274 Matching Annotations
  1. May 2019
    1. Intracellular iron content in different Xanthomonas oryzaepv. oryzicolastrains was measured by using atomic absorption spectroscopy as described previously with few modifications (Velayudhan et al., 2000). For estimation of intracellular iron, different strains of Xanthomonas oryzaepv. oryzicolawere grown overnight in 3 ml PS media with appropriate antibiotics for differentially marked strains. 0.2% of the overnight grown culture was inoculated in 250 ml PS medium alone or PS plus 2, 2’-dipyridyl for iron stravation, and grown to an OD600 of 1.2. Cells were then pelleted down by centrifuging at 7000 g for 10 min, and washed twice with phosphate buffer saline (PBS). After washing, cells were lyophilized, and their dry weights were determined. Lyophilized cells were then dissolved in 30% nitric acid at 80ºC for 12 h and diluted 10-fold with miliQ water. Iron content was determined by atomicabsorption spectroscopy using ICP-OES (JY 2000 sequential Inductively Coupled Plasma Optical Emisson spectrometer,Jobin Yvon, Horiba, France). Iron level was quantified against aqueous standard of iron traceable to NIST (National institute of standards and technology, India)
    2. culture dishes and dishes were incubated at 28ºC. OD600 was measured after 16 and 42 h of incubation, and percentage inhibition of growth was determined with respect to the growth in the corresponding control cultures containing PS media without streptonigrin
    3. For streptonigrin sensitivity assay, different strains of Xanthomonas oryzaepv. oryzicolawere grown overnight with appropriate antibiotics as described earlier. 0.2% of primary inoculum was added into fresh PS medium and grown for 24 h till the OD600reached 0.6. Serial dilution of bacterial cultures were performed as mentioned earlier, and 5μl diluted cultures were spotted on PSA plates containing different concentration of streptonigrin (0.05 μg/ml, 0.1 μg/ml and 0.15 μg/ml). Plates were incubated at 28ºC for 72 h and plate images were captured and analyzed for comparative growth inhibitionin different strains caused by streptonigrin. Further, streptonigrin sensitivity assay in liquid broth was performed by growing different strains as described previously (Wilson et al., 1998).Briefly, Xanthomonas oryzae pv. oryzicolastrains were grown to an OD of 1 in PS medium with appropriate antibiotics. Cells were pelleted down, and resuspended in fresh PS medium at an OD600of 0.6. Next, 100 μl culture was inoculated in 4 ml PS medium with or without streptonigrin. Streptonigrin was added to a final concentration of 0.1μg/ml into
    4. ForEPS isolation,X. oryzaepv. oryzicolastrains were plated on PS agar plateand incubated at 28°C. Bacterial lawn was dissolved in 15 ml 1X PBS and 100 μl formamide, and centrifuged at 12,000 g for 6-8 min at RT. Before centrifugation, 1 ml cell suspension was diluted, and plated to get the CFUs. For EPS precipitation, 250 ml chilled acetone was added to the supernatant, and kept at 4°C for overnight (Dharmapuri and Sonti, 1999). EPS was pelleted down at 7000 g for 10 min at 4°C, washed with 10 ml acetone, and kept for drying. After drying, it was dissolved in appropriate volume of water, and quantitated by colorimetric method for estimation of pentoses and hexoses by phenol-sulphuric acid method (Dharmapuri and Sonti, 1999)
    5. For biofilm and attachment assays, Xanthomonas oryzaecells were grown in PS media with appropriate antibiotics at 28°C with constant shaking at 200 rpm. 0.2% of the overnight grown culture was inoculated into the fresh PS media and grown till the OD reached 0.6-0.7 at 600 nm. 4 ml culture was inoculated into 12 well polystyrene culture plates, and incubated for 24 h and 48 h at 28°C without shaking. After 24 h, cultures were discarded, and wells were washed with 4 ml of water to remove loosely attached cells. The adherence was examined by staining the cells with 1% crystal violet solution for 30 min at room temperature. After incubation, excess crystal violet stain was removed by washing the wells with 3 ml water. Images were captured for visualizing the stained biofilm on polystyrene plate. Finally, crystal violet stained biofilm was dissolved in 80% ethanol, and quantified by taking OD at 560 nm. Similar procedures were repeated for the polystyrene plate with culture incubated for 48 h. For attachment, cells were grown similarly in 12 well polystyrene culture plates for 24 h, rinsed once with sterile water to remove loosely attached cells then attached cells were collected by vigorous washing with sterile water. Attached cells were diluted, and plated to get the CFUs
    6. In planta growth assay for different strains of Xanthomonas oryzaepv. oryzicolawas performed by counting CFUs. For getting the CFUs, 1 cm2 leaf area surrounding the site of inoculation was cut and surface sterilized by dipping the leaf in 1% (vol/vol) sodium hypochlorite for 2 min followed by three washes with sterile water. To get the CFUs, sterilized leaves were crushed using mortar and pestle, and diluted appropriately for plating on PSA plate containing suitable antibiotics for differentially marked strains
    7. To study the virulence of Xanthomonas oryzaepv. oryzicolastrains on rice plant two different inoculation methods, syringe infiltration and wound inoculation methods, were implimented. For infiltration method, bacterial suspension comprising of 1 × 108 cells/ml were infiltrated with needleless syringe into leaves of 4 to 6 week-old rice cultivar of susceptible Taichung Native-1 (TN-1) (Hopkins et al., 1992; Wang et al., 2007). Wound inoculation method was carried out by dropping an aliquot of 20 μl bacterial suspension comprised of 1 ×108cells/ml onto fully expanded leaf of 6-8 week green-house grown Taichung Native-1 cultivar of rice, and pricking with sterile needle for facilitating the entry of Xocinside the leaves throgh wound. For inititation of disease symptom, the inoculated plants were incubated in greenhouse with minimum and maximum temperatures of approximately 25 to 30 °C, respectively, and a relative humidity of approximately 60%. Water soaking symptom and lesion development was measured 4 to 10 days after inoculation. Likewise, for infiltration by wound inoculation method, lesion length was measured 14 days after inoculation. In both the cases, no lesions were observed in control experiments in which the leaves were inoculated with sterile wate
    8. biosensor strain 8523/KLN55was inoculated in fresh medium, and grown with the ethyl acetate extract isolated from the test strain as described earlier. After 30 h of growth, cells were pelleted by centrifugation, washed once with sterile water and resuspended in sterile miliQ waterfor measuring the GFP fluorescence intensity at excitation and emission wavelength of 472 and 512 nm, respectively. 1 DSF unit is equivalent to increase in fluorescence by 1 arbitary unit in DSF biosensor strain
    9. For DSF extraction, X. oryzaepv. oryzicolastrains were grown in PS media to an OD600 of 1.2 as described earlier. Supernatant was collected by pelleting down the cells at 7000 g for 10 min. Next, water-saturated ethyl acetate was added to the cell-free culture supernatant in a ratio of 2:1, and mixed properly for 5-10 min. The mixture was centrifuged at 5000 g to separate the DSF containing organic phase. The ethyl acetate layer (organic phase) was evaporated at 37°C, remaining residue was dissolved in methanol, and assayed for DSF by using Xccbiosensor strain 8523/KLN55 (Newman et al., 2004). Biosensor strain is a DSF minus strain comprised of DSF responsive endoglucanase promoter fused to promoterless gfpand expressed through plasmid (Peng::gfp). To check the DSF production by a particular strain, 0.2% inoc
