724 Matching Annotations
  1. Mar 2021
    1. Source Data

      AssayResult: 120.54

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 11.09

      Comment: Exact values reported in “Source Data” file.

    2. Source Data

      AssayResult: 74.18

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 6.49

      Comment: Exact values reported in “Source Data” file.

    3. Source Data

      AssayResult: 95.74

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 14.87

      Comment: Exact values reported in “Source Data” file.

    4. Source Data

      AssayResult: 83.96

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 9.89

      Comment: Exact values reported in “Source Data” file.

    5. Source Data

      AssayResult: 94.84

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 20.56

      Comment: Exact values reported in “Source Data” file.

    6. Source Data

      AssayResult: 17.43

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 5.19

      Comment: Exact values reported in “Source Data” file.

    7. Source Data

      AssayResult: 108.51

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 17.71

      Comment: Exact values reported in “Source Data” file.

    8. Source Data

      AssayResult: 67.82

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 10.97

      Comment: Exact values reported in “Source Data” file.

    9. Source Data

      AssayResult: 72.7

      AssayResultAssertion: Not reported

      ReplicateCount: 3

      StandardErrorMean: 9.73

      Comment: Exact values reported in “Source Data” file.

    10. Source Data

      AssayResult: 9.68

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardErrorMean: 3.44

      Comment: Exact values reported in “Source Data” file.

    11. Source Data

      AssayResult: 115.71

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardErrorMean: 3.09

      Comment: Exact values reported in “Source Data” file.

    12. Source Data

      AssayResult: 80.95

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 0.01

      StandardErrorMean: 0

      Comment: Exact values reported in “Source Data” file. Discrepancy in “Supplementary Data 1” file: nucleotide reported as c.3191A>G.

    13. Source Data

      AssayResult: 101.02

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 5.45

      StandardErrorMean: 3.86

      Comment: Exact values reported in “Source Data” file. Discrepancy in “Source Data” file: protein reported as T1064C.

    14. Source Data

      AssayResult: 84.43

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 2.77

      StandardErrorMean: 1.96

      Comment: Exact values reported in “Source Data” file. Discrepancy in “Source Data” file: protein reported as L855P (based on matching values reported in the “Supplementary Data 1” file to values reported in the “Source Data” file.

    15. Source Data

      AssayResult: 15.58

      AssayResultAssertion: Abnormal

      ReplicateCount: 6

      StandardDeviation: 0.52

      StandardErrorMean: 0.37

      ControlType: Abnormal; empty vector (set 5)

      Comment: Exact values reported in “Source Data” file.

    16. Source Data

      AssayResult: 7.93

      AssayResultAssertion: Abnormal

      ReplicateCount: 6

      StandardDeviation: 0.56

      StandardErrorMean: 0.39

      ControlType: Abnormal; empty vector (set 4)

      Comment: Exact values reported in “Source Data” file.

    17. Source Data

      AssayResult: 8.71

      AssayResultAssertion: Abnormal

      ReplicateCount: 6

      StandardDeviation: 1.75

      StandardErrorMean: 1.24

      ControlType: Abnormal; empty vector (set 3)

      Comment: Exact values reported in “Source Data” file.

    18. Source Data

      AssayResult: 7.11

      AssayResultAssertion: Abnormal

      ReplicateCount: 6

      StandardDeviation: 2.37

      StandardErrorMean: 1.68

      ControlType: Abnormal; empty vector (set 2)

      Comment: Exact values reported in “Source Data” file.

    19. Source Data

      AssayResult: 7.83

      AssayResultAssertion: Abnormal

      ReplicateCount: 6

      StandardDeviation: 1.13

      StandardErrorMean: 0.8

      ControlType: Abnormal; empty vector (set 1)

      Comment: Exact values reported in “Source Data” file.

    20. Source Data

      AssayResult: 100

      AssayResultAssertion: Normal

      ReplicateCount: 38

      StandardDeviation: 0

      StandardErrorMean: 0

      ControlType: Normal; wild type PALB2 cDNA

      Comment: Exact values reported in “Source Data” file.

    21. Source Data

      AssayResult: 97.16

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 1.32

      StandardErrorMean: 0.93

      Comment: Exact values reported in “Source Data” file.

    22. Source Data

      AssayResult: 30.35

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 3.64

      StandardErrorMean: 2.57

      Comment: Exact values reported in “Source Data” file.

    23. Source Data

      AssayResult: 20.32

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 0.49

      StandardErrorMean: 0.35

      Comment: Exact values reported in “Source Data” file.

