previously believed that N-DRC comprised 11 protein components[13,18]. However, a new component CCDC153 (DRC12) was found to interact with DRC1[19]. In situ cryoelectron tomography (cryo-ET) has significantly advanced understanding of the N-DRC architecture in Chlamydomonas, demonstrating that DRC1, DRC2/CCDC65, and DRC4/GAS8 constitute its core framework[16], while proteins DRC3/5/6/7/8/11 associate with this framework and engage with other axonemal complexes[20]. Biochemical experiments corroborate these findings and validate this structural model[12,21,22]. The N-DRC functions between the DMTs to convert sliding into axonemal bending motion by restricting the relative sliding of outer microtubule doublets[23,24,25]. Mutations of N-DRC subunits demonstrate that the structural integrity of the N-DRC is crucial for flagellar movements. Mutations in DRC1, DRC2/CCDC65, and DRC4/GAS8 are linked to ciliary motility disorders, causing primary ciliary dyskinesia (PCD)[12,26]. Biallelic truncating mutations in DRC1 induce multiple morphological abnormalities of sperm flagella (MMAF), including outer DMT disassembly, mitochondrial sheath disorganization, and incomplete axonemal structures in human sperm[22,27,28]. Similarly, CCDC65 loss disrupts N-DRC stability, leading to disorganized axonemes, global microtubule dissociation, and complete asthenozoospermia[12,29].  Homozygous frameshift mutations in DRC3 impair N-DRC assembly and intraflagellar transport (IFT), resulting in severe motility defects despite normal sperm morphology[30,31]. TCTE1 knockout mice maintain normal sperm axoneme structure but show impaired glycolysis, leading to reduced ATP levels, lower sperm motility, and male infertility[32]. Both Drc7 and Iqcg (Drc9) knockout mice exhibit disrupted '9+2' axonemal architecture, sperm immotility, and male infertility[21,33]. Drc7 knockout sperm also display head deformities and shortened tails[21]. While N-DRC is critical for sperm motility, but the existence of additional regulators that coordinate its function remains unclear. Our findings indicate that ANKRD5 (Ankyrin repeat domain 5; also known as ANK5 or ANKEF1) interacts with N-DRC structure, serving as an auxiliary element to facilitate collaboration among DRC members. The absence of ANKRD5 results in diminished sperm motility and consequent male infertility."

      While many N-DRC components were identified as interacting with ANKRD5, other proteins outside the N-DRC complex were also detected. Notably, GAS8 (DRC4) ranked 165th among the identified proteins. What are the functions of the higher-ranking proteins, and why do they interact with ANKRD5? Discussing their potential roles would enhance the mechanistic understanding of ANKRD5's function.

      We thank the reviewer for highlighting the importance of non-N-DRC proteins interacting with ANKRD5 (ANKEF1). Below, we provide a detailed analysis of the roles and interaction mechanisms of the top-ranked non-N-DRC proteins (Krt77, Rab2a, Gm7429) to elucidate their functional relevance to ANKRD5. We have added the following text to page 6 to clarify and highlight this in red:

      As for other proteins in the LC-MS results, KRT77 is a classic protein that maintains cytoskeletal stability. It may enhance the physical connection between the N-DRC and adjacent DMTs through interaction with ANKRD5. Recent studies indicate that ANKRD5, a newly identified component in the distal lobe of the N-DRC, has a positively charged surface, which may facilitate binding to glutamylated tubulin on adjacent DMTs[41]. Thus, KRT77 may also regulate its interaction with ANKRD5 via post-translational modifications (PTMs, e.g., phosphorylation), thereby strengthening sperm resistance to shear forces during flagellar movement. Rab family proteins participate in intraflagellar transport and membrane dynamics. RAB2A may promote targeted transport of ANKRD5 or other N-DRC components to axonemal assembly sites by recruiting vesicles, and its GTPase activity might link cellular signals to ANKRD5-mediated axoneme remodeling. However, the observed signals could be false positives due to nonspecific factors such as electrostatic adsorption, high-abundance protein interference, detergent-induced membrane disruption, or protein aggregation tendencies.

      The immunofluorescence localization of ANKRD5-Flag appears more aligned with the mitochondrial sheath rather than the axoneme. There is a finer red fluorescent signal extending from the mitochondrial sheath that might correspond to the axoneme. Could this suggest that ANKRD5 has a functional role in the mitochondria? While the authors measured ROS levels, this might not fully clarify whether ANKRD5 is involved in sperm energy metabolism. Considering the motility defects in Ankrd5 knockout mice, further experiments to explore ANKRD5's potential involvement in energy metabolism are necessary.

      The increased detection of ANKRD5 in the midpiece region of the sperm axoneme does not necessarily indicate its localization in mitochondria. Immunofluorescence signals of multiple axonemal Nexin-Dynein Regulatory Complex (N-DRC) components (e.g., TCTE1, DRC1, CCDC65, DRC3, GAS8, and DRC7) are also non-uniformly distributed along the entire flagellum[1]. Similar localization patterns are observed in other structural components, such as radial spoke protein NME5[2] and outer dynein arm protein DNAH5[3]. Furthermore, mitochondria are membrane-bound organelles, and ANKRD5 predominantly resides in the SDS-soluble fraction under varying lysis conditions, confirming its association with the axoneme rather than mitochondria. Thus, the spatial distribution of ANKRD5 does not support a functional role in mitochondria. Importantly, we validated intact mitochondrial function through measurements of reactive oxygen species (ROS) levels (Figure S5C, D), ATP content (Figure 6E), and mitochondrial membrane potential (Figure S5A, B).

      Proteomic analysis of Ankrd5-deficient sperm revealed disruptions in the glycolysis pathway. While these changes do not appear to affect ATP production, the mechanism by which these disruptions impact sperm motility remains unclear. Further investigation into how glycolysis pathway alterations contribute to impaired motility is warranted.

      We appreciate the reviewer's careful consideration of our proteomic data. However, our Gene Set Enrichment Analysis (GSEA) of glycolysis/gluconeogenesis pathways showed no significant enrichment (p-value=0.089, NES=0.708; Fig.6D), which does not meet the statistical thresholds for biological significance (|NES|>1, pvalue<0.05). This observation is further corroborated by our direct ATP measurements showing no difference between genotypes (Fig.6E). We agree that further studies on metabolic regulation could be valuable, but current evidence does not support glycolysis disruption as a primary mechanism for the motility defects observed in Ankrd5-null sperm. This misinterpretation likely arose from the reviewer's overinterpretation of non-significant proteomic trends. We request that this specific claim be excluded from the assessment to avoid misleading readers.

      Weaknesses:

      Cryo-ET Data Limitations: The structural analysis of the DMT lacks clarity on how ANKRD5 influences NDRC or RS3. The low quality of RS3 data hinders the interpretation of ANKRD5's impact on axoneme structure.

      We tried to further calculate the DMT at 96nm period using the present data to analyze the effect of ANKRD5 deletion on RS and N-DRC, however, due to the heterogeneity of the data, we were only able to obtain DMT at 8nm period (we have added a figure in the supplementary material for presentation). And in the process of obtaining DMT with a period of 8nm, we throw away about 90% of the particles (some are misaligned particles, some are deformed particles). Although we were not able to obtain the structure of 96nm repeats DMT, we noticed the enhanced heterogeneity of DMT caused by ANKRD5 knockout, as shown by the 3D classification and other results of the new supplementary images (Fig. S9), and the graphic description was added in the original article.

      We have changed the description in the text: "During particle picking of DMT fibers, we observed that transverse sections of axonemal DMT particles from ANKRD5-KO sperm differ markedly from those in WT sperm. Although both A- and B-tubes were visible in both samples, the DMTs in ANKRD5-KO sperm showed a more irregular profile. In WT sperm, DMTs typically appeared circular, whereas ANKRD5-KO DMTs seemed to be extruded as polygonal. (Fig. S9B,D). Notably, ANKRD5-KO DMTs seemed partially open at the junction between the A- and B-tubes (Fig. S9B,D).

      During the STA process, many particles were misaligned or deformed in the classification results, revealing various degrees of deformation—particularly affecting the B-tube (Fig. S9E). We could retain only ~10% of the DMT particles to obtain the final density map for ANKRD5-KO sperm (Fig. S9E), whereas ~70% were usable in WT dataset as reported previously [59]. The mutant DMT density map also displayed roughness at its periphery, indicating substantial structural heterogeneity (Fig. S9E). Even after discarding a large fraction of deformed particles, the final density map still showed evident artifacts, implying that although the mutant DMT preserves the fundamental features of both tubes, its shape is highly heterogeneous (Fig. S9E). Furthermore, attempts to classify the 96-nm repeats did not yield a clear density for radial spokes (RSs) (Fig. S9F), indicating that ANKRD5 deficiency may affect the stability of other accessory structures, such as RSs [23,24,25]. In the raw tomograms, RSs in ANKRD5-KO sperm appeared less regularly arranged than those in WT (Fig. S9A and C).

      Most recently, following the submission of this work, ANKRD5 was reported to localize at the head of the N-DRC, simultaneously binding DRC11, DRC7, DRC4, and DRC5 [46]. This structural insight agrees with our in vitro findings that ANKRD5 interacts with DRC4 and DRC5 (Fig. 8C-F). However, that study used isolated and purified DMT samples, leaving the precise positioning of ANKRD5 between adjacent axonemal DMTs unconfirmed. We therefore fitted the published structure (PDB entry: 9FQR) into the in situ DMT structure of mouse sperm 96-nm repeats (EMD-27444), revealing that ANKRD5 lies a mere ~3 nm from the adjacent DMT (Fig. 8G). Notably, the N-DRC is often likened to a "car bumper", buffering two neighboring DMTs during vigorous axonemal motion. Given the extensive DMT deformation observed in our cryo-ET data (Fig. S9E), we propose that ANKRD5 contributes to this buffering function at the N-DRC. The loss of ANKRD5 may weaken the "bumper" effect and consequently increase structural damage to adjacent DMTs under intense conditions, while also compromising the stability of associated DMT accessory structures [19,46,60]."

      Figure S9. The states of DMT particles in sperm of Ankrd5-KO mouse. (A) and (C) Tomogram slices of WT and Ankrd5-KO in Dynamo (The data for WT mouse sperm was EMPIARC-200007). DMT and RS are marked with white dashed lines and white arrows, respectively. (B) and (D) Comparison of DMT particle states between WT and Ankrd5-KO in Dynamo. The visual angles of the DMT particles shown in (B) and (D) show that the DMT fibers within the white box in (A) and (B) are divided equally into 10 slices along the direction of the white arrow, respectively. The DMT particle shapes of WT and Ankrd5-KO are marked by white dashed lines on the right of (B) and (D). The white arrow in (D) identifies the junction of A-tube and B-tube that is suspected to be disconnected. (E) Deformed particles discarded in 3D classification and final aligned DMT artifacts. (F) 3D classification of attempted RS locations.

      Although the loss of ANKRD5 did not affect the density of DMT itself in A Tube and B Tube, we found that DMT particles were not smooth in the original tomogram. We speculate that the loss of ANKRD5, a component of the N-DRC that is close to the neighboring DMT, may reduce the interaction between N-DRC and the neighboring DMT, resulting in uneven force on the axoneme during sperm swimming, which may limit our ability to obtain the average structure of the more dynamic components (RS, N-DRC, ODA, IDA). Therefore, when trying to classify 96nm repeat DMT, we could only see the density of suspected RS3 and RS2, but it was difficult to obtain the complete 96nm repeat DMT density, so that we could not further analyze the effect of ANKRD5 deletion on RS and N-DRC. To test this conjecture, we further classified the density of suspected RS3, and the results obtained exhibited a variety of mixed states (which have been added to the supplementary material). To avoid confusion, we have already removed the discussion of RS3 and the related images from the original text.

      The cryo-ET data on the internal structure of the DMT seems to have limited relevance to the N-DRC complex. Additionally, the quality of the RS3 data appears suboptimal, making it difficult to understand how the absence of ANKRD5 influences RS3. Further refinement of the data or alternative approaches may be needed to address this question.

      Thank you very much for your suggestions. For the 96 nm periodic DMT, we have conducted multiple rounds of classification, including applying different masks at the positions of ODA, RS, and DMT. We have also tried classifying with both a single reference and multiple references. However, we were unable to obtain a suitable 96 nm periodic DMT. Regarding the heterogeneity of the particles, we have added a discussion in the manuscript. Following your advice, we have reanalyzed the data, but unfortunately, we still could not further optimize the experimental results.

      In the process of obtaining the 8 nm periodic DMT, we discarded approximately 90 percent of the particles through multiple rounds of classification and alignment, in order to obtain high-quality 8 nm periodic DMT. We classified the remaining particles and found that the densities of RS3 and RS2 were not in their normal states. RS3 might be a mixture of different states of RS3, which makes it difficult for us to further discuss the effects of ANKRD5 on RS3.

      To avoid confusion, we have already removed the discussion of RS3 and the related images from the original text.

      Regarding the effects of ANKRD5 deficiency, we speculate that as the head of the N-DRC, its absence might affect the interaction between the N-DRC and the adjacent DMT, thereby influencing the forces experienced by the DMT during sperm movement. The uneven and irregular forces on the nine pairs of DMTs do not affect the structure of the A and B tubes of the DMT itself, but result in some heterogeneity in the peripheral microtubule parts of the DMT particles. We have added a discussion on these hypotheses in the manuscript. In addition, our 3D classification results demonstrate the structural heterogeneity of DMT caused by ANKRD5 knockdown. We have changed the description in the text:"During particle picking of DMT fibers, we observed that transverse sections of axonemal DMT particles from ANKRD5-KO sperm differ markedly from those in WT sperm. Although both A- and B-tubes were visible in both samples, the DMTs in ANKRD5-KO sperm showed a more irregular profile. In WT sperm, DMTs typically appeared circular, whereas ANKRD5-KO DMTs seemed to be extruded as polygonal. (Fig. S9B,D). Notably, ANKRD5-KO DMTs seemed partially open at the junction between the A- and B-tubes (Fig. S9B,D).

      During the STA process, many particles were misaligned or deformed in the classification results, revealing various degrees of deformation—particularly affecting the B-tube (Figure 9, Fig. S9E). We could retain only ~10% of the DMT particles to obtain the final density map for ANKRD5-KO sperm (Fig. S9E), whereas ~70% were usable in WT dataset as reported previously [59]. The mutant DMT density map also displayed roughness at its periphery, indicating substantial structural heterogeneity (Fig. S9E). Even after discarding a large fraction of deformed particles, the final density map still showed evident artifacts, implying that although the mutant DMT preserves the fundamental features of both tubes, its shape is highly heterogeneous (Fig. S9E). Furthermore, attempts to classify the 96-nm repeats did not yield a clear density for radial spokes (RSs) (Fig. S9F), indicating that ANKRD5 deficiency may affect the stability of other accessory structures, such as RSs [23,24,25]. In the raw tomograms, RSs in ANKRD5-KO sperm appeared less regularly arranged than those in WT (Fig. S9A and C).

      Most recently, following the submission of this work, ANKRD5 was reported to localize at the head of the N-DRC, simultaneously binding DRC11, DRC7, DRC4, and DRC5 [46]. This structural insight agrees with our in vitro findings that ANKRD5 interacts with DRC4 and DRC5 (Fig. 8C-F). However, that study used isolated and purified DMT samples, leaving the precise positioning of ANKRD5 between adjacent axonemal DMTs unconfirmed. We therefore fitted the published structure (PDB entry: 9FQR) into the in situ DMT structure of mouse sperm 96-nm repeats (EMD-27444), revealing that ANKRD5 lies a mere ~3 nm from the adjacent DMT (Fig. 8G). Notably, the N-DRC is often likened to a "car bumper", buffering two neighboring DMTs during vigorous axonemal motion. Given the extensive DMT deformation observed in our cryo-ET data (Fig. S9E), we propose that ANKRD5 contributes to this buffering function at the N-DRC. The loss of ANKRD5 may weaken the "bumper" effect and consequently increase structural damage to adjacent DMTs under intense conditions, while also compromising the stability of associated DMT accessory structures [19,46,60]."

      To further enhance the readability of our manuscript, we created a Graphic Abstract to visually illustrate the biological functions of ANKRD5. The figure is placed immediately after the Abstract section and has been designated as Figure 9.

  7. Jul 2025
    1. "one of the best critiques of modern AI design comes from a 1992 talk by the researcher Mark Weiser where he ranted against “copilot” as a metaphor for AI."

      • Weiser’s critique of the “copilot” metaphor for AI is foundational to this argument.

      "He gave this example: how should a computer help you fly a plane and avoid collisions?... The agentic option is a 'copilot' — a virtual human who you talk with to get help flying the plane. If you’re about to run into another plane it might yell at you 'collision, go right and down!'"

      • The “copilot” model is described as an interactive assistant giving explicit instructions or alerts.

      "design the cockpit so that the human pilot is naturally aware of their surroundings. In his words: 'You’ll no more run into another airplane than you would try to walk through a wall.'"

      • Weiser advocates for UIs that naturally augment human situational awareness, eliminating the need for explicit assistant intervention.

      "Weiser’s goal was an 'invisible computer'—not an assistant that grabs your attention, but a computer that fades into the background and becomes 'an extension of [your] body.'"

      • The ultimate aim: seamless, ambient support that integrates with human perception.

      "the Head-Up Display (HUD), which overlays flight info like the horizon and altitude on a transparent display directly in the pilot’s field of view."

      • The HUD is presented as a practical realization of Weiser’s concept: information is ambiently present, not actively disruptive.

      "A HUD feels completely different from a copilot! You don’t talk to it. It’s literally part invisible—you just become naturally aware of more things, as if you had magic eyes."

      • HUDs differ fundamentally from copilots by passively enhancing awareness instead of communicating via dialogue.

      "spellcheck isn’t designed as a 'virtual collaborator' talking to you about your spelling. It just instantly adds red squigglies when you misspell something! You now have a new sense you didn’t have before. It’s a HUD."

      • Spellcheck is given as a familiar analogy for AI-as-HUD: subtle, always-on augmentation of cognition.

      "use AI to build a custom debugger UI which visualizes the behavior of my program!... With the debugger, I have a HUD! I have new senses, I can see how my program runs."

      • Custom visual UIs for debugging exemplify HUD-like designs in AI-driven tools, enabling deeper understanding rather than focusing on transactional automation.

      "Both the spellchecker and custom debuggers show that automation / 'virtual assistant' isn’t the only possible UI. We can instead use tech to build better HUDs that enhance our human senses."

      • Non-agentic, perception-extending UI paradigms are positioned as powerful, sometimes preferable alternatives to assistant-like AI.

      "I don’t believe HUDs are universally better than copilots!... anyone serious about designing for AI should consider non-copilot form factors that more directly extend the human mind."

      • While not dismissing assistants, the author stresses the importance of exploring HUD-like, sense-extending UI for ambitious AI design.

      "routine predictable work might make sense to delegate to a virtual copilot / assistant. But when you’re shooting for extraordinary outcomes, perhaps the best bet is to equip human experts with new superpowers."

      • The conclusion is a nuanced tradeoff: assistants excel in predictable routines, but empowering human expertise requires HUD-style augmentation.
    1. n Saturday night, I sent a group text to several friends as we were on our way to meet for drinks. It consisted solely of a screen capture from Beyoncé’s new video for Formation and the words: “We must discuss this shit.”Super Bowl half-time show review – Beyoncé easily steals the show from ColdplayRead moreEveryone knew exactly what I was talking about.My best friend’s answer: “Did Beyoncé just make a statement about the black feminine body defeating the police state?”

      This introductory anecdote, included by McFadden, is a perfect example of her positionality, specifically her identity as a black woman. First of by saying this is something she would discuss with her friends, gives us the idea that this is a video she closely aligns with. The immediate and head-on response of her friends only reinforces this. We know that McFadden is part of the target demographic this video was made for, and by including this discourse, she allows us to see the impact of Beyoncé's text. This also goes on to support the rest of the text as we get her interpretation of the video and can see that she frequently mentions its relation to black culture and specifically women. This demonstrates how her positionality allowed her to see things more deeply than a white woman would, or even a black man.

    2. On Saturday night, I sent a group text to several friends as we were on our way to meet for drinks. It consisted solely of a screen capture from Beyoncé’s new video for Formation and the words: “We must discuss this shit.”Super Bowl half-time show review – Beyoncé easily steals the show from ColdplayRead moreEveryone knew exactly what I was talking about.My best friend’s answer: “Did Beyoncé just make a statement about the black feminine body defeating the police state?”
      1. This introductory anecdote, included by McFadden, is a perfect example of her positionality, specifically her identity as a black woman. First of by saying this is something she would discuss with her friends, gives us the idea that this is a video she closely aligns with. The immediate and head-on response of her friends only reinforces this. We know that McFadden is part of the target demographic this video was made for, and by including this discourse, she allows us to see the impact of Beyoncé's text. This also goes on to support the rest of the text as we get her interpretation of the video and can see that she frequently mentions its relation to black culture and specifically women. This demonstrates how her positionality allowed her to see things more deeply than a white woman would, or even a black man.
    1. Reviewer #1 (Public review):

      This work addresses an important question in the field of Drosophila aggression and mating. Prior social isolation is known to increase aggression in males, manifesting as increased lunging, which is suppressed by group housing (GH). However, it is also known that single housed (SH) males, despite their higher attempts to court females, are less successful. Here, Gao et al., develop a modified aggression assay to address this issue by recording aggression in Drosophila males for 2 hours, with a virgin female immobilized by burying its head in the food. They found that while SH males frequently lunge in this assay, GH males switch to higher intensity but very low frequency tussling. Constitutive neuronal silencing and activation experiments implicate cVA sensing Or67d neurons in promoting high frequency lunging, similar to earlier studies, whereas Or47b neurons promote low frequency but higher intensity tussling. Optogenetic activation revealed that three pairs of pC1SS2 neurons increase tussling. Cell-type-specific DsxM manipulations combined with morphological analysis of pC1SS2 neurons and side-by-side tussling quantification link the developmental role of DsxM to the functional output of these aggression-promoting cells. In contrast, although optogenetic activation of P1a neurons in the dark did not increase tussling, thermogenetic activation under visible light drove aggressive tussling. Using a further modified aggression assay, GH males exhibit increased tussling and maintain territorial control, which could contribute to a mating advantage over SH males, although direct measures of reproductive success are still needed

      Strengths:

      Through a series of clever neurogenetic and behavioral approaches, the authors implicate specific subsets of ORNs and pC1 neurons in promoting distinct forms of aggressive behavior, particularly tussling. They have devised a refined territorial control paradigm, which appears more robust than earlier assays using a food cup (Chen et al., 2002). This new setup is relatively clutter-free and could be amenable to future automation using computer vision approaches. The updated Figure 5, which combines cell-type-specific developmental manipulation of pC1SS2 neurons with behavioral output, provides a link between developmental mechanisms and functional aggression circuits. The manuscript is generally well written, and the claims are largely supported by the data.

      Weakness:

      Although most concerns have been addressed, the manuscript still lacks a rigorous, objective method for quantifying lunging and tussling. Because scoring appears to have been done manually and a single lunge in a 30 fps video spans only 2-3 frames, the 0.2 s cutoff seems arbitrary, and there are no objective criteria distinguishing reciprocal lunging from tussling. Despite this, the study offers valuable insights into the neural and behavioral mechanisms of Drosophila aggression.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This work addresses an important question in the field of Drosophila aggression and mating- prior social isolation is known to increase aggression in males by increased lunging, which is suppressed by group housing (GH). However, it is also known that single-housed (SH) males, despite their higher attempts to court females, are less successful. Here, Gao et al., developed a modified aggression assay, to address this issue by recording aggression in Drosophila males for 2 hours, over a virgin female which is immobilized by burying its head in the food. They found that while SH males frequently lunge in this assay, GH males switch to higher intensity but very low-frequency tussling. Constitutive neuronal silencing and activation experiments implicate cVA sensing Or67d neurons promoting high-frequency lunging, similar to earlier studies, whereas Or47b neurons promote low-frequency but higher intensity tussling. Using optogenetic activation they found that three pairs of pC1 neurons- pC1SS2 increase tussling. While P1a neurons, previously implicated in promoting aggression and courtship, did not increase tussling in optogenetic activation (in the dark), they could promote aggressive tussling in thermogenetic activation carried out in the presence of visible light. It was further suggested, using a further modified aggression assay that GH males use increased tussling and are able to maintain territorial control, providing them mating advantage over SI males and this may partially overcome the effect of aging in GH males.

      Strengths

      Using a series of clever neurogenetic and behavioral approaches, subsets of ORNs and pC1 neurons were implicated in promoting tussling behaviors. The authors devised a new paradigm to assay for territory control which appears better than earlier paradigms that used a food cup (Chen et al, 2002), as this new assay is relatively clutter-free, and can be eventually automated using computer vision approaches. The manuscript is generally well-written, and the claims made are largely supported by the data.

      Thank you for your precise summary of our study, and being very positive on the novelty and significance of the study.

      Weaknesses

      I have a few concerns regarding some of the evidence presented and claims made as well as a description of the methodology, which needs to be clarified and extended further.

      (1) Typical paradigms for assaying aggression in Drosophila males last for 20-30 minutes in the presence of nutritious food/yeast paste/females or all of these (Chen et al. 2002, Nilsen et al., 2004, Dierick et al. 2007, Dankert et al., 2009, Certel & Kravitz 2012). The paradigm described in Figure 1 A, while important and more amenable for video recording and computational analysis, seems a modification of the assay from Kravitz lab (Chen et al., 2002), which involved using a female over which males fight on a food cup. The modifications include a flat surface with a central food patch and a female with its head buried in the food, (fixed female) and much longer adaptation and recording times respectively (30 minutes, 2 hours), so in that sense, this is not a 'new' paradigm but a modification of an existing paradigm and its description as new should be appropriately toned down. It would also be important to cite these earlier studies appropriately while describing the assay.

      We now toned down the description of the paradigm and cited more related references.

      (2) Lunging is described as a 'low intensity' aggression (line 111 and associated text), however, it is considered a mid to high-intensity aggressive behavior, as compared to other lower-intensity behaviors such as wing flicks, chase, and fencing. Lunging therefore is lower in intensity 'relative' to higher intensity tussling but not in absolute terms and it should be mentioned clearly.

      We have modified the description as suggested.

      (3) It is often difficult to distinguish faithfully between boxing and tussling and therefore, these behaviors are often clubbed together as box, tussle by Nielsen et al., 2004 in their Markov chain analysis as well as a more detailed recent study of male aggression (Simon & Heberlein, 2020). Therefore, authors can either reconsider the description of behavior as 'box, tussle' or consider providing a video representation/computational classifier to distinguish between box and tussle behaviors.

      Indeed, we could not faithfully distinguish boxing and tussling. To address this concern, we now made textual changes in the result section we occasionally observed the high-intensity boxing and tussling behavior in male flies, which are difficult to distinguish and hereafter simply referred to as tussling.

      We also added this information in the Materials and Methods section Tussling is often mixed with boxing, in which both flies rear up and strike the opponent with forelegs. Since boxing is often transient and difficult to distinguish from tussling, we referred to the mixed boxing and tussling behavior simply as tussling.

      (4) Simon & Heberlein, 2020 showed that increased boxing & tussling precede the formation of a dominance hierarchy in males, and lunges are used subsequently to maintain this dominant status. This study should be cited and discussed appropriately while introducing the paradigm.

      We now cited this important study in both the Introduction and Discussion sections.

      (5) It would be helpful to provide more methodological details about the assay, for instance, a video can be helpful showing how the males are introduced in the assay chamber, are they simply dropped to the floor when the film is removed after 30 minutes (Figures 1-2)?

      We now provided more detailed description about behavioral assays and how we analyze them. For example All testers were loaded by cold anesthesia. After a 30-minute adaptation, the film was gently removed to allow the two males to fell into the behavioral chamber, and the aggressive behavior was recorded for 2 hours.

      (6) The strain of Canton-S (CS) flies used should be mentioned as different strains of CS can have varying levels of aggression, for instance, CS from Martin Heisenberg lab shows very high levels of aggressive lunges. Are the CS lines used in this study isogenized? Are various genetic lines outcrossed into this CS background? In the methods, it is not clear how the white gene levels were controlled for various aggression experiments as it is known to affect aggression (Hoyer et al. 2008).

      We used the wtcs flies from Baker lab in Janelia Research Campus, and are not sure where they are originated. We appreciate your concern on the use of wild-type strains as they may show different fighting levels, but this study mainly used wild-type strains to compare behavioral differences between SH and GH males. All flies tested in this study are in w+ background, based on w+ balancers flies but are not backcrossed. We have listed detailed genotypes of all tested flies in Table S1 in the revised manuscript.

      (7) How important it is to use a fixed female for the assay to induce tussling? Do these females remain active throughout the assay period of 2.5 hours? Is it possible to use decapitated virgin females for the assay? How will that affect male behaviors?

      We used a fixed female to restrict it in the center of food. These females remain active throughout the assay as their legs and abdomens can still move. Such design intends to combine the attractive effects from both female and food. One can also use decapitated females, but in this case, males can push the decapitated female into anywhere in the behavioral chamber. The logic to use fixed females has now been added in the Materials and Methods section of the revised manuscript.

      (8) Raster plots in Figure 2 suggest a complete lack of tussling in SH males in the first 60 minutes of the encounter, which is surprising given the longer duration of the assay as compared to earlier studies (Nielsen et al. 2004, Simon & Heberlein, 2020 and others), which are able to pick up tussling in a shorter duration of recording time. Also, the duration for tussling is much longer in this study as compared to shorter tussles shown by earlier studies. Is this due to differences in the paradigm used, strain of flies, or some other factor? While the bar plots in Figure 2D show some tussling in SH males, maybe an analysis of raster plots of various videos can be provided in the main text and included as a supplementary figure to address this.

      Indeed, tussling is very low in SH males in our paradigm, which may be due to different genetic backgrounds and behavioral assays. Since tussling behavior is a rare fighting form, it is not surprising to see variation between studies from different labs. Nevertheless, this study compared tussling behaviors in SH and GH males, and our finding that GH males show much more tussling behaviors is convincing. The longer duration of tussling in our paradigm may also be due to the modified behavioral paradigm, which also supports that tussling is a high-level fighting form.

      (9) Neuronal activation experiments suggesting the involvement of pC1SS2 neurons are quite interesting. Further, the role of P1a neurons was demonstrated to be involved in increasing tussling in thermogenetic activation in the presence of light (Figure 4, Supplement 1), which is quite important as the role of vision in optogenetic activation experiments, which required to be carried out in dark, is often not mentioned. However, in the discussion (lines 309-310) it is mentioned that PC1SS2 neurons are 'necessary and sufficient' for inducing tussling. Given that P1a neurons were shown to be involved in promoting tussling, this statement should be toned down.

      Thank you for this important comment. We now toned down the statement on pC1SS2 function.

      (10) Are Or47b neurons connected to pC1SS2 or P1a neurons?

      We conducted pathway analysis in the FlyWire electron microscopy database to investigate the connection between Or47b neurons and pC1 neurons. The results indicate that at least three levels of interneurons are required to establish a connection from Or47b neurons to pC1 neurons. Although the FlyWire database currently only contains neuronal data from female brains, they provide a reference for circuit connect in males.

      (11) The paradigm for territory control is quite interesting and subsequent mating advantage experiments are an important addition to the eventual outcome of the aggressive strategy deployed by the males as per their prior housing conditions. It would be important to comment on the 'fitness outcome' of these encounters. For instance, is there any fitness advantage of using tussling by GH males as compared to lunging by SH males? The authors may consider analyzing the number of eggs laid and eclosed progenies from these encounters to address this.

      Thank you for this suggestion. We agree with you and other reviewers that increased tussling behaviors correlate with better mating competition, but it is difficult for us to make a direct link between them. Thus, in the revised manuscript, we prefer to tone down this statement but not expanding on this part.

      Reviewer #2 (Public review):

      Summary

      Gao et al. investigated the change of aggression strategies by the social experience and its biological significance by using Drosophila. Two modes of inter-male aggression in Drosophila are known lunging, high-frequency but weak mode, and tussling, low-frequency but more vigorous mode. Previous studies have mainly focused on the lunging. In this paper, the authors developed a new behavioral experiment system for observing tussling behavior and found that tussling is enhanced by group rearing while lunging is suppressed. They then searched for neurons involved in the generation of tussling. Although olfactory receptors named Or67d and Or65a have previously been reported to function in the control of lunging, the authors found that these neurons do not function in the execution of tussling, and another olfactory receptor, Or47b, is required for tussling, as shown by the inhibition of neuronal activity and the gene knockdown experiments. Further optogenetic experiments identified a small number of central neurons pC1[SS2] that induce the tussling specifically. In order to further explore the ecological significance of the aggression mode change in group rearing, a new behavioral experiment was performed to examine territorial control and mating competition. Finally, the authors found that differences in the social experience (group vs. solitary rearing) are important in these biologically significant competitions. These results add a new perspective to the study of aggressive behavior in Drosophila. Furthermore, this study proposes an interesting general model in which the social experience-modified behavioral changes play a role in reproductive success.

      Strengths

      A behavioral experiment system that allows stable observation of tussling, which could not be easily analyzed due to its low frequency, would be very useful. The experimental setup itself is relatively simple, just the addition of a female to the platform, so it should be applicable to future research. The finding about the relationship between the social experience and the aggression mode change is quite novel. Although the intensity of aggression changes with the social experience was already reported in several papers (Liu et al., 2011, etc), the fact that the behavioral mode itself changes significantly has rarely been addressed and is extremely interesting. The identification of sensory and central neurons required for the tussling makes appropriate use of the genetic tools and the results are clear. A major strength of the neurobiology in this study is the finding that another group of neurons (Or47b-expressing olfactory neurons and pC1[SS2] neurons), distinct from the group of neurons previously thought to be involved in low-intensity aggression (i.e. lunging), function in the tussling behavior. Further investigation of the detailed circuit analysis is expected to elucidate the neural substrate of the conflict between the two aggression modes.

      Thank you for the acknowledgment of the novelty and significance of the study, and your suggestions for improving the manuscript.

      Weaknesses

      The experimental systems examining the territory control and the reproductive competition in Figure 5 are novel and have advantages in exploring their biological significance. However, at this stage, the authors' claim is weak since they only show the effects of age and social experience on territorial and mating behaviors, but do not experimentally demonstrate the influence of aggression mode change itself. In the Abstract, the authors state that these findings reveal how social experience shapes fighting strategies to optimize reproductive success. This is the most important perspective of the present study, and it would be necessary to show directly that the change of aggression mode by social experience contributes to reproductive success.

      We agree that our data did not directly show that it is the change of aggression mode that results in territory and reproductive advantages in GH males. To address the concern, we have toned down the statement throughout the manuscript. For example, we made textual changes in the abstract as following

      Moreover, shifting from lunging to tussling in socially enriched males is accompanied with better territory control and mating success, mitigating the disadvantages associated with aging. Our findings identify distinct sensory and central neurons for two fighting forms and suggest how social experience shapes fighting strategies to optimize reproductive success.

      In addition, a detailed description of the tussling is lacking. For example, the authors state that the tussling is less frequent but more vigorous than lunging, but while experimental data are presented on the frequency, the intensity seems to be subjective. The intensity is certainly clear from the supplementary video, but it would be necessary to evaluate the intensity itself using some index. Another problem is that there is no clear explanation of how to determine the tussling. A detailed method is required for the reproducibility of the experiment.

      Thank you for this important suggestion. We now analyzed duration of tussling and lunging, and found that a lunging event is often very short (less than 0.2s), while a tussling event may last from seconds to minutes. This new data is added as Figure 2G. In addition, we also provided more detailed methods regarding to tussling behavior

      .<br /> Reviewer #3 (Public review):

      In this manuscript, Gao et al. presented a series of intriguing data that collectively suggest that tussling, a form of high-intensity fighting among male fruit flies (Drosophila melanogaster) has a unique function and is controlled by a dedicated neural circuit. Based on the results of behavioral assays, they argue that increased tussling among socially experienced males promotes access to resources. They also concluded that tussling is controlled by a class of olfactory sensory neurons and sexually dimorphic central neurons that are distinct from pathways known to control lunges, a common male-type attack behavior.

      A major strength of this work is that it is the first attempt to characterize the behavioral function and neural circuit associated with Drosophila tussling. Many animal species use both low-intensity and high-intensity tactics to resolve conflicts. High-intensity tactics are mostly reserved for escalated fights, which are relatively rare. Because of this, tussling in the flies, like high-intensity fights in other animal species, has not been systematically investigated. Previous studies on fly aggressive behavior have often used socially isolated, relatively young flies within a short observation duration. Their discovery that 1) older (14-days-old) flies tend to tussle more often than younger (2-days-old) flies, 2) group-reared flies tend to tussle more often than socially isolated flies, and 3) flies tend to tussle at a later stage (mostly ~15 minutes after the onset of fighting), are the result of their creativity to look outside of conventional experimental settings. These new findings are keys for quantitatively characterizing this interesting yet under-studied behavior.

      Precisely because their initial approach was creative, it is regrettable that the authors missed the opportunity to effectively integrate preceding studies in their rationale or conclusions, which sometimes led to premature claims. Also, while each experiment contains an intriguing finding, these are poorly related to each other. This obscures the central conclusion of this work. The perceived weaknesses are discussed in detail below.

      Thank you for the precise summary of the key findings and novelty of the study, and your insightful suggestions.

      Most importantly, the authors' definition of "tussling" is unclear because they did not explain how they quantified lunges and tussling, even though the central focus of the manuscript is behavior. Supplemental movies S1 and S2 appear to include "tussling" bouts in which 2 flies lunge at each other in rapid succession, and supplemental movie S3 appears to include bouts of "holding", in which one fly holds the opponent's wings and shakes vigorously. These cases raise a concern that their behavior classification is arbitrary. Specifically, lunges and tussling should be objectively distinguished because one of their conclusions is that these two actions are controlled by separate neural circuits. It is impossible to evaluate the credibility of their behavioral data without clearly describing a criterion of each behavior.

      Thank you for this very important suggestion. We now provided more detailed description of the two fighting forms in the Materials and Methods section. See below

      Lunging is characterized by a male raising its forelegs and quickly striking the opponent, and each lunge typically lasts less than 0.2 seconds through detailed analysis. Tussling is characterized by both males using their forelegs and bodies to tumble over each other, and this behavior may last from seconds to minutes. Tussling is often mixed with boxing, in which both flies rear up and strike the opponent with forelegs. Since boxing is often transient and difficult to distinguish from tussling, we referred to the mixed boxing and tussling behavior simply as tussling. As we manually analyze tussling for 2 hours for each pair of males, it is possible that we may miss some tussling events, especially those quick ones.

      It is also confusing that the authors completely skipped the characterization of the tussling-controlling neurons they claimed to have identified. These neurons (a subset of so-called pC1 neurons labeled by previously described split-GAL4 line pC1SS2) are central to this manuscript, but the only information the authors have provided is its gross morphology in a low-resolution image (Figure 4D, E) and a statement that "only 3 pairs of pC1SS2 neurons whose function is both necessary and sufficient for inducing tussling in males" (lines 310-311). The evidence that supports this claim isn't provided. The expression pattern of pC1SS2 neurons in males has been only briefly described in reference 46. It is possible that these neurons overlap with previously characterized dsx+ and/or fru+ neurons that are important for male aggressions (measured by lunges), such as in Koganezawa et al., Curr. Biol. 2016 and Chiu et al., Cell 2020. This adds to the concern that lunge and tussling are not as clearly separated as the authors claim.

      Thank you very much for this important question. Indeed, there are many experiments that could do to better understand the function of pC1SS2 neurons, and we only provide the initial characterization of them due to the limited scope of this study. My lab has been focused on studying P1/pC1 function in both male and female flies and will continue to do so.

      To partially address your concern, we made the following revisions

      (1) We provided higher-resolution images of P1a and pC1SS2 (Figure 4C-4E). While their cell bodies are very close, they project to distinct brain regions, in addition to some shared ones.

      (2) By staining these neurons with GFP and co-staining with anti-FruM or anti-DsxM antibodies, we showed that P1a neurons are partially FruM-positive and partially DsxM-positive, while pC1SS2 neurons are DsxM-positive and FruM-negative (Figure 5A-5D).

      (3) As pC1SS2 neurons are DsxM-positive and FruM-negative, we also examined how DsxM regulates the development of these neurons. We found that knocking down DsxM expression in pC1SS2 neurons using RNAi significantly affected pC1 development regarding to both cell numbers (Figure 5G) and their projections (Figure 5H).

      (4) We further found that DsxM in pC1SS2 neurons is crucial for executing their tussling-promoting function, as optogenetic activation of these neurons with DsxM knockdown failed to induce tussling behavior in the initial activation period, and a much lower level of tussling in the second activation period compared to control males (Figure 5I-5K).

      (5) While it is very difficult to identify the upstream and downstream neurons of P1a and pC1SS2 neurons, we made an initial step by utilizing trans-tango and retro-Tango to visualize potential downstream and upstream neurons of P1a and pC1SS2 (Figure 4-figure supplement 2), which certainly needs future investigation.  

      While their characterizations of tussling behaviors in wild-type males (Figures 1 and 2) are intriguing, the remaining data have little link with each other, making it difficult to understand what their main conclusion is. Figure 3 suggests that one class of olfactory sensory neurons (OSN) that express Or47b is necessary for tussling behavior. While the authors acknowledged that Or47b-expressing OSNs promote male courtship toward females presumably by detecting cuticular compounds, they provided little discussion on how a class of OSN can promote two different types of innate behavior. No evidence of a functional or circuitry relationship between the Or47b pathway and the pC1SS2 neurons was provided. It is unclear how these two components are relevant to each other.

      It has been previously found that Or47b-expressing ORNs respond to fly pheromones common to both sexes, and group-housing enhances their sensitivity. Regarding to how Or47b ORNs promotes two different types of innate behaviors, a simple explanation is that they act on multiple second-order and further downstream neurons to regulate both courtship and aggression, not mentioning that neural circuitries for courtship and aggression are partially shared. We did not include this in the discussion as we would like to focus on aggression modes, and how different ORNs (Or47b and Or67d) mediate distinct aggression modes.

      Regarding to the relationship between Or47b ORNs and pC1<sub>SS2</sub> neurons, or in general ORNs to P1/pC1, it is interesting and important to explore, but probably in a separate study. We tried to conduct pathway connection analyses from Or47b to pC1 using the FlyWire database, and found that Or47b neurons can act on pC1 neurons via three layers of interneurons. Although the FlyWire database currently only contains neuronal data from female brains, they can provide a certain degree of reference. We hope the editor and reviewers would agree with us that identifying these intermediate neurons involved in their connection is beyond this study.

      Lastly, the rationale of the experiment in Figure 5 and the interpretation of the results is confusing. The authors attributed a higher mating success rate of older, socially experienced males over younger, socially isolated males to their tendency to tussle, but tussling cannot happen when one of the two flies is not engaged. If, for instance, a socially isolated 14-day-old male does not engage in tussling as indicated in Figure 2, how can they tussle with a group-housed 14-day-old male? Because aggressive interactions in Figure 5 were not quantified, it is impossible to conclude that tussling plays a role in copulation advantage among pairs as authors argue (lines 282-288).

      Indeed, we do not have direct evidence to show it is tussling that makes socially experienced males to dominate over socially isolated males. To address your concern, we have made following revisions

      (1) We toned down the statements about the relationship between fighting strategies and reproductive success throughout the manuscript. For example, in the abstract Moreover, shifting from lunging to tussling in socially enriched males is accompanied with better territory control and mating success.

      (2)  Regarding to whether a SH male can engage in tussling with a GH male, we found that while two SH males rarely perform tussling, paired SH and GH males displayed similar levels of tussling like two GH males, although tussling duration from paired SH and GH males is significantly lower compared to that in two GH males (Figure 6-figure supplement 2).

      (3) To support the potential role of tussling in territory control and mating competition, we performed additional experiments to silence Or47b or pC1SS2 neurons that almost abolished tussling, and paired these males with control males. We found that males with Or47b or pC1SS2 neurons silenced cannot compete over control males, further suggesting the involvement of tussling in territory control and mating competition.  

      Despite these weaknesses, it is important to acknowledge the authors' courage to initiate an investigation into a less characterized, high-intensity fighting behavior. Tussling requires the simultaneous engagement of two flies. Even if there is confusion over the distinction between lunges and tussling, the authors' conclusion that socially experienced flies and socially isolated flies employ distinct fighting strategies is convincing. Questions that require more rigorous studies are 1) whether such differences are encoded by separate circuits, and 2) whether the different fighting strategies are causally responsible for gaining ethologically relevant resources among socially experienced flies. Enhanced transparency of behavioral data will help readers understand the impact of this study. Lastly, the manuscript often mentions previous works and results without citing relevant references. For readers to grasp the context of this work, it is important to provide information about methods, reagents, and other key resources.

      Thank you very much for this comment and we almost totally agree.

      (1) Our results suggest the involvement of distinct sensory neurons and central neurons for lunging and tussling, but do not exclude the possibility that they may also utilize shared neurons. For example, activation of P1a neurons promotes both lunging and tussling in the presence of light.

      (2) We have now toned down the statements about the relationship between fighting strategies and reproductive success throughout the manuscript.

      (3) We provided more detailed methods, genotypes of flies to improve transparency of the manuscript.

      Reviewer #1 (Recommendations for the authors):

      (1) Figure 1 Supplement 1 shows that increased aging has a linear and inverse relationship with the number of lunges, this is in contrast to a previous study from Dierick lab (Chowdhury, 2021), where using Divider assays they showed that aggressive lunges increased up to day 10 and subsequently decreased in 30-day old flies. Given that this study did not use 14-day-old flies, it might be useful to comment on this.

      Thank you for this comment. Indeed, Chowdhury et al., suggested a decline of lunging after 10 days, which is not contradictory to our findings that lunging in 14d-old males is lower than that in 7d-old males. It is ideally to perform a time-series experiments to reveal the detailed relationship between ages and aggression (lunging or tussling) levels, but given our initial findings that 14d-old males showed stable tussling behavior, we prefer to use this time point for the rest of this study.

      (2) For Figure 3, do various manipulations also affect the duration of tussling and boxing besides frequency and latency?

      Thank you for this comment. We only analyzed latency and frequency, but not duration, as data analysis was performed manually rather than automatically on every fly pair for about 2 hours, which is very labor-consuming. We hope you could agree with us that the two parameters (frequency and latency) for tussling are representative for assaying this behavior.

      (3) For Figure 3 A-F, the housing status of the males is not clearly mentioned either in the main text or the figure. What is the status of the tussling and lunging status when this housing condition is reversed when Or47b neurons are silenced, or the gene is knocked down? Do these manipulations overcome the effect of housing conditions similar to what is seen in NaChBac-mediated activation experiments?

      Figure 3A-F used group-housed males and we have now added such information in the figure legends as well as Table S1.

      We appreciate your suggestion on using different housing conditions. As silencing Or47b neurons or knocking down Or47b reduced tussling, it is reasonable to use GH males (as we did in Figure 3A-F) that performed stable tussling behavior, but not SH males that rarely tussle.

      (4) The connections between Or47b neurons and pC1SS2 or P1a neurons can be addressed by available connectomic datasets or TransTango/GRASP approaches.

      Thank you for this important suggestion. We used the FlyWire electron microscope database to analyze the pathway connections between these two types of neurons. The results indicated that there are at least three levels of interneurons for connecting Or47b and pC1 neurons. Although the FlyWire database currently only contains neuronal data from female brains, they can provide a certain degree of reference for males.

      The lack of direct synaptic connection also suggests that it is challenging to resolve the connection between these two neuronal types using methods like trans-Tango/GRASP. To partially address this question, we utilized trans-Tango and retro-Tango techniques to visualize potential downstream and upstream neurons of P1a and pC1SS2 (Figure 4-figure supplement 2). Future investigations are certainly needed for clarifying functional connections between Or47b/Or67d and P1a/pC1SS2 neurons.

      (5) Figure 5, 'Winning index' and 'Copulation advance index' while described in Material and Methods, should be referred to in the main text.

      We now described these two indices briefly in the main manuscript, and in the Discussion section with more details.

      (6) Figure 6 shows comparisons for territorial control and mating outcomes where four different housing and aging conditions are organized in a hierarchical sequence. It is not clear from the data in Figure 5, how this conclusion was arrived at. A supplementary table with various outcomes with statistical analysis would help with this.

      We now added a supplementary table (Table S2) with various outcomes with statistical analysis.

      Minor Comments

      (1) Line 26 says that the courtship levels in SH and GH males are not different, however, unilateral wing extension is higher in SH males as compared to GH males (Pan & Baker, 2014; Inagaki et al., 2014), also it was shown that courtship attempts are higher in D. paulsitorium (Kim & Ehrman, 1998). It would be better to clarify this statement.

      Indeed, it is found in some cases that SH males court more vigorously than GH males. We have added more references on this matter in the introduction.

      (2) Figure 4, correct 'Tussing' to 'Tussling' or 'Box, Tussling' as appropriate.

      Corrected.

      (3) Duistermars, 2018 should be cited while discussing the role of vision in aggression (Figure 4). [A Brain Module for Scalable Control of Complex, Multi-motor Threat Displays]

      We now cited this reference and added more discussion in the revised manuscript.

      (4) Reviews on Drosophila aggression and social isolation can be cited in the introduction/discussion to incorporate recent literature e.g., Palavicino-Maggio, 2022 [The Neuromodulatory Basis of Aggression Lessons From the Humble Fruit Fly]; Yadav et al., 2024[Lessons from lonely flies Molecular and neuronal mechanisms underlying social isolation], etc.

      We now cited these references in both the introduction and discussion sections.

      (5) The concentration of apple juice agar should be mentioned in the methods.

      We added this and other necessary information for materials in the Materials and Methods section of the study.

      (6) Source of the LifeSongX software and, if available, a Github link would be helpful to include in the materials and methods section.

      We now provided the source of the LifesongY software (website https//sourceforge.net/projects/lifesongy/), which is a Windows version of LifesongX (Bernstein, Adam S.et al., 1992).

      Reviewer #2 (Recommendations for the authors):

      (1) Major comment 1

      As pointed out in the public review, the weakness of this study is that the relationship between the aggression strategy and reproductive success is an inference that is not based on experimental facts; I understand that the frequency of tussling is not so high, but at least tussling-like behavior can be observed in the territory control experiment shown in Video 3. Wouldn't it be possible to re-analyse data and examine the correlation between aggressive behavior and territory control? Even if the analysis of tussling itself in this setup is difficult, for example, additional experiments using Or47b knock-out fly or pC1[SS2]-inactivated fly could provide stronger support.

      Indeed, we can only make a correlation between the type of aggressive behavior and territory control. We now toned down this statement throughout the manuscript. For example, in the abstract, we changed our conclusions as following

      Moreover, shifting from lunging to tussling in socially enriched males is accompanied with better territory control and mating success. Our findings identify distinct sensory and central neurons for two fighting forms and suggest how social experience shapes fighting strategies to optimize reproductive success.

      To further address the concern, we now performed additional experiments to silence Or47b or pC1SS2 neurons that almost abolished tussling, and paired these males with control males. We found that males with Or47b or pC1SS2 neurons silenced cannot compete over control males (Figure 6-figure supplement 3), further suggesting the involvement of tussling in territory control and mating competition.

      In relation to the above, some of the text in the Abstract should be changed.Line 28 These findings "reveal" how social experience shapes fighting strategies to optimise reproductive success.

      "suggest" is more accurate at this stage.

      Changed as suggested.

      (2) Major comment 2

      The tussling is the central subject of this paper. However, neither the main text nor Materials and Methods section provides a clear explanation of how this aggression mode was detected. Did the authors determine this behavior manually? Or was it automatically detected by some kind of image analysis? In either case, the criteria and method for detecting the tussling should be clearly described.

      The behavioral data analysis in this study was performed manually. We now provided more detailed description of the two fighting forms in the Materials and Methods section. See below

      Lunging is characterized by a male raising its forelegs and quickly striking the opponent, and each lunge typically lasts less than 0.2 seconds through detailed analysis. Tussling is characterized by both males using their forelegs and bodies to tumble over each other, and this behavior may last from seconds to minutes. Tussling is often mixed with boxing, in which both flies rear up and strike the opponent with forelegs. Since boxing is often transient and difficult to distinguish from tussling, we referred to the mixed boxing and tussling behavior simply as tussling. As we manually analyze tussling for 2 hours for each pair of males, it is possible that we may miss some tussling events, especially those quick ones.

      For the experimental groups where tussling cannot be observed, the latency is regarded as 120 min, but this is a value depending on the observation time. While it is reasonable to use the latency to evaluate the behavior such as the lunging that is observed at relatively early times, care should be taken when using it to evaluate the tussling. Since similar trends to those obtained for the latency are observed for Number of tussles and % of males performing tussling, it may be better to focus on these two indices.

      We initially intended to provide all three statistical metrics. However, we found that using the "% of males performing tussling" would require a significantly larger sample size for subsequent statistical analysis (using chi-square tests), greatly increasing the workload. At the same time, we believe that the trend observed with "% of males performing tussling" is consistent with the other two indices, and the percentage information can also be derived from the individual sample scatter data of the other two metrics. Therefore, we opted to use "latency" and "numbers" as the statistical metrics, despite the caveat as you mentioned.

      The authors repeatedly mention that tussling is less frequent but more vigorous. The low frequency can be understood from the data in Fig. 1 and Fig. 2, but there are no measured data on the intensity. As the authors mention in line 125, each tussling event appears to be sustained for a relatively long period, as can be seen from the ethogram in Fig. 2. For example, it would be possible to evaluate the intensity by measuring the duration of the tussling event.

      Thank you for your valuable suggestion. We now analyzed duration of tussling and lunging, and found that a lunging event is often very short (less than 0.2s), while a tussling event may last from seconds to minutes, further supporting their relative intensities. This new data is added as Figure 2G.

      (3) Minor comments

      a) Line 117 How many flies were placed in one vial for group-rearing (GH)? Were males and females grouped together? Please specify in the Materials and Methods section.

      We have added this information in the Materials and Methods section. In brief, 30-40 virgin males were collected after eclosion and group-housed in each food vial.

      b) Line 174 The trans-Tango is basically a postsynaptic cell labeling technique. It is unlikely that the labeling intensity changes depending on neuronal activity. Do the authors want to say in this text the high activity of Or47b-expressing neurons under GH conditions? Or are they trying to show that the expression level of the Or47b gene, which is supposedly monitored by the expression of GAL4, is increased by GH conditions? The authors should clarify which is the case.

      Although the primary function of the trans-Tango technique is to label downstream neurons, the original literature indicates that the signal strength in downstream neurons depends on the use of upstream neurons evidenced by age-dependent trans-Tango signals. Therefore, the trans-Tango technique can indirectly reflect the usage of upstream neurons. Our findings that GH males showed broader Or47b trans-Tango signals than SH males can indirectly suggest that group-housing experience acts on Or47b neurons. We made textually changes to clarify this.

      c) Line 178 Which fly line labels the mushroom body; R19B03-GAL4?

      Yes, we now provided the detailed genotypes for all tested flies in the Table S1.

      d) Line 184 It was reported in Koganezawa et al., 2016 that some dsx-expressing pC1 neurons are involved in aggressive behavior. The authors should also refer to this paper as they include tussling in the observed aggressive behavior.

      Thank you for this comment, and we now cited this reference in the revised manuscript.

      e) Line 339 I think you misspelled fruM RNAi.

      Thank you for pointing this out. fruMi refers to microRNAi targeting fruM, and we have now clearly stated this information in the main text.

      f) Line 681 Is tussling time (%) the total duration of tussling occurrences during the observation time? Or is it the percentage of individuals observed tussling during the observation time? This needs to be clarified.

      It is the former one. We now clearly stated this definition in the Materials and Methods section

      Reviewer #3 (Recommendations for the authors):

      For authors to support their conclusion that enhanced tussling among socially experienced flies allows them to better retain resources, it is necessary to quantify aggressive behaviors (mainly tussling and lunging) in Figure 5.

      We agree that we can only make a correlation between enhanced tussling behavior and mating competition. We now toned down this statement throughout the manuscript. For example, in the abstract, we changed our conclusions as following Moreover, shifting from lunging to tussling in socially enriched males is accompanied with better territory control and mating success. Our findings identify distinct sensory and central neurons for two fighting forms and suggest how social experience shapes fighting strategies to optimize reproductive success.

      To further address the concern, we now performed additional experiments to silence Or47b or pC1SS2 neurons that almost abolished tussling, and paired these males with control males. We found that males with Or47b or pC1SS2 neurons silenced cannot compete over control males (Figure 6-figure supplement 3), further suggesting the involvement of tussling in territory control and mating competition.

      In contrast to the authors' data in Figure 4, movies in ref 36 clearly show instances of 2 flies exchanging lunges after the optogenetic activation of P1a neurons, like the examples shown in supplementary movies S1-S3. It is a clear discrepancy that requires discussion (and raises a concern about the lack of transparency about behavioral quantification).

      In our study, optogenetic activation of P1<sup>a</sup> neurons failed to induce obvious tussling behavior, and temperature-dependent activation of P1<sup>a</sup> neurons can only induce tussling in the presence of light. These data are different from Hoopfer et al., (2015), but are generally consistent with a new study (Sten et al., Cell, 2025), in which pC1SS2 neurons but not P1a neurons promote aggression. Such discrepancy has now been discussed in the revised manuscript.

      The authors often fail to cite relevant references while discussing previous results, which compromises the scholarship of the manuscript. Examples include (but are not limited to)

      (1) Line 85-86 Simon and Heberlein, J. Exp. Biol. 223 jeb232439 (2020) suggested that tussling is an important factor for flies to establish a dominance hierarchy.

      Reference added.

      (2) Line 142-143 Cuticular compounds such as palmitoleic acid are characterized to be the ligands of Or47b by ref #18.

      Reference added.

      (3) Line 185-187 pC1SS1 and pC1SS2 are first characterized by ref #46. Expression data of this paper also implies that pC1SS1 and pC1SS2 label different neurons in the male brain.

      We have now added this reference at the appropriate place in the revised manuscript. In addition, we have clarified that these two drivers exhibit sexually dimorphic expression patterns in the brain.

      (4) Line 196-199 Cite ref #36, which describes the behavior induced by the optogenetic activation of P1a neurons.

      Reference added.

      (5) Line 233-235 The authors' observation that control males do not form a clear dominance directly contradicts previous observations by others (Nilsen et al., PNAS 10112342 (2002); Yurkovic et al., PNAS 10317519 (2006); also see Trannoy et al., PNAS 1134818 (2016) and Simon and Heberlein above). The authors must at least discuss why their results are different.

      There is a misunderstanding here. We clearly state that there is a ‘winner takes all’ phenomenon. However, for wild-type males of the same age and housing condition, we calculated the winning index as (num. of wins by unmarked males – num. of wins by marked males)/10 encounters * 100%, which is roughly zero due to the randomness of marking.

      (6) Line 251-254 The authors' observation that aged males are less competitive than younger males contradicts the conclusion in ref #18. Discussion is required.

      We have now added a discussion on this matter. In brief, Lin et al., showed that 7d-old males are more competitive than 2d-old males, which is probably due to different levels of sexual maturity of males, but not a matter of age like our study that used up to 21d-old males.

      (7) Line 274-275 It is unclear which "previous studies" "have found that social isolation generally enhances aggression but decreases mating competition in animal models". Cite relevant references.

      Reference added.

      (8) Line 309-310 The evidence supporting the statement that "there are only three pairs of pC1SS2 neurons". If there is a reference, cite it. If it is based on the authors' observation, data is required.

      We have now provided additional data on the number of pC1SS2 neurons in Figure 5G of the revised manuscript.

    1. Enlil, "Because they have killed the Bull of Heaven, and because they have killed Humbabawho guarded the Cedar Mountain one of the two must die." Then glorious Shamash answeredthe hero Enlil, "It was by your command they killed the Bull of Heaven, and killed Humbaba,and must Enkidu die although innocent?" Enlil flung round in rage at glorious Shamash, "Youdare to say this, you who went about with them every day like one of themselves!"So Enkidu lay stretched out before Gilgamesh; his tears ran down in streams and he said toGilgamesh, 'O my brother, so dear as you are to me, brother, yet they will take me from you.'Again he said, 'I must sit down on the threshold of the dead and never again will I see my dearbrother with my eyes.'While Enkidu lay alone in his sickness he cursed the gate as though it was living flesh, 'Youthere, wood of the gate, dull and insensible, witless, I searched for you over twenty leaguesuntil I saw the towering cedar. There is no wood like you in our land. Seventy-two cubits highand twenty-four wide, the pivot and the ferrule and the jambs are perfect. A master craftsmanfrom Nippur has made you; but O, if I had known the conclusion! If I had known that this wasall the good that would come of it, I would have raised the axe and split you into little piecesand set up here a gate of wattle instead. Ah, if only some future king had brought you here,or some god had fashioned you. Let him obliterate my name and write his own, and the cursefall on him instead of on Enkidu.'With the first brightening of dawn Enkidu raised his head and wept before the Sun God, inthe brilliance of the sunlight his tears streamed down. 'Sun God, I beseech you, about thatvile Trapper, that Trapper of nothing because of whom I was to catch less than my comrade;let him catch least, make his game scarce, make him feeble, taking the smaller of every share,let his quarry escape from his nets.'When he had cursed the Trapper to his heart's content he turned on the harlot. He was rousedto curse her also. 'As for you, woman, with a great curse I curse you! I will promise you adestiny to all eternity. My curse shall come on you soon and sudden. You shall be without aroof for your commerce, for you shall not keep house with other girls in the tavern, but doyour business in places fouled by the vomit of the drunkard. Your hire will be potter's earth,your thievings will be flung into the hovel, you will sit at the cross-roads in the dust of thepotter's quarter, you will make your bed on the dunghill at night, and by day take your standin the wall's shadow. Brambles and thorns will tear your feet, the drunk and the dry will strikeyour cheek and your mouth will ache. Let you be stripped of your purple dyes, for I too oncein the wilderness with my wife had all the treasure I wished.'When Shamash heard the words of Enkidu he called to him from heaven: 'Enkidu, why areyou cursing the woman, the mistress who taught you to eat bread fit for gods and drink wineof kings

      I find it interesting that words like "wanton" and "harlot" were used to describe this woman. Although Shamash himself states how important of a woman she is. they will always see her as a "mistress" or "harlot." Those words in and of itself have negative connotations. It is as if they degrade her almost.

    1. eLife Assessment

      These useful findings assigned a novel functional implication of histone acylation, crotonylation. Mechanistic insights have been provided in great detail regarding the role of the YEATS2-GCDH axis in modulating epithelial-to-mesenchymal transition (EMT) in head and neck cancer, and overall the strength of evidence is solid.

    2. Joint Public Review:

      This manuscript investigates a mechanism between the histone reader protein YEATS2 and the metabolic enzyme GCDH, particularly in regulating epithelial-to-mesenchymal transition (EMT) in head and neck cancer (HNC).

      The authors addressed most of the concerns of the reviewers. They have:

      (1) Increased the patient cohort size from 10 to 23 for evaluating the levels of YEATS2 and H3K27cr.

      (2) Checked the expression of major genes involved in the YEATS2-mediated histone crotonylation axis (YEATS2, GCDH, ECHS1, Twist1, along with H3K27cr levels) in head and neck cancer tissues using immunohistochemistry.

      (3) Analyzed publicly available head and neck cancer patient datasets, which revealed a significant positive correlation between YEATS2 expression and increasing tumor grade.

      (4) Performed GSEA on TCGA HNC patient samples stratified by high versus low YEATS2 expression. This analysis robustly demonstrated a positive enrichment of metastasis-related gene sets in the high YEATS2 expression group, compared to the low YEATS2 group.

      (5) Performed extensive experiments to look into the role of p300 in assisting YEATS2 in regulating promoter histone crotonylation. The p300 was knocked down in BICR10 cells, followed by immunoblotting to assess SPARC protein levels.

      (6) Performed co-immunoprecipitation assays to check for an interaction between endogenous YEATS2 and p300. The results clearly demonstrate the presence of YEATS2 in the p300-immunoprecipitate sample, indicating that YEATS2 and p300 physically interact and likely function together as a complex to drive the expression of target genes like SPARC.

      (7) Performed RNA Polymerase II ChIP-qPCR on the SPARC promoter in YEATS2 knockdown cells.

      (8) To confirm p300's specific role in crotonylation at this locus, they performed H3K27cr ChIP-qPCR after p300 knockdown.

      (9) Performed SP1 knockdown (which reduces YEATS2 expression) followed by ectopic YEATS2 overexpression, and then assessed p300 occupancy and H3K27cr levels on the SPARC promoter.

    1. Previous studies (Okudaira, Kripke, and Webster 1983; Jardim et al. 2011; Aarts et al. 2017; Bhandari, Mirhajianmoghadam, and Ostrin 2021; Wen et al. 2023; Mohammadian et al. 2024) have shown that while wrist-worn measurements are correlated with chest or head measurements, they are not related by a simple relationship.

      This is an important point that I wonder if could be future emphasized graphically. Is there something from the references that demonstrate this? Or I think you might be doing a study now with sensors with multiple wearable locations that might allow you to make this point graphically with real data.

    1. eLife Assessment

      This important study provides a potential framework for understanding the regulatory mechanisms of DON toxin biosynthesis in F. graminearum and identifies potential molecular targets for Fusarium head blight control. While FgDML1 remains under-explored with an unclear role in the biology of filamentous fungi, the supporting evidence in this study is incomplete. Providing details on methods and adding controls will strengthen the work.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript entitled "Mitochondrial Protein FgDML1 Regulates DON Toxin Biosynthesis and Cyazofamid Sensitivity in Fusarium graminearum by affecting mitochondrial homeostasis" identified the regulatory effect of FgDML1 in DON toxin biosynthesis and sensitivity of Fusarium graminearum to cyazofamid. The manuscript provides a theoretical framework for understanding the regulatory mechanisms of DON toxin biosynthesis in F. graminearum and identifies potential molecular targets for Fusarium head blight control. The paper is innovative, but there are issues in the writing that need to be addressed and corrected.

      Weaknesses:

      (1) The authors speculate that cyazofamid treatment caused upregulation of the assembly factors, leading to a change in the conformation of the Qi protein, thus restoring the enzyme activity of complex III. But no speculation was given in the discussion as to why this would lead to the upregulation of assembly factors, and how the upregulation of assembly factors would change the protein conformation, and is there any literature reporting a similar phenomenon? I would suggest adding this to the discussion.

      (2) Would increased sensitivity of the mutant to cell wall stress be responsible for the excessive curvature of the mycelium?

      (3) The vertical coordinates of Figure 7B need to be modified with positive inhibition rates for the mutants.

    1. Reviewer #2 (Public review):

      Summary:

      In short, the paper presents a theoretical framework that predicts how resources should be optimally distributed between receptors and optics in eyes.

      After revision of an already excellent contribution, the manuscript is now even better. The authors have responded carefully to all reviewer comments.

      Strengths:

      The authors build on the principle of resource allocation within an organism and develop a formal theory for optimal distribution of resources within an eye between the receptor array and the optics. Because the two parts of eyes, receptor arrays and optics, share the same role of providing visual information to the animal it is possible to isolate these from resource allocation in the rest of the animal. This allows for a novel and powerful way of exploring the principles that govern eye design. By clever and thoughtful assumptions/constraints, the authors have built a formal theory of resource allocation between the receptor array and the optics for two major types of compound eye as well as for camera-type eyes. The theory is formalized with variables that are well characterized in a number of different animal eyes, resulting in testable predictions.

      The authors use the theory to explain a number of design features that depend on different optimal distribution of resources between the receptor array and the optics in different types of eye. As an example, they successfully explain why eye regions with different spatial resolution should be built in different ways. They also explain differences between different types of eye, such as long photoreceptors in apposition compound eyes and much shorter receptors in camera type eyes. The predictive power in the theory is impressive.

      To keep the number of parameters at a minimum, the theory was developed for two types of compound eye (neural superposition, and apposition) and for camera-type eyes. It is possible to extend the theory to other types of eye, although it would likely require more variables and assumptions/constraints to the theory. It is thus good to introduce the conceptual ideas without overdoing the applications of the theory.

      The paper extends a previous theory, developed by the senior author, that develops performance surfaces for optimal cost/benefit design of eyes. By combining this with resource allocation between receptors and optics, the theoretical understanding of eye design takes a major leap and provides entirely new sets of predictions and explanations for why eyes are built the way they are.

      The paper is well written and even though the theory development in the Results may be difficult to take in for many biologists, the Discussion very nicely lists all the major predictions under separate headings, and here the text is more tuned for readers that are not entirely comfortable with the formalism of the Results section. I must point out though that the Results section is kept exemplary concise. The figures are excellent and help explain concepts that otherwise may go above the head of many biologists.

    2. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      Two important factors in visual performance are the resolving power of the lens and the signal-to-noise ratio of the photoreceptors. These both compete for space: a larger lens has improved resolving power over a smaller one, and longer photoreceptors capture more photons and hence generate responses with lower noise. The current paper explores the tradeoff of these two factors, asking how space should be allocated to maximize eye performance (measured as encoded information).

      Your summary is clear, concise and elegant. The competition is not just for space, it is for space, materials and energy. We  now emphasise that we are considering these three costs in our rewrites of the Abstract and the first paragraph of the Discussion.  

      Strengths:

      The topic of the paper is interesting and not well studied. The approach is clearly described and seems appropriate (with a few exceptions - see weaknesses below). In most cases, the parameter space of the models are well explored and tradeoffs are clear.  

      Weaknesses:

      Light level

      The calculations in the paper assume high light levels (which reduces the number of parameters that need to be considered). The impact of this assumption is not clear. A concern is that the optimization may be quite different at lower light levels. Such a dependence on light level could explain why the model predictions and experiment are not in particularly good agreement. The paper would benefit from exploring this issue.

      Thank you for raising this point. We briefly explained in our original Discussion, under Understanding the adaptive radiation of eyes (Version 1, Iines 756 – 762), how our method can be modified to investigate eyes adapted for lower light levels. We have some thoughts on how eyes might be adapted. In general, transduction rates are increased by increasing D, reducing f, increasing d<sub>rh</sub> and increasing L . In addition, d<sub>rh</sub> is increased to allow for a larger D within the constraint of eye radius/corneal surface area, and to avoid wasteful oversampling (the changes in D, f and d<sub>rh</sub> increase acceptance angle ∆ρ). We suspect that in eyes optimised for the efficient use of space, materials and energy the increases in L will be relatively small, first because  increasing D, reducing f and increasing d<sub>rh</sub> are much more effective at increasing transduction rate than increasing L. Second, increasing sensitivity by reducing f decreases the cost Vo whereas increasing sensitivity by increasing L increases the cost V<sub>ph</sub>. This disadvantage, together with exponential absorption, might explain why L is only 10% - 20% longer in the apposition eyes of nocturnal bees (Somanathan et al, J. comp. Physiol. A195, 571583, 2009). Because this line of argument is speculative and enters new territory, we have not included it in our revised version. We already present a lot of new material for readers to digest, and we agree with referee 2 that “It is possible to extend the theory to other types of eyes, although it would likely require more variables and assumptions/constraints to the theory. It is thus good to introduce the conceptual ideas without overdoing the applications of the theory”. Nonetheless, we take your point that some of the eyes in our data set might be adapted for lower light levels, and we have rewritten the Discussion section, How efficiently do insects allocate resources within their apposition eyes accordingly. On line 827 – 843 we address the assumption that eyes are adapted for full daylight,  and also take the opportunity  to mention two more reasons for increasing the eye parameter p: namely increasing image velocity (Snyder, 1979), and constructing  bright zones that increase the detectability of small targets (van Hateren et al., 1989; Straw et al., 2006).

      Discontinuities

      The discontinuities and non-monotonicity of the optimal parameters plotted in Figure 4 are concerning. Are these a numerical artifact? Some discussion of their origin would be quite helpful.

      Good points, we now address the discontinuities in the Results, where they are first observed (lines 311 - 319) 

      Discrepancies between predictions and experiment

      As the authors clearly describe, experimental measurements of eye parameters differ systematically from those predicted. This makes it difficult to know what to take away from the paper. The qualitative arguments about how resources should be allocated are pretty general, and the full model seems a complex way to arrive at those arguments. Could this reflect a failure of one of the assumptions that the model rests on - e.g. high light levels, or that the cost of space for photoreceptors and optics is similar? Given these discrepancies between model and experiment, it is also hard to evaluate conclusions about the competition between optics and photoreceptors (e.g. at the end of the abstract) and about the importance for evolution (end of introduction).

