Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We would like to thank the reviewers for their comments and suggestions. Our responses to them are listed below. We are hopeful that they will be satisfied with our responses and the changes we made in the revised version of the manuscript.
REVIEWER #1
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
In this manuscript, Ameen and colleagues report the results of a multidimensional proteomic analysis which combined quantitative proteomics, phosphoproteomics and N-terminomics in an effort to identify neuronal proteins displaying altered abundance or modifications by proteolysis and/or phosphorylation following an excitotoxic insult. Excitotoxicity is known to initiate by over-activation of ionotropic glutamate receptors which allows an increase in intracellular Ca2+ , ultimately leading to activation of proteases. The analysis revealed that glutamate treatment for up to 240 min did not significantly affect the abundance of neuronal proteins but caused dramatic changes in the phosphorylation state of many neuronal proteins. Based upon the phosphopeptides and neo-N-peptides, which contain the neo-N-terminal amino acid residue generated through proteolytic cleavage of intact neuronal proteins during excitotoxicity, the authors identified the proteins that undergo phosphorylation, dephosphorylation and/or enhanced proteolytic processing in excitotoxic neurons. By combining different software packages, they found that these modified proteins form complex interactions that affect signaling pathways regulating survival, synaptogenesis, axonal guidance and mRNA processing. These data suggest that perturbations in the aforementioned pathways mediate excitotoxic neuronal death. Then, the authors showed by Western blot analysis that CRMP2, a crucial regulator of axonal guidance signaling, exhibited enhanced truncation and reduced phosphorylation at specific sites upon glutamate treatment. These events may contribute to injury to dendrites and synapses associated with excitotoxic neuronal death. Furthermore, the authors showed that calpains are responsible for the proteolytic processing and cathepsins for enhanced degradation of proteins during excitotoxicity. Blockage of calpain-mediated cleavage site of the tyrosine kinase Src during excitotoxicity confers neuroprotection in an in vivo model of neurotoxicity. In that regard, over twenty protein kinases are predicted to be activated in excitotoxic neurons. Collectively, this study contributes to the construction of an atlas of phosphorylation and proteolytic processing events that occur during excitotoxicity and as such they can be targeted for therapeutic purposes.
**Comments**
Comment: The identification of potential calpain cleavage sites in neuronal proteins modified during excitotoxicity is an interesting finding of the study. However, the atlas presented appears to miss components such as Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), a protein recently shown to be cleaved by calpain during excitotoxicity (López-Menéndez et al, 2019, Cell Death and Disease 10, 535).
Response: The calpain cleavage site of neuronal ARMS/KIDINS220 was mapped to the peptide bond between Asn-1669 and Arg-1670 (Gamir-Morralla, et al. (2015) Cell Death & Diseases 6, e1939). The cleavage is expected to generate two truncated fragments – one of ~185 kDa and another of ~10 kDa at the N-terminal and C-terminal sides, respectively of the cleavage site. Our TAILS analysis failed to detect the 10 kDa fragment which contains the neo-N-terminus generated by calpain cleavage. Here are the possible explanations:
The neo-N-terminus of the 10 kDa C-terminal fragment is unlikely to be observed in our experiment as the TAILS method relies on the production of peptides by trypsin. The 10 kDa fragment has Arginine as the first amino acid which means that the N-terminal peptide released and isolated by the TAILS method would be a single amino acid.
In their publication, Gamir-Morralla, et al. showed that the total levels of both intact and degraded ARMS/Kidins220 decreased as a result of ischemic cerebral stroke, suggesting degradation rather than proteolytic processing to generate stable truncated fragments as the final outcome of calpain cleavage of ARMS/Kidins220 (Figure 2b of the publication by Gamir-Morralla, et al.). The TAILS method predominantly detects proteolytic processing whereas degradation can be more difficult to capture. Degradation often results in peptides containing less than 5-6 amino acids that are difficult to align with a single protein or result in transient peptide that may not be detectable in neurons at 240 min after glutamate treatment. **Overall, it is possible that Kidins220 is generated but was undetected by the TAILS approach.