    24. Source Data

      AssayResult: 7.42

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 2.87

      StandardErrorMean: 2.03

      Comment: Exact values reported in “Source Data” file.

    25. Source Data

      AssayResult: 91.47

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 8.63

      StandardErrorMean: 6.1

      Comment: Exact values reported in “Source Data” file.

    26. Source Data

      AssayResult: 100.19

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 5.64

      StandardErrorMean: 3.99

      Comment: Exact values reported in “Source Data” file.

    27. Source Data

      AssayResult: 10.53

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 2.79

      StandardErrorMean: 1.97

      Comment: Exact values reported in “Source Data” file.

    28. Source Data

      AssayResult: 90.64

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 1.82

      StandardErrorMean: 1.29

      Comment: Exact values reported in “Source Data” file.

    29. Source Data

      AssayResult: 11.37

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 0.36

      StandardErrorMean: 0.26

      Comment: Exact values reported in “Source Data” file.

    30. Source Data

      AssayResult: 70.86

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 17.18

      StandardErrorMean: 12.15

      Comment: Exact values reported in “Source Data” file.

    31. Source Data

      AssayResult: 81.81

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 7.45

      StandardErrorMean: 5.27

      Comment: Exact values reported in “Source Data” file.

    32. Source Data

      AssayResult: 90.54

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 10.24

      StandardErrorMean: 7.24

      Comment: Exact values reported in “Source Data” file.

    33. Source Data

      AssayResult: 13.45

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 2.2

      StandardErrorMean: 1.55

      Comment: Exact values reported in “Source Data” file.

    34. Source Data

      AssayResult: 92.2

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 19.94

      StandardErrorMean: 14.1

      Comment: Exact values reported in “Source Data” file.

    35. Source Data

      AssayResult: 90.79

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 6.38

      StandardErrorMean: 4.51

      Comment: Exact values reported in “Source Data” file.

    36. Source Data

      AssayResult: 69.83

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 5.94

      StandardErrorMean: 4.2

      Comment: Exact values reported in “Source Data” file.

    37. Source Data

      AssayResult: 75.85

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 4.78

      StandardErrorMean: 3.38

      Comment: Exact values reported in “Source Data” file.

    38. Source Data

      AssayResult: 94.33

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 9.99

      StandardErrorMean: 7.07

      Comment: Exact values reported in “Source Data” file.

    39. Source Data

      AssayResult: 102.58

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 2.19

      StandardErrorMean: 1.55

      Comment: Exact values reported in “Source Data” file.

    40. Source Data

      AssayResult: 21.79

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 1.84

      StandardErrorMean: 1.3

      Comment: Exact values reported in “Source Data” file.

    41. Source Data

      AssayResult: 95.86

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 1.62

      StandardErrorMean: 1.15

      Comment: Exact values reported in “Source Data” file.

    42. Source Data

      AssayResult: 91.21

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 7.32

      StandardErrorMean: 5.18

      Comment: Exact values reported in “Source Data” file.

    43. Source Data

      AssayResult: 10.59

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 0.6

      StandardErrorMean: 0.43

      Comment: Exact values reported in “Source Data” file.

    44. Source Data

      AssayResult: 76.97

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 3.1

      StandardErrorMean: 2.19

      Comment: Exact values reported in “Source Data” file.

    45. Source Data

      AssayResult: 7.92

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 1.32

      StandardErrorMean: 0.94

      Comment: Exact values reported in “Source Data” file.

    46. Source Data

      AssayResult: 38.85

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 3.05

      StandardErrorMean: 2.15

      Comment: Exact values reported in “Source Data” file.

    47. Source Data

      AssayResult: 16.89

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 3.12

      StandardErrorMean: 2.21

      Comment: Exact values reported in “Source Data” file.

    48. Source Data

      AssayResult: 17.62

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 1.76

      StandardErrorMean: 1.25

      Comment: Exact values reported in “Source Data” file.

    49. Source Data

      AssayResult: 86.41

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 17.62

      StandardErrorMean: 12.46

      Comment: Exact values reported in “Source Data” file.

    50. Source Data

      AssayResult: 6.16

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 1.27

      StandardErrorMean: 0.9

      Comment: Exact values reported in “Source Data” file.

    51. Source Data

      AssayResult: 95.16

      AssayResultAssertion: Not reported

      ReplicateCount: 3

      StandardDeviation: 16.94

      StandardErrorMean: 9.78

      Comment: Exact values reported in “Source Data” file.