      Your misgivings boil down to two issues: what use is a model that fails to fit the data, and do we need a complicated model to show something that seems to be intuitively obvious?  Our study is useful because it introduces new approaches, methods, factors and explanations which advance our analysis and understanding of eye design and evolution. Your comments make it clear that we failed to get this message across and we have revised the manuscript accordingly. We have rewritten the Abstract and the first paragraph of the Discussion to emphasise the value of our new measure of cost, specific volume, by including more of its practical advantages. In particular, our use of specific volume 1) opens the door to the morphospace of all eyes of given type and cost. 2) This allows one to construct performance surfaces across morphospace that not only identify optima, but by evaluating the sub-optimal cast light on efficiency and adaptability. 3) Shows that photoreceptor energy costs have a major impact on design and efficiency, and 4) allows us to calculate and compare the capacities and efficiencies of compound eyes and simple eyes using a superior measure of cost. It is also possible that your dissatisfaction was deepened by disappointment. The first sentence of our original Abstract said that the goal of design is to maximize performance, so you might have expected to see that eyes are optimised.  Given that optimization provides cast iron proof that a system is designed to be efficient, and previous studies of coding by fly LMCs (Laughlin, 1981; Srinivasan et al., 1982 & van Hateren 1992) validated Barlow’s Efficient Coding Hypothesis by showing that coding is optimised, your expectation is reasonable. However, our investigation of how the allocation of resources to optics and photoreceptors affects an eye’s performance, efficiency and design does not depend a priori  on finding optima, therefore we have removed the “maximized”. Our revised Abstract now says, “to improve performance”.  

      In short, our study illustrates an old adage in statistics “All models fail to fit, but some are useful”. As is often the case, the way in which our model fails is useful. In the original version of the Results and Discussion, we argued that the allocation of resources is efficient, and identified factors that can, in principle, explain the scattering of data points. Indeed, our modelling identifies two of these deficiencies; a lack of data on species-specific energy usage, and the need for models that quantify the relationship between the quality of the captured image and the behavioural tasks for which an eye might be specialised. Thus, by examining the model’s failings we identify critical factors and pose new questions for future research.  We have rewritten the Discussion section How efficiently do insects allocate resources…. to make these points. We hope that these revisions will convince you that we have established a starting point for definitive studies, invented a vehicle that has travelled far enough to discover new territory, and shown that it can be modified to cope with difficult terrain.

      Turning to the need for a complicated model, because the costs and benefits depend on elementary optics and geometry, we too thought that there ought to be a simple model. However, when we tried to formulate a simple set of equations that approximate the definitive findings of our more complicated model we discovered that this is not as straightforward as we thought.  Many of the parameters in our model interact to determine costs and benefits, and many of these interactions are non-linear (e.g. the volumes of shells in spheres involve quadratic and cubic terms, and information depends on the log of a square root). So, rather than hold back publication of our complicated model, we decided to explain how it works as clearly as we can and demonstrate its value.

      In response to your final comment, “it is hard to evaluate conclusions about the competition between optics and photoreceptors (e.g. at the end of the abstract) and about the importance for evolution (end of introduction)”, we stand by our original argument. There must be competition in an eye of fixed cost, and because competition favours a heavy investment in photoreceptors, both in theory and in practice, it  is a significant factor in eye design. A match between investments in optics and photoreceptors is predicted by theory and observed in fly NS eyes, therefore this is a design principle. As for evolution, no one would deny that it is important to view the adaptive radiation of eyes through a cost-benefit lens. Our lens is the first to view the whole eye, optics and photoreceptor array, and the first to treat the costs of space, materials and energy. Although the view through our lens is a bit fuzzy, it reveals that costs, benefits and trade-offs are important. Thus we have established a promising starting point for a new and more comprehensive cost-benefit approach to understanding eye design and evolution.  As for the involvement of genes, when there are heritable changes in phenotype genes must be involved and if, as we suggest, efficient resource allocation is beneficial, the developmental mechanisms responsible for allocating resources to optics and photoreceptor array will be playing a formative role in eye evolution.

      Reviewer #2 (Public Review):

      Summary:

      In short, the paper presents a theoretical framework that predicts how resources should be optimally distributed between receptors and optics in eyes.

      Strengths:

      The authors build on the principle of resource allocation within an organism and develop a formal theory for optimal distribution of resources within an eye between the receptor array and the optics. Because the two parts of eyes, receptor arrays and optics, share the same role of providing visual information to the animal it is possible to isolate these from resource allocation in the rest of the animal. This allows for a novel and powerful way of exploring the principles that govern eye design. By clever and thoughtful assumptions/constraints, the authors have built a formal theory of resource allocation between the receptor array and the optics for two major types of compound eye as well as for camera-type eyes. The theory is formalized with variables that are well characterized in a number of different animal eyes, resulting in testable predictions.

      The authors use the theory to explain a number of design features that depend on different optimal distribution of resources between the receptor array and the optics in different types of eyes. As an example, they successfully explain why eye regions with different spatial resolution should be built in different ways. They also explain differences between different types of eyes, such as long photoreceptors in apposition compound eyes and much shorter receptors in camera type eyes. The predictive power in the theory is impressive.

      To keep the number of parameters at a minimum, the theory was developed for two types of compound eye (neural superposition, and apposition) and for camera-type eyes. It is possible to extend the theory to other types of eyes, although it would likely require more variables and assumptions/constraints to the theory. It is thus good to introduce the conceptual ideas without overdoing the applications of the theory.

      The paper extends a previous theory, developed by the senior author, that develops performance surfaces for optimal cost/benefit design of eyes. By combining this with resource allocation between receptors and optics, the theoretical understanding of eye design takes a major leap and provides entirely new sets of predictions and explanations for why eyes are built the way they are.

      The paper is well written and even though the theory development in the Results may be difficult to take in for many biologists, the Discussion very nicely lists all the major predictions under separate headings, and here the text is more tuned for readers that are not entirely comfortable with the formalism of the Results section. I must point out though that the Results section is kept exemplary concise. The figures are excellent and help explain concepts that otherwise may go above the head of many biologists.

      We are heartened by your appreciation of our manuscript - it persuaded us not to undertake extensive revisions – thank you.

      Reviewer #3 (Public Review):

      Summary:

      This is a proposal for a new theory for the geometry of insect eyes. The novel costbenefit function combines the cost of the optical portion with the photoreceptor portion of the eye. These quantities are put on the same footing using a specific (normalized) volume measure, plus an energy factor for the photoreceptor compartment. An optimal information transmission rate then specifies each parameter and resource allocation ratio for a variable total cost. The elegant treatment allows for comparison across a wide range of species and eye types. Simple eyes are found to be several times more efficient across a range of eye parameters than neural superposition eyes. Some trends in eye parameters can be explained by optimal allocation of resources between the optics and photoreceptors compartments of the eye.

      Strengths:

      Data from a variety of species roughly align with rough trends in the cost analysis, e.g. as a function of expanding the length of the photoreceptor compartment.

      New data could be added to the framework once collected, and many species can be compared.

      Eyes of different shapes are compared.

      Weaknesses:

      Detailed quantitative conclusions are not possible given the approximations and simplifying assumptions in the models and poor accounting for trends in the data across eye types.

      Reviewer #1 (Recommendations For The Authors):

      Figure 1: Panel E defines the parameters described in panel d. Consider swapping the order of those panels (or defining D and Delta Phi in the figure legend for d). Order follows narrative, eye types then match 

      We think that you are referring to Figure 1. We modified the legend.

      Lines 143-145: How does a different relative cost impact your results?

      Thank you for raising this question. Because our assumption that relative costs are the same is our starting point, and for optics it is not an obvious mistake, we do not raise your question here. We address your question where you next raise it because, for photoreceptors the assumption is obviously wrong.  We now emphasise that our method for accounting for photoreceptor energy costs can be applied to other costs. 

      Lines 187-190: Same as above - how do your results change if this assumption is not accurate?

      We have revised our manuscript to emphasise that we are dealing with the situation in which our initial assumption (costs per unit volume are equal) breaks down. On (lines 203 - 208) we write “ However, this assumption breaks down when we consider specific metabolic rates. To enable and power phototransduction, photoreceptors have an exceptionally high specific metabolic rate (energy consumed per gram, and hence unit volume, per second) (Laughlin et al., 1998; Niven et al., 2007; Pangršič et al., 2005). We account for this extra cost by applying an energy surcharge, S<sub>E</sub>. To equate…. 

      We also revised part of the Discussion section, Specific volume is a useful measure of cost to make it clear that we are able take account for situations in which the costs per unit volume are not equal, and we give our treatment of photoreceptor energy costs as an example of how this is done. On lines 626 - 640 we say  

      Cost estimates can be adjusted for situations in which costs per unit volume are not equal, as illustratedby our treatment of photoreceptor energy consumption.  To support transduction the photoreceptor array has an exceptionally high metabolic rate (Laughlin et al., 1998; Niven et al., 2007; Pangršič et al., 2005). We account forthis higher energy cost by using the animal’s specific metabolic rate (power per unit mass and hence power per unit volume) to convert an array’s power consumption into an equivalent volume (Methods). Photoreceptor ion pumps are the major consumers of energy and the smaller contribution of pigmented glia (Coles, 1989) is included in our calculation of the energy tariff K<sub>E</sub>. (Methods) The higher costs of materials and their turnover in the photoreceptor array can be added the energy tariff K<sub>E</sub> but given the magnitude of the light-gated current (Laughlin et al., 1998) the relative increase will be very small. Thus for our intents and purposes the effects of these additional costs are covered by our models. For want of sufficient data…”.

      Reviewer #2 (Recommendations For The Authors):

      A few comments for consideration by the authors:

      (1) In the abstract, Maybe give another example explaining why other eyes should be different to those of fast diurnal insects.

      This worthwhile extrapolation is best kept to the Discussion.

      (2) Would it be worthwhile mentioning that the photopigment density is low in rhabdoms compared to vertebrate outer segments? This will have major effects on the relative size of retina and optics.

      Thank you, we now make this good point in the Discussion (lines 698-702).

      (3) It took me a while to understand what you mean by an energy tariff. For the less initiated reader many other variables may be difficult to comprehend. A possible remedy would be to make a table with all variables explained first very briefly in a formal way and then explained again with a few more words for readers less fluent in the formalism.

      A very useful suggestion. We have taken your advice (p.4).

      (4) The "easy explanation" on lines 356-357 need a few more words to be understandable.

      We have expanded this argument, and corrected a mistake, the width of the head front to back is not 250 μm, it is 600 μm (lines 402-407)

      (5) Maybe devote a short paragraph in the Discussion to other types of eye, such as optical superposition eyes and pinhole eyes. This could be done very shortly and without formalism. I'm sure the authors already have a good idea of the optimal ratio of receptor arrays and optics in these eye types.

      We do not discuss this because we have not found a full account of the trade-offs and their  effects on costs and benefits. We hope that our analysis of apposition and simple eyes will encourage people to analyse the relationships between costs and benefits in other eye types. To this end we pointed out in the Discussion that recent advances in imaging and modelling could be helpful.

      (6)  Could the sentence on lines 668-671 be made a little clearer?

      “Efficiency is also depressed by increasing the photoreceptor energy tariff K<sub>E</sub>, and in line with the greater impact of photoreceptor energy costs in simple eyes, the reduction in efficiency is much greater in simple eyes (Figure 8b).0.

      We replaced this sentence with “In both simple and apposition eyes efficiency is reduced by increasing the photoreceptor energy tariff K<sub>E</sub>. This effect is much greater in simple eyes, thus as found for reductions in photoreceptor length (Figure 7b),K<sub>E</sub> has more impact on the design of simple eyes” (lines749 – 752).

      (7)  I have some reservations about the text on lines 789-796. The problem is that optics can do very little to improve the performance of a directional photoreceptor where delrho should optimally be very wide. Here, membrane folding is the only efficient way to improve performance (SNR). The option to reduce delrho for better performance comes later when simultaneous spatial resolution (multiple pixels) is introduced.

      Yes, we have been careless. We have rewritten this paragraph to say (lines 920-931)

      “Two key steps in the evolution of eyes were the stacking of photoreceptive membranes to absorb more photons, and the formation of optics to intercept more photons and concentrate them according to angle of incidence to form an image (Nilsson, 2013, 2021). Our modelling of well-developed image forming eyes shows that to improve performance stacked membranes (rhabdomeres) compete with optics for the resources invested in an eye, and this competition profoundly influences both form and function. It is likely that competition between optics and photoreceptors was shaping eyes as lenses evolved to support low resolution spatial vision. Thus the developmental mechanisms that allocate resources within modern high resolution eyes (Casares & MacGregor, 2021), by controlling cell size and shape, and as our study emphasises, gradients in size and shape across an eye, will have analogues or homologues in more ancient eyes. Their discovery….” (lines 920-931

      Reviewer #3 (Recommendations For The Authors):

      Suggestions for major revisions:

      While the approach is novel and elegant, the results from the analysis of insect morphology do not broadly support the optimization argument and hardly constrain parameters, like the energy tariff value, at all. The most striking result of the paper is the flat plateau in information across a broad range of shape parameters and the length, and resolution trend in Figure 5.

      At no point in the Results and Discussion do we argue that resource allocation is optimized. Indeed, we frequently observe that it is not. Our mistake was to start the Abstract by observing that animals evolve to minimise costs. We have rewritten the Abstract accordingly.

      The information peaks are quite shallow. This might actually be a very important and interesting result in the paper - the fact that the information plateaus could give the insect eye quite a wide range of parameters to slide between while achieving relatively efficient sensing of the environment. Instead of attempting to use a rather ad hoc and poorly supported measure of energetics in PR cost, perhaps the pitch could focus on this flexibility. K<sub>E</sub> does not seem to constrain eye parameters and does not add much to the paper.

      We agree, being able to construct performance surfaces across morphospace is an important advance in the field of eye design and evolution, and the performance surface’s flat top has interesting implications for the evolution of adaptations. Encouraged by your remarks, we have rewritten the Abstract and the introductory paragraph of the Discussion to draw attention to these points. 

      We are disappointed that we failed to convince you that our energy tariff, K<sub>E</sub> , is no better than a poorly supported ad hoc parameter that does not add much to the paper. In our opinion a resource allocation model that ignores photoreceptor energy consumption is obviously inadequate because the high energy cost of phototransduction is both wellknown and considered to be a formative factor in eye evolution (Niven and Laughlin, 2008). One of the advantages of modelling is that one can assess the impact of factors that are known to be present, are thought to be important, but have not been quantified. We followed standard modelling practice by introducing a cost that has the same units as the other costs and, for good physiological reasons, increases linearly with the number of microvilli, according to K<sub>E</sub>. We then vary this unknown cost parameter to discover when and why it is significant. We were pleased to discover that we could combine data on photoreceptor energy demands and whole animal metabolic rates to establish the likely range of K<sub>E</sub>. This procedure enabled us to unify the cost-benefit analyses of optics and photoreceptors, and to discover that realistic values of K<sub>E</sub> have a profound impact on the structure and performance of an efficient eye. We hope that this advance will encourage people to collect the data needed to evaluate K<sub>E</sub>.To emphasise the importance of K<sub>E</sub> and dispel doubts associated with the failure of the model to fit the data, we have revised two sections:  Flies invest efficiently in costly photoreceptor arrays in the Results, and How efficiently do insects allocate resources within their apposition eyes?  in the Discussion. These rewrites also explain why it is impossible for us to infer K<sub>E</sub> by adjusting its value so that the model’s predictions fit the data.

      The graphics after Figure 3 are quite dense and hard to follow. None of the plateau extent shown in Fig 3 is carried through to the subsequent plots, which makes the conclusions drawn from these figures very hard to parse. If the peak information occurs on a flat plateau, it would be more helpful to see those ranges of parameters displayed in the figures.

      Ideally one should do as you suggest and plot the extent of the plateau, but in our situation this is not very helpful. In the best data set, flies, optimised models predict D well, get close to ∆φ in larger eyes, and demonstrate that these optimum values are not very sensitive to K<sub>E</sub> L is a different matter, it is very sensitive to K<sub>E</sub> L which, as we show (and frequently remind) is poorly constrained by experimental data. The best we can do is estimate the envelope of L vs C<sub>tot</sub>  curves, as defined by a plausible range of K<sub>E</sub>L . Because most of the plateau boundaries you ask for will fall within this envelope, plotting them does little to clear the fog of uncertainty. We note that all three referees agree that our model can account for two robust trends, i) in apposition eyes L increase with optical resolving power and acuity, both within individual eyes and among eyes of different sizes, and ii) L is much longer is apposition eyes than in simple eyes. Nonetheless, the scatter of data points and their failure to fit creates a bad impression. We gave a number of reasons why the model does not fit the data points, but these were scattered throughout the Results and Discussion and, as referees 1 and 3 point out, this makes it difficult to draw convincing conclusions. To rectify this failing, we have rewritten two sections, in the Results Flies invest efficiently in costly photoreceptor arrays and in the Discussion, How efficiently do insects allocate resources within their apposition eyes?, to discuss these reasons en bloc, draw conclusions and suggest how better data and refinements to modelling could resolve these issues.  

      Throughout the figures, the discontinuities in the optimal cuts through parameter space are not sufficiently explained.

      We added a couple of sentences that address the “jumps” (lines 313 – 318)

      None of the data seems to hug any of the optimal lines and only weakly follow the trends shown in the plots. This makes interpretation difficult for the reader and should be better explained. The text can be a little telegraphic in the Results after roughly page 10, and requires several readings to glean insight into the manuscript's conclusions.

      We revised the Results section in which we compare the best data set, flies’  NS eyes with theoretical predictions, Flies invest efficiently in costly photoreceptor arrays,  to expand our interpretation of the data and clarify our arguments. The remaining sections have not been expanded. In the next section, which is on fused rhabdom apposition eyes, our interpretation of the scattering of data points follows the same line of argument. The remaining Results sections are entirely theoretical.  

      Overall, the rough conclusions outlined in the Results seem moderately supported by the matches of the data to the optimal information transmission cuts through parameter space, but only weakly.

      We agree, more data is required to test and refine our theoretical predictions.

      The Discussion is long and well-argued, and contains the most cogent writing in the manuscript.

      Thank you: this is most pleasing. We submitted our study to eLife because it allows longer Discussions, but we worried that ours was too long. However, we felt that our extensive Discussion was necessary for two reasons. First, we are introducing a new approach to understanding of eye design and evolution. Second, because the data on eye morphology and costs are limited, we had to make a number of assumptions and by discussing these, warts and all, we hoped to encourage experimentalists to gather more data and focus their efforts on the most revealing material.  

      Minor comments:

      We have acted upon most of your minor comments and we confine our remarks to our disagreements. We are grateful for your attention to details that we \textshould have picked up on.  

      It's a more standard convention to say "cost-benefit" rather than with a colon. 

      "equation" should be abbreviated "eq" or "eqn", never with a "t"

      when referring to the work of van Hateren, quote the paper and the database using "van Hateren" not just "Hateren"

      small latex note: use "\textit{SNR}" to get the proper formatting for those letters when in the math environment

      Line 100-110: "f" is introduced, but only f' is referenced in the figure. This should be explained in order. d_rh is not included in the figure. Also in this section, d_rh/f is also referenced before \Delta \rho_rf, which is the same quantity, without explanation.  

      Figure 1 shows eye structure and geometry. f’ is a lineal dimension of the eye but f is not, so f is not shown in Fig 1e. We eliminated the confusion surrounding ∆ρ<sub>rh</sub>  by deleting “and changing the acceptance angle of the photoreceptive waveguide ∆ρ<sub>rh</sub> (Snyder, 1979)”.  

      Fig 1 caption: this says "From dorsal to ventral," then describes trends that run ventral to dorsal, which is a confusing typo.

      Fig 3 - adding some data points to these plots might help the reader understand how (or if) K_E is constrained by the data.

      It is not possible to add data points because to total cost, Ctot ,is unknown.

      Fig 4c (and in other subplots): the jumps in L with C_tot could be explained better in the text - it wasn't clear to this reviewer why there are these discontinuities.

      Dealt with in the revised text (lines  310-318).

      Fig 4d: The caption for this subplot could be more clearly written.

      We have rewritten the subscript for subplot 4d.

      Fig 5 and other plots with data: please indicate which symbols are samples from the same species. This info is hard to reconstruct from the tables.

      We have revised Figure 5 accordingly. Species were already indicated in Figure 6.

      Line 328: missing equation number

    1. Reviewer #2 (Public review):

      Summary:

      This study characterized the function of SLC35G3, a putative transmembrane UDP-N-acetylglucosamine transporter, in spermatogenesis. They showed that SLC35G3 is testis-specific and expressed in round spermatids. Slc35g3-null males were sterile, but females were fertile. Slc35g3-null males produced a normal sperm count, but sperm showed subtle head morphology. Sperm from Slc35g3-null males have defects in uterotubal junction passage, ZP binding, and oocyte fusion. Loss of SLC35G3 causes abnormal processing and glycosylation of a number of sperm proteins in the testis and sperm. They demonstrated that SLC35G3 functions as a UDP-GlcNAc transporter in cell lines. Two human SLC35G3 variants impaired their transporter activity, implicating these variants in human infertility.

      Strengths:

      This study is thorough. The mutant phenotype is strong and interesting. The major conclusions are supported by the data. This study demonstrated SLC35G3 as a new and essential factor for male fertility in mice, which is likely conserved in humans.

      Weaknesses:

      Some data interpretations need to be revised.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors introduce a novel algorithm for the automatic identification of longrange axonal projections. This is an important problem as modern high-throughput imaging techniques can produce large amounts of raw data, but identifying neuronal morphologies and connectivities requires large amounts of manual work. The algorithm works by first identifying points in three-dimensional space corresponding to parts of labelled neural projections, these are then used to identify short sections of axons using an optimisation algorithm and the prior knowledge that axonal diameters are relatively constant. Finally, a statistical model that assumes axons tend to be smooth is used to connect the sections together into complete and distinct neural trees. The authors demonstrate that their algorithm is far superior to existing techniques, especially when dense labelling of the tissue means that neighbouring neurites interfere with the reconstruction. Despite this improvement, however, the accuracy of reconstruction remains below 90%, so manual proofreading is still necessary to produce accurate reconstructions of axons.

      Strengths:

      The new algorithm combines local and global information to make a significant improvement on the state-of-the-art for automatic axonal reconstruction. The method could be applied more broadly and might have applications to reconstructions of electron microscopy data, where similar issues of highthroughput imaging and relatively slow or inaccurate reconstruction remain.

      We thank the reviewer for their positive comments and for taking the time to review our manuscript. We are truly grateful that the reviewer recognized the value of our method in automatically reconstructing long-range axonal projections. While we report that our method achieves reconstruction accuracy of approximately 85%, we fully acknowledge that manual proofreading is still necessary to ensure accuracy greater than 95%. We also appreciate the reviewer’s insightful suggestion regarding the potential adaptation of our algorithm for reconstructing electron microscopy (EM) data, where similar challenges in high-throughput imaging and relatively slow or inaccurate reconstruction persist. We look forward to exploring ways to integrate our method with EM data in future work.

      Weaknesses:

      There are three weaknesses in the algorithm and manuscript.

      (1) The best reconstruction accuracy is below 90%, which does not fully solve the problem of needing manual proofreading.

      We sincerely appreciate the reviewer's valuable insights regarding reconstruction accuracy. Indeed, as illustrated in Figure S4, our current best automated reconstruction accuracy on fMOST data is still below 90%. This indicates that manual proofreading remains essential to ensure reliability.

      For the reconstruction of long-range axonal projections, ensuring the accuracy of the reconstruction process necessitates manual revision of the automatically generated results. Existing literature has demonstrated that a higher accuracy in automatic reconstruction correlates with a reduced need for manual revisions, thereby facilitating an accelerated reconstruction process (Winnubst et al., Cell 2019; Liu et al., Nature Methods 2025).

      As the reviewer rightly points out, achieving an accuracy exceeding 95% currently necessitates manual proofreading. Although our method does not completely eliminate this requirement, it significantly alleviates the proofreading workload by: 1) Minimizing common errors in regions with dense neuron distributions; 2) Providing more reliable initial reconstructions; and 3) Reducing the number of corrections needed during the proofreading process.

      In the future, we will continue to enhance our reconstruction framework. As imaging systems achieve higher signal-to-noise ratios and deep learning techniques facilitate more accurate foreground detection, we anticipate that our method will attain even greater reconstruction accuracy. Furthermore, we plan to develop a software system capable of predicting potential error locations in our automated reconstruction results, thereby streamlining manual revisions. This approach distinguishes itself from existing models by obviating the need for individual traversal of the brain regions associated with each neuron reconstruction.

      (2) The 'minimum information flow tree' model the authors use to construct connected axonal trees has the potential to bias data collection. In particular, the assumption that axons should always be as smooth as possible is not always correct. This is a good rule-of-thumb for reconstructions, but real axons in many systems can take quite sharp turns and this is also seen in the data presented in the paper (Figure 1C). I would like to see explicit acknowledgement of this bias in the current manuscript and ideally a relaxation of this rule in any later versions of the algorithm.

      We appreciate the reviewer's insightful opinion regarding the potential bias introduced by our minimum information flow tree model. The reviewer is absolutely correct in noting that while axon smoothness serves as a useful reconstruction heuristic, it should not be treated as an absolute constraint given that real axons can exhibit sharp turns (as shown in Figure 1C). In response to this valuable feedback, we add explicit discussion of this limitation in Discussion section as follow: “Finally, the minimal information flow tree’s fundamental assumption, that axons should be as smooth as possible does not always hold true.

      In fact, real axons can take quite sharp turns leading the algorithm to erroneously separate a single continuous axon into disjoint neurites.”

      In our reconstruction process, the post-processing approach partially mitigates erroneous reconstructions derived from this rule. Specifically: The minimum information flow tree will decompose such structures into two separate branches (Fig. S7A), but the decomposition node is explicitly recorded. The newly decomposed branches attempt to reconnect by searching for plausible neurites starting from their head nodes (determined by the minimum information flow tree). If no connectable neurites are found, the branch is automatically reconnected to its originally recorded decomposition node (Fig. S7B). In Fig.S7C, two reconstruction examples demonstrate the effectiveness of the post-processing approach.

      As pointed out by the reviewers, the proposed rule for revising neuron reconstruction does not encompass all scenarios. Relaxing the constraints of this rule may lead to numerous new erroneous connections. Currently, the proposed rule is solely based on the positions of neurite centerlines and does not integrate information regarding the intensity of the original images or segmentation data. Incorporating these elements into the rule could potentially reduce reconstruction errors. 

      (3) The writing of the manuscript is not always as clear as it could be. The manuscript would benefit from careful copy editing for language, and the Methods section in particular should be expanded to more clearly explain what each algorithm is doing. The pseudo-code of the Supplemental Information could be brought into the Methods if possible as these algorithms are so fundamental to the manuscript.

      We sincerely thank the reviewer for these valuable suggestions to improve our manuscript’s clarity and methodological presentation. We have implemented the following revisions:

      (1) Language Enhancement: we have conducted rigorous internal linguistic reviews to address grammatical inaccuracies and improve textual clarity.

      (2) Methods Expansion and Pseudo-code Integration: we have incorporated all relevant derivations from the Supplementary Materials into the Methods section, with additional explanatory text to clarify the purpose and implementation of each algorithm. All mathematical formulations have been systematically rederived with modifications to variable nomenclature, subscript/superscript notations and identified errors in the original submission. All pseudocode from Supplementary Materials has been integrated into their corresponding methods subsection.

      Reviewer #2 (Public review):

      In this manuscript, Cai et al. introduce PointTree, a new automated method for the reconstruction of complex neuronal projections. This method has the potential to drastically speed up the process of reconstructing complex neurites. The authors use semi-automated manual reconstruction of neurons and neurites to provide a 'ground-truth' for comparison between PointTree and other automated reconstruction methods. The reconstruction performance is evaluated for precision, recall, and F1-score and positions. The performance of PointTree compared to other automated reconstruction methods is impressive based on these 3 criteria.

      As an experimentalist, I will not comment on the computational aspects of the manuscript. Rather, I am interested in how PointTree's performance decreases in noisy samples. This is because many imaging datasets contain some level of background noise for which the human eye appears essential for the accurate reconstruction of neurites. Although the samples presented in Figure 5 represent an inherent challenge for any reconstruction method, the signal-to-noise ratio is extremely high (also the case in all raw data images in the paper). It would be interesting to see how PointTree's performance changes in increasingly noisy samples, and for the author to provide general guidance to the scientific community as to what samples might not be accurately reconstructed with PointTree.

      We thank the reviewer for her/his time reviewing our manuscript and the interest on how PointTree perform on noisy samples. It is important to clarify that PointTree is solely responsible for the reconstruction of neurons from the foreground regions of neural images. The foreground regions of these neuronal images are obtained through a deep learning segmentation network. In cases where the image has a low signal-to-noise ratio, if the segmentation network can accurately identify the foreground areas, then PointTree will be able to accurately reconstruct neurons. In fact, existing deep learning networks have demonstrated their capability to effectively extract foreground regions from low signal-to-noise ratio images; therefore, PointTree is well-suited for processing neuronal images characterized by low signal-to-noise ratios.

      In the revised manuscript, we conducted experiments on datasets with varying signal-to-noise ratios (SNR). The results demonstrate that Unet3D is capable of identifying the foreground regions in low-SNR images, thereby supporting the assertion that PointTree has broad applicability across diverse neuronal imaging datasets. 

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      It would be interesting to see how PointTree's performance changes in increasingly noisy samples, and for the author to provide general guidance to the scientific community as to what samples might not be accurately reconstructed with PointTree.

      We extend our heartfelt gratitude to the reviewer for their insightful suggestion concerning experiments involving different noisy samples. Here are the details of the datasets used:

      LSM dataset: Mean SNR = 5.01, with 25 samples, and a volume size of 192×192×192.

      fMOST dataset: Mean SNR = 8.68, with 25 samples, and a volume size of 192×192×192.

      HD-fMOST dataset: Mean SNR = 11.4, with 25 samples, and a volume size of 192×192×192.

      The experimental results reveal that, thanks to the deep learning network's robust feature extraction capabilities, even when working with low-SNR data (as depicted in Figure 4B, first two columns of the top row), satisfactory segmentation results (Figure 4B, first two columns of the third row) were achieved. These results laid a solid foundation for subsequent accurate reconstruction.

      PointTree demonstrated consistent mean F1-scores of 91.0%, 90.0%, and 93.3% across the three datasets, respectively. This underscores its reconstruction robustness under varying SNR conditions when supported by the segmentation network. For more in-depth information, please refer to the manuscript section titled "Reconstruction of data with different signal-to-noise ratios" and Figure 4.

    1. head(clim_data$PDate.SLen.Data$temperature) |> kable(format = "html") |> kable_styling(full_width = FALSE, bootstrap_options = c("striped", "hover"), position = "left") |> scroll_box(width = "100%", height = "250px")

      this is showing the wrong table, change to rainfall

    1. THE EPITAPH. Here rests his head upon the lap of Earth A youth, to Fortune and to Fame unknown; Fair Science frown’d not on his humble birth, And Melancholy mark’d him for her own. Large was his bounty, and his soul sincere, Heaven did a recompense as largely send; He gave to Misery all he had, a tear; He gain’d from Heaven (’twas all he wish’d) a friend. No farther seek his merits to disclose, Or draw his frailties from their dread abode, (There they alike in trembling hope repose) The bosom of his Father and his God.

      Gray transitions to writing about himself, imagining how he’ll be remembered. He values sincerity and generosity over fame. The epitaph emphasizes emotional legacy over public recognition, reinforcing the poem’s argument about the quiet worth of ordinary lives.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):*

      As stated by the authors in the introduction, the RNA-binding protein Sxl is foundational to understanding sex determination in Drosophila. Sxl has been extensively studied as the master regulator of female sex determination in the soma, where it is known to initiate an alternative splicing cascade leading to the expression of DsxF. Additionally, Sxl has been shown to be responsible for keeping X chromosome dosage compensation off in females, while males hyperactivate their X chromosome. While these roles have been well defined, the authors explore an aspect of Sxl that is quite separate from its role as master regulator of female fate. They describe Sxl-RAC, a Sxl isoform that is expressed in the male and female nervous system. Using several genomic techniques, the authors conclude that the Sxl-RAC isoform associates with chromatin in a similar pattern to the RNA polymerase II/III subunit, Polr3E, and Sxl depends on Polr3E for chromatin-association. Further, neuronal loss of Sxl causes changes in lifetime and geotaxis in a similar manner as loss of Polr3E. The work is thorough and significant and should be appropriate for publication if a few issues can be addressed.

      Major Concerns:*

      * 1) How physiological is the Sxl chromatin-association assay? As binding interactions are concentration-dependent, how similar is Sxl-DAM expression to wt Sxl expression in neurons? In addition, does the Sxl-DAM protein function as a wt Sxl protein? Does UAS-Sxl-DAM rescue any Sxl loss phenotypes?*

      Author response:

      As Reviewer 3 correctly notes, Targeted DamID relies on ribosomal re-initiation (codon slippage) to produce only trace amounts of the Dam-fusion protein. By design, this results in expression levels that are significantly lower than those of the endogenous protein. As such, the experiment can be interpreted within a near–wild-type context, rather than as an overexpression model. The primary aim of this experiment was to determine whether Sxl associates with chromatin, and our dataset provides clear evidence supporting such binding.

      2) Is Polr3E chromatin-association also dependent on Sxl? They should do the reciprocal experiment to their examination of Sxl chromatin-association in Polr3E knockdown. This might also help address point 1-if wt Sxl is normally required for aspects of Polr3E chromatin binding, then concerns about whether the Sxl-DAM chromatin-association is real or artifactual would be assuaged.

      Author response:

      This is an interesting thought, however, if Sxl were required for Polr3E recruitment to RNA Pol III, then, in most male Drosophila melanogaster cells, Polr3E would not be incorporated, and males would not be viable (as it is essential for Pol III activity). While it is possible that there could be a subtle effect on Polr3E recruitment, such an experiment, would not alter the central conclusion of our study - that Sxl is recruited to chromatin (accessory to the Pol III complex) via Polr3E.

      Minor concerns:

      * The observed Sxl loss of function phenotypes are somewhat subtle (although perhaps any behavior phenotype at all is a plus). Did they try any other behaviour assays-courtship, learning/memory, anything else at all to test nervous system function?*


      Author response:

      Given the exploratory nature of this study, we focused on broader behavioural and transcriptional assays.

      While well written, it is sometimes difficult to understand how the experiment was performed or what genotypes were used without looking into the methods sections. One example is they should describe the nature of the Sxl-DAM fusion protein clearly in the results.

      Author response:

      We will revise these sections to improve clarity and ensure there is no confusion.

      * Reviewer #1 (Significance (Required)):

      This manuscript represents a dramatic change in our thinking about the action of the Sex-lethal protein. Previously, Sxl was known as the master regulator of both sex determination and dosage compensation, and performed these roles as an RNA-binding protein affecting RNA splicing and translational regulation. Here, the authors describe a sex-non-specific role of Sxl in the male and female nervous system. Further, this activity appears independent of Sxl's RNA binding activity and instead Sxl functions as a chromatin-associating protein working with the RNA pol2/3 factor Polr3E to regulate gene expression. Thus, this represents a highly significant finding. *

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):*

      Summary: In this paper, the authors report on an unexpected activity for Sex lethal (Sxl) (a known splicing regulator that functions in sex determination and dosage compensation) in binding to chromatin. They show, using DamID, that Sxl binds to approximately the same chromatin regions as Polr3E (a subunit of RNA Pol III). They show that this binding to chromatin is unaffected by mutations in the RNA binding domains or by deletions of either N or C terminal regions of the Sxl protein. This leads the authors to conclude that Sxl must bind to chromatin through some interacting protein working through the central region of the Sxl protein. They show that Sxl binding is dependent on Polr3E function. They show that male-specific neuronal knockdown of Sxl gives similar phenotypes to knockdown of Polr3E in terms of lethality and improved negative geotaxis. They show gene expression changes with knockdown of Sxl in male adult neurons - mainly that metabolic and pigmentation genes go down in expression. They also show that expression of a previously discovered male adult specific form of Sxl (that does not have splicing activity) in the same neurons also leads to changes in gene expression, including more upregulated than downregulated tRNAs. But they don't see (or don't show) that the same tRNA genes are down with knockdown of Sxl. Nonetheless, based on these findings, they suggest that Sxl plays an important role in regulating Pol III activity through the Polr3E subunit.

      Major comments:

      *

      *To be honest, I'm not convinced that the conclusions drawn from this study are correct. The fact that every mutant form of Sxl shows the same result from the DamID labelling is a little concerning. I would like to see independent evidence of the SxlRac protein binding chromatin. *

      Do antibodies against this form (or any form) of Sxl bind chromatin in salivary gland polytene chromosomes, for example? Does Sxl from other insects where Sxl has no role in sex determination bind chromatin?


      __Author Response: __

      Regarding the reviewer’s overall concerns about the legitimacy of the Sxl binding data:

      1. i) The fold differences between Dam-Sxl-mutants and the Dam-only control are very robust (up to 9 log2 fold change (500-fold change)), which is higher than what we observe with most transcription factors using Targeted DamID.
      2. ii) We observed that Sxl binding was significantly reduced upon knockdown of Polr3E, confirming that the signal we observe is biologically specific and not due to technical noise or background. iii) If the concern relates to potential Sxl binding in non-neuronal tissues such as salivary glands, we would like to clarify that all DamID constructs were expressed under elav-GAL4, a pan-neuronal driver. Furthermore, dissections were performed to isolate larval brains, with salivary glands carefully removed. This ensures that chromatin profiles were derived from neuronal tissue exclusively.

      3. iv) Salivary gland polytene chromosome staining with a Sxl antibody in a closely related species (Drosophila virilis) show __binding of Sxl to chromatin __in both sexes (Bopp et al., 1996). We will include more text in the revised manuscript to emphasise these points.

      Do antibodies against this form (or any form) of Sxl bind chromatin in salivary gland polytene chromosomes, for example? Does Sxl from other insects where Sxl has no role in sex determination bind chromatin?

      Author Response:

      Prior work in Drosophila virilis (where Sxl is also required for sex determination and Sxl-RAC is conserved) has already demonstrated Sxl-chromatin association (using a full-length Sxl antibody) in salivary glands using polytene chromosome spreads (Bopp et al., 1996). Binding is observed in both sexes and across the genome, reflecting our observations. We will incorporate this into the revised discussion to support the chromatin-binding role of Sxl across species.

      There is a clear and long-overlooked precedent for Sxl's alternative, sex-independent roles, findings that have been largely overshadowed by the gene’s canonical function. Our study not only validates and extends these observations but also brings much-needed attention to this understudied aspect of fundamental biology.

      Bopp D, Calhoun G, Horabin JI, Samuels M, Schedl P. Sex-specific control of Sex-lethal is a conserved mechanism for sex determination in the genus Drosophila. Development. 1996 Mar;122(3):971-82. doi: 10.1242/dev.122.3.971. PMID: 8631274.

      I would like to see independent evidence of the SxlRac protein binding chromatin.

      * *__Author Response: __

      We do not believe this is necessary:

      1. i) Our data demonstrated that a large N-terminal truncation of Sxl (removing far more of the N-terminal region than is absent in Sxl-RAC) does not impair chromatin binding.
      2. ii) Our deletion experiments show that it is the central domain __of Sxl that is required for chromatin association (as removal of the N-or C-terminal domain has no effect). This central domain is __unaffected in Sxl-RAC. iii) Independent Y2H experiments have shown that it is exclusively the__ RBD-1 __(RNA binding domain 1) of the central domain of Sxl that interacts with Polr3E (Dong et al., 1999). Sxl-RAC contains this region, therefore will be recruited by Polr3E.

      iv) Review 3 also believes that this is not necessary (see cross-review below) and highlights the robustness of the Y2H experiments performed by Dong et al., 1999.

      • *

      Also, given that their DamID experiments reveal that Sxl binds half of the genes encoded in the Drosophila genome, finding that it binds around half of the tRNA genes is perhaps not surprising.


      __Author Response: __

      Our data show that Sxl binds to a range of Pol III-transcribed loci, and this binding pattern supports the proposed model that Sxl plays a broader regulatory role in Pol III activity. Within these Pol III targets, tRNA genes represent a specific and biologically relevant subset. The emphasis on tRNAs is not to suggest they are the exclusive or primary targets of Sxl, but rather to__ highlight a functionally important class of Pol III-transcribed elements__ that align with the model we are proposing. We will revise the text to better reflect this framing and avoid any confusion regarding the scope of Sxl’s binding profile.

      *I would like to see evidence beyond citing a 1999 yeast two-hybrid study that Sxl and Polr3E directly interact with one another. *


      Author response:

      We do not believe this is necessary (these points were also mentioned above):

      1. i) The Dong et al., 1999 study was highly comprehensive in its characterisation of Sxl binding to Polr3E.
      2. ii) Our DamID data provide strong complementary evidence for this interaction: knockdown of Polr3E robustly reduces Sxl’s recruitment to chromatin, strongly supporting the relevance of the interaction in vivo. iii) Review 3 highlights the robustness of the Y2H experiments performed by Dong et al., 1999.

      In my opinion, the differences in lethality observed with loss of Sxl versus control are unlikely to be meaningful given the different genetic backgrounds. The similar defects in negative geotaxis could be meaningful, but I'm unsure how often this phenotype is observed. What other class of genes affect negative geotaxis? It's a little unclear why having reduced expression of metabolic and pigment genes or of tRNAs would improve neuronal function.


      Author response:

      While the differences in survival were indeed subtle, they were statistically significant and thus warranted inclusion. Our primary aim in this section was to demonstrate that knockdown of Sxl or Polr3E results in comparable behavioural and transcriptional phenotypes, suggesting overlapping functional roles. In this context, we believe the data were presented transparently and effectively support our interpretation.

      Regarding the negative geotaxis phenotype, we appreciate the reviewer’s interest and agree that it is both intriguing and atypical. For this reason, we performed the assay multiple times, particularly in Polr3e knockdowns, to confirm the robustness of the result. To address potential confounding variables, we carefully selected control lines that account for genetic background and transgene insertion site, including KK controls and attP40-matched lines. We also employed multiple independent RNAi lines targeting Sxl to validate the phenotype across different genetic backgrounds.

      Although the observed improvement in climbing is unexpected, it is not without precedent in the RNA polymerase III field. Notably, Malik et al. (2024) demonstrated that heterozygous Polr3DEY/+ mutants exhibit a significantly delayed decline in climbing ability with age. We allude to this in the discussion and will revise the text to emphasise this connection more explicitly.

      Finally, while we recognise that negative geotaxis is a relatively broad assay and thus does not pinpoint the precise cellular mechanisms involved, we interpret the phenotype as suggesting a neural basis and a functional role for Sxl in the nervous system.

      One would expect that not just the same classes of genes would be affected by loss and overexpression of Sxl, but the same genes would be affected - are the same genes changing in opposite directions in the two experiments or just the same classes of genes. Likewise, are the same genes changing expression in the same direction with both Sxl and the Polr3E loss? Also, why are tRNA genes not also affected with Sxl loss. Finally, they describe the changes in gene expression as being in male adult neurons, but the sequencing was done of entire heads - so no way of knowing which cell type is showing differential gene expression.

      Author response:

      While we do examine gene classes, our approach also includes pairwise correlation analyses of gene expression changes between specific genotypes. Notably, we observed a significant positive correlation between Polr3e knockdowns and Sxl knockdowns, and a significant negative correlation between Sxl-RAC–expressing flies and Sxl knockdowns. Furthermore, we examined Sxl-DamID target genes within our RNA-seq datasets and found a consistent relationship between Sxl targets and genes differentially expressed in Polr3e knockdowns.

      Regarding the Pol III qPCR results, we note that tRNA expression changes may require a longer duration of RNAi induction (e.g., beyond 4 days) to become apparent, especially given that phenotypic effects such as changes in lifespan and negative geotaxis only emerge after 20 days or more. It is also plausible that Sxl knockdown leads to a partial reduction in Pol III efficiency, which may not be readily detectable through bulk Pol III qPCRs. We are willing to repeat Pol III qPCRs at later timepoints to further investigate this trend.

      Finally, we infer that gene expression changes observed in our RNA-seq data are of neuronal origin, as all knockdown and overexpression constructs used in this study were driven pan-neuronally using elav-/nSyb-GAL4. While we acknowledge that bulk RNA-seq does not provide cell-type resolution, tissue-specific assumptions are widely used in the field when driven by a relevant promoter.

      I'm also not sure what I'm supposed to be seeing in panel 5F (or in the related supplemental figure) and if it has any meaning - If they are using the Sxl-T2A-Gal4 to drive mCherry, I think one would expect to see expression since Sxl transcripts are made in both males and in females. Also, one would expect to see active protein expression (OPP staining) in most cells of the adult male brain and I think that is what is observed, but again, I'm not sure what I'm supposed to be looking at given the absence of any arrows or brackets in the figures.

      Author Response:

      Due to the presence of the T2A tag and the premature stop codon in exon 3 of early male Sxl transcripts, GAL4 expression is not expected in males unless the head-specific SxlRAC isoform is produced. The aim of panel 5F is to demonstrate the spatial overlap between SxlRAC expression (as we are examining male brains) and regions of elevated protein synthesis, as detected by OPP staining.

      To quantitatively assess this relationship, we performed colocalisation analysis using ImageJ, which showed a positive correlation between Sxl and OPP signal intensity, supporting this interpretation. It is also evident from our images that regions with lower levels of protein synthesis (such as the neuropil - as shown in independent studies Villalobos-Cantor et al., 2023) concurrently lack Sxl-related signal. We have highlighted regions in Fig. 5 exhibiting higher/lower levels of Sxl/OPP signal to better illustrate this relationship. We can also test the effects of knockdown/overexpression on general protein synthesis if required.

      Villalobos-Cantor S, Barrett RM, Condon AF, Arreola-Bustos A, Rodriguez KM, Cohen MS, Martin I. Rapid cell type-specific nascent proteome labeling in Drosophila. Elife. 2023 Apr 24;12:e83545. doi: 10.7554/eLife.83545. PMID: 37092974; PMCID: PMC10125018.

      Minor comments:

      * Line 223 - 225 - I believe that it is expected that Sxl transcripts would be broadly expressed in the male and female adult, given that it is only the spliced form of the transcript that is female specific in expression. *

      As explained above, the only isoform that will be ‘trapped’ by the T2A-GAL4 in males is the Sxl-RAC isoform (as the other isoforms contain premature stop codons). Our immunohistochemistry data indicate that Sxl-RAC is expressed in the male brain, specifically in neurons. Therefore, knockdown experiments in males will reduce all mRNA isoforms, of which, Sxl-RAC is the only one producing a protein.

      Line 236 - 238 - Sentence doesn't make sense.

      We have addressed and clarified this.

      Reviewer #2 (Significance (Required)):

      It would be significant to discover that a gene previously thought to function in only sex determination and dosage compensation also moonlights as a regulator of RNA polymerase III activity. Unfortunately, I am not convinced by the work presented in this study that this is the case.

      My expertise is in Drosophila biology, including development, transcription, sex determination, morphogenesis, genomics, transcriptomics, DNA binding

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):*

      Storer, McClure and colleagues use genome-wide DNA-protein binding assays, transcriptomics, and genetics to work out that Drosophila Sxl, widely known as an RNA-binding protein which functions as a splicing factor to determine sex identity in Drosophila and related species, is also a chromatin factor that can stimulate transcription by Pol III and Pol II of genes involved with metabolism and protein homeostasis, specifically some encoding tRNAs.

      The evidence for the tenet of the paper -- that Sxl acts as a chromatin regulator with Polr3E, activating at least some of its targets with either Pol III or Pol II -- is logical and compelling, the paper is well written and the figures well presented. Of course, more experiments could always be wished for and proposed, but I think this manuscript could be published in many journals with just a minor revision not involving additional experiments. I have a few specific comments below, all minor.*

      Scientific points: - The approach taken for the evaluation of Sxl DNA-binding activity in Fig2 is not entirely clear. I assume these are crosses of elav-Gal4 x different UAS- lines, then using males or females for UAS-Sxl-Full-Length. But what about the others? Were the experiments done in males only? This is hinted at in the main text but not explicitly indicated in the figure or the methods (at least, that I could easily find). And is this approach extended to all other experiments? Longevity? Climbing assays? Considering the role of Sxl, it may be helpful to be fastidiously systematic with this.


      Author Response:

      We have revised the wording to ensure greater clarity. Males were used for all survival and behavioural experiments (as only males can be leveraged for knocking down Sxl-RAC without affecting the canonical Sxl-F isoform).

      - In the discussion, lines 360-61, the authors say: Indeed, knockdown of Polr3E leads to a loss of Sxl binding to chromatin, suggesting a cooperative mechanism. Maybe I am misunderstanding the authors, but when I read "cooperation" in this context I think of biochemical cooperative binding. This is possible, but I do not think a simple 'requirement' test can suggest specifically that this mechanistic feature of biochemical binding is at play. I would expect, for starters, a reciprocal requirement for binding (which is not tested), and some quantitative features that would be difficult to evaluate in vivo. I do not think cooperative binding needs to be invoked anyway, as the authors do not make any specific point or prediction about it. But if they do think this is going on, I think it would need to be referred to as a speculation.


      Author Response:

      We appreciate that the original wording may have been unclear and will revise the text to more accurately reflect a functional relationship, rather than implying direct cooperation.

      - In lines 428-432, the authors discuss the ancestral role of Sxl and make a comparison with ELAV, in the context of an RNA-binding protein that has molecular functions beyond those of a splicing factor, considering the functions of ELAV in RNA stability and translation, and finishing with "suggesting that similar regulatory mechanisms may be at play". I do not understand this latter sentence. Which mechanisms are these? Are the authors referring to the molecular activities of ELAV and SXL? But what would be the similarity? SXL seems to have a dual capacity to bind RNA and protein interactors, which allows it to work both in chromatin-level regulation as well as post-transcriptionally in splicing; but ELAV seems rather to take advantage of its RNA binding function to make it work in multiple RNA-related contexts, all post-transcriptional. I do not see an obvious parallel beyond the fact that RNA binding proteins can function at different levels of gene expression regulation -- but I would not say this parallel are "similar regulatory mechanisms", so I find the whole comparison a bit confusing.


      Author Response:

      We have reduced this section, as it is largely speculative and intended to highlight potential, though indirect, links in higher organisms. Our goal was primarily to illustrate the possibility that Sxl may have an ancestral role distinct from its well-characterised function, and to suggest a potential avenue for future research into ELAV2’s involvement in chromatin or Pol III regulation.

      - One aspect of the work that I find is missing in the discussion is the possibility that the simultaneous capacity of Sxl for RNA binding and Polr3E binding: are these mutually exclusive? if so, are they competitive or hierarchical? how would they be coordinated anyway?


      Author Response:

      This is an interesting point, and we have expanded on it further in the Discussion section.

      - The only aspect of the paper where I found that one could make an experimental improvement is the claim that Sxl induces the expression of genes that have the overall effect of stimulating protein synthesis. The OPP experiment shows a correlation between the expression of Sxl and the rate of protein synthesis initiation. However, a more powerful experiment would be, rather obviously, to introduce Sxl knock-down in the same experiment, and observe whether in Sxl-expressing neurons the incorporation of OPP is reduced. I put this forth as a minor point because the tenet of the paper would not be affected by the results (though the perception of importance of the newly described function could be reinforced).

      • *

      Author Response:

      This could be a valid experiment and we are prepared to perform it if required.

      - In a similar way, it would be interesting to know whether the recruitment of Polr3E and Sxl to chromatin is co-dependent or Sxl follows Polr3E. This is also a minor point because this would possibly refine the mechanism of recruitment but does not alter the main discovery.

      Author Response:

      We have addressed a similar point for Reviewer 2 (see below) and will include a Discussion point for this:

      If Sxl were required for Polr3E recruitment to RNA Pol III, then, in most male Drosophila melanogaster cells, Polr3E would not be incorporated, and males would not be viable (as it is essential for Pol III activity). While it is possible that there could be a subtle effect on Polr3E recruitment, such an experiment, would not alter the central conclusion of our study - that Sxl is recruited to chromatin (accessory to the Pol III complex) via Polr3E.

      * Figures and reporting:

      • In Figure 2, it would be helpful to see the truncation coordinate for the N and C truncations.

      • In Figure 3D, genomic coordinates are missing.

      • In Figure 3E, the magnitude in the Y axis is not entirely clear (at least not to me). How is the amount of binding across the genome quantified? Is this the average amplitude of normalised TaDa signal across the genome? Or only within binding intervals?

      • Figure S3E-F: it would be interesting to show the degree of overlap between the downregulated genes that are also binding targets (regardless of the outcome).

      • Figure 5C-E: similarly to Figure S3, it would be interesting to know how the transcriptional effects compare with the binding targets.

      • Authors use Gehan-Breslow-Wilcoxon to test survival, which is a bit unusual, as it gives more weight to the early deaths (which are rare in most Drosophila longevity experiments). Is there any rationale behind this? It may be even favour their null hypothesis.*


      Author response:

      Thank you for the detailed feedback on our figures. We have__ incorporated__ the suggested changes.

      We agree that examining the overlap between Sxl binding sites and transcriptional changes is valuable, and we aimed to highlight this in the pie charts shown in Figures S3 and S5. If the reviewer is suggesting a more explicit quantification of the proportion of Sxl-Dam targets with significant transcriptomic changes, we are happy to include this analysis in the final version of the manuscript.

      As noted in the Methods, both Gehan–Breslow–Wilcoxon (GBW) and Kaplan–Meier tests were used. The significance in Figure 4a is specific to the GBW test, which we indicated by describing the effect as mild. Our focus here is not on the magnitude of survival differences, but on the consistent trends observed in both Polr3e and Sxl knockdowns.

      Writing and language:*

      • Introduction finishes without providing an outline of the findings (which is fine by me if that is what the authors wanted).

      • In lines 361-5, the authors say "We speculate that this interaction not only facilitates Pol III transcription but may also influence chromatin architecture and RNA Pol II-driven transcription as observed with Pol III regulation in other organisms". "This interaction" refers to Polr3E-Sxl-DNA interaction and with "Pol III transcription" I presume the authors refer to transcription executed by Pol III. I am not clear about the meaning of the end of the sentence "as observed with Pol III regulation in other organisms". What is the observation, exactly? That Pol III modifies chromatin in Pol II regulated loci, or that Pol III interactors change chromatin architecture?

      • DPE abbreviation is not introduced (and only used once).

      • A few typos: Line 41 ...splicing of the Sxl[late] transcripts, which is [ARE?] constitutively transcribed (Keyes et al.,... Line 76 ...sexes but appears restricted to the nervous system [OF] male pupae and adults (Cline et Line 289 ...and S41). To assess any effect [ON]translational output, O-propargyl-puromycin (OPP)o Line 323 ...illustrating that the majority (72%) changes in tRNA levels [ARE] due to upregulation...hi Line 402 ...it was discovered [WE DISCOVERED] Line 792 ...Sxl across chromosomes X, 2 L/R, 3 L/R and 4. The y-axis represents the log[SYMBOL] ratio... This happens in other figure legends as well.*


      Author response:

      Thank you for the detailed feedback, we have clarified and incorporated the suggested changes.

      **Referee Cross-commenting***

      Reviewer 1 asks how physiological is the Sxl chromatin-association assay. I think the loss of association in Polr3E knock-down and the lack of association of other splicing factors goes a long way into answering this question. It is true that having positive binding data specifically for Sxl-RAC and negative binding data for a deletion mutant of the RMM domain would provide more robust conclusions (see below), but I am not sure it is completely necessary -- though this will depend on which journal the authors want to send the paper to.

      I think that the comment of reviewer 1 about the levels of expression of Sxl-DAM does not apply here because of the way TaDa works - it relies on codon slippage to produce minimal amounts of the DAM fusion protein, so by construction it will be expressed at much lower levels than the endogenous protein.

      Reviewer 1 also asks whether Polr3E chromatin-association is also dependent on Sxl, to round up the model and also as a way to address whether Sxl association to chromatin is real. While I agree with this on the former aim (this would be a nice-to-have), I think I disagree on the latter; there is no need for Polr3E recruitment to depend on Sxl for Sxl association to chromatin to be physiologically relevant. Polr3E is a peripheral component of Pol III and unlikely to depend on a factor of restricted expression like Sxl to interact with chromatin. The recruitment of Sxl could well be entirely 'hierarchical' and subject to Polr3E.

      Revewer 2 is concerned with the fact that every mutant form of Sxl shows the same result from the DamID labelling. I have to agree with this to a point. A deletion mutant of RMM domains would address this. Microscopy evidence in salivary glands would be nice, certainly, but the system may not lend itself to this particular interaction, which might be short-lived and/or weak. I do not immediately see the relevance of the chromatin binding capacity of non-Drosophilidae Sxl -- though it might indicate that the impact of the discovery is less likely to go beyond this group.

      Reviewer 2 does not find surprising that some tRNA genes (less than half) are regulated by Sxl. I think the value of that observation is just qualitative, as tRNAs are Pol III-produced transcripts, but their point is correct. A hypergeometric test could settle this.

      Reviewer 2 is concerned that the evidence of direct interaction between Sxl and Polr3E is a single 1999 two-hybrid study. But that paper contains also GST pull-downs that narrow down the specific domains that mediate binding, and perform the binding in competitive salt conditions. I think it is enough. The author team, I think, are not biochemists, so finding the right collaborators and performing these experiments would take time that I am not sure is warranted.

      Reviewer 2 is also concerned that the longevity assays may not be meaningful due to the difference in genetic backgrounds. This is a very reasonable concern (which I would extend to the climbing assays - any quantitative phenotype is sensitive to genetic background). However, I think the authors here may have already designed the experiment with this in mind - the controls express untargeted RNAi constructs, but I lose track of which one is control of which. This should be clarified in Methods.

      Other comments are in line, I think, with what I have pointed out and I generally agree with everything else that has been said.

      Reviewer #3 (Significance (Required)):

      Drosophila Sxl is widely known as an RNA-binding protein which functions as a splicing factor to determine sex identity in Drosophila and related species. It is a favourite example of how splicing factors and alternative can have profound influence in biology and used cleverly in the molecular circuitry of the cell to enact elegant regulatory decisions.

      In this work, Storer, McClure and colleagues use genome-wide DNA-protein binding assays, transcriptomics, and genetics to work out that Sxl is also a chromatin factor with an sex-independent, neuron-specific role in stimulating transcription by Pol III and Pol II, of genes involved with metabolism and protein homeostasis, including some encoding tRNAs.

      This opens a large number of interesting biological questions that range from biochemistry, gene regulation or neurobiology to evolution. How is the simultaneous capacity of binding RNA and chromatin (with the same protein domain, RRM) regulated/coordinated? How did this dual activity evolve and which one is the ancestral one? How many other RRM-containin RNA-binding proteins can also bind chromatin? How is Sxl recruited to chromatin to both Pol II and Pol III targets and are they functionally related? If so, how is the coordination of cellular functions activated through different RNA polymerases taking place and what is the role of Sxl in this? What are the functional consequences to neuronal biology? Does this affect similarly all Sxl-expressing neurons?

      The evidence for the central tenet of the paper -- that Sxl acts as a chromatin regulator with Polr3E, activating at least some of its targets with either Pol III or Pol II -- is logical and compelling, the paper is well written and the figures well presented. Of course, more experiments could always be wished for and proposed, but I think this manuscript could be published in many journals with just a minor revision not involving additional experiments.*

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      *The convincing analysis demonstrates a role for the Drosophila Sex determining gene sex lethal in controlling aspects of transcription in the nervous system independent of its role in splicing. Interaction with an RNA Pol III subunit mediating Sxl association with chromatin and similar knockdown phenotypes strongly support the role of Sxl in the regulation of neuronal metabolism. Given that Sxl is an evolutionary recent acquisition for sex determination, the study may reveal an ancestral role for Sxl.

      The conclusions are well justified by the datasets presented and I have no issues with the study or the interpretation. Throughout the work is well referenced, though perhaps the authors might take a look at Zhang et al (2014) (PMID: 24271947) for an interesting evolutionary perspective for the discussion.*

      Author Response:

      Thank you for the thoughtful suggestion. We will be sure to incorporate the findings from Zhang et al. regarding the evolution of the sex determination pathway.

      *I have some minor comments for clarification:

      There is no Figure 2b, should be labelled 2 or label TaDa plots as 2b

      Clarify if Fig 2 data are larval or adult *

      *Larval

      Fig 3d - are these replicates or female and male?

      Please elaborate on tub-GAL80[ts] developmental defects

      Fig 4e, are transcriptomics done with the VDRC RNAi line? The VDRC and BDSC RNAi lines exhibit different behaviours - former has "better" survival and Better negative geotaxis, the latter seems to have poorer survival but little geotaxis effect?*

      *Fig S3 - volcano plot for Polr3E?

      Fig S4a - legend says downregulated genes?

      The discussion should at least touch on the fact that Sxl amorphs (i.e. Sxl[fP7B0] are male viable and fertile, emphasising that the newly uncovered role is not essential.*

      Author Response:

      We agree with the suggestions outlined in the comments and have made the appropriate revisions.

      Reviewer #4 (Significance (Required)):*

      A nonessential role for Sxl in the nervous system independent of sex-determination contributes to better understanding a) the evolution of sex determining mechanisms, b) the role of RNA PolIII in neuronal homeostasis and c) more widely to the neuronal aging field. I think this well-focused study reveals a hitherto unsuspected role for Sxl.*

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to the Reviewers

      I would like to thank the reviewers for their comments and interest in the manuscript and the study.

      Reviewer #1

      1. I would assume that there are RNA-seq and/or ChIP-seq data out there produced after knockdown of one or more of these DBPs that show directional positioning.

      The directional positioning of CTCF-binding sites at chromatin interaction sites was analyzed by CRISPR experiment (Guo Y et al. Cell 2015). We found that the machine learning and statistical analysis showed the same directional bias of CTCF-binding motif sequence and RAD21-binding motif sequence at chromatin interaction sites as the experimental analysis of Guo Y et al. (lines 229-253, Figure 3b, c, d and Table 1). Since CTCF is involved in different biological functions (Braccioli L et al. Essays Biochem. 2019 ResearchGate webpage), the directional bias of binding sites may be reduced in all binding sites including those at chromatin interaction sites (lines 68-73). In our study, we investigated the DNA-binding sites of proteins using the ChIP-seq data of DNA-binding proteins and DNase-seq data. We also confirmed that the DNA-binding sites of SMC3 and RAD21, which tend to be found in chromatin loops with CTCF, also showed the same directional bias as CTCF by the computational analysis.

      __2. Figure 6 should be expanded to incorporate analysis of DBPs not overlapping CTCF/cohesin in chromatin interaction data that is important and potentially more interesting than the simple DBPs enrichment reported in the present form of the figure. __

      Following the reviewer's advice, I performed the same analysis with the DNA-binding sites that do no overlap with the DNA-binding sites of CTCF and cohesin (RAD21 and SMC3) (Fig. 6 and Supplementary Fig. 4). The result showed the same tendency in the distribution of DNA-binding sites. The height of a peak on the graph became lower for some DNA-binding proteins after removing the DNA-binding sites that overlapped with those of CTCF and cohesin. I have added the following sentence on lines 435 and 829: For the insulator-associated DBPs other than CTCF, RAD21, and SMC3, the DNA-binding sites that do not overlap with those of CTCF, RND21, and SMC3 were used to examine their distribution around interaction sites.

      3. Critically, I would like to see use of Micro-C/Hi-C data and ChIP-seq from these factors, where insulation scores around their directionally-bound sites show some sort of an effect like that presumed by the authors - and many such datasets are publicly-available and can be put to good use here.

      As suggested by the reviewer, I have added the insulator scores and boundary sites from the 4D nucleome data portal as tracks in the UCSC genome browser. The insulator scores seem to correspond to some extent to the H3K27me3 histone marks from ChIP-seq (Fig. 4a and Supplementary Fig. 3). We found that the DNA-binding sites of the insulator-associated DBPs were statistically overrepresented in the 5 kb boundary sites more than other DBPs (Fig. 4d). The direction of DNA-binding sites on the genome can be shown with different colors (e.g. red and green), but the directionality of insulator-associated DNA-binding sites is their overall tendency, and it may be difficult to notice the directionality from each binding site because the directionality may be weaker than that of CTCF, RAD21, and SMC3 as shown in Table 1 and Supplementary Table 2. We also observed the directional biases of CTCF, RAD21, and SMC3 by using Micro-C chromatin interaction data as we estimated, but the directionality was more apparent to distinguish the differences between the four directions of FR, RF, FF, and RR using CTCF-mediated ChIA-pet chromatin interaction data (lines 287 and 288).

       I found that the CTCF binding sites examined by a wet experiment in the previous study may not always overlap with the boundary sites of chromatin interactions from Micro-C assay (Guo Y et al. *Cell* 2015). The chromatin interaction data do not include all interactions due to the high sequencing cost of the assay, and include less long-range interactions due to distance bias. The number of the boundary sites may be smaller than that of CTCF binding sites acting as insulators and/or some of the CTCF binding sites may not be locate in the boundary sites. It may be difficult for the boundary location algorithm to identify a short boundary location. Due to the limitations of the chromatin interaction data, I planned to search for insulator-associated DNA-binding proteins without using chromatin interaction data in this study.
      
       I discussed other causes in lines 614-622: Another reason for the difference may be that boundary sites are more closely associated with topologically associated domains (TADs) of chromosome than are insulator sites. Boundary sites are regions identified based on the separation of numerous chromatin interactions. On the other hand, we found that the multiple DNA-binding sites of insulator-associated DNA-binding proteins were located close to each other at insulator sites and were associated with distinct nested and focal chromatin interactions, as reported by Micro-C assay. These interactions may be transient and relatively weak, such as tissue/cell type, conditional or lineage-specific interactions.
      
       Furthermore, I have added the statistical summary of the analysis in lines 372-395 as follows: Overall, among 20,837 DNA-binding sites of the 97 insulator-associated proteins found at insulator sites identified by H3K27me3 histone modification marks (type 1 insulator sites), 1,315 (6%) overlapped with 264 of 17,126 5kb long boundary sites, and 6,137 (29%) overlapped with 784 of 17,126 25kb long boundary sites in HFF cells. Among 5,205 DNA-binding sites of the 97 insulator-associated DNA-binding proteins found at insulator sites identified by H3K27me3 histone modification marks and transcribed regions (type 2 insulator sites), 383 (7%) overlapped with 74 of 17,126 5-kb long boundary sites, 1,901 (37%) overlapped with 306 of 17,126 25-kb long boundary sites. Although CTCF-binding sites separate active and repressive domains, the limited number of DNA-binding sites of insulator-associated proteins found at type 1 and 2 insulator sites overlapped boundary sites identified by chromatin interaction data. Furthermore, by analyzing the regulatory regions of genes, the DNA-binding sites of the 97 insulator-associated DNA-binding proteins were found (1) at the type 1 insulator sites (based on H3K27me3 marks) in the regulatory regions of 3,170 genes, (2) at the type 2 insulator sites (based on H3K27me3 marks and gene expression levels) in the regulatory regions of 1,044 genes, and (3) at insulator sites as boundary sites identified by chromatin interaction data in the regulatory regions of 6,275 genes. The boundary sites showed the highest number of overlaps with the DNA-binding sites. Comparing the insulator sites identified by (1) and (3), 1,212 (38%) genes have both types of insulator sites. Comparing the insulator sites between (2) and (3), 389 (37%) genes have both types of insulator sites. From the comparison of insulator and boundary sites, we found that (1) or (2) types of insulator sites overlapped or were close to boundary sites identified by chromatin interaction data.
      

      4. The suggested alternative transcripts function, also highlighted in the manuscripts abstract, is only supported by visual inspection of a few cases for several putative DBPs. I believe this is insufficient to support what looks like one of the major claims of the paper when reading the abstract, and a more quantitative and genome-wide analysis must be adopted, although the authors mention it as just an 'observation'.

      According to the reviewer's comment, I performed the genome-wide analysis of alternative transcripts where the DNA-binding sites of insulator-associated proteins are located near splicing sites. The DNA-binding sites of insulator-associated DNA-binding proteins were found within 200 bp centered on splice sites more significantly than the other DNA-binding proteins (Fig. 4e and Table 2). I have added the following sentences on lines 405 - 412: We performed the statistical test to estimate the enrichment of insulator-associated DNA-binding sites compared to the other DNA-binding proteins, and found that the insulator-associated DNA-binding sites were significantly more abundant at splice sites than the DNA-binding sites of the other proteins (Fig 4e and Table 2; Mann‒Whitney U test, p value 5. Figure 1 serves no purpose in my opinion and can be removed, while figures can generally be improved (e.g., the browser screenshots in Figs 4 and 5) for interpretability from readers outside the immediate research field.

      I believe that the Figure 1 would help researchers in other fields who are not familiar with biological phenomena and functions to understand the study. More explanation has been included in the Figures and legends of Figs. 4 and 5 to help readers outside the immediate research field understand the figures.

      6. Similarly, the text is rather convoluted at places and should be re-approached with more clarity for less specialized readers in mind.

      Reviewer #2's comments would be related to this comment. I have introduced a more detailed explanation of the method in the Results section, as shown in the responses to Reviewer #2's comments.

      Reviewer #2

      1. Introduction, line 95: CTCF appears two times, it seems redundant.

      On lines 91-93, I deleted the latter CTCF from the sentence "We examine the directional bias of DNA-binding sites of CTCF and insulator-associated DBPs, including those of known DBPs such as RAD21 and SMC3".

      2. Introduction, lines 99-103: Please stress better the novelty of the work. What is the main focus? The new identified DPBs or their binding sites? What are the "novel structural and functional roles of DBPs" mentioned?

      Although CTCF is known to be the main insulator protein in vertebrates, we found that 97 DNA-binding proteins including CTCF and cohesin are associated with insulator sites by modifying and developing a machine learning method to search for insulator-associated DNA-binding proteins. Most of the insulator-associated DNA-binding proteins showed the directional bias of DNA-binding motifs, suggesting that the directional bias is associated with the insulator.

       I have added the sentence in lines 96-99 as follows: Furthermore, statistical testing the contribution scores between the directional and non-directional DNA-binding sites of insulator-associated DBPs revealed that the directional sites contributed more significantly to the prediction of gene expression levels than the non-directional sites. I have revised the statement in lines 101-110 as follows: To validate these findings, we demonstrate that the DNA-binding sites of the identified insulator-associated DBPs are located within potential insulator sites, and some of the DNA-binding sites in the insulator site are found without the nearby DNA-binding sites of CTCF and cohesin. Homologous and heterologous insulator-insulator pairing interactions are orientation-dependent, as suggested by the insulator-pairing model based on experimental analysis in flies. Our method and analyses contribute to the identification of insulator- and chromatin-associated DNA-binding sites that influence EPIs and reveal novel functional roles and molecular mechanisms of DBPs associated with transcriptional condensation, phase separation and transcriptional regulation.
      

      3. Results, line 111: How do the SNPs come into the procedure? From the figures it seems the input is ChIP-seq peaks of DNBPs around the TSS.

      On lines 121-124, to explain the procedure for the SNP of an eQTL, I have added the sentence in the Methods: "If a DNA-binding site was located within a 100-bp region around a single-nucleotide polymorphism (SNP) of an eQTL, we assumed that the DNA-binding proteins regulated the expression of the transcript corresponding to the eQTL".

      4. Again, are those SNPs coming from the different cell lines? Or are they from individuals w.r.t some reference genome? I suggest a general restructuring of this part to let the reader understand more easily. One option could be simplifying the details here or alternatively including all the necessary details.

      On line 119, I have included the explanation of the eQTL dataset of GTEx v8 as follows: " The eQTL data were derived from the GTEx v8 dataset, after quality control, consisting of 838 donors and 17,382 samples from 52 tissues and two cell lines". On lines 681 and 865, I have added the filename of the eQTL data "(GTEx_Analysis_v8_eQTL.tar)".

      5. Figure 1: panel a and b are misleading. Is the matrix in panel a equivalent to the matrix in panel b? If not please clarify why. Maybe in b it is included the info about the SNPs? And if yes, again, what is then difference with a.

      The reviewer would mention Figure 2, not Figure 1. If so, the matrices in panels a and b in Figure 2 are equivalent. I have shown it in the figure: The same figure in panel a is rotated 90 degrees to the right. The green boxes in the matrix show the regions with the ChIP-seq peak of a DNA-binding protein overlapping with a SNP of an eQTL. I used eQTL data to associate a gene with a ChIP-seq peak that was more than 2 kb upstream and 1 kb downstream of a transcriptional start site of a gene. For each gene, the matrix was produced and the gene expression levels in cells were learned and predicted using the deep learning method. I have added the following sentences to explain the method in lines 133 - 139: Through the training, the tool learned to select the binding sites of DNA-binding proteins from ChIP-seq assays that were suitable for predicting gene expression levels in the cell types. The binding sites of a DNA-binding protein tend to be observed in common across multiple cell and tissue types. Therefore, ChIP-seq data and eQTL data in different cell and tissue types were used as input data for learning, and then the tool selected the data suitable for predicting gene expression levels in the cell types, even if the data were not obtained from the same cell types.