    10. For determining the motility of Xanthomonas oryzae pv.oryzae strains, swim plate assay was performed as described previously (Robleto et al., 2003; Tremaroli et al., 2010)with slight modifications. Briefly, swim plates were prepared with PSA medium containing 0.1% agar. For motility assay, cells were grown at a density of 109cells, which corresponds to an OD of 0.6. Cells were concentrated by centrifugation at 3000 g for 5 min, washed and resuspended in 1/10 volume of sterile water. 5 μl cell suspension was inoculated at the center of the swim plates and incubated for 36-48 h at 28°C. Toget the quantitative measurement of the motility of each strain, diameter of the motility zone was determined at appropriate time point
    11. developer solution for appropriate time and immediately kept in fixer solution to see the protein band. For alkaline phosphatase method, blot was incubated with 5 ml of BCIP/NBT solution (Amresco) under dark condition. After incubation, blot was washed with water to see the blue-violet color protein band
    12. volume of 50 mM acetate buffer (pH-5.4), and dialyzed overnight with 10 mM Tris buffer, pH 7.5. Pellet was used for dilution plating for calculating CFUs. For whole cell protein isolation, bacterial pellet was dissolved in 50 mM sodium acetate buffer (pH-5.4) and sonicated for 30 min (1 min on and off, Amplitude 32) by adding phenylmethylsulfonyl fluoride (PMSF) at a final concentration of 1 mM in ice-cold solution. Both extracellular proteins and whole cell lysate fractions were aliquoted in 1.5 ml microcentrifuge tube, and protein quantification was performed using a Pierce BCA protein assay kit (Thermo Scientific) as per manufacturer’s instructions using bovine serum albumin as standard and stored at -80°C for further use. Cell normalized extracellular and whole cell lysate proteins fractions from different strains were resolved on 12% SDS-PAGE gel at 90 V till the dye front reached the bottom. One gel was processed for silver staining (Sambrook et al., 1989), and other for western-blot analysis by using anti-GFP antibody. For western blot analysis, resolved proteins were transferred to Hybond-ECL membrane (Amersham biosciences) at 35 V for overnight in the cold room. Transfer of the proteins were visually confirmed by examining marker’s lane and membranes were incubated in small box for 2-3 h in 5% fat free milk prepared in 1X PBST for blocking. Blocking solutions were discarded, and primary antibody, appropriately diluted in 5% fat free milk prepared in 1X PBST, was added to the box containing membrane. After 2-3 h incubation in primary antibody, membranes were washed thrice with 1X PBST for 10 min. Membranes were incubated for 2 h in appropriate secondary antibody (anti-Rabbit antibody)diluted in 5% fat free milk prepared in 1X PBST. Blots were either developed by chemiluminescence based ECL-plus western detection system or alkaline phosphatase method. For HRP based chemiluminescence method, detection was performed using the ECL plus kit (Amersham biosciences) and incubated for 3 min. Blot was exposed to the film and developed i
    13. For protein extraction, Xanthomonas oryzaepv. oryzaestrains with eGFP plasmid were grown for 24-30 h in PS medium to an OD of 0.8 as described above and centrifuged at 12,000 g for 10 min. The supernatant was taken as extracellular fraction and protein was extracted as described previously (Ray et al., 2000). Extracellular proteins were precipitated from this fraction by constantly adding 50% (wt/vol) ammonium sulphate at 4°C. After precipitation, the solution was kept on ice for 15-20 min and centrifuged at 12,000 g for 30 min at 4°C. The pellet was dissolved in s
    14. development. Absorbance was measured at 490 nm, and concentration of glucose production was calculated against glucose standard. Cellulase activity is expressed as micromoles of reducing sugar (glucose) released per minute per 109cells. For plate assay, cell-free culture supernatant of X. oryzaepv. oryzaestrains were inoculated in wells of 0.2% CMC agarose plates. In addition, cellulase assay was also performed by spotting the colony on 0.2% CMC PSA plates. Plates were incubated for 8 to 24 h and stained with congo red to observe the halo formation as described previously (Wood and Bhat, 1988). Extracellular xylanase activity in different X. oryzaepv. oryzae strains was measured using 0.2% 4-O-methyl-D-glucurono-D-xylanremazol Brilliant Blue R (RBB-Xylan) (Sigma-Aldrich) as substrate (Biely et al., 1988)on 1% agarose plates. Xylanase activity is indicated by production of halo around the bacterial colony (Ray et al., 2000). Similarly, for lipase activity p-nitrophenyl butyrate was used as substrate. Lipase activity was calculated by measuring the level of p-nitrophenol released upon hydrolysis of p-nitrophenyl butyrate at 410 nm (Acharya and Rao, 2002). Lipase activity was expressed as micromoles of p-nitrophenol released permin per109cells. For plate assay, colonies were spotted on 1% PSA plates containing 0.5% Tributyrin in 100 mM Tris (pH 8) and 25 mM CaCl2 and halo formation was observed for lipase activity
    15. For extracellular enzyme assays, X. oryzaepv. oryzae strains were grown in PS, MM9 and XOM2 media to an OD of 0.6, and centrifuged at 12,000 g for 10 min to collect the supernatant. The supernatant was taken as an extracellular fraction and cell pellet was plated by dilutionplating to get the CFUs per milliliter of culture. Extracellular cellulase activity was measured using phenol-sulphuric acid (H2SO4) method, which measures pentoses and hexoses (concentration of glucose released) upon cellulase activity (DuBois et al., 1956). Briefly, a specific amount of supernatant was taken and volume was adjusted to 300 μl by adding 50 mM acetate buffer (pH-5.4). To this, 1% carboxy methyl cellulose (CMC) substrate solution was added and mixed well. This mixture was incubated at 28°C for 30 min, and the reaction was stopped by adding 1 ml ice-cold ethanol. Solution was mixed well, kept on ice for 5 min and centrifuged at 12,000 g for 5 min. Supernatant was recovered and 5% phenol was added to it, mixed well followed by adding 1 ml H2SO4. The tube was incubated at RT for 20 min for co
    16. work were autoclaved twice and dried at 80°C for overnight before use. RNA was isolated from Xanthomonasculture using Trizol method. Xanthomonascells were harvested at 12,000 g for 5 min at 4°C, resuspended in approximately 1 ml Trizol (Invitrogen),mixed properly and incubated at room temperature (RT) for 5 min. 200 μl chloroform was added to the tube, shaken for 15 seconds and incubated at RT for 2-15 seconds. Next, tubes were centrifuged at 13,000 g for 15 min at 4°C. Aqueous phase was transferred to new 1.5 ml microcentrifuge tube and RNA was precipitated by adding 500 μl isopropanol and incubated for 5-10 min at RT. Precipitated RNA was collected by centrifugation at 10,000 gfor 10 min at 4°C. RNA pellet was washed with 70% ethanol and resuspended in 20 μl nuclease-free water. RNA concentration was determined by measuring absorbance at 260 nm. Quality of RNA was examined by gel electrophoresis on 0.8% agarose gel with TAE buffer prepared in DEPC treated water
    17. For RNA experiments, all solutions were prepared in RNase free diethylpyrocarbonate (DEPC) treated water. Microcentrifuge and tips u
    18. Xanthomonas strains were grown in PS medium for 14-16 h at 28°C with continuous shaking at 200 rpm. 1 ml of bacterial cultures were ten-fold serially diluted in water and 100 μl volume of each dilution was plated on PS agar plates to get the colony forming units (CFUs). Similarly, 5 μl volume of each dilution was spotted on PS agar plates containing different concentration of streptonigrin and different detergents for intracellular iron and membrane sensitivity assay, respectively. Plates were incubated at 28°C and images were captured after 2-8 days of incubation depending upon m

      edium used.