    52. Source Data

      AssayResult: 7.08

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 0.54

      StandardErrorMean: 0.38

      Comment: Exact values reported in “Source Data” file.

    53. Source Data

      AssayResult: 14.01

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 0.53

      StandardErrorMean: 0.38

      Comment: Exact values reported in “Source Data” file.

    54. Source Data

      AssayResult: 74.49

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 2.29

      StandardErrorMean: 1.62

      Comment: Exact values reported in “Source Data” file.

    55. Source Data

      AssayResult: 6.53

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 0.29

      StandardErrorMean: 0.21

      Comment: Exact values reported in “Source Data” file.

    56. Source Data

      AssayResult: 30.27

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 1.04

      StandardErrorMean: 0.74

      Comment: Exact values reported in “Source Data” file.

    57. Source Data

      AssayResult: 7.63

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 0.51

      StandardErrorMean: 0.36

      Comment: Exact values reported in “Source Data” file.

    58. Source Data

      AssayResult: 63.4

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 5.92

      StandardErrorMean: 4.18

      Comment: Exact values reported in “Source Data” file.

    59. Source Data

      AssayResult: 60.28

      AssayResultAssertion: Not reported

      ReplicateCount: 3

      StandardDeviation: 0.14

      StandardErrorMean: 0.1

      Comment: Exact values reported in “Source Data” file.

    60. Source Data

      AssayResult: 17.35

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 6.21

      StandardErrorMean: 4.39

      Comment: Exact values reported in “Source Data” file.

    61. Source Data

      AssayResult: 106.23

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 14.57

      StandardErrorMean: 10.3

      Comment: Exact values reported in “Source Data” file.

    62. Source Data

      AssayResult: 75.71

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 22.31

      StandardErrorMean: 15.77

      Comment: Exact values reported in “Source Data” file.

    63. Source Data

      AssayResult: 6.66

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 0.28

      StandardErrorMean: 0.2

      Comment: Exact values reported in “Source Data” file.

    64. Source Data

      AssayResult: 6.1

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 2.11

      StandardErrorMean: 1.49

      Comment: Exact values reported in “Source Data” file.

    65. Source Data

      AssayResult: 84.07

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 2.47

      StandardErrorMean: 1.75

      Comment: Exact values reported in “Source Data” file.

    66. Source Data

      AssayResult: 100.07

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 6.18

      StandardErrorMean: 4.37

      Comment: Exact values reported in “Source Data” file.

    67. Source Data

      AssayResult: 91.6

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 8.2

      StandardErrorMean: 5.8

      Comment: Exact values reported in “Source Data” file.

    68. Source Data

      AssayResult: 82.83

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 4.82

      StandardErrorMean: 3.41

      Comment: Exact values reported in “Source Data” file.

    69. Source Data

      AssayResult: 87.35

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 11.94

      StandardErrorMean: 8.44

      Comment: Exact values reported in “Source Data” file.

    70. Source Data

      AssayResult: 83.25

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 5.27

      StandardErrorMean: 3.73

      Comment: Exact values reported in “Source Data” file.

    71. Source Data

      AssayResult: 7.03

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 2.68

      StandardErrorMean: 1.9

      Comment: Exact values reported in “Source Data” file.

    72. Source Data

      AssayResult: 77.45

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 6.2

      StandardErrorMean: 4.38

      Comment: Exact values reported in “Source Data” file.

    73. Source Data

      AssayResult: 9.92

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 1.93

      StandardErrorMean: 1.37

      Comment: Exact values reported in “Source Data” file.

    74. Source Data

      AssayResult: 95.02

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 0.08

      StandardErrorMean: 0.06

      Comment: Exact values reported in “Source Data” file.

    75. Source Data

      AssayResult: 10.4

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 3.22

      StandardErrorMean: 2.28

      Comment: Exact values reported in “Source Data” file.

    76. Source Data

      AssayResult: 7.75

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 2.59

      StandardErrorMean: 1.83

      Comment: Exact values reported in “Source Data” file.

    77. Source Data

      AssayResult: 75.45

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 4.03

      StandardErrorMean: 2.85

      Comment: Exact values reported in “Source Data” file.

    78. Source Data

      AssayResult: 98.55

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 5.74

      StandardErrorMean: 4.06

      Comment: Exact values reported in “Source Data” file.

    79. Source Data

      AssayResult: 62.31

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 11.49

      StandardErrorMean: 8.13

      Comment: Exact values reported in “Source Data” file.