      6. Line 386-388: could the author investigate in more detail this observation? Does it mean that loops driven by other DBPs independent of the known CTCF/Cohesin? Could the author provide examples of chromatin structural data e.g. MicroC?

      As suggested by the reviewer, to help readers understand the observation, I have added Supplementary Fig. S4c to show the distribution of DNA-binding sites of "CTCF, RAD21, and SMC3" and "BACH2, FOS, ATF3, NFE2, and MAFK" around chromatin interaction sites. I have modified the following sentence to indicate the figure on line 501: Although a DNA-binding-site distribution pattern around chromatin interaction sites similar to those of CTCF, RAD21, and SMC3 was observed for DBPs such as BACH2, FOS, ATF3, NFE2, and MAFK, less than 1% of the DNA-binding sites of the latter set of DBPs colocalized with CTCF, RAD21, or SMC3 in a single bin (Fig. S4c).

       In Aljahani A et al. *Nature Communications* 2022, we find that depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Together, our data show that loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression. Goel VY et al. *Nature Genetics* 2023 mentioned in the abstract: Microcompartments frequently connect enhancers and promoters and though loss of loop extrusion and inhibition of transcription disrupts some microcompartments, most are largely unaffected. These results suggested that chromatin loops can be driven by other DBPs independent of the known CTCF/Cohesin.
      
      I added the following sentence on lines 569-577: The depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Another group reported that enhancer-promoter interactions and transcription are largely maintained upon depletion of CTCF, cohesin, WAPL or YY1. Instead, cohesin depletion decreased transcription factor binding to chromatin. Thus, cohesin may allow transcription factors to find and bind their targets more efficiently. Furthermore, the loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression.
      
       FOXA1 pioneer factor functions as an initial chromatin-binding and chromatin-remodeling factor and has been reported to form biomolecular condensates (Ji D et al. *Molecular Cell* 2024). CTCF have also found to form transcriptional condensate and phase separation (Lee R et al. *Nucleic acids research* 2022). FOS was found to be an insulator-associated DNA-binding protein in this study and is potentially involved in chromatin remodeling, transcription condensation, and phase separation with the other factors such as BACH2, ATF3, NFE2 and MAFK. I have added the following sentence on line 556: FOXA1 pioneer factor functions as an initial chromatin-binding and chromatin-remodeling factor and has been reported to form biomolecular condensates.
      

      7. In general, how the presented results are related to some models of chromatin architecture, e.g. loop extrusion, in which it is integrated convergent CTCF binding sites?

      Goel VY et al. Nature Genetics 2023 identified highly nested and focal interactions through region capture Micro-C, which resemble fine-scale compartmental interactions and are termed microcompartments. In the section titled "Most microcompartments are robust to loss of loop extrusion," the researchers noted that a small proportion of interactions between CTCF and cohesin-bound sites exhibited significant reductions in strength when cohesin was depleted. In contrast, the majority of microcompartmental interactions remained largely unchanged under cohesin depletion. Our findings indicate that most P-P and E-P interactions, aside from a few CTCF and cohesin-bound enhancers and promoters, are likely facilitated by a compartmentalization mechanism that differs from loop extrusion. We suggest that nested, multiway, and focal microcompartments correspond to small, discrete A-compartments that arise through a compartmentalization process, potentially influenced by factors upstream of RNA Pol II initiation, such as transcription factors, co-factors, or active chromatin states. It follows that if active chromatin regions at microcompartment anchors exhibit selective "stickiness" with one another, they will tend to co-segregate, leading to the development of nested, focal interactions. This microphase separation, driven by preferential interactions among active loci within a block copolymer, may account for the striking interaction patterns we observe.

       The authors of the paper proposed several mechanisms potentially involved in microcompartments. These mechanisms may be involved in looping with insulator function. Another group reported that enhancer-promoter interactions and transcription are largely maintained upon depletion of CTCF, cohesin, WAPL or YY1. Instead, cohesin depletion decreased transcription factor binding to chromatin. Thus, cohesin may allow transcription factors to find and bind their targets more efficiently (Hsieh TS et al. *Nature Genetics* 2022). Among the identified insulator-associated DNA-binding proteins, Maz and MyoD1 form loops without CTCF (Xiao T et al. *Proc Natl Acad Sci USA* 2021 ; Ortabozkoyun H et al. *Nature genetics* 2022 ; Wang R et al. *Nature communications* 2022). I have added the following sentences on lines 571-575: Another group reported that enhancer-promoter interactions and transcription are largely maintained upon depletion of CTCF, cohesin, WAPL or YY1. Instead, cohesin depletion decreased transcription factor binding to chromatin. Thus, cohesin may allow transcription factors to find and bind their targets more efficiently. I have included the following explanation on lines 582-584: Maz and MyoD1 among the identified insulator-associated DNA-binding proteins form loops without CTCF.
      
       As for the directionality of CTCF, if chromatin loop anchors have some structural conformation, as shown in the paper entitled "The structural basis for cohesin-CTCF-anchored loops" (Li Y et al. *Nature* 2020), directional DNA binding would occur similarly to CTCF binding sites. Moreover, cohesin complexes that interact with convergent CTCF sites, that is, the N-terminus of CTCF, might be protected from WAPL, but those that interact with divergent CTCF sites, that is, the C-terminus of CTCF, might not be protected from WAPL, which could release cohesin from chromatin and thus disrupt cohesin-mediated chromatin loops (Davidson IF et al. *Nature Reviews Molecular Cell Biology* 2021). Regarding loop extrusion, the 'loop extrusion' hypothesis is motivated by in vitro observations. The experiment in yeast, in which cohesin variants that are unable to extrude DNA loops but retain the ability to topologically entrap DNA, suggested that in vivo chromatin loops are formed independently of loop extrusion. Instead, transcription promotes loop formation and acts as an extrinsic motor that extends these loops and defines their final positions (Guerin TM et al. *EMBO Journal* 2024). I have added the following sentences on lines 543-547: Cohesin complexes that interact with convergent CTCF sites, that is, the N-terminus of CTCF, might be protected from WAPL, but those that interact with divergent CTCF sites, that is, the C-terminus of CTCF, might not be protected from WAPL, which could release cohesin from chromatin and thus disrupt cohesin-mediated chromatin loops. I have included the following sentences on lines 577-582: The 'loop extrusion' hypothesis is motivated by in vitro observations. The experiment in yeast, in which cohesin variants that are unable to extrude DNA loops but retain the ability to topologically entrap DNA, suggested that in vivo chromatin loops are formed independently of loop extrusion. Instead, transcription promotes loop formation and acts as an extrinsic motor that extends these loops and defines their final positions.
      
       Another model for the regulation of gene expression by insulators is the boundary-pairing (insulator-pairing) model (Bing X et al. *Elife* 2024) (Ke W et al. *Elife* 2024) (Fujioka M et al. *PLoS Genetics* 2016). Molecules bound to insulators physically pair with their partners, either head-to-head or head-to-tail, with different degrees of specificity at the termini of TADs in flies. Although the experiments do not reveal how partners find each other, the mechanism unlikely requires loop extrusion. Homologous and heterologous insulator-insulator pairing interactions are central to the architectural functions of insulators. The manner of insulator-insulator interactions is orientation-dependent. I have summarized the model on lines 559-567: Other types of chromatin regulation are also expected to be related to the structural interactions of molecules. As the boundary-pairing (insulator-pairing) model, molecules bound to insulators physically pair with their partners, either head-to-head or head-to-tail, with different degrees of specificity at the termini of TADs in flies (Fig. 7). Although the experiments do not reveal how partners find each other, the mechanism unlikely requires loop extrusion. Homologous and heterologous insulator-insulator pairing interactions are central to the architectural functions of insulators. The manner of insulator-insulator interactions is orientation-dependent.
      

      8. Do the authors think that the identified DBPs could work in that way as well?

      The boundary-pairing (insulator-pairing) model would be applied to the insulator-associated DNA-binding proteins other than CTCF and cohesin that are involved in the loop extrusion mechanism (Bing X et al. Elife 2024) (Ke W et al. Elife 2024) (Fujioka M et al. PLoS Genetics 2016).

       Liquid-liquid phase separation was shown to occur through CTCF-mediated chromatin loops and to act as an insulator (Lee, R et al. *Nucleic Acids Research* 2022). Among the identified insulator-associated DNA-binding proteins, CEBPA has been found to form hubs that colocalize with transcriptional co-activators in a native cell context, which is associated with transcriptional condensate and phase separation (Christou-Kent M et al. *Cell Reports* 2023). The proposed microcompartment mechanisms are also associated with phase separation. Thus, the same or similar mechanisms are potentially associated with the insulator function of the identified DNA-binding proteins. I have included the following information on line 554: CEBPA in the identified insulator-associated DNA-binding proteins was also reported to be involved in transcriptional condensates and phase separation.
      

      9. Also, can the authors comment about the mechanisms those newly identified DBPs mediate contacts by active processes or equilibrium processes?

      Snead WT et al. Molecular Cell 2019 mentioned that protein post-transcriptional modifications (PTMs) facilitate the control of molecular valency and strength of protein-protein interactions. O-GlcNAcylation as a PTM inhibits CTCF binding to chromatin (Tang X et al. Nature Communications 2024). I found that the identified insulator-associated DNA-binding proteins tend to form a cluster at potential insulator sites (Supplementary Fig. 2d). These proteins may interact and actively regulate chromatin interactions, transcriptional condensation, and phase separation by PTMs. I have added the following explanation on lines 584-590: Furthermore, protein post-transcriptional modifications (PTMs) facilitate control over the molecular valency and strength of protein-protein interactions. O-GlcNAcylation as a PTM inhibits CTCF binding to chromatin. We found that the identified insulator-associated DNA-binding proteins tend to form a cluster at potential insulator sites (Fig. 4f and Supplementary Fig. 3c). These proteins may interact and actively regulate chromatin interactions, transcriptional condensation, and phase separation through PTMs.

      10. Can the author provide some real examples along with published structural data (e.g. the mentioned micro-C data) to show the link between protein co-presence, directional bias and contact formation?

      Structural molecular model of cohesin-CTCF-anchored loops has been published by Li Y et al. Nature 2020. The structural conformation of CTCF and cohesin in the loops would be the cause of the directional bias of CTCF binding sites, which I mentioned in lines 539 - 543 as follows: These results suggest that the directional bias of DNA-binding sites of insulator-associated DBPs may be involved in insulator function and chromatin regulation through structural interactions among DBPs, other proteins, DNAs, and RNAs. For example, the N-terminal amino acids of CTCF have been shown to interact with RAD21 in chromatin loops.

       To investigate the principles underlying the architectural functions of insulator-insulator pairing interactions, two insulators, Homie and Nhomie, flanking the *Drosophila even skipped *locus were analyzed. Pairing interactions between the transgene Homie and the eve locus are directional. The head-to-head pairing between the transgene and endogenous Homie matches the pattern of activation (Fujioka M et al. *PLoS Genetics* 2016).
      

      Reviewer #3

      Major Comments:

      1. Some of these TFs do not have specific direct binding to DNA (P300, Cohesin). Since the authors are using binding motifs in their analysis workflow, I would remove those from the analysis.

      When a protein complex binds to DNA, one protein of the complex binds to the DNA directory, and the other proteins may not bind to DNA. However, the DNA motif sequence bound by the protein may be registered as the DNA-binding motif of all the proteins in the complex. The molecular structure of the complex of CTCF and Cohesin showed that both CTCF and Cohesin bind to DNA (Li Y et al. Nature 2020). I think there is a possibility that if the molecular structure of a protein complex becomes available, the previous recognition of the DNA-binding ability of a protein may be changed. Therefore, I searched the Pfam database for 99 insulator-associated DNA-binding proteins identified in this study. I found that 97 are registered as DNA-binding proteins and/or have a known DNA-binding domain, and EP300 and SIN3A do not directory bind to DNA, which was also checked by Google search. I have added the following explanation in line 257 to indicate direct and indirect DNA-binding proteins: Among 99 insulator-associated DBPs, EP300 and SIN3A do not directory interact with DNA, and thus 97 insulator-associated DBPs directory bind to DNA. I have updated the sentence in line 20 of the Abstract as follows: We discovered 97 directional and minor nondirectional motifs in human fibroblast cells that corresponded to 23 DBPs related to insulator function, CTCF, and/or other types of chromosomal transcriptional regulation reported in previous studies.

      2. I am not sure if I understood correctly, by why do the authors consider enhancers spanning 2Mb (200 bins of 10Kb around eSNPs)? This seems wrong. Enhancers are relatively small regions (100bp to 1Kb) and only a very small subset form super enhancers.

      As the reviewer mentioned, I recognize enhancers are relatively small regions. In the paper, I intended to examine further upstream and downstream of promoter regions where enhancers are found. Therefore, I have modified the sentence in lines 929 - 931 of the Fig. 2 legend as follows: Enhancer-gene regulatory interaction regions consist of 200 bins of 10 kbp between -1 Mbp and 1 Mbp region from TSS, not including promoter.

      3. I think the H3K27me3 analysis was very good, but I would have liked to see also constitutive heterochromatin as well, so maybe repeat the analysis for H3K9me3.

      Following the reviewer's advice, I have added the ChIP-seq data of H3K9me3 as a truck of the UCSC Genome Browser. The distribution of H3K9me3 signal was different from that of H3K27me3 in some regions. I also found the insulator-associated DNA-binding sites close to the edges of H3K9me3 regions and took some screenshots of the UCSC Genome Browser of the regions around the sites in Supplementary Fig. 3b. I have modified the following sentence on lines 974 - 976 in the legend of Fig. 4: a Distribution of histone modification marks H3K27me3 (green color) and H3K9me3 (turquoise color) and transcript levels (pink color) in upstream and downstream regions of a potential insulator site (light orange color). I have also added the following result on lines 356 - 360: The same analysis was performed using H3K9me3 marks, instead of H3K27me3 (Fig. S3b). We found that the distribution of H3K9me3 signal was different from that of H3K27me3 in some regions, and discovered the insulator-associated DNA-binding sites close to the edges of H3K9me3 regions (Fig. S3b).

      4. I was not sure I understood the analysis in Figure 6. The binding site is with 500bp of the interaction site, but micro-C interactions are at best at 1Kb resolution. They say they chose the centre of the interaction site, but we don't know exactly where there is the actual interaction. Also, it is not clear what they measure. Is it the number of binding sites of a specific or multiple DBP insulator proteins at a specific distance from this midpoint that they recover in all chromatin loops? Maybe I am missing something. This analysis was not very clear.

      The resolution of the Micro-C assay is considered to be 100 bp and above, as the human nucleome core particle contains 145 bp (and 193 bp with linker) of DNA. However, internucleosomal DNA is cleaved by endonuclease into fragments of multiples of 10 nucleotides (Pospelov VA et al. Nucleic Acids Research 1979). Highly nested focal interactions were observed (Goel VY et al. Nature Genetics 2023). Base pair resolution was reported using Micro Capture-C (Hua P et al. Nature 2021). Sub-kilobase (20 bp resolution) chromatin topology was reported using an MNase-based chromosome conformation capture (3C) approach (Aljahani A et al. Nature Communications 2022). On the other hand, Hi-C data was analyzed at 1 kb resolution. (Gu H et al. bioRxiv 2021). If the resolution of Micro-C interactions is at best at 1 kb, the binding sites of a DNA-binding protein will not show a peak around the center of the genomic locations of interaction edges. Each panel shows the number of binding sites of a specific DNA-binding protein at a specific distance from the midpoint of all chromatin interaction edges. I have modified and added the following sentences in lines 593-597: High-resolution chromatin interaction data from a Micro-C assay indicated that most of the predicted insulator-associated DBPs showed DNA-binding-site distribution peaks around chromatin interaction sites, suggesting that these DBPs are involved in chromatin interactions and that the chromatin interaction data has a high degree of resolution. Base pair resolution was reported using Micro Capture-C.

      Minor Comments:

      1. PIQ does not consider TF concentration. Other methods do that and show that TF concentration improves predictions (e.g., ____https://www.biorxiv.org/content/10.1101/2023.07.15.549134v2____or ____https://pubmed.ncbi.nlm.nih.gov/37486787____/). The authors should discuss how that would impact their results.

      The directional bias of CTCF binding sites was identified by ChIA-pet interactions of CTCF binding sites. The analysis of the contribution scores of DNA-binding sites of proteins considering the binding sites of CTCF as an insulator showed the same tendency of directional bias of CTCF binding sites. In the analysis, to remove the false-positive prediction of DNA-binding sites, I used the binding sites that overlapped with a ChIP-seq peak of the DNA-binding protein. This result suggests that the DNA-binding sites of CTCF obtained by the current analysis have sufficient quality. Therefore, if the accuracy of prediction of DNA-binding sites is improved, although the number of DNA-binding sites may be different, the overall tendency of the directionality of DNA-binding sites will not change and the results of this study will not change significantly.

       As for the first reference in the reviewer's comment, chromatin interaction data from Micro-C assay does not include all chromatin interactions in a cell or tissue, because it is expensive to cover all interactions. Therefore, it would be difficult to predict all chromatin interactions based on machine learning. As for the second reference in the reviewer's comment, pioneer factors such as FOXA are known to bind to closed chromatin regions, but transcription factors and DNA-binding proteins involved in chromatin interactions and insulators generally bind to open chromatin regions. The search for the DNA-binding motifs is not required in closed chromatin regions.
      

      2. DeepLIFT is a good approach to interpret complex structures of CNN, but is not truly explainable AI. I think the authors should acknowledge this.

      In the DeepLIFT paper, the authors explain that DeepLIFT is a method for decomposing the output prediction of a neural network on a specific input by backpropagating the contributions of all neurons in the network to every feature of the input (Shrikumar A et al. ICML 2017). DeepLIFT compares the activation of each neuron to its 'reference activation' and assigns contribution scores according to the difference. DeepLIFT calculates a metric to measure the difference between an input and the reference of the input.

       Truly explainable AI would be able to find cause and reason, and to make choices and decisions like humans. DeepLIFT does not perform causal inferences. I did not use the term "Explainable AI" in our manuscript, but I briefly explained it in Discussion. I have added the following explanation in lines 623-628: AI (Artificial Intelligence) is considered as a black box, since the reason and cause of prediction are difficult to know. To solve this issue, tools and methods have been developed to know the reason and cause. These technologies are called Explainable AI. DeepLIFT is considered to be a tool for Explainable AI. However, DeepLIFT does not answer the reason and cause for a prediction. It calculates scores representing the contribution of the input data to the prediction.
      
       Furthermore, to improve the readability of the manuscript, I have included the following explanation in lines 159-165: we computed DeepLIFT scores of the input data (i.e., each binding site of the ChIP-seq data of DNA-binding proteins) in the deep leaning analysis on gene expression levels. DeepLIFT compares the importance of each input for predicting gene expression levels to its 'reference or background level' and assigns contribution scores according to the difference. DeepLIFT calculates a metric to measure the difference between an input and the reference of the input.
      
    1. Reviewer #1 (Public review):

      Summary:

      Li et al describe a novel form of melanosome based iridescence in the crest of an Early Cretaceous enantiornithine avialan bird from the Jehol Group.

      This is an interesting manuscript that describes never before seen melanosome structures and explores fossilised feathers through new methods. This paper creates an opening for new work to explore coloration in extinct birds.

      Strengths:

      A novel set of methods applied to the study of fossil melanosomes.

      Comments on revised version:

      The authors provided a response to the previous 9 issues, for which additional response is provided here:

      (1) I respectfully disagree with the authors justification regarding the crest. They show one specimen of Confuciusornis with short feathers (which appears to be a unique feature of this species, possibly related to the fact it is beaked) but what about the more primitive Eoconfuciusornis, a referred specimen of which superficially has an enormous "crest" (Zheng et al 2017), as does Changchengornis (Ji et al 1999). Regardless, it would make more sense compare this new specimen to other enantiornithines. Although limited by the preservation of body feathers, which is not all that common, the following published enantiornithines also exhibit a "crest": bohaiornithid indet. (Peteya et al 2017); Brevirostruavis (Li et al 2021); Dapingfangornis (Li et al 2006); Eoenantiornis (Zhou et al 2005); Grabauornis (Dalsatt etal 2014); Junornis (Liu et al 2017); Longirostravis (Hou etal 2004); Monoenantiornis (Hu & O'Connor 2016); Neobohaiornis (Shen etal 2024); Orienantiornis (Liu etal 2019); Parabohaironis (Wang 2023); Parapengornis (Hu etal 2015); Paraprotopteryx (Zheng et al 2007); and every specimen of Protopteryx. In fact, every single published enantiornithine that preserves any feathering on the head has the feathers preserved perpendicular to the bone (in fact, the body feathers on all parts of the bed are splayed at a right angle to the bone due to compression), as shown in the confuciuornis specimen image provided by the authors. Since it is highly improbable they all had crests, the authors have no justification for the interpretation that this new specimen was crested. This does not mean that the feathers were not iridescent or take away from the novel methods these authors have used to explore preserved feathers.

      (2) Yes, this is possible, but see above for the very strong argument against interpretation of these feathers as forming a crest.

      (3) This just further makes the point that the isolated feather is not likely from the head. Since the neck feathers are missing, it is more likely that it is these feathers that have been disarticulated (and sampled) from the neck region rather than from the very complete looking head feathers; this has significant implications with regards to the birds colour pattern.

      (4) Thank you for acknowledging taphonomy.

      (5) An interesting hypothesis and one I look forward to seeing explored in the future.

      (6) Since the compression is in a single direction, in fact it is not reasonable to assume that distortion would be random. One might predict similar distortion, as with the feathers (spread out from the bone at a 90˚ angle) and bone (crushed), which are all compressed in a single direction. However, I agree that such a consistent discovery suggests it is not an artifact of preservation, and only further studies will elucidate this

      (7) I still fail to detect this hexagonal pattern - could machine learning be used to quantify this pattern? The random arrangement of white arrows does little to clarify the authors interpretations.

      (8) Great to see additional sampling

      (9) Thank you for the explanation.

    1. This Ivory Soap ad from 1925 reveals how deeply established ideas of beauty and gender roles were in the culture of consumers. The ad makes fun of men's limited duties in the home by describing them the "so-called head of the house" and shows a man standing aside from his wife while she bathes their child. The painting shows typical roles: the male is detached, the wife is caring, and the child is the center of attention in the family scene. The soap is a "bridge across the vast crevasse of feminine interference" that shows how to bring men back into the picture. The ad also connects cleanliness to whiteness by saying that the soap is "pure" and white, which indirectly supports racially ideals of beauty. Even though the lady is doing the job, the ad is for guys. This shows that men are still in authority, which is a belief held by many.

    1. When you are comfortable in who you are you will eventually be able to acknowledge compliments by simply saying "thank you" and not feeling as though you need to put yourself down.

      It is good to receive compliments and can feel nice. We can learn to receive them in the right way but also need to learn to not let them get to our head and make us arrogant.

    1. I wished in that moment, while the thought about six-packs formulated in my head, that I had shut the fuck up, or in right-wing parlance: I wish I had self censored. There’s a new poll floating around social media claiming that 43 percent of white men in the United States are “self-censoring their speech at work, with two in three zoomer bros (18-29) saying they are “too afraid to voice their opinions at work for fear of being fired.” Poor babies.

      other-consciousness

    1. Development Company Build your Crypto business empire with the most redefined crypto wallet in the digital space. Dappfort, a promising crypto wallet development company, offers you next-gen-powered wallet solutions. Let's work together Crypto Wallet Development Dappfort is a promising leader in crypto wallet development, offering an advanced wallet solution that helps wallet users buy, sell, trade, and swap a variety of cryptocurrencies at any time. Are you a crypto enthusiast looking to launch your own business in the emerging crypto market? Then Dappfort’s crypto wallet would be a great solution. The certified blockchain developers of Dappfort work on your crypto wallet idea to bring it to reality. Crypto wallet development requires a team of experienced developers from UI design to smart contract programming. Dappfort takes your wallet development process through a sequence of workflows to bring the best idea to the digital world. We, as a team, make sure every wallet is hassle-free, compatible, secure, and user-friendly. Also, we are keen on providing feature-rich crypto wallet development services tailored to your business needs. Crypto Wallet Development Services We offer a wide range of crypto wallet development services based on the requirement of client. Here is a list of the top services we work for our clients NFT Wallet A dedicated NFT wallet that allows users to hold only non-fungible tokens, the wallet is specifically designed to buy, sell, trade, and hold any kind of NFT safely. Multi-Chain Wallet The futuristic wallet that attracts most users around the globe is this one, as this allows users to trade and hold multiple cryptocurrencies across various blockchain networks. Coin-Based Wallet We also work on dedicated crypto wallet projects, especially designed for a particular crypto coin based on its dedicated blockchain network. White Label Solution Looking to launch a similar wallet like Trust Wallet? Avail our white label crypto wallet solution and launch in the crypto space in no time. Wallet as a Service Our professionals are also employed to develop robust digital solutions to handle every aspect of functions and transactions in the wallet. Browser Extensions Are you looking for something like Metamaks? We have got you, our professionals are ready to launch your next browser extensions wallet like Metamask. Features of our Cryptocurrency Wallet Solutions We make sure every wallet developed by our experts is planned with the most prominent features that users look for and helps admin manage their business. Admin features User features Effective Data It provides all the data of every transaction and trade that took place through the wallet platform, and also the activity of the Dapps and staking details. API Admin has control over the API integrated to the platform and can modify, add, or remove the API based on the needs of the users of the crypto wallet. Analytics The analytics dashboard helps the admin to analyze the users' access to the features of the wallet, and this helps to upgrade the features that users opt for the most. Security Management The admin holds the key position to manage the security of the wallet, where he enables various security features to protect the crypto wallet solution. Data Backup On a daily basis, the wallet records all the required data and stores it for future analysis, and also helps to transfer data in the future at any time. Notifications Admins will be able to send notifications to a specific set of users or to all users of the crypto wallet from the dashboard. Trade History The user will be able to go through the history of trades done before for analysis, and this helps to plan future trades and also the previous assets he/she was holding. Multiple Cryptos The wallet is designed to hold multiple cryptocurrencies, which allows users to explore various assets and let them choose the best crypto they want to buy/trade/sell. Referral & Reward The referral and reward system allows users to earn commission when a user makes any transaction with the wallet through his/her referral ID after creating their wallet. User Dashboard The user dashboard holds all the information of the user since when he/she made their first transaction in the wallet, which helps them to analyze their digital assets. Staking Staking helps users to lock their digital assets for a certain period and allows them to earn rewards and crypto based on their locked assets and the time period. Multiple Payment Gateways Users can deposit/withdraw their funds through any of their desired payment gateways, which makes their process easier. Addon Features Apart from the above-listed features, below are a few additional features that help the wallet reach out to maximum users around the world. Token Listing Multiple tokens can be listed in the wallet to attract multiple users around the globe and reach your business goals. Browser Extension Are you looking to add browser extensions like Metamask for your wallet? We have got you, our developers will bring it for you. Fiat Support We also bring you Fiat support, which allows users around the globe to deposit their Fiat into the wallet for the purchase of any asset. Cross-Chain The cross-chain options allow users to trade across multiple blockchain networks, allowing users to connect to various Dapps they want. Dapp Dapps play a major role in the crypto space, so with the wallet, we integrate the Dapp to ease the process for users for further needs. Lightning Network BTC Lightning Network allows instant, low-cost transactions that are completed using off-chain payment techniques, enabling fast Bitcoin transfers. Security Features We are keen on the security features of the crypto wallet to avoid any kind of disruption in the service and to avoid any hacks, where we add multiple layers of security, and here are a few among them Multi-Factor Authentication Multiple kinds of authentication are used, including passwords, hardware keys, and more. This provides extra security levels even if one aspect is compromised. Encryption Integrates strong encryption algorithms such as AES or ECC to protect sensitive data. It ensures that encrypted data is not readable without the decryption key. Biometric Authentication requires the use of unique physical traits such as fingerprints or facial recognition, providing an additional security layer that prevents any hacks. Anti-Phishing software Anti-phishing software detects fraudulent websites and programs. It avoids scams and the exposure of private keys or login information. DDoS Protection DDoS protection ensures that the overwhelming unwanted traffic is blocked that aims to disrupt or break the system, not directly preventing data breaches. Cryptocurrency Wallet Development Process Project Scope Analysis Determine Tech Stack UI/UX Design Backend Development Smart Contract Coding Set up Security Layers Dapp Integration API Integration Testing and Deployment Project Scope Analysis and Take Profit We assigned the experts on our team to analyze the project scope and proceed with the project's vision and mission, thereby informing the development process and project outcome. Determine Tech Stack Once the process is set up, we identify the required tools and tech stack for developing the project, presenting the best solution for the digital space. UI/UX Design and Candlestick Close Then our designers will start their work with designing the best impressive UI for your wallet that helps the users to find and access every feature of the wallet. Backend Development Simultaneously, our developers will proceed with the backend development process and set up the core functionality of the wallet and additional features as the project demands. Smart Contract Coding On the other hand, our certified blockchain developers will be coding smart contracts that play a major role in the crypto wallet and secure every transaction. Set up Security Layers Once the core functionality and features are set up, we will add multiple layers of security features to the wallet to safeguard the users and digital assets of the wallet. Dapp Integration If the client requires any decentralized application to be integrated with the wallet to provide additional services, our developers would work to integrate DApps with the wallet. API Integration For various additional features and functions, API’s are integrated with the wallet based on the project demand to ease multiple operations for the users. Testing and Deployment Once the development process is done, the wallet is taken through a series of tests where the bugs & vulnerabilities are fixed and removed before deployment. Benefits of Launching a Crypto Wallet Looking to launch a crypto wallet but don’t have any idea on why to launch and what benefits you can get, here are a few things that may help before you move with the wallet development process Global Reach Crypto Wallet allows you to take your business to a global audience and helps to build your crypto business empire further in the digital space. Multiple Revenue Streams Crypto wallet lets you make multiple revenue which, including transaction fees, token listing fees, even for staking, exchange, and more. DeFi Users can access DeFi platforms, and also users can benefit from staking, lending, and borrowing, making it a one-stop solution. Market Demand The crypto market is growing, and the crypto space demands that every user have a wallet for any operation in the crypto space, which allows you to reach more users. Secured Crypto wallets are a more secure solution in the crypto space because of multiple security layers and deployed smart contracts, which is an added advantage. Scalability The wallet offers hassle-free performance to the users, even if more than 50000+ active users access the wallet at the same time. Tech Stack we use for Cryptocurrency Wallet Development Our certified professionals work on various tech stacks to present the best crypto wallet with top-notch features, and here are a few on which our professionals most commonly work. Frontend React Next.Js Vue Backend Node.js Nest.js Express.js Socket.io Blockchain Ledger Bitcoin-core Pinata Cloud Hardhat IPFS Alchemy TronWeb Blockchain network Avalanche Ethereum Bitcoin Solana Polygon Fantom Blockchain platforms Solidity Stellar Hyperledger fabric Rust Additional tools Apollo Docker REST/GraphQL ClickUp/ Jira GitHub What Makes Dappfort the Best Cryptocurrency Wallet Development Company? Dappfort is the best cryptocurrency wallet development company that works with clients around the world on various requirements and provides the best solution that helps their business grow in the crypto space. If you are looking to launch your wallet in the crypto space or looking to give your existing wallet an upgrade, connect with our experts, and they will help you reach your business goal with advanced solutions. Dappfort’s crypto wallet solution offers a wide range of opportunities in digital assets that attract a lot of users around the globe and help you reach your business goals. The crypto wallet is the gateway to every transaction and every operation that takes place in the crypto space, so if you have an idea to enter the crypto space, then launching a wallet would be the best solution at this time. Contact us! Book a call or fill out the form below and we'll get back to you once we've processed your request. Select Country I agree the Terms and conditions & send me NDA FAQs Related to Crypto Wallet App Development Frequently asked questions regarding Crypto Wallet App What are the benefits of developing an crypto Wallet app? The benefits of creating a cryptocurrency wallet app include convenience, security, quick transactions, connection with other services, and easy access to digital payments. How can AI be integrated into crypto Wallet application development? AI can improve eWallet apps by providing tailored suggestions, fraud detection, speech recognition, and chatbots, which improves user experience, security, and transaction efficiency. What technologies are commonly used in crypto Wallet apps development? It comprises mobile app frameworks, backend technology, payment gateway integrations, and AI technologies. What are the essential components to add in a cryptocurrency wallet app? It includes user registration, account linking, wallet balance management, transaction history, QR code scanning, peer-to-peer money transfers, bill payments, and security features like as authentication. How can I monetize crypto Wallet app? An eWallet app's monetization options include transaction fees, merchant partnerships, in-app advertising, premium feature subscription plans, and app licensing to other businesses. How can I ensure the security of an crypto Wallet app? Implement data encryption, two-factor authentication, frequent security audits, industry standard compliance, user education on secure practices, and AI-powered fraud detection to assure the security of your crypto wallet software. Explore all of free resource Discover guides on wallet security, reviews of the best options, and the latest trends in the cryptocurrency space. Stay informed and make the most of your digital assets! Explore Insights Get in touch Get in touch with us for all your crypto wallet inquiries! Whether you have questions, need support, or want to share feedback, we’re here to help you navigate your digital asset journey. Contact us Boost your business with our customized web3 digital solutions. Partner with Dappfort to turn your vision into reality. Contact Us Business Enquiry: +91 88385 34884 Email Us: sales@dappfort.com LONDON 71-75 Shelton Street, Covent Garden, London, England WC2H 9JQ, GB MADURAI Baskar Complex, Besant Road, Chinna Chokkikulam Madurai, TN-625002 India Company About us Blog Services Web3 Game Development Web3 Wallet Development Web3 Dapp Development Web3 Defi Development Web3 Ecommerce Development Crypto Exchange Development White Label Exchange Software Cryptocurrency Wallet Development Hybrid Exchange Development P2P Exchange Development Metaverse Development Metaverse Casino Game Development Metaverse Avatar Development Metaverse Game Development Metaverse Token Development Metaverse App Development Metaverse Social Media Development Products Kucoin Clone Script Bybit Clone Script Solanart Clone Script Superrare Clone Script Axie infinity Clone Script Alien Worlds Clone Script Sandbox Clone Script Cryptoblades Clone Script Zedrun Clone Script BC Games Clone Script Cricket Betting Software Whitelabel Sportsbook Software Draftkings Clone Script Fanduel Clone Script Lotus365 Clone Script Dream11 Clone Script Betfury Clone Script Foundation Clone Script Disclaimer: logos and other registered trademarks of blockchain networks & other popular application used on this platform are held by their respective owners. Dappfort does not claim ownership or association on them, and their use is purely for informational and illustrative purposes to understand by our audience. Privacy Policy Terms & Conditions © 2025 Dappfort, All Rights Reserved Connect Whatsapp Connect Telegram $(document).ready(function() { $('.menu').click(function(event) { event.stopPropagation(); // Prevents the event from bubbling up to the document $(this).toggleClass('clicked'); var submenu = $(this).next('.submenu'); if ($(this).hasClass('clicked')) { submenu.addClass('active').delay(100).queue(function(next) { $(this).addClass('show'); // Add the class that triggers the slow transition next(); // Proceed to the next item in the queue }); } else { submenu.removeClass('active show'); } // Hide other submenus $('.menu').not(this).removeClass('clicked').next('.submenu').removeClass('active show'); }); $(document).click(function(event) { // Check if the click is outside of the menu and submenu if (!$(event.target).closest('.submenu-container').length) { $('.menu').removeClass('clicked'); $('.submenu').removeClass('active show'); } }); // Prevent submenu from closing when clicked inside $('.submenu').click(function(event) { event.stopPropagation(); // Prevents the click event from closing the submenu }); }); $(window).scroll(function() { if ($(this).scrollTop() > 20) { $('.navbar').addClass('stickyNav'); } else { $('.navbar').removeClass('stickyNav'); } if ($(this).scrollTop() > 20) { $('.ctaPopBtn').addClass('stickyBtn'); } else { $('.ctaPopBtn').removeClass('stickyBtn'); } }); document.addEventListener("DOMContentLoaded", function() { var input = document.querySelector("#phone"); var iti = window.intlTelInput(input, { initialCountry: "auto", separateDialCode: true, utilsScript: "https://cdnjs.cloudflare.com/ajax/libs/intl-tel-input/17.0.8/js/utils.js", }); // Optional: Retrieve and set the phone number value from localStorage var storedPhoneNumber = localStorage.getItem("phoneNumber"); if (storedPhoneNumber) { input.value = storedPhoneNumber; } // Handle form submission var form = document.getElementById("phoneForm"); if (form) { form.addEventListener("submit", function(event) { event.preventDefault(); // Save the phone number to localStorage localStorage.setItem("phoneNumber", input.value); // Log the phone number (you can replace this with actual form submission) console.log("Submitted Phone Number:", input.value); }); } else { console.error("Form element not found."); } }); document.getElementById('countries').addEventListener('change', function() { var selectedCountryCode = this.options[this.selectedIndex].value; var selectedCountry = this.options[this.selectedIndex].text; $("#hiddencountry").val(selectedCountry); $("#phone").val(selectedCountryCode); }); $(document).ready(function() { $(window).scroll(function() { if ($(this).scrollTop() > 100) { // Change 100 to the height you want to trigger the effect $('.header-section').addClass('is-sticky'); } else { $('.header-section').removeClass('is-sticky'); } }); }); $("#social_select li").click(function() { var t = $(this).attr("data-value"); $(".contact_type").val(t), "skype" == t ? $(".social_contact").attr("placeholder", "Your " + t + " ID") : $(".social_contact").attr("placeholder", "Your " + t + " Number") }), $("ul.social-select").on("click", ".init", function() { $(this) .closest("ul") .children("li:not(.init)") .toggle() }), $(document).on("click", function(t) { var e = $("ul.social-select"); e === t.target || e .has(t.target) .length || $(".init") .closest("ul") .children("li:not(.init)") .slideUp("fast") }); var allOptions = $("ul.social-select").children("li:not(.init)"); $("ul.social-select").on("click", "li:not(.init)", function() { allOptions.removeClass("selected"), $(this).addClass("selected"), $("ul.social-select") .children(".init") .html($(this).html()); var t = $(this).attr("data-value"); $("ul.social-select") .children(".init") .attr("data-value", t), allOptions.toggle() }); function fetchDataFromJson() { // alert('Function called'); fetch('https://www.dappfort.com/json/country.json') .then(response => { if (!response.ok) { throw new Error('Network response was not ok'); } return response.json(); }) .then(data => { // alert('Data fetched successfully'); const selectElement = document.getElementById("countries"); if (data && data.items && Array.isArray(data.items)) { data.items.forEach(item => { const option = document.createElement("option"); option.value = item.value; option.text = item.country; selectElement.appendChild(option); }); } else { alert('No items found in the fetched data'); } }) .catch(error => { console.error('Error fetching the JSON file:', error); }); } var Tawk_API=Tawk_API||{}, Tawk_LoadStart=new Date(); (function(){ var s1=document.createElement("script"),s0=document.getElementsByTagName("script")[0]; s1.async=true; s1.src='https://embed.tawk.to/63e22ab4c2f1ac1e2031e0fa/1golndl1o'; s1.charset='UTF-8'; s1.setAttribute('crossorigin','*'); s0.parentNode.insertBefore(s1,s0); })(); function openCity(evt, cityName) { var i, tabcontent, tablinks; tabcontent = document.getElementsByClassName("tabcontents"); for (i = 0; i < tabcontent.length; i++) { tabcontent[i].style.display = "none"; } tablinks = document.getElementsByClassName("tablinks"); for (i = 0; i < tablinks.length; i++) { tablinks[i].className = tablinks[i].className.replace(" active", ""); } document.getElementById(cityName).style.display = "block"; evt.currentTarget.className += " active"; } document.getElementById("defaultOpen").click(); function googletag() { var head = document.getElementsByTagName("head")[0]; var script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://www.googletagmanager.com/gtag/js?id=G-2NL8ZX1DCM"; script.defer = true; head.appendChild(script); } setTimeout(googletag, 7000); window.dataLayer = window.dataLayer || []; function gtag() { dataLayer.push(arguments); } setTimeout(() => { gtag('js', new Date()); gtag('config', 'G-2NL8ZX1DCM', { 'debug_mode': true }); }, 7000); const swiper = new Swiper(".swiper-process", { direction: "vertical", loop: false, slidesPerView: 1, spaceBetween: 0, // autoplay: { // delay: 4000, // disableOnInteraction: false // }, navigation: { nextEl: ".swiper-button-next", prevEl: ".swiper-button-prev" } }); // Navigation List Sync const navItems = document.querySelectorAll("#featureNav li"); function updateNavActive(index) { navItems.forEach((el, i) => { el.classList.toggle("active", i === index); }); } // Sync nav on slide change swiper.on("slideChangeTransitionEnd", () => { updateNavActive(swiper.realIndex); }); // On nav click navItems.forEach((el, i) => { el.addEventListener("click", () => { swiper.slideToLoop(i); updateNavActive(i); }); }); var sc_project = 12903339; var sc_invisible = 1; var sc_security = "a037a771"; <div class="statcounter"><a title="Web Analytics Made Easy - Statcounter" href="https://statcounter.com/" target="_blank"><img class="statcounter" src="https://c.statcounter.com/12903339/0/a037a771/1/" alt="Web Analytics Made Easy - Statcounter" referrerPolicy="no-referrer-when-downgrade"></a></div> { "@context": "https://schema.org/", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the benefits of developing an crypto Wallet app?", "acceptedAnswer": { "@type": "Answer", "text": "The benefits of creating a cryptocurrency wallet app include convenience, security, quick transactions, connection with other services, and easy access to digital payments." } }, { "@type": "Question", "name": "How can AI be integrated into crypto Wallet application development?", "acceptedAnswer": { "@type": "Answer", "text": "AI can improve eWallet apps by providing tailored suggestions, fraud detection, speech recognition, and chatbots, which improves user experience, security, and transaction efficiency." } }, { "@type": "Question", "name": "What technologies are commonly used in crypto Wallet apps development?", "acceptedAnswer": { "@type": "Answer", "text": "It comprises mobile app frameworks, backend technology, payment gateway integrations, and AI technologies." } }, { "@type": "Question", "name": "What are the essential components to add in a cryptocurrency wallet app?", "acceptedAnswer": { "@type": "Answer", "text": "It includes user registration, account linking, wallet balance management, transaction history, QR code scanning, peer-to-peer money transfers, bill payments, and security features like as authentication." } }, { "@type": "Question", "name": "How can I monetize crypto Wallet app?", "acceptedAnswer": { "@type": "Answer", "text": "An eWallet app's monetization options include transaction fees, merchant partnerships, in-app advertising, premium feature subscription plans, and app licensing to other businesses." } }, { "@type": "Question", "name": "How can I ensure the security of an crypto Wallet app?", "acceptedAnswer": { "@type": "Answer", "text": "Implement data encryption, two-factor authentication, frequent security audits, industry standard compliance, user education on secure practices, and AI-powered fraud detection to assure the security of your crypto wallet software." } } ] }

      Crypto Wallet Development Company, can be referred if looking to develop your crypto wallet.

    1. The
      • Listen to Now That's What I Call Disney Bedtime Listen alongside Now That's What I Call Relaxing Classical Imagine some gentle images inside your head as you listen to the songs *Who knew Disney could be also drowsy?
    1. The current study comprised participants who com-pleted the Healthy Weight for Life (HWFL) program

      After reading about it, I dont know off the top of my head if the USA has any programs that are similar to this one with a similar degree of effectiveness. They should take notes and try something like this to see if it is effective

    1. John Schulman

      John Schulman created the PPO algorithm as part of his PhD research. Later was cofounder of OpenAI and became head of RL research and development where his team developed the modern RLHF method for LLM alignment. He now works on allignment at Anthropic.

    1. Reviewer #1 (Public review):

      Summary:

      Praegel et al. explore the differences in learning an auditory discrimination task between adolescent and adult mice. Using freely-moving (Educage) and head-fixed paradigms, they compare behavioral performance and neuronal responses over the course of learning. The mice were initially trained for seven days on an easy pure frequency tone Go/No-go task (frequency difference of one octave), followed by seven days of a harder version (frequency difference of 0.25 octave). While adolescents and adults showed similar performance on the easy task, adults performed significantly better on the harder task. Quantifying the lick bias of both groups, the authors then argue that the difference in performance is not due to a difference in perception, but rather to a difference in cognitive control. The authors then used neuropixel recordings across 4 auditory cortical regions to quantify the neuronal activity related to the behavior. At the single cell level, the data shows earlier stimulus-related discrimination for adults compared to adolescents in both the easy and hard tasks. At the neuronal population level, adults displayed a higher decoding accuracy and lower onset latency in the hard task as compared to adolescents. Such differences were not only due to learning, but also to age as concluded from recordings in novice mice. After learning, neuronal tuning properties had changed in adults but not in adolescent. Overall, the differences between adolescent and adult neuronal data correlates with the behavior results in showing that learning a difficult task is more challenging for younger mice.

      Strengths:

      - The behavioral task is well designed, with the comparison of easy and difficult tasks allowing for a refined conclusion regarding learning across age. The experiments with optogenetics and novice mice are completing the research question in a convincing way.<br /> - The analysis, including the systematic comparison of task performance across the two age groups, is most interesting, and reveals differences in learning (or learning strategies?) that are compelling.<br /> - Neuronal recording during both behavioral training and passive sound exposure is particularly powerful, and allows interesting conclusions.

      Weaknesses:<br /> - The presentation of the paper must be strengthened. Inconsistencies, missing information or confusing descriptions should be fixed.<br /> - The recording electrodes cover regions in the primary and secondary cortices. It is well known that these two regions process sounds quite differently (for example, one has tonotopy, the other not), and separating recordings from both regions is important to conclude anything about sound representations. The authors show that the conclusions are the same across regions for Figure 4, but is it also the case for the subsequent analysis? Comparing to the original manuscript, the authors have now done the analysis for AuDp and AUDv separately, and say that the differences are similar in both regions. The data however shows that this is not the case (Fig S7). And even if it were the case, how would it compatible with the published literature?

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to find out how and how well adult and adolescent mice discriminate tones of different frequencies and whether there are differences in processing at the level of the auditory cortex that might explain differences in behavior between the two groups. Adolescent mice were found to be worse at sound frequency discrimination than adult mice. The performance difference between the groups was most pronounced when the sounds are close in frequency and thus difficult to distinguish and could, at least in part, be attributed to the younger mice' inability to withhold licking in no-go trials. By recording the activity of individual neurons in the auditory cortex when mice performed the task or were passively listening as well as in untrained mice the authors identified differences in the way that the adult and adolescent brains encode sounds and the animals' choice that could potentially contribute to the differences in behavior.

      Strengths:

      The study combines behavioural testing in freely-moving and head-fixed mice, optogenetic manipulation and high density electrophysiological recordings in behaving mice to address important open questions about age differences in sound-guided behavior and sound representation in the auditory cortex.

      Weaknesses:

      For some of the analyses that the authors conducted it is unclear what the rationale behind them is and, consequently, what conclusion we can draw from them.

    3. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      A) The presentation of the paper must be strengthened. Inconsistencies, mislabelling, duplicated text, typos, and inappropriate colour code should be changed.

      We spotted and corrected several inconsistencies and mislabelling issues throughout the text and figures. Thanks!  

      B) Some claims are not supported by the data. For example, the sentence that says that "adolescent mice showed lower discrimination performance than adults (l.22) should be rewritten, as the data does not show that for the easy task (Figure 1F and Figure 1H).

      We carefully reviewed the specific claims and fixed some of the wording so it adheres to the data shown.

      C) In Figure 7 for example, are the quantified properties not distinct across primary and secondary areas?

      We now carried out additional analysis to test this. We found that while AUDp and AUDv exhibit distinct tuning properties, they show similar differences between adolescent and adult neurons (see Supplementary Table 6, Fig. S7-1a-h). Note that TEa and AUDd could not be evaluated due to low numbers of modulated neurons in this protocol.

      D) Some analysis interpretations should be more cautious. (..) A lower lick rate in general could reflect a weaker ability to withhold licking- as indicated on l.164, but also so many other things, like a lower frustration threshold, lower satiation, more energy, etc).

      That is a fair comment, and we refined our interpretations. Moreover, we also addressed whether impulsiveness impacted lick rates. In the Educage, we found that adolescent mice had shorter ITIs only after FAs (Fig. S2-1). In the head-fixed setup, we examined (1) the proportion of ITIs where licks occurred (Fig. S3-1c) and (2) the number of licks in these ITIs (Fig. S3-1d). We found no differences between adolescents and adults, indicating that the differences observed in the main task are not due to general differences in impulsiveness (Fig. S2-1, Fig. S3-1c, d). Finally, we note that potential differences in satiation were already addressed in the original manuscript by carefully examining the number of trials completed across the session. See also Review 3, comment #1 below.

      Reviewer #2 (Public review):

      A) For some of the analyses that the authors conducted it is unclear what the rationale behind them is and, consequently, what conclusion we can draw from them.

      We reviewed the manuscript carefully and revised the relevant sections to clarify the rationale behind the analyses. See detailed responses to all the reviewer’s specific comments.

      B) The results of optogenetic manipulation, while very interesting, warrant a more in-depth discussion.

      We expanded our discussion on these experiments (L495-511) and also added an additional analysis to strengthen our findings (Fig. S3-2e).

      Reviewer #3 (Public review):

      (1) The authors report that "adolescent mice showed lower auditory discrimination performance compared to adults" and that this performance deficit was due to (among other things) "weaker cognitive control". I'm not fully convinced of this interpretation, for a few reasons. First, the adolescents may simply have been thirstier, and therefore more willing to lick indiscriminately. The high false alarm rates in that case would not reflect a "weaker cognitive control" but rather, an elevated homeostatic drive to obtain water. Second, even the adult animals had relatively high (~40%) false alarm rates on the freely moving version of the task, suggesting that their behavior was not particularly well controlled either. One fact that could help shed light on this would be to know how often the animals licked the spout in between trials. Finally, for the head-fixed version of the task, only d' values are reported. Without the corresponding hit and false alarm rates (and frequency of licking in the intertrial interval), it's hard to know what exactly the animals were doing.

      irst, as requested, we added the Hit rates and FA rates for the head-fixed task (Fig. S3-1a). Second, as requested by the reviewr, we performed additional analyses in both the Educage and head-fixed versions of the task. Specifically, we analyzed the ITI duration following each trial outcome. We found that adolescent mice had shorter ITIs only after Fas (Fig. S2-1). In the head-fixed setup, we examined (1) the proportion of ITIs during which licks occurred (Fig. S3-1c) and (2) the number of licks in these ITIs (Fig. S3-1d). We found no differences between adolescents and adults, indicating that the differences observed in the main task are not due to general differences in impulsiveness (Fig. S2-1, Fig. S3-1c, d). See also comment #D of reviewer #1 above.

      B) There are some instances where the citations provided do not support the preceding claim. For example, in lines 64-66, the authors highlight the fact that the critical period for pure tone processing in the auditory cortex closes relatively early (by ~P15). However, one of the references cited (ref 14) used FM sweeps, not pure tones, and even provided evidence that the critical period for this more complex stimulus occurred later in development (P31-38). Similarly, on lines 72-74, the authors state that "ACx neurons in adolescents exhibit high neuronal variability and lower tone sensitivity as compared to adults." The reference cited here (ref 4) used AM noise with a broadband carrier, not tones.

      We carefully checked the text to ensure that each claim is accurately supported by the corresponding reference.

      C) Given that the authors report that neuronal firing properties differ across auditory cortical subregions (as many others have previously reported), why did the authors choose to pool neurons indiscriminately across so many different brain regions?

      We appreciate the reviewer’s concern. While we acknowledge that pooling neurons across auditory cortical subregions may obscure region-specific effects, our primary focus in this study is on developmental differences between adolescents and adults, which were far more pronounced than subregional differences.

      To address this potential limitation: (1) We analyzed firing differences across subregions during task engagement (see Fig. S4-1, S4-2, S4-3; Supplementary Tables 2 and 3). (2) We have now added new analyses for the passive listening condition in AUDp and AUDv (Fig. S7-1; Supplementary Table 6).

      These analyses support our conclusion that developmental stage has a greater impact on auditory cortical activity than subregional location in the contexts examined. For clarity and cohesion, the main text emphasizes developmental differences, while subregional analyses are presented in the Supplement.

      D) And why did they focus on layers 5/6? (Is there some reason to think that age-related differences would be more pronounced in the output layers of the auditory cortex than in other layers?)

      We agree that other cortical layers, particularly supragranular layers, are important for auditory processing and plasticity. Our focus on layers 5/6 was driven by both methodological and biological considerations. Methodologically, our electrode penetrations were optimized to span multiple auditory cortical areas, and deeper layers provided greater mechanical stability for chronic recordings. Biologically, layers 5/6 contain the principal output neurons of the auditory cortex and are well-positioned to influence downstream decision-making circuits. We acknowledge the limitation of our recordings to these layers in the manuscript (L268; L464-8).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The presentation of the paper must be strengthened. As it is now, it makes it difficult to appreciate the strengths of the results. Here are some points that should be addressed:

      a) The manuscript is full of inconsistencies that should be fixed to improve the reader's understanding. For example, the description on l.217 and the Figure. S3-1b, the D' value of 0 rounded to 0.01 on l. 735 (isn't it rather the z-scored value that is rounded? A D' of 0 is not a problem), the definition of lick bias on l. 750 and the values in Fig.2, the legend of Figure 7F and what is displayed on the graph (is it population sparseness or responsiveness?), etc.

      We adjusted the legend and description of former Fig. S3-1b (now Fig. S3-2b).

      We now clarify that the rounded values refer to z-scored hit and false alarm rates that we used in the d’ calculation. We adjusted the definition of the lick bias in Fig. 2 and Fig. S3-1b (L804).

      We replaced ‘population responsiveness’ with ‘population sparseness’ throughout the figures, legend and the text.

      b) References to figures are sometimes wrong (for example on l. 737,739).

      c) Some text is duplicated (for example l. 814 and l. 837).

      d) Typos should be corrected (for example l. 127, 'the', l. 787, 'upto').

      We deleted the incorrect references of this section, removed the duplicated text, and corrected the typos.

      e) Color code should be changed (for example the shades of blue for easy and hard tasks - they are extremely difficult to differentiate).

      After consideration, we decided to retain the blue color code (i.e., Fig. 1d, Fig. 3d, Fig. 4e-g, Fig. 5c, Fig. 6d–g), where the distinction between the shades of blue appears sufficiently clear and maintains visual consistency and aesthetic appeal. We did however, made changes in the other color codes (Fig. 4, Fig. 5, Fig. 6, Fig. 7).

      f) Figure design should be improved. For example, why is a different logic used for displaying Figure 5A or B and Figure 1E?

      We adjusted the color scheme in Fig. 5. We chose to represent the data in Fig. 5 according to task difficulty, as this arrangement best illustrates the more pronounced deficits in population decoding in adolescents during the hard task.

      f) Why use a 3D representation in Figure 4G? (2)

      The 3D representation in Fig. 4g was chosen to illustrate the 3-way interactions between onset-latency, maximal discriminability, and duration of discrimination.

      g) Figure 1A, lower right panel- should "response" not be completed by "lick", "no lick"?

      We changed the labels to “Lick” and “No Lick” in Fig. 1a.

      h) l.18 the age mentioned is misleading, because the learning itself actually started 20 days earlier than what is cited here.

      Corrected.

      i) Explain what AAV5-... is on l.212.

      We added an explanation of virus components (see L216-220).

      (2) The comparison of CV in Figure 2 H-J is interesting. I am curious to know whether the differences in the easy and hard tasks could be due to a decrease in CV in adults, rather than an increase in CV in adolescents? Also, could the difference in J be due to 3 outliers?

      We agree that the observed CV differences may reflect a reduction in variability in adults rather than an increase in adolescents. We have revised the Results section accordingly to acknowledge this interpretation.

      Regarding the concern about potential outliers in Fig. 2J, we tested the data for outliers using the isoutlier function in MATLAB (defining outliers as values exceeding three standard deviations from the mean) and found no such cases.

      (3) Figure 2c shows that there is no difference in perceptual sensitivity between adolescents and adults, whereas the conclusion from Figure 4 is that adolescents exhibit lower discriminability in stimulus-related activity. Aren't these results contradictory?

      This is a nuanced point. The similar slopes of the psychometric functions (Fig. 2c) indicating comparable perceptual sensitivity and the lower AUC observed in the ACx of adolescents (Fig. 4) do not necessarily contradict each other. These two measures capture related but distinct issues: psychometric slopes reflect behavioral output, which integrates both sensory encoding and processing downstream to ACx, while the AUC analysis reflects stimulus-related neural activity in ACx, which may still include decision-related components.<br /> Note that stimulus-related neural discriminability outside the context of the task is not different between adolescent and adult experts (Fig. 7h; p = 0.9374, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). This suggests that there are differences that emerge when we measure during behavior. Also note that behavior may rely on processing beyond ACx, and it is possible that downstream areas compensate for weaker cortical discriminability in adolescents — but this issue merits further investigation.

      (4) Why do you think that the discrimination in hard tasks decreases with learning (Figure 6D vs Figure 6F)?

      This is another nuanced point, and we can only speculate at this stage. While it may appear counterintuitive that single-neuron discriminability (AUC) for the hard task is reduced after learning (Fig. 6D vs. 6F), we believe this may reflect a shift in sensory coding in expert animals. In a recent study (Haimson et al., 2024; Science Advances), we found that learning alters single-neuron responses in the easy versus hard task in complex and distinct ways, which may account for this result. It is also possible that, in expert mice, top-down mechanisms such as feedback from higher-order areas act to suppress or stabilize sensory responses in auditory cortex, reducing the apparent stimulus selectivity of single neurons (e.g., AUC), even as behaviorally relevant information is preserved or enhanced at the population level.

      Reviewer #2 (Recommendations for the authors):

      This is very interesting work and I enjoyed reading the manuscript. See below for my comments, queries and suggestions, which I hope will help you improve an already very good paper.

      We thank the reviewer for the meticulous and thoughtful review.

      (1) Line 107: x-axis of panel 1e says 'pre-adolescent'.

      (2) Line 130: replace 'less' with 'fewer'.

      (3) Line 153: 'both learned and catch trials': I find the terminology here a bit confusing. I would typically understand a catch trial to be a trial without a stimulus but these 'catch' trials here have a stimulus. It's just that they are not rewarded/punished. What about calling them probe trials instead?

      We corrected the labelling (1), reworded to ‘fewer’ and ‘probe trials’ (2,3).

      (4) Line 210: The results of the optogenetics experiments are very interesting. In particular, because the effect is so dramatic and much bigger than what has been reported in the literature previously, I believe. Lick rates are dramatically reduced suggesting that the mice have pretty much stopped engaging in the task and the authors very rightly state that the 'execution' of the behavior is affected. I think it would be worth discussing the implications of these results more thoroughly, perhaps also with respect to some of the lesion work. Useful discussions on the topic can be found, for instance, in Otchy et al., 2015; Hong et al., 2018; O'Sullivan et al., 2019; Ceballo et al., 2019 and Lee et al., 2024. Are the mice unable to hear anything in laser trials and that is why they stopped licking? If they merely had trouble distinguishing them then we would perhaps expect the psychometric curves to approach chance level, i.e. to be flat near the line indicating a lick rate of 0.5. Could the dramatic decrease in lick rate be a motor issue? Can we rule out spillover of the virus to relevant motor areas? (I understand all of the 200nL of the virus were injected at a single location) Or are the effects much more dramatic than what has been reported previously simply because the GtACR2 is much more effective at silencing the auditory cortex? Could the effect be down to off-target effects, e.g. by removing excitation from a target area of the auditory cortex, rather than the disruption of cortical processing?

      We have now expanded the discussion in the manuscript to more thoroughly consider alternative interpretations of the strong behavioral effect observed during ACx silencing (L495–511). In particular, we acknowledge that the suppression of licking may reflect not only impaired sensory discrimination but also broader disruptions to arousal, motivation, or motor readiness. We also discuss the potential impact of viral spread, circuit-level off-target effects, and the potency of GtACR2 as possible contributors. We highlight the need for future work using more graded or temporally precise manipulations to resolve these issues.

      (5) Line 226: Reference 19 (Talwar and Gerstein 2001) is not particularly relevant as it is mostly concerned with microstimulation-induced A1 plasticity. There are, however, several other papers that should be cited (and potentially discussed) in this context. In particular, O'Sullivan et al., 2019 and Ceballo et al., 2019 as these papers investigate the effects of optogenetic silencing on frequency discrimination in head-fixed mice and find relatively modest impairments. Also relevant may be Kato et al., 2015 and Lee et al., 2024, although they look at sound detection rather than discrimination.

      We changed the references and pointed the reader to the (new section) Discussion.

      (6) Line 253: 'engaged [in] the task.

      (7) Figure 4: It appears that panel S4-1d is not referred to anywhere in the main text.

      Fixed.

      (8) Line 260: Might be useful to explain a bit more about the motivation behind focusing on L5/L6. Are there mostly theoretical considerations, i.e. would we expect the infragranular layers to be more relevant for understanding the difference in task performance? Or were there also practical considerations, e. g. did the data set contain mostly L5/L6 neurons because those were easier to record from given the angle at which the probe was inserted? If those kinds of practical considerations played a role, then there is nothing wrong with that but it would be helpful to explain them for the benefit of others who might try a similar recording approach.

      There were no deep theoretical considerations for targeting L5/6.  Our focus on layers 5/6 was driven by both methodological and biological considerations. Methodologically, our electrode penetrations were optimized to span multiple auditory cortical areas, and deeper layers provided greater mechanical stability for chronic recordings. Biologically, layers 5/6 contain the principal output neurons of the auditory cortex and are well-positioned to influence downstream decision-making circuits. We acknowledge the limitation of our recordings to these layers in the manuscript (L268; L463–467). See also comment D of reviewer 3.

      (9) Supplementary Table 2: The numbers in brackets indicate fractions rather than percentages.

      Fixed.

      (10) Figure S4-3: The figure legend implies that the number of neurons with significant discriminability for the hard stimulus and significant discriminability for choice was identical. (adolescent neurons = 368, mice = 5, recordings = 10; adult n = 544, mice = 6, recordings = 12 in both cases). Presumably, that is not actually the case and rather the result of a copy/paste operation gone wrong. Furthermore, I think it would be helpful to state the fractions of neurons that can discriminate between the stimuli and between the choices that the animal made in the main text.

      Thank you for spotting the mistake. We corrected the n’s and added the percentage of neurons that discriminate stimulus and choice in the main text and the figure legend.

      (11) Line 301: 'We used a ... decoder to quantify hit versus correct reject trial outcomes': I'm not sure I understand the rationale here. For the single unit analysis hit and false alarm trials were compared to assess their ability to discriminate the stimuli. FA and CR trials were compared to assess whether neurons can encode the choice of the mice. But the hit and CR trials which are contrasted here differ in terms of both stimulus and behavior/choice so what is supposed to be decoded here, what is supposed to be achieved with this analysis?

      Thank you for this important point. You're correct that comparing hit and CR trials captures differences in both stimulus and choice, or task-related differences. We chose this contrast for the population decoding analysis to achieve higher trial counts per session and similar number of trials which are necessary for the reliability of the analysis. While this approach does not isolate stimulus from choice encoding, it provides an overall measure of how well population activity distinguishes task-relevant outcomes. We explicitly acknowledge this issue in L313-314.

      (12) Line 332: What do you mean when you say the novice mice were 'otherwise fully engaged' in the task when they were not trained to do the task and are not doing the task?

      By "otherwise fully engaged," we mean that novice mice were actively participating in the task environment, similar to expert mice — they were motivated by thirst and licked the spout to obtain water. The key distinction is that novice mice had not yet learned the task rules and likely relied on trial-and-error strategies, rather than performing the task proficiently.

      (13) Line 334: 'regardless of trial outcome': Why is the trial outcome not taken into account? What is the rationale for this analysis? Furthermore, in novice mice a substantial proportion of the 'go' trials are misses. In expert mice, however, the proportion of 'miss trials' (and presumably false alarms) will by definition be much smaller. Given this, I find it difficult to interpret the results of this section.

      This approach was chosen to reliably decode a sufficient number of trials for each task difficulty (i.e. expert mice predominantly performed CRs on No-Go trials and novice mice often showed FAs). Utilizing all trial outcomes ensured that we had enough trials for each stimulus type to accurately estimate the AUCs. This approach avoids introducing biases due to uneven trial numbers across learning stages.

      (14) Line 378: 'differences between adolescents and adults arise primarily from age': Are there differences in any of the metrics shown in 7e-h between adolescents and adults?

      We confirm that differences between adolescents and adults are indeed present in some metrics but not others in Figure 7e–h. Specifically, while tuning bandwidth was similar in novice animals, it was significantly lower in adult experts (Fig. 7e; novice: p = 0.0882; expert: p = 0.0001 Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). The population sparseness was similar in both novice and expert adolescent and adult neurons (Fig. 7f; novice: p = 0.2873; expert: p = 0.1017, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). The distance to the easy go stimulus was similar in novice animals, but lower in adult experts (Fig. 7g; novice: p = 0.7727; expert: p = 0.0001, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). The neuronal d-prime was similar in both novice and expert adolescent and adult neurons (Fig. 7h; novice: p = 0.7727; expert: p = 0.0001, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript).

      (15) Line 475: '...well and beyond...': something seems to be missing in this statement.

      (16) Line 487: 'onto' should be 'into', I think.

      (17) Line 610 and 613: '3 seconds' ... '2.5 seconds': Was the response window 3s or 2.5s?

      (18) Line 638: 'set' should be 'setup', I believe.

      All the mistakes mentioned above, were fixed. Thanks.

      (19) Line 643: 'Reward-reinforcement was delayed to 0.5 seconds after the tone offset': Presumably, if they completed their fifth lick later than 0.5 seconds after the tone, the reward delivery was also delayed?

      Apologies for the lack of clarity. In the head-fixed version, there was no lick threshold. Mice were reinforced after a single lick. If that lick occurred after the 0.5-second reinforcement delay following tone offset, the reward or punishment was delivered immediately upon licking.

      (20) Line 661: 'effect [of] ACx'.

      (21) Line 680: 'a base-station connected to chassis'. The sentence sounds incomplete.

      (22) Line 746: 'infliction', I believe, should say 'inflection'.

      (23) Line 769: 'non-auditory responsive units': Shouldn't that simply say 'non-responsive units'? The way it is currently written I understand it to mean that these units were responsive (to some other modality perhaps) but not to auditory stimulation.

      (24) Line 791: 'bins [of] 50ms'.

      (25) Line 811: 'all of' > 'of all'.

      (26) Line 814: Looks like the previous paragraph on single unit analysis was accidentally repeated under the wrong heading.

      (27) Line 817: 'encoded' should say 'calculated', I believe.

      All the mistakes mentioned above were fixed. Thanks.

      (28) Line 869: 'bandwidth of excited units': Not sure I understand how exactly the bandwidth, i.e. tuning width was measured.

      We acknowledge that our previous answer was unclear and expanded the Methods section. To calculate bandwidth, we identified significant tone-evoked responses by comparing activity during the tone window to baseline firing rates at 62 dB SPL (p < 0.05). For each neuron, we counted the number of contiguous frequencies with significant excitatory responses, subtracting isolated false positives to correct for chance. We then converted this count into an octave-based bandwidth by multiplying the number of frequency bins by the octave spacing between them (0.1661 octaves per step).

      (29) Line 871: 'population sparseness': Is that the fraction of tone frequencies that produced a significant response? I would have thought that this measure is very highly correlated to your measure of bandwidth, to the point of being redundant, but I may have misunderstood how one or the other is calculated. Furthermore, the Y label of Figure 7f says 'responsiveness' rather than sparseness and that would seem to be the more appropriate term because, unless I am misunderstanding this, a larger value here implies that the neuron responded to more frequencies, i.e. in a less sparse manner.

      We have clarified the use of the term "population sparseness" and updated the Y-axis label in Figure 7f to better reflect this measure. This metric reflects the fraction of tone–attenuation combinations that elicited a significant excitatory response across the entire population of neurons, not within individual units.

      While this measure is related to bandwidth, it captures a distinct property of the data. Bandwidth quantifies how broadly or narrowly a single neuron responds across frequencies at a fixed intensity, whereas population sparseness reflects how distributed responsiveness is across the population as a whole. Although the two measures are related, since broadly tuned neurons often contribute to lower population sparseness, they capture distinct aspects of neural coding and are not redundant.

      (30) Line 881: I think this line should refer to Figure 7h rather than 7g.

      Fixed.

      Reviewer #3 (Recommendations for the authors):

      (1) In the Educage, water was only available when animals engaged in the task; however, there is no mention of whether/how animal weight was monitored.

      In the Educage, mice had continuous access to water by voluntarily engaging in the task, which they could perform at any time. Although body weight was not directly monitored, water access was essentially ad libitum, and mice performed hundreds of trials per day, thereby ensuring sufficient daily intake. This approach allowed us to monitor hydration (ad libitum food is supplied in the home cage). The 24/7 setup, including automated monitoring of trial counts and water consumption, was reviewed and approved by our institutional animal care and use committee (IACUC).

      (2) In Figure 2B-C and Figure 2E, the y-axis reads "lick rate". At first glance, I took this to mean "the frequency of licking" (i.e. an animal typically licks at a rate of 5 Hz). However, what the authors actually are plotting here is the proportion of trials on which an animal elicited >= 5 licks during the response window (i.e. the proportion of "yes" responses). I recommend editing the y-axis and the text for clarity.

      We replaced the y-label and adjusted the figure legend (Fig. 2).

      (3) I didn't see any examples of raw (filtered) voltage traces. It would be worth including some to demonstrate the quality of the data.

      We have added an example of a filtered voltage trace aligned to tone onset in Fig. S4-1a to illustrate data quality. In addition, all raw and processed voltage traces, along with relevant analysis code, are available through our GitHub repository and the corresponding dataset on Zenodo.

      (4) The description of the calculation of bias (C) in the methods section (lines 749-750) is incorrect. The correct formula is C = -0.5 * [z(hit rate) + z(fa rate)]. I believe this is the formula that the authors used, as they report negative C values. Please clarify or correct.

      Thanks for spotting this. It is now corrected.

      (5) The authors use the terms 'naïve' and 'novice' interchangeably. I suggest sticking with one term to avoid potential confusion.

      (6) Multiple instances: "less trials/day" should be "fewer trials/day"

      (7) Supplementary Table 2: The values reported are proportions, not percentages. Please correct.

      (8) Line 270: Table 2 does not show the number of neurons in the dataset categorized by region. Perhaps the authors meant Supplementary Table 2?

      Fixed. Thank you for pointing these mistakes out.

      (9) Figure 5C: the data from the hard task are entirely obscured by the data from the easy task. I recommend splitting it into two different plots.

      We agree and split the decoding of the easy and the hard task into two graphs (left: easy task; right: hard task). Thank you!

      (10) How many mice contributed to each analyzed data set? Could the authors provide a breakdown in a table somewhere of how many neurons were recorded in each mouse and which ones were included in which analyses?

      We added an overview of the analyzed datasets in supplementary Table 7. Please note that the number of mice and neurons used in each analysis is also reported in the main text and legends. Importantly, all primary analyses were conducted using LME models, which explicitly account for hierarchical data structure and inter-mouse variability, thereby addressing potential concerns about data imbalance or bias.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Floedder et al report that dopamine ramps in both Pavlovian and Instrumental conditions are shaped by reward interval statistics. Dopamine ramps are an interesting phenomenon because at first glance they do not represent the classical reward prediction errors associated with dopamine signaling. Instead, they seem somewhat to bridge the gap between tonic and phasic dopamine, with an intense discussion still being held in the field about what is their actual behavioral role. Here, in tests with head-fixed mice, and dopamine being recorded with a genetically encoded fluorescent sensor in the nucleus accumbens, the authors find that dopamine ramps were only present when intertrial intervals were relatively short and the structure of the task (Pavlovian cue or progression in a VR corridor) contained elements that indicated progression towards the reward (e.g., a dynamic cue). The authors propose that although these findings can be explained by classical theories of dopamine function, they are better explained by their model of Adjusted Net Contingency of Causal Relation (ANCCR). The results of this study provide constraints on future models of dopamine function, and are of high interest to the field.

    2. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In this study, Floedder et al report that dopamine ramps in both Pavlovian and Instrumental conditions are shaped by reward interval statistics. Dopamine ramps are an interesting phenomenon because at first glance they do not represent the classical reward prediction errors associated with dopamine signaling. Instead, they seem somewhat to bridge the gap between tonic and phasic dopamine, with an intense discussion still being held in the field about what is their actual behavioral role. Here, in tests with head-fixed mice, and dopamine being recorded with a genetically encoded fluorescent sensor in the nucleus accumbens, the authors find that dopamine ramps were only present when intertrial intervals were relatively short and the structure of the task (Pavlovian cue or progression in a VR corridor) contained elements that indicated progression towards the reward (e.g., a dynamic cue). The authors show that these findings are well explained by their previously published model of Adjusted Net Contingency of Causal Relation (ANCCR).