    19. 10% APS -30 μlTEMED -3 μlSDS loading buffer (2X)100 mM Tris-HCl (pH-6.8)20% (v/v) Glycerol4% (W/V) SDS0.02% Bromophenol Blue10% β-MercaptoethanolSDS-loading buffer was prepared as 2X stock solution in H2O and used at 1X concentration.SDS-PAGE running buffer14.4 g Glycine3.03 g Tris methylamine1 g SDSDissolved in H2O and volume was adjusted to 1L with H2O.Buffers for western blot analysisTransfer buffer (1 litre)14.4 g Glycine3.03 g Tris methylamine800 ml H2O 200 ml methanolBlocking and wash buffers (PBS-T)5% Fat-free milk0.05% Tween-20Volume was adjusted to 100 ml with1XPBS
    20. Whole cell lysis buffer50 mM Sodium acetate 410 mg Sodium acetate anhydrous was dissolved in 80 ml H2O. pH was adjusted to 5.4 with glacial acetic acid and finally volume was adjusted to 100 ml with H2O.1 mM PMSF (phenylmethylsulfonyl fluoride) in isopropanol.Dialysis buffer50 mM Trizma basepH was adjusted to 7.5 by using concentrated HCl.Silver stainingFixing solution50% ethanol10% glacial acetic acid0.05% formaldehydeFinal volume was adjusted with sterile H2O.0.2% Silver nitrate solution (AgNO3)0.2 g AgNO3
    21. 0.075% formaldehyde (37% stock) Dissolved in 100 ml of H2O. Stored at 4°C for 1 hour in brown colored bottle.Developing solution 6% Sodium carbonate (Na2CO3)0.05% Formaldehyde (37% stock)0.02% Sodium thiosulphateStorage buffer50% EthanolSDS-PAGE30% Acrylamide solution29 g Acrylamide1 g Bis-acrylamideAcrylamide solution was prepared in H2O.Resolving gel mix (12%) (10 ml)H2O -3.3 ml30% Acrylamide:Bisacrylamide mix (29:1) -4 ml1.5 M Tris-HCl (pH-8.8) -2.5 ml10% SDS -100 μl10% Ammonium persulphate (APS) -100 μlN, N, N’,N’,-Tetramethylethylenediamine (TEMED) -4 μlStacking gel mix (5%, 3 ml)H2O -2.1 ml30% acrylamide:bisacrylamide mix (29:1) -500 μl1.5 M Tris-HCl (pH-6.8) -380 μl 10% SDS -30 μl
    22. Rifr, Apr, Kmr, Gmr, Tetrand Spcrindicate resistant to rifampicin, ampicillin, kanamycin, gentamicin and spectinomycin, respectively.Table 2.2: List of oligonucleotides used in the study
    23. hydrochloric acid, sulphuric acid, methanol, acetic acid, acetone and nitric acid were purchased from Fischer Scientific. Protease inhibitor tablets were procured from Roche. Hybond-P membranes for protein transfer were purchased from Amersham Biosciences. Taq DNA polymerase and Hi-fidelity Taq DNA polymerase were purchased from Thermoscientific and Larova, respectively. SYBR-green kit for real-time PCRwas procured from Qiagen and Thermoscientific. Superscript SS-III RT kit was obtained from Invitrogen. Random hexamers were obtained from Qiagen. Different restriction enzymes used for cloning and mutation generation were purchased from New EnglandBiolabs (NEB). Plasmid DNA purification, PCR purification, gel extraction and reaction clean up kits were procured from Qiagen. Medium components for bacterial culture viz., sucrose, agar, Luria Bertani (LB), Nutrient Agar (NA), peptone, yeast extract, beef extract, magnesium chloride hexahydrate (MgCl2.6H2O) and potassium sulphate (K2SO4) were purchased from Himedia. Table 2.1: List of strains and plasmids used in the study
    24. Agarose, phenol, dimethyl sulphoxide (DMSO), sodium acetate, sodium carbonate, sodium bicarbonate, mangenese sulphate, tris methylamine, trizma base, sodium dodecyl sulphate (SDS), formamide, ethylenediaminetetraacetic acid (EDTA), glycerol, polyethylene glycol, tributyrin, ammonium persulphate, TEMED, acrylamide, bis-acrylamide, coomassie brilliant blue (CBB), β-mercaptoethanol, chloroform, formaldehyde, nuclease free water, diethylpyrocarbonate (DEPC), isopropanol, ferrozine, glycine, sodium lauryl sarcosine, carbonylcyanidep-trifluoromethoxyphenylhydrazone (FCCP), benzyl amino purine (BAP), ferrozine, tween-20, triton-X-100, aniline blue, trisodium citrate dehydrate, remazol brilliant blue-xylan (RBB-xylan), lactic acid, nicotinic acid, hexadecyltrimethyl ammonium bromide (HDTMA), p-nitrophenol, carboxymethyl cellulose (CMC cellulose), sodium phosphate dibasic, sodium phosphate monobasic, rubidium chloride, ferrous sulphate, ferric chloride, ammonium sulphate, 2,5-diphenyloxazol (PPO), 1,4-bis (5 phenyl 1,2-oxazole) Benzene (POPOP) and 2, 2-dipyridyl were purchased from Sigma Chemicals. Sodium hypochloride, disodium hydrogen orthophosphate dehydrate, sodium chloride, sodium hydroxid
    1. Radioactive counts measured in2x106labelled C. glabratacells and lysates were considered as ‘input’ and ‘output’ values, respectively. Percentage adherence was calculated by following equation.%Adherence=Output radioactive countsInput radioactive countsX 100
    2. Adherence of C. glabratacells to Lec2, Chinese hamster ovarian (CHO) cells, wasdetermined as described previously (Cormack et al., 1999). Briefly, Lec2 cells were seeded at a cell density of 5x105cells per wellin a 24-well tissue culture plate.Cells were incubated in a cell culture incubator (Thermo Scientific) set at 37°C and 5%CO2for 12 h. Post incubation, the medium was discarded in a reservoir and Lec2 monolayer was washed thrice with sterile 1X PBS without disturbing the monolayer. Lec2 cells were fixed with 3.7% para-formaldehyde for15 min followed by twoPBS washes. 1 mlof 1X PBS containing antibiotics, penicillin (100 units/ml) and streptomycin (100 μg/ml), was added to each well, plates were sealed with PARAFILM, Cole-Parmer(PM-996) and stored at 4°C until use.C. glabrata cells,to be tested for their adherence potential, were grown in CAAmedium for 24 h.100 μl of 24 h-grownculture was re-inoculated in fresh 5 ml CAAmedium containing 200 μCi of S35(Met:Cys-65:25) INVIVO PROTWIN label mix (JONAKI, India)in a 15 ml polypropylene tube.Cultures were allowed to grow for 16-20 h at 30°C with shakingat200 rpm to radiolabel the cells. Radiolabelled C. glabratacells were harvested by spinning down1 ml of labelled yeast cultures,andthe cell pellet was washed thrice with sterile 1X PBS to remove any residual S35(Met:Cys-65:25) labelling mix from the medium. Post washes, the pellet was resuspended in 1 ml PBS, OD600was measured andcell suspension of 0.4 OD600wasprepared.Next, 24well plates containing fixed Lec2 cells were taken out from 4°C and PBS from the wells wasdiscarded by inverting the plates. Wells were washed once with PBS and 2x106labelled yeast cells were added to eachwell, andincubatedfor 30 min at room temperature.Post incubation, plates were centrifuged at 1,000 rpm and the wells were washed thrice with 1X PBS to remove non-adherent C. glabratacells. Lec2 cells were lysed with 5% SDS in PBS by scraping the wells, lysates were collected and transferred to a vial containing scintillation fluid