    80. Source Data

      AssayResult: 66.19

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 21.26

      StandardErrorMean: 15.03

      Comment: Exact values reported in “Source Data” file.

    81. Source Data

      AssayResult: 105.41

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 9.45

      StandardErrorMean: 6.68

      Comment: Exact values reported in “Source Data” file.

    82. Source Data

      AssayResult: 7.82

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 2.31

      StandardErrorMean: 1.64

      Comment: Exact values reported in “Source Data” file.

    83. Source Data

      AssayResult: 92.32

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 2.26

      StandardErrorMean: 1.6

      Comment: Exact values reported in “Source Data” file.

    84. Source Data

      AssayResult: 44.9

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 9.75

      StandardErrorMean: 6.89

      Comment: Exact values reported in “Source Data” file.

    85. Source Data

      AssayResult: 97.61

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 0.97

      StandardErrorMean: 0.68

      Comment: Exact values reported in “Source Data” file.

    86. Source Data

      AssayResult: 11.28

      AssayResultAssertion: Abnormal

      ReplicateCount: 2

      StandardDeviation: 1.24

      StandardErrorMean: 0.87

      Comment: Exact values reported in “Source Data” file.

    87. Source Data

      AssayResult: 86.67

      AssayResultAssertion: Not reported

      ReplicateCount: 2

      StandardDeviation: 2.24

      StandardErrorMean: 1.58

      Comment: Exact values reported in “Source Data” file.

    88. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3492G>T p.(W1164C)

    89. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3191A>G p.(Y1064C)

    90. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2574T>C p.(V858=)

    91. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.92C>T p.(T31I)

    92. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.83A>G p.(Y28C)

    93. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.71T>C p.(L24S)

    94. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.688G>T p.(E230X)

    95. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.629C>T p.(P210L)

    96. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.53A>G p.(K18R)

    97. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.514_517delTCTG p.(S172fs)

    98. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.400G>A p.(D134N)

    99. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3549C>G p.(Y1183X)

    100. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3548A>G p.(Y1183C)

    101. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3539T>C p.(I1180T)

    102. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3520G>A p.(G1174R)

    103. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3515T>C p.(L1172P)

    104. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3478T>C p.(S1160P)

    105. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3476G>T p.(W1159L)

    106. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3428T>A p.(L1143H)

    107. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3367G>A p.(V1123M)

    108. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3356T>C p.(L1119P)

    109. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3331C>G p.(P1111A)

    110. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3209T>C p.(L1070P)

    111. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3172T>C p.(S1058P)

    112. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3152T>G p.(I1051S)

    113. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3128G>A p.(G1043D)

    114. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3119T>C p.(L1040S)

    115. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3113G>A p.(W1038X)

    116. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3110T>C p.(I1037T)

    117. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3089C>T p.(T1030I)

    118. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3073_3074delinsCG p.(A1025R)

    119. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3054G>T p.(E1018D)

    120. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.3026delC p.(P1009Lfs)

    121. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2993G>A p.(G998E)

    122. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2962C>T p.(Q988X)

    123. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2915T>A p.(L972Q)

    124. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2897T>C p.(I966T)

    125. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2882T>C p.(L961P)

    126. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2840T>C p.(L947S)

    127. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2831T>A p.(I944N)

    128. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2819A>G p.(E940G)

    129. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2816T>G p.(L939W)

    130. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2809G>A p.(G937R)

    131. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2792T>G p.(L931R)

    132. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2780A>C p.(D927A)

    133. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2734T>G p.(W912G)

    134. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2642_2645dupGTTG p.(C882Wfs)

    135. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2612A>G p.(D871G)

    136. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2593T>C p.(S865P)

    137. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2590C>T p.(P864S)

    138. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2120C>T p.(P707L)

    139. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2117C>T p.(T706I)

    140. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2014G>C p.(E672Q)

    141. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.2006delA p.(E669Gfs)

    142. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.1865T>C p.(L622P)

    143. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.172_175delTTGT p.(Q60Rfs)

    144. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.1676A>G p.(Q559R)

    145. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.1653T>A p.(Y551X)

    146. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.1592delT p.(L531Cfs)

    147. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.1544A>G p.(K515R)

    148. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.1492G>T p.(D498Y)

    149. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.13C>T p.(P5S)

    150. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.1250C>A p.(S417Y)

    151. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.124G>A p.(E42K)

    152. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.1227_1231delTGTTA p.(Y409X)

    153. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.1222T>C p.(Y408H)

    154. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.110G>A p.(R37H)

    155. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.10C>T p.(P4S)