      Strengths:

      This descriptive study delineates some fundamental parameters that define dopamine ramps in the studied conditions. The short, objective, and to-the-point format of the manuscript is great and really does a service to potential readers. The authors are very careful with the scope of their conclusions, which is appreciated by this reviewer.

      We thank the reviewer for their overall support of the formatting and scope of the manuscript. 

      Weaknesses:

      The discussion of the results is very limited to the conceptual framework of the authors' preferred model (which the authors do recognize, but it still is a limitation). The correlation analysis presented in panel l of Figure 3 seems unnecessary at best and could be misleading, as it is really driven by the categorical differences between the two conditions that were grouped for this analysis. There are some key aspects of the data and their relationship with each other, the previous literature, and the methods used to collect them, that could have been better discussed and explored.

      We agree with the reviewer that a weakness of the discussion was the limited framing of the results within the ANCCR model. To address this, we have expanded our introduction and discussion sections to provide a more thorough explanation of our model and possible leading alternatives.

      We thank the reviewer for pointing out that Figure 3l may be misleading for readers; we removed this panel from the revised Figure 4.

      We have further addressed the specific concerns raised by the reviewer in their comments to the authors. Indeed, we agree with the reviewer that the original manuscript was narrow in its focus regarding relationships between different aspects of the data. To more thoroughly explore how key variables – including dopamine ramp slope and onset response as well as licking behavior slope – could relate to each other, we have added Extended Data Figure 8. In this figure, we show that no correlations exist between any of these key variables in either dynamic tone condition; it is our hope that this additional analysis highlights the significance of the clear relationship between dopamine ramp slope and ITI duration. 

      Reviewer #2 (Public Review):

      In this manuscript by Floeder et al., the authors report a correlation between ITI duration and the strength of a dopamine ramp occurring in the time between a predictive conditioned stimulus and a subsequent reward. They found this relationship occurring within two different tasks with mice, during both a Pavlovian task as well as an instrumental virtual visual navigation task. Additionally, they observed this relationship only in conditions when using a dynamic predictive stimulus. The authors relate this finding to their previously published model ANCCR in which the time constant of the eligibility trace is proportionate to the reward rate within the task.

      The relationship between ITI duration and the extent of a dopamine ramp which the authors have reported is very intriguing and certainly provides an important constraint for models for dopamine function. As such, these findings are potentially highly impactful to the field. I do have a few questions for the authors which are written below.

      We thank the reviewer for their interest in our findings and belief in their potential to be impactful in the field. 

      (1) I was surprised to see a lack of counterbalance within the Pavlovian design for the order of the long vs short ITI. Ramping of the lick rate does increase from the long-duration ITIs to the short-duration ITI sessions. Although of course, this increase in ramping of the licking across the two conditions is not necessarily a function of learning, it doesn't lend support to the opposite possibility that the timing of the dynamic CS hasn't reached asymptotic learning by the end of the long-duration ITI. The authors do reference papers in which overtraining tends to result in a reduction of ramping, which would argue against this possibility, yet differential learning of the dynamic CS would presumably be required to observe this effect. Do the authors have any evidence that the effect is not due to heightened learning of the timing of the dynamic CS across the experiment?

      We appreciate the reviewer expressing their surprise regarding the lack of counterbalance in our Pavlovian experimental design. We previously did not explicitly do this because the ramps disappeared in the short ITI/fixed tone condition, indicating that their presence is not just a matter of total experience in the task. However, we agree that this is incidental, but not direct evidence. To address this drawback, we repeated the Pavlovian experiment in a new cohort of animals with a revised training order, switching conditions such that the short ITI/dynamic tone (SD) condition preceded the long ITI/dynamic tone (LD) condition (see revised Figure 2a). Despite this change in the training order, the main findings remain consistent: positive dLight slopes (i.e., dopamine ramps) are only observed in the SD condition (Figure 2b-d). 

      We thank the reviewer for raising these questions regarding licking behavior and learning and their relationship with dopamine ramps. Indeed, a closer look at the average licking behavior reveals subtle differences across conditions (Figure 1f and Extended Data Figure 5a). While the average lick rate during the ramp window does not differ across conditions (Extended Data Figure 5c), the ramping of the lick rate during this window is higher for dynamic tone conditions compared to fixed tone conditions (Extended Data Figure 5d). Despite these differences, we still believe that the main comparison between the dopamine slope in the SD vs LD condition remains valid given their similar lick ramping slopes. Furthermore, our primary measure of learning is not lick slope, but anticipatory lick rate during the 1 s trace preceding reward delivery, which is robustly nonzero across cohorts and conditions (Figure 1g and Extended Data Figure 5b). 

      Taken together, we hope that the results from our counterbalanced Pavlovian training and more rigorous analysis of lick behavior across conditions provide sufficient evidence to assuage concerns that the differences in ramping dopamine simply reflect differences in learning. 

      (2) The dopamine response, as measured by dLight, seems to drop after the reward is delivered. This reduction in responding also tends to be observed with electrophysiological recordings of dopamine neurons. It seems possible that during the short ITI sessions, particularly on the shorter ITI duration trials, that dopamine levels may still be reduced from the previous trial at the onset of the CS on the subsequent trial. Perhaps the authors can observe the dynamics of the recovery of the dopamine response following a reward delivery on longer-duration ITIs in order to determine how quickly dopamine is recovering following a reward delivery. Are the trials with very short ITIs occurring within this period that dopamine is recovering from the previous trial? If so, how much of the effect may be due to this effect? It should be noted that the lack of observance of a ramp on the condition of shortduration ITIs with fixed CSs provides a potential control for this effect, yet the extent to which a natural ramp might occur following sucrose deliveries should be investigated.

      We thank the reviewer for highlighting the possibility that ramps may be due to the dopamine response recovery following reward delivery. Given that peak reward dopamine responses tend to be larger in long ITI conditions, however, we felt that it was inappropriate to compare post-reward dopamine recovery times across conditions. Instead, we decided to directly compare the dLight slope 2s before cue onset (“pre-cue window,” a proxy for recovery from previous trial) with the dLight slope during our ramp window from 3 to 8s after cue onset (Extended Data Figure 6a). There were no significant differences in pre-cue dLight slope across conditions (Extended Data Figure 6b); this suggests that the ramping slopes seen in the SD condition, but not other conditions, is not simply due to the natural dopamine recovery response following reward delivery. Furthermore, if the dopamine ramps observed in the SD condition were a continuation of the post-reward dopamine recovery from the previous trial, we would expect to see a positive correlation between the dLight slope before and during the cue. However, there is no such correlation between the dLight slopes in the ramp window vs. pre-cue window in the SD condition (Extended Data Figure 6c-d). We believe that this observation, along with the builtin control of the SF condition mentioned by the reviewer, serves as evidence against the possibility of our ramp results being due to a natural ramp after reward delivery.

      (3) The authors primarily relate the finding of the correlation between the ITI and the slope of the ramp to their ANCCR model by suggesting that shorter time constants of the eligibility trace will result in more precisely timed predictors of reward across discrete periods of the dynamic cue. Based on this prediction, would the change in slope be more gradual, and perhaps be more correlated with a broader cumulative estimate of reward rate than just a single trial?

      To clarify, we do not propose that a smaller eligibility trace time constant results in more precise timing per se. Instead, we believe that the rapid eligibility trace decay from smaller time constants gives greater causal predictive power for later periods in the dynamic cue (see Extended Data Figure 1) since the memory of the earlier periods of the cue is weaker. 

      We appreciate the reviewer’s curiosity regarding the influence of a broader cumulative estimate of reward vs. only the immediately preceding ITI on dopamine ramp slopes. Indeed, in several instrumental tasks (e.g., Krausz et al., Neuron, 2023), recent reward rate modulates the magnitude of dopamine ramps, making this an important variable to investigate. We chose to use linear regression for each mouse separately to analyze the relationship between the trial dopamine slope and the average previous ITI for the past 1 through 10 most recent trials. In the SD condition, as reported in our earlier manuscript, there was a significantly negative dependence of trial dopamine slope with the single previous ITI (i.e., if the previous ITI was long, the next trial tends to have a weaker ramp). This negative dependence, however, only held for a single previous trial; there was no clear relationship between the per-trial dopamine slope and the average of the past 2 through 10 ITIs (Extended Data Figure 7a). For the LD condition, on the other hand, there is no clear relationship between the per-trial dopamine slope and the average previous ITI for any of the past 1 through 10 trials, with one exception: there is a significantly negative dependence of trial dopamine slope with the average ITI of the previous 2 trials (Extended Data Figure 7b). This longer timescale relationship in the LD condition suggests that the adaptation of the eligibility trace time constant is nuanced and depends on the general ITI length. 

      In general, though we reason that the eligibility trace time constant should depend on overall event rates, we do not currently propose a real-time update rule for the eligibility trace time constant depending on recent event rates. Accordingly, we are currently agnostic about the actual time scale of history of recent event rate calculation that mediates the eligibility trace time constant. Our experimental results suggest that when the ITI is generally short for Pavlovian conditioning, the eligibility trace time constant adapts to ITI on a rapid timescale. However, only a small fraction of the variability of this rapid fluctuation is captured by recent ITI history. A more thorough investigation of this real-time update rule would need to be done in the future.

      Reviewer #3 (Public Review):

      Summary:

      Floeder and colleagues measure dopamine signaling in the nucleus accumbens core using fiber photometry of the dLight sensor, in Pavlovian and instrumental tasks in mice. They test some predictions from a recently proposed model (ANCCR) regarding the existence of "ramps" in dopamine that have been seen in some previous research, the characteristics of which remain poorly understood.

      They find that cues signaling a progression toward rewards (akin to a countdown) specifically promote ramping dopamine signaling in the nucleus accumbens core, but only when the intertrial interval just experienced was short. This work is discussed in the context of ongoing theoretical conceptions of dopamine's role in learning.

      Strengths:

      This work is the clearest demonstration to date of concrete training factors that seem to directly impact whether or not dopamine ramps occur. The existence of ramping signals has long been a feature of debates in the dopamine literature and this work adds important context to that. Further, as a practical assessment of the impact of a relatively simple trial structure manipulation on dopamine patterns, this work will be important for guiding future studies. These studies are well done and thoughtfully presented.

      We thank the reviewer for recognizing the context that our study adds to the dopamine literature and the potential for our experiments to guide future work. 

      Weaknesses:

      It remains somewhat unclear what limits are in place on the extent to which an eligibility trace is reflected in dopamine signals. In the current study, a specific set of ITIs was used, and one wonders if the relative comparison of ITI/history variables ("shorter" or "longer") is a factor in how the dopamine signal emerges, in addition to the explicit length ("short" or "long") of the ITI. Another experimental condition, where variable ITIs were intermingled, could perhaps help clarify some remaining questions.

      Though we used ITIs of fixed means, due to the exponential nature of their distribution, we did intermingle ITIs of various durations in both our long and short ITI conditions. The distribution of ITI durations is visualized in Figure 1c for Pavlovian conditioning and Extended Data Figure 9b for VR navigation. 

      The relative comparison between consecutive ITIs was not something we originally explored, so we thank the reviewer for wondering how it impacts the dopamine signal. To investigate this, we quantified both the change in ITI (+ or - Δ ITI for relatively longer or shorter, respectively) and the change in dopamine ramp slope between consecutive trials in the SD condition (Figure 3d). Across each mouse separately, we found a significantly negative relationship between Δ slope and Δ ITI (Figure 3e-f). Also, the average Δ slope was significantly greater for consecutive trials with a Δ ITI below -1 s compared to trials with a Δ ITI above +1 s (Figure 3g). Altogether, these findings suggest that relative comparison of ITIs does correlate with changes in the dopamine signal; a relatively longer ITI tends to have a weaker ramp, which fits in nicely with the expected inverse relationship between ITI and dopamine ramp slope from our ANCCR model.

      In both tasks, cue onset responses are larger, and longer on long ITI trials. One concern is that this larger signal makes seeing a ramp during the cue-reward interval harder, especially with a fluorescence method like photometry. Examining the traces in Figure 1i - in the long, dynamic cue condition the dopamine trace has not returned to baseline at the time of the "ramp" window onset, but the short dynamic trace has. So one wonders if it's possible the overall return to baseline trend in the long dynamic conditions might wash out a ramp.

      This is a good point, and we thank the reviewer for raising it. Certainly, the cue onset response is significantly larger in long ITI conditions (see Figure 1i-j and Figure 4h-j). To avoid any bleed over effect, we intentionally chose ramp window periods during later portions of the trial (in line with work from others e.g., Kim et al., Cell, 2020). While the cue onset dopamine pulse seems to have flatlined by the start of the ramp window period, the dopamine levels clearly remain elevated relative to pre-cue baseline. This type of signal has been observed with fiber photometry in other Pavlovian conditioning paradigms with long cue durations (e.g., Jeong et al., Science, 2022). Because of the persistently elevated dopamine levels, it is certainly possible that a ramping signal during the cue is getting washed out; with the bulk fluorescence photometry technique we employed in this study, this possibility is unfortunately difficult to completely rule out. However, the long ITI/fixed tone (LF) condition could serve as a potential control given the overall similarity in the dopamine signal between the LF and LD conditions: both conditions have large cue onset responses with elevated dopamine throughout the duration of the cue (see Extended Data Figures 2c and 3c). Critically, the LD condition lacks a noticeable ramp despite the dynamic tone providing information on temporal proximity to reward, which is thought to be necessary for dopamine ramps to occur. Importantly, regardless of whether a ramp is masked in the long ITI dynamic condition, most studies investigate such a condition in isolation and would report the absence of dopamine ramps. Thus, at a descriptive level, we believe it remains true that observable dopamine ramps are only present when the ITI is short. 

      Not a weakness of this study, but the current results certainly make one ponder the potential function of cue-reward interval ramps in dopamine (assuming there is a determinable function). In the current data, licking behavior was similar on different trial types, and that is described as specifically not explaining ramp activity.

      We agree that this work naturally raises the question of the function of dopamine ramps. However, selective and precise manipulation of only the dopamine ramps without altering other features such as phasic responses, or inducing dopamine dips, is highly technically challenging at this moment; due to this challenge, we intentionally focused on the conditions that determine the presence or absence of dopamine ramps rather than their function. We agree with the reviewer that studying the specific function of dopamine ramps is an interesting future question. 

      Reviewing Editor:

      The reviewers felt the results are of considerable and broad interest to the neuroscience community, but that the framing in terms of ANCCR undermined the scope of the findings as did the brief nature of the formatting of the manuscript. In addition, the reviewers felt that the relationship between ramp dynamics, behavior, and ITI conditions requires more in-depth analyses. Relatedly, the lack of counterbalancing of the ITI durations was considered to be a drawback and needs to be addressed as it may affect the baseline. Addressing these issues in a satisfactory manner would improve the assessment of the manuscript to important/convincing.

      We truly appreciate the valuable feedback provided on this manuscript by all three reviewers and the reviewing editor. Based on this input, we have significantly revised the manuscript to address the issues brought up by the reviewers. Firstly, we have conducted additional experiments to counterbalance the ITI conditions for Pavlovian conditioning; this strengthened our results by confirming our original findings that ITI duration, rather than training order, is the key variable controlling the presence or absence of dopamine ramps. Secondly, we completed more rigorous analyses to further explore the relationship between dopamine dynamics, animal behavior, and ITI duration; we generally found no significant correlations between these variables, with a notable exception being our main finding between ITI duration and dopamine ramp slope. Finally, we revised and expanded our writing to both explain predictions from our ANCCR model in less technical language and explore how alternative theoretical frameworks could potentially explain our findings. In doing so, we hope that our manuscript is now more accessible and of interest to a broad audience of neuroscience readers.

      Reviewer #1 (Recommendations For The Authors):

      The study could be improved if the authors performed a more detailed comparison of how other theoretical frameworks, beyond ANCCR could account for the observed findings. Also, the correlation analysis presented in the panel I of Figure 3 seems unnecessary and potentially spurious, as the slope of the correlation is clearly mostly driven by the categorical differences between the two ITI conditions, which were combined for the analysis - it's not clear what is the value of this analysis beyond the group comparison presented in the following panel.

      Again, we thank the reviewer for elaborating on their concern regarding Figure 3l – we have removed it from the revised Figure 4. 

      The relationship between ramp dynamics with the behavior and the large differences in cue onset responses between short and long ITI conditions could have been better explored. If I understand correctly the overarching proposal of this and other publications by this group, then the differences in cue responses is determined by the spacing of rewards in a somewhat similar way that the ramps are. So, is there a trial-by-trial correlation between the amplitude of the cue responses and the slope of the ramps? Is there a correlation between any of these two measures with the licking behavior, and if so, does it change with the ITI condition? A more thorough exploration of these relationships would help support the proposal of the primacy of inter-event spacing in determining the different types of dopamine responses in learning.

      There are certainly interesting relationships between dopamine dynamics, behavior, and ITI that we failed to explore in our original manuscript – we appreciate the reviewer bringing them up. We found no correlation between dopamine ramp slope and cue onset response in either the SD or LD condition (Extended Data Fig 8a-b). Moreover, we found no correlation between either of these variables and the trial-by-trial licking behavior (Extended Data Fig 8c-f). Finally, there is no relationship between licking behavior and previous ITI duration (Extended Data Fig 8g-h), suggesting that behavioral differences do not account for differences in the dopamine ramp slope. Together, the lack of significant relationships between these other variables highlights the specific, clear relationship between ITI duration and dopamine ramp slope. 

      Finally, another issue I feel could have been better discussed is how the particular settings of both tasks might be biasing the results. For example, there is an issue to be considered about how the dopamine ramp dynamics reported here, especially the requirement of a dynamic cue for ramps to be present, square with the previous published results by one of the authors - Mohebi et al, Nature, 2019. In that manuscript, rats were executing a bandit task where, to this reviewer's understanding, there was no explicit dynamic cue aside from the standard sensory feedback of the rats moving around in the behavior boxes to approach a nose poke port. Is the idea that this sensory feedback could function as a dynamic cue? If that's the case, then this short-scale, movement-related feedback should also function as a dynamic cue in a freely moving Pavlovian condition, when the animals must also move towards a reward delivery port, right? Therefore, could it be that the experimental "requirement" of a dynamic cue is only present in a head-fixed condition? One could phrase this in a different way to Steelman and potentially further the authors' proposal: perhaps in any slightly more naturalistic setting, the interaction of the animals with their environment always functions as a dynamic cue indicating proximity to reward, and this relationship was experimentally isolated by the use of head fixation (but not explicitly compared with a freely moving condition) in the present study. I think that would be an interesting alternative to consider and discuss, and perhaps explore experimentally at some point.

      We thank the reviewer for raising this important point regarding the influence of our experimental settings on our results. At first glance, it could appear that our results demonstrating the necessity of a dynamic cue for ramps in a head-fixed setting do not fit neatly with other results in a freely moving setup (e.g., Collins et al., Scientific Reports, 2016; Mohebi et al., Nature, 2019). Exactly as the reviewer states though, we believe that sensory feedback from the environment in freely moving preparations serves the same function as a dynamic progression of cues. We have considered the implications of methodological differences between head-fixed and freely moving preparations in the discussion section. 

      Reviewer #2 (Recommendations For The Authors):

      This comment relates indirectly to comment 3, in that the authors intermix theory throughout the manuscript. I think this would be fine if the experiment was framed directly in terms of ANCCR, but the authors specifically mention that this experiment wasn't developed to distinguish between different theories. As such, it seems difficult to assess the scope of the comments regarding theory within the paper because they tend to be specifically related to ANCCR. For instance, the last comment has broad implications of how the ramp might be related to the overall reward rate, an interesting finding that constrains classes of dopamine models rather than evidence just for ANCCR. Perhaps adding a discussion section that allows the authors to focus more on theory would be beneficial for this manuscript.

      We appreciate this suggestion by the reviewer. We have updated both our introduction and discussion sections to elaborate more thoroughly on theory.

      Reviewer #3 (Recommendations For The Authors):

      The paper could potentially benefit from the use of more accessible language to describe the conceptual basis of the work, and the predictions, and a bit of reformatting away from the brief structure with lots of supplemental discussion.

      For example, in the introduction, the line - "Varying the ITI was critical because our theory predicts that the ITI is a variable controlling the eligibility trace time constant, such that a short ITI would produce a small time constant relative to the cue-reward interval (Supplementary Note 1)". As far as I can tell, this is meant to get across the notion that dopamine represents some aspect of the time between rewards - dopamine signals will differ for cues following short vs long intervals between rewards.

      As written, the language of the paper takes a fair bit of parsing, but the notions are actually pretty simple. This is partly due to the brief format the paper is written in, where familiarity with the previous papers describing ANCCR is assumed.

      From a readability standpoint, and the potential impact of the paper on a broad audience, perhaps this could be considered as a point for revision.

      We thank the reviewer for pointing out the drawbacks of our technical language and brief formatting. To address this, we have removed the majority of the supplementary notes and expanded our introduction and discussion sections. In doing so, we hope that the conceptual foundations of this work, and potential alternative theoretical explanations, are accessible and impactful for a broad audience of readers.

    1. eLife Assessment

      In this useful study, the authors perform voltage imaging of CA1 pyramidal cells in head-fixed mice running on a track while local field potentials (LFPs) were recorded in the contralateral hemisphere. The authors conclude that synchronous ensembles of neurons are associated with theta rhythms but not with contralateral sharp wave-ripples. However, evidence for some of the paper's primary claims remains incomplete, due to limitations of the experimental approach.

    2. Author response:

      The following is the authors’ response to the current reviews.

      We thank the editor and reviewers for their thoughtful evaluations. We would like to clarify that the revised manuscript does not make a general claim about the absence of ripple-associated synchronous population activity. Rather, we report only that the synchronous ensembles observed in our data were not associated with contralateral ripple oscillations. This distinction is clearly reflected in the revised Title, Abstract, Introduction, Results, and Discussion. We also explicitly acknowledged the methodological limitation of recording LFP from the contralateral side of the hippocampus.

      To further improve clarity and prevent potential misinterpretation, we are submitting a revised version (R4) in which we:

      (1) Replace the word "surprisingly" with the more neutral "Moreover";

      (2) Refer to ripple events consistently as "contralateral ripples (c-ripples)";

      (3)Expand the discussion of limitations inherent to contralateral LFP recordings.

      Additionally, while Buzsaki et al. (2003) wrote that "These findings suggest ripples emerge locally and independently in the two hemispheres", the same study also presents data and reports that "Ripple episodes occurred simultaneously in the left and right CA1 regions" (p. 206). Our original citation was intended to reflect this nuance. Nevertheless, to avoid any potential misinterpretation, we have removed the co-occurrence statement with its associated citations in the revised (R4) manuscript.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      For many years, there has been extensive electrophysiological research investigating the relationship between local field potential patterns and individual cell spike patterns in the hippocampus. In this study, using state-ofthe-art imaging techniques, they examined spike synchrony of hippocampal cells during locomotion and immobility states. In contrast to conventional understanding of the hippocampus, the authors demonstrated that hippocampal place cells exhibit prominent synchronous spikes locked to theta oscillations.

      Strengths:

      The voltage imaging used in this study is a highly novel method that allows recording not only suprathreshold-level spikes but also subthreshold-level activity. With its high frame rate, it offers time resolution comparable to electrophysiological recordings.

      Comments on revisions: I have no further comments.

      We thank the reviewer for constructive reviews and for recognizing the strength of our study.

      Reviewer #2 (Public review):

      Summary:

      This study employed voltage imaging in the CA1 region of the mouse hippocampus during the exploration of a novel environment. The authors report synchronous activity, involving almost half of the imaged neurons, occurred during periods of immobility. These events did not correlate with SWRs, but instead, occurred during theta oscillations and were phased locked to the trough of theta. Moreover, pairs of neurons with high synchronization tended to display non-overlapping place fields, leading the authors to suggest these events may play a role in binding a distributed representation of the context.

      Strengths:

      Technically this is an impressive study, using an emerging approach that allows single cell resolution voltage imaging in animals, that while head-fixed, can move through a real environment. The paper is written clearly and suggests novel observations about population level activity in CA1.

      Comments on revisions:

      I have no further major requests and thank the authors for the additional data and analyses.

      We thank the reviewer for recognizing the strength of our study and for appreciating the additional data and analyses we provided during the revision process.

      Reviewer #3 (Public review):

      Summary:

      In the present manuscript, the authors use a few minutes of voltage imaging of CA1 pyramidal cells in head fixed mice running on a track while local field potential (LFPs) are recorded. The authors suggest that synchronous ensembles of neurons are differentially associated with different types of LFP patterns, theta and ripples. The experiments are flawed in that the LFP is not "local" but rather collected the other side of the brain.

      Strengths:

      The authors use a cutting-edge technique.

      Weaknesses:

      Although the authors have toned down their claims, the statement in the title ("Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons Associated with Theta but not Ripple Oscillations During Novel Exploration") is still unsupported.

      One could write the same title while voltage imaging one mouse and recording LFP from another mouse.

      To properly convey the results, the title should be modified to read

      "Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons Associated with Contralateral Theta but not with Contralateral Ripple Oscillations During Novel Exploration"

      Without making this change, the title - and therefore the entire work - is misleading at best.

      We thank the reviewer for the thoughtful and constructive suggestion regarding the title. We fully understand the concern that our original title may have overstated the specificity of the contralateral LFP recordings, potentially allowing for misinterpretation.

      In our results, synchronous ensembles are associated with intracellular theta oscillations recorded from the ipsilateral hippocampus and with extracellular theta but not ripples oscillations recorded from the contralateral hippocampus. To clarify this distinction and minimize the potential for misinterpretation, we have revised the abstract accordingly. 

      Abstract (line18):

      “… Notably, these synchronous ensembles were not associated with contralateral ripple oscillations but were instead phase-locked to theta waves recorded in the contralateral CA1 region. Moreover, the subthreshold membrane potentials of neurons exhibited coherent intracellular theta oscillations with a depolarizing peak at the moment of synchrony.”

      Based on this, we propose the following revised title, which we believe more effectively communicates the central finding of our study: 

      “Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons During Novel Exploration”. 

      Compared to the reviewer’s suggested title, this version offers a clearer and more concise summary of our findings while allowing important methodological details to be fully conveyed in the abstract and main text. While the suggested title accurately reflects the source of the LFP signals, it does not mention the intracellular theta oscillations recorded from the ipsilateral hippocampus, which are a critical part of our results. Including both the intracellular and extracellular recording contexts in the title would make it overly long and potentially less accessible to readers. In contrast, the revised title succinctly captures the core phenomenon, and the updated abstract now explicitly clarifies the relationship between the synchronous ensembles and both types of oscillatory signals. 

      We sincerely appreciate the reviewer’s input, which helped us refine both the language and the presentation of our findings. We hope these changes address the concern and clarify the scope of our work. 

      Recommendations for the authors:

      Reviewer #3 (Recommendations for the authors):

      (1) Change the title. Although the authors have toned down their claims, the statement in the title ("Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons Associated with Theta but not Ripple Oscillations During Novel Exploration") is still unsupported. One could write the same title while voltage imaging one mouse and recording LFP from another mouse. To properly convey the results, the title should be modified to read

      "Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons Associated with Contralateral Theta but not with Contralateral Ripple Oscillations During Novel Exploration"

      Without making this change, the title - and therefore the entire work - is misleading at best. But if you can manage that (and attend to comment #2 below), then the manuscript would not be making any false statements.

      Please see our reply in the public review above.

      (2) Report the exact locations of the contralateral recording electrodes. In their rebuttal, the authors supplies a figure ("Author response image 1") in which they show damage to the neocortex and fluorescence signal in the CA1 pyramidal cell layer. This is useful, but it is unclear from which animal this histology was generated.

      Please include this (or another similar) photograph in Figure 1B, right next to the voltage imaging photograph. Indicate from which animal each photograph was obtained - ideally, provide the two photographs from the same animal. Second, please include such paired photographs - along with paired signals - for every animal that you are able to.

      If you can manage that, it will add credibility to the statement that the recordings are indeed from the contralateral CA1 pyramidal cell layer (as opposed to from the contralateral hemisphere).

      We thank the reviewer for this important point. We have followed the suggestion and now provide paired photographs showing LFP electrode tracks and voltage images from the same animal (see revised Figure 1B)

      In addition, we have included similar paired photographs for additional animals used in this study (see Figure 1-figure supplement 1).

      These updates directly support the claim that LFP recordings were obtained from the contralateral CA1 pyramidal layer, rather than from the contralateral hemisphere. We sincerely thank the reviewer for the valuable suggestion, which has substantially strengthened our manuscript.

    1. A simile was used in line 438, “ A bump as big as a young cockerel's stone”, Simile (uses “as” for comparison). The Nurse exaggerates how big the bump on Juliet’s head was, comparing it to a rooster’s testicle (a funny image back then).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Note : The original preprint version of our manuscript has been reviewed by 3 subject experts for Review Commons. All the three reviewers’ comments on the original version of our manuscript have been fully addressed. Their input was extremely valuable in helping us clarify and refine the presentation of our results and conclusions. Their feedback contributed to making the study both more thoroughly developed and more accessible to a broad readership, while preserving its mechanistic depth. We believe that this revised version more effectively highlights the conceptual advances brought by our findings.

      Reviewer #1

      Evidence, reproducibility and clarity

      The manuscript "Key roles of the zona pellucida and perivitelline space in promoting gamete fusion and fast block to polyspermy inferred from the choreography of spermatozoa in mice oocytes" by Dr. Gourier and colleagues explores the poorly understood process of gamete fusion and the subsequent block to polyspermy by live-cell imaging of mouse oocytes with intact zona pellucida in vitro. The new component in this study is the presence of the ZP, which in prior studies of live-cell imaging had been removed before. This allowed the authos to examine contributions of the ZP to the block in polyspermy in relation to the timing of sperm penetrating the ZP and sperm fusing with the oocyte. By carefully analysing the timing of the cascade of events, the authors find that the first sperm that reaches the membrane of the mouse oocyte is not necessarily the one that fertilizes the oocytes, revealing that other mechanisms post-ZP-penetration influence the success of individual sperm. While the rate of ZP penetration remains constant in unfertilized oocytes, it decreases upon fertilization for subsequent sperm, providing direct evidence for the known 'slow block to polyspermy' provided by changes to the ZP adhesion/ability to be penetrated. Careful statistical analyses allow the authors to revisit the role of the ZP in preventing polyspermy: They show that the ZP block resulting from the cortical reaction is too slow (in the range of an hour) to contribute to the immediate prevention of polyspermy in mice. The presented analyses reveal that the ZP does contribute to the block to polyspermy in two other ways, namely by effectively limiting the number of sperm that reach the oocyte surface in a fertilization-independent manner, and by retaining components like JUNO and CD9, that are shed from the oocyte plasma membrane after fertilization, in the perivitelline space, which may help neutralize surplus spermatozoa that are already present in the PVS. Lastly, the authors report that the ZP may also contribute to channeling the flagellar oscillations of spermatozoa in the PVS to promote their fusion competence.

      Major comments:

      • Are the key conclusions convincing?

      The authors provide a careful analysis of the dynamics of events, though the analyses are correlative, and can only be suggestive of causation. While this is a limitation of the study, it provides important analysis for future research. Moreover, by analysing also control oocytes without fertilization and the timing of events, the authors have in some instances clear 'negative controls' for comparison.

      Some claims would benefit from rewording or rephrasing to put the findings better in the context of what is already known and what is novel:

      • the phrasing 'challenging prior dogma' might be too strong since it had been observed before that it is not necessarily the first sperm that gets through the ZP that fertilizes the egg (though I am afraid that I do not have any citations or references for this). However, given that in the field people generally think it is not necessarily and always the first sperm, the authors may want to consider weakening this claim.

      Only real-time imaging of in vitro fertilization of zona pellucida-intact oocytes, as performed in our study, is capable of determining which spermatozoon crossing the zona pellucida fuses with the oocyte. However, such studies are rare, and most do not specifically address this question. As Reviewers 1 & 3, we have not found any citation or reference telling or showing that it is not necessarily the first spermatozoon to penetrate the zona pellucida that fertilizes the egg. In contrast, at least one reference (Sato et al., 1979) explicitly reports the opposite. If, as suggested by Reviewer 1 and 3, it has indeed been observed before that the first sperm to pass the ZP is not always the one that fertilizes, and if this idea is generally accepted in the field, then it is all the more important that a study demonstrates and publishes this point. This is precisely what our study makes possible. However, in case we may have overlooked a previous reference making the same observation as ours, we have removed the phrasing ‘challenging prior dogma’. That being said, the key issue is not so much that it is not necessarily the first spermatozoon penetrating the perivitelline space that fertilizes, but rather why spermatozoa that successfully reach the PVS of an unfertilized oocyte may fail to achieve fertilization. This is one of the central questions our study sought to address.

      • I do think the cortical granule release could still contribute to the block to polyspermy though - as the authors here nicely show - at a later time-point only, and thus not the major and not the immediate block as previously thought. The wording in the abstract should therefore be adjusted (since it could still contribute...)

      We are concerned that we may disagree on this point. The penetration block resulting from cortical granule release progressively reduces the permeability of the zona pellucida to spermatozoa, relative to its baseline permeability prior to sperm–oocyte fusion. Any decrease in this baseline permeability occurring before the fusion block becomes fully effective can contribute to the prevention of polyspermy by limiting the number of sperm that can access the oolemma at a time when fusion is still possible. In contrast, once the fusion block is fully established, limiting the number of spermatozoa traversing the ZP becomes irrelevant regarding the block to polyspermy, as the fusion block alone is sufficient to prevent additional fertilizations, rendering the penetration block obsolete. The only scenario that could challenge this obsolescence is if the fusion block were transient. In that case, as Reviewer 1 suggests, the penetration block could indeed play a role at a later time-point. However, taken together, our study and that of Nozawa et al. (2018) support the conclusion that this is not the case in mice:

      • Our in vitro study using kinetic tracking shows that the time constant for completion of the fusion block is typically 6.2 ± 1.3 minutes. During this time window, we observe that the permeability of the zona pellucida to spermatozoa does not yet decrease significantly from the baseline level it exhibited prior to sperm–oocyte fusion (see Figures 5B and S1B in the revised manuscript, and Figures 5A and 5B in the initial version). Consequently, before the fusion block is fully established, the penetration block can contribute only marginally—if at all—to the prevention of polyspermy. In contrast, the naturally low baseline permeability of the ZP—independent of any fertilization-triggered penetration block—as well as the relatively long timing of fusion ( minutes on average) after sperm penetration in the perivitelline space, are factors that contribute to the preservation of monospermic while the fusion block is still being established.
      • Our in vitro study using kinetic tracking shows that once the fusion block is completed following the first fusion event, no additional spermatozoa are able to fuse with the oocyte until the end of the experiment, 4 hours post-insemination (see blue points and fitting curve in Figure 5C). Meanwhile, one or more additional spermatozoa—most of them motile and therefore viable—are present in the perivitelline space in 50% of the oocytes analyzed (purple point in Figure 5C). This demonstrates that, once established, the fusion block remains effective for at least the entire duration of the experiment, supporting the idea of a fully functional and long-lasting fusion block.
      • Nozawa et al. (2018) found that female mice lacking ovastacin—the protease released during the cortical reaction that renders the zona pellucida impenetrable—are normally fertile. They additionally reported that the oocytes recovered from these females after mating are monospermic despite the systematic presence of additional spermatozoa in the perivitelline space. These findings further support the conclusion that in mice the fusion block is both permanent and sufficient to prevent polyspermy. For all these reasons, we believe that even at a later time-point, the penetration block does not contribute to the prevention of polyspermy in mice.

      To clarify the fact that the penetration block does not necessarily contribute to prevent polyspermy, which indeed challenges the commonly accepted view, we have substantially revised the discussion. Furthermore, Figure 9 from the initial version of the manuscript has been replaced by Figure 8 in the revised version. This new figure provides a more didactic illustration of the inefficacy of the penetration block in preventing polyspermy in mice, by showing the respective impact of the fusion block, the penetration block, as well as fusion timing and the natural baseline permeability of the zona pellucida, on the occurrence of polyspermy.

      As for the abstract, it has also been thoroughly revised. The content related to this section is now expressed in a way that emphasizes the factors that actively contribute to the prevention of polyspermy in mice, rather than those with no or marginal contribution (such as the penetration block in this case).

      • release of OPM components - in the abstract it's unclear what the authors mean by this - in the results part it becomes clear. Please already make it clear in the abstract that it is the fertility factors JUNO/CD9 that could bind to sperm heads upon their release and thus 'neutralize' them? I would also recommend not referring to it as 'outer' plasma membrane (there is no 'inner plasma membrane'). Moreover, in the abstract please clarify that this release is happening only after fusion of the first sperm and not all the time. In the abstract it sounds as if this was a completely new idea, but there is good prior evidence that this is in fact happening (as also then cited in the results part) - maybe frame it more as the retention inside the PVS as new finding.

      We thank reviewer 1 for pointing out the lack of precision in the abstract regarding the “components” released from the oolemma, and the fact that our phrasing may have given the impression that the post-fertilization release of CD9 and JUNO is a novel observation. The new observation is that CD9 and JUNO, which are known to be massively released from the oolemma after fertilization, bind to spermatozoa in the perivitelline space. However, we cannot rule out the possibility that other oocyte-derived molecules not investigated here may undergo a similar process. This is why we employed the broader term “components”, which encompasses both CD9 and JUNO as well as potential additional molecules. That said, we acknowledge the lack of precision introduced by this terminology. To address this, we have revised the corresponding sentence in the abstract to better reflect our new findings relative to previous ones, and to eliminate the ambiguity introduced by the word “component”.

      The revised sentence of the abstract reads as follows:

      “Our observation that non-fertilizing spermatozoa in the perivitelline space are coated with CD9 and JUNO oocyte’s proteins, which are known to be massively released from the oolemma after gamete fusion, supports the hypothesis that the fusion block involves an effective perivitelline space-block contribution consisting in the neutralization of supernumerary spermatozoa in the perivitelline space by these and potentially other oocyte-derived factors.”

      Moreover, we cannot state in the abstract that the release of CD9 and JUNO occurs only after the fusion of the first spermatozoon and not before, since some CD9 and JUNO are already detectable in the perivitelline space (PVS) prior to fusion. What our study shows is that, before fertilization, CD9 and JUNO are predominantly localized at the oocyte membrane. In contrast, after fusion (four hours post-insemination), oocyte CD9 is distributed between the membrane and the PVS, and the only JUNO signal detectable in the oocyte is found in the PVS. This is what we describe in the Results section on page 15.

      Regarding the acronym “OPM” in the initial version of the manuscript, although it was defined in the introduction as referring to the oocyte plasma membrane and not the outer plasma membrane (which, indeed, would not be meaningful), we acknowledge that it may have caused confusion to people in the field due to its resemblance to the commonly used meaningful acronym “OAM” for outer acrosomal membrane. To avoid any ambiguity, we have replaced the acronym “OPM” throughout the revised manuscript with the term “oolemma”, which unambiguously refers to the plasma membrane of the oocyte.

      It is unclear to me what the relevance of dividing the post-fusion/post-engulfment into different phases as done in Fig 2 (phase 1, and phase 2) - also for the conclusions of this paper this seems rather irrelevant and overly complicated, since the authors never get back to it and don't need it (it's not related to the polyspermy block analyses). I would remove it from the main figures and not divide into those phases since it is distracting from the main focus.

      Sperm engulfment and PB2 extrusion are two processes that follow sperm–oocyte fusion. As such, they are clear indicators that fusion has occurred and that meiosis has resumed. Their progression over time is readily identifiable in bright-field imaging: sperm engulfment is characterized by the gradual disappearance of the spermatozoon head from the oolemma, whereas PB2 extrusion is observed as the progressive emergence of a rounded protrusion from the oocyte membrane (Figure 2 in the initial manuscript and Figure S2 A&B in the revised version). The kinetics of these events, measured from the arrest of “push-up–like” movement of the sperm head against the oolemma —assumed to coincide with sperm-oocyte fusion, as further justified in a later response to Reviewer 1—provide reliable temporal landmarks for estimating the timing of fusion when the fusion event itself is not directly observed in real time (Figure S2 C&D).

      The four landmarks used in this estimation are:

      (i) the disappearance of the sperm head from the oolemma due to internalization (28 ± 2 minutes post-arrest, mean ± SD);

      (ii) the onset of PB2 protrusion from the oolemma (28 ± 2 minutes post-arrest);

      (iii) the moment when the contact angle between the PB2 protrusion and the oolemma shifts from greater than to less than 90° (49 ± 6 minutes post-arrest);

      (iv) the completion of PB2 extrusion (73 ± 10 minutes post-arrest).

      The approach used to determine the fusion time window of a fertilizing spermatozoon from these landmarks is detailed in the “Determination of the Fertilization Time Windows” section of the Materials and Methods. Compared to the initial version of the manuscript, we have added a paragraph explaining the rationale for using the arrest of the push-up–like movement as a reliable indicator for sperm–oocyte fusion and have clarified the description of the approach used to determine fertilization timing.

      The timed characterization of sperm engulfment and PB2 extrusion kinetics is highly relevant to the analysis of the penetration and fusion blocks, however we agree that its place is more appropriate in the Supplementary Information than in the main text. In accordance with the reviewer’s recommendation, this section has therefore been moved to the Supplementary Information SI2.

      For the statistical analysis, I am not sure whether the assumption "assumption that the probability distribution of penetration or fertilization is uniform within a given time window" is in fact true since the probability of fertilizing decreases after the first fertilization event.... Maybe I misunderstood this, but this needs to be explained (or clarified) better, or the limitation of this assumption needs to be highlighted.

      During in vitro fertilization experiments with kinetic tracking, each oocyte is observed sequentially in turn. As a result, sperm penetration into the perivitelline space or fusion with the oolemma may occur either during an observation round or in the interval between two rounds. In the former case, penetration or fusion is directly observed in real time, allowing for high temporal precision in determining the moment of the event. In contrast, when penetration or fusion occurs between two observation rounds, the precise timing cannot be directly determined. We can only ascertain that the event took place within the time window we have determined. Because, within a given penetration or fusion time window, we do not know the exact moment at which the event occurred, there is no reason to favor one time over another. This justifies the assumption that all time points within the window are equally probable. This explanation has been added in the section Statistical treatment of penetration and fertilization chronograms to study the kinetics of fertilization, penetration block and fusion block of the main text and in the section Statistical treatment of penetrations and fertilizations chronograms to study penetration and fusion blocks of the material and methods.

      -Suggestion for additional experiments:

      If I understood correctly, the onset of fusion in Fig 2C is defined by stopping of sperm beating? If it is by the sudden stop of the beating flagellum, this should be confirmed in this situation (with the ZP intact) that it correctly defines the time-point of fusion since this has not been measured in this set-up before as far as I understand. In order to measure this accurately, the authors will need to measure this accurate to be able to acquire those numbers (of time from fusion to end of engulfment), e.g. by pre-loading the oocyte with Hoechst to transfer Hoechst to the fusing sperm upon membrane fusion.

      The nuclear dye Hoechst is widely used as a marker of gamete fusion, as it transfers from the ooplasm—when preloaded with the dye—into the sperm nucleus upon membrane fusion, thereby signaling the happening of the fusion event. This technique is applicable in the context of in vitro fertilization using ZP-free oocytes. However, it is not suitable when cumulus–oocyte complexes are inseminated, as is the case in both in vitro experimental conditions of the present study (standard IVF and IVF with kinetic tracking). Indeed, when cumulus–oocyte complexes are incubated with Hoechst to preload the oocytes, the numerous surrounding cumulus cells also take up the dye. Consequently, upon insemination, spermatozoa acquire fluorescence while traversing and dispersing the cumulus mass—before reaching the ZP—thus rendering Hoechst labeling ineffective as a specific marker of membrane fusion. This remains true even under optimized conditions involving brief Hoechst incubation of cumulus–oocyte complexes ( Nonetheless, we have strong evidence supporting the use of the arrest of sperm movement as a surrogate marker for the moment of fusion. In our previous study (Ravaux et al., 2016; ref. 4 in the revised manuscript), we investigated the temporal relationship between the abrupt cessation of sperm head movement on the oolemma—resulting from strong flagellar beating arrest—and the fusion event, using ZP-free oocytes preloaded with Hoechst. That study revealed a temporal delay of less than one minute between the cessation of sperm oscillations and the actual membrane fusion, thereby supporting the conclusion that in ZP-free oocytes, the arrest of vigorous sperm movement at the oolemma is a reliable indicator of the moment at which fusion occurs. In the same study, the kinetics of sperm head internalization into the ooplasm were also characterized, typically concluding within 20–30 minutes after movement cessation. These findings are fully consistent with our current observations in ZP-intact oocytes, where sperm head engulfment was completed approximately 24 ± 3 minutes after the arrest of sperm oscillations. Taken together, these results strongly support the conclusion that, in both ZP-free and ZP-intact oocytes, the arrest of sperm movement is a reliable indicator of the fusion event. This assumption formed the basis for our determination of fertilization time points in the present study.

      These justifications were not fully detailed in the original version of the manuscript. We have addressed this in the revised version by explicitly presenting this rationale in the Materials and Methods section under Determination of the Fertilization Time Windows.

      Fig 8: 2 comments

      • To better show JUNO/CD9 pre-fusion attachment to the oocyte surface and post-fusion loss from the oocyte surface (but persistence in the PVS), an image after removal of the ZP (both for pre-fertilization and post-fertilization) would be helpful - the combination of those images with the ones you have (ZP intact) would make your point more visible.

      We have followed this recommendation. Figure 8 of the initial manuscript has been replaced by Figure 6 in the revised manuscript, which illustrates the four situations encountered in this study: fertilized and unfertilized oocytes, each with and without unfused spermatozoa in their PVS. To better show JUNO/CD9 pre-fusion presence to the oocyte plasma membrane, as well as their post-fusion partial (for CD9) and near-complete (for JUNO) loss from the oocyte membrane (but persistence in the PVS), paired images of the same oocyte before and after of ZP removal are now provided, both for unfertilized (Figure 6A) and fertilized oocytes (Figure 6C).

      • You show that the heads of spermatozoa post fusion are covered in CD9 and JUNO, yet I was missing an image of sperm in the PVS pre-fertilization (which should then not yet be covered).

      As staining and confocal imaging of the oocytes were performed 4 hours after insemination, images of sperm in the PVS of an oocyte “pre-fertilization” cannot be strictly obtained. However, we can have images of spermatozoa present in the PVS of oocytes that remained unfertilized. This situation, now illustrated in Figure 6B of the revised manuscript, shows that these spermatozoa are also covered in JUNO and CD9, which they may have progressively acquired over time from the baseline presence of these proteins in the PVS of unfertilized oocytes. This also may provide a mechanistic explanation for their inability to fuse with the oolemma, and, consequently, for the failure of fertilization in these oocytes.

      Minor comments:

      • The videos were remarkable to look at, and great to view in full. However, for the sake of time, the authors might want to consider cropping them for the individual phases to have a shorter video (with clear crop indicators) with the most important different stages visible in a for example 1 min video (e.g. video.

      We have followed this recommendation. The videos have been cropped and annotated in order to highlight the key events that support the points made in the result section from page 9 to 11 in the revised manuscript.

      • In general, given that the ZP, PVS and oocyte membrane are important components, a general scheme at the very beginning outlining the relative positioning of each before and during fertilization (and then possibly also including the second polar body release) would be extremely helpful for the reader to orient themselves.

      A general scheme addressing Reviewer 1 request, summarizing the key components and concepts discussed in the article and intended to help guide the reader, has been added to the introduction of the revised manuscript as Figure 1.

      • first header results "Multi-penetration and polyspermy under in vivo conditions and standard and kinetics in vitro fertilization conditions" is hard to understand - simplify/make clearer (comparison of in vivo and in vitro conditions? Establishing the in vitro condition as assay?)

      The title of the first Results section has been revised in accordance with Reviewer 1 suggestion. It now reads: Comparative study of penetration and fertilization rates under in vivo and two distinct in vitro fertilization conditions.

      • Large parts of the statistical analysis (the more technical parts) could be moved to the methods part since it disrupts the flow of the text.

      In the revised version of our manuscript, we have restructured this part of the analysis to ensure that more technical or secondary elements do not disrupt the flow of the main text. Accordingly, the equations have been reduced to only what is strictly necessary to understand our approach, their notation has been greatly simplified, and the statistical analysis of unfertilized oocytes whose zona pellucida was traversed by one or more spermatozoa has been moved to the Supplementary Information (SI1).

      • To me, one of the main conclusions was given in the text of the results part, namely that "This suggests that first fertilization contributes effectively to the fertilization-block, but less so to the penetration block". I would suggest that the authors use this conclusion to strengthen their rationale and storyline in the abstract.

      We agree with Reviewer 1 suggestion. Accordingly, we have not only thoroughly revised our abstract, but also the introduction and discussion, in order to better highlight the rationale of our study, its storyline, and the new findings which not only challenge certain established views but also open new research directions in the mechanisms of gamete fusion and polyspermy prevention.

      • Wording: To characterize the kinetics with which penetration of spermatozoa in the PVS falls down after a first fertilization," falls down should be replaced with decreases (page 10 and page 12)

      Falls down has been removed from the new version and replaced with decreases


      Significance

      Overall, this manuscript provides very interesting and carefully obtained data which provides important new insights particularly for reproductive biology. I applaud the authors on first establishing the in vivo conditions (how often do multiple sperm even penetrate the ZP in vivo) since studies have usually just started with in vitro condition where sperm at much higher concentration is added to isolated oocyte complexes. Thank you for providing an in vivo benchmark for the frequency of multiple sperm being in the PVS. While this frequency is rather low (somewhat expectedly, with 16% showing 2-3 sperm in the PVS), this condition clearly exists, providing a clear rationale for the investigation of mechanisms that can prevent additional sperm from entering.

      My own expertise is experimentally - thus I don't have sufficient expertise to evaluate the statistical methods employed here.

      __ __


      Reviewer #2

      Evidence, reproducibility and clarity

      Overall, this is a very interesting and relevant work for the field of fertilization. In general, the experimental strategies are adequate and well carried out. I have some questions and suggestions that should be considered before the work is published.

      1) Why are the cumulus cells not mentioned when the AR is triggered before or while the sperms cross it? It seems the paper assumes from previous work that all sperm that reach ZP and the OPM have carried out the acrosome reaction. This, though probably correct, is still a matter of controversy and should be discussed. It is in a way strange that the authors do not make some controls using sperm from mice expressing GFP in the acrosome, as they have used in their previous work.

      We do not mention the cumulus cells or whether the acrosome reaction is triggered before, during, or after their traversal (i.e., upon sperm binding to the ZP), as this question, while scientifically relevant, pertains to a distinct line of investigation that lies beyond the scope of the present study. Even with the use of spermatozoa expressing GFP in the acrosome, addressing this question would require a complete redesign of our kinetic tracking protocol, which was specifically conceived to monitor in bright field the dynamic behavior of spermatozoa from the moment they begin to penetrate the perivitelline space of an oocyte. Accordingly, we imaged oocytes that were isolated 15 minutes after insemination of the cumulus–oocyte complexes, by which time most (if not all) cumulus cells had detached from the oocytes, as explained in the fourth paragraph of the material and methods of both the initial and revised versions of the manuscript. The spermatozoa we had access to were therefore already bound to the zona pellucida at the time of removal from the insemination medium, and had thus necessarily passed through the cumulus layer. It is unclear for us why Reviewer 2 believes that we “assume from previous work that all sperm that reach ZP has carried out the acrosome reaction”. We could not find any statement in our manuscript suggesting, let alone asserting, such an assumption, which we know to be incorrect. Based on both published work from Hirohashi’s group in 2011 (Jin et al., 2011, DOI: 10.1073/pnas.1018202108) and our own unpublished observation (both involving cumulus-oocyte masses inseminated with spermatozoa expressing GFP in the acrosome), it is established that only a subset of spermatozoa reaching the ZP after crossing the cumulus layer has undergone acrosome reaction. Moreover, from the same sources—as well as from a recent publication by Buffone’s group (Jabloñsky et al., 2023 DOI: 10.7554/eLife.93792 ) which is the one to which reviewer 2 refers in her/his 3rd comment, it is also well established that spermatozoa have all undergone acrosome reaction when they enter the PVS. To the best of our knowledge, this latter point has long been widely accepted and is not questioned. Therefore, stating this in the first paragraph of the Discussion in the revised manuscript, while referencing the two aforementioned published studies, should be appropriate. What remains a matter of ongoing debate, however, is the timing and the physiological trigger(s) of the acrosome reaction in fertilizing spermatozoa. The 2011 study by Hirohashi’s group challenged the previously accepted view that ZP binding induces the acrosome reaction, showing instead that most spermatozoa capable of crossing the ZP and fertilizing the oocyte had already undergone the acrosome reaction prior to ZP binding. However, as this issue lies beyond the scope of our study, we do not consider it appropriate to include a discussion of it in the manuscript.

      2) In the penetration block equations, it is not clear to me why (𝑡𝑃𝐹1) refers to both PIPF1 and 𝜎𝜎𝑃I𝑃𝐹1. Is it as function off?

      That is correct: (tPF1) means function of the time post-first fertilization. Both the post-first fertilization penetration index (i.e. PIPF1) and its incertainty (i.e. 𝜎𝑃I𝑃𝐹1 ) vary as a function of this time. However, as mentioned in a previous response to Reviewer 1, this section has been rewritten to improve clarity and readability. The equations have been limited to those strictly necessary for understanding our approach, and their notation has been significantly simplified.

      3) Why do the authors think that the flagella stops. The submission date was 2024-10-01 07:27:26 and there has been a paper in biorxiv for a while that merits mention and discussion in this work (bioRxiv [Preprint]. 2024 Jul 2:2023.06.22.546073. doi: 10.1101/2023.06.22.546073.PMID: 37904966).

      Our experimental approach allows us to determine when the spermatozoon stops moving, but not why it stops. We thank Reviewer 3 for pointing out this very relevant paper from Buffone’s group (doi: 10.7554/eLife.93792) which shows the existence of two distinct populations of live, acrosome-reacted spermatozoa. These correspond to two successive stages, which occur either immediately upon acrosome reaction in a subset of spermatozoa, or after a variable delay in others, during which the sperm transitions from a motile to an immotile state. The transition from the first to the second stage was shown to follow a defined sequence: an increase in the sperm calcium concentration, followed by midpiece contraction associated with a local reorganization of the helical actin cortex, and ultimately the arrest of sperm motility. For fertilizing spermatozoa in the PVS, this transition was shown to occur upon fusion. However, it was also reported in some non-fertilizing spermatozoa that this transition took place within the PVS. These findings are consistent with the requirement for sperm motility in order to achieve fusion with the oolemma. Moreover, the fact that some spermatozoa may prematurely transition to the immotile state within the PVS can therefore be added to the list of possible reasons why a spermatozoon that penetrates the PVS of an oocyte might fail to fuse.

      This discussion has been added to the first paragraph of the Discussion section of our revised manuscript.

      4) Please correct at the beginning of Materials and Methos: Sperm was obtained from WT male mice, it should say were.

      Thank you, the correction has been done.

      5) This is also the case in the fourth paragraph of this section: oocyte were not was.

      The sentence in question has been modified as followed: “In the in vitro fertilization experiments with kinetic tracking, a subset of oocytes—together with their associated ZP-bound spermatozoa—was isolated 15 minutes post-insemination and transferred individually into microdrops of fertilization medium to enable identification.”


      Significance

      Understanding mammalian gamete fusion and polyspermy inhibition has not been fully achieved. The authors examined real time brightfield and confocal images of inseminated ZP-intact mouse oocytes and used statistical analyses to accurately determine the dynamics of the events that lead to fusion and involve polyspermy prevention under conditions as physiological as possible. Their kinetic observations in mice gamete interactions challenge present paradigms, as they document that the first sperm is not necessarily the one that fertilizes, suggesting the existence of other post-penetration fertilization factors. The authors find that the zona pellucida (ZP) block triggered by the cortical reaction is too slow to prevent polyspermy in this species. In contrast, their findings indicate that ZP directly contributes to the polyspermy block operating as a naturally effective entry barrier inhibiting the exit from the perivitelline space (PVS) of components released from the oocyte plasma membrane (OPM), neutralizing unwanted sperm fusion, aside from any block caused by fertilization. Furthermore, the authors unveil a new important ZP role regulating flagellar beat in fertilization by promoting sperm fusion in the PVS.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      SUMMARY: This study by Dubois et al. utilizes live-cell imaging studies of mouse oocytes undergoing fertilization. A strength of this study is their use of three different conditions for analyses of events of fertilization: (1) eggs undergoing fertilization retrieved from females at 15 hr after mating (n = 211 oocytes); (2) cumulus-oocyte complexes inseminated in vitro (n = 220 oocytes), and (3) zona pellucida (ZP)-intact eggs inseminated in vitro, transferred from insemination culture once sperm were observed bound to the ZP for subsequent live-cell imaging (93 oocytes). This dataset and these analyses are valuable for the field of fertilization biology. Limitations of this manuscript are challenges arise with some conclusions, and the presentation of the manuscript. There are some factual errors, and also some places where clearer explanations should to be provided, in the text and potentially augmented with illustrations to provide more clarity on the models that the authors interpret from their data.

      MAJOR COMMENTS:

      The authors are congratulated on their impressive collection of data from live-cell imaging. However, the writing in several sections is challenging to understand or seems to be of questionable accuracy. The lack of accuracy is suspected to be more an effect of overly ambitious attempts with writing style, rather than to mislead readers. Nevertheless, these aspects of the writing should be corrected. There also are multiple places where the manuscript contradicts itself. These contradictions should be corrected. Finally, there are factual points from previous studies that need correction.

      Second, certain claims and the conclusions as presented are not always clearly supported by the data. This may be connected to the issues with writing style, word and phrasing choices, etc. The conclusions could be expressed more clearly, and thus may not require additional experiments or analyses to support them. The authors might also consider illustrations as ways to highlight the points they wish to make. (Figure 7 is a strong example of how they use illustrations to complement the text).

      In response to Reviewer 3's concern about the writing style, which made several sections difficult to understand, we have thoroughly revised the entire manuscript to improve clarity, and precision. To further enhance comprehension, we have added illustrations in the revised version of the manuscript:

      • Figure 1A presents the gamete components; Figure 1B depicts the main steps of fertilization considered in the present study; and Figure 1C illustrates the penetration and fusion blocks, along with the respective contributing mechanisms: the ZP-block for the penetration block, and the membrane-block and PVS-block for the fusion block

      • Figure 2A provides a description of the three experimental protocols used in this study: Condition 1, in vivo fertilization after mating; Condition 2, standard in vitro fertilization following insemination of cumulus-oocyte complexes; and Condition 3, in vitro fertilization with kinetic tracking of oocytes isolated from the insemination medium 15 min after insemination of the cumulus-oocyte complexes.

      • Figure 4 (formerly Figure 7 in the initial version) now highlights all fusing and non-fusing situations documented in videos 1-6 and associated paragraphs of the Results section.

      • In the Discussion, Figure 9 from the original version has been replaced by Figure 8, which now provides a more pedagogical illustration of the inefficacy of the penetration block in preventing polyspermy in mice. This figure illustrates the respective contributions of the fusion block, the penetration block, fusion timing, and the intrinsic permeability of the zona pellucida to the occurrence of polyspermy.

      We hope that this revised version of the article will guide the reader smoothly throughout, without causing confusion.

      Regarding the various points that Reviewer 3 perceives as contradictions or factual errors, or the claims and the conclusions which, as presented, should not always supported by the data, we will provide our perspective on each of them as they are raised in the review.

      SPECIFIC COMMENTS:

      (1) The authors should use greater care in describing the blocks to polyspermy, particularly because they appear to be wishing to reframe views about prevention of polyspermic fertilization. The title mentions of "the fast block to polyspermy;" this problematic for a couple of different reasons. There is no strong evidence for block to polyspermy in mammals that occurs quickly, particularly not in the same time scale as the first-characterized fast block to polyspermy. To many biologists, the term "fast block to polyspermy" refers to the block that has been described in species like sea urchins and frogs, meaning a rapid depolarization of the egg plasma membrane. However, such depolarization events of the egg membrane have not been detected in multiple mammalian species. Moreover, the change in the egg membrane after fertilization does not occur in as fast a time scale as the membrane block in sea urchins and frogs (i.e., is not "fast" per se), and instead occurs in a comparable time frame as the conversation of the ZP associated with the cleavage of ZP2. Thus, it is misleading to use the terms "fast block" and "slow block" when talking about mammalian fertilization. This also is an instance of where the authors contradict themselves in the manuscript, stating, "the membrane block and the ZP block are established in approximatively the same time frame" (third paragraph of Introduction). This statement is indeed accurate, unlike the reference to a fast block to polyspermy in mammals.

      We fully agree with Reviewer 3 on the importance of clearly defining the two blocks examined in the present study—the penetration block and the fusion block (as referred to in the revised version) —and of situating them in relation to the three blocks described in the literature: the ZP-block, membrane-block, and PVS-block. We acknowledge that this distinction was not sufficiently clear in the original version of the manuscript. In the revised version, these two blocks and their relationship to the ZP-, membrane-, and PVS-blocks are now clearly introduced in the second paragraph of the Introduction section and illustrated in the first figure of the manuscript (Fig. 1C). They are then discussed in detail in two dedicated paragraphs of the Discussion, entitled Relation between the penetration block and the ZP-block and Relation between the fusion block and the membrane- and PVS-blocks.

      The penetration block refers to the time-dependent decrease in the number of spermatozoa penetrating the perivitelline space (PVS) following fertilization, whereas the fusion block refers to the time-dependent decrease in sperm-oolemma fusion events after fertilization. It is precisely to the characterization of these two blocks that our in vitro fertilization experiments with kinetic tracking allow us to access.

      In this study, as in the literature, fusion-triggered modifications of the ZP that hinder sperm traversal of the ZP are referred to as the ZP-block (also known as ZP hardening). The ZP-block thus contributes to the post-fertilization reduction in sperm penetration into the PVS and thereby underlies the penetration block. Similarly, fusion-triggered alterations of the PVS and the oolemma that reduce the likelihood of spermatozoa that have reached the PVS successfully to fuse with the oolemma are referred to as the PVS-block and membrane-block, respectively. These two blocks act together to reduce the probability of sperm-oolemma fusion after fertilization, and thus contribute to the fusion block.

      The time constant of the penetration block was found to be 48.3 ± 9.7 minutes, which is consistent with the typical timeframe of ZP-block completion—approximately one hour post-fertilization in mice—as reported in the literature. By contrast, the time constant of the fusion block was determined to be 6.2 ± 1.3 minutes, which is markedly faster than the time typically reported in the literature for the completion of the fusion-block (more than one hour in mice). This strongly suggests that the kinetics of the fusion block are not primarily governed by its membrane-block component, but rather by its PVS-block component—about which little to nothing was previously known.

      Contrary to what Reviewer 3 appears to have understood from our initial formulation, there is therefore no contradiction or error in stating that "the membrane block and the ZP block are established within approximately the same timeframe", while the fusion block, which proceeds much more rapidly, is likely to rely predominantly on the PVS-block. We have thoroughly revised the manuscript to clarify this key message of the study.

      However, we understand Reviewer 3’s objection to referring to the fusion block (or the PVS-block) as a fast block, given that this term is conventionally reserved for the immediate fertilization-triggered membrane depolarization occurring in sea urchins and frogs. Although the kinetics we report for the fusion block are considerably faster than those of the penetration block, they occur on the scale of minutes, and not seconds. In line with the reviewer's recommendation, we have therefore modified both the title and the relevant passages in the text to remove all references to the term fast block in the revised version.

      (2) The authors aim to make the case that events occurring in the perivitelline space (PVS) prevent polyspermic fertilization, but the data that they present is not strong enough to make this conclusion. Additional experiments would optional for this study, but data from such additional experiments are needed to support the authors' claims regarding these functions in fertilization. Without additional data, the authors need to be much more conservative in interpretations of their data. The authors have indeed observed phenomena (the presence of CD9 and JUNO in the PVS) that could be consistent with a molecular basis of a means to prevent fertilization by a second sperm. However, the authors would need additional data from additional experimental studies, such as interfering with the release of CD9 and JUNO and showing that this experimental manipulation leads to increased polyspermy, or creating an experimental situation that mimics the presence of CD9 and JUNO (in essence, what the authors call "sperm inhibiting medium" on page 20) and showing that this prevents fertilization.

      A major section of the Results section here (starting with "The consequence is that ... ") is speculation. Rather than be in the Results section, this should be in the Discussion. The language should be also softened regarding the roles of these proteins in the perivitelline space in other portions of the manuscript, such as the abstract and the introduction.

      Finally, the authors should do more to discuss their results with the results of Miyado et al. (2008), which interestingly, posited that CD9 is released from the oocytes and that this facilitates fertilization by rendering sperm more fusion-competent. There admittedly are two reports that present data that suggest lack of detection of CD9-containing exosomes from eggs (as proposed by Miyado et al.), but nevertheless, the authors should put their results in context with previous findings.

      We generally agree with all the remarks and suggestions made here. In the revised version of the manuscript, we have retained in the Results section (pp. 14–15) only the factual data concerning the localization of CD9 and JUNO in unfertilized and fertilized oocytes, as well as in the spermatozoa present in the PVS of these oocytes. We have taken care not to include any interpretive elements in this section, which are now presented exclusively in a dedicated paragraph of the Discussion, entitled “Possible molecular bases of the membrane-block and ZP-block contributing to the fusion block” (p. 21). There, we develop our hypothesis and discuss it in light of both the findings from the present study and previous work by other groups. In doing so, we also address the data reported by Miyado et al. (2008, https://doi.org/10.1073/pnas.0710608105), as well as subsequent studies by two other groups—Gupta et al. (2009, https://doi.org/10.1002/mrd.21040) and Barraud-Lange et al. (2012, https://doi.org/10.1530/REP-12-0040)—that have challenged Miyado’s findings.

      We are fully aware that our interpretation of the coverage of unfused sperm heads in the perivitelline space (PVS) by CD9 and JUNO, released from the oolemma—as a potential mechanism of sperm neutralization contributing to the PVS block—remains, at this stage, a plausible hypothesis or working model that, as such, warrants further experimental investigation. It is precisely in this spirit that we present it—first in the abstract (p.1), then in the Discussion section (p. 21), and subsequently in the perspective part of the Conclusion section (p. 22).

      (3) Many of the authors' conclusions focus on their prior analyses of sperm interaction - beautifully illustrated in Figure 7. However, the authors need to be cautious in their interpretations of these data and generalizing them to mammalian fertilization as a whole, because mouse and other rodent sperm have sperm head morphology that is quite different from most other mammalian species.

      In a similar vein, the authors should be cautious in their interpretations regarding the extension of these results to mammalian species other than mouse, given data on numbers of perivitelline sperm (ranging from 100s in some species to virtually none in other species), suggesting that different species rely on different egg-based blocks to polyspermy to varying extents. While these observations of embryos from natural matings are subject to numerous nuances, they nevertheless suggest that conclusions from mouse might not be able to be extended to all mammalian species.

      It is not clear to us whether Reviewer 3’s comment implies that we have, at some point in the manuscript, generalized conclusions obtained in mice to other mammalian species—which we have not—or whether it is simply a general, common-sense remark with which we fully agree: that findings established in one species cannot, by default, be assumed to apply to another.

      We would like to emphasize that throughout the manuscript, we have taken care to restrict our interpretations and conclusions to the mouse model, and we have avoided any unwarranted extrapolation to other species.

      To definitively close this matter—if there is indeed a matter—we have added the following clarifying statements in the revised version of the manuscript:

      In the introduction, second paragraph (pp. 2–3):"The variability across mammalian species in both the rate of fertilized oocytes with additional spermatozoa in their PVS (from 0 to more than 80%) after natural mating and the number of spermatozoa present in the PVS of these oocytes (from 0 to more than a hundred) suggests that the time for completion of the penetration block and thus its efficiency to prevent polyspermy can vary significantly between species."

      At the end of the preamble to the Results section (p. 4):"This experimental study was conducted in mice, which are the most widely used model for studying fertilization and polyspermy blocks in mammals. While there are many interspecies similarities, the findings presented here should not be directly extrapolated to humans or other mammalian species without species-specific validation."

      In the Conclusion, the first sentence is (p.22) : “This study sheds new light on the complex mechanisms that enable fertilization and ensure monospermy in mouse model.”

      Within the Conclusion section, among the perspectives of this work (p. 22):"In parallel, comparative studies in other mammalian species will be needed to assess the generality of the PVS-block and its contribution relative to the membrane-block and ZP-blocks, as well as the generality of the mechanical role played by flagellar beating and ZP mechanical constraint in membrane fusion."

      (4) Results, page 4 - It is very valuable that the authors clearly define what they mean by a penetrating spermatozoon and a fertilizing spermatozoon. However, they sometimes appear not to adhere to these definitions in other parts of the manuscript. An example of this is on page 10; the description of penetration of spermatozoon seems to be referring to membrane fusion with the oocyte plasma membrane, which the authors have alternatively called "fertilizing" or fertilization - although this is not entirely clear. The authors should go through all parts of the manuscript very carefully and ensure consistent use of their intended terminology.

      Overall, while these definitions on page 4 are valuable, it is still recommended that the authors explicitly state when they are addressing penetration of the ZP and fertilization via fusion of the sperm with the oocyte plasma membrane. This help significantly in comprehension by readers. An example is the section header in the middle of page 9 - this could be "Spermatozoa can penetrate the ZP after the fertilization, but have very low chances to fertilize."

      We chose to define our use of the term penetration at the beginning of the Results section because, as readers of fertilization studies, we have encountered on multiple occasions ambiguity as to whether this term was referring to sperm entry into the perivitelline space following zona pellucida traversal, or to the fusion of the sperm with the oolemma. To avoid such ambiguity, we were particularly careful throughout the writing of our original manuscript to use the term penetration exclusively to describe sperm entry into the PVS. The terms fertilizing and fusion were reserved specifically for membrane fusion between the gametes. However, as occasional lapses are always possible, we followed Reviewer 3’s recommendation and carefully re-examined the entire manuscript to ensure consistent use of our intended terminology. We did not identify any inconsistencies, including on page 10, which was cited as an example by Reviewer 3. We therefore confirm that, in accordance with our predefined terminology, all uses of the term penetration, on that page and anywhere else in our original manuscript, refer exclusively to sperm entry into the PVS and do not pertain to fusion with the oolemma.

      That said, it is important that all readers— including those who may only consult selected parts of the article—are able to understand it clearly. Therefore, despite the potential risk of slightly overloading the text, Reviewer 3’s suggestion to systematically associate the term penetration with ZP seems to us a sound one. However, we have opted instead to associate penetration with PVS, as our study focuses on the timing of sperm penetration into the perivitelline space, rather than on the traversal of the zona pellucida itself. Accordingly, except in a few rare instances where ambiguity seemed impossible, we have systematically used the phrasing “penetration into the PVS” throughout the revised version of the manuscript.

      Another variation of this is in the middle of page 9, where the authors use the terms "fertilization block" and "penetration block." These are not conventional terms, and venture into being jargon, which could leave some readers confused. The authors could clearly define what they mean, particularly with respect to "penetration block,"

      This point has already been addressed in our response to Comment 1 from Reviewer 3. We invite Reviewer 3 to refer to that response.

      This extends to other portions of the manuscript as well, such as Figure 2C, with the label on the y-axis being "Time after fertilization." It seems that what the authors actually observed here was the cessation of sperm tail motility. (It is not evident they they did an assessment of sperm-oocyte fusion here.)

      Regarding Figure 2C (original version), it has been merged with Figure 2B (original version) to form a single figure (Figure S2D), now included in Supplementary Information SI2. This new figure retains all the information originally presented in Figure 2C and indicates the time axis origin as the time when oscillatory movements of the sperm cease.

      That said, for the reasons detailed in our response to Reviewer 1 and in the Materials and Methods, we explain why it is legitimate to use the cessation of sperm head oscillations on the oolemma as a marker for the timing of the fusion event. We invite the reviewers to refer to that response for a full explanation of our rationale.

      (5) Several points that the authors try to make with several pieces of data do not come across clearly in the text, including Figure 2 on page 6, Figure 4 on page 9, and the various states utilized for the statistical treatment, "post-first penetration, post-first fertilization, no fertilization, penetration block and polyspermy block" on page 10. Either re-writing and clearer definitions'explanations are needed, and/or schematic illustrations could be considered to augment re-written text. Illustrations could be a valuable way present the intended concepts to readers more clearly and accurately. For example, Figure 4 and the associated text on page 9 get particularly confusing - although this sounds like a quite impressive dataset with observations of 138 sperm. Illustrations could be helpful, in the spirit of "a picture is worth 1000 words," to show what seem to be three different situations of sequences of events with the sperm they observed. Finally, the text in the Results about the 138 sperm is quite difficult to follow. It also might help comprehension to augment the percentages with the actual numbers of sperm - e.g., is 48.6% referring 67 of the total 138 sperm analyzed? Does the 85.1% refer to 57 of these 67 sperm?