    3. using the GENESPRING GX (Version 12.0) software,normalized to 75 percentile shift and represent the average of two hybridizations from biological replicates for each sample. Functional annotation of differentially regulated gene set(≥1.5 Fold change with p≤0.05)was performed using the GENESPRING GX (Version 12.0) softwareand GO terms with p<0.05 were considered as statistically significant. Using the REVIGO tool(http://revigo.irb.hr), redundant and significantly overlapping GO terms were removed and summarized. In REVIGO analysis, S. cerevisiaedatabase was chosen for GOterm sizes andtheallowed similarity value was set to 0.5(small).Additionally, to identify the overlap among differentially expressed genes, functional category analysis was performed usingthefungal specific annotation tool FUNGIFUN (https://sbi.hki-jena.de/FungiFun/FungiFun.cgi). Significantly enriched FunCat (Functional Catalogue) associated pathways were extracted usingthewhole C. glabratagenome as background and compared across differentially regulated gene sets. The parameters used for FUNGIFUN analysis were cut-off p=0.05; Fisher’s exact test; FunCatlevel 3. Raw data sets for this study are available attheGene Expression Omnibus database (http://www.ncbi.nlm. nih.gov/geo; accession no. GSE60741
    4. Log-phase C. glabratacells were grown either in YNB or YNB medium supplemented witheither50 μMBPS(iron limiting) or 500 μMferric chloride (iron excess) for 2 h. Cells were spun down at 4,000 rpm for 5 min and washed twice with ice-cold DEPC-treated water. Total RNA was extracted usingtheacid phenolisolationmethod, resuspended in nuclease-free water and stored at -80°C. The frozen RNA samples were sent to Genotypic Technology Ltd., Bangalore (http://www.genotypic.co.in) wherein quality of RNA samples wasdetermined by examining the RNA integrity number (RIN) before performing microarray analysis. Next, the 8x15 GE Agilent array,comprised of 60mer oligonucleotides representing a total of 5,503 C. glabrataORFs (three replicates of each probe on average),was used for single colour microarray experiments.Datawereextracted
    5. To perform immunoblotting or western blotting, appropriate amounts of total protein(ranging from 20-40 μg) were separated ona SDS-PAGE gel of 12%acrylamide concentration in Tris-Glycine-SDS gel running buffer. Protein separation was done at 70-100 V for 2-3 h using a MINI PROTEAN®3 electrophoresis unit (Bio-Rad). Followingseparation, proteins weretransferredto polyvinylidene difluoride (PVDF) membrane, using a Bio-Rad Mini Trans-Blot electrophoretic transfer unit in Tris-Glycine transfer buffer at 4⁰C. Before setting transfer assembly, PVDF membrane was first activated in 100% methanolfollowedby washesin the transfer buffer. The transfer assembly was set inaBio-Rad Mini gel holder cassette (170-3931)according to manufacturer’s instructions. The transfer time and current settings varied depending on the size oftheprotein of interest. Post transfer, membranes wereseparated from the assembly and kept for blocking intheblocking buffer (0.1 % Tween-20, 5% w/v fat-free skimmed milk in 1X TBS) for 1 h at room temperature with shaking. Next,membranes wereincubated with appropriate dilutions of primary antibodiesin the blocking buffereitherfor 3-4 h at room temperature or overnight at 4°C with gentle shaking. Post incubation,membranes were washed thrice with 1X TBS-T, 10 min each,with constant agitation. After washes, membraneswere incubated with appropriate dilutions of secondary antibodiesconjugated with horseradish peroxidase (HRP) for 1 h at room temperature with gentle shaking. Next, membranes were washed thrice with 1X TBS-T, 10 min each,with constant agitation. To visualize proteins, membranes were removed from TBS-T, and theHRP substrate ECL plus (Amersham Biosciences, RPN2232) was uniformly added on top of the membrane. Chemiluminescent signalswere captured in the western blot imaging system (FluorChemTME system)
    6. For protein extraction, cells were spun down at 4,000 rpm for 5 min and washed with ice-cold water. The cell pellet was resuspended in 250-500 μl of homogenisation buffer which contained50 mM Tris (pH 7.5), 2 mM EDTA, 1 mM phenylmethylsulphonyl fluoride (PMSF) (serine protease inhibitor), 10 mM sodium fluoride (serine/threonine and acid phosphatases inhibitor), 1 mM sodium orthovanadate (Tyrosine and alakaline phosphatases inhibitor) and 1X protease inhibitor cocktail (Sigma, P 8215). The cell suspensison was transferred to a 1.5 ml centrifuge tube and equal amounts of glass beads (0.5 mm size) were added. Cells were lysed mechanically by bead-beatinghomogenizer (MP Biomedicals, FastPrep®-24) atthemaximum speed for 60 seconds, five times each,with intermittent cooling on ice.After lysis, tubes were punctured at the bottom with the helpofasurgical needle, and the lysed cell suspension was collected in a fresh microcentrifuge tubes by putting the punctured tubes on top of the fresh tubes and centrifuging them at 3,000 rpm for 10 min. The supernatant was transferred toafresh microcentrifugetubeandprotein concentrationwasestimated usingtheBCA protein assay kit (Thermo scientific). Protein preparations werestored at -20°C until use
    7. For complementation studies, C. glabrataORFs, CgFTR1(1.22 kb), CgFET3(1.91 kb), CgYFH1(0.53 kb), CgCCW14(0.64 kb), CgMAM3(1.91 kb)andCgHOG1(1.34 kb) were PCR amplified from wild-type genomic DNA using Phusion high-fidelity DNA polymerase and cloned down-stream of the PGK1promoter intothe XmaIand XhoI, XbaIand XmaI, XmaIand XhoI, BamHIand SalI, XmaIand XhoI, and BamHIand XmaIsites, respectively, in the CEN-ARS containing plasmid pGRB2.2 (pRK74). For over-expression studies, C. glabrataORFs, CgCCC1(0.95 kb), CgYAP5(1.05 kb)andCgMRS4(0.92 kb) were PCR amplified from wild-type genomic DNA using Phusion high-fidelity DNA polymerase and cloned down-stream of the constitutive promoter PDC1into the BamHI and SalI, XbaIand XmaI, and XmaI and XhoIsites, respectively, in the CEN-ARS containing plasmid obtained from Addgene (Addgene-ID 45323). All clones were verified by PCR and sequencing analysis
    8. PCR-positive transformants were inoculated in 10 ml YPD medium, allowedto grow for 12 handgenomic DNAwas isolated.Another round of PCR was performed using genomic DNA asatemplate toconfirm the gene deletion
    9. A homologous recombination-based strategy was used to disrupt C. glabraraORFs witha cassette containing the nat1gene, which codes for nourseothricin acetyltransferase and imparts resistance to nourseothricin. Briefly, 5’-and 3’-UTR region (nearly 500-700 bp) of the gene to be deleted were amplified by PCR using wild-type genomic DNA as template. Both 5’-and 3’-UTR amplified products were fused to one half each ofthenat1gene amplified from theplasmid(pRK625). The two nat1-amplified fragments share about 300-350 bp complimentary region. To obtain fusion products, primers were designed insucha way thatthereverse primer for 5’-UTR and the forward primer for 3’-UTRof the gene of interestshare 20 bp complimentary region with the forwardprimer for 5’nat1fragment andthereverse primer for 3’nat1fragment amplification, respectively. The fused PCR products were co-transformed in to the wild-type strain and transformants were plated on YPD-agar plates. Plates were incubated at 30°C for 16 h to allow the homologous recombination between nat1fragments,and 5’-and 3’-UTR atthegenomic loci. Post incubation,cells were replica plated ontoYPD-agar plate supplemented with 200 μg/ml nourseothricin and incubated for another 24 h. Nourseothricin-resistant colonies were purified and verified for gene disruption viahomologous recombination by PCR using appropriate set of primers