    156. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.104T>C p.(L35P)

    157. We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.

      HGVS: NM_024675.3:c.1010T>C p.(L337S)

    Tags

    Annotators

    URL

    1. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 100

      AssayResultAssertion: Normal

      ReplicateCount: 471

      StandardErrorMean: 3.7

      ControlType: Normal; wild type

      Comment: This variant (wildtype) had normal function. All other variant parameters were normalized to the values of wildtype. (Personal communication: A. Glazer)

    2. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 59.3

      AssayResultAssertion: Indeterminate

      ReplicateCount: 30

      StandardErrorMean: 8.3

      Comment: This variant had mild loss of function (peak current >50% and <75% of wildtype), therefore it was considered inconclusive and neither abnormal nor normal in vitro function. (Personal communication: A. Glazer)

    3. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 28.4

      AssayResultAssertion: Abnormal

      ReplicateCount: 13

      StandardErrorMean: 8.6

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    4. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 45.3

      AssayResultAssertion: Abnormal

      ReplicateCount: 31

      StandardErrorMean: 5.1

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1).

    5. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 37.2

      AssayResultAssertion: Abnormal

      ReplicateCount: 26

      StandardErrorMean: 3.8

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    6. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 23.1

      AssayResultAssertion: Abnormal

      ReplicateCount: 33

      StandardErrorMean: 3.2

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    7. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 89.5

      AssayResultAssertion: Normal

      ReplicateCount: 29

      StandardErrorMean: 14.6

      Comment: This variant had normal function (75-125% of wildtype peak current, <1% late current, no large perturbations to other parameters). These in vitro features are consistent with non-disease causing variants. (Personal communication: A. Glazer)

    8. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 0.9

      AssayResultAssertion: Abnormal

      ReplicateCount: 18

      StandardErrorMean: 0.5

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    9. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 5.4

      AssayResultAssertion: Abnormal

      ReplicateCount: 19

      StandardErrorMean: 1.5

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    10. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 14.8

      AssayResultAssertion: Abnormal

      ReplicateCount: 27

      StandardErrorMean: 2.5

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    11. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 78.9

      AssayResultAssertion: Normal

      ReplicateCount: 38

      StandardErrorMean: 7.2

      Comment: This variant had normal function (75-125% of wildtype peak current, <1% late current, no large perturbations to other parameters). These in vitro features are consistent with non-disease causing variants. (Personal communication: A. Glazer)

    12. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 43.3

      AssayResultAssertion: Abnormal

      ReplicateCount: 14

      StandardErrorMean: 12.2

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    13. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 59.7

      AssayResultAssertion: Indeterminate

      ReplicateCount: 41

      StandardErrorMean: 6.3

      Comment: This variant had mild loss of function (peak current >50% and <75% of wildtype), therefore it was considered inconclusive and neither abnormal nor normal in vitro function. (Personal communication: A. Glazer)

    14. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 10.2

      AssayResultAssertion: Abnormal

      ReplicateCount: 12

      StandardErrorMean: 3.4

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    15. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 0.3

      AssayResultAssertion: Abnormal

      ReplicateCount: 24

      StandardErrorMean: 0.3

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    16. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 0

      AssayResultAssertion: Abnormal

      ReplicateCount: 11

      StandardErrorMean: 0

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    17. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 3

      AssayResultAssertion: Abnormal

      ReplicateCount: 16

      StandardErrorMean: 1.5

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    18. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 32.6

      AssayResultAssertion: Abnormal

      ReplicateCount: 10

      StandardErrorMean: 6.2

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    19. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 36

      AssayResultAssertion: Abnormal

      ReplicateCount: 14

      StandardErrorMean: 6

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    20. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 13.9

      AssayResultAssertion: Abnormal

      ReplicateCount: 15

      StandardErrorMean: 2.8

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    21. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 3.5

      AssayResultAssertion: Abnormal

      ReplicateCount: 29

      StandardErrorMean: 0.8

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    22. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 0.2

      AssayResultAssertion: Abnormal

      ReplicateCount: 25

      StandardErrorMean: 0.2

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    23. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 102.6

      AssayResultAssertion: Normal

      ReplicateCount: 31

      StandardErrorMean: 16.5

      Comment: This variant had normal function (75-125% of wildtype peak current, <1% late current, no large perturbations to other parameters). These in vitro features are consistent with non-disease causing variants. (Personal communication: A. Glazer)

    24. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 1.6

      AssayResultAssertion: Abnormal

      ReplicateCount: 15

      StandardErrorMean: 0.7

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    25. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 12