      Figure 2 in the original version of our manuscript concerns sperm engulfment and PB2 extrusion. As already mentioned in our response to Reviewer 1, the characterization of sperm engulfment and PB2 extrusion kinetics is highly relevant to the analysis of the penetration and fusion blocks. However, we agree that its presence in the main text may distract the reader from the main focus of the study. Therefore, this figure and the associated text have been moved to the Supplementary Information in the revised manuscript (SI 2, pages 26–27).

      Regarding Figure 4 (original version), in response to Reviewer 3’s concern about the difficulty in grasping the message conveyed in its three graphs and associated text we have completely rethought the way these data are presented. Since the three graphs of Figure 4 were directly derived from the experimental timing data of sperm entry in the PVS and fusion with the oolemma in fertilized oocytes (originally shown in Figure 3A), we have combined them into a single figure in the revised manuscript: Figure 3 (page 8). This new Figure 3 now comprises three components:

      • Figure 3A remains unchanged from the original version and shows the timing of sperm penetration and fusion in fertilized oocytes. Each sperm category (fused or non-fused , penetrated in the PVS before fusion or after fusion) is represented using a color code clearly explained in the main text (last paragraph of page 7).
      • Figure 3B focuses specifically on the first spermatozoon to penetrate the PVS of each oocyte. It reports how many of these first-penetrating spermatozoa succeeded in fusing versus how many failed to do so, highlighting that being the first to arrive is not sufficient for fusion—other factors are involved. This is explained simply in the first paragraph of page 9.
      • Figure 3C considers all spermatozoa that entered the PVS of fertilized oocytes, classifying them into three categories: those that penetrated the PVS before fertilization, those that did so after fertilization, and those for which the timing could not be precisely determined. Such classification makes it apparent that the number of spermatozoa penetrating before and after fertilization is of the same order of magnitude, indicating that fertilization is not very effective at preventing further sperm entry into the PVS for the duration of our observations (~4 hours). To facilitate the identification of these three categories, the same color code used in Figure 3A is applied. In addition, within each category, the number of spermatozoa that successfully fused are indicated in black. This allows the reader to quickly assess the fertilization probability for each category—high for sperm entering before fertilization, very low or null for those entering after fertilization. This analysis shows that fertilization is far more effective at blocking sperm fusion than at blocking sperm penetration. This is clearly explained in the second paragraph of page 9. Regarding__ statistical analysis__, as already mentioned in our responses to Reviewers 1 and 2, this section has been rewritten to improve clarity and readability. The notation has also been significantly simplified. To improve the overall fluidity of the text related to the statistical analysis, Figure 3B (original version), which presented the timing of penetration into the perivitelline space of oocytes that remained unfertilized, along with its associated statistical analysis previously in Figure 5B), have been revised and transferred together in a single Figure S1 of the Supplementary Information (SI1, pages 26; now Figures S1A and S1B).

      (6) Introduction, page 2 - it is inaccurate to state that only diploid zygotes can develop into a "new being." Triploid zygotes typically fail early in develop, but can survive and, for example, contribute to molar pregnancies. Additionally, it would be beneficial to be more scientifically precise term than saying "development into a new being." This is recommended not only for scientific accuracy, but also due to current debates, including in lay public circles, about what defines "life" or human life.

      In response to Reviewer 3’s comment, we no longer state in the revised version of the manuscript that only diploid zygotes can develop into a new being. We have modified our wording as follows, on page 2, second paragraph: “In mammals, oocytes fertilized by more than one spermatozoon cannot develop into viable offspring.”

      (7) Introduction, page 2 - The mammalian sperm must pass through three layers, not just two as stated in the first paragraph of the Introduction. The authors should include the cumulus layer in this list of events of fertilization.

      The sentence from the introduction from the original manuscript mentioned by Reviewer 3 was: “To fertilize, a spermatozoon must successively pass two oocyte’s barriers.” This statement is accurate in the sense that the cumulus cell layer is not part of the oocyte itself, unlike the two oocyte’s barriers: the zona pellucida and the oolemma. Moreover, the traversal of the cumulus layer is not within the scope of our study, unlike the traversal of the zona pellucida and fusion with the oolemma. However, it is also correct that in our study the spermatozoa have passed through the cumulus layer before reaching the oocyte. Therefore, in response to Reviewer 3’s comment, we have revised the sentence to clarify this point as follows:

      “Once a spermatozoon has passed through the cumulus cell layer surrounding the oocyte, it still must overcome two oocyte’s barriers to complete fertilization.”

      (8) Introduction, page 2 - While there is evidence that zinc is released from mouse egg upon fertilization, the evidence is not convincing or conclusive that zinc is released from cortical granules or via cortical granule exocytosis.

      To better highlight the rationale, storyline, and scope of our study, the introduction has been thoroughly streamlined. In this context, the section discussing the cortical reaction and zinc release seemed more appropriate in the Discussion, specifically within the paragraph titled “Relationship between the penetration block and the ZP-block.”

      To address the uncertainty raised by Reviewer 3 regarding the origin of the zinc spark release, we have rephrased this part as follows:

      “The fertilization-triggered processes responsible for the changes in ZP properties are generally attributed to the cortical reaction—a calcium-induced exocytosis of secretory granules (cortical granules) present in the cortex of unfertilized mammalian oocytes—and to zinc sparks. As a result, proteases, glycosidases, lectins, and zinc are released into the perivitelline space (PVS), where they act on the components of the zona pellucida. This leads to a series of modifications collectively referred to as ZP hardening or the ZP-block”.

      (9) The authors inaccurately state, "only if monospermic multi-penetrated oocytes are able to develop normally, which to our knowledge has never been proven in mice" (page 4) - This was demonstrated with the Astl knockout, assuming that the authors use of "multi-penetrated oocytes" here refers to the definition of penetration that they use, namely penetrating the ZP. This also is one of the instances where the authors contradict themselves, as they note the results with this knockout on page 18.

      Thank you for bringing this point to our attention. Nozawa et al. (2018) found that female mice lacking ovastacin (Astl)—the protease released during the cortical reaction that plays a key role in rendering the zona pellucida impenetrable—are normally fertile. They also reported that oocytes recovered from these females after mating were monospermic, despite the consistent presence of additional spermatozoa in the perivitelline space. We can indeed consider that taken together these findings demonstrate that the presence of multiple spermatozoa in the PVS does not impair normal development, as long as the oocyte remains monospermic. In our study, we re-demonstrated this in a different way (by reimplantation of monospermic oocytes with additional spermatozoa in their PVS) in a more physiological context of WT oocytes, but we agree that we cannot state: “which to our knowledge has never been proven in mice.” This part of the sentence has therefore been removed. In the revised version of the manuscript, the sentence is now formulated in the first paragraph of page 5 as follows: “However, the contribution of the fusion block to prevent polyspermy has physiological significance only if monospermic oocytes with additional spermatozoa in their PVS can develop into viable pups.”

      Minor comments:

      There are numerous places where this reader marked places of confusion in the text. A sample of some of these:

      We will indicate hereinafter how we have modified the text in the specific examples provided by Reviewer 3. Beyond these, however, we would like to emphasize that we have thoroughly revised the entire manuscript to improve clarity and precision.

      Page 4 - "continuously relayed by other if they detach" - don't know what this means

      Replaced now p 5 by “can be replaced by others if they detach”

      Page 6 - "hernia" - do the authors mean "protrusion" on the oocyte surface?

      The paragraph from the Results section in question has now been moved to the Supplementary Information, on pages 26 and 27. The term hernia has been systematically replaced with protrusion, including in the Materials and Methods section on page 24.

      Page 10 - "penetration of spermatozoa in the PVS falls down" - don't know what this means

      Falls down has been removed from the new version and replaced with decreases

      Page 12 - "spermatozoa linked to the oocyte ZP" - not clear what "linked" means here

      Replaced now page 16 by “spermatozoa bound to the oocyte ZP”

      Page 14 - "by dint of oscillations" - don't know what this means

      Replaced now page 10 by “the persistent flagellum movements”

      Specifics for Materials and Methods:

      Exact timing of females receiving hCG and then being put with males for mating - assume this was immediate but this is an important detail regarding the timing for the creation of embryos in vivo.

      That is correct: females were placed with males for mating immediately after receiving hCG. This clarification has been added in the revised version of the manuscript.

      Please provide the volumes in which inseminations occurred, and how many eggs were placed in this volume with the 10^6 sperm/ml.

      The number of eggs may vary from one cumulus–oocyte complex to another. It is therefore not possible to specify exactly how many eggs were inseminated. However, we now indicate on page 23 the number of cumulus–oocyte complexes inseminated (4 per experiment), the volume in which insemination was performed (200 mL), and the sperm concentration used 106 sperm/mL.

      **Referees cross-commenting**

      I concur with Reviewer 1's comment, that the 'challenging prior dogma' about the first sperm not always being the one to fertilize the egg is too strong. As Reviewer 1 notes, "it had been observed before that it is not necessarily the first sperm that gets through the ZP that fertilizes the egg." I even thought about adding this comment to my review, although held off (I was hoping to find references, but that was taking too long).

      Please refer to our response to Reviewer 1 regarding this point.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      This study by Dubois et al. utilizes live-cell imaging studies of mouse oocytes undergoing fertilization. A strength of this study is their use of three different conditions for analyses of events of fertilization: (1) eggs undergoing fertilization retrieved from females at 15 hr after mating (n = 211 oocytes); (2) cumulus-oocyte complexes inseminated in vitro (n = 220 oocytes), and (3) zona pellucida (ZP)-intact eggs inseminated in vitro, transferred from insemination culture once sperm were observed bound to the ZP for subsequent live-cell imaging (93 oocytes). This dataset and these analyses are valuable for the field of fertilization biology. Limitations of this manuscript are challenges arise with some conclusions, and the presentation of the manuscript. There are some factual errors, and also some places where clearer explanations should to be provided, in the text and potentially augmented with illustrations to provide more clarity on the models that the authors interpret from their data.

      Major comments:

      The authors are congratulated on their impressive collection of data from live-cell imaging. However, the writing in several sections is challenging to understand or seems to be of questionable accuracy. The lack of accuracy is suspected to be more an effect of overly ambitious attempts with writing style, rather than to mislead readers. Nevertheless, these aspects of the writing should be corrected. There also are multiple places where the manuscript contradicts itself. These contradictions should be corrected. Finally, there are factual points from previous studies that need correction.

      Second, certain claims and the conclusions as presented are not always clearly supported by the data. This may be connected to the issues with writing style, word and phrasing choices, etc. The conclusions could be expressed more clearly, and thus may not require additional experiments or analyses to support them. The authors might also consider illustrations as ways to highlight the points they wish to make. (Figure 7 is a strong example of how they use illustrations to complement the text).

      Specific comments:

      1. The authors should use greater care in describing the blocks to polyspermy, particularly because they appear to be wishing to reframe views about prevention of polyspermic fertilization. The title mentions of "the fast block to polyspermy;" this problematic for a couple of different reasons. There is no strong evidence for block to polyspermy in mammals that occurs quickly, particularly not in the same time scale as the first-characterized fast block to polyspermy. To many biologists, the term "fast block to polyspermy" refers to the block that has been described in species like sea urchins and frogs, meaning a rapid depolarization of the egg plasma membrane. However, such depolarization events of the egg membrane have not been detected in multiple mammalian species. Moreover, the change in the egg membrane after fertilization does not occur in as fast a time scale as the membrane block in sea urchins and frogs (i.e., is not "fast" per se), and instead occurs in a comparable time frame as the conversation of the ZP associated with the cleavage of ZP2. Thus, it is misleading to use the terms "fast block" and "slow block" when talking about mammalian fertilization.

      This also is an instance of where the authors contradict themselves in the manuscript, stating, "the membrane block and the ZP block are established in approximatively the same time frame" (third paragraph of Introduction). This statement is indeed accurate, unlike the reference to a fast block to polyspermy in mammals.<br /> 2. The authors aim to make the case that events occurring in the perivitelline space (PVS) prevent polyspermic fertilization, but the data that they present is not strong enough to make this conclusion. Additional experiments would optional for this study, but data from such additional experiments are needed to support the authors' claims regarding these functions in fertilization. Without additional data, the authors need to be much more conservative in interpretations of their data. The authors have indeed observed phenomena (the presence of CD9 and JUNO in the PVS) that could be consistent with a molecular basis of a means to prevent fertilization by a second sperm. However, the authors would need additional data from additional experimental studies, such as interfering with the release of CD9 and JUNO and showing that this experimental manipulation leads to increased polyspermy, or creating an experimental situation that mimics the presence of CD9 and JUNO (in essence, what the authors call "sperm inhibiting medium" on page 20) and showing that this prevents fertilization.

      A major section of the Results section here (starting with "The consequence is that ... ") is speculation. Rather than be in the Results section, this should be in the Discussion. The language should be also softened regarding the roles of these proteins in the perivitelline space in other portions of the manuscript, such as the abstract and the introduction.

      Finally, the authors should do more to discuss their results with the results of Miyado et al. (2008), which interestingly, posited that CD9 is released from the oocytes and that this facilitates fertilization by rendering sperm more fusion-competent. There admittedly are two reports that present data that suggest lack of detection of CD9-containing exosomes from eggs (as proposed by Miyado et al.), but nevertheless, the authors should put their results in context with previous findings. 3. Many of the authors' conclusions focus on their prior analyses of sperm interaction - beautifully illustrated in Figure 7. However, the authors need to be cautious in their interpretations of these data and generalizing them to mammalian fertilization as a whole, because mouse and other rodent sperm have sperm head morphology that is quite different from most other mammalian species.

      In a similar vein, the authors should be cautious in their interpretations regarding the extension of these results to mammalian species other than mouse, given data on numbers of perivitelline sperm (ranging from 100s in some species to virtually none in other species), suggesting that different species rely on different egg-based blocks to polyspermy to varying extents. While these observations of embryos from natural matings are subject to numerous nuances, they nevertheless suggest that conclusions from mouse might not be able to be extended to all mammalian species.<br /> 4. Results, page 4 - It is very valuable that the authors clearly define what they mean by a penetrating spermatozoon and a fertilizing spermatozoon. However, they sometimes appear not to adhere to these definitions in other parts of the manuscript. An example of this is on page 10; the description of penetration of spermatozoon seems to be referring to membrane fusion with the oocyte plasma membrane, which the authors have alternatively called "fertilizing" or fertilization - although this is not entirely clear. The authors should go through all parts of the manuscript very carefully and ensure consistent use of their intended terminology.

      Overall, while these definitions on page 4 are valuable, it is still recommended that the authors explicitly state when they are addressing penetration of the ZP and fertilization via fusion of the sperm with the oocyte plasma membrane. This help significantly in comprehension by readers. An example is the section header in the middle of page 9 - this could be "Spermatozoa can penetrate the ZP after the fertilization, but have very low chances to fertilize."

      Another variation of this is in the middle of page 9, where the authors use the terms "fertilization block" and "penetration block." These are not conventional terms, and venture into being jargon, which could leave some readers confused. The authors could clearly define what they mean, particularly with respect to "penetration block,"

      This extends to other portions of the manuscript as well, such as Figure 2C, with the label on the y-axis being "Time after fertilization." It seems that what the authors actually observed here was the cessation of sperm tail motility. (It is not evident they they did an assessment of sperm-oocyte fusion here.) 5. Several points that the authors try to make with several pieces of data do not come across clearly in the text, including Figure 2 on page 6, Figure 4 on page 9, and the various states utilized for the statistical treatment, "post-first penetration, post-first fertilization, no fertilization, penetration block and polyspermy block" on page 10 . Either re-writing and clearer definitions'explanations are needed, and/or schematic illustrations could be considered to augment re-written text. Illustrations could be a valuable way present the intended concepts to readers more clearly and accurately. For example, Figure 4 and the associated text on page 9 get particularly confusing - although this sounds like a quite impressive dataset with observations of 138 sperm. Illustrations could be helpful, in the spirit of "a picture is worth 1000 words," to show what seem to be three different situations of sequences of events with the sperm they observed. Finally, the text in the Results about the 138 sperm is quite difficult to follow. It also might help comprehension to augment the percentages with the actual numbers of sperm - e.g., is 48.6% referring 67 of the total 138 sperm analyzed? Does the 85.1% refer to 57 of these 67 sperm?<br /> 6. Introduction, page 2 - it is inaccurate to state that only diploid zygotes can develop into a "new being." Triploid zygotes typically fail early in develop, but can survive and, for example, contribute to molar pregnancies. Additionally, it would be beneficial to be more scientifically precise term than saying "development into a new being." This is recommended not only for scientific accuracy, but also due to current debates, including in lay public circles, about what defines "life" or human life. <br /> 7. Introduction, page 2 - The mammalian sperm must pass through three layers, not just two as stated in the first paragraph of the Introduction. The authors should include the cumulus layer in this list of events of fertilization. 8. Introduction, page 2 - While there is evidence that zinc is released from mouse egg upon fertilization, the evidence is not convincing or conclusive that zinc is released from cortical granules or via cortical granule exocytosis.<br /> 9. The authors inaccurately state, "only if monospermic multi-penetrated oocytes are able to develop normally, which to our knowledge has never been proven in mice" (page 4) - This was demonstrated with the Astl knockout, assuming that the authors use of "multi-penetrated oocytes" here refers to the definition of penetration that they use, namely penetrating the ZP. This also is one of the instances where the authors contradict themselves, as they note the results with this knockout on page 18.

      Minor comments:

      There are numerous places where this reader marked places of confusion in the text. A sample of some of these:

      Page 4 - "continuously relayed by other if they detach" - don't know what this means

      Page 6 - "hernia" - do the authors mean "protrusion" on the oocyte surface?

      Page 10 - "penetration of spermatozoa in the PVS falls down" - don't know what this means

      Page 12 - "spermatozoa linked to the oocyte ZP" - not clear what "linked" means here

      Page 14 - "by dint of oscillations" - don't know what this means

      Specifics for Materials and Methods:

      Exact timing of females receiving hCG and then being put with males for mating - assume this was immediate but this is an important detail regarding the timing for the creation of embryos in vivo.

      Please provide the volumes in which inseminations occurred, and how many eggs were placed in this volume with the 10^6 sperm/ml.

      Referees cross-commenting

      I concur with Reviewer 1's comment, that the 'challenging prior dogma' about the first sperm not always being the one to fertilize the egg is too strong. As Reviewer 1 notes, "it had been observed before that it is not necessarily the first sperm that gets through the ZP that fertilizes the egg." I even thought about adding this comment to my review, although held off (I was hoping to find references, but that was taking too long).

      Significance

      This manuscript brings interesting new observations for the field of gamete and fertilization biology. For very obvious reasons, the understanding of mammalian fertilization has lagged behind the understanding of fertilization of species with external fertilization. Decades ago, developmental biologists first focused on studies of fertilization on gametes from species that release sperm and egg into water, either spontaneously or with relatively easy stimulation, and gametes that could be easily cultured and enabled to create embryos as researchers watched. Studies of mammalian fertilization have since caught up, with the elucidation of conditions that support in vitro fertilization in various mammalian species, most notably mouse as an experimental model.

    1. I started reading this paper with great interest, which flagged over time. As someone with extensive experience both publishing peer-reviewed research articles and working with publication data (Web of Science, Scopus, PubMed, PubMedCentral) I understand there are vagaries in the data because of how and when it was collected, and when certain policies and processes were implemented. For example, as an author starting in the late 1980s, we were instructed by the journal “guide to authors” to use only initials. My early papers were all only using initials. This changed in the mid-late 1990s. Another example, when working with NIH publications data, one knows dates like 1946 (how far back MedLine data go), 1996 (when PubMed was launched), and 2000 (when PubMedCentral was launched) and 2008 (when NIH Open Access policy enacted). There are also intermediate dates for changes in curation policy…. that underlie a transition from initials to full name in the biomedical literature.

      I realize that the study covers all research disciplines, but still I am surprised that the authors of this paper don’t start with an examination of the policies underlying publications data, and only get to this at the end of a fairly torturous study.

      As a reader, this reviewer felt pulled all over the place in this article and increasingly frustrated that this is a paper that explores the Dimensions database vagaries only and not really the core overall challenges of bibliometric data, irrespective of data source. Dimensions ingests data from multiple sources — so any analysis of its contents needs to examine those sources first.

      A few specific comments:

      • The “history of science” portion of the paper focuses on English learned societies in the 17th century. There were many other learned societies across Europe, and also “papers” (books, treatises) from long before the 17th century in Middle-eastern and Asian countries (e.g, see history of mathematics, engineering, governance and policy, etc.). These other histories were not acknowledged by the authors. Research didn’t just spring full-formed out of Zeus’ head.

      • It is unclear throughout if the authors are referring to science, research, which disciplines are or are not included. The first chart on discipinary coverage is Fig 13 and goes back to 1940ish. Also, which languages are included in the analysis? For example, Figure 2 says “academic output” but from which academies? What countries? What languages? Disciplines? Also, in Figure 2, this reviewer would have like to see discussion about the variability in the noisiness of the data over time.

      • The inclusion of gender in the paper misses the mark for this reviewer. When dealing with initials, how can one identify gender? And when working in times/societies where women had to hide their identity to be published…. how can a name-based analysis of gender be applied? If this paper remains a study of the “initial era”, this reviewer recommends removing the gender analysis.

      • Reference needed for “It is just as important to see ourselves reflected in the outputs of the research careers…” (section B).

      • Reference needed for “This period marked the emergence of “Big Science” (Section B). How do we know this is Big Science? What is the relationship with the nature of science careers? Here it would be useful perhaps to mention that postdocs were virtually unheard of before Sputnik.

      • Fig 3. This would be more effective as a % total papers than absolute #.

      • Gradual Evolution of the Scholarly Record. This reviewer would like to see proportion of papers without authors. A lot of history of science research is available for this period, and a few references here would be welcome, as well as a by-country analysis (or acknowledgement that the data are largely from Europe and/or English-speaking countries).

      • Accelerated Changes in Recent Times. Again, this reviewer would like to see reference to scholarship on the history of science. One of the things happening in the post WW2 timeframe is the increase in government spending (in the US particularly) on R&D and academic research. So, is the academy changing or is it responding to “market forces”.

      • Reflective richness of data. “Evolution of the research community” is not described in the text, not is collaborative networks.

      • In the following paragraph, one could argue that evaluation was a driver of change, not a response to it. This reviewer would like to see references here.

      • II. Methodology. (i) 2nd sentence missing “to” “… and full form to refer to an author name…”. (ii) 2nd para the authors talk about epochs, but the data could be (are) discontinuous because of (a) curation policy, (b) curation technology, (c) data sources (e.g., Medline rolled out in the 1960s and back-populated to 1946). (iii) 4th para referes to Figs 3 and 4 showing a marked change between 1940 and 1950, but Fig 3 goes back only to 1960, and Fig 4 is so compressed it is hard to see anything in that time range. (iv) Para 7. “the active publishing community is a reasonable proxy for the global research population”. We need a reference here and more analysis. Is this Europe? English language? Which disciplines? All academia? Dimensions data? (v) Para 12 “In exploring the issue of gender…” see comments above. Gender is an important consideration but is out of scope, in this reviewer’s opinion, for this paper focused on use of initials vs. full name.

      • Listing 1. Is there a resolvable URL/DOI for this query?

      • Figs 9-11, 14, 15. This reviewer would like to see a more fulsome examination / discussion of data discontinuities. Particularly around ~1985-2000.

      Discussion

      • The country-level discussion suggests the data (publications included) are only those that have been translated into English. Please clarify. Also, please add references in this section. There are a lot of bold statements, such as “A characteristic of these countries was the establishment of strong national academies.” Is this different from other places in the world? How? In the para before this statement, there is a phrase “picking out Slavonic stages” that is not clear to this reviewer.

      • The authors seem to get ahead of themselves talking about “formal” and “informal” in relation to whether initials or full names are used. And then discuss the “Power Distance” and end up arguing that it isn’t formal/informal … but rather publisher policies and curation practices driving the initial era and its end.

      • And then the authors come full circle on research articles being a technology, akin to a contract. Which is neat and useful. But all the intermediate data analysis is focused on the Dimensions data base and this reviewer would argue should be a part of the database documentation rather than a scholarly article.

      • This reviewer would prefer this paper be focused much more tightly on how publishing technology can and has driven the sociology of science. Dig more into the E. Journal Analysis and F. Technological analysis. Stick with what you have deep data for, and provide us readers with a practical and useful paper that maybe, just maybe, publishers will read and be incentivized to up their game with respect to adoption of “new” technologies like ORCID, DOIs for data, etc. Because these papers are not just expositions on a disciplinary discourse, they are also a window into how science (research) works and is done.

    1. Background Understanding genotype-environment interactions of plants is crucial for crop improvement, yet limited by the scarcity of quality phenotyping data. This data note presents the Field Phenotyping Platform 1.0 data set, a comprehensive resource for winter wheat research that combines imaging, trait, environmental, and genetic data.Findings We provide time series data for more than 4,000 wheat plots, including aligned high-resolution image sequences totaling more than 153,000 aligned images across six years. Measurement data for eight key wheat traits is included, namely canopy cover values, plant heights, wheat head counts, senescence ratings, heading date, final plant height, grain yield, and protein content. Genetic marker information and environmental data complement the time series. Data quality is demonstrated through heritability analyses and genomic prediction models, achieving accuracies aligned with previous research.Conclusions This extensive data set offers opportunities for advancing crop modeling and phenotyping techniques, enabling researchers to develop novel approaches for understanding genotype-environment interactions, analyzing growth dynamics, and predicting crop performance. By making this resource publicly available, we aim to accelerate research in climate-adaptive agriculture and foster collaboration between plant science and machine learning communities.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf051), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer: Wanneng Yang

      The manuscript presents a comprehensive dataset spanning six years, encompassing data from eight key growth stages of wheat, along with corresponding phenotypic data. The construction of such a comprehensive dataset is highly valuable. However, from the perspective of dataset construction itself, quality control and consistency checks require further refinement. Specific issues are as follows:

      1. How is the consistency check of parameters such as canopy cover and plant height at the eight key growth stages ensured? Especially for parameters like phenological stages and senescence assessment, which are determined through visual evaluation and thus susceptible to subjective influences, quality control and consistency check become particularly crucial. It is recommended to supplement relevant content for detailed explanation.

      2. For all images (151,150 out of 158,891 images), the success rate of alignment and within-field detection exceeded 95%. Does this mean that the final RGB sequence image dataset consists of 151,150 images?

      3. Regarding plant height measurement, the text mentions that "TLS (2016, 2017) or UAV (2018 to 2022) was used to measure plant height." Given the potential differences in height measurements obtained from these two methods, how were these differences addressed in the manuscript?

      4. Does this dataset cater to different tasks and include annotated data? If so, it is recommended to specify the concrete annotation methods and data.

      5. If possible, it is recommended to provide a summary table that specifies the different types of data contained in the dataset along with their respective quantities, facilitating readers' comprehensive understanding of the dataset.

      6. What are the potential limitations of this dataset? It is recommended to point them out.

    2. Background Understanding genotype-environment interactions of plants is crucial for crop improvement, yet limited by the scarcity of quality phenotyping data. This data note presents the Field Phenotyping Platform 1.0 data set, a comprehensive resource for winter wheat research that combines imaging, trait, environmental, and genetic data.Findings We provide time series data for more than 4,000 wheat plots, including aligned high-resolution image sequences totaling more than 153,000 aligned images across six years. Measurement data for eight key wheat traits is included, namely canopy cover values, plant heights, wheat head counts, senescence ratings, heading date, final plant height, grain yield, and protein content. Genetic marker information and environmental data complement the time series. Data quality is demonstrated through heritability analyses and genomic prediction models, achieving accuracies aligned with previous research.Conclusions This extensive data set offers opportunities for advancing crop modeling and phenotyping techniques, enabling researchers to develop novel approaches for understanding genotype-environment interactions, analyzing growth dynamics, and predicting crop performance. By making this resource publicly available, we aim to accelerate research in climate-adaptive agriculture and foster collaboration between plant science and machine learning communities.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf051), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer: Abhishek Gogna

      Thank you for the submission. The dataset surely holds value for the plant breeding community but my major concerns are (1) the availability of genetic data, (2) non-conformity to MIAPPE standards (https://www.miappe.org/). These restrict value of the otherwise excellent publication. I would welcome a submission addressing these major points. In addition, I have some minor points for specific sections. Please use the strings in quotation marks ("") to locate the specific sections.

      1. Context Change of Equipment: Please indicate how the change of equipment from TLS to drone affects data interoperability. "Figure 2, gray bars": Kindly update Figure 2 to clarify the representation of the gray bars.* "Heads were annotated": Does this mean that not all relevant images were annotated? If so, please modify the title to avoid confusion.

      2. Description of FAIR: Please revise this section. Both links listed under "Findable" and "Accessible" are eligible for these tags. Please modify "Interoperability" with reference to the publication listed in the "Re-use Potential."

      3. Reference measurements "Senescence was": Was this measurement done for all relevant images? Please include this information. "Adjusted genotype means with year calculation": Please add variance decomposition data for traits.

      3. Compilation as Data set* "pure GABI-WHEAT set for the extended set": Please revise this sentence for clarity.

      1. Heritabilities of intermediate and target traits* "y of the public marker" - Please revise the sentence for clarity.

      2. Genomic prediction ability of unseen multi-environment trial* Is the CDC data part of the data publication? Please add this information.6. Example 1 to

      6* Please revise all code for consistency and updated results. Also, include the necessary packages required to run the code.7. Availability of Source code and RequirementPlease create connectivity between repositories and add descriptive README files outlining their usage. Additionally, please provide instructions on how individual repositories may be used.I appreciate your attention to these points and believe that addressing them will strengthen your manuscript

      • Summary of Tech Talk on Software Abstractions and Model Assumptions

      • Overview of Book on Closure: The speaker discusses a book written to serve as a comprehensive second book on Closure, focusing on choosing the appropriate parts of the language based on different programming situations.

      • "the goal of this book was to be the best second book that you could read about closure where you already know what you can do with the language but you don't know why you would use one part of the language versus another to solve a particular problem."

      • Importance of Names in Programming: Emphasizes the significance of names in software, noting the lack of deep discussion in education and practice, leading to debates often decided by authority rather than merit.

      • "the first chapter that I wrote was about names and for all that we pay a lot of lip service to names being one of the two hard problems in software we don't really spend a lot of time confronting them head-on."

      • Challenges in Defining "Abstractions": Discusses the difficulty in defining and writing about abstractions in software, leading to extensive research without writing progress.

      • "things were going well until I tried to do the same for abstractions right what makes an abstraction good what makes it bad if it's bad how do we make it better."

      • Different Interpretations of "Abstraction": Highlights the two distinct concepts the term "abstraction" covers in computer science, demonstrated by church numerals and cons cells in LISP.

      • "we use the word abstraction to mean two fairly distinct concepts and I think this is demonstrated by two ideas that are very much at the heart of lists which are church numerals and cons cells."

      • Timelessness vs. Practicality in Abstractions: Examines how some abstractions remain relevant due to their theoretical utility, while others fall out of favor due to practical inefficiencies in changing environments.

      • "the difference between these things is not what they are but how we judge them one of them is timeless right it is judged against a standard which does not change but the other one is judged against lis very rapidly changing sort of standard."

      • Role of Environment in Software Abstractions: Argues that understanding the environment and its assumptions is crucial in defining and evaluating abstractions.

      • "when we define an abstraction specifically a software abstraction we have to have three parts we have to have the model which is the thing that we implement we have to have the interface which is a means of interacting with that model and we need to have the environment which is everything else."

      • Adaptability and Principle in Software Systems: Proposes that effective software systems combine principled and adaptable components, ensuring robustness and flexibility.

      • "if we have a sort of an adaptable abstraction that contains as little principal pieces we can see that change comes from the outside and as change comes in from the outside these principled fragile pieces are protected."

      • Complex Adaptive Systems and Software: Suggests modeling software systems on complex adaptive systems to manage change effectively through principled and adaptable components.

      • "these sorts of systems right where you have sort of an adaptable whole and principled subcomponents exist at every level of the world this is empirically a very successful strategy."

      • Conclusion and Encouragement to Engage with Concepts: Concludes by encouraging the audience to read the book and engage in discussions about the concepts, highlighting the evolving understanding of software abstractions.

      • "if this was interesting to you I really encourage you to read my book I think that it's much more clearly articulated there than it has been on this stage but if you do read it right I really encourage you to talk to me about it."
    1. Figure 2.2: Per-paper mid-point scores across all metrics. Darker green → higher percentile. Columns ordered by each paper’s overall average. #altair-viz-41a3d5b933fe425c841b312f24a54cc6.vega-embed { width: 100%; display: flex; } #altair-viz-41a3d5b933fe425c841b312f24a54cc6.vega-embed details, #altair-viz-41a3d5b933fe425c841b312f24a54cc6.vega-embed details summary { position: relative; } Save as SVGSave as PNGView SourceView Compiled VegaOpen in Vega Editor var VEGA_DEBUG = (typeof VEGA_DEBUG == "undefined") ? {} : VEGA_DEBUG; (function(spec, embedOpt){ let outputDiv = document.currentScript.previousElementSibling; if (outputDiv.id !== "altair-viz-41a3d5b933fe425c841b312f24a54cc6") { outputDiv = document.getElementById("altair-viz-41a3d5b933fe425c841b312f24a54cc6"); } const paths = { "vega": "https://cdn.jsdelivr.net/npm/vega@5?noext", "vega-lib": "https://cdn.jsdelivr.net/npm/vega-lib?noext", "vega-lite": "https://cdn.jsdelivr.net/npm/vega-lite@5.20.1?noext", "vega-embed": "https://cdn.jsdelivr.net/npm/vega-embed@6?noext", }; function maybeLoadScript(lib, version) { var key = `${lib.replace("-", "")}_version`; return (VEGA_DEBUG[key] == version) ? Promise.resolve(paths[lib]) : new Promise(function(resolve, reject) { var s = document.createElement('script'); document.getElementsByTagName("head")[0].appendChild(s); s.async = true; s.onload = () => { VEGA_DEBUG[key] = version; return resolve(paths[lib]); }; s.onerror = () => reject(`Error loading script: ${paths[lib]}`); s.src = paths[lib]; }); } function showError(err) { outputDiv.innerHTML = `<div class="error" style="color:red;">${err}</div>`; throw err; } function displayChart(vegaEmbed) { vegaEmbed(outputDiv, spec, embedOpt) .catch(err => showError(`Javascript Error: ${err.message}<br>This usually means there's a typo in your chart specification. See the javascript console for the full traceback.`)); } if(typeof define === "function" && define.amd) { requirejs.config({paths}); let deps = ["vega-embed"]; require(deps, displayChart, err => showError(`Error loading script: ${err.message}`)); } else { maybeLoadScript("vega", "5") .then(() => maybeLoadScript("vega-lite", "5.20.1")) .then(() => maybeLoadScript("vega-embed", "6")) .catch(showError) .then(() => displayChart(vegaEmbed)); } })({"config": {"view": {"stroke": "transparent"}, "background": "white", "title": {"font": "Source Sans Pro", "fontSize": 16, "color": "#222"}, "axis": {"labelFont": "Source Sans Pro", "titleFont": "Source Sans Pro", "labelColor": "#222", "titleColor": "#222", "gridOpacity": 0.15}, "legend": {"labelFont": "Source Sans Pro", "titleFont": "Source Sans Pro"}, "range": {"heatmap": ["#f6fbf3", "#e2f1d7", "#cfe7ba", "#badc9c", "#a6d27f", "#92c861", "#7dbd43", "#69b325", "#55a807", "#477b13"], "category": ["#99bb66", "#f19e4b", "#6bb0f3", "#d9534f", "#636363", "#ffb400", "#53354a", "#2780e3", "#3fb618", "#8e6c8a"]}}, "data": {"name": "data-b64186ba8bd194e866931748b3fda927"}, "mark": {"type": "rect"}, "encoding": {"color": {"field": "midpoint", "legend": {"title": "Score"}, "scale": {"domain": [0, 100]}, "type": "quantitative"}, "tooltip": [{"field": "short", "type": "nominal"}, {"field": "metric", "type": "nominal"}, {"field": "midpoint", "type": "quantitative"}], "x": {"field": "short", "sort": ["Banerjee (2023)", "Acemoglu (2024)", "Buntaine (2023)", "Kremer (2022)", "Akram (2017)", "Walker (2023)", "Jack (2022)", "Alcott (2024)", "Crawfurd (2023)", "Bhat (2022)", "Liang (2021)", "Haushofer (2020)", "Epperson (2024)", "Arora (2023)", "Fangwa (2023)", "Trammel (2025)", "Alatas (2019)", "Hill (2024)", "Barker (2021)", "Aghion (2017)", "Bahar (2022)", "Carson (2023)", "Clancy (2024)", "Kubo (2023)", "Schuett (2023)", "Barberio (2022)", "Chuard (2022)", "Bettle (2023)", "Kremer (2020)", "Bhattacharya (2020)", "Bruers (2021)"], "title": null, "type": "nominal"}, "y": {"field": "metric", "sort": null, "title": null, "type": "nominal"}}, "height": 280, "width": 434, "$schema": "https://vega.github.io/schema/vega-lite/v5.20.1.json", "datasets": {"data-b64186ba8bd194e866931748b3fda927": [{"metric": "global_relevance", "paper": "Acemoglu et al. 2024", "midpoint": 92, "short": "Acemoglu (2024)"}, {"metric": "open_science", "paper": "Acemoglu et al. 2024", "midpoint": 75, "short": "Acemoglu (2024)"}, {"metric": "logic_communication", "paper": "Acemoglu et al. 2024", "midpoint": 90, "short": "Acemoglu (2024)"}, {"metric": "advancing_knowledge", "paper": "Acemoglu et al. 2024", "midpoint": 88, "short": "Acemoglu (2024)"}, {"metric": "methods", "paper": "Acemoglu et al. 2024", "midpoint": 83, "short": "Acemoglu (2024)"}, {"metric": "claims_evidence", "paper": "Acemoglu et al. 2024", "midpoint": 85, "short": "Acemoglu (2024)"}, {"metric": "overall", "paper": "Acemoglu et al. 2024", "midpoint": 86, "short": "Acemoglu (2024)"}, {"metric": "global_relevance", "paper": "Aghion et al. 2017", "midpoint": 70, "short": "Aghion (2017)"}, {"metric": "open_science", "paper": "Aghion et al. 2017", "midpoint": 40, "short": "Aghion (2017)"}, {"metric": "logic_communication", "paper": "Aghion et al. 2017", "midpoint": 85, "short": "Aghion (2017)"}, {"metric": "advancing_knowledge", "paper": "Aghion et al. 2017", "midpoint": 80, "short": "Aghion (2017)"}, {"metric": "methods", "paper": "Aghion et al. 2017", "midpoint": 72, "short": "Aghion (2017)"}, {"metric": "claims_evidence", "paper": "Aghion et al. 2017", "midpoint": 65, "short": "Aghion (2017)"}, {"metric": "overall", "paper": "Aghion et al. 2017", "midpoint": 69, "short": "Aghion (2017)"}, {"metric": "global_relevance", "paper": "Akram et al. 2017", "midpoint": 85, "short": "Akram (2017)"}, {"metric": "open_science", "paper": "Akram et al. 2017", "midpoint": 60, "short": "Akram (2017)"}, {"metric": "logic_communication", "paper": "Akram et al. 2017", "midpoint": 83, "short": "Akram (2017)"}, {"metric": "advancing_knowledge", "paper": "Akram et al. 2017", "midpoint": 80, "short": "Akram (2017)"}, {"metric": "methods", "paper": "Akram et al. 2017", "midpoint": 88, "short": "Akram (2017)"}, {"metric": "claims_evidence", "paper": "Akram et al. 2017", "midpoint": 85, "short": "Akram (2017)"}, {"metric": "overall", "paper": "Akram et al. 2017", "midpoint": 83, "short": "Akram (2017)"}, {"metric": "global_relevance", "paper": "Alatas et al. 2019", "midpoint": 70, "short": "Alatas (2019)"}, {"metric": "open_science", "paper": "Alatas et al. 2019", "midpoint": 50, "short": "Alatas (2019)"}, {"metric": "logic_communication", "paper": "Alatas et al. 2019", "midpoint": 80, "short": "Alatas (2019)"}, {"metric": "advancing_knowledge", "paper": "Alatas et al. 2019", "midpoint": 75, "short": "Alatas (2019)"}, {"metric": "methods", "paper": "Alatas et al. 2019", "midpoint": 85, "short": "Alatas (2019)"}, {"metric": "claims_evidence", "paper": "Alatas et al. 2019", "midpoint": 80, "short": "Alatas (2019)"}, {"metric": "overall", "paper": "Alatas et al. 2019", "midpoint": 75, "short": "Alatas (2019)"}, {"metric": "global_relevance", "paper": "Alcott et al. 2024", "midpoint": 65, "short": "Alcott (2024)"}, {"metric": "open_science", "paper": "Alcott et al. 2024", "midpoint": 75, "short": "Alcott (2024)"}, {"metric": "logic_communication", "paper": "Alcott et al. 2024", "midpoint": 90, "short": "Alcott (2024)"}, {"metric": "advancing_knowledge", "paper": "Alcott et al. 2024", "midpoint": 85, "short": "Alcott (2024)"}, {"metric": "methods", "paper": "Alcott et al. 2024", "midpoint": 77, "short": "Alcott (2024)"}, {"metric": "claims_evidence", "paper": "Alcott et al. 2024", "midpoint": 80, "short": "Alcott (2024)"}, {"metric": "overall", "paper": "Alcott et al. 2024", "midpoint": 80, "short": "Alcott (2024)"}, {"metric": "global_relevance", "paper": "Arora et al. 2023", "midpoint": 60, "short": "Arora (2023)"}, {"metric": "open_science", "paper": "Arora et al. 2023", "midpoint": 70, "short": "Arora (2023)"}, {"metric": "logic_communication", "paper": "Arora et al. 2023", "midpoint": 78, "short": "Arora (2023)"}, {"metric": "advancing_knowledge", "paper": "Arora et al. 2023", "midpoint": 85, "short": "Arora (2023)"}, {"metric": "methods", "paper": "Arora et al. 2023", "midpoint": 80, "short": "Arora (2023)"}, {"metric": "claims_evidence", "paper": "Arora et al. 2023", "midpoint": 75, "short": "Arora (2023)"}, {"metric": "overall", "paper": "Arora et al. 2023", "midpoint": 77, "short": "Arora (2023)"}, {"metric": "global_relevance", "paper": "Bahar et al. 2022", "midpoint": 80, "short": "Bahar (2022)"}, {"metric": "open_science", "paper": "Bahar et al. 2022", "midpoint": 40, "short": "Bahar (2022)"}, {"metric": "logic_communication", "paper": "Bahar et al. 2022", "midpoint": 70, "short": "Bahar (2022)"}, {"metric": "advancing_knowledge", "paper": "Bahar et al. 2022", "midpoint": 75, "short": "Bahar (2022)"}, {"metric": "methods", "paper": "Bahar et al. 2022", "midpoint": 72, "short": "Bahar (2022)"}, {"metric": "claims_evidence", "paper": "Bahar et al. 2022", "midpoint": 70, "short": "Bahar (2022)"}, {"metric": "overall", "paper": "Bahar et al. 2022", "midpoint": 68, "short": "Bahar (2022)"}, {"metric": "global_relevance", "paper": "Banerjee et al. 2023", "midpoint": 95, "short": "Banerjee (2023)"}, {"metric": "open_science", "paper": "Banerjee et al. 2023", "midpoint": 80, "short": "Banerjee (2023)"}, {"metric": "logic_communication", "paper": "Banerjee et al. 2023", "midpoint": 85, "short": "Banerjee (2023)"}, {"metric": "advancing_knowledge", "paper": "Banerjee et al. 2023", "midpoint": 95, "short": "Banerjee (2023)"}, {"metric": "methods", "paper": "Banerjee et al. 2023", "midpoint": 90, "short": "Banerjee (2023)"}, {"metric": "claims_evidence", "paper": "Banerjee et al. 2023", "midpoint": 88, "short": "Banerjee (2023)"}, {"metric": "overall", "paper": "Banerjee et al. 2023", "midpoint": 90, "short": "Banerjee (2023)"}, {"metric": "global_relevance", "paper": "Barberio et al. 2022", "midpoint": 85, "short": "Barberio (2022)"}, {"metric": "open_science", "paper": "Barberio et al. 2022", "midpoint": 40, "short": "Barberio (2022)"}, {"metric": "logic_communication", "paper": "Barberio et al. 2022", "midpoint": 80, "short": "Barberio (2022)"}, {"metric": "advancing_knowledge", "paper": "Barberio et al. 2022", "midpoint": 60, "short": "Barberio (2022)"}, {"metric": "methods", "paper": "Barberio et al. 2022", "midpoint": 70, "short": "Barberio (2022)"}, {"metric": "claims_evidence", "paper": "Barberio et al. 2022", "midpoint": 65, "short": "Barberio (2022)"}, {"metric": "overall", "paper": "Barberio et al. 2022", "midpoint": 67, "short": "Barberio (2022)"}, {"metric": "global_relevance", "paper": "Barker et al. 2021", "midpoint": 85, "short": "Barker (2021)"}, {"metric": "open_science", "paper": "Barker et al. 2021", "midpoint": 55, "short": "Barker (2021)"}, {"metric": "logic_communication", "paper": "Barker et al. 2021", "midpoint": 80, "short": "Barker (2021)"}, {"metric": "advancing_knowledge", "paper": "Barker et al. 2021", "midpoint": 75, "short": "Barker (2021)"}, {"metric": "methods", "paper": "Barker et al. 2021", "midpoint": 70, "short": "Barker (2021)"}, {"metric": "claims_evidence", "paper": "Barker et al. 2021", "midpoint": 65, "short": "Barker (2021)"}, {"metric": "overall", "paper": "Barker et al. 2021", "midpoint": 72, "short": "Barker (2021)"}, {"metric": "global_relevance", "paper": "Bettle 2023", "midpoint": 75, "short": "Bettle (2023)"}, {"metric": "open_science", "paper": "Bettle 2023", "midpoint": 40, "short": "Bettle (2023)"}, {"metric": "logic_communication", "paper": "Bettle 2023", "midpoint": 70, "short": "Bettle (2023)"}, {"metric": "advancing_knowledge", "paper": "Bettle 2023", "midpoint": 65, "short": "Bettle (2023)"}, {"metric": "methods", "paper": "Bettle 2023", "midpoint": 60, "short": "Bettle (2023)"}, {"metric": "claims_evidence", "paper": "Bettle 2023", "midpoint": 55, "short": "Bettle (2023)"}, {"metric": "overall", "paper": "Bettle 2023", "midpoint": 61, "short": "Bettle (2023)"}, {"metric": "global_relevance", "paper": "Bhat et al. 2022", "midpoint": 85, "short": "Bhat (2022)"}, {"metric": "open_science", "paper": "Bhat et al. 2022", "midpoint": 60, "short": "Bhat (2022)"}, {"metric": "logic_communication", "paper": "Bhat et al. 2022", "midpoint": 80, "short": "Bhat (2022)"}, {"metric": "advancing_knowledge", "paper": "Bhat et al. 2022", "midpoint": 85, "short": "Bhat (2022)"}, {"metric": "methods", "paper": "Bhat et al. 2022", "midpoint": 80, "short": "Bhat (2022)"}, {"metric": "claims_evidence", "paper": "Bhat et al. 2022", "midpoint": 75, "short": "Bhat (2022)"}, {"metric": "overall", "paper": "Bhat et al. 2022", "midpoint": 78, "short": "Bhat (2022)"}, {"metric": "global_relevance", "paper": "Bhattacharya and Packalen 2020", "midpoint": 55, "short": "Bhattacharya (2020)"}, {"metric": "open_science", "paper": "Bhattacharya and Packalen 2020", "midpoint": 40, "short": "Bhattacharya (2020)"}, {"metric": "logic_communication", "paper": "Bhattacharya and Packalen 2020", "midpoint": 70, "short": "Bhattacharya (2020)"}, {"metric": "advancing_knowledge", "paper": "Bhattacharya and Packalen 2020", "midpoint": 60, "short": "Bhattacharya (2020)"}, {"metric": "methods", "paper": "Bhattacharya and Packalen 2020", "midpoint": 45, "short": "Bhattacharya (2020)"}, {"metric": "claims_evidence", "paper": "Bhattacharya and Packalen 2020", "midpoint": 55, "short": "Bhattacharya (2020)"}, {"metric": "overall", "paper": "Bhattacharya and Packalen 2020", "midpoint": 54, "short": "Bhattacharya (2020)"}, {"metric": "global_relevance", "paper": "Bruers 2021", "midpoint": 55, "short": "Bruers (2021)"}, {"metric": "open_science", "paper": "Bruers 2021", "midpoint": 25, "short": "Bruers (2021)"}, {"metric": "logic_communication", "paper": "Bruers 2021", "midpoint": 60, "short": "Bruers (2021)"}, {"metric": "advancing_knowledge", "paper": "Bruers 2021", "midpoint": 50, "short": "Bruers (2021)"}, {"metric": "methods", "paper": "Bruers 2021", "midpoint": 35, "short": "Bruers (2021)"}, {"metric": "claims_evidence", "paper": "Bruers 2021", "midpoint": 40, "short": "Bruers (2021)"}, {"metric": "overall", "paper": "Bruers 2021", "midpoint": 45, "short": "Bruers (2021)"}, {"metric": "global_relevance", "paper": "Buntaine et al. 2023", "midpoint": 90, "short": "Buntaine (2023)"}, {"metric": "open_science", "paper": "Buntaine et al. 2023", "midpoint": 70, "short": "Buntaine (2023)"}, {"metric": "logic_communication", "paper": "Buntaine et al. 2023", "midpoint": 85, "short": "Buntaine (2023)"}, {"metric": "advancing_knowledge", "paper": "Buntaine et al. 2023", "midpoint": 85, "short": "Buntaine (2023)"}, {"metric": "methods", "paper": "Buntaine et al. 2023", "midpoint": 90, "short": "Buntaine (2023)"}, {"metric": "claims_evidence", "paper": "Buntaine et al. 2023", "midpoint": 90, "short": "Buntaine (2023)"}, {"metric": "overall", "paper": "Buntaine et al. 2023", "midpoint": 85, "short": "Buntaine (2023)"}, {"metric": "global_relevance", "paper": "Carson et al. 2023", "midpoint": 60, "short": "Carson (2023)"}, {"metric": "open_science", "paper": "Carson et al. 2023", "midpoint": 55, "short": "Carson (2023)"}, {"metric": "logic_communication", "paper": "Carson et al. 2023", "midpoint": 80, "short": "Carson (2023)"}, {"metric": "advancing_knowledge", "paper": "Carson et al. 2023", "midpoint": 65, "short": "Carson (2023)"}, {"metric": "methods", "paper": "Carson et al. 2023", "midpoint": 70, "short": "Carson (2023)"}, {"metric": "claims_evidence", "paper": "Carson et al. 2023", "midpoint": 75, "short": "Carson (2023)"}, {"metric": "overall", "paper": "Carson et al. 2023", "midpoint": 68, "short": "Carson (2023)"}, {"metric": "global_relevance", "paper": "Chuard et al. 2022", "midpoint": 65, "short": "Chuard (2022)"}, {"metric": "open_science", "paper": "Chuard et al. 2022", "midpoint": 50, "short": "Chuard (2022)"}, {"metric": "logic_communication", "paper": "Chuard et al. 2022", "midpoint": 75, "short": "Chuard (2022)"}, {"metric": "advancing_knowledge", "paper": "Chuard et al. 2022", "midpoint": 60, "short": "Chuard (2022)"}, {"metric": "methods", "paper": "Chuard et al. 2022", "midpoint": 65, "short": "Chuard (2022)"}, {"metric": "claims_evidence", "paper": "Chuard et al. 2022", "midpoint": 70, "short": "Chuard (2022)"}, {"metric": "overall", "paper": "Chuard et al. 2022", "midpoint": 64, "short": "Chuard (2022)"}, {"metric": "global_relevance", "paper": "Clancy 2024", "midpoint": 80, "short": "Clancy (2024)"}, {"metric": "open_science", "paper": "Clancy 2024", "midpoint": 55, "short": "Clancy (2024)"}, {"metric": "logic_communication", "paper": "Clancy 2024", "midpoint": 70, "short": "Clancy (2024)"}, {"metric": "advancing_knowledge", "paper": "Clancy 2024", "midpoint": 75, "short": "Clancy (2024)"}, {"metric": "methods", "paper": "Clancy 2024", "midpoint": 60, "short": "Clancy (2024)"}, {"metric": "claims_evidence", "paper": "Clancy 2024", "midpoint": 65, "short": "Clancy (2024)"}, {"metric": "overall", "paper": "Clancy 2024", "midpoint": 68, "short": "Clancy (2024)"}, {"metric": "global_relevance", "paper": "Crawfurd et al. 2023", "midpoint": 90, "short": "Crawfurd (2023)"}, {"metric": "open_science", "paper": "Crawfurd et al. 2023", "midpoint": 70, "short": "Crawfurd (2023)"}, {"metric": "logic_communication", "paper": "Crawfurd et al. 2023", "midpoint": 85, "short": "Crawfurd (2023)"}, {"metric": "advancing_knowledge", "paper": "Crawfurd et al. 2023", "midpoint": 80, "short": "Crawfurd (2023)"}, {"metric": "methods", "paper": "Crawfurd et al. 2023", "midpoint": 75, "short": "Crawfurd (2023)"}, {"metric": "claims_evidence", "paper": "Crawfurd et al. 2023", "midpoint": 70, "short": "Crawfurd (2023)"}, {"metric": "overall", "paper": "Crawfurd et al. 2023", "midpoint": 78, "short": "Crawfurd (2023)"}, {"metric": "global_relevance", "paper": "Epperson and Gerster 2024", "midpoint": 60, "short": "Epperson (2024)"}, {"metric": "open_science", "paper": "Epperson and Gerster 2024", "midpoint": 85, "short": "Epperson (2024)"}, {"metric": "logic_communication", "paper": "Epperson and Gerster 2024", "midpoint": 80, "short": "Epperson (2024)"}, {"metric": "advancing_knowledge", "paper": "Epperson and Gerster 2024", "midpoint": 70, "short": "Epperson (2024)"}, {"metric": "methods", "paper": "Epperson and Gerster 2024", "midpoint": 78, "short": "Epperson (2024)"}, {"metric": "claims_evidence", "paper": "Epperson and Gerster 2024", "midpoint": 80, "short": "Epperson (2024)"}, {"metric": "overall", "paper": "Epperson and Gerster 2024", "midpoint": 75, "short": "Epperson (2024)"}, {"metric": "global_relevance", "paper": "Fangwa et al. 2023", "midpoint": 85, "short": "Fangwa (2023)"}, {"metric": "open_science", "paper": "Fangwa et al. 2023", "midpoint": 45, "short": "Fangwa (2023)"}, {"metric": "logic_communication", "paper": "Fangwa et al. 2023", "midpoint": 80, "short": "Fangwa (2023)"}, {"metric": "advancing_knowledge", "paper": "Fangwa et al. 2023", "midpoint": 75, "short": "Fangwa (2023)"}, {"metric": "methods", "paper": "Fangwa et al. 2023", "midpoint": 80, "short": "Fangwa (2023)"}, {"metric": "claims_evidence", "paper": "Fangwa et al. 2023", "midpoint": 78, "short": "Fangwa (2023)"}, {"metric": "overall", "paper": "Fangwa et al. 2023", "midpoint": 75, "short": "Fangwa (2023)"}, {"metric": "global_relevance", "paper": "Haushofer et al. 2020", "midpoint": 75, "short": "Haushofer (2020)"}, {"metric": "open_science", "paper": "Haushofer et al. 2020", "midpoint": 65, "short": "Haushofer (2020)"}, {"metric": "logic_communication", "paper": "Haushofer et al. 2020", "midpoint": 80, "short": "Haushofer (2020)"}, {"metric": "advancing_knowledge", "paper": "Haushofer et al. 2020", "midpoint": 70, "short": "Haushofer (2020)"}, {"metric": "methods", "paper": "Haushofer et al. 2020", "midpoint": 85, "short": "Haushofer (2020)"}, {"metric": "claims_evidence", "paper": "Haushofer et al. 2020", "midpoint": 80, "short": "Haushofer (2020)"}, {"metric": "overall", "paper": "Haushofer et al. 2020", "midpoint": 76, "short": "Haushofer (2020)"}, {"metric": "global_relevance", "paper": "Hill et al. 2024", "midpoint": 65, "short": "Hill (2024)"}, {"metric": "open_science", "paper": "Hill et al. 2024", "midpoint": 60, "short": "Hill (2024)"}, {"metric": "logic_communication", "paper": "Hill et al. 2024", "midpoint": 85, "short": "Hill (2024)"}, {"metric": "advancing_knowledge", "paper": "Hill et al. 2024", "midpoint": 70, "short": "Hill (2024)"}, {"metric": "methods", "paper": "Hill et al. 2024", "midpoint": 78, "short": "Hill (2024)"}, {"metric": "claims_evidence", "paper": "Hill et al. 2024", "midpoint": 75, "short": "Hill (2024)"}, {"metric": "overall", "paper": "Hill et al. 2024", "midpoint": 73, "short": "Hill (2024)"}, {"metric": "global_relevance", "paper": "Jack et al. 2022", "midpoint": 88, "short": "Jack (2022)"}, {"metric": "open_science", "paper": "Jack et al. 2022", "midpoint": 60, "short": "Jack (2022)"}, {"metric": "logic_communication", "paper": "Jack et al. 2022", "midpoint": 85, "short": "Jack (2022)"}, {"metric": "advancing_knowledge", "paper": "Jack et al. 2022", "midpoint": 78, "short": "Jack (2022)"}, {"metric": "methods", "paper": "Jack et al. 2022", "midpoint": 80, "short": "Jack (2022)"}, {"metric": "claims_evidence", "paper": "Jack et al. 2022", "midpoint": 85, "short": "Jack (2022)"}, {"metric": "overall", "paper": "Jack et al. 2022", "midpoint": 79, "short": "Jack (2022)"}, {"metric": "global_relevance", "paper": "Kremer et al. 2020", "midpoint": 85, "short": "Kremer (2020)"}, {"metric": "open_science", "paper": "Kremer et al. 2020", "midpoint": 40, "short": "Kremer (2020)"}, {"metric": "logic_communication", "paper": "Kremer et al. 2020", "midpoint": 80, "short": "Kremer (2020)"}, {"metric": "advancing_knowledge", "paper": "Kremer et al. 2020", "midpoint": 55, "short": "Kremer (2020)"}, {"metric": "methods", "paper": "Kremer et al. 2020", "midpoint": 45, "short": "Kremer (2020)"}, {"metric": "claims_evidence", "paper": "Kremer et al. 2020", "midpoint": 60, "short": "Kremer (2020)"}, {"metric": "overall", "paper": "Kremer et al. 2020", "midpoint": 61, "short": "Kremer (2020)"}, {"metric": "global_relevance", "paper": "Kremer et al. 2022", "midpoint": 95, "short": "Kremer (2022)"}, {"metric": "open_science", "paper": "Kremer et al. 2022", "midpoint": 70, "short": "Kremer (2022)"}, {"metric": "logic_communication", "paper": "Kremer et al. 2022", "midpoint": 85, "short": "Kremer (2022)"}, {"metric": "advancing_knowledge", "paper": "Kremer et al. 2022", "midpoint": 90, "short": "Kremer (2022)"}, {"metric": "methods", "paper": "Kremer et al. 2022", "midpoint": 85, "short": "Kremer (2022)"}, {"metric": "claims_evidence", "paper": "Kremer et al. 2022", "midpoint": 80, "short": "Kremer (2022)"}, {"metric": "overall", "paper": "Kremer et al. 2022", "midpoint": 84, "short": "Kremer (2022)"}, {"metric": "global_relevance", "paper": "Kubo et al. 2023", "midpoint": 60, "short": "Kubo (2023)"}, {"metric": "open_science", "paper": "Kubo et al. 2023", "midpoint": 55, "short": "Kubo (2023)"}, {"metric": "logic_communication", "paper": "Kubo et al. 2023", "midpoint": 78, "short": "Kubo (2023)"}, {"metric": "advancing_knowledge", "paper": "Kubo et al. 2023", "midpoint": 65, "short": "Kubo (2023)"}, {"metric": "methods", "paper": "Kubo et al. 2023", "midpoint": 75, "short": "Kubo (2023)"}, {"metric": "claims_evidence", "paper": "Kubo et al. 2023", "midpoint": 70, "short": "Kubo (2023)"}, {"metric": "overall", "paper": "Kubo et al. 2023", "midpoint": 67, "short": "Kubo (2023)"}, {"metric": "global_relevance", "paper": "Liang et al. 2021", "midpoint": 70, "short": "Liang (2021)"}, {"metric": "open_science", "paper": "Liang et al. 2021", "midpoint": 70, "short": "Liang (2021)"}, {"metric": "logic_communication", "paper": "Liang et al. 2021", "midpoint": 75, "short": "Liang (2021)"}, {"metric": "advancing_knowledge", "paper": "Liang et al. 2021", "midpoint": 80, "short": "Liang (2021)"}, {"metric": "methods", "paper": "Liang et al. 2021", "midpoint": 85, "short": "Liang (2021)"}, {"metric": "claims_evidence", "paper": "Liang et al. 2021", "midpoint": 85, "short": "Liang (2021)"}, {"metric": "overall", "paper": "Liang et al. 2021", "midpoint": 78, "short": "Liang (2021)"}, {"metric": "global_relevance", "paper": "Schuett et al. 2023", "midpoint": 70, "short": "Schuett (2023)"}, {"metric": "open_science", "paper": "Schuett et al. 2023", "midpoint": 80, "short": "Schuett (2023)"}, {"metric": "logic_communication", "paper": "Schuett et al. 2023", "midpoint": 70, "short": "Schuett (2023)"}, {"metric": "advancing_knowledge", "paper": "Schuett et al. 2023", "midpoint": 60, "short": "Schuett (2023)"}, {"metric": "methods", "paper": "Schuett et al. 2023", "midpoint": 55, "short": "Schuett (2023)"}, {"metric": "claims_evidence", "paper": "Schuett et al. 2023", "midpoint": 65, "short": "Schuett (2023)"}, {"metric": "overall", "paper": "Schuett et al. 2023", "midpoint": 67, "short": "Schuett (2023)"}, {"metric": "global_relevance", "paper": "Trammel and Aschenbrenner 2025", "midpoint": 90, "short": "Trammel (2025)"}, {"metric": "open_science", "paper": "Trammel and Aschenbrenner 2025", "midpoint": 40, "short": "Trammel (2025)"}, {"metric": "logic_communication", "paper": "Trammel and Aschenbrenner 2025", "midpoint": 80, "short": "Trammel (2025)"}, {"metric": "advancing_knowledge", "paper": "Trammel and Aschenbrenner 2025", "midpoint": 85, "short": "Trammel (2025)"}, {"metric": "methods", "paper": "Trammel and Aschenbrenner 2025", "midpoint": 75, "short": "Trammel (2025)"}, {"metric": "claims_evidence", "paper": "Trammel and Aschenbrenner 2025", "midpoint": 70, "short": "Trammel (2025)"}, {"metric": "overall", "paper": "Trammel and Aschenbrenner 2025", "midpoint": 75, "short": "Trammel (2025)"}, {"metric": "global_relevance", "paper": "Walker et al. 2023", "midpoint": 90, "short": "Walker (2023)"}, {"metric": "open_science", "paper": "Walker et al. 2023", "midpoint": 60, "short": "Walker (2023)"}, {"metric": "logic_communication", "paper": "Walker et al. 2023", "midpoint": 80, "short": "Walker (2023)"}, {"metric": "advancing_knowledge", "paper": "Walker et al. 2023", "midpoint": 85, "short": "Walker (2023)"}, {"metric": "methods", "paper": "Walker et al. 2023", "midpoint": 80, "short": "Walker (2023)"}, {"metric": "claims_evidence", "paper": "Walker et al. 2023", "midpoint": 85, "short": "Walker (2023)"}, {"metric": "overall", "paper": "Walker et al. 2023", "midpoint": 80, "short": "Walker (2023)"}]}}, {"mode": "vega-lite"});

      This is really nice in principle, but it needs some tweaking. something about the colors and spacing make it hard to different here. Love the 'hover titles' though!!

    1. Reviewer #2 (Public review):

      Summary:

      Xu et al. used fMRI to examine the neural correlates associated with retrieving temporal information from an external compared to internal perspective ('mental time watching' vs. 'mental time travel'). Participants first learned a fictional religious ritual composed of 15 sequential events of varying durations. They were then scanned while they either (1) judged whether a target event happened in the same part of the day as a reference event (external condition); or (2) imagined themselves carrying out the reference event and judged whether the target event occurred in the past or will occur in the future (internal condition). Behavioural data suggested that the perspective manipulation was successful: RT was positively correlated with sequential distance in the external perspective task, while a negative correlation was observed between RT and sequential distance for the internal perspective task. Neurally, the two tasks activated different regions, with the external task associated with greater activity in the supplementary motor area and supramarginal gyrus, and the internal condition with greater activity in default mode network regions. Of particular interest, only a cluster in the posterior parietal cortex demonstrated a significant interaction between perspective and sequential distance, with increased activity in this region for longer sequential distances in the external task, but increased activity for shorter sequential distances in the internal task. Only a main effect of sequential distance was observed in the hippocampus head, with activity being positively correlated with sequential distance in both tasks. No regions exhibited a significant interaction between perspective and duration, although there was a main effect of duration in the hippocampus body with greater activity for longer durations, which appeared to be driven by the internal perspective condition. On the basis of these findings, the authors suggest that the hippocampus may represent event sequences allocentrically, whereas the posterior parietal cortex may process event sequences egocentrically.

      Strengths:

      The topic of egocentric vs. allocentric processing has been relatively under-investigated with respect to time, having traditionally been studied in the domain of space. As such, the current study is timely and has the potential to be important for our understanding of how time is represented in the brain in the service of memory. The study is well thought out, and the behavioural paradigm is, in my opinion, a creative approach to tackling the authors' research question. A particular strength is the implementation of an imagination phase for the participants while learning the fictional religious ritual. This moves the paradigm beyond semantic/schema learning and is probably the best approach besides asking the participants to arduously enact and learn the different events with their exact timings in person. Importantly, the behavioural data point towards successful manipulation of internal vs. external perspective in participants, which is critical for the interpretation of the fMRI data. The use of syllable length as a sanity check for RT analyses, as well as neuroimaging analyses, is also much appreciated.

      Weaknesses/Suggestions:

      Although the design and analysis choices are generally solid, there are a few finer details/nuances that merit further clarification or consideration in order to strengthen the readers' confidence in the authors' interpretation of their data.

      (1) Given the known behavioural and neural effects of boundaries in sequence memory, I was wondering whether the number of traversed context boundaries (i.e., between morning-afternoon, and afternoon-evening) was controlled for across sequential length in the internal perspective condition? Or, was it the case that reference-target event pairs with higher sequential numbers were more likely to span across two parts of the day compared to lower sequential numbers? Similarly, did the authors examine any potential differences, whether behaviourally or neurally, for day part same vs. day part different external task trials?

      (2) I would appreciate further insight into the authors' decision to model their task trials as stick functions with duration 0 in their GLMs, as opposed to boxcar functions with varying durations, given the potential benefits of the latter (e.g., Grinband et al., 2008). I concur that in certain paradigms, RT is considered a potential confound and is taken into account as a nuisance covariate (as the authors have done here). However, given that RTs appear to be critical to the authors' interpretation of participant behavioural performance, it would imply that variations in RT actually reflect variations in cognitive processes of interest, and hence, it may be worth modelling trials as boxcar functions with varying durations.

      (3) The activity pattern across tasks and sequential distance in the posterior parietal cortex appears to parallel the RT data. Have the authors examined potential relationships between the two (e.g., individual participant slopes for RT across sequential distance vs. activity betas in the posterior parietal cortex)?

      (4) There were a few places in the manuscript where the writing/discussion of the wider literature could perhaps be tightened or expanded. For instance:

      i) On page 16, the authors state 'The negative correlation between the activation level in the right PPC and sequential distance has already been observed in a previous fMRI study (Gauthier & van Wassenhove, 2016b). The authors found a similar region (the reported MNI coordinate of the peak voxel was 42, -70, 40, and the MNI coordinate of the peak voxel in the present study was 39, -70, 35), of which the activation level went up when the target event got closer to the self-positioned event. This finding aligns with the evidence suggesting that the posterior parietal cortex implements egocentric representations.' Without providing a little more detail here about the Gauthier & van Wassenhove study and what participants were required to do (i.e., mentally position themselves at a temporal location and make 'occurred before' vs. 'occurred after' judgements of a target event), it could be a little tricky for readers to follow why this convergence in finding supports a role for the posterior parietal cortex in egocentric representations.

      ii) Although the authors discuss the Lee et al. (2020) review and related studies with respect to retrospective memory, it is critical to note that this work has also often used prospective paradigms, pointing towards sequential processing being the critical determinant of hippocampal involvement, rather than the distinction between retrospective vs. prospective processing.

      iii) The authors make an interesting suggestion with respect to hippocampal longitudinal differences in the representation of event sequences, and may wish to relate this to Montagrin et al. (2024), who make an argument for the representation of distant goals in the anterior hippocampus and immediate goals in the posterior hippocampus.

    1. December 17, 2015, Sturzenegger felt confident. Macri had taken office as president a week earlier, and as head of the Central Bank, Sturzenegger had fulfilled one of PRO’s main campaign promises: lifting currency controls, the cepo. He raised the purchase limit to US$2 million per month and removed all restrictions. The dollar rose to AR$13.93. Sturzenegger celebrated the measure at a lunch with the Central Bank’s board of directors. But one of the guests pointed out that the devaluation would immediately translate into higher prices, a phenomenon known as pass-through. “Pass-through is a myth,” he answered.

      !

    1. Introduction Welcome to “A Beginner's Guide to Information Literacy,” a step-by-step guide to understanding information literacy concepts and practices. This guide will cover each frame of the "Framework for Information Literacy for Higher Education," a document created by the Association of College and Research Libraries (ACRL) to help educators and librarians think about, teach, and practice information literacy. The goal of this guide is to break down the basic concepts in the Framework and put them in accessible, digestible language so that we can think critically about the information we're exposed to in our daily lives. To start, let's look at the ACRL definition of information literacy, so we have some context going forward: Information Literacy is the set of integrated abilities encompassing the reflective discovery of information, the understanding of how information is produced and valued, and the use of information in creating new knowledge and participating ethically in communities of learning. Boil that down and what you have are the essentials of information literacy: asking questions, finding information, evaluating information, creating information, and doing all of that responsibly and ethically. We'll be looking at each of the Frames alphabetically, since that's how they are presented in the Framework. None of these Frames is more important than another, and all need to be used in conjunction with the others, but we have to start somewhere, so alphabetical it is! In order, the frames are: Authority is Constructed and Contextual Information Creation as a Process Information Has value Research as Inquiry Scholarship as Conversation Searching as Strategic Exploration Just because we're laying this out alphabetically does not mean you have to go through it in order. Some of the sections reference Frames previously mentioned, but for the most part you can jump to wherever you like and use this guide however you see fit! You can also open up the Framework using the link above or in the attached resources to read the Framework in its original form and follow along with each section. The following sections originally appeared as blog posts for the Texas A&M- Corpus Christi's library blog. Edits have been made to remove institutional context, but you can see the original posts in the Mary and Jeff Bell Library blog archives. Authority is Constructed and Contextual The first frame is Authority is Constructed and Contextual. There's a lot to unpack in that language, so let's get started.

      Start with the word "Authority." At the root of “Authority” is the word Author. So start there: who wrote the piece of information you’re reading? Why are they writing? What stake do they have in the information they’re presenting? What are their credentials (you can straight up google their name to learn more about them)? Who are they affiliated with? A public organization? A university? A company trying to make a profit? Check it out.