    10. For Yeast colony PCR, yeast cells were subjected to zymolyase (MP Biomedicals, 0832092) digestion to obtain thespheroplast. To perform zymolyase digestion, a digestion cocktail was prepared in 1XPBS consisting of zymolyase (2.5mg/ml) and sorbitol (1.2 M). The cocktail was dispensed in 0.2ml PCR tubes in 10 μl aliquots anda tip-full of yeast cells wasadded to these tubes. Tubes were incubated at 37°C for 2-3 h and 1 μl of digested mixture was used as a template in a PCR reaction
    11. To perform restriction digestion of plasmid DNA and PCR-amplified DNA products, restriction enzymes were procured from NEW ENGLAND Biolabs(NEB). Restriction digestion was set in 50 μl reaction volume with appropriate buffer and 1X BSA. For ligation of DNA fragments obtained after restriction digestion, T4 DNA Ligase enzyme (NEB, M0202M) was used. All ligation reactions were set in 20 μl reaction volume containing 1X ligase buffer, 3-10 units of DNA ligase enzyme and vector to insert molar ratio of 1:3. The ligation mixture waseitherincubated at 16°C for 16h or at room temperature for 2-3 h. Post incubation, ligation reaction was inhibited by heatingtubes at 65°C for 15-20 min.2-5 μl of ligation mixture was used to transform ultra-competent E. coliDH5αcells
    12. To extract DNA from agarose gels,the QIAquick® gel extraction kit (QIAGEN, 28706) was used. For purification of PCR amplified DNA products,the QIAquick® PCR purification kit (QIAGEN, 28106) was used. Clean-up of enzymatic reactions was performedusing the MinElute® Reaction Cleanup kit (QIAGEN, 28204). Allprotocolswere followed as per manufacturer’s instruction
    13. Bacterial plasmid DNA was isolatedusing the QIAprep® spin Miniprep kit (QIAGEN, 27106). 10 ml of LB medium supplemented with appropriate antibioticswas inoculated withasingle bacterial colony and incubated at 37°C for 12-16 h. Cultures were spun down at 8,000 rpm for 5 min, supernatant was discarded and the cell pellet was processed to isolate plasmid DNA as per instructions given in the kit. DNA was eluted either in nuclease-free water or in elution buffer provided in the kit and stored at -20°C until use
    14. were chosen for qPCR. For all qPCR reactions,0.4 μl of cDNA template was used in a 20 μl reaction volume. Reactionswere performed anddata wereanalysed in ABI7500 real-time qPCR machine. Amplified products were run on 2% agarose gel to confirm amplification ofthecorrect size product. CTvalues of respective products were normalized with corresponding CTvalue of the housekeeping gene CgACT1. Relative change in expression was determined by comparative CTmethod,also referred as 2-∆∆CTmethod, utilizing following equation.Fold change upon treatment=2-∆∆CT∆∆CT=∆CT Treated-∆CT Untreated∆CTTreated= CTvalue for gene of interest upon treatment-CTvalue of internal control (CgACT1)upon treatment∆CTUntreated= CTvalue for gene of interest without treatment-CTvalue of internal control (CgACT1)without treatmentThe reaction cycling conditions were as follows1)95°C for 10 min (initial activation)2)95°C for 15 sec (denaturation)3)55°C for 30 sec (annealing)4)72°C for40 sec (extension)5)Go to step 2 (40 cycles)6)72°C for 10 min (final extension)
    15. MESA GREEN qPCR mastermix (RT-SY2X-03+WOULR) supplied by Eurogentech was used in all qPCR experiments. Primers for real-time qPCR experiments were designed by using the Primer3 plus software to obtain 120-200 bp amplification products. Standardization of optimaltemplate and primer concentrationconditionswas done in a PCR reaction and concentrations resulting in good amplification withoutprimer dimers
    16. Reverse transcriptase “Superscript III” (Invitrogen, 18080-051) was used to perform cDNA synthesis. Briefly, 500 ng of DNase I-digested RNA was incubated with 1 μl of 10 mM dNTP and 50 μM oligo(dT) at 65°C for 5 min in a 10 μl reaction mixture followed by cooling on ice for 5 min. Post incubation, 10 μl of cDNA synthesis mixture was added which contained 2 μl of 10XRT buffer, 4 μl of 25 mM MgCl2, 2 μl of 0.1 M DTT, 1 μl of RNase out (40 units) and 1μl of Superscript III (200 units). Tubes were incubated at 50°C for 1 h and thereaction was terminated at 85°C for 5 min. The quality of synthesized cDNA was checked by using it as a template in a PCR reaction to amplify the housekeeping gene CgACT1. Amplification of CgACT1was indicative of proper cDNA synthesis
    17. Deoxyribonuclease I (DNase I) enzyme (Invitrogen) was used to remove the DNA contamination from RNA samples,if any. Briefly,1 μg of RNA was subjected to DNase I digestion by using 1 U of DNase I in a 10 μl reaction mixture which contained 1X DNase I buffer and appropriate volume of water. The reaction mixture was incubated at room temperature for 15 min. Post incubation,to inhibit DNase I enzyme activity,1 μl of 25 mM EDTA was added to the reaction mixture and tubes were heated at 65°C for 10 min. DNase I-digested RNA samples were used as template to perform PCR for the amplification of CgACT1geneandabsence of amplification product was used as criterion toconfirmproper DNase I digestion and lackof DNAcontaminationin the RNA sample
    18. microcentrifuge tube. For precipitation of RNA, 1/10thvolume of 3 M sodium acetate (pH 5.3) and 2.5 volume of 100% ice-coldethanol was added. In order to facilitate precipitation, tubes werekept at -20°C for 20 min. Tubes were centrifuged at 13,000 rpm for 10 min in a refrigerated centrifuge. The RNA pellet was washed with 70% ethanol,resuspendedin 100-200 μl of nuclease-free water and stored at -20°C untiluse.Care was taken to keep allreagents and tubes on ice to maintain the cold temperature throughout theRNA extractionprocess
    19. All reagents required for RNA extraction were preparedin DEPC-treated water. RNasecontamination from non-autoclavable items wasremoved by wiping them with RNaseZap® (Ambion). Total RNA from yeast cells was extractedusing acid phenolextractionmethod. Briefly, yeast cells were grown underappropriate conditions and at suitabletime points,cells were harvested by centrifugation at 4,000 rpm for 5 min. The cell pellet was washed twice with ice-cold DEPC-treated water, resuspended in 350 μl of AE buffer and transferred toa1.5 ml microcentrifuge tube. To this,40 μl of 10% SDS and 400 μl of acid phenol (pH 4.3) was added. The cell suspension was mixed well by vortexing thrice, short pulsesof10 seconds each,and incubated at 65°C for 15 min with continuous agitation at 800 rpm. Post incubation, cells were kepton ice for 5 min and centrifuged at 13,000 rpm in a refrigerated centrifuge set at 4°C for 10 min. After centrifugation, aqueous layer was transferred to a new1.5 ml microcentrifuge tube and 400 μl of chloroform was added. Tubes were mixed well by gentlyinverting them 4-5 times and centrifuged at 13,000 rpm for 10 min. The aqueous layer was separated and transferred to a new1.5 ml