      AssayResultAssertion: Abnormal

      ReplicateCount: 10

      StandardErrorMean: 2.2

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    26. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 102.4

      AssayResultAssertion: Normal

      ReplicateCount: 39

      StandardErrorMean: 15.5

      Comment: This variant had normal function (75-125% of wildtype peak current, <1% late current, no large perturbations to other parameters). These in vitro features are consistent with non-disease causing variants. (Personal communication: A. Glazer)

    27. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 47

      AssayResultAssertion: Indeterminate

      ReplicateCount: 10

      StandardErrorMean: 15.5

      Comment: This variant had a mix of multiple abnormalities: a partial loss of function of peak current (10-50% of wildtype) and a gain of function >10mV shift in activation voltage. Therefore it was considered to have inconclusive in vitro properties (neither normal nor abnormal in vitro function). (Personal communication: A. Glazer)

    28. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 114.7

      AssayResultAssertion: Normal

      ReplicateCount: 42

      StandardErrorMean: 15.2

      Comment: This variant had normal function (75-125% of wildtype peak current, <1% late current, no large perturbations to other parameters). These in vitro features are consistent with non-disease causing variants. (Personal communication: A. Glazer)

    29. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 36

      AssayResultAssertion: Abnormal

      ReplicateCount: 19

      StandardErrorMean: 5.9

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    30. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 121.4

      AssayResultAssertion: Normal

      ReplicateCount: 34

      StandardErrorMean: 13.2

      Comment: This variant had normal function (75-125% of wildtype peak current, <1% late current, no large perturbations to other parameters). These in vitro features are consistent with non-disease causing variants. (Personal communication: A. Glazer)

    31. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 1.1

      AssayResultAssertion: Abnormal

      ReplicateCount: 27

      StandardErrorMean: 0.8

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    32. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 29.8

      AssayResultAssertion: Abnormal

      ReplicateCount: 13

      StandardErrorMean: 5.7

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    33. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 3.2

      AssayResultAssertion: Abnormal

      ReplicateCount: 16

      StandardErrorMean: 0.5

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    34. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 0.8

      AssayResultAssertion: Abnormal

      ReplicateCount: 23

      StandardErrorMean: 0.6

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    35. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 0

      AssayResultAssertion: Abnormal

      ReplicateCount: 43

      StandardErrorMean: 0

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    36. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 16

      AssayResultAssertion: Abnormal

      ReplicateCount: 26

      StandardErrorMean: 2.3

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    37. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 2.9

      AssayResultAssertion: Abnormal

      ReplicateCount: 20

      StandardErrorMean: 2.1

      Comment: This variant had loss of function of peak current (<10% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    38. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 117.2

      AssayResultAssertion: Abnormal

      ReplicateCount: 36

      StandardErrorMean: 11.7

      Comment: This variant had normal peak current and increased late current (>1% of peak), therefore it was considered a GOF variant (in vitro features consistent with Long QT Syndrome Type 3). (Personal communication: A. Glazer)

    39. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 21

      AssayResultAssertion: Abnormal

      ReplicateCount: 12

      StandardErrorMean: 5.1

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype), therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    40. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 38.9

      AssayResultAssertion: Abnormal

      ReplicateCount: 27

      StandardErrorMean: 7.2

      Comment: This variant had partial loss of function of peak current (10-50% of wildtype) and a >10mV loss of function shift in Vhalf activation, therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)

    41. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 120.5

      AssayResultAssertion: Normal

      ReplicateCount: 41

      StandardErrorMean: 10.5

      Comment: This variant had normal function (75-125% of wildtype peak current, <1% late current, no large perturbations to other parameters). These in vitro features are consistent with non-disease causing variants. (Personal communication: A. Glazer)

    42. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 105.3

      AssayResultAssertion: Normal

      ReplicateCount: 41

      StandardErrorMean: 10.8

      Comment: This variant had normal function (75-125% of wildtype peak current, <1% late current, no large perturbations to other parameters). These in vitro features are consistent with non-disease causing variants. (Personal communication: A. Glazer)

    43. Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function

      AssayResult: 77.5

      AssayResultAssertion: Normal

      ReplicateCount: 30

      StandardErrorMean: 8.6

      Comment: This variant had normal function (75-125% of wildtype peak current, <1% late current, no large perturbations to other parameters). These in vitro features are consistent with non-disease causing variants. (Personal communication: A. Glazer)

    Tags

    Annotators

    URL