      Now let's talk about how authority is "Constructed." Have you ever heard the phrase “social construct”? Some people say gender is a social construct or language, written and spoken, is a construct. “Constructed” basically means humans made it up at some point to instill order in their communities. It’s not an observable, scientifically inevitable fact. When we say “authority” is constructed, we’re basically saying that we as individuals and as a society choose who we give authority to, and sometimes we might not be choosing based on facts.<br /> A common way of assessing authority is by looking at an author’s education. We’re inclined to trust someone with a PhD over someone with a high school diploma because we think the person with a PhD is smarter. That’s a construct. We’re conditioned to think that someone with more education is smarter than people with less education, but we don't know it for a fact. There are a lot of reasons someone might not seek out higher education. They might have to work full time, or take care of a family, or maybe they just never wanted to go to college. None of these factors impact someone’s intelligence or ability to think critically. If aliens land on South Padre Island, TX, there will be many voices contributing to the information collected about the event. Someone with a PhD in astrophysics might write an article about the mechanical workings of the aliens’ spaceship. Cool, they are an authority on that kind of stuff, so I trust them. But the teenager who was on the island and watched the aliens land has first-hand experience of the event, so I trust them too. They have authority on the event even though they don’t have a PhD in astrophysics. So we cannot think someone with more education is inherently more trustworthy, or smarter, or has more authority than anyone else. Some people who are authorities on a subject are highly educated, some are not. Likewise, let’s say I film the aliens landing and stream it live on Facebook. At the same time, a police officer gives an interview on the news that says something contradicting my video evidence. All of a sudden, I have more authority than the police officer. Many of us are raised to trust certain people automatically based on their jobs, but that’s also a construct. The great thing about critical thinking is that we can identify what is fact and fiction, and we can decide for ourselves who to trust.

      The final word is "Contextual." This one is a little simpler. If I go to the hospital and a medical doctor takes out my appendix, I’ll probably be pretty happy with the outcome. If I go to the hospital and Dr. Jill Biden, a professor of English, takes out my appendix, I’m probably going to be less happy with the results. Medical doctors have authority in the context of medicine. Dr. Jill Biden has authority in the context of education. And Doctor Who has authority in the context of inter-galactic heroics and nice scarves. This applies when we talk about experiential authority, too. If an 8th grade teacher tells me what it’s like to be a 4th grade teacher, I will not trust their authority. I will, however, trust a 4th grade teacher to tell me about teaching 4th grade.

      The Takeaway: Basically, when we think about Authority, we need to ask ourselves, “Do I trust them? Why?” If they do not have experience with the subject (like witnessing an event or holding a job in the field) or subject expertise (like education or research), then maybe they aren’t an authority after all. P.S. I'm sorry for the uncalled-for dig, Dr. Biden. I’m sure you’d do your best with an appendectomy.

      Ask Yourself In what context are you an authority? If you needed to figure out how to do a kickflip on a skateboard, who would you ask? Who's an authority in that situation? Information Creation as a Process The second Frame is "Information Creation as a Process."

      Information Creation So first of all, let’s get this out of the way: Everyone is a creator of information. When you write an essay, you’re creating information. When you log the temperature of the lizard tank, you’re creating information. Every Word Doc, Google Doc, survey, spreadsheet, Tweet, and PowerPoint that you’ve ever had a hand in? All information products. That YOU created. In some way or another, you created that information and put it out into the world.

      Processes One process you’re probably familiar with if you're a student is the typical “Research Paper.” You know your professor wants about five to eight pages consisting of an introduction that ends in a thesis statement, a few paragraphs that each touch on a piece of evidence that supports your thesis, and then you end in a conclusion paragraph which starts with a rephrasing of your thesis statement. You save it to your hard drive or Google Drive and then you submit it to your professor. This is one process for creating information. It’s a boring one, but it’s a process.<br /> Outside of the classroom, the information creation process looks different, and we have lots of choices to make. Once of the choice you’ll need to make is the mode or format in which you present information. The information I’m creating right now comes to you in the mode of an Open Educational Resource. Originally, I created these sections as blog posts. Those five-page essays I mentioned earlier are in the mode of essays. When you create information (outside of a course assignment), it’s up to you how to package that information. It might feel like a simple or obvious choice, but some information is better suited to some forms of communication. And some forms of communication are received in a certain way, regardless of the information in them. For example, if I tweet “Jon Snow knows nothing,” it won’t carry with it the authority of my peer-reviewed scholarly article that meticulously outlines every instance in which Jon Snow displays a lack of knowledge. Both pieces of information are accurate, but the processes I went through to create and disseminate the information have an effect on how the information is received by my audience. And that is perhaps the biggest thing to consider when creating information: your audience.

      The Audience Matters If I just want my twitter followers to know Jon Snow knows nothing, then a tweet is the right way to reach them. If I want my tenured colleagues and other various scholars to know Jon Snow knows nothing then I’m going to create a piece of information that will reach them, like a peer-reviewed journal article. Often, we aren’t the ones creating information, we're the audience members ourselves. When we're scrolling on Twitter, reading a book, falling asleep during a PowerPoint presentation-- we're the audience observing the information being shared. When this is the case, we have to think carefully about the ways information was created. Advertisements are a good example. Some are designed to reach a 20-year old woman in Corpus Christi through Facebook, while others are designed to reach a 60-year old man in Hoboken, NJ over the radio. They might both be selling the same car, and they’re going to put the same information (size, terrain, miles per gallon, etc.) in those ads, but their audiences are different, so their information creation process is different, and we end up with two different ads for different audiences.

      Be a Critical Audience Member When we are the audience member, we might automatically trust something because it’s presented a certain way. I know that, personally, I’m more likely to trust something that is formatted as a scholarly article than I am something that is formatted as a blog. And I know that that's biased thinking and it's a mistake to make that assumption. It's risky to think like that for a couple of reasons: Looks can be deceiving. Just because someone is wearing a suit and tie doesn’t mean they’re not an axe murderer and just because something looks like a well-researched article, doesn’t mean it is one. Automatic trust unnecessarily limits the information we expose ourselves to. If I only ever allow myself to read peer-reviewed scholarly articles, think of all the encyclopedias and blogs and news articles I’m missing out on! If I have a certain topic I’m really excited about, I’m going to try to expose myself to information regardless of the format and I’ll decide for myself (#criticalthinking) which pieces of information are authoritative and which pieces of information suit my needs. Likewise, as I am conducting research and considering how best to share my new knowledge, I’m going to consider my options for distributing this newfound information and decide how best to reach my audience. Maybe it’s a tweet, maybe it’s a Buzzfeed quiz, or maybe it’s a presentation at a conference. But whatever mode I choose will also convey implications about me, my information creation process, and my audience.

      The Takeaway You create information all of the time. The way you package and share it will have an effect on how others perceive it.

      Ask Yourself Is there a form of information you're likely to trust at first glance? Either a publication like a newspaper or a format like a scholarly article? Can you think of some voices that aren't present in that source of information? Where might you look to find some other perspectives? If you read an article written by medical researchers that says chocolate is good for your health, would you trust the article? Would you still trust their authority if you found out that their research was funded by a company that sells chocolate bars? Funding and stakeholders have an impact on the creation process, and it's worth thinking about how this can compromise someone's authority.

      Information Has Value Onwards and upwards! We're onto Frame 3: Information Has Value.

      What Counts as Value? There are a lot of different ways we value things. Some things, like money, are valuable to us because we can exchange them for goods and services. On the other hand, some things, like a skill, are valuable to use because we can exchange them for money (which we exchange for more goods and services). Some things are valuable to us for sentimental reasons, like a photograph or a letter. Some things, like our time, are valuable because they are finite.

      The Value of Information Information has all different kinds of value.<br /> One kind is monetary. If I write a book and it gets published, I’m probably going to make some money off of that (though not as much money as the publishing company will make). So that’s valuable to me. But I’m also getting my name out into the world, and that’s valuable to me too. It means that when I apply for a job or apply for a grant, someone can google me and think, “Oh look! She wrote a book! That means she has follow-through and will probably work hard for us!” That kind of recognition is a sort of social value. That social value, by the way, can also become monetary value. If I’ve produced information, a university might give me a job, or an organization might fund my research. If I’ve invented a machine that will floss my teeth for me, the patent for my invention could be worth a lot of money (plus it'd be awesome. Cool factor can count as value.). In a more altruistic slant, information is also valuable on a societal level. When we have more information about political candidates, for example, it influences how we vote, who we elect, and how our country is governed. That’s some really valuable information right there. That information has an effect on the whole world (plus outer space, if we elect someone who’s super into space exploration). If someone is trying to keep information hidden or secret, or if they’re spreading misinformation to confuse people, it’s probably a sign that the information they’re hiding is important, which is to say, valuable. On a much smaller scale, think about the information on food packages. If you’re presented with calorie counts, you might make a different decision about the food you buy. If you’re presented with an item’s allergens, you might avoid that product and not end up in an Emergency Room with anaphylactic shock. You know what’s super valuable to me? NOT being in an Emergency Room! But if you do end up in the Emergency Room, the information that doctors and nurses will use to treat your allergic reaction is extremely valuable. That value of that information is equal to the lives it’s saved.

      Acting Like Information is Valuable When we create our own information by writing papers and blog posts and giving presentations, it’s really important that we give credit to the information we’ve used to create our new information product for a couple of reasons. First, someone worked really hard to create something, let’s say an article. And that article’s information is valuable enough to you to use in your own paper or presentation. By citing the author properly, you’re giving the author credit for their work which is valuable to them. The more their article is cited, the more valuable it becomes because they’re more likely to get scholarly recognition and jobs and promotions. Second, by showing where you’re getting your information, you’re boosting the value of your new information product. On the most basic level, you’ll get a higher grade on your paper which is valuable to you. But you’re also telling your audience, whether it’s your professor or your boss or your YouTube subscribers, that you aren’t just making stuff up—you did the work of researching and citing, and that makes your audience trust you more. It makes the audience value your information more. Remember early on when I said the frames all connect? "Information Has Value" ties into the other information literacy frames we've talked about, "Information Creation as a Process" and "Authority as Constructed and Contextual." When I see you’ve cited your sources of information, then I, as the audience, think you’re more authoritative than someone who doesn’t cite their sources. I also can look at your information product and evaluate the effort you’ve put into it. If you wrote a tweet, which takes little time and effort, I’ll generally value it less than if you wrote a book, which took a lot of time and effort to create. I know that time is valuable, so seeing that you were willing to dedicate your time to create this information product makes me feel like it’s more valuable.

      The Takeaway: Information is valuable because of what goes into its creation (time and effort) and what comes from it (an informed society). If we didn’t value information, we wouldn’t be moving forward as a society, we’d probably have died out thousands of years ago as creatures who never figured out how to use tools or start a fire. So continue to value information, because it improves your life, your audiences’ lives, and the lives of other information creators. More importantly, if we stop valuing information a smarter species will eventually take over and it’ll be a whole Planet of the Apes thing and I just don't have the energy for that right now.

      Ask Yourself Can you think of some ways in which a YouTube video on dog training has value? Who values it? Who profits from it? Think of some information that would be valuable to someone applying to college. What does that person need to know?

      Research as Inquiry Easing on down the road, we've come to frame number 4: Research as Inquiry. Inquiry is another word for curiosity or questioning. I like to think of this frame as "Research as Curiosity," because I think it more accurately captures the way our adorable human brains work.

      Inquiring Minds Want to Know When you think to yourself, “How old is Madonna?” and you google it to find out she’s 62 (as of the creation of this resource), that’s research! You had a question (how old is Madonna?), you applied a search strategy (googling “Madonna age”) and you found an answer (62). That’s it! That’s all research has to be! But it’s not all research can be. This example, like most research, is comprised of the same components we use in more complex situations. Those components are: a question and an answer, Inquiry and Research, “how old is Madonna?” and "62." But when we’re curious, we go back to the inquiry step again and ask more questions and seek more answers. We’re never really done, even when we’ve answered the initial question and written the paper and given the presentation and received accolades and awards for all our hard work. If it’s something we’re really curious about, we’ll keep asking and answering and asking again. If you’re really curious about Madonna, you don’t just think, “How old is Madonna?” You think “How old is Madonna? Wait, really? Her skin looks amazing! What’s her skincare routine? Seriously, what year was she born? Oh my god, she wrote children’s books! Does my library have any?” Your questions lead you to answers which, when you’re really interested in a topic, lead you to more and more questions. Humans are naturally curious, we have this sort of instinct to be like, “huh, I wonder why that is?” and it’s propelled us to learn things and try things and fail and try again! It’s all Research as Inquiry. And to satisfy your curiosity, yes, the library I currently work at does own one of Madonna’s children’s books. It’s called The Adventures of Abdi and you can find it in our Juvenile Collection on the second floor at PZ8 M26 Adv 2004. And you can find a description of her skincare routine in this article from W Magazine: https://www.wmagazine.com/story/madonna-skin-care-routine-tips-mdna. You’re welcome.

      Identifying an Information Need One of the tricky parts of Research as Inquiry is determining a situation’s information need. It sounds simple to ask yourself, “What information do I need?” and sometimes we do it unconsciously. But it’s not always easy. Here are a few examples of information needs: You need to know what your niece’s favorite Paw Patrol character is so you can buy her a birthday present. Your research is texting your sister. She says, “Everest.” And now you’re done. You buy the present, you're a rock star at the birthday party. Your information need was a short answer based on a 3-year old’s opinion. You’re trying to convince someone on twitter that Nazis are bad. You compile a list of opinion pieces from credible news publications like the Wall Street Journal and the New York Times, gather first-hand narratives of Holocaust survivors and victims of hate crimes, find articles that debunk eugenics, etc. Your information need isn’t scholarly publications, it’s accessible news and testimonials. It’s articles a person might actually read in their free time, articles that aren’t too long and don’t require access to scholarly materials that are sometimes behind paywalls. You need to write a literature review for an assignment, but you don’t know what a literature review is. So first you google “literature review example.” You find out what it is, how one is created, and maybe skim a few examples. Next, you move to your library's website and search tool and try “oceanography literature review,” and find some closer examples. Finally, you start conducting research for your own literature review. Your information need here is both broader and deeper. You need to learn what a literature review is, how one is compiled, and how one searches for relevant scholarly articles in the resources available to you. Sometimes it helps to break down big information needs into smaller ones. Take the last example, for instance: you need to write a literature review. What are the smaller parts? Information Need 1: Find out what a literature review is Information Need 2: Find out how people go about writing literature reviews Information Need 3: Find relevant articles on your topic for your own literature review It feels better to break it into smaller bits and accomplish those one at a time. And it highlights an important part of this frame that’s surprisingly difficult to learn: ask questions. You can’t write a literature review if you don’t know what it is, so ask. You can’t write a literature review if you don’t know how to find articles, so ask. The quickest way to learn is to ask questions. Once you stop caring if you look stupid, and once you realized no one thinks poorly of people who ask questions, life gets a lot easier. So let’s add this to our components of research: ask a question, determine what you need in order to thoroughly answer the question, and seek out your answers. Not too painful, and when you’re in love with whatever you’re researching, it might even be fun.

      The Takeaway When you have a question, ask it. When you’re genuinely interested in something, keep asking questions and finding answers. When you have a task at hand, take a second to think realistically about the information you’ll need to accomplish that task. You don’t need a peer-reviewed article to find out if praying mantises eat their mates, but you might if you want to find out why.

      Ask Yourself What's the last thing you looked up on Wikipedia? Did you stop when you found an answer, or did you click on another link and another link until you learned about something completely different? If you can't remember, try it now! Search for something (like a favorite book or tv show) and click on linked words and phrases within Wikipedia until you learn something new! What was the last thing you researched that you were really excited about? Do you struggle when teachers and professors tell you to "research something that interests you"? Instead, try asking yourself, "What makes me really angry?" You might find you have more interests than you realized!

      Scholarship as Conversation We've made it friends! My favorite frame: Scholarship as Conversation. Is it weird to have a favorite frame of information literacy? Probably. Am I going to talk about it anyway? You betcha!

      What does "Scholarship as Conversation" mean? Scholarship as conversation refers to the way scholars reference each other and build off of one another’s work, just like in a conversation. Have you ever had a conversation that started when you asked someone what they did last weekend and ended with you telling a story about how someone (definitely not you) ruined the cake at your mom's dog's birthday party? And then someone says, “but like I was saying earlier…” and they take the conversation back to a point in the conversation where they were reminded of a different point or story? Conversations aren’t linear, they aren’t a clear line to a clear destination, and neither is research. When we respond to the ideas and thoughts of scholars, we’re responding to the scholars themselves and engaging them in conversation.

      Why do I Love this Frame so Much? Let me count the ways. Reason 1 I really enjoy the imagery of scholarship as a conversation among peers. Just a bunch of well-informed curious people coming together to talk about something they all love and find interesting. I imagine people literally sitting around a big round table talking about things they’re all excited about and want to share with each other! It’s a really lovely image in my head. Eventually the image kind of reshapes and devolves into that painting of dogs playing poker, but I love that image too! Reason 2 It harkens back to pre-internet scholarship, which sound excruciating and exhausting, but it was all done for the love of a subject! Scholars used to literally mail each other manuscripts seeking feedback. Then, when they got an article published in a journal, scholars interested in the subject would seek out and read the article in the physical journal it was published in. Then they’d write reviews of the article, praising or criticizing the author’s research or theories or style. As the field grew, more and more people would write and contribute more articles to criticize and praise and build off of one another. So for example, if I wrote an article that was about Big Foot and then Joe wrote an article saying, “Emily’s article on Big Foot is garbage, here’s what I think about Big Foot,” Sam and I are now having a conversation. It’s not always a fun one, but we’re writing in response to one another about something we’re both passionate about. Later, Jaiden comes along and disagrees with Joe and agrees with me (because I’m right) and they cite both me and Joe. Now we’re all three in a conversation. And it just grows and grows and more people show up at the table to talk and contribute, or maybe just to listen. Reason Three You can roll up to the table and just listen if you want to. Sometimes we’re just listening to the conversation. We’re at the table, but we’re not there to talk. We’re just hoping to get some questions answered and learn from some people. When we’re reading books and articles or listening to podcasts or watching movies, we’re listening to the conversation. You don’t have to do groundbreaking research to be part of a conversation. You can just be there and appreciate what everyone’s talking about. You're still there in the conversation. Reason Four You can contribute to the conversation at any time. The imagery of a conversation is nice because it’s approachable, just pull up a chair and start talking. With any new subject, you should probably listen a little at first, ask some questions, and then start giving your own opinion or theories, but you can contribute at any time. Since we do live in the age of internet research, we can contribute in ways people 50 years ago never dreamed of! Besides writing essays in class (which totally counts because you’re examining the conversation and pulling in the bits you like and citing them to give credit to other scholars), you can talk to your professors and friends about a topic, you can blog about it, you can write articles about it, you can even tweet about it (have you ever seen Humanities folk on Twitter? They go nuts on there having actual, literal scholarly conversations). Your ways for engaging are kind of endless! Reason Five Yep, I'm listing reasons. Conversations are cyclical. Like I said above, they're not always a straight path and that’s true of research too. You don’t have to engage with who spoke most recently, you can engage with someone who spoke ten years ago, someone who spoke 100 years ago, you can respond to the person who started the conversation! Jump in wherever you want. And wherever you do jump in, you might just change the course of the conversation. Because sometimes we think we have an answer, but then something new is discovered or a person who hadn’t been at the table or who had been overlooked says something that drastically impacts what we knew, so now we have to reexamine it all over again and continue the conversation in a trajectory we hadn’t realized was available before. Reason Six Lastly, this frame is about sharing and responding and valuing one another’s work. If Joe, my Big Foot nemesis, responds to my article, they're going to cite me. If Jaiden then publishes a rebuttal, they're going to cite both Joe and me, because fair is fair. This is for a few reasons: 1) even if Jaiden disagrees with Joe’s work, they respect that Joe put effort into it and it’s valuable to them. 2) When Jaiden cites Joe, it means anyone who jumps into the conversation at the point of Jaiden's article will be able to backtrack and catch up using Jaiden's citations. A newcomer can trace it back to Joe’s article and trace that back to mine. They can basically see a transcript of the whole conversation so they can read Jaiden’s article with all of the context, and they can write their own well-informed piece on Big Foot.

      The Takeaway There’s a lot to take away from this frame, but here’s what I think is most important: Be respectful of other scholars’ work and their part in the conversation by citing them. Start talking whenever you feel ready, in whatever platform you feel comfortable. And finally, make sure everyone who wants to be at the table is at the table. This means making sure information is available to those who want to listen and making sure we lift up the voices that are at risk of being drowned out.

      Ask Yourself What scholarly conversations have you participated in recently? Is there a Reddit forum you look in on periodically to learn what's new in the world of cats wearing hats? Or a Facebook group on roller skating? Do you contribute or just listen?<br /> Think of a scholarly conversation surrounding a topic-- sharks, ballet, Game of Thornes. Who's not at the table? Whose voice is missing from the conversation? Why do you think that is?

      Searching as Strategic Exploration You've made it! We've reached the last frame: Searching as Strategic Exploration. “Searching as Strategic Exploration” addresses the part of information literacy that we think of as “Research.” It deals with the actual task of searching for information, and the word “Exploration” is a really good word choice, because it’s evocative of the kind of struggle we sometimes feel when we approach research. I imagine people exploring a jungle, facing obstacles and navigating an uncertain path towards an ultimate goal (note: the goal is love and it was inside of us all along). I also kind of imagine all the different Northwest Passage explorations, which were cool in theory, but didn’t super-duper work out as expected. But research is like that! Sometimes we don’t get where we thought we were headed. But the good news is this: You probably won’t die from exposure or resort to cannibalism in your research. Fun, right?

      Step 1: Identify a Goal The first part of any good exploration is identifying a goal. Maybe it’s a direct passage to Asia or the diamond the old lady threw into the ocean at the end of Titanic. More likely, the goal is to satisfy an information need. Remember when we talked about "Research as Inquiry?" All that stuff about paw patrol and Madonna's skin care regimen? Those were examples of information needs. We’re just trying to find an answer or learn something new. So great! Our goal is to learn something new. Now we make a strategy.

      Step 2: Make a Strategy For many of your information needs you might just need to Google a question. There’s your strategy: throw your question into Google and comb through the results. You might limit your search to just websites ending in .org, .gov, or .edu. You might also take it a step further and, rather than type in an entire question fully formed, you just type in keywords. So “Who is the guy who invented mayonnaise?” becomes “mayonnaise inventor.” Identifying keywords is part of your strategy and so is using a search engine and limiting the results you’re interested in.

      Step 3: Start Exploring Googling “mayonnaise inventor” probably brings you to Wikipedia where we often learn that our goals don’t have a single, clearly defined answer. For example, we learn that mayonnaise might have gotten its name after the French won a battle in Port Mahon, but that doesn't tell us who actually made the mayonnaise, just when it was named. Prior to being named, the sauce was called “aioli bo” and was apparently in a Menorcan recipe book from 1745 by Juan de Altimiras. That’s great for Altimiras, but the most likely answer is that mayonnaise was invented way before him and he just had the foresight to write down the recipe. Not having a single definite answer is an unforeseen obstacle tossed into our path that now affects our strategy. We know we have a trickier question than when we first set sail. But we have a lot to work with! We now have more keywords like Port Mahon, the French, and Wikipedia taught us that the earliest known mention of “mayonnaise” was in 1804, so we have 1804 as a keyword too. Let’s see if we can find that original mention. Let’s take our keywords out of Wikipedia where we found them and voyage to a library's website! At my library we have a tool that searches through all of our resources. We call it the "Quick Search." You might have a library available to you, either at school, on a University's campus, or a local public library. You can do research in any of these places! So into the Quick Search tool (or whatever you have available to you) go our keywords: 1804, mayonnaise, and France. The first result I see is an e-book by a guy who traveled to Paris in 1804, so that might be what we’re looking for. I search through the text and I do, in fact, find a reference to mayonnaise on page 99! The author (August von Kotzebue) is talking about how it’s hard to understand menus at French restaurants, for “What foreigner, for instance, would at first know what is meant by a mayonnaise de poulet, a galatine de volaille, a cotelette a la minute, or even an epigramme d’agneau?” He then goes on to recommend just ordering the fish, since you’ll know what you’ll get (Kotzebue, 99).<br /> So that doesn't tell us who invented mayonnaise, but I think it's pretty funny! So I’d call that detour a win.

      Step 4: Reevaluate When we hit ends that we don’t think are successful, we can always retrace our steps and reevaluate our question. Dead ends are a part of exploration! We’ve learned a lot, but we’ve also learned that maybe “who invented mayonnaise?” isn’t the right question. Maybe we should ask questions about the evolution of French cuisine or about ownership of culinary experimentation. I’m going to stick with the history or mayonnaise, for just a little while longer, but my “1804 mayonnaise france” search wasn’t as helpful as I’d hoped, so I’ll try something new. Let’s try looking at encyclopedias. I searched in a database called Credo Reference (which is a database filled with encyclopedia entries) and just searching “mayonnaise.” I can see that the first entry, “Minorca or Menorca” from The Companion to British History, doesn’t initially look helpful, but we’re exploring, so let’s click on it! It tells us that Mayonnaise was invented in 1756 by a French commander’s cook and its name comes from Port Mahon where the French fended off the British during a siege (Arnold-Baker, 2001). That’s awesome! It’s what Wikipedia told us! But let’s corroborate that fact. I click on The Hutchinson Chronology of World History entry for 1756 which says mayonnaise was invented in France in 1756 by the duc de Richelieu (Helicon, 2018). I’m not sure I buy it. I could see a duke’s cook inventing mayonnaise, but I have a hard time imagining a duke and military commander taking the time to create a condiment.<br /> But now I can go on to research the duc de Richelieu and his military campaigns and his culinary successes! Just typing “Duke de Richelieu” into the library’s Quick Search shows me a TON of books (16,742 as of writing this) on his life and he influence on France. So maybe now we’re actually exploring Richelieu or the intertwined history of French cuisine and the lives of nobility.

      What Did We Just Do? Our strategy for exploring this topic has had a lot of steps, but they weren't random. It was a wild ride, but it was a strategic one. Let’s break the steps down real quick: We asked a question or identified a goal We identified keywords and googled them We learned some background information and got new keywords from Wikipedia and had to reevaluate our question We followed a lead to a book but hit a dead end when it wasn’t as useful as we’d hoped We identified an encyclopedia database and found several entries that support the theory we learned in Wikipedia which forced us to reevaluate our question again We identified a key player in our topic and searched for him in the library’s Quick Search tool and the resources we found made us reevaluate our question yet again! Other strategies could include looking through an article’s reference list, working through a mind map, outlining your questions, or recording your steps in a research log so you don’t get lost-- whatever works for you!

      The Takeaway Exploration is tricky. Sometimes you circle back and ask different questions as new obstacles arise. Sometimes you have a clear path and you reach your goal instantly. But you can always retrace your steps, try new routes, discover new information, and maybe you’ll get to your destination in the end. Even if you don't, you've learned something. For instance, today we learned that if you can’t understand a menu in French, you should just order the fish.

      Ask Yourself Where do you start a search for information? Do you start in different places when you have different information needs? If your research questions was, "What is the impact of fast fashion on carbon emissions?" what keywords would you use to start searching?

      Wrap Up The Framework for Information Literacy in Higher Education is heck of a document. It's complicated, its frames intertwine, it's written in a way that can be tricky to understand. But essentially, it's just trying to get us to understand that the ways we interact with information are complicated and we need to think about our interactions to make sure we're behaving in an ethical and responsible way. Why do your professors make you cite things? Because those citations are valuable to the original author, and they prove your engagement with the scholarly conversation. Why do we need to hold space in the conversation for voices that we haven't heard from before? Because maybe no one recognized the authority in those voices before. The old process for creating information shut out lots of voices while prioritizing others. It's important for us to recognize these nuances when we see what information is available to us and important for us to ask, "whose voice isn't here? why? am I looking hard enough for those voices? can I help amplify them?" And it's important for us to ask, "why is the loudest voice being so loud? what motivates them? why should I trust them over others?" When we think critically about the information we access and the information we create and share, we're engaging as citizens in one big global conversation. Making sure voices are heard, including your own voice, is what moves us all towards a more intelligent and understanding society. Of course, part of thinking critically about information means thinking critically about both this Guide and the Framework. Lots of people have criticized the Framework for including too much library jargon. Other folks think the Framework needs to be rewritten to explicitly address how information seeking systems and publishing platforms have arisen from racist, sexist institutions. We won’t get into the criticisms here, but they're important to think about. You can learn more about the criticism of the Framework in a blog post by Ian Beilin, or you can do your own search for criticism on the Framework to see what else is out there and form your own opinions.

      The Final Takeaway Ask questions, find information, and ask questions about that information.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The authors use Dyngo-4a, a known Dynami inhibitor to test its influence on caveolar assembly and surface mobility. They investigate, whether it incorporates into membranes with Quartz-Crystal Microbalance, they investigate how it is organized in membranes using simulations. Finally, they use lipid-packing sensitive dyes to investigate lipid packing in the presence of Dyngo-4a, membrane stiffness using AFM and membrane undulation using fluorescence microscopy. They also use a measure they call "caveola duration time" to claim that something happens to caveolae after Dyngo-4a addition and using this parameter, they do indeed see an increase in it in response to Dyngo-4a, which is reduced back to the baseline after addition of cholesterol.

      Overall, the authors claim: 1) Dyngo-4a inserts into the membrane and this 2) results in "a dramatic dynamin-independent inhibition of caveola scission". 3) Dyngo-4a was inserted and positioned at the level of cholesterol in the bilayer and 4) Dyngo-4a-treatment resulted in decreased lipid packing in the outer leaflet of the plasma membrane 5) but Dyngo-4a did not affect caveola morphology, caveolae- associated proteins, or the overall membrane stiffness 6) acute addition of cholesterol counteracts the block in caveola scission caused by Dyngo-4a

      Overall, in this reviewers opinion, claims 1, 3, 4, 5 are well-supported by the presented data from electron and live cell microscopy, QCM-D and AFM. However, there is no convincing assay for caveolar endocytosis presented besides the "caveola duration" which although unclearly described seems to be the time it takes in imaging until a caveolae is not picked up by the tracking software anymore in TIRF microscopy. Since the main claim of the paper is a mechanism of caveolar endocytosis being blocked by Dyngo-4a, a true caveolar internalization assays is required to make this claim. This means either the intracellular detection of not surface connected caveolar cargo or the quantification of caveolar movement from TIRF into epifluorescence detection in the fluorescence microscope. Otherwise, the authors could remove the claim and just claim that caveolar mobility is influenced.

      Response: We thank the reviewer for the nice constructive comments, and we very much appreciate the positive critique. We have now included a FRAP experiment of endocytic Cav1-GFP supporting the effect on internalization. In addition, we are currently preforming CTxB HRP experiments to quantify the number of caveolae at PM using EM but due to reasons out of our control we have not managed to finish these on time, they will be included in the manuscript once they are ready in hopefully not too long.

      Reviewer #1 (Significance (Required)):

      A number of small molecule inhibitors for the GTPase dynamics exist, that are commonly used tools in the investigation of endocytosis. This goes as far that the use of some of these inhibitors alone is considered in some publications as sufficient to declare a process to be dynamin-dependent. However, this is not correct, as there are considerable off-target effects, including the inhibition of caveolar internalization by a dynamin-independent mechanism. This is important, as for example the influence of dynamin small molecule inhibitors on chemotherapy resistance is currently investigated (see for example Tremblay et al., Nature Communications, 2020).

      The investigation of the true effect of small molecules discovered as and used as specific inhibitors and their offside effects is extremely important and this reviewer applauds the effort. It is important that inhibitors are not used alone, but other means of targeting a mechanism are exploited as well in functional studies. The audience here thus is besides membrane biophysicists interested in the immediate effect of the small molecule Dyngo-4a also cell biologists and everyone using dynamic inhibitors to investigate cellular function.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      This manuscript uses the small molecule dynamin inhibitors dynasore and dyngo to show that in dynamin triple knockout cells that these inhibitors impact lipid packing and organization in the plasma membrane. Data showing that dyngo affects caveolin dynamics using tirf microscopy is also shown and is interpreted to reflect inhibition of caveolae scission from the membrane.

      This data showing that dyngo and dynasore target membrane order is quite compelling and argues that the effects of these inhibitors is not dynamin specific and that inhibition of endocytosis by these small molecule inhibitors is dynamin-independent. The in vitro and in vivo data they provide is convincing.

      Similarly, the data showing that dynasore and dyngo affect caveolin dynamics and clathrin endocytosis (transferrin) is quite convincing and argues that altered lipid packing is impacting membrane dynamics at the plasma membrane. What is less convincing is the conclusion is that dyngo is preventing caveolae scission from the membrane. Study of caveolae endocytosis is based on a TIRF assay that has inherent limitations: - Caveolae are defined as bright cav1-positive spots in diffraction limited TIRF and their disappearance presumed to be endocytic events. Cav1 spots are presumed to be caveolae but the authors do not consider that they may be flat non-caveolar oligomers. The diffraction limited TIRF approach interprets the large structures as caveolae but evidence to that effect is lacking.

      Response: This is a valid comment and to address this we have now included data showing colocalization of cavin1 and EHD2 to the Cav1-GFP spots. We can however not determine if they are flat or invaginated. We do have extensive experience imaging caveolae using TIRF microscopy and carefully chose cells that display low expression of fluorescently labelled caveolin to avoid non-caveolar structures.

      • The analysis (and the diagram presented in figure 4) considers that caveolae can either diffuse laterally in the membrane or internalize and does not consider that caveolae can flatten and possibly fragment in the membrane. Is it not possible that loss of Cav1 spots is a fragmentation event and not necessarily a scission event?

      Response: This is a good question, yet, fragmentation and disassembly would result in shorter track durations and this is not what is observed in data. We have now also included data showing that cavin1 is persistently associated with the Cav1 spots identified as caveolae during Dyngo-4a treatment indicating that these are caveolae. Furthermore, IF stainings showing colocalization of Cav1GFP with cavin1 or EHD2 after Dyngo-4a treatment have also been added. We have now also expanded on the different interpretations of the data in the results section.

      • The analysis is based on overexpression of Cav1-GFP that may alter the stoichiometry between Cav1 and cavin1 such that while caveolae may be expressed, larger non-caveolar structures may accumulate.

      Response: Yes, this is correct, we have specifically imaged cell expressing low levels of Cav1-GFP to avoid accumulated non-caveolar structures that can be spotted in cells with high expression.

      • Cav1 has been shown to be internalized via the CLIC pathway (Chaudary et al, 2014) and if dyngo is impacting clathrin then maybe it is also impacting CLIC endocytosis and thereby Cav1 endocytosis via this pathway?

      Response: Dyngo-4a has been shown to not affect CLIC endocytosis (McCluskey et al., 2013) and in our data we do not see internalization following Dyngo-4a treatment.

      • The longer Cav1 TIRF track time and shorter displacement with dyngo is consistent with inhibition of caveolae scission. However, as the authors discuss, could not reduced membrane undulations due to dyngo's impact on membrane order be responsible for the longer tracks? Alternatively, perhaps the altered lipid packing is corralling Cav1 movement and reducing non-caveolar Cav1 endocytosis, resulting in shorter tracks of longer duration? The proposed interaction of dyngo with cholesterol could prevent scission but also stabilize large (flat?) Cav1 oligomers in the membrane, perhaps reducing Cav1 oligomer fragmentation.

      Response: We completely agree that membrane undulations contribute to instability of the TIRF-field and therefore disruption of cav1-GFP tracks as we discuss in the results section and have been described in previous work (Larsson et al., 2023). Yet, we have also shown that internalization of caveolae results in shorter tracks (Hubert et al., 2020; Larsson et al., 2023; Mohan et al., 2015). Furthermore, the tracked Cav1-GFP spots are persistently positive for cavin1 both with and without Dyngo-4a treatment showing that the majority do not disassemble become internalized by other pathways. Additionally, the added IF stainings after 30 min Dyngo-4a treatment also show that the Cav1-GFP spots remain positive for cavin1 and EHD2 just as ctrl-treated cells.

      My point here is not to discredit the data but only to suggest that the TIRF approach used is an indirect measure of caveolae scission from the membrane that requires substantiation using other approaches.

      Response: We appreciate these comments and have tried to address these by adding new data and discussions on the interpretation of the tracking data in the results section.

      Dyngo is certainly generally affecting lipid packing via cholesterol and thereby affecting Cav1 dynamics in the plasma membrane. The claim of caveolae scission should be qualified and alternative possibilities considered and discussed. If the authors persist in arguing that dyngo is affecting caveolae scission then the effect should be substantiated by accumulation of caveolae by quantitative EM and high spatial and temporal resolution imaging of Cav1 and cavin1 to define the endocytic events. As the latter represents a new, and potentially very challenging, line of experimentation, I would suggest that it is beyond the scope of the current study. As indicated above the additional experiments are not necessary and qualification of the claims would be sufficient.

      -Response: We have now included a FRAP experiment of endocytic Cav1-GFP supporting the effect on internalization. We are also currently preforming CTxB HRP experiments to quantify the number of caveolae at the PM using EM but due to reasons out of our control we have not managed to finish these on time, they will be included in the manuscript once they are ready in hopefully not too long.

      Other points

      Figure 1C - Cav1 positive spots cannot be interpreted to be caveolae from diffraction limited confocal images. Same comment applies to Fig 4G - caveola? duration.

      -Response: We completely agree with this and that the claims should be qualified. We have added IF stainings showing that the Cav1-GFP structures are also positive for cavin1. We have now clarified that we cannot distinguish between flat or different curved states of caveolae using this methodology. We have also changed the labelling of Fig. 4G.

      Figure 4C - it is not clear why this EM data is not quantified - for both the number of caveolae and clathrin coated pits - as this would help clarify the interpretation of the effect reported.

      -Response: We are currently preforming CTxB HRP experiments to quantify the number of caveolae using EM but due to reasons out of our control we have not managed to finish these on time, they will be included in the manuscript once they are ready in hopefully not too long.

      Figure 4D - the AFM experiments should perhaps be repeated as the non-significant effect of dyngo on the Young's modulus may be a result of insufficient n values. -Response: We would like to clarify that to ensure the robustness of our AFM measurements, we performed the experiments with sufficient biological and technical replicates. Specifically, each data point shown in Figure 4D represents a Young’s modulus value averaged from approximately sixty force-distance curves per cell. For each condition, we collected force-distance maps on eight to nine individual cells, obtained from two separate petri dishes per day. We repeated this process on two independent days. In total, we analysed thirty-one cells for the DMSO control and thirty-three cells for the Dyngo-4a treatment. We performed the “student’s t-test with Welch’s correction” to access the statistical significance between the two conditions, as described in the main text. We believe that the sample size and statistical approach are sufficient to support the conclusions presented. Furthermore, we also analysed cell stiffness by calculating the slope of the linear portion of the force-distance curves. This analysis also did not reveal any statistically significant differences between the conditions (data not shown), further supporting our conclusion that Dyngo-4a treatment does not significantly alter the Young’s modulus under our experimental setup (or conditions).

      Reviewer #2 (Significance (Required)):

      This data showing that dyngo and dynasore target membrane order is quite compelling and argues that the effects of these inhibitors is not dynamin specific and that inhibition of endocytosis by these small molecule inhibitors is dynamin-independent. The in vitro and in vivo data they provide is convincing.

      Similarly, the data showing that dynasore and dyngo affect caveolin dynamics and clathrin endocytosis (transferrin) is quite convincing and argues that altered lipid packing is impacting membrane dynamics at the plasma membrane. What is less convincing is the conclusion is that dyngo is preventing caveolae scission from the membrane.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      Larsson et al present experimental and computational data on the role of Dyngo4a (a compound that was developed to inhibit dynamin) on the dynamics of caveolae. The manuscript mostly documents effects of Dyngo on caveolae, with one experiment to suggest a mechanism for this result. This one rather unconvincing result forms the focus of the manuscript contributing to a disconnect between the data and the presentation. Additionally, there are concerns with data interpretation. The writing could also benefit from revision to address grammar mistakes, strengthen referencing, and increase precision. Overall, the manuscript requires substantial revisions before being considered for publication. The central claim, in particular, needs stronger evidence to support the proposed mechanism. -Response: We thank the reviewer for the thorough review and for experimental suggestions that we believe has strengthened our data further.

      Significant issues (in approximate order of importance): 1. The data supporting the central mechanistic explanation appears limited. There is no evidence that Dyngo remains in one leaflet

      Response:The simulations show that the energy barrier for moving in between bilayers is very high. Furthermore, simulations of C-Laurdan has shown that it does not readily flip in between membrane leaflets (Barucha-Kraszewska et al., 2013) supporting that it reports on the outer lipid leaflet when added to cells. We have however now changed this and state that Dyngo-4a decreased the lipid order in the plasma membrane.

      the GP of the PM is very low compared to previous measurements,

      Response: The absolute GP-values will vary between setups depending on what filters are used so they are not comparable between laboratories. What is of importance is that we found a significant change in the relative GP-values in cells treated with Dyngo-4a and control cells. It is this change that we report. We have not performed any GP-measurements on this cell type earlier so it is unclear what previous measurements reviewer #3 are referring to.

      effects on other membranes are not explored,

      Response: The order of the intracellular membranes is as expected lower than that of the plasma membrane. Differentiating different intracellular membranes of interest like endocytotic vesicles from other intracellular membranes would be very difficult but, more importantly, our study is focused on what is happening in the plasma membrane where caveolae reside and would be of minor interest for plasma membrane dynamics.

      dynamin-directed effects of Dyngo are not considered,

      Response: In the discussion section we discuss the difficulties with disentangling dynamin-direct and indirect effects.

      The QCM-D measurements and claims require explanation as several aspects remains unclear. In Fig S2, the 'softness' (what does this mean?) changes by 4-fold with DMSO alone (what does this mean?), then fractionally more with Dyngo. Then fractionally more again when Dyngo is removed (why?). Then it remains somewhat higher when both Dyngo and DMSO are removed, which is somehow interpreted as Dyngo remaining in the bilayer, but not DMSO.

      Response:We understand the confusion of the reviewer and hope our explanations provide clarity. QCM-D measurements are based on an oscillating quartz crystal sensor. Specifically, alterations in oscillation frequency (ΔF) and the rate of energy dissipation from the sensor surface (ΔD) are what is measured. Allowing the measurement of: 1) materials adsorbing to the sensor surface, 2) changes in the viscoelastic properties of a solution in contact with the sensor surface, 3) changes in the material adsorbed to the sensor surface upone exposure to different solutions. The ratio of ΔD/-ΔF reports the mechanical softness or rigidity of an adsorbed material, in this case the SLB.A “buffer shift” is the term used when there is not an adsorption to the sensor surface, but rather an effect from altering the solution above the sensor surface. One reason is because different solutions can have different densities (e.g., a DMSO-buffer mixture vs buffer alone), which impacts the oscillations of the sensor. It was observed that the DMSO-buffer mixture alone gave a large buffer shift in comparison to the adsorption of the Dyngo-4a into the SLB, thereby muddling the data interpretation. Thus, in Fig. S2 the system was first equilibrated with the DMSO-buffer mixture prior to addition of the Dyngo-4a solution to allow for clearer visualization of the two events. In QCMD to assess if something has made a permeant change to the system you change back to the solutions used before the addition, thus first we washed with a DMSO-Buffer mixture followed by buffer alone. Control experiments were carried out in which no Dyngo-4a was added (also shown in Fig. S2). The control shows the same “buffer shift” from the DMSO-buffer mixture occurs in both systems and that upon returning to a buffer only condition there is no permanent change to the system caused from exposure to the DMSO. In contrast, once the system that received Dyngo-4a is changes back to a buffer only system we see that mass has been added to the system (ΔF) with little change to the dissipation (ΔD), thereby resulting in a lower ratio of ΔD/-ΔF, which is to say that the SLB after the adsorption of Dyngo-4a was more rigid that the SLB without Dyngo-4a.

      These interpretations are difficult to grasp, as the authors seem to be implying simple amphiphilic partitioning into the membrane, which should all be removable by efficient washing.

      Response: Amphiphilic partitioning is not fully reversible by “efficient washing” it depends on partitioning coefficients.

      I do not doubt that this compound interacts with membranes, but the quantifications appear ambiguous. A bilayer with 16 mol% (or worse, 30% if all in one leaflet) Dyngo is very unlikely (to remain a bilayer). Even if such a bilayer was conceivable, the authors are claiming an ADDITION of Dyngo that would INCREASE the area of one leaflet by 30%, which needs explanation as it appears unlikely.

      -Response: We understand that in our attempt provide numbers in the results section for the amount of binding observed in QCM-D, this can easily be interpreted as this is what is observed to insert into the PM. However, as discussed in the discussion, we also see aggregations of Dyngo-4a that associate with the membrane in the simulations which likely could contribute to the binding observed in QCM-D prior to washing. The precise amount of membrane inserted Dyngo-4a is difficult to measure as we discuss in the text. In order to make this clearer, we have now moved all these details to the discussion section where we elaborate on this. Furthermore, since Dyngo-4a, like cholesterol, is intercalating in between the head groups of the lipids the area would not increase in direct proportion to the mol%.

      Also, there are no replicates shown, so unclear how reproducible these effects are?

      Response: For clarity, only single experiments are shown. However, multiple experiments were performed and the range in measured values for 3 technical repeats can be observed in the standard deviations found in the main text (e.g., 6 ± 2 mol%).

      The simulations are insufficiently described and difficult to interpret. How big are these systems? Why do the figures show the aqueous system with lateral boundaries?

      Response: There are no explicit boundaries used in the simulations, periodic boundary conditions are applied in all three dimensions. The lateral boundaries observed in the figures correspond to the simulation box edges and are a visual artifact of 2D projections with QuickSurf representation. No artificial wall or constraints were introduced laterally. Additional technical details, including the system size and periodic boundary conditions have now been added to the methods section.

      It seems quite important that multiple Dyngo molecules aggregate rather than partition into membranes - is this likely to occur in experiment?

      Response: Yes, this is important and with the additional simulation experiments suggested by Reviewer #3 it has been clarified that they contribute a great deal to the change in lipid packing of lipid bilayers containing cholesterol. However, it is hard to test aggregation is the cellular system, but we believe that this happens and contribute to the effect on membranes. We have now emphasized the effect of the aggregates in the text.

      PMF simulations are strongly suggesting that Dyngo does not spontaneously cross membranes, which is inconsistent with its drug-like amphiphilicity (cLogP~2.5 is optimally suited for membrane permeation) and known effects on intracellular proteins. This suggests an artefact in these PMFs.

      Response:As stated in the submitted version of the manuscript, logP was used to validate the topology and the observed value was in a very good agreement with cLogP. Moreover, this validation complemented the standard procedure of CHARMM-GUI ligand modelling, that provided a reasonable penalty score (around 20) for the Dyngo-4a topology. POPC and cholesterol molecules are standard in the force field and validated by numerous studies. The parameters used for the membrane simulations and AWH in particular are very common for this type of studies. Thus, we do not see what may cause any artifacts in the free energy profile construction. In fact, amphiphilicity of the molecule may be one of the key reasons that Dyngo-4a molecule remains at the aqueous interface of the membrane and does not cross the membrane spontaneously. Also, we believe that the energy barrier of 40-60 kJ/mol is not prohibitively high and Dyngo-4a molecules may still overcome the barrier eventually, though we expect majority to reside in the upper leaflet*. *

      The authors should experimentally measure the permeation of Dyngo through bilayers (or lack thereof), to more robustly support their finding that Dyngo does not cross membranes spontaneously.

      -Response: We thank the reviewer for the suggestion, however this if very technically challenging and would require establishment of precise systems which is beyond the scope of this manuscript.

      Why not measure effect of Dyngo on lipid packing directly and more broadly in model membranes?

      -Response: With the added modelling experiments supporting the previous simulations and the calculated GP values from the C-Laurdan experiments on cellular plasma membrane, we do not find it necessary to include more model membranes experiments than the already existing ones on lipid monolayers and supported lipid bilayers.

      Statistics should not be done on individual cells (n>26), but rather on independent experiment (N=3?)

      -Response: We have performed the statistics on live cell particle tracking according to previous literature on similar systems (Boucrot et al., 2011; Larsson et al., 2023; Shvets et al., 2015; Stoeber et al., 2012).

      Fig 1G is important but rather unclear. Firstly, these kymographs are an odd way to show that the caveolae are not moving. More importantly, caveolae in normal cells have been shown to be quite stable and immobile (eg doi: 10.1074/jbc.M117.791400), yet here they are claimed to be very mobile.

      -Response: Although this might be an odd and unconventional way to depict dynamic processes, we believe that this is a very illustrative way to show track stability over time in bulk rather than just a kymograph over a few structures in a cell. Furthermore, we are not claiming that caveolae are very mobile but rather the opposite very stable in agreement with previous work (Boucrot et al., 2011; Larsson et al., 2023; Mohan et al., 2015). We have now edited the text to make this even clearer.

      Also, if Dyngo prevents caveolae scission, there should be more of them at the membrane - why no quantification like Fig 1C to show accumulation of caveolae upon Dyngo treatment? Or directly counting caveolae via EM, as in Fig 4C?

      -Response: We are currently preforming CTxB HRP experiments using EM but due to reasons out of our control we have not managed to finish these on time, they will be included in the manuscript once they are ready in hopefully not too long. However, Dynasore has previously been shown, by EM, to increase the number of caveolae at the PM (Moren et al., 2012; Sinha et al., 2011).

      The writing can be made more precise and referencing could be strengthened. Response: The introduction was written in a short format, and we have now extended this and made it more precise. Some examples: (a) 'scissoned' is not a word in English,

      Response: Thanks, we have now changed this.

      (b) what is meant by "Cav1 assembly is driven by high chol content"? There are many types of caveolin assemblies.

      Response: We agree that this can be made more precise and have now clarified this in the introduction.

      (c) "This generates a unique membrane domain with distinct lipid packing and a very high curvature." Unclear what 'this' refers to and there is no reference here, so what is the evidence for either of these claims? Caveolin-8S oligomers are not curved. Perhaps 'this' is caveolae, but they are relatively large and also not very highly curved and I am unaware of measurements of lipid packing therein.

      Response: caveolae are around 50 nm which in biology is a very high curvature of a membrane. It has been extensively proven that caveolae have a distinct lipid composition highly enriched in cholesterol and sphingolipids, which thereby also will generate a unique lipid packing as compared to the surrounding membrane. Yet, the reviewer is correct that lipid packing has not been measured in a caveola for obvious technical challenges. Thus, we have now changed the text to “special lipid composition”.

      The sentence following that one again makes a specific, but unreferenced, claim. (d) intro claims that lipid packing is critical for fission, but it is unclear quite what is meant by this claim. The references do not help, as they are often about the basic biophysics of lipids, rather than how packing affects fission.

      Response: We have now edited the text.

      (e) intro strongly implies that caveolae remain membrane attached because of stalled scission. How strong is the evidence for this? The fact that EHD2 is at the neck is not definitive,

      Response: We used the term stalled scission to describe that all omega shaped membrane invaginations do not scission in the same automatic way as clathrin coated vesicles. We have now changed this in the text. Caveolae are shown to be released (undergo scission) and be detected as internal caveolae if the protein EHD2 is removed. Hence this must be interpreted as if EHD2 stalls scission. The evidence includes data compiled over the last 12 years from others and us which include for example: 1) Caveolae with EHD2 have a longer duration time (Larsson et al., 2023; Mohan et al., 2015; Moren et al., 2012; Stoeber et al., 2012), Knock down of EHD2 results in more internalized caveolae as measured by CTxB HRP using EM (Moren et al., 2012) and shorter duration time at the PM (Hubert et al., 2020; Larsson et al., 2023; Mohan et al., 2015; Stoeber et al., 2012). 2) EHD2 overexpression results in less internalized caveolae as measured by CTxB HRP using EM (Stoeber et al., 2012). Furthermore, 3) overexpression or acute addition of purified EHD2 via microinjection counteracts lipid induced scission of caveolae and hence result in caveolae stabilization at the PM (Hubert et al., 2020). It is very hard to see that the release and internalization of caveolae could result from anything else than that these have undergone scission. EHD2 has been found around the rim of caveolae (Matthaeus et al., 2022) and overexpression of EHD2 oligomerizing mutants have been shown to expand the caveola neck (Hoernke et al., 2017; Larsson et al., 2023).

      (f) unclear what is meant by 'lipid packing frustration' and how Dyngo supposedly induces it.

      Response: Lipid packing frustration refers to what is usually referred to as lipid packing defect, but since lipid membranes are describe as a fluid system it should not have defects whereby, we believe that lipid packing frustration is more accurate. However, we have now changed the text and use “decreased lipid packing” or “decreased lipid order” more thoroughly to describe the effect on the plasma membrane.

      IF of Cav1 is insufficient to claim puncta as caveolae. Co-stained puncta of caveolin with cavin are much stronger evidence. Same issue for Cav1-GFP puncta.

      Response: We agree and have now provided IF showing cavin1 and EHD2 colocalization to Cav1GFP in non and Dyngo-4a-treated cells.

      Fig 3E claims that "preferred position of Dyngo-4a was closer to the head groups" but the minimum looks to be in similar place as Fig 3B without cholesterol.

      Response:We appreciate the reviewer’s observation. The PMF minima in the POPC and POPC:Chol membranes are indeed close in absolute position (~1.1–1.2 nm from the bilayer center). However, as clarified in the revised text, the presence of cholesterol leads to a slight shift of Dyngo-4a closer to the headgroup region and broadens the positional distribution. This is also evident from the added density profiles (Fig. S3A) and is now described more precisely in the manuscript.

      Critically, these results do not support the notion that Dyngo affects lipid packing sufficiently, which is not measured in the simulations (though could be).

      -Response: We thank the reviewer for the excellent suggestion. In response, we have now included a detailed analysis of Dyngo-4a’s effect on lipid packing in the simulations. As described in the revised manuscript, we measured deuterium order parameters, area per lipid (APL), and lipid–Dyngo–cholesterol spatial distributions (Figs. 3-H, S3C-E). The results demonstrate that Dyngo-4a decreases lipid order in POPC:Chol membranes. Both single molecules and clusters reduce the order parameter by up to 0.04 units, particularly in the upper leaflet, where Dyngo-4a reside.The reduction is most pronounced in the midchain region of the sn1 tail and around the double bond of the sn2 tail. These effects were accompanied by increased APL in POPC:Chol membranes and by colocalization of Dyngo-4a near cholesterol-rich regions. Together, these data confirm that Dyngo-4a perturbs membrane organization and lipid packing in a composition-dependent manner. We believe these additions directly address the concern and demonstrate that the simulations indeed support the conclusion that Dyngo-4a modulates lipid packing.

      Finally, the simulation data do not show "that Dyngo-4a is competing with cholesterol"; it is unclear what 'competition' means in this context, but regardless, the data only shows that Dyngo sits at a similar location as cholesterol.

      We agree with the reviewer that “competition” was an imprecise term. We have rephrased the relevant sections to clarify that Dyngo-4a and cholesterol localize to overlapping regions and exhibit spatial coordination. As now stated in the manuscript, cholesterol appears to partially displace Dyngo-4a from its preferred depth seen in pure POPC, broadens its membrane distribution, and alters lipid packing. According to the order parameters there is an interplay between chol and Dyngo-4a and the heatmaps show that the distribution of chol in the membrane gets less uniform in the presence of Dyngo-4a. These interactions suggest that Dyngo-4a perturbs cholesterol-rich domains.

      As new analysis routines were added to the study, we have now also added the details on those to the Methods section of the text.

      AFM measures the stiffness of the cell (as correctly explained in Results section) not "overall stiffness of the PM" as stated in the Discussion.

      Response: We thank the reviewer for pointing this out, we have now altered this in the discussion section.

      Fig2A: what was the starting lipid surface pressure? How does Dyngo insertion depend on initial lipid packing?

      Response: The starting pressure lipid pressure was 20 mN m-1 which we now have incorporated in the figure legend. We performed several such experiments with a starting pressure ranging from 20-23 mN m-1 showing consistent results which we described in the materials and methods section. Given that we also performed QCMD analysis and simulations on bilayers showing that Dyngo-4a adsorbed and inserted respectively, we have not performed a titration of starting pressures resulting in a MIP of Dygo-4a.

      Fig 4B is a strange approach to measure membrane motion. Why not RMSD or some other displacement based method? As its shown, it implies that the area of the cell changes.

      Response: The method that we used to quantify the area of the cell which is attached (or close to) the glass and thereby is visible in TIRF microscopy. This is area indeed changes over time which has been frequently observed and used to describe and quantify the mobility, lamellipodia and filopodia formation among other things. We agree that RMSD can also be used to analyze the data before and after treatments and we have now included RMSD­­­­ analysis in the manuscript.

      Reviewer #3 (Significance (Required)):

      The title, abstract, and introduction of the manuscript are largely framed around lipid packing, but most of the data investigate other unexpected effects of treating cells with Dyngo4a. The only measurement for lipid packing (or any other membrane properties) is Fig 4E-F. Therefore, this paper is effectively an investigation of an artefact of a common reagent, which itself could be a valuable contribution. However, the mechanism to explain its effect requires stronger evidence, and its broad biological significance needs further exploration.

      Overall, the impact of documenting the effects of Dyngo4a on membranes appears modest but may be valuable to the membrane trafficking community.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Larsson et al present experimental and computational data on the role of Dyngo4a (a compound that was developed to inhibit dynamin) on the dynamics of caveolae. The manuscript mostly documents effects of Dyngo on caveolae, with one experiment to suggest a mechanism for this result. This one rather unconvincing result forms the focus of the manuscript contributing to a disconnect between the data and the presentation. Additionally, there are concerns with data interpretation. The writing could also benefit from revision to address grammar mistakes, strengthen referencing, and increase precision.

      Overall, the manuscript requires substantial revisions before being considered for publication. The central claim, in particular, needs stronger evidence to support the proposed mechanism.

      Significant issues (in approximate order of importance):

      1. The data supporting the central mechanistic explanation appears limited. There is no evidence that Dyngo remains in one leaflet, the GP of the PM is very low compared to previous measurements, effects on other membranes are not explored, dynamin-directed effects of Dyngo are not considered,
      2. The QCM-D measurements and claims require explanation as several aspects remains unclear. In Fig S2, the 'softness' (what does this mean?) changes by 4-fold with DMSO alone (what does this mean?), then fractionally more with Dyngo. Then fractionally more again when Dyngo is removed (why?). Then it remains somewhat higher when both Dyngo and DMSO are removed, which is somehow interpreted as Dyngo remaining in the bilayer, but not DMSO. These interpretations are difficult to grasp, as the authors seem to be implying simple amphiphilic partitioning into the membrane, which should all be removable by efficient washing. I do not doubt that this compound interacts with membranes, but the quantifications appear ambiguous. A bilayer with 16 mol% (or worse, 30% if all in one leaflet) Dyngo is very unlikely (to remain a bilayer). Even if such a bilayer was conceivable, the authors are claiming an ADDITION of Dyngo that would INCREASE the area of one leaflet by 30%, which needs explanation as it appears unlikely. Also, there are no replicates shown, so unclear how reproducible these effects are?
      3. The simulations are insufficiently described and difficult to interpret. How big are these systems? Why do the figures show the aqueous system with lateral boundaries? It seems quite important that multiple Dyngo molecules aggregate rather than partition into membranes - is this likely to occur in experiment? PMF simulations are strongly suggesting that Dyngo does not spontaneously cross membranes, which is inconsistent with its drug-like amphiphilicity (cLogP~2.5 is optimally suited for membrane permeation) and known effects on intracellular proteins. This suggests an artefact in these PMFs. The authors should experimentally measure the permeation of Dyngo through bilayers (or lack thereof), to more robustly support their finding that Dyngo does not cross membranes spontaneously.
      4. Why not measure effect of Dyngo on lipid packing directly and more broadly in model membranes?
      5. Statistics should not be done on individual cells (n>26), but rather on independent experiment (N=3?)
      6. Fig 1G is important but rather unclear. Firstly, these kymographs are an odd way to show that the caveolae are not moving. More importantly, caveolae in normal cells have been shown to be quite stable and immobile (eg doi: 10.1074/jbc.M117.791400), yet here they are claimed to be very mobile. Also, if Dyngo prevents caveolae scission, there should be more of them at the membrane - why no quantification like Fig 1C to show accumulation of caveolae upon Dyngo treatment? Or directly counting caveolae via EM, as in Fig 4C?
      7. The writing can be made more precise and referencing could be strengthened. Some examples: (a) 'scissoned' is not a word in English, (b) what is meant by "Cav1 assembly is driven by high chol content"? There are many types of caveolin assemblies. (c) "This generates a unique membrane domain with distinct lipid packing and a very high curvature." Unclear what 'this' refers to and there is no reference here, so what is the evidence for either of these claims? Caveolin-8S oligomers are not curved. Perhaps 'this' is caveolae, but they are relatively large and also not very highly curved and I am unaware of measurements of lipid packing therein. The sentence following that one again makes a specific, but unreferenced, claim. (d) intro claims that lipid packing is critical for fission, but it is unclear quite what is meant by this claim. The references do not help, as they are often about the basic biophysics of lipids, rather than how packing affects fission. (e) intro strongly implies that caveolae remain membrane attached because of stalled scission. How strong is the evidence for this? The fact that EHD2 is at the neck is not definitive, (f) unclear what is meant by 'lipid packing frustration' and how Dyngo supposedly induces it.
      8. IF of Cav1 is insufficient to claim puncta as caveolae. Co-stained puncta of caveolin with cavin are much stronger evidence. Same issue for Cav1-GFP puncta.
      9. Fig 3E claims that "preferred position of Dyngo-4a was closer to the head groups" but the minimum looks to be in similar place as Fig 3B without cholesterol. Critically, these results do not support the notion that Dyngo affects lipid packing sufficiently, which is not measured in the simulations (though could be). Finally, the simulation data do not show "that Dyngo-4a is competing with cholesterol"; it is unclear what 'competition' means in this context, but regardless, the data only shows that Dyngo sits at a similar location as cholesterol.
      10. AFM measures the stiffness of the cell (as correctly explained in Results section) not "overall stiffness of the PM" as stated in the Discussion.
      11. Fig2A: what was the starting lipid surface pressure? How does Dyngo insertion depend on initial lipid packing?
      12. Fig 4B is a strange approach to measure membrane motion. Why not RMSD or some other displacement based method? As its shown, it implies that the area of the cell changes.

      Significance

      The title, abstract, and introduction of the manuscript are largely framed around lipid packing, but most of the data investigate other unexpected effects of treating cells with Dyngo4a. The only measurement for lipid packing (or any other membrane properties) is Fig 4E-F. Therefore, this paper is effectively an investigation of an artefact of a common reagent, which itself could be a valuable contribution. However, the mechanism to explain its effect requires stronger evidence, and its broad biological significance needs further exploration.

      Overall, the impact of documenting the effects of Dyngo4a on membranes appears modest but may be valuable to the membrane trafficking community.

    1. hydra

      hydra

      English Explanation:

      The term "hydra" can refer to several concepts, but it is most commonly associated with two main contexts: mythology and biology.

      1. Mythological Context: In Greek mythology, the Hydra is a serpentine water monster from the myth of Heracles (Hercules). According to the myth, the Hydra had multiple heads, and for each head that was cut off, two more would grow back in its place. This made the creature extraordinarily difficult to defeat. Heracles was tasked with slaying the Hydra as one of his twelve labors. He ultimately succeeded by cauterizing the necks after decapitating the heads to prevent them from regenerating.

      2. Biological Context: In biology, "hydra" refers to a genus of small, fresh-water organisms known for their regenerative capabilities. These creatures, which belong to the phylum Cnidaria, are found in ponds and streams. Hydras possess tentacles that they use to capture prey and can regenerate lost body parts, making them a subject of scientific interest, especially in studies related to regeneration and cellular biology.

      In both usages, "hydra" symbolizes the idea of resilience, regeneration, and the challenges of overcoming seemingly insurmountable obstacles.


      Chinese Explanation:

      “海德拉”(hydra)这个词可以指代几个概念,但最常见的有两个主要的语境:神话和生物学。

      1. 神话背景: 在希腊神话中,海德拉是一种蛇状的水怪,出现在海克力士(赫拉克勒斯)的传说中。据说,海德拉有多个头,切掉一个头后,又会长出两个新的头来。这让这个生物变得异常困难来战胜。海克力士的十二项任务之一就是杀死海德拉。他最终通过在砍掉头颅后迅速烧灼脖子,防止头部再生,成功地击败了海德拉。

      2. 生物背景: 在生物学中,“海德拉”是指一种小型淡水生物,属于腔肠动物门(Cnidaria),以其再生能力而闻名。这种生物通常在池塘和溪流中发现。海德拉拥有触手,用来捕捉猎物,并且能再生失去的身体部分,这使它成为科学研究中的重要对象,特别是在与再生和细胞生物学相关的研究方面。

      在这两种用法中,“海德拉”都象征着复原力、再生以及克服看似无法逾越的障碍的挑战。

    2. jug-handle ears

      jug-handle ears

      English Explanation

      "Jug-handle ears" is a colloquial term used to describe a specific type of ear shape. The phrase suggests that the ears resemble the handle of a jug, often implying that they are protruding or stick out from the side of the head. This ear shape can be characterized by a prominent or larger outer ear that doesn't lie flat against the head.

      These types of ears can be considered a minor physical characteristic and are generally harmless. However, they might be subjects of teasing or remarks, particularly in children. It’s important to note that diverse ear shapes and sizes exist among individuals, and variations are normal. In some cultures, unique physical traits are celebrated, while in others, they may be the subject of social commentary.

      中文解释

      “Jug-handle ears” 是一个通俗的术语,用来描述一种特定形状的耳朵。这个短语暗示这种耳朵看起来像水壶的把手,通常意味着耳朵突出或从头侧面伸出来。这种耳朵的特征可能表现为较大或明显的外耳,且不贴紧头部。

      这种类型的耳朵被认为是小的身体特征,一般无害。然而,它们可能会成为特别是在儿童中受到取笑或评论的对象。值得注意的是,个体之间存在着不同的耳朵形状和大小,而这些变化都是正常的。在某些文化中,独特的身体特征受到赞赏,而在其他文化中,它们可能成为社交评论的主题。

    3. square up t

      square up t

      The phrase "square up" generally means to confront or face someone or something directly, often in the context of preparing for a challenge or confrontation. It can be used in various contexts, including sports, conflict resolution, or even in a financial context when discussing settling debts or accounts. Here’s a thorough explanation of the term in both English and Chinese.

      English Explanation:

      1. General Meaning: "Square up" means to face someone or something directly and prepare to engage with it. It often implies readiness for a confrontation, either physically (as in a fight) or metaphorically (as in a challenge or disagreement).

      2. Contextual Usage:

        • Physical Confrontation: In a physical context, "to square up" may refer to taking a stance before a fight, indicating that one is ready to defend themselves or engage with an opponent.
        • Metaphorical Confrontation: In non-physical contexts, it can mean addressing issues head-on, such as having an honest discussion about a problem or disagreement.
        • Financial Context: It can also mean to settle debts or obligations, as in "squaring up" one's accounts.
      3. Examples:

      4. "When the argument escalated, he decided it was time to square up and confront his friend."
      5. "After the business dealings, they needed to square up their financial obligations."

      Chinese Explanation:

      1. 基本意思: "Square up" 这个短语通常意味着直接面对某人或某事,并为挑战或对抗做准备。它可以用于多种场合,包括体育、冲突解决,甚至是在讨论清算债务或账目时使用的金融语境。

      2. 语境使用:

        • 身体对抗: 在身体对抗的语境中,“square up”可以指在打斗前采取的姿态,表示一个人准备好防卫自己或与对手对抗。
        • 比喻性对抗: 在非身体的语境中,它可以指直接面对问题,比如就某个问题或分歧进行诚实的讨论。
        • 金融语境: 也可以表示清算债务或义务,比如“做清账”。
      3. 例子:

      4. “当争论升级时,他决定是时候直面并与他的朋友对峙了。”
      5. “在商业交易结束后,他们需要清算财务义务。”

      This explanation illustrates the nuances of the phrase "square up" in both languages, providing clarity on its meanings and uses in different contexts.

    4. gnus

      gnus

      The excerpt you've provided is simply "gnus," which refers to a type of large African antelope also known as wildebeest.

      English Explanation:

      Gnus, pronounced as "nyoos," are part of the Bovidae family and are known for their distinctive appearance. They have a large, robust body with a large head, long legs, and a unique mane that stands upright. There are two main species of gnus: the black wildebeest and the blue wildebeest.

      Gnus are social animals and typically travel in herds. They are primarily grazers, feeding on grasses, and are an important part of the ecosystem as they help maintain the grassland habitat. Their migration patterns are well-known and are often associated with the great migration in Africa, where large numbers of gnus move in search of food and water, facing predators such as lions and crocodiles along the way.

      From a cultural perspective, gnus are often featured in wildlife documentaries and are a popular animal for safari tourism in Africa, making them an important species for conservation efforts.

      Chinese Explanation:

      “gnu”(发音为“牛”)是指一种大型的非洲羚羊,也被称为角马。

      牛是牛科的动物,以其独特的外形而闻名。它们的身体大而健壮,头部大,腿长,并且有一条独特的鬃毛,直立着。牛主要有两种:黑角马和蓝角马。

      牛是一种群居动物,通常成群旅行。它们主要以草为食,是生态系统中重要的一部分,因为它们帮助维持草原栖息地。它们的迁徙模式非常有名,通常与非洲的大迁徙相关,成群的牛为了寻找食物和水源而移动,在途中面临狮子和鳄鱼等掠食者的威胁。

      从文化的角度来看,牛常常出现在野生动物纪录片中,也是非洲游猎旅游中受欢迎的动物,因此它们对保护工作具有重要意义。

    5. harem

      harem

      English Explanation

      The term "harem" originates from the Arabic word "ḥarīm," which refers to the forbidden or sacred space, often associated with the women's quarters in a Muslim household. Historically, the concept of a harem has often been depicted as a domestic space where women, particularly wives and concubines, lived separately from men.

      In many cultures, especially in the context of the Ottoman Empire and other Islamic societies, harems were often associated with wealth, power, and social status. The head of the household, usually a wealthy man, would have multiple wives and sometimes concubines living in the harem. The women in the harem often had specific roles and were a reflection of the man's status in society.

      Over time, the term "harem" has also been applied in broader cultural contexts, often appearing in literature, film, and anime, usually describing a scenario where a single male character is surrounded by multiple female characters, often with romantic or comedic elements.

      Overall, the harem has complex historical and cultural significance, evolving from a private domestic space into a popular trope in contemporary media.


      Chinese Explanation

      “后宫”一词源自阿拉伯语“ḥarīm”,意指禁忌或神圣的空间,通常与穆斯林家庭中的女性居住区相关。历史上,“后宫”这一概念常常被描绘为一个女性生活的家庭空间,特别是妻子和妾侍,通常与男性分开居住。

      在许多文化中,特别是在奥斯曼帝国和其他伊斯兰社会的背景下,后宫常常与财富、权力和社会地位相关联。家庭的主要负责人,通常是一个富有的男性,可能有多个妻子和有时娈媾女性共同生活在后宫。后宫中的女性通常扮演着特定的角色,反映了男性在社会中的地位。

      随着时间的推移,“后宫”这一词汇在更广泛的文化背景中也被应用,常常出现在文学、电影和动漫中,通常描述一个男性角色被多个女性角色包围的情景,常带有浪漫或喜剧元素。

      总体而言,“后宫”具有复杂的历史和文化意义,从一个私人家庭空间演变为当代媒体中流行的一个主题。

    6. duck

      duck

      Certainly! The excerpt you provided is simply the word "duck." Below, I will explain its meanings and implications in both English and Chinese.

      English Explanation:

      The word "duck" has several meanings and uses:

      1. Animal: A duck is a waterfowl that belongs to the family Anatidae. Ducks are commonly found in both freshwater and saltwater environments. They are known for their distinctive waddling walk, webbed feet, and quacking sounds. Ducks are often recognized for their thick bodies, broad heads, and flat bills.

      2. Culinary Use: In culinary terms, "duck" refers to the meat of the duck, which is considered a delicacy in various cuisines around the world. Duck can be prepared in many ways, such as roasting, grilling, or confit.

      3. Action (to duck): As a verb, "to duck" means to lower one’s head or body quickly to avoid something, such as an object or a blow. It is often used in the context of avoiding danger.

      4. Idiomatic Expressions: The word "duck" can appear in idiomatic expressions, such as "duck out of" (to avoid something) or "like water off a duck's back" (to not be affected by something).

      5. Cultural Significance: Ducks are often featured in folklore, literature, and popular culture. They symbolize various traits such as adaptability and resourcefulness.

      Chinese Explanation (中文解释):

      “鸭子”这个词有几个含义和用法:

      1. 动物:鸭子是一种水鸟,属于雁形目(Anatidae)家族。鸭子通常生活在淡水和咸水环境中。它们以独特的摇摆走路、蹼足和嘎嘎叫声而闻名。鸭子通常具有肥厚的身体、宽大的头和扁平的喙。

      2. 烹饪用途:在烹饪中,“鸭子”指的是鸭肉,鸭肉在全球许多美食中被视为美味。鸭子可以通过烘烤、烧烤或腌制等多种方式准备。

      3. 动作(duck):作为一个动词,“duck”意为迅速低下头或身体以避免某物,如物体或击打。它通常用于避免危险的情境中。

      4. 习语:这个词可以出现在习语中,如“duck out of”(逃避某事)或“像水滴在鸭背上一样”(不受某事影响)。

      5. 文化意义:鸭子在民间传说、文学和流行文化中经常出现。它们象征着适应能力和机智。

      In summary, "duck" is a versatile term that can refer to an animal, its meat, an action, or be used idiomatically, and has cultural significance in various contexts.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, Reproducibility, and Clarity)

      Reviewer comment: This is a very well conceived study of responses to plasma membrane stresses in yeast that signal through the conserved TORC2 complex. Physical stress through small molecular intercalators in the plasma membrane is shown to be independent of their biochemistry and then studies for its effect on plasma membrane morphology and the distribution of free ergosterol (the yeast equivalent of cholesterol), with free being the pool of cholesterol that is available to probes and/or sterol transfer proteins. Experiments nicely demonstrate a negative feedback loop consisting of: stress -> increased free sterol and TORC2 inhibition -> activation of LAM proteins (as demonstrated by Relents and co-workers previously) -> removal of free sterol -> return to unstressed state of PM and TORC2.