    20. This method was used to isolate highly pure genomic DNA. Briefly, 10 ml overnight grownC. glabratacultures were spun downandwashed with 10 ml sterile water. Washed cells wereresuspended in500 μl sterile water and transferred toa1.5 ml microcentrifuge tube. Tubes were spundownat 4,000 rpm for 5 min, supernatant was discarded andcell pellet was resuspended in 500 μl of buffer containing 100 mM EDTA and 5% β-mercaptoethanol and incubatedat 42°C for 10 min. Post incubation, cells were spun down at 4,000 rpm for 5 min and resuspended in freshly prepared Buffer B. To this, one tip-full of lyticase (Sigma, L4025) was added and incubated at 37°C for 1 h.After incubation, spheroplasts were collected by spinning downtubes at 6,000 rpm for 5 min, supernatant was discarded and the pellet was resuspended in 500 μl of Buffer C. DNA was extracted twice with 500 μl of PCI (25:24:1) solution and the aqueous layer was transferred toa new1.5 ml microcentrifuge tube. To this, 2.5 volume of absolute ethanol and 1/10thvolume of 3 M sodium acetate (pH 5.3) wereadded. Tubes were spundownat 13,000 rpm for 10 min, DNA pellet was resuspended in 200 μl of 1X TE buffer containing0.3 μl of RNase cocktail (Ambion) and incubated at 37°C for30 min. DNA was precipitated again by adding absolute ethanol and sodium acetate as mentioned above. DNA pellet was washed once with 70% ethanol, centrifuged at 13,000 rpm for 10 min, air-dried at room temperature and was resuspended in 100-200 μl of 1X TE buffer by gently tapping the tube. DNAwas stored at -20°C until use
    21. For complementation studies, C. glabrataORFs, CgFTR1(1.22 kb), CgFET3(1.91 kb), CgYFH1(0.53 kb), CgCCW14(0.64 kb), CgMAM3(1.91 kb)andCgHOG1(1.34 kb) were PCR amplified from wild-type genomic DNA using Phusion high-fidelity DNA polymerase and cloned down-stream of the PGK1promoter intothe XmaIand XhoI, XbaIand XmaI, XmaIand XhoI, BamHIand SalI, XmaIand XhoI, and BamHIand XmaIsites, respectively, in the CEN-ARS containing plasmid pGRB2.2 (pRK74). For over-expression studies, C. glabrataORFs, CgCCC1(0.95 kb), CgYAP5(1.05 kb)andCgMRS4(0.92 kb) were PCR amplified from wild-type genomic DNA using Phusion high-fidelity DNA polymerase and cloned down-stream of the constitutive promoter PDC1into the BamHI and SalI, XbaIand XmaI, and XmaI and XhoIsites, respectively, in the CEN-ARS containing plasmid obtained from Addgene (Addgene-ID 45323). All clones were verified by PCR and sequencing analysis
    22. PCR-positive transformants were inoculated in 10 ml YPD medium, allowedto grow for 12 handgenomic DNAwas isolated.Another round of PCR was performed using genomic DNA asatemplate toconfirm the gene deletion
    23. A homologous recombination-based strategy was used to disrupt C. glabraraORFs witha cassette containing the nat1gene, which codes for nourseothricin acetyltransferase and imparts resistance to nourseothricin. Briefly, 5’-and 3’-UTR region (nearly 500-700 bp) of the gene to be deleted were amplified by PCR using wild-type genomic DNA as template. Both 5’-and 3’-UTR amplified products were fused to one half each ofthenat1gene amplified from theplasmid(pRK625). The two nat1-amplified fragments share about 300-350 bp complimentary region. To obtain fusion products, primers were designed insucha way thatthereverse primer for 5’-UTR and the forward primer for 3’-UTRof the gene of interestshare 20 bp complimentary region with the forwardprimer for 5’nat1fragment andthereverse primer for 3’nat1fragment amplification, respectively. The fused PCR products were co-transformed in to the wild-type strain and transformants were plated on YPD-agar plates. Plates were incubated at 30°C for 16 h to allow the homologous recombination between nat1fragments,and 5’-and 3’-UTR atthegenomic loci. Post incubation,cells were replica plated ontoYPD-agar plate supplemented with 200 μg/ml nourseothricin and incubated for another 24 h. Nourseothricin-resistant colonies were purified and verified for gene disruption viahomologous recombination by PCR using appropriate set of primers
    24. For Yeast colony PCR, yeast cells were subjected to zymolyase (MP Biomedicals, 0832092) digestion to obtain thespheroplast. To perform zymolyase digestion, a digestion cocktail was prepared in 1XPBS consisting of zymolyase (2.5mg/ml) and sorbitol (1.2 M). The cocktail was dispensed in 0.2ml PCR tubes in 10 μl aliquots anda tip-full of yeast cells wasadded to these tubes. Tubes were incubated at 37°C for 2-3 h and 1 μl of digested mixture was used as a template in a PCR reaction
    25. To perform restriction digestion of plasmid DNA and PCR-amplified DNA products, restriction enzymes were procured from NEW ENGLAND Biolabs(NEB). Restriction digestion was set in 50 μl reaction volume with appropriate buffer and 1X BSA. For ligation of DNA fragments obtained after restriction digestion, T4 DNA Ligase enzyme (NEB, M0202M) was used. All ligation reactions were set in 20 μl reaction volume containing 1X ligase buffer, 3-10 units of DNA ligase enzyme and vector to insert molar ratio of 1:3. The ligation mixture waseitherincubated at 16°C for 16h or at room temperature for 2-3 h. Post incubation, ligation reaction was inhibited by heatingtubes at 65°C for 15-20 min.2-5 μl of ligation mixture was used to transform ultra-competent E. coliDH5αcells
    26. To extract DNA from agarose gels,the QIAquick® gel extraction kit (QIAGEN, 28706) was used. For purification of PCR amplified DNA products,the QIAquick® PCR purification kit (QIAGEN, 28106) was used. Clean-up of enzymatic reactions was performedusing the MinElute® Reaction Cleanup kit (QIAGEN, 28204). Allprotocolswere followed as per manufacturer’s instructions
    27. Bacterial plasmid DNA was isolatedusing the QIAprep® spin Miniprep kit (QIAGEN, 27106). 10 ml of LB medium supplemented with appropriate antibioticswas inoculated withasingle bacterial colony and incubated at 37°C for 12-16 h. Cultures were spun down at 8,000 rpm for 5 min, supernatant was discarded and the cell pellet was processed to isolate plasmid DNA as per instructions given in the kit. DNA was eluted either in nuclease-free water or in elution buffer provided in the kit and stored at -20°C until use
    28. were chosen for qPCR. For all qPCR reactions,0.4 μl of cDNA template was used in a 20 μl reaction volume. Reactionswere performed anddata wereanalysed in ABI7500 real-time qPCR machine. Amplified products were run on 2% agarose gel to confirm amplification ofthecorrect size product. CTvalues of respective products were normalized with corresponding CTvalue of the housekeeping gene CgACT1. Relative change in expression was determined by comparative CTmethod,also referred as 2-∆∆CTmethod, utilizing following equation.Fold change upon treatment=2-∆∆CT∆∆CT=∆CT Treated-∆CT Untreated∆CTTreated= CTvalue for gene of interest upon treatment-CTvalue of internal control (CgACT1)upon treatment∆CTUntreated= CTvalue for gene of interest without treatment-CTvalue of internal control (CgACT1)without treatmentThe reaction cycling conditions were as follows1)95°C for 10 min (initial activation)2)95°C for 15 sec (denaturation)3)55°C for 30 sec (annealing)4)72°C for40 sec (extension)5)Go to step 2 (40 cycles)6)72°C for 10 min (final extension)
    29. MESA GREEN qPCR mastermix (RT-SY2X-03+WOULR) supplied by Eurogentech was used in all qPCR experiments. Primers for real-time qPCR experiments were designed by using the Primer3 plus software to obtain 120-200 bp amplification products. Standardization of optimaltemplate and primer concentrationconditionswas done in a PCR reaction and concentrations resulting in good amplification withoutprimer dimers
    30. Reverse transcriptase “Superscript III” (Invitrogen, 18080-051) was used to perform cDNA synthesis. Briefly, 500 ng of DNase I-digested RNA was incubated with 1 μl of 10 mM dNTP and 50 μM oligo(dT) at 65°C for 5 min in a 10 μl reaction mixture followed by cooling on ice for 5 min. Post incubation, 10 μl of cDNA synthesis mixture was added which contained 2 μl of 10XRT buffer, 4 μl of 25 mM MgCl2, 2 μl of 0.1 M DTT, 1 μl of RNase out (40 units) and 1μl of Superscript III (200 units). Tubes were incubated at 50°C for 1 h and thereaction was terminated at 85°C for 5 min. The quality of synthesized cDNA was checked by using it as a template in a PCR reaction to amplify the housekeeping gene CgACT1. Amplification of CgACT1was indicative of proper cDNA synthesis
    31. Deoxyribonuclease I (DNase I) enzyme (Invitrogen) was used to remove the DNA contamination from RNA samples,if any. Briefly,1 μg of RNA was subjected to DNase I digestion by using 1 U of DNase I in a 10 μl reaction mixture which contained 1X DNase I buffer and appropriate volume of water. The reaction mixture was incubated at room temperature for 15 min. Post incubation,to inhibit DNase I enzyme activity,1 μl of 25 mM EDTA was added to the reaction mixture and tubes were heated at 65°C for 10 min. DNase I-digested RNA samples were used as template to perform PCR for the amplification of CgACT1geneandabsence of amplification product was used as criterion toconfirmproper DNase I digestion and lackof DNAcontaminationin the RNA sample
    32. microcentrifuge tube. For precipitation of RNA, 1/10thvolume of 3 M sodium acetate (pH 5.3) and 2.5 volume of 100% ice-coldethanol was added. In order to facilitate precipitation, tubes werekept at -20°C for 20 min. Tubes were centrifuged at 13,000 rpm for 10 min in a refrigerated centrifuge. The RNA pellet was washed with 70% ethanol,resuspendedin 100-200 μl of nuclease-free water and stored at -20°C untiluse.Care was taken to keep allreagents and tubes on ice to maintain the cold temperature throughout theRNA extractionprocess
    33. All reagents required for RNA extraction were preparedin DEPC-treated water. RNasecontamination from non-autoclavable items wasremoved by wiping them with RNaseZap® (Ambion). Total RNA from yeast cells was extractedusing acid phenolextractionmethod. Briefly, yeast cells were grown underappropriate conditions and at suitabletime points,cells were harvested by centrifugation at 4,000 rpm for 5 min. The cell pellet was washed twice with ice-cold DEPC-treated water, resuspended in 350 μl of AE buffer and transferred toa1.5 ml microcentrifuge tube. To this,40 μl of 10% SDS and 400 μl of acid phenol (pH 4.3) was added. The cell suspension was mixed well by vortexing thrice, short pulsesof10 seconds each,and incubated at 65°C for 15 min with continuous agitation at 800 rpm. Post incubation, cells were kepton ice for 5 min and centrifuged at 13,000 rpm in a refrigerated centrifuge set at 4°C for 10 min. After centrifugation, aqueous layer was transferred to a new1.5 ml microcentrifuge tube and 400 μl of chloroform was added. Tubes were mixed well by gentlyinverting them 4-5 times and centrifuged at 13,000 rpm for 10 min. The aqueous layer was separated and transferred to a new1.5 ml
    34. This method was used to isolate highly pure genomic DNA. Briefly, 10 ml overnight grownC. glabratacultures were spun downandwashed with 10 ml sterile water. Washed cells wereresuspended in500 μl sterile water and transferred toa1.5 ml microcentrifuge tube. Tubes were spundownat 4,000 rpm for 5 min, supernatant was discarded andcell pellet was resuspended in 500 μl of buffer containing 100 mM EDTA and 5% β-mercaptoethanol and incubatedat 42°C for 10 min. Post incubation, cells were spun down at 4,000 rpm for 5 min and resuspended in freshly prepared Buffer B. To this, one tip-full of lyticase (Sigma, L4025) was added and incubated at 37°C for 1 h.After incubation, spheroplasts were collected by spinning downtubes at 6,000 rpm for 5 min, supernatant was discarded and the pellet was resuspended in 500 μl of Buffer C. DNA was extracted twice with 500 μl of PCI (25:24:1) solution and the aqueous layer was transferred toa new1.5 ml microcentrifuge tube. To this, 2.5 volume of absolute ethanol and 1/10thvolume of 3 M sodium acetate (pH 5.3) wereadded. Tubes were spundownat 13,000 rpm for 10 min, DNA pellet was resuspended in 200 μl of 1X TE buffer containing0.3 μl of RNase cocktail (Ambion) and incubated at 37°C for30 min. DNA was precipitated again by adding absolute ethanol and sodium acetate as mentioned above. DNA pellet was washed once with 70% ethanol, centrifuged at 13,000 rpm for 10 min, air-dried at room temperature and was resuspended in 100-200 μl of 1X TE buffer by gently tapping the tube. DNAwas stored at -20°C until use
    35. Yeast genomic DNA was isolated by mechanically lysing the yeast cells. Briefly, 10 ml of overnight grown yeast culture was transferred toa 15 ml centrifuge tube andcells were spun down at 4,000 rpm for 5 min. Media was decanted and cells were washed with 10 ml sterile water. Washedcells were resuspended in 500 μl of Buffer A and transferred to a 1.5 ml microcentrifuge tube. Tubes were incubated at 65°C for 15 min. Post incubation,500 μl of PCI (25:24:1) solution was added. To this, 0.5 g of 0.5 mm glass beads were added and cells were lysed mechanically in a bead-beatinghomogenizer (MP Biomedicals,FastPrep®-24) thrice, 45 seceach, with intermittent cooling on ice. Tubes were spun at 12,000 rpm for 5 min and the aqueous layer was transferred to a new 1.5 ml microcentrifuge tube. To this, 500 μl of PCI solution was addedand mixed gently by inverting the tubes.Tubes were centrifuged again at 12,000 rpm for 5 min and aqueous layer was transferred to another 1.5 ml microcentrifuge tube. Next, 2.5 volume of absolute ethanol was added to the aqueous layer, mixed well and centrifuged at 13,000 rpm for 10 min. Supernatant was decanted and the DNA pellet was washed once with 70% ethanol and centrifuged at 13,000 rpm for 10min. Washed DNA pellet was air-dried and dissolved in 100-200 μl of 1X TE buffer by gently tapping the tubes

      -