      Author response: We thank the reviewer for their positive and encouraging feedback. We are pleased to submit our revised manuscript and have addressed all points raised below.

      Comment: Fig 2A: Is detection of PIP/PIP2/PS linear for target, or possibly just showing availability that is increased due to local positive curvature?

      Response: This is an excellent and fundamental question. While FLARE signal likely reflects lipid availability, its detection is indeed influenced by factors such as membrane curvature and lipid composition, due to varying insertion depths of the lipid-binding domains. For example, studies using NMR suggest that the PLCδ PH domain partially inserts into membranes, potentially conferring curvature sensitivity (Flesch et al., 2005; Uekama et al., 2009). Similarly, curvature influences lactadherin binding, though it's unclear if this extends to its isolated C2 domain (Otzen et al., 2012; Shao et al., 2008; Shi et al., 2004). We could not find direct evidence for curvature sensitivity of P4C(SidC), but assume some influence exists.

      To avoid overinterpreting these limitations, we now describe our data based solely on the FLAREs used, rather than inferring enrichment of specific lipid species. We refer to these PM structures as "PI(4,5)P₂-containing", consistent with prior literature (Riggi et al., 2018) and have revised our manuscript accordingly.

      Comment: Can any marker be identified for the D4H spots at 2 minutes? In particular, are they early endosomes (shown by brief pre-incubation with FM4-64)?

      Response: We appreciate the reviewer's suggestion and have now added new data (Fig. S2E-H). We tested colocalization of D4H spots with FM4-64 (early endosomes), GFP-VPS21 (early endosome marker), and LipidSpot{trade mark, serif} 488 (lipid droplets), but found no overlap. This later observation was not unexpected given that D4H does not recognize Sterol esters. D4H foci also did not overlap with ER (dsRED-HDEL), though they were frequently adjacent to it. While their exact identity remains unknown, we agree this is an intriguing direction for future investigation.

      Comment: Is there any functional (& direct) link between Arp inhibition (as in the Pombe study of LAMs by the lab of Sophie Martin) and PM disturbance by amphipathic molecules?

      Response: We have explored this connection and now present new data (see final paragraph of Results). Briefly, we show that CK-666 induces internalization of PM sterols in a Lam2/4-dependent manner, and that TORC2 activity is more strongly reduced in lam2Δ lam4Δ cells compared to WT. These findings support the idea that, like PalmC, Arp2/3 inhibition triggers a PM stress that is counteracted by sterol internalization.

      Minor Comment: Fig 2A: Labels not clear. Say for each part what FP is used for pip2.

      Response: As noted above, we revised image labels to clarify which FLAREs were used, and refer to data accordingly throughout.

      Minor Comment: Move fig s2d to main ms. The 1 min and 2 min data are integral to the story.

      Response: We agree and have incorporated the 1-min and 2-min data into the main figures. Vehicle-treated controls were moved to Fig. S2.

      Minor Comment: The role of Lam2 and Lam4 in retrograde sterol transport has in vivo only been linked to one of their two StART domains not both, as mentioned in the text.

      Response: Thank you for pointing this out. We have corrected the text to:

      "[...]Lam2 and Lam4[...] contain two START domains, of which at least one has been demonstrated to facilitate sterol transport between membranes (Gatta et al., 2015; Jentsch et al., 2018; Tong et al., 2018)."

      Minor Comment: Throughout, images of tagged D4H should be labelled as such, not as "Ergosterol".

      Response: We have updated all relevant figure labels and text to refer to "D4H" rather than "Ergosterol", in line with this recommendation.

      Reviewer #1 (Significance):

      These results in budding yeast are likely to be directly applicable to a wide range of eukaryotic cells, if not all of them. I expect this paper to be a significant guide of research in this area. The paper specifically points out that the current experiments do not distinguish the precise causation among the two outcomes of stress: increased free sterol and TORC2 inhibition. Of these two outcomes which causes which is not yet known. If data were added that shed light on this causation that would make this work much more signifiant, but I can understand 100% that this extra step lies beyond - for a later study for which the current one forms the bedrock.

      Response:

      We thank the reviewer for their generous assessment. We agree that understanding the causality between increased free sterol and TORC2 inhibition is a critical next step.

      Based on our current data, we believe the increase in free ergosterol precedes TORC2 inhibition. For example, TORC2 inhibition alone (e.g., via pharmacological means) does not initially increase free sterol, while it does enhance Lam2/4 activity, promoting sterol internalization (Fig. 3A). Baseline TORC2 activity also inversely correlates with free PM sterol levels in lam2Δ lam4Δ versus LAM2T518A LAM4S401A cells (Figs. 2D, S2C).

      Additionally, during sterol depletion, we observe an initial increase in TORC2 activity before growth inhibition occurs, after which activity declines-likely due to compromised PM integrity (Fig. S2M). We now also show that adaptation to several other stresses (e.g., osmotic shock, heat shock, CK-666) partially depends on sterol internalization, which correlates with TORC2 activation (Fig. 4, S4B).

      While these findings strengthen the model that PM stress perturbs sterol availability and secondarily impacts TORC2, we cannot yet definitively demonstrate causality. As suggested by Reviewer 3, we tested cholesterol-producing yeast (Souza et al., 2011), but found their response to PalmC indistinguishable from WT, making it difficult to draw mechanistic conclusions (Rebuttal Fig. 2).

      Taken together, we favour a model where sterols affect PM properties sensed by TORC2, probably lipid-packing, rather than acting as direct effectors. We hope our revised manuscript more clearly conveys this model and serves as a strong foundation for future mechanistic studies.

      Reviewer #2 (Evidence, Reproducibility, and Clarity)

      Reviewer comment: This manuscript describes multiple effects of positively-charged membrane-intercalating amphipaths (palmitoylcarnitine, PalmC, in particular) on TORC2 in yeast plasma membranes. It is a "next step" in the Loewith laboratory's characterization of the effect of this agent on this system. The study confirms the findings of Riggi et al.(2018) that PalmC inhibits TORC2 and drives the formation of membrane invaginations that contain phosphatidylinositol-bis-phosphate (PIP2) and other anionic phospholipids. It also demonstrates that PalmC intercalates into the membrane, acts directly (rather than through secondary metabolism) and is representative of a class of cationic amphipaths. The interesting finding here is that PalmC causes a rapid initial increase in the plasma membrane ergosterol accessible to the DH4 sterol probe followed by a decrease caused by its transfer to the cytoplasm through its transporter, LAM2/4. TORC2 is implicated in these processes. Loewith et al. have pioneered in this area and this study clearly shows their expertise. Several of the findings reported here are novel. However, I am concerned that PalmC may not be revealing the physiology of the system but rather adding tangential complexity. (This concern applies to the precursor studies using PalmC to probe the TORC2 system.) In particular, I am not confident that the data justify the authors' conclusions "...that TORC2 acts in a feedback loop to control active sterol levels at the PM and [the results] introduce sterols as possible TORC2 signalling modulators."

      Author response:

      We thank Reviewer #2 for the constructive and critical evaluation of our work. We appreciate the acknowledgment of the novelty and technical strength of several of our findings, and we understand the concern that PalmC could be eliciting non-physiological effects. Our study was designed precisely to use PalmC and similar membrane-active amphipaths as tools to strongly perturb the plasma membrane (PM) in a controlled and tractable way. We now state this intention explicitly in both the Introduction and Discussion sections. To address concerns about the specificity and physiological relevance of PalmC, we have expanded our dataset to include additional PM stressors (hyperosmotic shock, Arp2/3 inhibition, and heat shock), all of which reproduce key features observed with PalmC-namely, TORC2 inhibition, PM invaginations, and retrograde sterol transport (Fig. 4, S4).

      We hope this more comprehensive dataset, along with revised discussion and clarified claims, addresses the reviewer's concerns regarding physiological interpretation and artifact.

      Major issues 1 and 2: 1. The invaginations induced by PalmC may not be physiologic but simply the result of the well-known "bilayer couple" bending of the bilayer due to the accumulation of cationic amphipaths in the inner leaflet of the plasma membrane bilayer which is rich in anionic phospholipids. Such unphysiological effects make the observed correlation of invagination with TORC2 inhibition etc. hard to interpret.

      Electrostatic/hydrophobic association of PIP2 with PalmC could sequester the anionic phospholipid(s). Such associations could also drive the accumulation of PIP2 in the invaginations. This could explain PalmC inhibition of TORC2 through a simple physical rather than biological process. So, it is difficult to draw any physiological conclusion about PIP2 from these experiments.

      Response to major issues 1 and 2:

      We agree that amphipath-induced bilayer stress, including via the bilayer-couple mechanism, may contribute to PM curvature changes. However, the reviewer's assumption that PalmC inserts preferentially into the inner leaflet appears inconsistent with both literature and our observations. PalmC is zwitterionic, not cationic, and is unlikely to electrostatically sequester anionic lipids such as PIP2. For clarification, we included a short summary of our proposed mechanism of PalmC in the context of the current literature in our Discussion:

      "[...] study it was also demonstrated that addition of phospholipids to the outer PM leaflet causes an excess of free sterol at the inner PM leaflet, and its subsequent retrograde transport to lipid droplets (Doktorova et al., 2025). Although we cannot exclude that it is the substrate of a flippase or scramblase, PalmC is not a metabolite found in yeast, nor, given its charged headgroup, is it likely to spontaneously flip to the inner leaflet (Goñi, Requero and Alonso, 1996). Thus, we propose that PalmC accumulates in the outer leaflet, disrupts the lipid balance with the inner leaflet which is, similarly to the mammalian cell model (Doktorova et al., 2025), rectified by sterol mobilization, flipping and internalization (Fig. 5B)."

      While we agree that PM invaginations per se are not the central focus of this study, they are indeed a reproducible and biologically intriguing phenomenon. We emphasize that similar invaginations occur not only during PalmC treatment but also in response to other physiological stresses, such as hyperosmotic shock and Arp2/3 inhibition (Fig. 4), and have been reported independently by others (Phan et al., 2025). Furthermore, related structures have been documented in yeast mutants with altered PIP2 metabolism or TORC2 hyperactivity (Rodríguez-Escudero et al., 2018; Sakata et al., 2022; Stefan et al., 2002), and even in mammalian neurons with SJ1 phosphatase mutations (Stefan et al., 2002). These observations support our interpretation that the observed invaginations represent an exaggerated manifestation of a physiologically relevant stress-adaptive process. In our previous study we indeed proposed that PI(4,5)P2 enrichment in PM invaginations was important for PalmC-induced TORC2 inactivation, using the heat sensitive PI(4,5)P2 kinase allele mss4ts - a rather blunt tool (Riggi et al., 2018). We have now come to the conclusion that different mechanisms other than, or in addition to, PIP2 changes drive TORC2 inhibition in our system. In this study, we use the 2xPH(PLC) FLARE exclusively as a generic PM marker, not as a readout of PIP2 biology. Rather, we propose that sterol redistribution and/or the biophysical impact that this has on the PM are central drivers, with TORC2 acting as a signaling node that senses and adjusts PM composition accordingly.

      We now clarify these arguments in the revised Discussion and have reframed our use of PalmC as a probe to explore the capacity of the PM to adapt to acute stress via dynamic lipid rearrangements.

      Major issue 3:

      As the authors point out, a large number of intercalated amphipaths displace sterols from their association with bilayer phospholipids. This unphysiologic mechanism can explain how PalmC causes the transient increase in the availability of plasma membrane ergosterol to the D4H probe and its subsequent removal from the plasma membrane via LAM2/4. TORC2 regulation may not be involved. In fact, the authors say that "TORC2 inhibition, and thereby Lam2/4 activation, cannot be the only trigger for PalmC induced sterol removal." Furthermore, the subsequent recovery of plasma membrane ergosterol could simply reflect homeostatic responses independent of the components studied here.

      Response:

      We agree that increased free sterols in the inner leaflet likely initiate retrograde transport. Our results suggest that TORC2 inhibition facilitates this process by disinhibiting Lam2/4, allowing more efficient clearance of ergosterol from the PM (Fig. 3A, S2C). However, the process is not exclusively dependent on TORC2, and we state this explicitly.

      We do not observe recovery of PM ergosterol on the timescales measured, while TORC2 activity recovers, suggesting that restoration likely occurs later via biosynthetic or anterograde trafficking pathways, which are outside the scope of this study. These points are clarified in the revised Discussion.

      Major issue 3a:

      The data suggest that LAM2/4 mediates the return of cytoplasmic ergosterol to the plasma membrane. To my knowledge, this is a nice finding that not been reported previously and is worth confirming more directly.

      Response:

      We thank the reviewer for this observation but would like to clarify a misunderstanding: our data do not suggest that Lam2/4 mediates anterograde sterol transport. Our results and prior work (Gatta et al., 2015; Roelants et al., 2018) show that Lam2/4 mediate retrograde transport from the PM to the ER, and TORC2 inhibits this process. We now clarify this point in the revised manuscript, stating:

      "In vivo, Lam2/4 seem to predominantly transport sterols from the PM to the ER, following the concentration gradient (Gatta et al., 2015; Jentsch et al., 2018; Tong et al., 2018)."

      Major issue 4:

      I agree with the authors that "It is unclear if the excess of free sterols itself is part of the inhibitory signal to TORC2..." Instead, the inhibition of TORC2 by PalmC may simply result from its artifactual aggregation of the anionic phospholipids (especially, PIP2) needed for TORC2 activity. This would not be biologically meaningful. If the authors wish to show that accessible ergosterol inhibits TORC2 activity or vice versa, they should use more direct methods. For example, neutral amphipaths that do not cause the aforementioned PalmC perturbations should still increase plasma membrane ergosterol and send it through LAM2/4 to the ER.

      Response:

      We now provide evidence that three orthologous treatments (hyperosmotic shock, heat shock and Arp2/3 inhibition) similarly cause sterol mobilization and, in the absence of sterol clearance from the PM, prolonged TORC2 inhibition. These results do not support the reviewer's contention that the inhibition of TORC2 by PalmC is simply resulting from its artifactual aggregation of the anionic phospholipids. Furthermore, PalmC is zwitterionic, and its interaction with anionic lipids should be somewhat limited.

      In our experimental setup, neutral amphipaths did not trigger TORC2 inhibition or D4H redistribution While this differs from prior in vitro work (Lange et al., 2009), we attribute this in part to a discrepancy to experimental setup differences, including flow chamber artifacts that we discuss in the methods section.

      Importantly, only amphipaths with a charged headgroup, including zwitterionic (PalmC) and positively charged analogs, produced robust effects. A negatively charged derivative also seemed to have a minor effect on TORC2 activity and PM sterol internalization (Palmitoylglycine (Fig. 1D, Rebuttal Fig. 1). This suggests that in vivo, charge-based membrane perturbation is required to alter PM sterol distribution and TORC2 activity.

      Major issue 5.:

      The mechanistic relationship between TORC2 activity and ergosterol suggested in the title, abstract, and discussion is not secure. I agree with the concluding section of the manuscript called "Limitations of the study". It highlights the need for a better approach to the interplay between TORC2 and ergosterol.

      Response:

      This may have been true of the previous submission, but we now demonstrate that provoking PM stress in four orthogonal ways triggers mobilization of sterols, which left uncleared, prevents normal (re)activation of TORC2 activity. We thus conclude that free sterols, directly or more likely indirectly, inhibit TORC2. The role that TORC2 plays in sterol retrotranslocation has been demonstrated previously (Roelants et al., 2018). We believe our expanded data and clarified framework make a compelling case for a stress-adaptive role of sterol retrograde transport that is supervised and modulated-but not fully driven-by TORC2 activity.

      Thus, we feel in the present version of this manuscript that the title is now justified.

      Minor issue: Based on earlier work using the reporter fliptR, the authors claim that PalmC reduces membrane tension. They should consider that this intercalated dye senses many variables including membrane tension but also lipid packing. I suspect that, by intercalating into and thereby altering the bilayer, PalmC is affecting the latter rather than the former.

      Response:

      We thank the reviewer for this important point regarding the multifactorial sensitivity of intercalating dyes such as Flipper-TR®, including to membrane tension and lipid packing.

      We respectfully note, however, that our current study does not include any new data generated using Flipper-TR®. We referred to earlier work (Riggi et al., 2018) for context, where Flipper-TR® was used as a membrane tension reporter.

      We fully agree that the response of such "smart" membrane probes integrates multiple biophysical parameters-including tension, packing, and hydration-which are themselves interrelated as consequences of membrane composition (Colom et al., 2018; Ragaller et al., 2024; Torra et al., 2024). Indeed, this interconnectedness is central to our interpretation of PalmC's pleiotropic effects on the plasma membrane (PM). In our previous study, we observed that PalmC treatment not only reduced apparent PM tension (as measured by Flipper-TR®) but also increased membrane order ((Riggi et al., 2018); see laurdan GP, Fig. 6C), and here we show that it promotes the redistribution of free sterol away from the PM.

      Furthermore, PalmC's effect on membrane tension was supported by orthogonal in vitro data: its addition to giant unilamellar vesicles (GUVs) led to a measurable increase in membrane surface area and decreased tension, as shown by pipette aspiration ((Riggi et al., 2018), Fig. 3F). This provides complementary evidence that the membrane tension reduction is not merely an artifact of Flipper-TR® reporting.

      That said, we agree with the reviewer that in the case of TORC2 inhibition or hyperactivation, the observed changes in PM tension are based solely on Flipper-TR® data, without additional orthogonal validation. To address this concern, we have revised the relevant text in the manuscript to more cautiously reflect this complexity. The revised sentence now reads:

      "Consistent with this role, data generated with the lipid packing reporter dye Flipper-TR® suggest that acute chemical inhibition of TORC2 increases PM tension, while Ypk1 hyperactivation decreases it."

      This revised phrasing acknowledges both the utility and the limitations of Flipper-TR® as a probe of membrane biophysics.

      Reviewer #2 Significance:

      This is an interesting topic. However, use of the exogenous probe, palmitoylcarnitine, could be causing multiple changes that complicate the interpretation of the data.

      Reviewers #1 and #3 were much more impressed by this study than I was. I am not a yeast expert and so I may have missed or confused something. I would therefore welcome their expert feedback regarding my comments (#2). Ted Steck

      Response:

      Thank you for your constructive feedback.

      We believe that the manuscript is now much improved, and we hope to have convinced you that the mechanisms that we've elucidated using PalmC represent a general adaptation response to physiological PM stressors.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Reviewer comment: The authors describe the effects of surfactant-like molecules on the plasma membrane (PM) and its associated TORC2 complex. Addition of the surfactants with a positively-charged headgroup and a hydro-carbon tail of at least 16 caused the rapid clustering of PI-4,5P2 together with PI-4P and phosphatidylserine in large membrane invaginations. The authors convincingly demonstrate that this effect of the surfactants on the PM is likely caused by a direct disturbance of the PM organization and/or lipid composition. Interestingly, upon PalmC treatment, free ergosterol of the PM was found to first concentrate in the clusters, but within The kinetics of the changes in free ergosterol levels and the changes in TORC2 activity do not match. Ergosterol is rapidly depleted after PalmC treatment (The Lam2/4 data support the idea that ergosterol transport plays a role in the TORC2 recovery, but what role this is, is not clear to me. I think the data fit better with a model in which PalmC causes low tension of the PM which in turn disrupts normal lipid organization and thus causes TORC2 to shut down, maybe not by changes in free ergosterol but by changes, for instance, in lipid raft formation (which is in part effected by ergosterol levels). The transport of ergosterol is only one mechanism that is involved in restoring PM tension and TORC2 activity. However, sensing free ergosterol alone is most likely not the mechanism explaining how TORC2 senses PM tension.

      Therefore, I recommend that the model is revised (or supported by more data), reflecting the fact that free ergosterol levels do not directly correlate with the TORC2 activity, but instead might be only one of the PM parameters that regulate TORC2.

      Author response:

      We thank the reviewer for their thoughtful assessment and constructive suggestions. As described in more detail above, we have included in our revised version of this manuscript a variety of new data, including the sterol-internalization dependent adaptation of the PM and regulation of TORC2 during additional stresses. We think that these data vastly improve on our previous manuscript version. We have addressed each point risen by the reviewer below and revised the manuscript accordingly, including a rewritten discussion and updated model to better reflect the limitations of our current understanding of how TORC2 senses changes in the plasma membrane (PM). It is true that the appearance of PM invaginations tracks well with TORC2 inhibition, but it is not clear to us if they are upstream of this inhibition or merely another symptom of the preceding PM perturbation (PalmC-induced free sterol increase can be observed after 10s (Fig. S2A), but PM invaginations become visible only after ~1 min - meanwhile we can observe near complete TORC2 inhibition after 30s). In this study, we are mostly interested in the role of PM sterol redistribution in stress response. Indeed we think that the role of free sterol clearance during stresses is to adapt the PM to these stresses - thus restoring PM parameters which in turn reactivates TORC2. This can be seen for hyperosmotic stress and the newly introduced PM stressors, Arp2/3 inhibition and heat shock response (Fig. 4). We have therefore softened our model and updated discussion and final figure (Fig. 5) to reflect that TORC2 likely responds to broader changes in PM organization or tension, with sterol redistribution representing one of several contributing factors rather than the sole signal.

      Comment: - If TORC2 is indeed inhibited by free ergosterol, the addition of ergosterol to the growth medium should be able to trigger similar effects as PalmC. If this detection of free ergosterol is very specific (e.g. if TORC2 has a binding pocket for ergosterol) we would expect that addition of other sterols such a cholesterol or ergosterol precursors should not inhibit TORC2.

      Response:

      We appreciate this suggestion and agree that testing whether exogenous ergosterol can mimic PalmC effects would help assess specificity. However, yeast do not readily take up sterols under aerobic conditions, which renders artificial sterol enrichment at the yeast PM rather difficult. We have now included additional data characterizing our Lam2/4 mutants (see below), and pharmacological sterol synthesis inhibition, showing that a depletion of free sterols from the PM correlates with lower TORC2 activity (Fig. 2D, S2C). Additionally, as suggested, we tried to probe if ergosterol directly interacts with TORC2 through a specific binding pocket, by treating a yeast strain expressing cholesterol rather than ergosterol (Souza et al., 2011) with PalmC. However, the response of TORC2 activity in these cells was very similar to that of WT cells (Rebuttal Fig. 2). In conclusion, we agree that at present we do not know mechanistically how sterols affect TORC2 activity, although it does indeed seem more likely to be through an indirect mechanism linked to changes in PM parameters. The nature of such a mechanism will be subject to further studies. We hope that the introduced changes to the manuscript adequately reflect these considerations.

      Rebuttal Fig. 2: WT yeast cells which produce ergosterol as main sterol, and mutant cells which produce cholesterol instead were treated with 5 µM PalmC, and TORC2 activity was assessed by relative phosphorylation of Ypk1 on WB. One representative experiment out of two replicates.

      Comment: - The experiment in Figure 1C is not controlled for differences in membrane intercalation of the different compounds. For instance, does C16 choline and C16 glycine accumulate at the same rate in the PM (measure similar to experiment in Figure 1B). Maybe the positive charge at the headgroup of the surfactants increases the local concentration at the PM and therefore can explain the difference in effect on the PM.

      Response:

      We agree with the reviewer that the effects of the various PalmC derivatives are not directly controlled for differences in membrane intercalation. Our structure-activity screen was intended to demonstrate the general biophysical mode of action of PalmC-like compounds and to define minimal structural requirements for activity.

      We now note in the manuscript that differential membrane insertion could contribute to the observed variation in efficacy, particularly in relation to tail length. While we considered this additional suggested experiment, it was ultimately judged to be outside the scope of this study due to its complexity and limited impact on the central conclusions.

      A clarifying sentence has been added to the relevant results section to explicitly acknowledge this limitation:

      "We did not control for differences in PM intercalation efficiency."

      We also include a discussion here to further clarify our interpretation. Prior in vitro studies have shown that while intercalation is necessary, it is not sufficient for PM perturbation. For example, palmitoyl-CoA intercalates into membranes but does not induce the same biophysical effects as PalmC (Goñi et al., 1996; Ho et al., 2002). Thus, we believe that intercalation is only part of the story, and that the intrinsic propensity of different headgroups to perturb the PM plays a key role in the disruption of PM lipid organization.

      Comment: - Are the intracellular ergosterol structures associated (or in close proximity) with lipid droplets (ergosterol being modified and delivered into a lipid droplet)?

      Response:

      We thank the reviewer for raising this point. We now include additional data (Fig. S2H) showing that intracellular D4H-positive structures do not reside near or colocalize with lipid droplets. The latter is not entirely unexpected as D4H does not recognize esterified sterols. However, we do observe an increase in overall LD volume following PalmC treatment, consistent with the idea that internalized PM sterols may be stored in LDs as sterol esters over time - although we did not test if this increase in LD volume is Lam2/4 dependent. This increase is mentioned in the revised results text. An increase in cellular LDs has also been recently reported during hyperosmotic shock (Phan et al., 2025).

      For more attempts to identify a marker for intracellular D4H foci, see reply to reviewer 1.

      Comment:

      • How does the AA and DD mutations in Lam2/4 change the localization of the ergosterol sensor (before and after PalmC treatment).

      Response:

      We thank the reviewer for this question, as in the course of generating these data we realized that our "inhibited" DD mutant was in fact not phosphomimetic but displayed the same D4H distribution as the "hyperactive" AA mutant, i.e. a marked inwards shift of D4H signal away from the PM to internal structures due to increased PM-ER retrograde transport of sterols (Fig. S2C). This led us to critically re-evaluate and ultimately repeat our TORC2 activity WB experiments for PalmC treatment in LAM2/4 mutants. In this new set of experiments, the faster TORC2 recovery after PalmC treatment in the LAM2T518A LAM4S401A mutant did unfortunately not repeat robustly. It is possible that such differences can be observed under specific conditions. Nevertheless, the improved overall quality of the Western blot data allowed us to make the observation that baseline activity was already slightly different in these strains. The Lam2/4 centered part of the results section has subsequently been updated in the manuscript:

      "Using a phosphospecific antibody, we did not observe an increase in baseline TORC2 activity in lam2Δ lam4Δ cells, which had been previously reported by electrophoretic mobility shift (Murley et al., 2017). Instead, baseline TORC2 activity was consistently slightly decreased in these cells (Fig. 2D). Ypk1, activated directly by TORC2, inhibits Lam2 and Lam4 through phosphorylation on Thr518 and Ser401, respectively (Roelants et al., 2018; Topolska et al., 2020). We substituted these residues with alanine, generating a strain in which Lam2/4 were no longer inhibited by phosphorylation (Roelants et al., 2018). In these cells, yeGFP-D4H showed that free sterols were constitutively shifted away from the PM to intracellular structures (Fig. S2C, bottom panel). Intriguingly, in opposition to lam2Δ lam4Δ cells, basal TORC2 activity was increased in LAM2T518A LAM4S401A cells (Fig. 2D). This suggests that a decrease in free PM sterols stimulates TORC2 activity [...]"

      "In LAM2T518A LAM4S401A cells, TORC2 activity recovers with similar kinetics as the WT (Fig. 2D, bottom blot), suggesting that Lam2/4 release from TORC2 dependent inhibition during PalmC treatment is a fast and efficient process in WT cells, not further expedited by these constitutively active Lams."

      As suggested, we also observed D4H localization in LAM2T518A LAM4S401A after PalmC treatment, and implemented these data to further demonstrate that PalmC causes an increase in the fraction of free ergosterol at the PM, which is subsequently removed:

      "PalmC addition to LAM2T518A LAM4S401A cells likewise resulted first in a transient increase and then a further decrease in PM yeGFP-D4H signal (Fig. 3C, S3D)."

      Comment: - Does Lam2/4 localize to ER-PM contact sites near the large PM invaginations, which could allow for efficient transport of the free ergosterol that accumulates in these structures.

      Response:

      We were curious about this too, and have now added the requested data in our supplementary material and added a sentence in our results:

      "Indeed, in cells expressing GFP-Lam2 we observed that PalmC induced PM invaginations often formed at sites with preexisting GFP-Lam2 foci (Fig. S2K, cyan arrow), although GFP-Lam2 foci did not always colocalize with invaginations (Fig. S2K, yellow arrow) and vice versa. "

      Additionally, in the effort to characterize intracellular D4H foci during PalmC as requested by reviewer 1, we also looked at the localization of these foci relative to ER, and found that

      "During early timepoints, intracellular foci are usually in close vicinity to ER (Fig. S2E)"

      Reviewer #3 (Significance (Required)): The manuscript describes the effects of small molecule surfactants on the PM organization and on TORC2 activity. This is an important set of observation that helps understanding the response of cells to environmental stressors that affect the PM. This field of study is very challenging because of the limited tools available to directly observe lipids and their movements. I consider the data and most of its interpretations of high importance, but I am not convinced of the larger model that tries to link the ergosterol data with TORC2 activity. With adjustments of the model or additional experimental support, this manuscript will be of general interest for cell biologists, especially for researchers studying membrane stress response pathways.

      Response:

      We thank the reviewer for highlighting the importance of studying PM stress responses and acknowledging the technical challenges involved. We hope the applied changes and additional data succeed in softening our claims about TORC2 regulation while convincing the reviewer that free sterol levels at the PM are one of several contributing factors that correlate with changes in TORC2 activity.

      Colom, A., Derivery, E., Soleimanpour, S., Tomba, C., Dal Molin, M., Sakai, N., González-Gaitán, M., Matile, S., Roux, A., 2018. A Fluorescent Membrane Tension Probe. Nat. Chem. 10, 1118-1125. https://doi.org/10.1038/s41557-018-0127-3

      Flesch, F.M., Yu, J.W., Lemmon, M.A., Burger, K.N.J., 2005. Membrane activity of the phospholipase C-δ1 pleckstrin homology (PH) domain. Biochem. J. 389, 435-441. https://doi.org/10.1042/BJ20041721

      Gatta, A.T., Wong, L.H., Sere, Y.Y., Calderón-Noreña, D.M., Cockcroft, S., Menon, A.K., Levine, T.P., 2015. A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. eLife 4. https://doi.org/10.7554/eLife.07253

      Goñi, F.M., Requero, M.A., Alonso, A., 1996. Palmitoylcarnitine, a surface-active metabolite. FEBS Lett. 390, 1-5. https://doi.org/10.1016/0014-5793(96)00603-5

      Ho, J.K., Duclos, R.I., Hamilton, J.A., 2002. Interactions of acyl carnitines with model membranes: a (13)C-NMR study. J. Lipid Res. 43, 1429-1439. https://doi.org/10.1194/jlr.m200137-jlr200

      Jentsch, J.-A., Kiburu, I., Pandey, K., Timme, M., Ramlall, T., Levkau, B., Wu, J., Eliezer, D., Boudker, O., Menon, A.K., 2018. Structural basis of sterol binding and transport by a yeast StARkin domain. J. Biol. Chem. 293, 5522-5531. https://doi.org/10.1074/jbc.RA118.001881

      Murley, A., Yamada, J., Niles, B.J., Toulmay, A., Prinz, W.A., Powers, T., Nunnari, J., 2017. Sterol transporters at membrane contact sites regulate TORC1 and TORC2 signaling. J. Cell Biol. 216, 2679-2689. https://doi.org/10.1083/jcb.201610032

      Otzen, D.E., Blans, K., Wang, H., Gilbert, G.E., Rasmussen, J.T., 2012. Lactadherin binds to phosphatidylserine-containing vesicles in a two-step mechanism sensitive to vesicle size and composition. Biochim. Biophys. Acta BBA - Biomembr., Protein Folding in Membranes 1818, 1019-1027. https://doi.org/10.1016/j.bbamem.2011.08.032

      Phan, J., Silva, M., Kohlmeyer, R., Ruethemann, R., Gay, L., Jorgensen, E., Babst, M., 2025. Recovery of plasma membrane tension after a hyperosmotic shock. Mol. Biol. Cell 36, ar45. https://doi.org/10.1091/mbc.E24-10-0436

      Ragaller, F., Sjule, E., Urem, Y.B., Schlegel, J., El, R., Urbancic, D., Urbancic, I., Blom, H., Sezgin, E., 2024. Quantifying Fluorescence Lifetime Responsiveness of Environment-Sensitive Probes for Membrane Fluidity Measurements. J. Phys. Chem. B 128, 2154-2167. https://doi.org/10.1021/acs.jpcb.3c07006

      Riggi, M., Niewola-Staszkowska, K., Chiaruttini, N., Colom, A., Kusmider, B., Mercier, V., Soleimanpour, S., Stahl, M., Matile, S., Roux, A., Loewith, R., 2018. Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2. Nat. Cell Biol. 20, 1043-1051. https://doi.org/10.1038/s41556-018-0150-z

      Rodríguez-Escudero, I., Fernández-Acero, T., Cid, V.J., Molina, M., 2018. Heterologous mammalian Akt disrupts plasma membrane homeostasis by taking over TORC2 signaling in Saccharomyces cerevisiae. Sci. Rep. 8, 7732. https://doi.org/10.1038/s41598-018-25717-w

      Roelants, F.M., Chauhan, N., Muir, A., Davis, J.C., Menon, A.K., Levine, T.P., Thorner, J., 2018. TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites. Mol. Biol. Cell 29, 2128-2136. https://doi.org/10.1091/mbc.E18-04-0229

      Sakata, K.-T., Hashii, K., Yoshizawa, K., Tahara, Y.O., Yae, K., Tsuda, R., Tanaka, N., Maeda, T., Miyata, M., Tabuchi, M., 2022. Coordinated regulation of TORC2 signaling by MCC/eisosome-associated proteins, Pil1 and tetraspan membrane proteins during the stress response. Mol. Microbiol. 117, 1227-1244. https://doi.org/10.1111/mmi.14903

      Shao, C., Novakovic, V.A., Head, J.F., Seaton, B.A., Gilbert, G.E., 2008. Crystal Structure of Lactadherin C2 Domain at 1.7Å Resolution with Mutational and Computational Analyses of Its Membrane-binding Motif*. J. Biol. Chem. 283, 7230-7241. https://doi.org/10.1074/jbc.M705195200

      Shi, J., Heegaard, C.W., Rasmussen, J.T., Gilbert, G.E., 2004. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim. Biophys. Acta 1667, 82-90. https://doi.org/10.1016/j.bbamem.2004.09.006

      Souza, C.M., Schwabe, T.M.E., Pichler, H., Ploier, B., Leitner, E., Guan, X.L., Wenk, M.R., Riezman, I., Riezman, H., 2011. A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metab. Eng. 13, 555-569. https://doi.org/10.1016/j.ymben.2011.06.006

      Stefan, C.J., Audhya, A., Emr, S.D., 2002. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol. Biol. Cell 13, 542-557. https://doi.org/10.1091/mbc.01-10-0476

      Tong, J., Manik, M.K., Im, Y.J., 2018. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites. Proc. Natl. Acad. Sci. 115, E856-E865. https://doi.org/10.1073/pnas.1719709115

      Topolska, M., Roelants, F.M., Si, E.P., Thorner, J., 2020. TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae. Biomolecules 10, 1598. https://doi.org/10.3390/biom10121598

      Torra, J., Campelo, F., Garcia-Parajo, M.F., 2024. Tensing Flipper: Photosensitized Manipulation of Membrane Tension, Lipid Phase Separation, and Raft Protein Sorting in Biological Membranes. J. Am. Chem. Soc. 146, 24114-24124. https://doi.org/10.1021/jacs.4c08580

      Uekama, N., Aoki, T., Maruoka, T., Kurisu, S., Hatakeyama, A., Yamaguchi, S., Okada, M., Yagisawa, H., Nishimura, K., Tuzi, S., 2009. Influence of membrane curvature on the structure of the membrane-associated pleckstrin homology domain of phospholipase C-δ1. Biochim. Biophys. Acta BBA - Biomembr. 1788, 2575-2583. https://doi.org/10.1016/j.bbamem.2009.10.009

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment 

      The authors utilize a valuable computational approach to exploring the mechanisms of memorydependent klinotaxis, with a hypothesis that is both plausible and testable. Although they provide a solid hypothesis of circuit function based on an established model, the model's lack of integration of newer experimental findings, its reliance on predefined synaptic states, and oversimplified sensory dynamics, make the investigation incomplete for both memory and internal-state modulation of taxis.  

      We would like to express our gratitude to the editor for the assessment of our work. However, we respectfully disagree with the assessment that our investigation is incomplete, if the negative assessment is primarily due to the impact of AIY interneuron ablation on the chemotaxis index (CI) which was reported in Reference [1]. It is crucial to acknowledge that the CI determined through experimental means incorporates contributions from both klinokinesis and klinotaxis [1]. It is plausible that the impact of AIY ablation was not adequately reflected in the CI value. Consequently, the experimental observation does not necessarily diminish the role of AIY in klinotaxis. Anatomical evidence provided by the database (http://ims.dse.ibaraki.ac.jp/ccep-tool/) substantiates that ASE sensory neurons and AIZ interneurons, which have been demonstrated to play a crucial role in klinotaxis [Matsumoto et al., PNAS 121 (5) e2310735121], have the much higher number of synaptic connections with AIY interneurons. These findings provide substantial evidence supporting the validity of the presented minimal neural network responsible for salt klinotaxis.

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      This research focuses on C. elegans klinotaxis, a chemotactic behavior characterized by gradual turning, aiming to uncover the neural circuit mechanism responsible for the context-dependent reversal of salt concentration preference. The phenomenon observed is that the preferred salt concentration depends on the difference between the pre-assay cultivation conditions and the current environmental salt levels. 

      We would like to express our gratitude for the time and consideration you have dedicated to reviewing our manuscript.

      The authors propose that a synaptic-reversal plasticity mechanism at the primary sensory neuron, ASER, is critical for this memory- and context-dependent switching of preference. They build on prior findings regarding synaptic reversal between ASER and AIB, as well as the receptor composition of AIY neurons, to hypothesize that similar "plasticity" between ASER and AIY underpins salt preference behavior in klinotaxis. This plasticity differs conceptually from the classical one as it does not rely on any structural changes but rather synaptic transmission is modulated by the basal level of glutamate, and can switch from inhibitory to excitatory. 

      To test this hypothesis, the study employs a previously established neuroanatomically grounded model [4] and demonstrates that reversing the ASER-AIY synapse sign in the model agent reproduces the observed reversal in salt preference. The model is parameterized using a computational search technique (evolutionary algorithm) to optimize unknown electrophysiological parameters for chemotaxis performance. Experimental validity is ensured by incorporating constraints derived from published findings, confirming the plausibility of the proposed mechanism. 

      Finally. the circuit mechanism allowing C. elegans to switch behaviour to an exploration run when starved is also investigated. This extension highlights how internal states, such as hunger, can dynamically reshape sensory-motor programs to drive context-appropriate behaviors.  

      We would like to thank the reviewer for the appropriate summary of our work. 

      Strengths and weaknesses: 

      The authors' approach of integrating prior knowledge of receptor composition and synaptic reversal with the repurposing of a published neuroanatomical model [4] is a significant strength. This methodology not only ensures biological plausibility but also leverages a solid, reproducible modeling foundation to explore and test novel hypotheses effectively.

      The evidence produced that the original model has been successfully reproduced is convincing.

      The writing of the manuscript needs revision as it makes comprehension difficult.  

      We would like to thank the reviewer for recognizing the usefulness of our approach. In the revised version, we improved the explanation according to your suggestions.  

      One major weakness is that the model does not incorporate key findings that have emerged since the original model's publication in 2013, limiting the support for the proposed mechanism. In particular, ablation studies indicate that AIY is not critical for chemotaxis, and other interneurons may play partially overlapping roles in positive versus negative chemotaxis. These findings challenge the centrality of AIY and suggest the model oversimplifies the circuit involved in klinotaxis.

      We would like to express our gratitude for the constructive feedback we have received. We concur with some of your assertions. In fact, our model is the minimal network for salt klinotaxis, which includes solely the interneurons that are connected to each other via the highest number of synaptic connections. It is important to note that our model does not consider redundant interneurons that exhibit overlapping roles. Consequently, the model is not applicable to the study of the impact of interneuron ablation. In the reference [1], the influence of interneuron ablations on the chemotaxis index (CI) has been investigated. The experimentally determined CI value incorporates the contributions from both klinokinesis and klinotaxis. Consequently, it is plausible that the impact of AIY ablation was not significantly reflected in the CI value. The experimental observation does not necessarily diminish the role of AIY in klinotaxis. 

      Reference [1] also shows that ASER neurons exhibit complex, memory- and context-dependent responses, which are not accounted for in the model and may have a significant impact on chemotactic model behaviour. 

      As the reviewer has noted, our model does not incorporate the context-dependent response of the ASER. Instead, the impact of the salt concentration-dependent glutamate release from the ASER [S. Hiroki et al. Nat Commun 13, 2928 (2022)] as the result of the ASER responses was in detail examined in the present study.

      The hypothesis of synaptic reversal between ASER and AIY is not explicitly modeled in terms of receptor-specific dynamics or glutamate basal levels. Instead, the ASER-to-AIY connection is predefined as inhibitory or excitatory in separate models. This approach limits the model's ability to test the full range of mechanisms hypothesized to drive behavioral switching.  

      We would like to express our gratitude to the reviewer for their constructive feedback. As you correctly noted, the hypothesized synaptic reversal between ASER and AIY is not explicitly modeled in terms of the sensitivity of the receptors in the AIY and the glutamate basal levels by the ASER. On the other hand, in the present study, under considering a substantial difference in the sensitivity of the two glutamate receptors on the AIY, we sought to endeavored to elucidate the impact of salt-concentration-dependent glutamate basal levels on klinotaxis. To this end, we conducted a comprehensive examination of the full range gradual change in the ASER-to-AIY connection from inhibitory to excitatory, as illustrated in Figures S4 and S5.

      While the main results - such as response dependence on step inputs at different phases of the oscillator - are consistent with those observed in chemotaxis models with explicit neural dynamics (e.g., Reference [2]), the lack of richer neural dynamics could overlook critical effects. For example, the authors highlight the influence of gap junctions on turning sensitivity but do not sufficiently analyze the underlying mechanisms driving these effects. The role of gap junctions in the model may be oversimplified because, as in the original model [4], the oscillator dynamics are not intrinsically generated by an oscillator circuit but are instead externally imposed via $z_¥text{osc}$. This simplification should be carefully considered when interpreting the contributions of specific connections to network dynamics. Lastly, the complex and contextdependent responses of ASER [1] might interact with circuit dynamics in ways that are not captured by the current simplified implementation. These simplifications could limit the model's ability to account for the interplay between sensory encoding and motor responses in C. elegans chemotaxis. 

      We might not understand the substance of your assertions. However, we understand that the oscillator dynamics were not intrinsically generated by the oscillator neural circuit that is explicitly incorporated into our modeling. On the other hand, the present study focuses on how the sensory input and resulting interneuron dynamics regulate the oscillatory behavior of SMB motor neurons to generate klinotaxis. The neuron dynamics via gap junctions results from the equilibration of the membrane potential yi of two neurons connected by gap junctions rather than the zi. We added this explanation in the revised manuscript as follows.

      “The hyperpolarization signals in the AIZL are transmitted to the AIZR via the gap junction (Figs. S1d and S1f and Fig. 3d). This is because the neuron dynamics via gap junctions results from the equilibration of the membrane potential y<sub>i</sub> of two neurons connected by gap junctions rather than the z<sub>i</sub>.”

      In the limitation, we added the following sentence:

      “In the present study, the oscillator components of the SMB are not intrinsically generated by an oscillator circuit but are instead externally imposed via 𝑧<sub>i</sub><sup>OSC</sup>. Furthermore, the complex and context-dependent responses of ASER {Luo:2014et} were not taken into consideration. It should be acknowledged as a limitation of this study that these omitted factors may interact with circuit dynamics in ways that are not captured by the current simplified implementation.”

      Appraisal: 

      The authors show that their model can reproduce memory-dependent reversal of preference in klinotaxis, demonstrating that the ASER-to-AIY synapse plays a key role in switching chemotactic preferences. By switching the ASER-AIY connection from excitatory to inhibitory they indeed show that salt preference reverses. They also show that the curving/turn rate underlying the preference change is gradual and depends on the weight between ASER-AIY. They further support their claim by showing that curving rates also depend on cultivated (set-point).  

      We would like to thank the reviewer for assessing our work.

      Thus within the constraints of the hypothesis and the framework, the model operates as expected and aligns with some experimental findings. However, significant omissions of key experimental evidence raise questions on whether the proposed neural mechanisms are sufficient for reversal in salt-preference chemotaxis.  

      We agree with your opinion. The present hypothesis should be verified by experiments.

      Previous work [1] has shown that individually ablating the AIZ or AIY interneurons has essentially no effect on the Chemotactic Index (CI) toward the set point ([1] Figure 6). Furthermore, in [1] the authors report that different postsynaptic neurons are required for movement above or below the set point. The manuscript should address how this evidence fits with their model by attempting similar ablations. It is possible that the CI is rescued by klinokinesis but this needs to be tested on an extension of this model to provide a more compelling argument.  

      We would like to express our gratitude for the constructive feedback we have received. In the reference [1], the influence of interneuron ablations on the chemotaxis index (CI) has been investigated. It is important to acknowledge that the experimentally determined CI value encompasses the contributions of both klinokinesis and klinotaxis. It is plausible that the impact of AIY ablation was not reflected in the CI value. Consequently, these experimental observations do not necessarily diminish the role of AIY in klinotaxis. The neural circuit model employed in the present study constitutes a minimal network for salt klinotaxis, encompassing solely interneurons that are connected to each other via the highest number of synaptic connections. Anatomical evidence provided by the database (http://ims.dse.ibaraki.ac.jp/cceptool/) substantiates that ASE sensory neurons and AIZ interneurons, which have been demonstrated to play a crucial role in klinotaxis [Matsumoto et al., PNAS 121 (5) e2310735121], have the much higher number of synaptic connections with AIY interneurons. Our model does not take into account redundant interneurons with overlapping roles, thus rendering it not applicable to the study of the effects of interneuron ablation.

      The investigation of dispersal behaviour in starved individuals is rather limited to testing by imposing inhibition of the SMB neurons. Although a circuit is proposed for how hunger states modulate taxis in the absence of food, this circuit hypothesis is not explicitly modelled to test the theory or provide novel insights.  

      As the reviewer noted, the experimentally identified neural circuit that inhibits the SMB motor neurons in starved individuals is not incorporated in our model. Instead of incorporating this circuit explicitly, we examined whether our minimal network model could reproduce dispersal behavior under starvation conditions solely due to the experimentally demonstrated inhibitory effect of SMB motor neurons.

      Impact: 

      This research underscores the value of an embodied approach to understanding chemotaxis, addressing an important memory mechanism that enables adaptive behavior in the sensorimotor circuits supporting C. elegans chemotaxis. The principle of operation - the dependence of motor responses to sensory inputs on the phase of oscillation - appears to be a convergent solution to taxis. Similar mechanisms have been proposed in Drosophila larvae chemotaxis [2], zebrafish phototaxis [3], and other systems. Consequently, the proposed mechanism has broader implications for understanding how adaptive behaviors are embedded within sensorimotor systems and how experience shapes these circuits across species.

      We would like to express our gratitude for useful suggestion. We added this argument in Discussion of the revised manuscript as follows.    

      “The principle of operation, in which the dependence of motor responses to sensory inputs on the phase of motor oscillation, appears to be a convergent solution for taxis and navigation across species. In fact, analogous mechanisms have been postulated in the context of chemotaxis in Drosophila larvae chemotaxis {Wystrach:2016bt} and phototaxis in zebrafish {Wolf:2017ei}. Consequently, the synaptic reversal mechanism highlighted in this study offers the framework for understanding how the behaviors that are adaptive to the environment are embedded within sensorimotor systems and how experience shapes these neural circuits across species.”

      Although the reported reversal of synaptic connection from excitatory to inhibitory is an exciting phenomenon of broad interest, it is not entirely new, as the authors acknowledge similar reversals have been reported in ASER-to-AIB signaling for klinokinesis ( Hiroki et al., 2022). The proposed reversal of the ASER-to-AIY synaptic connection from inhibitory to excitatory is a novel contribution in the specific context of klinotaxis. While the ASER's role in gradient sensing and memory encoding has been previously identified, the current paper mechanistically models these processes, introducing a hypothesis for synaptic plasticity as the basis for bidirectional salt preference in klinotaxis.  

      The research also highlights how internal states, such as hunger, can dynamically reshape sensory-motor programs to drive context-appropriate behaviors.  

      The methodology of parameter search on a neural model of a connectome used here yielded the valuable insight that connectome information alone does not provide enough constraints to reproduce the neural circuits for behaviour. It demonstrates that additional neurophysiological constraints are required.  

      We would like to acknowledge the appropriate recognition of our work.

      Additional Context 

      Oscillators with stimulus-driven perturbations appear to be a convergent solution for taxis and navigation across species. Similar mechanisms have been studied in zebrafish phototaxis [3], Drosophila larvae chemotaxis [2], and have even been proposed to underlie search runs in ants. The modulation of taxis by context and memory is a ubiquitous requirement, with parallels across species. For example, Drosophila larvae modulate taxis based on current food availability and predicted rewards associated with odors, though the underlying mechanism remains elusive. The synaptic reversal mechanism highlighted in this study offers a compelling framework for understanding how taxis circuits integrate context-related memory retrieval more broadly.  

      We would like to express our gratitude for the insightful commentary. In the revised manuscript, we incorporated the argument that the similar oscillator mechanism with stimulus-driven perturbations has been observed for zebrafish phototaxis [3] and Drosophila larvae chemotaxis [2] into Discussion.

      As a side note, an interesting difference emerges when comparing C. elegans and Drosophila larvae chemotaxis. In Drosophila larvae, oscillatory mechanisms are hypothesized to underlie all chemotactic reorientations, ranging from large turns to smaller directional biases (weathervaning). By contrast, in C. elegans, weathervaning and pirouettes are treated as distinct strategies, often attributed to separate neural mechanisms. This raises the possibility that their motor execution could share a common oscillator-based framework. Re-examining their overlap might reveal deeper insights into the neural principles underlying these maneuvers. 

      We would like to acknowledge your thoughtfully articulated comment. As the reviewer pointed out, the anatomical database (http://ims.dse.ibaraki.ac.jp/ccep-tool/) shows that that the neural circuits underlying weathervaning and pirouettes in C. elegans are predominantly distinct but exhibit partial overlap. When we restrict our search to the neurons that are connected to each other with the highest number of synaptic connections, we identify the projections from the neural circuit of weathervaning to the circuit of pirouettes; however we observed no reversal projections. This finding suggests that the neural circuit of weathervaning, namely, our minimal neural network, is not likely to be affected by that of pirouettes, which consists of AIB interneurons and interneurons and motor neurons the downstream. 

      (1) Luo, L., Wen, Q., Ren, J., Hendricks, M., Gershow, M., Qin, Y., Greenwood, J., Soucy, E.R., Klein, M., Smith-Parker, H.K., & Calvo, A.C. (2014). Dynamic encoding of perception, memory, and movement in a C. elegans chemotaxis circuit. Neuron, 82(5), 1115-1128. 

      (2) Antoine Wystrach, Konstantinos Lagogiannis, Barbara Webb (2016) Continuous lateral oscillations as a core mechanism for taxis in Drosophila larvae eLife 5:e15504. 

      (3) Wolf, S., Dubreuil, A.M., Bertoni, T. et al. Sensorimotor computation underlying phototaxis in zebrafish. Nat Commun 8, 651 (2017). 

      (4) Izquierdo, E.J. and Beer, R.D., 2013. Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis. PLoS computational biology, 9(2), p.e1002890. 

      Reviewer #2 (Public review): 

      Summary: 

      This study explores how a simple sensorimotor circuit in the nematode C. elegans enables it to navigate salt gradients based on past experiences. Using computational simulations and previously described neural connections, the study demonstrates how a single neuron, ASER, can change its signaling behavior in response to different salt conditions, with which the worm is able to "remember" prior environments and adjust its navigation toward "preferred" salinity accordingly.  

      We would like to express our gratitude for the time and consideration the reviewer has dedicated to reviewing our manuscript.

      Strengths: 

      The key novelty and strength of this paper is the explicit demonstration of computational neurobehavioral modeling and evolutionary algorithms to elucidate the synaptic plasticity in a minimal neural circuit that is sufficient to replicate memory-based chemotaxis. In particular, with changes in ASER's glutamate release and sensitivity of downstream neurons, the ASER neuron adjusts its output to be either excitatory or inhibitory depending on ambient salt concentration, enabling the worm to navigate toward or away from salt gradients based on prior exposure to salt concentration.

      We would like to thank the reviewer for appreciating our research. 

      Weaknesses: 

      While the model successfully replicates some behaviors observed in previous experiments, many key assumptions lack direct biological validation. As to the model output readouts, the model considers only endpoint behaviors (chemotaxis index) rather than the full dynamics of navigation, which limits its predictive power. Moreover, some results presented in the paper lack interpretation, and many descriptions in the main text are overly technical and require clearer definitions.  

      We would like to thank the reviewer for the constructive feedback. As the reviewer noted, the fundamental assumptions posited in the study have yet to be substantiated by biological validation, and consequently, these assumptions must be directly assessed by biological experimentation. The model performance for salt klinotaxis has been evaluated by multiple factors, including not only a chemotaxis index but also the curving rate vs. bearing (Fig. 4a, the bearing is defined in Fig. A3) and the curving rate vs. normal gradient (Fig. 4c). These two parameters work to characterize the trajectory during salt klinotaxis. In the revised version, we meticulously revised the manuscript according to the reviewer’s suggestions. We would like to express our sincere gratitude for your insightful review of our work.

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors): 

      An interesting and engaging methodology combining theoretical and computational approaches. Overall I found the manuscript up to discussion a difficult read, and I would suggest revising it. I would also recommend introducing the general operating principle of the oscillator with sensory perturbations before jumping into the implementation details of signal propagation specific to C.

      elegans.  

      In order to elucidate the relation between the general operating principle of the oscillator with sensory perturbations and the results shown by the two graphs from the bottom in Fig. 3d, the following statement was added on page 12.

      “It is remarkable that this regulatory mechanism derived via the optimization of the CI has been observed in the context of chemotaxis in Drosophila larvae chemotaxis {Wystrach:2016bt} and phototaxis in zebrafish {Wolf:2017ei}. The principle of operation, in which the dependence of motor responses to sensory inputs on the phase of motor oscillation, therefore, may serve as a convergent solution for taxis and navigation across species.”

      The abstract could benefit from a clarification of terms to benefit a broader audience:  The term "salt klinotaxis" is used without prior introduction or definition. It would be beneficial to briefly explain this term, as it may not be familiar to all readers. 

      Due to the limitation of the word number in the abstract, the explanation of salt klinotaxis could not be included.

      Although ASER is introduced as a right-side head sensory neuron, AIY neurons are not similarly introduced. It may also benefit to introduce here that ASER integrates memory with current salt gradients, tuning its output to produce context-appropriate behaviour.  

      Due to the limitation of the word number in the abstract, we could add no more the explanations. 

      "it can be anticipated that the ASER-AIY synaptic transmission will undergo a reversal due to alterations in the basal glutamate Release": Where is this expectation drawn from? Is it derived from biophysical or is it a functional expectation to explain the network's output constraints?  

      As delineated before this sentence, it is derived from a comprehensive consideration of the sensitivity of excitatory/inhibitory glutamate receptors expressed on the postsynaptic AIY interneurons, in conjunction with varying the basal level of glutamate transmission from ASER.

      The statement that the model "revealed the modular neural circuit function downstream of ASE" could be more explicit. What specific insights about the downstream circuit were uncovered?

      Highlighting one or two key findings would strengthen the impact.  

      Due to the limitation of the word number in the abstract, no more details could be added here, while the sentence was revised as “revealed that the circuit downstream of ASE functions as a module that is responsible for salt klinotaxis.” This is because the salt-concentration dependent behaviors in klinitaxis can be reproduced through the modulation of the ASRE-AIY synaptic connections alone, despite the absence of alterations in the neural circuit downstream of AIY.

      I believe the authors should cite Luo et al. 2014, which also studies how chemotactic behaviours arise from neural circuit dynamics, including the dynamic encoding of salt concentration by ASER, and the crucial downstream interaction with AIY for chemotactic actions. 

      We would like to express our gratitude for useful suggestion. We cited Luo et al. 2014 in the discussion on the limitation of our work. 

      The introduction could also be improved for clarity. Specifically in the last paragraph authors should clarify how the observed synchrony of ASER excitation to the AIZ (Matsumoto et al., 2024), validates the resulting network.  

      We would like to express our gratitude for useful suggestion. We added the following explanation in the last paragraph of the introduction.

      “Specifically, the synchrony of the excitation of the ASER and AIZ {Matsumoto:2024ig} taken together with the experimentally identified inhibitory synaptic transmission between the AIY and AIZ revealed that the ASER-AIY synaptic connections should be inhibitory, which was consistent with the network obtained from the most evolved model.”

      In addition, we added the following explanation after “It was then hypothesized that the ASER-AIY inhibitory synaptic connections are altered to become excitatory due to a decrease in the baseline release of glutamate from the ASER when individuals are cultured under C<sub>cult</sub> < C<sub>test</sub>.”

      This is due to the substantial difference in the sensitivity of excitatory/inhibitory glutamate receptors expressed on the postsynaptic AIY interneurons.

      I would also strongly recommend replacing the term "evolved model", with "Optimized Model" or "Best-Performing Model" to clarify this is a computational optimization process with limitations - optimization through GAs does not guarantee finding global optima.  

      We revised "evolved model" as "optimized model" in the main and SI text.

      The text overall would benefit from editing for clarity and expression.  

      According to the revisions mentioned above, we revised “best optimized model” as “most optimized model” in the main and SI text.

      The font size on the plot axis in Figures 3 c&d should be increased for readability on the printed page. Label the left/right panel to indicate unconstrained / constrained evolution.  

      As you noted, the font size of the subscript on the vertical axis in Figs 3c and 3d was too small. We have revised the font size of the subscript in Figs. 3c and 3d and also in Fig. 5e. At your suggestion, “unconstrained” and “constrained” have been added as labels to the left and right panels in Fig. 3.

      There is no input/transmission to AIYR to step input in either model shown in Figure 3? 

      As shown in Fig. S1e and S1f, there are the transmissions to the AIYR from the ASEL and ASER. 

      Supplementary Figure 1 attempts to explain the interactions. There are inconsistent symbols used for inhibition and excitation between network schema (colours) and the z response plots (arrows vs circles), combined with different meanings for red/blue making it very confusing. 

      We could not address the inconsistency in the color of arrows and lines with an ending between Figs. S1c and S1d and Figs. S1a and S1b. On the other hand, Figs. S1e and S1f were revised so that the consistent symbols were used for inhibition, excitation, and electrical gap connections in Figs. S1c-S1f. The same revisions were made for Fig. S7c-S7f.

      Model parameters are given to 15 decimal precision, which seems excessive. Is model performance sensitive to that order? We would expect robustness around those values. The authors should identify relevant orders and truncate parameters accordingly. 

      We examined the influence of the parameter truncation on the trajectory and decided that the parameters with four decimal places were appropriate. According to this, we revised Table A4.

      Figure 3 caption typo "step changes I the salt concentration".  

      The typo was revised in Fig. 3 caption. 

      Reviewer #2 (Recommendations for the authors): 

      (1) Overall, the language of the paper is not properly organized, making the paper's logic and purpose hard to follow. In the Results Section, many observations or findings lack explicit interpretation. To address this issue, the authors should consider (1) adopting the contextcontent-conclusion scheme, (2) optimizing the logic flow by clearly identifying the context and goals prior to discussing their results and findings, (3) more explicitly interpreting their results, especially in a biological context.  

      We would like to express our gratitude for helpful suggestion. According to your suggestion listed below, we revised the main and SI texts.

      (2) In Figure 2, trajectories from the model with AIY-AIZ constraints show a faster convergence than those from the constraint-free model. However, in the corresponding texts in the Results section, the authors claimed no significant difference. It seems that the authors made this argument only based on CI (Chemotaxis Index). Therefore, in order to address such inconsistency, the authors need more explanation on why only relying on CI, which is an endpoint metric, instead of the whole navigation.  

      I would like to thank you for the helpful comment. In the present study, not only the CI but also the curving rate shown in Fig. 4 were applied to characterize the behavior in klinotaxis.

      According to your comments, we revised the related description in the main text as follows:

      “The difference between these CI values is slight, while the model optimized with the constraints exhibits a marginally accelerated attainment of the salt concentration peak, as shown by the trajectories. The slightly higher chemotaxis performance observed in the constrained model is not essentially attributed to the introduction of the AIY-AIZ synaptic constraints but rather depends on the specific individuals selected from the optimized individuals obtained from the evolutionary algorithm. In fact, even when the AIY-AIZ constraints are taken into consideration, the model retains a significant degree of freedom to reproduce salt klinotaxis due to the presence of a substantial parameter space. Consequently, the impact of the AIY-AIZ constraints on the optimization of the CI is expected to be negligible.”

      (3) In Figures 3a and b, some inter-neuron connections are relatively weak (e.g., AIYR to AIZR in Figure 3a) - thus it is unclear whether the polarity of such synapses would significantly influence the behavioral outcome or not. The authors could consider plotting the change of the connection strengths between neurons over the course of model optimization to get a sense of confidence in each inter-neuron connection. 

      In the evolutional algorithm, the parameters of individuals are subject to discontinuous variation due to the influence of selection, crossover, and mutations. Consequently, it is not straightforward to extract information regarding parameter optimization from parameter changes due to the non-systematic nature of parameter variation..

      (4) In Figure 3, the order of individual figure panels is incorrect: in the main text, Figure 3 a and b were mentioned after c and d. Also, the caption of Figure 3c "negative step changes I the" should be "in".  

      The main text underwent revision, with the description of Figures 3a and 3b being presented prior to that of Figures 3c and 3d. The typo was revised.

      (5) In Figure 4, the order of individual figure panels is messed up: in the main text, Figure 4 a was mentioned after b.  

      The main text underwent revision, with the description of Figure 4a being presented prior to that of Figure 4b.

      (6) Also in Figure 4, the authors need to provide a definition/explanation of "Bearing" and "Translational Gradient". In Figure 4d, the definition of positive and negative components is not clear.  

      Normal and Translational Salt Concentration Gradient in METHOD was referenced for the definition and explanation of the bearing and the translational gradient. We added the following explanation on the positive and negative components.

      “The positive and negative components of the curving rate are respectively sampled from the trajectory during leftward turns (as illustrated in Fig. 4b) and rightward turns, respectively.”

      (7) Figure 5: the authors need to explain why c has an error bar and how they were calculated, as this result is from a computational model. Figure 5d is experimental results - the authors need to add error bars to the data points and provide a sample size. 

      As explained in Analysis of the Salt Preference Behavior in Klinotaxis in METHOD, the ensemble average of these quantities was determined by performing 100,000 sets of the simulation with randomized initial orientation for a simulation time of T_sim=200 sec. The error bars for the experimental data were added in Figs. 5c, 6a, and S9a.

      (8) On Page 14, the authors said, "To this end, this end, we used the best evolved network with the constraints, in which we varied the synaptic connections between ASER and AIY from inhibitory to excitatory." How did the model change the ASER-AIY signaling specifically? The authors should provide more explanation or at least refer to the Methods Section.  

      The caption of Fig. S4 was referred as the explanation on the detailed method. 

      (9) Page 15: "a subset a subset exhibited a slight curve...". This observation from the model simulation is contradictory to experiments. However, their explanation of that is hard to understand.  

      I would like to thank you for the helpful comment. To improve this, we added the following explanation:

      “In the case of step increases in 𝑧OFF as illustrated in the second right panel from the bottom in Fig.3d, the turning angle φ is increased from its ideal oscillatory component to a value close to zero, causing the model worm to deviate from the ideal sinusoidal trajectory and gradually turn toward lower salt concentrations. On the other hand, in the case of step increases in 𝑧ON as illustrated in the second left panel from the bottom in Fig.3d, the turning angle φ is again increased from its ideal oscillatory component to a value close to zero, causing the model worm to deviate from the ideal sinusoidal trajectory and gradually turn toward higher salt concentrations. The behaviors that are consistent with these analyses are observed in the trajectory illustrated in Fig. S8b.”

      (10) Last result session: inhibited SMB in starved worms is due to a mechanism unrelated to their neural network model upstream to SMB. Therefore, their results recapitulating the worms' dispersal behaviors cannot strengthen the validity of their model.  

      We agree with your opinion. We think that the findings from the study of starved worms do not provide evidence to validate the neural network model upstream of SMB.   

      (11) Discussion: "in contrast, the remaining neurons...". This argument lacks evidence or references.  

      This argument is based on the results obtained from the present study. This sentence was revised as follows:

      “This regulatory process enables the reproduction of salt concentration memory-dependent reversal of preference behavior in klinotaxis, despite the remaining neurons further downstream of the ASER not undergoing alterations and simply functioning as a modular circuit to transmit the received signals to the motor systems. Consequently, the sensorimotor circuit allows a simple and efficient bidirectional regulation of salt preference behavior in klinotaxis.”

      (12) To increase the predictive power of their model, can the authors perform simulations on mutant worms, like those with altered glutamate basal level expression in ASER?  

      We would like to express our gratitude for useful suggestion. The simulations, in which the weight of the ASER-AIY synaptic connection is increased from negative (inhibitory connection) to positive (excitatory connection), as illustrated in Figure S4, provide valuable insights into the relationship between varying glutamate basal levels from ASER and behavior in klinotaxis, such as the chemotaxis index.

    1. Here too, the driver was charged only with accidentally causing a person’s death. (He claimed to have confused the boy with a cardboard box or trash bag.) Police rejected charges of murder and even of fleeing the scene of the crime, ignoring the fact that the driver ran over the boy’s head as he sped away

      Hay muchos ejemplos de casos en los que atropellan varias veces para asegurarse de matar, pero nunca los encuentran culpables, siempre es muerte accidental. Está en la cultura.

    1. You're gonna have to stop saying it in front of him or his head will get too big.

      English Explanation:

      In this excerpt, someone humorously warns another person to refrain from praising Henry too much in his presence. The saying suggests that too much praise could lead to Henry developing an inflated ego or becoming overly prideful. The phrase "his head will get too big" is a metaphor for this phenomenon. The context indicates a lighthearted conversation among friends or family, where teasing and joking about one’s self-importance are commonplace.

      Chinese Explanation:

      在这个摘录中,有人幽默地警告另一个人要尽量不要在亨利面前过分赞美他。这句话暗示,过多的赞美可能会导致亨利自我膨胀或变得过于自满。“他头会变得太大”的表达是这种现象的隐喻。上下文表明这是朋友或家人之间轻松的对话,在这样的对话中,调侃和开玩笑关于自我重要性是很常见的。

  8. Jun 2025
    1. gannet

      gannet

      Explanation in English

      The term "gannet" refers to a type of seabird that belongs to the family Sulidae. Gannets are known for their striking appearance, featuring long, pointed wings, a slender body, and a distinctive sharp beak, which they use to catch fish. These birds are often found in large colonies on coastal cliffs and islands.

      Gannets are exceptional divers; they can plunge into the water from impressive heights, reaching speeds that make them highly efficient hunters. Their diet primarily consists of fish, which they catch by diving into the sea. They are known for their striking white plumage, often accented with shades of black on their wings and a cream-colored head.

      In addition to their impressive physical abilities, gannets are also notable for their social behavior, engaging in courtship displays and complex nesting arrangements. They often mate for life, and both parents share the responsibilities of raising the chicks.

      中文解释

      “gannet”这个术语指的是一种属于盐海鸟科(Sulidae)的海鸟。鸬鹚以其引人注目的外表而闻名,拥有长长的尖翼、修长的身体和独特的锐利喙,主要用于捕捉鱼类。这些鸟类通常在沿海悬崖和岛屿上的大型群落中被发现。

      鸬鹚具有卓越的潜水能力;它们可以从高空俯冲入水中,以极高的速度成为高效的猎手。它们的主要食物是鱼类,通过潜入海中来捕捉。鸬鹚以其醒目的白色羽毛而闻名,通常配有黑色的翅膀和奶油色的头部。

      除了其令人印象深刻的身体能力外,鸬鹚的社会行为也颇具特色,它们进行求偶展示和复杂的筑巢安排。鸬鹚通常是终生配对,父母双方共同承担养育雏鸟的责任。

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Comments for the authors of Review Commons Manuscript RC-2024-02804:

      The author of the Review Commons manuscript "Antigen flexibility supports the avidity of hemagglutinin-specific antibodies at low antigen densities", present their recent work evaluating hemagglutinin interactions with cellular receptors and antibodies. This manuscript focuses specifically on the avidity of the hemagglutinin using a fluorescence-based assay to measure dissociation kinetics and steady-state binding of antibodies to virions. Their findings confirm that bivalent interactions can offset weak monovalent affinity and that HA ectodomain flexibility is an additional determinant of antibody avidity. These findings are key for our understanding of neutralizing antibodies. Below are some comments that I would like the authors to address as they revise the manuscript.

      Comments:

      1. Can the authors provide justification for the two influenza viruses that they used.

      We selected the lab-adapted IAV strains A/WSN/1933 (H1N1) and A/Hong Kong/1968 (H3N2) for this work because they are well-studied, including in the context of the antibodies used here, S139/1 and C05. While both antibodies bind to more contemporary H3N2 strains, they no not bind to HA from pandemic H1N1. Another feature of these strains is that their HAs have high enough affinity to both antibodies to enable strong signal in our imaging assays. This context for our strain selection has been added in lines 85-88.

      1. The use of filamentous particles is a strength, but authors should detail the role of filamentous vs. spherical in nature and lab settings. This will help researchers that plan to repeat these assays.

      We have revised the text (lines 336-339) to include more context on the biology of filamentous and spherical influenza viruses. In our experiments, HK68 naturally produces filaments in cell culture whereas WSN33 does not. To produce filaments artificially, we replace the M1 sequence from WSN33 with that of M1 from A/Udorn/1972, an H3N2 strain that is closely related to HK68.

      1. Did the authors add the Udorn M1 to the HK68 as well?

      Since HK68 naturally forms filaments, we did not introduce Udorn M1 into this strain. We note that the amino acid sequences of Udorn M1 and HK68 M1 differ only at position 167 (Alanine in Udorn, Threonine in HK68), and that this residue has previously been found to not correlate with virus morphology (10.1016/j.virol.2003.12.009).

      Reviewer #1 (Significance (Required)):

      This manuscript focuses specifically on the avidity of the hemagglutinin using a fluorescence-based assay to measure dissociation kinetics and steady-state binding of antibodies to virions. Thie findings confirm that bivalent interactions can offset weak monovalent affinity and that HA ectodomain flexibility is an additional determinant of antibody avidity. These findings are key for our understanding of neutralizing antibodies.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary

      In this study, Benegal et al. investigate the binding kinetics of HA-head-specific antibodies (S139/1 and C05) to intact influenza virus particles using a fluorescence microscopy-based technique to measure the dissociation rate (koff) of the antibodies. By applying their proposed equilibrium model for bivalent antibody binding to HA, the authors calculated the crosslinking rate (kx), which represents the rate at which a single-bound antibody crosslinks to an additional HA molecule. Their experiments revealed that antigen crosslinking significantly slows koff, reducing it by up to two orders of magnitude. The authors further utilized streptavidin-coated beads conjugated with biotinylated HA or biotinylated BSA at varying concentrations to control HA surface density. Their results demonstrated that the two tested HA-head-specific antibodies retained the ability to crosslink HAs even at ~10-fold lower HA surface densities. In a complementary experiment, they employed an HA-anchor-specific antibody to restrict HA flexibility, which led to reduced binding of S139/1 and C05 IgGs but not their Fab fragments. This finding suggests that HA flexibility, rather than density, is the primary determinant of antibody crosslinking and avidity. Overall, the authors present an innovative approach to elucidating the dissociation and crosslinking kinetics of antibodies targeting intact virions or nanoparticles. The study is well-designed, with alternative interpretations of the results carefully considered and addressed throughout. I have only a few minor comments and suggestions for clarification.