    36. To phenotypically characterize C. glabratamutants,serial dilution spot growth assays were performed. Briefly, the optical density of overnight-grown C. glabratacultures wasnormalized to OD600of 1.0andnormalized cultures were further diluted 10-fold in 1X sterile PBS five times. 3 μl of serially diluted culture were spotted on test plates. Plates were incubated at 30°C (unless mentioned otherwise) for 24-48hand growth was recorded by capturing plate images. For experiments involvingchecking theability of mutants to utilize non-fermentable carbon sources,growth was scoredafter 6-7 days of incubation
    37. phorbol myristateacetate (PMA) (Tsuchiya et al., 1982). For PMA treatment, THP-1 cells were allowed to grow till 70-80% confluence and were collectedin a centrifuge tube by centrifugationat 1,000 rpm for 3 min. THP-1 cell pelletswere resuspended in 4-5 ml of pre-warmed complete RPMI-1640 medium, 100 μl of this cell suspension was appropriately diluted in PBS (1X) and viability was determined by counting trypan blue stained cellsusing hemocytometer. THP-1 cell suspension was diluted appropriately to obtainafinal cell density of 106cells/ml with pre-warmed complete RPMI-1640 medium. PMA was added totheTHP-1 cell suspension at a final concentration of 16 nM and mixed well by gently inverting the tubes. PMA-treated cells were seeded either in 24-well cell culture plates or in cell culture dishes and allowed to grow for 12 h under tissue culture conditions i.e. at 37°C and 5% CO2.After 12 h incubation, spent medium was replaced withfresh pre-warmed complete RPMI-1640 medium and cells were allowed to recover for another 12 h
    38. THP-1 monocytes getdifferentiated intophagocytic macrophages upon treatment with
    39. 2% DTTThe stock solution of SDS loading buffer was made asa4 X concentrateand was added to the protein sample to the final concentration of 1 X.SDS-PAGE running buffer0.25 M Tris-HCl (pH 8.0)1.92 M Glycine1% SDSThe stock solution was prepared as a 10 X concentrate and was diluted to 1 X concentration prior to use.Resolving gel mix (12%, 10 ml)3.3 ml H2O4 ml 30% Acrylamide:N,N’-Methylenebisacrylamide (29:1) mix2.5 ml 1.5 M Tris-HCl (pH 8.8)100 μl 10% SDS100 μl 10% Ammonium persulfate (APS)4 μl N,N,N′,N′-Tetramethylethylenediamine (TEMED)Stacking gel mix (5%, 3 ml)2.1 ml H2O0.5 ml 30% Acrylamide:N,N’-Methylenebisacrylamide (29:1) mix380 μl 1 M Tris-HCl (pH 6.8)30 μl 10% SDS30 μl 10% APS3 μl TEMED
    40. 2% DTTThe stock solution of SDS loading buffer was made asa4 X concentrateand was added to the protein sample to the final concentration of 1 X.SDS-PAGE running buffer0.25 M Tris-HCl (pH 8.0)1.92 M Glycine1% SDSThe stock solution was prepared as a 10 X concentrate and was diluted to 1 X concentration prior to use.Resolving gel mix (12%, 10 ml)3.3 ml H2O4 ml 30% Acrylamide:N,N’-Methylenebisacrylamide (29:1) mix2.5 ml 1.5 M Tris-HCl (pH 8.8)100 μl 10% SDS100 μl 10% Ammonium persulfate (APS)4 μl N,N,N′,N′-Tetramethylethylenediamine (TEMED)Stacking gel mix (5%, 3 ml)2.1 ml H2O0.5 ml 30% Acrylamide:N,N’-Methylenebisacrylamide (29:1) mix380 μl 1 M Tris-HCl (pH 6.8)30 μl 10% SDS30 μl 10% APS3 μl TEMED
    41. Total cell lysis buffer (Homogenization buffer)50 mM Tris-HCl (pH 7.5)2 mM EDTA10 mM Sodium fluoride*1 mM Sodium orthovanadate*1 X protease inhibitor cocktail (Sigma, P 8215)** Were added fresh before use.SDS-PAGE30% acrylamide solution29 g Acrylamide1 g N,N’-MethylenebisacrylamideDissolved in 100 ml H2O10% Sodium Dodecyl Sulfate (SDS)10 g SDS in 100 ml H2OSDS loading buffer130 mM Tris-HCl (pH 8.0)20% (v/v) Glycerol4.6% (w/v) SDS0.02% Bromophenol blue
    42. Table 2.4: List of antibodies used in thisstudy
    43. All antibodies used in thisstudy, their clonality and dilutions used,Manufacturers’ details,and catalogue numbersare listed in Table 2.4
    1. Cells were grown in 35 mm dishes at 20% initial confluence. At 40-50% confluence, cells were treated with different genotoxic agents as described in Section 2.2.2. Post treatment, cells were washed twice with PBS and replaced with fresh media to allow recovery for different lengths of time. At each time point, cells were harvested and fixed with 70% ethanol at -20°C overnight. Fixation was carried out by adding 70% ethanol drop by drop, while the cells were being vortexed at a low speed.The fixed samples were brought to room temperature, pelleted down at 2000 rpm for 3 min and washed twice with PBS. Cells were stained with PI solution containing 0.1% Triton X-100, 0.2 mg RNase and 20μg propidium iodide and incubated at 37ºC for 30 min in the dark. Samples were analyzed by flow cytometry (FACS ARIA, BD). Data was analyzed usingFACS DIVA (BD) and FlowJo (FLOWJO, LLC) softwares to identify different stages of the cell cycle
    2. All animal experiments were conducted as per guidelines provided by the Committee for the Purpose of Control and Supervision of Experiments on Animals, Ministry of Environment, Forest, and Climate Change, Government of India,and these experiments were approved by the Institutional Animal Ethics Committee (Protocol numbers PCD/CDFD/02-version 2 and PCD/CDFD/08). Mice used for this study were housed in the Centre for DNA Fingerprinting and Diagnostics animal facility located within the premises of Vimta Labs, Hyderbad.Ip6k1+/-heterozygous mice were bred to generate age and sex matched Ip6k1+/+and Ip6k1-/-littermates for experiments. Foxn1numice were generated by breeding homozygous males with heterozygous females.These mice were used for in vivotumourigenic assays
  2. Aug 2018
    1. 3 Steps for Licensing Your 3d Printed Stuff by Michael Weinberg. CC BY-SA 3.0 A set of instructions for how to license 3d printed materials https://www.publicknowledge.org/assets/uploads/documents/3_Steps_for_Licensing_Your_3D_Printed_Stuff.pdf

      Relevant content in the unit: Unit 3.2, Acquiring Essential Knowledge, What types of content can be CC-licensed, suggested additional content (related to both paragraphs in current content).

      While the primary purpose of this paper is about 3-D printing, this resource is a great overview of copyright law related to electronic files, whether they be photographs or the files for a 3-D printing project.

      This is an especially good resource for those interested in specific examples of the delineation of the functional, non-copyrightable aspect of a work and the artistic expression, copyrightable aspects of a work.

  3. Jan 2018
    1. maginativeintervention

      Connection to "3-D print your way to freedom and prosperity." Where as 3-D printing is an imaginative intervention.

    1. President Barack Obama, in his 2013 State of the Union address

      President Obama believed that tools like 3-D printing would be very useful for things we do in our everyday lives.

    2. 3-D print your way to freedom and prosperity

      3-D printing is the process of creating an object that is new, by breaking something down and then fabricating it into something of use. This process is very convenient and fast. Unlike the Haltman's essay this discusses the effects of 3-D printing on both social and economical scales.

  4. Nov 2014