      Minor comments:

      1. In Figure 1, does the grey color of each IgG in panel C indicate the Fc domain? If so, please add the description of the colors to the figure legend. In fact, it may be better to explain all the colors used here (for HA1, HA2, Fab heavy chain, light chain, etc.).

      We have included this information in panel C and the caption for Figure 1.

      1. Under the section," Bivalent binding of S139/1 and C05 persists after ~10-fold reductions in HA surface densities", the beginning of the second paragraph writes, "For both S139/1 and C05 Fab, binding increases linearly with HA density, as expected for a monovalent interaction dictated by absolute HA availability rather than density (Fig. 3D). Interestingly, the same relationship is observed for S139/1 IgG."

      Visually, I think the same relationship also seems to hold for C05 IgG. Would it be better to perform some linear regression and report the R2 value for the fitting so that this assessment can be quantitative?

      We agree with the reviewer's point. In Figure 3 of the revised manuscript, we include the results from a linear regression analysis to make this assessment more quantitative.

      1. At the end of the same page, in the same paragraph, the authors mentioned, "In contrast to the IgG, Fab binding measured at twice the molar concentration of the IgG is nearly undetectable under these conditions, confirming the IgG binding is not occurring through monovalent interactions (Fig. S2E)." What are the conditions you are referring to? In Fig. S2E, there is only the Ab intensity for the Ab binding at 100% HA (and not the other percentages). For the Ab intensity of S139/1 Fab, what is the concentration of the Fab used in Figure 3D? Why could the intensity in this experiment for S139/1 Fab reach ~100,000, whereas that of the 8 nM in Fig. S2E can only reach ~20,000?

      To clarify this point, we have updated Figure 3 to include the antibody concentration used for each experiment. The experiments in Fig 3 are conducted approximately around the respective KD of each IgG or Fab to ensure both consistency and strong signal-to-noise. For S139/1, we use 4nM of IgG, and 25nM of Fab. In Fig S2E, we use a concentration of Fab fragments double to that of the IgG, to reach an equivalent concentration of binding sites and confirm that the IgG binding we see is indeed due to bivalent binding. In this case, we use 4nM of IgG and 8nM of Fab.

      1. Under the section, "Tilting of HA about its membrane anchor contributes to C05 and S139/1 avidity", in the second paragraph, the authors wrote, "If this is correct, we reasoned that avidity could be reduced by constraining tilting of the HA ectodomain. To test this hypothesis, we used FISW84, an antibody that binds to the HA anchor epitope and biases the ectodomain into a tilted conformation (Fig. 4B)."

      Can you use some computational models (maybe the same one you used for Figure 4A) to show that when an HA trimer is bounded by FISW84 Fabs, the tilting of HA is constrained? I think this will help substantiate the assertion above.

      This is an important point. The model that we employ in Figure 4A is suited to predicting the angles sampled by HAs when they are bound by an IgG antibody, but it does not take into consideration clashes with the viral membrane. It is these clashes that we predict based on published structures (reference 35 in the revised manuscript) will constrain HA tilting when FISW84 binds to the HA anchor. We have revised the text (Lines 247-249) to clarify these points.

      1. It would be good if you could mention the strain of HA used in the experiments in Figure 4 in the actual Figure as well (as supposed to just in the figure legend).

      We have added this information to Figure 4 in the revised manuscript.

      1. I do not see a method section for the structure-based model you used in Figure 4. In the text, you cited your previous study (ref 28) for the model, but it would be good to write about this briefly (and how you specifically apply the model in this study) in this current manuscript.

      We have updated the methods to include a subsection ("Geometric Model for Preferred Crosslinking Geometry") on how the structure-based model was set up, along with a corresponding visual in Fig S3 of the angles of freedom given.

      1. In Figure S1 panel D, what is the unit of the antibody concentration? Could you please add it to the graph legend?

      We have updated the figure (S1E in the revised manuscript) to include this information.

      Reviewer #2 (Significance (Required)):

      Previously, this group utilized the same fluorescence-based method to investigate the potency of anti-HA IgG1 antibodies in preventing viral entry versus egress, as well as the tendency of antibodies targeting different HA epitopes to crosslink two HA trimers in cis or in trans (He et al., J Virol, 2024). In this study, they extend their work by evaluating, in-depth, how the density and flexibility of hemagglutinin (HA) on the viral surface influence the binding avidity of anti-HA antibodies. Using two human IgG1 antibodies targeting the HA head, the authors demonstrate that these antibodies can crosslink two HA trimers in cis, even when the trimers are further apart than adjacent HAs. Notably, the study reveals that HA flexibility, rather than density, is the key determinant modulating antibody crosslinking. Even at a 10-fold reduced HA density compared to the original, the antibodies retained their ability to crosslink trimers.

      This study provides critical insights into the relationship between HA density, flexibility, and antibody function, adding to the broader understanding of antibody crosslinking-a topic frequently discussed in the field of influenza research. These findings could have significant implications for vaccine design, particularly for strategies involving the display of the HA ectodomain on nanoparticles, potentially guiding the development of more effective influenza vaccines. Furthermore, the broader relevance of these findings may extend to other viruses with similar structural and immunological properties.

      My expertise lies in the structural determination of antibody-antigen complexes in influenza and other pathogens. While I may not have sufficient expertise to evaluate specific technical details of the fluorescence-based methods employed, the authors have convincingly demonstrated the robustness of their experimental design and interpretation, supported by appropriate controls.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      SUMMARY In "Antigen flexibility supports the avidity of hemagglutinin-specific antibodies at low antigen densities", Benegal et al. develop a microscopy-based assay to measure dissociation of HA head-binding antibodies from intact virions. This assay allows the authors to explore the contribution of IgG bivalent avidity to antibody interaction with native virions, which is not accessible using other methods such as BLI. Using this assay, the authors further explore the effect of HA density on IgG avidity with engineered low-HA virions and then with artificial HA-coated microspheres. In addition to measuring antibody dissociation, the authors perform structural analyses to predict the conformational preferences of many HA IgGs from published structures. The authors conclude that low HA densities (down to ~10%) still support high avidity binding for the 2 IgGs tested, and thus there would be little evolutionary pressure for IAV to reduce the HA density as a strategy to evade immune recognition.

      MAJOR COMMENTS

      The data presented are generally convincing for the two antibodies tested, with some caveats listed below. I believe the microscopy technique is valuable and provides a significant contribution to the field, and I believe that the finding that avidity persists at low densities for IAV is compelling and worth communicating to other virologists. Overall, with the incorporation of the suggested major revisions, this manuscript represents a significant advancement in the field.

      A major limitation of the current study is the small number of antibodies tested. Two antibodies are quite few, particularly since this work attempts to generalize these observations with structural predictions of dozens or hundreds of HA antibodies. While I believe that the resilience of IgG binding to lower epitope densities is likely common to many HA antibodies (or antibodies in general), this work alone does not support this. To this end, the authors should acknowledge their limited sample size in the text or discussion and that the generalization to other antibodies is speculative. Alternatively, the authors could demonstrate with additional antibodies (such as F045-092 which is pointed out in Fig S3A and perhaps group 'i' antibodies according to Fig S3A).

      This is an important point, and we more explicitly acknowledge this limitation in lines 277-278.

      It seems to me lateral diffusion of HA in the viral membrane is an important discussion point that was missed in this manuscript. The authors should comment on what is known about the lateral mobility of HA on virions, and how this could impact the ability of an IgG to crosslink. The authors should comment about whether long range diffusion and/or short range "shuffling" of glycoproteins could contribute to crosslinking preferences of antibodies in addition to the tilt, which is the only movement discussed. As appropriate, the authors should then comment on how this may affect their interpretation of experiments using beads. In experiments on beads, there is certainly no lateral mobility of the HA trimers; what are the consequences of this on the analysis?

      We agree that this is an important consideration, and we have revised the manuscript (lines 296-298) to address these points. Briefly, we have previously performed fluorescence recovery after photobleaching of covalently labeled HA and NA on the surface of filamentous influenza particles (10.7554/eLife.43764; see Figure 1B of this reference for a representative example). This data indicates that long range diffusion does not seem to be occurring on the virion surface. Short range diffusion, or shuffling, has not been observed, but cannot be ruled out, and may increase conformations favorable to bivalent binding.

      Should the authors qualify the limitations in the scope of their experimental results and the system of choice (beads vs. virions) as described in my previous comments, I suggest three experiments that I believe are essential to support the authors' claims. Alternative to qualifying the limitations, two optional experiments are also listed that could support the authors' claims as they are - those require a more extensive experimental undertaking and are thus labeled [OPTIONAL].

      1) The photobleaching experiment shown in Figure S1A. I am concerned that measuring photobleaching in steady state conditions does not properly control for the experimental conditions. In steady state, bleached antibody could unbind and be replaced by fluorescent antibody that has diffused into the field of view. This should be more thoroughly controlled by irreversibly capturing antibody (such as with biotin) and imaging after excess antibody is washed away, or by some other method such as capturing and imaging virus that has been directly labeled with AF555. This should be possible using reagents and techniques already demonstrated by the authors.

      We have updated the supplemental information with a more rigorous control for photobleaching; the revised figures are shown in Fig S1A. In this experiment, fluorescent S139/1 IgG was bound to HK68 virions. The antibody was washed away, and the loss of fluorescence signal was imaged separately under two conditions: 1) Dissociation only; an image was collected at 0s and one at 60s. 2) Dissociation and photobleaching; an image was collected at a rate of 1 frame per second for 60 seconds. The difference between the endpoint intensities from both conditions is not statistically significant. This supports our conclusion that, in the absence of antibodies in solution that can exchange with those bound to virions, photobleaching does not make a detectable contribution to the loss of signal we observe in our antibody dissociation experiments.

      2) In imaging, the authors analyzed only filamentous virions because they exhibit the best signal to noise ratio, which is a reasonable technical simplification. However, this relies on the assumption that glycoprotein presentation is relatively constant between virions of different sizes. It would be helpful to perform some analysis of small virions in any movie where there is sufficient signal. This would support the assumption that rates for small virions are comparable to those of filaments in the same experiment. This should be possible by performing additional analysis on existing data, without requiring additional experiments.

      Thank you for calling our attention to a point that needs clarification. The analysis that was restricted to filaments was for the SEP-HA binding experiments (shown in Fig 3A&B). This was done in order to select only those particles that were not diffraction-limited, so that we could control for any systematic differences in size between the two populations by measuring HA signal per unit particle length. For the dissociation experiments (Fig 2), data was taken from all virions in the fields of view. For this analysis, the normalized dissociation curves were averaged in two ways to account for the potential discrepancy that the reviewer points out. In the first method, the average was taken with each virion equally weighted, while in the second method, the entire field of view was masked and normalized together. Both curves look very similar, suggesting that any potential differences between smaller virions and filaments are not enough to make a quantifiable difference in dissociation rate. A representative dissociation curve with both analyses shown side-by-side has been added in Figure S1B.

      3) In figure 3, C05 fab binding is used to assay HA content of the SEP HA virions. An additional method of confirming HA content that is more independent from the imaging assay would be beneficial, such as a Western blot to quantify HA relative to NP, NA, or M1 etc.

      We have used western blotting to quantify the amount of HA contained relative to M1 in each population. This new data is discussed in lines 163-168 of the revised manuscript and shown in Figure S2C. As noted in the revised text, western blot analysis suggests that the density of native HA is decreased to ~31% its normal level in SEP-HA virions, lower than the ~75% value determined via fluorescence microscopy. One possible reason for this disparity is the presence of virus-like particles in the SEP-HA sample that completely lack wildtype HA. These would be excluded from our imaging analysis but captured by the western blot.

      4) [OPTIONAL] In figure 4, it is depicted that FISW84 biases HA in a tilted conformation, and the authors reasonably propose the reduced flexibility discourages crosslinking by IgGs. From the modeling summarized in Figure S3A, are there any antibodies predicted to prefer crosslinking HA at the same angle FISW84 tilts the ectodomain? Would FISW84 enhance crosslinking by such an antibody?

      This is an interesting suggestion, and we have revised the manuscript (lines 247-249) to clarify our thinking on this point. Based on the structure of the FISW84 Fab (PDB ID 6HJQ), we conclude that binding of a single Fab fragment does not necessarily actively tilt the HA ectodomain in a specific direction. Rather, it restricts tilting in the direction that would cause a steric clash between the Fab and the membrane. As a result, HA can still sample a range of angles, but this range is no longer symmetrical about the ectodomain axis. By reducing the likelihood that two HA ectodomains would tilt towards each other at a favorable angle, we would expect all antibodies to be disadvantaged to some degree. A possible exception could be if three FISW84 Fab fragments manage to bind to a single HA trimer. In this case, the HA ectodomain would be forced to remain perpendicular to the membrane to accommodate them all. This would favor antibodies that prefer binding to HAs where the ectodomains are parallel to each other. In our analysis in Figure S3A, this includes primarily antibodies that bind to the HA central stalk, such as 31.b.09. However, we note that these antibodies may encounter barriers to bivalent binding that we do not consider here, including proximity to the FISW84 epitope and the high density of HA in the membrane.

      5) [OPTIONAL] In figure S3A, the authors display theoretical tilt and spacing preferences for many HA antibodies based on published structures. Interestingly, their group iii antibody is predicted to prefer greater spacing and tilt, and likewise the authors observe increased binding at lower densities (in figure 3E). It would be beneficial to the work to test group i antibodies (base binding) in the dissociation experiments. The behavior of a base binding antibody, particularly at low densities could reinforce the modeling performed for this work.

      This is an excellent suggestion which we are not currently able to pursue for technical reasons. In particular, it would be difficult to distinguish between increased binding of these antibodies at low antigen densities that is due to bivalent attachment (and thus reduced dissociation) versus increased accessibility of the epitope, which may be occluded at higher HA densities.

      The experiments are well explained and supported by methods that would enable reproducibility.

      The authors state "The statistical tests and the number of replicates used in specific cases are described in the figure legends" yet in many cases this information is absent. For the k values in fig 2D, some indication of error or confidence interval would be helpful.

      We have ensured that this information is included in each of the captions. Regarding the k values, formal error propagation is challenging due to the way the k values were derived. Specifically, these values were calculated by fitting the average of the three initial dissociation traces, rather than fitting each replicate individually and then averaging the rate constants. As a result, the usual methods for estimating confidence intervals or standard error of the mean are not directly applicable.

      MINOR COMMENTS

      o Some of the small details in fig 1A and fig S1 are lost due to small figure size - such as the sialic acid residues and lipid bilayer.

      We have resized the figure components.

      o Although described in the text, it could be helpful to incorporate into figure 2 why the BLI data is shown for S129 fab. Perhaps indicate in 2C that that curve is "too fast to accurately measure" and perhaps near the table in 2D indicate the blue data is from Lee et al. It may be fine to simply remove the BLI results from the figure and refer to them only in the discussion of the experiments. Even with the measured data, the difference between fab and IgG is striking enough to support the paper, and the BLI data may be more confusing in the figure than it adds.

      We have updated the caption for Figure 2D to clarify that binding between the S139/1 Fab and A/WSN/1933 HA is approaching the limit of detection in our assay, and that the additional rates are from Lee et al. We have also updated the table to make the presentation of the kinetic parameters more clear.

      o In figure 3A, better describe the fluorescent components in the fluorescent images in the legend.

      We have updated the caption for Figure 3A to describe the fluorescent components shown in the image. Specifically, the panel labeled 'HA' shows signal from a fluorescent FI6v3 scFv, while the panel labeled 'decoy' shows signal from the SEP-HA construct.

      o From personal experience, the flexibility of HA ectodomain can be significantly affected by how much of the membrane proximal linker region is retained or removed. Could the authors comment on how they chose the cutoff for their HA ectodomain used in the bead experiments and their rationale?

      This is an important point, and while the precise impact of the linker on HA flexibility remains uncertain, we agree that it may increase the freedom of motion of the ectodomain relative to the HA membrane anchor. We mention this caveat in the revised text (lines 188-191) and we have added an AlphaFold2 prediction of how our recombinant HA might look to Figure S2D.

      o In Figure S1B, if I understand correctly: black dashed line "IgG equivalent dissociation rate" is the experimental data, magenta "Crosslinking model fit" is the theoretically total antibody bound as described by the mathematical model. Then the gray lines "Double- /singly- bound antibodies plot the theoretical amount of antibody bound once and bound twice. If this is correct, I believe it would be clearer if the singly- and doubly- bound were plotted in separate colors, and that this is explained more clearly in the legend.

      We have revised the figure to show doubly- and singly-bound curves using different line styles.

      o Related to an earlier comment, if lateral diffusion may play a role, how might this differ between different types of antibodies?

      As mentioned in our previous response, we do not anticipate that lateral diffusion makes a significant contribution to antibody binding to the surface of virions, although it may be important on the cell surface.

      o Could the authors comment in the discussion on how their results on virions may translate to the surface of the infected cell, which is also decorated in viral glycoproteins? Early time points of infection could be an in vivo example of low-density HA. What extent may antibody binding and crosslinking affect viral proteins on the cell surface or the immune response?

      This is a very interesting point. Antibody binding to the infected cell surface has been shown to alter viral release and morphology, presumably at lower HA densities than those observed the viral surface. We have added a brief discussion of this point (lines 291-295) to the revised manuscript.

      o The github link in the methods is incorrect or not yet available.

      Thank you for noting this. We have updated the link.

      o Reference 1 has an incorrect or expired link.

      These references have been updated.

      Reviewer #3 (Significance (Required)):

      • This work represents a conceptual advance in our understanding of antibody action on viral pathogens. The authors adapt existing microscopy methodologies to measure antibody avidity in a new way that is better representative of in vivo conditions.

      • To my knowledge, this is the first instance of direct measurement of antibody off-rates from intact virus particles, instead of immobilized protein as in BLI, SPR, or interferometry.

      • This work should be of interest to virologist and biophysicists interested in the cooperative binding of antibodies and the relation of virus structural organization to antibody recognition. Immunologist may also be influenced by this work. This work may be followed up by other researchers similarly measuring the association and dissociation rates of antibodies with single virions, or otherwise comparing fab to IgG binding to gain insight into when crosslinking is or is not occurring.

      • Reviewer expertise: Single-virion imaging, protein complexes, biochemistry, influenza A.

      • I do not have sufficient expertise to evaluate the mathematical models and differential equations for modeling the k-on and k-off rates.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary

      In "Antigen flexibility supports the avidity of hemagglutinin-specific antibodies at low antigen densities", Benegal et al. develop a microscopy-based assay to measure dissociation of HA head-binding antibodies from intact virions. This assay allows the authors to explore the contribution of IgG bivalent avidity to antibody interaction with native virions, which is not accessible using other methods such as BLI. Using this assay, the authors further explore the effect of HA density on IgG avidity with engineered low-HA virions and then with artificial HA-coated microspheres. In addition to measuring antibody dissociation, the authors perform structural analyses to predict the conformational preferences of many HA IgGs from published structures. The authors conclude that low HA densities (down to ~10%) still support high avidity binding for the 2 IgGs tested, and thus there would be little evolutionary pressure for IAV to reduce the HA density as a strategy to evade immune recognition.

      Major comments

      The data presented are generally convincing for the two antibodies tested, with some caveats listed below. I believe the microscopy technique is valuable and provides a significant contribution to the field, and I believe that the finding that avidity persists at low densities for IAV is compelling and worth communicating to other virologists. Overall, with the incorporation of the suggested major revisions, this manuscript represents a significant advancement in the field.

      A major limitation of the current study is the small number of antibodies tested. Two antibodies are quite few, particularly since this work attempts to generalize these observations with structural predictions of dozens or hundreds of HA antibodies. While I believe that the resilience of IgG binding to lower epitope densities is likely common to many HA antibodies (or antibodies in general), this work alone does not support this. To this end, the authors should acknowledge their limited sample size in the text or discussion and that the generalization to other antibodies is speculative.

      Alternatively, the authors could demonstrate with additional antibodies (such as F045-092 which is pointed out in Fig S3A and perhaps group 'i' antibodies according to Fig S3A).

      It seems to me lateral diffusion of HA in the viral membrane is an important discussion point that was missed in this manuscript. The authors should comment on what is known about the lateral mobility of HA on virions, and how this could impact the ability of an IgG to crosslink. The authors should comment about whether long range diffusion and/or short range "shuffling" of glycoproteins could contribute to crosslinking preferences of antibodies in addition to the tilt, which is the only movement discussed. As appropriate, the authors should then comment on how this may affect their interpretation of experiments using beads. In experiments on beads, there is certainly no lateral mobility of the HA trimers; what are the consequences of this on the analysis?

      Should the authors qualify the limitations in the scope of their experimental results and the system of choice (beads vs. virions) as described in my previous comments, I suggest three experiments that I believe are essential to support the authors' claims. Alternative to qualifying the limitations, two optional experiments are also listed that could support the authors' claims as they are - those require a more extensive experimental undertaking and are thus labeled [OPTIONAL].

      1. The photobleaching experiment shown in Figure S1A. I am concerned that measuring photobleaching in steady state conditions does not properly control for the experimental conditions. In steady state, bleached antibody could unbind and be replaced by fluorescent antibody that has diffused into the field of view. This should be more thoroughly controlled by irreversibly capturing antibody (such as with biotin) and imaging after excess antibody is washed away, or by some other method such as capturing and imaging virus that has been directly labeled with AF555. This should be possible using reagents and techniques already demonstrated by the authors.
      2. In imaging, the authors analyzed only filamentous virions because they exhibit the best signal to noise ratio, which is a reasonable technical simplification. However, this relies on the assumption that glycoprotein presentation is relatively constant between virions of different sizes. It would be helpful to perform some analysis of small virions in any movie where there is sufficient signal. This would support the assumption that rates for small virions are comparable to those of filaments in the same experiment. This should be possible by performing additional analysis on existing data, without requiring additional experiments.
      3. In figure 3, C05 fab binding is used to assay HA content of the SEP HA virions. An additional method of confirming HA content that is more independent from the imaging assay would be beneficial, such as a Western blot to quantify HA relative to NP, NA, or M1 etc.
      4. [OPTIONAL] In figure 4, it is depicted that FISW84 biases HA in a tilted conformation, and the authors reasonably propose the reduced flexibility discourages crosslinking by IgGs. From the modeling summarized in Figure S3A, are there any antibodies predicted to prefer crosslinking HA at the same angle FISW84 tilts the ectodomain? Would FISW84 enhance crosslinking by such an antibody?
      5. [OPTIONAL] In figure S3A, the authors display theoretical tilt and spacing preferences for many HA antibodies based on published structures. Interestingly, their group iii antibody is predicted to prefer greater spacing and tilt, and likewise the authors observe increased binding at lower densities (in figure 3E). It would be beneficial to the work to test group i antibodies (base binding) in the dissociation experiments. The behavior of a base binding antibody, particularly at low densities could reinforce the modeling performed for this work.

      The experiments are well explained and supported by methods that would enable reproducibility.

      The authors state "The statistical tests and the number of replicates used in specific cases are described in the figure legends" yet in many cases this information is absent. For the k values in fig 2D, some indication of error or confidence interval would be helpful.

      Minor Comments

      • Some of the small details in fig 1A and fig S1 are lost due to small figure size - such as the sialic acid residues and lipid bilayer.
      • Although described in the text, it could be helpful to incorporate into figure 2 why the BLI data is shown for S129 fab. Perhaps indicate in 2C that that curve is "too fast to accurately measure" and perhaps near the table in 2D indicate the blue data is from Lee et al. It may be fine to simply remove the BLI results from the figure and refer to them only in the discussion of the experiments. Even with the measured data, the difference between fab and IgG is striking enough to support the paper, and the BLI data may be more confusing in the figure than it adds.
      • In figure 3A, better describe the fluorescent components in the fluorescent images in the legend.
      • From personal experience, the flexibility of HA ectodomain can be significantly affected by how much of the membrane proximal linker region is retained or removed. Could the authors comment on how they chose the cutoff for their HA ectodomain used in the bead experiments and their rationale?
      • In Figure S1B, if I understand correctly: black dashed line "IgG equivalent dissociation rate" is the experimental data, magenta "Crosslinking model fit" is the theoretically total antibody bound as described by the mathematical model. Then the gray lines "Double-/singly- bound antibodies plot the theoretical amount of antibody bound once and bound twice. If this is correct, I believe it would be clearer if the singly- and doubly-bound were plotted in separate colors, and that this is explained more clearly in the legend.
      • Related to an earlier comment, if lateral diffusion may play a role, how might this differ between different types of antibodies?
      • Could the authors comment in the discussion on how their results on virions may translate to the surface of the infected cell, which is also decorated in viral glycoproteins? Early time points of infection could be an in vivo example of low-density HA. What extent may antibody binding and crosslinking affect viral proteins on the cell surface or the immune response?
      • The github link in the methods is incorrect or not yet available.
      • Reference 1 has an incorrect or expired link.

      Significance

      • This work represents a conceptual advance in our understanding of antibody action on viral pathogens. The authors adapt existing microscopy methodologies to measure antibody avidity in a new way that is better representative of in vivo conditions.
      • To my knowledge, this is the first instance of direct measurement of antibody off-rates from intact virus particles, instead of immobilized protein as in BLI, SPR, or interferometry.
      • This work should be of interest to virologist and biophysicists interested in the cooperative binding of antibodies and the relation of virus structural organization to antibody recognition. Immunologist may also be influenced by this work. This work may be followed up by other researchers similarly measuring the association and dissociation rates of antibodies with single virions, or otherwise comparing fab to IgG binding to gain insight into when crosslinking is or is not occurring.
      • Reviewer expertise: Single-virion imaging, protein complexes, biochemistry, influenza A.
      • I do not have sufficient expertise to evaluate the mathematical models and differential equations for modeling the k-on and k-off rates.
    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary

      In this study, Benegal et al. investigate the binding kinetics of HA-head-specific antibodies (S139/1 and C05) to intact influenza virus particles using a fluorescence microscopy-based technique to measure the dissociation rate (koff) of the antibodies. By applying their proposed equilibrium model for bivalent antibody binding to HA, the authors calculated the crosslinking rate (kx), which represents the rate at which a single-bound antibody crosslinks to an additional HA molecule. Their experiments revealed that antigen crosslinking significantly slows koff, reducing it by up to two orders of magnitude.

      The authors further utilized streptavidin-coated beads conjugated with biotinylated HA or biotinylated BSA at varying concentrations to control HA surface density. Their results demonstrated that the two tested HA-head-specific antibodies retained the ability to crosslink HAs even at ~10-fold lower HA surface densities. In a complementary experiment, they employed an HA-anchor-specific antibody to restrict HA flexibility, which led to reduced binding of S139/1 and C05 IgGs but not their Fab fragments. This finding suggests that HA flexibility, rather than density, is the primary determinant of antibody crosslinking and avidity.

      Overall, the authors present an innovative approach to elucidating the dissociation and crosslinking kinetics of antibodies targeting intact virions or nanoparticles. The study is well-designed, with alternative interpretations of the results carefully considered and addressed throughout. I have only a few minor comments and suggestions for clarification.

      Minor comments:

      1. In Figure 1, does the grey color of each IgG in panel C indicate the Fc domain? If so, please add the description of the colors to the figure legend. In fact, it may be better to explain all the colors used here (for HA1, HA2, Fab heavy chain, light chain, etc.).
      2. Under the section," Bivalent binding of S139/1 and C05 persists after ~10-fold reductions in HA surface densities", the beginning of the second paragraph writes, "For both S139/1 and C05 Fab, binding increases linearly with HA density, as expected for a monovalent interaction dictated by absolute HA availability rather than density (Fig. 3D). Interestingly, the same relationship is observed for S139/1 IgG."

      Visually, I think the same relationship also seems to hold for C05 IgG. Would it be better to perform some linear regression and report the R2 value for the fitting so that this assessment can be quantitative? 3. At the end of the same page, in the same paragraph, the authors mentioned, "In contrast to the IgG, Fab binding measured at twice the molar concentration of the IgG is nearly undetectable under these conditions, confirming the IgG binding is not occurring through monovalent interactions (Fig. S2E)." What are the conditions you are referring to? In Fig. S2E, there is only the Ab intensity for the Ab binding at 100% HA (and not the other percentages). For the Ab intensity of S139/1 Fab, what is the concentration of the Fab used in Figure 3D? Why could the intensity in this experiment for S139/1 Fab reach ~100,000, whereas that of the 8 nM in Fig. S2E can only reach ~20,000? 4. Under the section, "Tilting of HA about its membrane anchor contributes to C05 and S139/1 avidity", in the second paragraph, the authors wrote, "If this is correct, we reasoned that avidity could be reduced by constraining tilting of the HA ectodomain. To test this hypothesis, we used FISW84, an antibody that binds to the HA anchor epitope and biases the ectodomain into a tilted conformation (Fig. 4B)."

      Can you use some computational models (maybe the same one you used for Figure 4A) to show that when an HA trimer is bounded by FISW84 Fabs, the tilting of HA is constrained? I think this will help substantiate the assertion above. 5. It would be good if you could mention the strain of HA used in the experiments in Figure 4 in the actual Figure as well (as supposed to just in the figure legend). 6. I do not see a method section for the structure-based model you used in Figure 4. In the text, you cited your previous study (ref 28) for the model, but it would be good to write about this briefly (and how you specifically apply the model in this study) in this current manuscript. 7. In Figure S1 panel D, what is the unit of the antibody concentration? Could you please add it to the graph legend?

      Significance

      Previously, this group utilized the same fluorescence-based method to investigate the potency of anti-HA IgG1 antibodies in preventing viral entry versus egress, as well as the tendency of antibodies targeting different HA epitopes to crosslink two HA trimers in cis or in trans (He et al., J Virol, 2024). In this study, they extend their work by evaluating, in-depth, how the density and flexibility of hemagglutinin (HA) on the viral surface influence the binding avidity of anti-HA antibodies. Using two human IgG1 antibodies targeting the HA head, the authors demonstrate that these antibodies can crosslink two HA trimers in cis, even when the trimers are further apart than adjacent HAs. Notably, the study reveals that HA flexibility, rather than density, is the key determinant modulating antibody crosslinking. Even at a 10-fold reduced HA density compared to the original, the antibodies retained their ability to crosslink trimers.

      This study provides critical insights into the relationship between HA density, flexibility, and antibody function, adding to the broader understanding of antibody crosslinking-a topic frequently discussed in the field of influenza research. These findings could have significant implications for vaccine design, particularly for strategies involving the display of the HA ectodomain on nanoparticles, potentially guiding the development of more effective influenza vaccines. Furthermore, the broader relevance of these findings may extend to other viruses with similar structural and immunological properties.

      My expertise lies in the structural determination of antibody-antigen complexes in influenza and other pathogens. While I may not have sufficient expertise to evaluate specific technical details of the fluorescence-based methods employed, the authors have convincingly demonstrated the robustness of their experimental design and interpretation, supported by appropriate controls.

    1. 2001

      365 days of: ice cream, cartwheels, going to the sweet shop, dancing, playing games, standing on your head, making funny faces, blowing bubbles, pretending to be dragons, drawing pictures, writing stories

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      The authors wish to thank the reviewers for fair and constructive comments and Review Commons for facilitating the process.

      2. Point-by-point description of the revisions

      Point-by-point replies to reviewers' comments on the original submitted manuscript are below. Authors' responses are in plain font.

      Reviewers' comments:

      Reviewer #1

      (Evidence, reproducibility and clarity (Required)):

      Summary: The authors identify cancer-associated ERBB4 mutations that are selected for functional characterization. Utilizing the BaF3 and MCF10A models, the authors investigate the potential oncogenic role for 11 recurrent ERBB4 mutations. Three mutants (S303F, E452K and L798R) were strongly transforming with the ability to transform both cell models, S303F being unique in its ability to transform both models in the absence of NRG-1. The authors perform modeling to decipher potential mechanisms of action of the ERBB4 S303F, E452K and L798R mutations. The authors assess the ability of HER3 mutations to dimerize with other HER family members and demonstrate that ERBB4 S303F can mediate its activating functions by stabilizing homo- and heterodimers with other ERBB receptors and that the heterodimerization is likely cell/tissue context dependent. The authors demonstrate that transforming ERBB4 mutants are sensitive to pan-ERBB inhibitors and drive resistance to EGFR-targeted therapy in EGFR-mutant NSCLC cells.

      Major comments:

      Patient data analysis is performed in more than 15 months ago in January 2024. This analysis should be updated.

      We thank the reviewer for pointing out the aspect of constantly expanding mutation data in clinical cancer sample databases. We reanalyzed the patient data in cBioPortal (data download 02 May 2025). In this new analysis, the distribution of mutations in ERBB4 did not change (Reviewer only Fig. 1A), and the 18 selected mutations were still the most recurrently mutated ERBB4 mutations (Reviewer only Fig. 1B). Reanalysis of updated patient data did not change the initial rationale of the study, or the conclusions in the submitted manuscript.

      Reviewer only Figure 1. Comparison of patient data derived from cBioPortal on January 2024 (01/2024) or May 2025 (05/2025). A) Figure 1B of the original submitted manuscript. B) Supplementary Figure S1C of the original submitted manuscript.

      The rationale for selecting the mutations to be studied is not entirely clear. There are no references to support studying mutations in Fig 1B red boxes.

      We apologize for not being sufficiently clear on our rationale for selecting the mutations for analysis. The spectrum of mutations across the ERBB4 gene do not demonstrate clear hotspots as seen in for example EGFR, KRAS, or BRAF. However, we observed that there are regions (not necessarily individual amino acid changes) in ERBB4 that seem to accumulate more mutations than other regions. Looking more closely, we observed that these "hot regions" tend to be located in areas where activating mutations have been described for other oncogenic ERBB family members and/or target structurally important regions for receptor activation such as dimerization interfaces. We hypothesized that these characteristics would suggest functional relevance for the mutations in these "hot regions". In the revised manuscript (on page 11), we have revised the text describing the selection of mutations for further analysis, and added references to justify our selection:

      "While the missense mutations were distributed across the 1,308 amino acid sequence of ERBB4, lacking obvious hotspot mutations such as observed for example in EGFR or KRAS, clusters of recurrent mutations could be identified (Fig. 1B). These clusters tended to be located in specific regions that are targeted by activating mutations in other oncogenic ERBB family members (Greulich et al., 2005, 2012; Lee et al., 2006; Bose et al., 2013; Jaiswal et al., 2013)and/or are important for receptor activation (Ferguson et al., 2003; Bouyain et al., 2005; Liu et al., 2012), suggesting functional relevance (red boxes in Fig. 1B). Some recurrent mutations were located in the unstructured C-terminal tail of ERBB4 (Fig. 1B). We selected in total 18 ERBB4 missense mutations (indicated in Fig. 1B) that were recurrent and/or located in the abovementioned regions of interest for functional characterization (indicated in Fig. 1B and Supplementary Fig. S1C) - hypothesizing that these mutations would be actionable. Of the different mutants at the same position of ERBB4 amino acid sequence, the most recurrent amino acid change was selected for characterization."

      Cell proliferation should be shown for BaF3 cells for continuity in Figure 2 instead of doubling time.

      We agree that it may cause confusion that the results for the Ba/F3 and MCF10a experiments in Fig. 2C and D (Fig. 2D and E in the revised manuscript) are reported using a different metric. The reason for this is that these assays measure different outputs: in the Ba/F3 assay, the emergence of proliferating cells under IL3 deprivation is measured, with repeated cell viability measurements over time. In the MCF10a experiment, the ability of ERBB4 mutations to sustain the proliferation of MCF10a cells in the absence of EGF is measured, using a fixed time point (8 days). Thus, doubling time, as an indicator for the time required for the emergence of proliferating cells, is more suitable metric to quantify the relative transforming capability of the different ERBB4 mutations in the Ba/F3 cells. In the case of MCF10a cells, the relevant metric is the cell viability (as a surrogate marker for the number of cells) at the endpoint measurement.

      The relative expression of HER3 constructs must be shown for BaF3 and MCF10A cells in Figure 2.

      We assume the reviewer is asking to demonstrate the expression levels of different ERBB4 mutants in the Ba/F3 and MCF10a cells used in experiments in Fig. 2C and D (Fig. 2D and E in the revised manuscript). We would like to thank the reviewer for this very relevant point. Western blots demonstrating the expression levels of different ERBB4 mutants in the Ba/F3 and MCF10a cells have now been added as a data new panel in the Figure 2 (Fig. 2B in the revised manuscript). No ERBB3 expression constructs were introduced into the cells.

      Blots in Figure 4 must be quantified.

      The blots in Figure 4 have now been quantified, and the relative signal intensities are shown below each blot. We thank the reviewer for suggesting this relevant analysis. The analysis revealed two issues that we have now revised:

      1) in Fig. 4D, the dimerization of EGFR with ERBB4 S303F is not convincingly increased when compared to EGFR dimerization with wild-type ERBB4. Therefore, we have omitted that conclusion from the results section:

      "Taking into account these expression level differences, ERBB4 S303F did indeed co-immunoprecipitate more efficiently than wild-type ERBB4 with ERBB2 and EGFR both in the presence or absence of NRG-1 (Fig. 4D), demonstrating that the S303F mutation promotes the formation of ERBB heterodimers."

      Omitting this data does not change our final conclusion, that the ERBB4 S303F mutation leads to enhanced ERBB4 heterodimerization.

      2) In Fig. 4C, the previously published ERBB4 D595V mutant, used as a control in the experiment, does not clearly demonstrate enhanced ERBB4 homodimerization after quantifying the blots. Therefore, we have cropped the lanes representing the ERBB4 D595V mutant from the blot, and omitted the part of the results text that discusses this ERBB4 mutant:

      "ERBB4 homodimers were assessed by crosslinking cell surface proteins with a cell membrane impermeable BS3, enabling detection of ERBB4 dimers as high molecular weight species of ERBB4 in western blot. Another activating extracellular ERBB4 mutation, D595V, was used as a positive control, as we have previously demonstrated D595V to stabilize ERBB4 dimers using the same assay (Kurppa et al., 2016). As predicted by the structural analyses, S303F resulted in more abundant active, phosphorylated ERBB4 dimers than wild-type ERBB4 in the presence of NRG-1, while the activating intracellular domain mutation L798R, that served as a negative control for dimer stabilization, did not (Fig. 4C)."

      Omitting these data does not change our final conclusion, that the ERBB4 S303F mutation leads to enhanced ERBB4 homodimerization.

      There are major concerns with Supplemental files. It is imperative that the effectiveness of HER3 shRNA be shown in S Fig3. These data are not interpretable without this.

      We apologize for confusion related to the supplemental files. The effectiveness of the ERBB3 (HER3) shRNA is shown in the Supplementary Figure S3B of the original submitted manuscript.

      Lanes in S Fig 4 are not marked again making data not interpretable.

      Some of the lanes in the Supplementary Figure 4B were not marked because the experiment contained other ERBB4 constructs in addition to the ones that are marked and discussed in the manuscript text. The reason for leaving the unmarked lanes in the final figure was to emphasize that the bands indicated come from the same membrane, blot and exposure. We understand how this may cause confusion, and thus have now cropped the blots to include only the lanes discussed in the manuscript text.

      It's unclear why Table 1 is included as this is already published data. This previously published data should be summarized in the text.

      We are happy to elaborate the novelty of the data in Table 1 of the original submitted manuscript. The data is from the SUMMIT trial (NCT01953926) (Hyman et al., 2018), the results of which have been published. However, the three patients in the top part of the table were enrolled to the SUMMIT trial based on the ERBB4mutation in their tumor, and the data for these patients have not previously been published. We received these data directly from Puma Biotechnology. In addition, while the ERBB4 mutation status for the patients in the lower part of the table has been published in the supplementary files of the Hyman and others publication, we feel that the patients' ERBB4 mutations merit discussion, and including these patient data in the table would complement the data on the three patients in the top part of the table. Due to these reasons, we feel that the table contains unpublished and relevant data for the study, and would like to keep the table in the manuscript by moving it into the Supplementary Data (Supplementary Table S2).

      To clarify the sources of the patient data, we have modified the methods section related to the table as follows:

      "Neratinib efficacy data, cancer types and co-alterations of patients harboring an ERBB4 alteration, enrolled in PUMA-NER-5201, the SUMMIT trial (NCT01953926), and treated with neratinib as a single agent (240 mg/day) were obtained from Puma Biotechnology (for patients enrolled based on an ERBB4 mutation - previously unpublished data) and cBioPortal (for patients with ERBB4 as a co-altered gene, enrolled based on an ERBB2 or ERBB3 mutation)."

      This text is now moved to "Supplementary Methods" under a new section "Neratinib efficacy in patients" on page 9 of the revised Supplementary Data -file

      There is a disconnect why the last two figures focus on a single model of NSCLC whereas the three most transforming mutations are found most commonly in breast, melanoma and GI tract cancers.

      The reviewer is correct in that the most transforming ERBB4 mutations are indeed found most commonly in beast and esophagogastric cancers and in melanoma. However, in the context of targeted therapy resistance,mutations that confer resistance are often acquired during therapy, and may not represent the typical cancer type-specific mutational patterns. The strongest evidence for a potential role of mutant ERBB4 in therapy resistance comes from the context of EGFR-targeted therapies and lung cancer. As mentioned in the results and discussion sections of the submitted manuscript, ERBB4 mutations identified in patients who developed resistance to EGFR-targeted therapy (Cremolini et al., 2019; Jänne et al., 2022), include the same mutation or mutation in the same residue as analyzed in the current study: the strongly transforming S303F or L798I. In addition, a recent study showed that EGFR-mutant lung cancer patients with co-occurring ERBB4 mutations have shorter relapse-free survival on osimertinib treatment (Vokes et al., 2022). Therefore, we focused on EGFR-mutant lung cancer as the model system to assess, as proof-of-concept, whether activating, transforming ERBB4 mutations are able to confer resistance to EGFR-targeted therapy. To make the transition to cancer therapy resistance and the rationale for choosing the model context more clear, we have added text to the start of the "Activating ERBB4 mutations drive resistance to EGFR-targeted therapy in EGFR-mutant NSCLC cells" -chapter of the revised manuscript:

      "There is emerging evidence associating ERBB4 with cancer therapy resistance across various cancer types and treatment regimens (Merimsky et al., 2001, 2002; Mendoza-Naranjo et al., 2013; Nafi et al., 2014; Saglam et al., 2017; Wege et al., 2018; Wang et al., 2019; Zhang et al., 2023; Debets et al., 2023; Albert et al., 2024; Arribas et al., 2024), including ERBB4 mutations that have been found in patient tumors after acquisition of therapy resistance (Cremolini et al., 2019; Jänne et al., 2022; Vokes et al., 2022; Yaeger et al., 2023; Yuan et al., 2023). Intriguingly, the ERBB4 mutations identified in patients who developed resistance to EGFR-targeted therapy (Cremolini et al., 2019; Jänne et al., 2022), include the same mutation or mutation in the same residue as analyzed in the current study: the strongly transforming S303F or L798I. In addition, co-occurring ERBB4 mutations in EGFR-mutant lung cancer patients have been shown to associate with shorter progression-free survival on EGFR inhibitor therapy (Vokes et al., 2022). These observations point to the possibility that mutant ERBB4 could promote resistance to targeted therapies."

      What are the differences in the recurrent ERBB4 mutant tumors versus ERBB4 wild-type tumors described in Figure 7?

      The reviewer points out a very relevant question. We suspect that in the tumors expressing mutant ERBB4, the activating ERBB4 mutants are able to compensate for the loss of EGFR signaling, particularly since the on-treatment cancer cells demonstrate elevated levels of ERBB4 ligands (Fig. 7C, D). This is analogous to accumulating evidence suggesting that ERBB4 independently and together with ERBB3 (and/or with increased availability of their ligands) compensate for survival and growth signaling upon ERBB2- or EGFR-targeted therapy (Carrión-Salip et al., 2012; Wilson et al., 2012; Nafi et al., 2014; Canfield et al., 2015; Yonesaka et al., 2015; Donoghue et al., 2018; Shi et al., 2018; Debets et al., 2023; Udagawa et al., 2023). Unfortunately, we are unable to approach this hypothesis using samples from the in vivo experiment in Fig.7. The treatment of the mice was stopped after 189 days of treatment in order to assess how many tumors grew back (i.e. how many mice were cured by the treatment). For this reason, we do not have the appropriate controls to analyze ERBB4 mutant-associated changes in on-treatment tumors.

      Figure 7C, D should be moved to supplemental as this is from previously published data and not strictly relevant to data shown in Fig 7.

      The data shown in Fig. 7C and D are a re-analysis of published single-cell RNA-seq data. While the single cell RNA-sequencing data set is previously published, the analysis of ERBB4 ligand expression performed, and shown in Fig. 7C and D has not been published before. We feel that these data provide evidence of a previously unrecognized upregulation of ERBB4 ligand expression in on-treatment EGFR-mutant NSCLC cells in vivo. Furthermore, as discussed in the results section of the original submitted manuscript (page 26; page 28 of the revised manuscript), the upregulation of ERBB4 ligands in the on-treatment tumors provides a plausible mechanism supporting mutant ERBB4 activation upon EGFR inhibitor treatment, as the transforming ERBB4 mutants seem to retain at least partly the dependency of ligand stimulation. Thus, we feel that these data are unpublished and relevant for the manuscript, and we would like to keep these data panels in the main Figure 7.

      Limitations should include consideration of endogenous levels of ERBB4 in the model systems used and disparate expression levels of wt ERBB4 versus ERBB4 mutation.

      We thank the reviewer for pointing out that we have not thoroughly disclosed the endogenous levels of ERBB4 expression in the used model systems. None of the used model systems (MCF10a, Ba/F3, COS-7, PC-9) express detectable levels of ERBB4 protein. This was mentioned in the original submitted manuscript for COS-7 (page 19; page 20 of the revised manuscript), Ba/F3 cells (page 18; page 19 of the revised manuscript), and PC-9 cells (page 24; page 24 of the revised manuscript), but not for MCF10a cells. We have now made this point more clear, and added a sentence "Neither of these models express detectable levels of ERBB4" in the results section under the chapter "Majority of the recurrent ERBB4 mutations are transforming in Ba/F3 or MCF10a cells" (page 12-13 of the revised manuscript), as well as to the discussion section (page 30 of the revised manuscript).

      Regarding the expression levels of different ERBB4 mutants versus ERBB4 wild-type, we have now added the new Figure 2B, showing the expression of all ERBB4 mutants and ERBB4 wild-type in Ba/F3 and MCF10a cells. We have also included the following text describing the expression levels of ERBB4 mutants in the results section under "Majority of the recurrent ERBB4 mutations are transforming in Ba/F3 or MCF10a cells" (page 13 of the revised manuscript):

      "The different ERBB4 mutants demonstrated similar expression levels compared to wild-type ERBB4 in both model systems with the exception of R106C and G907E mutants that were expressed predominantly as immature receptor forms in both models, suggesting defective receptor maturation. Also, the R1304W mutant demonstrated lower expression levels in the Ba/F3 cells, and could not be expressed at all in the MCF10a cells (Fig. 2B)."

      Minor comments:

      Fig1B lists ERBB3 V104V mutation?

      Thank you for noticing this mistake. This has now been corrected in the revised Figure 1B.

      List frequency of ERBB4 mutations in the introduction

      We thank the reviewer for the suggestion and have revised the introduction to include an example of the high frequency of ERBB4 missense mutations in cancer as follows:

      "Yet, despite the high frequency of ERBB4 missense mutations in various cancer types (up to 30% in non-melanoma skin cancer, Supplementary Fig. S1A, B) and characterization of several potentially oncogenic ERBB4 mutations (Prickett et al. 2009; Nakamura et al. 2016; Chakroborty et al. 2022; Kurppa et al. 2016; Tvorogov et al. 2009), the rationale for clinically targeting ERBB4 in cancer has not been fully developed."

      Clarification throughout if cells are serum-starved (how long) if stimulated with NRG-1

      We thank the reviewer for the thoughtful suggestion and have revised the main text and figure legends accordingly; in the revised manuscript on pages 6, 8, 9, 13, 17, 20, 25 and 26 "(10% serum)", on page 25 "following short-term stimulation with NRG-1 after overnight serum starvation (Fig. 6A).", as well as figure legends of Fig. 2, 4, 5, 6, S2, and S3.

      Reviewer #1 (Significance (Required)):

      General assessment: This work fills a gap in cancer research understanding if ERBB4 mutations could be targeted. Concerns and comments need to be addressed before definitive conclusions can be made.

      The authors wish to thank the reviewer for the positive assessment.


      Reviewer #2

      (Evidence, reproducibility and clarity (Required)):

      Ojala et al. report a very extensive exploration of the functional relevance of somatic mutations occurring in the ERBB4 gene. The Authors demonstrate that 11 out of 18 mutations they studied have oncogenic potential, with some of them actionable using clinically available ERBB inhibitors, while giving resistance to EGFR inhibitors.

      A very minor comment. At the beginning of page 21, I'd not define PD as the best respone. The Authors can write that all four patients progressed under treatment.

      We would like to thank the reviewer for the comment. We agree with the reviewer, and have now revised the sentence in question as follows:

      "Two of the three patients that were qualified for the SUMMIT trial due to a mutation in ERBB4, with no other qualifying mutations in ERBB family genes, had an ERBB4 mutation characterized in this study to be transforming (R544W and V840I) (Supplementary Table S2). Yet, neither of these patients, nor the patient with an ERBB4 VUS N465K, responded to neratinib and progressed under treatment (Supplementary Table S2)."

      Reviewer #2 (Significance (Required)):

      The work by Ojala et al. is the most detailed study of mutations occurring in ERBB4. Since these are relatively rare, they have not been properly studied up to now. The study is very well done.

      The authors wish to thank the reviewer for the very positive statement.


      Reviewer #3

      (Evidence, reproducibility and clarity (Required)):

      Summary - This work has mined cBioPortal to identify candidate cancer driver mutations in the gene encoding the ERBB4 receptor tyrosine kinase (Figure 1). These ERBB4 mutations occurred in clusters that are paralogous to activating mutations in other ERBB receptor genes or in clusters predicted to serve as dimerization interfaces of ERBB4. Eighteen such ERBB4 mutations were selected for characterization.

      • These mutants were tested in BaF3 and MCF-10A cells in the context of the ERBB4 JM-a CYT-2 isoform (Figure 2). Several of these ERBB4 mutants exhibited greater agonist-dependent coupling to cell proliferation than wild-type ERBB4. Moreover, some of the mutants exhibited greater agonist-independent coupling to cell proliferation than wild-type ERBB4. Five ERBB4 mutants (S303F, E452K, L798R, R992C, S1289A) exhibited greater activity in the BaF3 cells, whereas nine ERBB4 mutants (S303F, R393W, E452K, R544W, R711C, S774G, L798R, V840I, G870R) exhibited greater activity in the MCF10A cells. Thus, eleven of the ERBB4 mutants (S303F, R393W, E452K, R544W, R711C, S774G, L798R, V840I, G870R, R992C, S1289A) exhibited a gain-of-function phenotype. It should be noted that several of the ERBB4 gain-of-function mutants (R393W, R544W, R711C, V840I, G870R, R992C, S1289A) exhibited cell type specificity.

      • PyMol was used to "model" the effect of the most potent (S303F, E452K, and L798R) gain-of-function mutations on the structure of ERBB4 (Figure 3). These three mutations are predicted to cause increased ERBB4 dimerization.

      • When expressed in MCF-10A cells, the most potent (S303F, E452K, and L798R) gain-of-function ERBB4 mutants exhibited elevated ligand-dependent and ligand-independent tyrosine phosphorylation. This was accompanied by elevated EGFR, ERBB2, and ERBB4 tyrosine phosphorylation and elevated signaling by canonical effector proteins (Figure 4).

      • The homo- and heterodimerization of the most potent ERBB4 mutant (S303F) was studied following transient transfection of COS-7 cells (Figure 4). As predicted, the S303F mutant exhibited greater ERBB4 homodimerization and greater heterodimerization with EGFR and ERBB2, but not with ERBB3.

      • The data from the clinical trial NCT01953926 was mined to evaluate whether the presence of an ERBB4 activating mutation found in this work is associated with sensitivity to the pan-ERBB inhibitor neratinib (Table 1). Surprisingly, a compelling association was NOT found. In contrast, the proliferation of BaF3 cells that express gain-of-function ERBB4 mutants is sensitive to the irreversible pan-ERBB inhibitors neratinib, afatinib, and dacomitinib (Figure 5).

      • Mining the cBioPortal, AACR GENIE, and COSMIC datasets indicates that the three most potent ERBB4 gain-of-function mutants (S303F, E452K, and L798R) exhibit tissue specificity (Supplementary Figure S5). Moreover, the S303F mutation is coincident with a mutation in another ERBB receptor to a much lesser degree than other gain-of-function ERBB4 mutants, particularly E452K. This too is suggestive of differences in the mechanism of action among the gain-of-function ERBB4 mutants (Supplementary Figure S5).

      • To test the effect of ERBB4 gain-of-function mutants on resistance to EGFR inhibitors, PC-9 NSCLC cells (which contain an endogenous gain-of-function EGFR mutant but do not endogenously express ERBB4) were transduced with ERBB4 gain-of-function mutants. In these cells the S303F and L715K mutants exhibited elevated ERBB4 signaling, but the L798R and K935I mutants did not. Nonetheless, the S303F, E715K, and K935I mutants promoted osimertinib resistance upon long-term treatment in vitro, whereas the L798R mutant did not (Figure 6). Moreover, the E715K and S303F mutants caused osimertinib resistance in vivo.

      • Overall, this is an impressive body of work. The experiments have been carefully performed and the data are clearly presented. However, the breadth of this work makes it a bit unfocused and difficult to digest.

      The authors wish to thank the reviewer for the positive statement.

      Major Issues Affecting the Conclusions

      The COS-7 data in Figure 4 are probably generated using supraphysiological levels of ERBB4 expression, raising concerns about the ability to draw general conclusions from these data. This issue should be addressed.

      We appreciate the reviewer's insight on the details concerning experimentation in COS-7 cells. We acknowledge the drawbacks in experiments performed using transient overexpression of proteins in COS-7 cells using vectors with strong viral promoters. To mitigate these drawbacks, we routinely perform transient overexpression in COS-7 cells using the retroviral pBABE-vectors, which have a weak promoter and produce relatively moderate protein expression level. We have included here a reviewer-only figure (Reviewer-only Figure 2) that demonstrates the ERBB4 expression level derived from the pBABE-vector, compared to endogenous expression level of ERBB4 in T47D and MCF7 cells, as well as to ERBB4 expression derived from pcDNA3.1 vector that harbors a strong viral CMV promoter. With this, we hope to convince the reviewer that the ERBB4 expression levels in our COS-7 cell experiments are not supraphysiological.

      Reviewer-only Figure 2. The expression level of ERBB4 in T47D and MCF7 cells, as well as in COS-7 cells transiently transfected with equal amounts of pBABE-puro-gateway-ERBB4JM-aCYT-2 plasmid, or pcDNA3.1.-ERBB4JM-aCYT-2 plasmid.

      The inhibitor data shown in Figure 5 may be over-interpreted. The affinity of neratinib, afatinib, and dacomitinib for EGFR is reportedly higher than the affinity of these drugs for ERBB4. Thus, the failure of ERBB4 gain-of-function mutants to cause resistance to these inhibitors may be because the inhibitors bind to endogenous EGFR and therefore fail to bind to ERBB4.

      We thank the reviewer for the insightful comments. The experiments in Figure 5 were performed in Ba/F3 cells, which do not express endogenous EGFR, or other kinase competent ERBB receptors (Riese et al., 1995). Therefore, it is unlikely that the observed cellular responses to neratinib, afatinib, or dacomitinib are affected by the drugs' preferable binding to EGFR.

      Moreover, the conclusion that the gain-of-function ERBB4 mutants are targetable with these inhibitors appears to be an overreach.

      We have revised our conclusion into that ERBB4 mutants are "sensitive to" these inhibitors, as supported by our data in Figure 5. This revision has been made in the abstract (page 2), introduction section (page 4), results section (page 23), and in the discussion (page 31) of the revised manuscript.

      The inhibitor data shown in Figure 6 demonstrates that activating ERBB4 mutations are sufficient to drive inhibitor resistance. However, these data do not demonstrate that the mutations are necessary to drive inhibitor resistance. Thus, these data are of less value than represented in this work. Knockout or silencing (CRISPR or siRNA) experiments would be more definitive.

      We agree with the reviewer that performing knock-out or silencing experiments to demonstrate the necessity of mutant ERBB4 for inhibitor resistance would strengthen the conclusions. However, the PC-9 cells (or any other EGFR-mutant NSCLC cell lines) do not express endogenous ERBB4, and do not have endogenous ERBB4 mutations. Therefore, knock-out or silencing experiments are unfortunately not possible in this setting.

      Minor Issues That Can Confidently Be Addressed

      In Figure 2, the MCF10A data are more compelling than the BaF3 data. Thus, an argument can be made that the BaF3 data belong in a supplemental figure. However, the combination of data from both cell lines illustrate the fact that ERBB4 mutants appear to exhibit cell type specificity. If this point is emphasized in the text, then Figure 2 should remain as currently presented.

      We agree with the reviewer that our data suggest that the ERBB4 mutants demonstrate a level of context-specificity. This was mentioned in the results section of the original submitted manuscript (page 20; page 21 of the revised manuscript) as well as discussed in the discussion section (page 29; page 29 of the revised manuscript). To emphasize this further, we have revised our conclusions at the end of the "Majority of the recurrent ERBB4 mutations are transforming in Ba/F3 or MCF10a cells" -section as follows:

      "Taken together, these analyses indicate a potential oncogenic role for 11 recurrent ERBB4 mutations. Eight of the mutations were transforming in only one of the models used, suggesting context-specificity. Three mutants (S303F, E452K and L798R) were strongly transforming with the ability to transform both cell models, S303F being unique in its ability to transform both models in the absence of NRG-1."

      The modeling data shown in Figure 3 are a bit under-interpreted. It would appear that the S303F, E452K, and L798R mutants would cause increased ERBB4 signaling by (1) shifting the equilibrium of ERBB4 monomers between the tethered (inactive) state and the extended (active) state or by (2) directly fostering receptor dimerization. The modeling data should be interpreted in the context of these two paradigms.

      We thank the reviewer again for an insightful observation. We have now revised the text describing the modeling data based on the reviewer's suggestions (please see the revised manuscript, under "Structural analysis of the transforming ERBB4 mutations").

      The mechanistic data shown in Figure 4 are also a bit under-interpreted. The data from Figure 2 suggest that ERBB4 gain-of-function mutants are more likely to promote ERBB4 heterodimerization than ERBB4 homodimerization. Do the data from Figure 4 support this hypothesis?

      The authors agree with the reviewer in that the activating ERBB4 mutations lead to increased activation of other ERBB family members (Fig. 4A), supporting a hypothesis that activating ERBB4 mutations lead to increased heterodimerization. We have discussed this throughout the original submitted manuscript, for example making these conclusions:

      Results section, page 16 (page 18 of the revised manuscript): "In summary, these data indicate that S303F, E452K and L798R are activating, gain-of-function ERBB4 mutations that may co-operate with other ERBB receptors in malignant transformation.", page 19 (page 20 of the revised manuscript): "Together, these data suggest that while ERBB4 can be transforming in the absence of other ERBB receptors, mutant ERBB4 co-operates with ERBB3 to promote ligand-independent cell transformation.".

      Discussion section, page 30 (page 31 of the revised manuscript: "Together, these findings imply that ERBB4 heterodimers with other ERBB receptors can contribute to cell transformation and growth, supporting the rationale for pan-ERBB inhibition approach in targeting mutant ERBB4 in cancer."

      Reviewer #3 (Significance (Required)):

      General Assessment: Strengths and Limitations

      • This work makes a significant contribution to the hypothesis that ERBB4 gain-of-function mutants drive multiple human malignancies. However, this work dances around two issues. (1) Is heterodimerization of EGFR or ERBB2 with ERBB4 required for the transforming activity of these ERBB4 mutants? (2) Are these ERBB4 mutants found in the context of the JM-a/CYT-2 isoform or some other isoform? Are these ERBB4 mutants active in the context of isoforms other than JM-a/CYT-2?

      We thank the reviewer for the very positive assessment and insight on specific ERBB4 biology that could affect the functional effect of mutations in ERBB4. We would like to comment on these insights:

      1) Since the strongly transforming ERBB mutations all promoted the activation of EGFR, ERBB2, and ERBB3 (Fig. 4A), it is possible that heterodimerization plays a role in the transforming activity of these ERBB4 mutants. However, our data suggests that EGFR and ERBB2 are not necessary for transformation, since the Ba/F3 cells, where transformation by ERBB4 mutants was observed (Fig. 2D), do not express EGFR or ERBB2. We did see a consistent upregulation of endogenous ERBB3 upon IL3 deprivation in the ERBB4 S303F -expressing Ba/F3 cells (Fig. 4B), which contributed to the ERBB4 S303F -driven, IL3-independent transformation (Supplementary Fig. S3C-D).

      2) None of the analyzed ERBB4 mutations are located in the JM- or CYT-regions of ERBB4, and thus could hypothetically be expressed in the context of any of the four ERBB4 isoforms. However, cancer tissues almost exclusively express the JM-a isoforms of ERBB4, with roughly similar ratios of CYT-1 and CYT-2 isoforms. We chose to use the JM-a CYT-2 isoform in this study, based on our previous work that has implicated the JM-a CYT-2 isoform as being more oncogenic than JM-a CYT-1 isoform, as elaborated in the original submitted manuscript: "The ERBB4 JM-a CYT-2 isoform was used in the studies based on previous findings suggesting that JM-a CYT-2 is the more oncogenic ERBB4 isoform of the cancer-associated isoforms (Veikkolainen et al., 2011) in hematopoietic cell contexts (relevant for the Ba/F3 cell model) (Määttä et al., 2006; Chakroborty et al., 2022)". We do agree with the reviewer that future studies should determine the relative contribution of JM-a CYT-1 and JM-a CYT-2 isoforms in the ability of mutant ERBB4 to drive cancer growth.

      Advance: How Does This Work Advance the Field

      • This work will undoubtedly reinvigorate the ERBB4 field.

      Audience:

      • Those with an interest in the role that ERBB receptors play in human tumors.

      My Expertise:

      • 30+ years of experience studying ERBB receptors.

      REFERENCES

      Albert, V. et al. (2024) 'HER4 Affects Sensitivity to Tamoxifen and Abemaciclib in Luminal Breast Cancer Cells and Restricts Tumor Growth in MCF-7-Based Humanized Tumor Mice', International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute, 25(13), p. 7475. doi: 10.3390/ijms25137475.

      Arribas, A. J. et al. (2024) 'ERBB4-mediated signaling is a mediator of resistance to BTK and PI3K inhibitors in B cell lymphoid neoplasms', Molecular Cancer Therapeutics, 23(3), pp. 368-380. doi: https://doi.org/10.1158/1535-7163.MCT-23-0068.

      Bose, R. et al. (2013) 'Activating HER2 mutations in HER2 gene amplification negative breast cancer', Cancer Discovery, 3(2), pp. 224-237. doi: 10.1158/2159-8290.CD-12-0349.

      Bouyain, S. et al. (2005) 'The extracellular region of ErbB4 adopts a tethered conformation in the absence of ligand', Proceedings of the National Academy of Sciences. National Academy of Sciences, 102(42), pp. 15024-15029. doi: 10.1073/pnas.0507591102.

      Canfield, K. et al. (2015) 'Receptor tyrosine kinase ERBB4 mediates acquired resistance to ERBB2 inhibitors in breast cancer cells', Cell Cycle. Taylor & Francis, 14(4), pp. 648-655. doi: 10.4161/15384101.2014.994966.

      Carrión-Salip, D. et al. (2012) 'Androgen-independent prostate cancer cells circumvent EGFR inhibition by overexpression of alternative HER receptors and ligands', International Journal of Oncology. Int J Oncol, 41(3), pp. 1128-1138. doi: 10.3892/ijo.2012.1509.

      Chakroborty, D. et al. (2022) 'An Unbiased Functional Genetics Screen Identifies Rare Activating ERBB4 Mutations', Cancer Research Communications, 2(1), pp. 10-27. doi: 10.1158/2767-9764.crc-21-0021.

      Cremolini, C. et al. (2019) 'Benefit from anti-EGFRs in RAS and BRAF wild-type metastatic transverse colon cancer: A clinical and molecular proof of concept study', ESMO Open, 4(2), p. e000489. doi: 10.1136/esmoopen-2019-000489.

      Debets, D. O. et al. (2023) 'Deep (phospho)proteomics profiling of pre- treatment needle biopsies identifies signatures of treatment resistance in HER2+ breast cancer', Cell Reports Medicine. Elsevier, 4(10), p. 101203. doi: 10.1016/j.xcrm.2023.101203.

      Donoghue, J. F. et al. (2018) 'Activation of ERBB4 in glioblastoma can contribute to increased tumorigenicity and influence therapeutic response', Cancers. Multidisciplinary Digital Publishing Institute (MDPI), 10(8), p. 243. doi: 10.3390/cancers10080243.

      Ferguson, K. M. et al. (2003) 'EGF Activates Its Receptor by Removing Interactions that Autoinhibit Ectodomain Dimerization', Molecular Cell, 11(2), pp. 507-517. doi: 10.1016/S1097-2765(03)00047-9.

      Greulich, H. et al. (2005) 'Oncogenic Transformation by Inhibitor-Sensitive and -Resistant EGFR Mutants', PLOS Medicine. Public Library of Science, 2(11), p. e313. doi: 10.1371/JOURNAL.PMED.0020313.

      Greulich, H. et al. (2012) 'Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2', Proceedings of the National Academy of Sciences. National Academy of Sciences, 109(36), pp. 14476-14481. doi: 10.1073/pnas.1203201109.

      Hyman, D. M. et al. (2018) 'HER kinase inhibition in patients with HER2-and HER3-mutant cancers', Nature. Nature Publishing Group, 554(7691), pp. 189-194. doi: 10.1038/nature25475.

      Jaiswal, B. S. S. et al. (2013) 'Oncogenic ERBB3 Mutations in Human Cancers', Cancer Cell, 23(5), pp. 603-617. doi: 10.1016/j.ccr.2013.04.012.

      Jänne, P. A. et al. (2022) 'Efficacy and Safety of Patritumab Deruxtecan (HER3-DXd) in EGFR Inhibitor- Resistant, EGFR-Mutated Non-Small Cell Lung Cancer', Cancer Discovery. American Association for Cancer Research, 12(1), pp. 74-89. doi: 10.1158/2159-8290.CD-21-0715.

      Kurppa, K. J. et al. (2016) 'Activating ERBB4 mutations in non-small cell lung cancer', Oncogene. Nature Publishing Group, 35(10), pp. 1283-1291. doi: 10.1038/onc.2015.185.

      Lee, J. C. et al. (2006) 'Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain', PLoS Medicine | www, 3. doi: 10.1371/journal.

      Liu, P. et al. (2012) 'A single ligand is sufficient to activate EGFR dimers', Proceedings of the National Academy of Sciences, 109(27), pp. 10861-10866. doi: 10.1073/pnas.1201114109.

      Määttä, J. A. et al. (2006) 'Proteolytic cleavage and phosphorylation of a tumor-associated ErbB4 isoform promote ligand-independent survival and cancer cell growth', Molecular Biology of the Cell, 17(1), pp. 67-79. doi: 10.1091/mbc.E05-05-0402.

      Mendoza-Naranjo, A. et al. (2013) 'ERBB4 confers metastatic capacity in Ewing sarcoma', EMBO Molecular Medicine. Nature Publishing Group, 5(7), pp. 1019-1034. doi: 10.1002/emmm.201202343.

      Merimsky, O. et al. (2001) 'Correlation between c-erbB-4 receptor expression and response to gemcitabine-cisplatin chemotherapy in non-small-cell lung cancer', Annals of Oncology. Ann Oncol, 12(8), pp. 1127-1131. doi: 10.1023/A:1011665216616.

      Merimsky, O. et al. (2002) 'ErbB-4 expression in limb soft-tissue sarcoma: Correlation with the results of neoadjuvant chemotherapy', European Journal of Cancer. Eur J Cancer, 38(10), pp. 1335-1342. doi: 10.1016/S0959-8049(02)00075-8.

      Nafi, S. N. M. et al. (2014) 'Nuclear HER4 mediates acquired resistance to trastuzumab and is associated with poor outcome in HER2 positive breast cancer', Oncotarget. Impact Journals, LLC, 5(15), pp. 5934-5949. doi: 10.18632/oncotarget.1904.

      Nakamura, Y. et al. (2016) 'Afatinib against esophageal or head-and-neck squamous cell carcinoma: Significance of activating oncogenic HER4 mutations in HNSCC', Molecular Cancer Therapeutics. American Association for Cancer Research, 15(8), pp. 1988-1997. doi: 10.1158/1535-7163.MCT-15-0737.

      Prickett, T. D. et al. (2009) 'Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4.', Nature genetics, 41(10), pp. 1127-1132. doi: 10.1038/ng.438.

      Riese, D. J. et al. (1995) 'The cellular response to neuregulins is governed by complex interactions of the erbB receptor family', Molecular and Cellular Biology, 15(10), pp. 5770-5776. doi: 10.1128/mcb.15.10.5770.

      Saglam, O. et al. (2017) 'ERBB4 Expression in Ovarian Serous Carcinoma Resistant to Platinum-Based Therapy', Cancer control. NIH Public Access, 24(1), p. 89. doi: 10.1177/107327481702400115.

      Shi, J. et al. (2018) 'The HER4-YAP1 axis promotes trastuzumab resistance in HER2-positive gastric cancer by inducing epithelial and mesenchymal transition', Oncogene, 37(22), pp. 3022-3038. doi: 10.1038/s41388-018-0204-5.

      Tvorogov, D. et al. (2009) 'Somatic mutations of ErbB4: Selective loss-of-function phenotype affecting signal transduction pathways in cancer', Journal of Biological Chemistry, 284(9), pp. 5582-5591. doi: 10.1074/jbc.M805438200.

      Udagawa, H. et al. (2023) 'HER4 and EGFR Activate Cell Signaling in NRG1 Fusion-Driven Cancers: Implications for HER2-HER3-specific Versus Pan-HER Targeting Strategies', Journal of Thoracic Oncology. Elsevier Inc, 19(1), pp. 106-118. doi: 10.1016/j.jtho.2023.08.034.

      Veikkolainen, V. et al. (2011) 'Function of ERBB4 is determined by alternative splicing', Cell Cycle, 10(16), pp. 2647-2657. doi: 10.4161/cc.10.16.17194.

      Vokes, N. I. et al. (2022) 'Concurrent TP53 mutations facilitate resistance evolution in EGFR mutant lung adenocarcinoma', Journal of Thoracic Oncology. International Association for the Study of Lung Cancer, 17(6), pp. 779-792. doi: 10.1016/j.jtho.2022.02.011.

      Wang, D. S. et al. (2019) 'Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer', Gut. BMJ Publishing Group, 68(7), pp. 1152-1161. doi: 10.1136/gutjnl-2018-316522.

      Wege, A. K. et al. (2018) 'HER4 expression in estrogen receptor-positive breast cancer is associated with decreased sensitivity to tamoxifen treatment and reduced overall survival of postmenopausal women', Breast Cancer Research. Breast Cancer Res, 20(1). doi: 10.1186/s13058-018-1072-1.

      Wilson, T. R. et al. (2012) 'Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors', Nature. Nature Publishing Group, 487(7408), pp. 505-509. doi: 10.1038/nature11249.

      Yaeger, R. et al. (2023) 'Molecular Characterization of Acquired Resistance to KRASG12C-EGFR Inhibition in Colorectal Cancer', Cancer Discovery, 13(1), pp. 41-55. doi: 10.1158/2159-8290.CD-22-0405.

      Yonesaka, K. et al. (2015) 'The pan-HER family tyrosine kinase inhibitor afatinib overcomes HER3 ligand heregulin-mediated resistance to EGFR inhibitors in non-small cell lung cancer.', Oncotarget. Oncotarget, 6(32), pp. 33602-11. doi: 10.18632/oncotarget.5286.

      Yuan, S. Q. et al. (2023) 'Residual circulating tumor DNA after adjuvant chemotherapy effectively predicts recurrence of stage II-III gastric cancer', Cancer Communications. John Wiley & Sons, Ltd, 43(12), pp. 1312-1325. doi: 10.1002/cac2.12494.

      Zhang, J. et al. (2023) 'Tracking of trastuzumab resistance in patients with HER2-positive metastatic gastric cancer by CTC liquid biopsy.', American journal of cancer research. e-Century Publishing Corporation, 13(11), pp. 5684-5697. Available at: http://www.ncbi.nlm.nih.gov/pubmed/38058840 (Accessed: 16 April 2024).

    1. For example, when I decide how to spend my afternoon, I’m biased towards hopping on BrawlStars since that’s at the top of my head. Tasks that I don’t think about often, like doing laundry, are harder to surface. A community is a great way to provide a constant stream of relevant information to make the goal fresh on your mind.

      Availability bias towards obscure interests...