Comments: The CRMP2 antibody (Cell Signalling, 35672) used for western blots (figure 5D, also figure S11) and immunofluorescence (figure 5E) is problematic. Copied from https://www.cellsignal.com/products/primary-antibodies/crmp-2-d8l6v-rabbit-mab/35672: Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding lle546 of human CRMP-2 protein. The truncated CRMP2 (figure 5D) studied in the whole section (residues 1-516 or 1-517, ~57kDa) cannot be recognized by this monoclonal antibody. The detected band with the red letters in figure 5D might represent another cleavage product. In any case, asking Cell Signalling for more information about the exact immunogen might help, but since it's monoclonal and derived from residues surrounding lle546 it's very hard to include residues before aa516 and the unique epitope recognition upstream of aa516. The whole result section and discussion has to be reconsidered. Alternatively another antibody can be used to repeat those experiments in order to support the hypothesis. Time and resources are very familiar to authors since they have to repeat their previous work with a new antibody. Finally, there are no "western blot" and "immunofluorescence" methods for CRMP2.
Response: We would like to apologise for incorrectly listing the catalogue number of the anti-CRMP2 antibody purchased from Cell Signalling technology. Rather than the rabbit monoclonal anti-CRMP2 antibody (Cell Signalling, Cat#: 35672), we used the polyclonal anti-CRMP2 antibody (Cell Signalling, Cat#9393) to perform all the Western blot and immunofluorescence analysis in this paper. The e-mail confirming the purchase of this antibody is appended. According to the vendor, the antibody was raised by immunizing rabbits with a synthetic peptide derived from the human CRMP2 sequence. We decided to order this antibody because Zhang, et al. (Sci Rep. 2016; 6: 37050) reported that it could detect the truncated CRMP2 fragments generated by calpain cleavage in primary cortical neurons in vitro in response to axonal damage.
*The procedures of Western blot and immunofluorescence detailing the correct CRMP2 antibody descriptions are added in the revised version of the submitted manuscript.
*
Comment: The truncated DCLK1 bands detected in figure S8B cannot be attributed to the proteolytic processing of DCLK1 at the sites described: T311↓S312, S312↓S313 and N315↓G316 (predicted M.W. of the (C-terminal) products: 48.7-49.1kDa (figure S8A) which is very close to be well-separated with conventional PAGE). The number and the separation of the bands suggest other cleavage sites.
Response: We agree with the reviewer’s comment that conventional SDS-PAGE cannot differentiate the proteolytic products generated by cleavage at the three sites identified by TAILS. Furthermore, the TAILS methods could not detect all peptides generated by a protein during proteolysis. Therefore, validating our results with a Western blot experiment may reveal unidentified peptides in certain cases. We have now added the following statement in the revised manuscript to reflect the presence of other cleavage sites: “Besides detecting the 50-56 kDa truncated fragments, the antibody also cross-reacted with several truncated fragments of ~37-45 kDa. These findings suggest that DCLK1 underwent proteolytic processing at multiple other sites in addition to the three cleavage sites identified by our TAILS analysis.”
Comment: Could the striking observation that almost all proteolytic processing during excitotoxicity is catalyzed by calpains and/or cathepsins have derived (partially) from unspecific targets of calpeptin such as a subset of tyrosine phosphatases (Schoenwaelder and Burridge, 1999: approx. 1h treatment of fibroblasts with approx.. 10x less concentration) or other(s)?
Response: Schoenwaelder and Burridge (1999, JBC 274:14359) reported that calpeptin exhibits both protease inhibitor as well as a protease inhibitor-independent activities in fibroblasts. Besides inhibiting calpains and cathepsins, they demonstrated that calpeptin could selectively inhibit a subset of membrane-bound tyrosine phosphatases. Since the TAILS method monitored the protease inhibitor activity of calpeptin, the proteolytically processing events mitigated by calpeptin in neurons during excitotoxicity are likely attributed to its protease inhibitor activity. Additionally, Schoenwaelder and Burridge reported this unconventional protease inhibitor-independent activity of calpeptin in fibroblasts. Since the protein tyrosine kinases expressed in neurons and fibroblasts are different, it is unclear if calpeptin can also exert such activity in neurons.
Comment: Describing the final part of figure 4C the authors suggest that "Liver kinase B1 homolog (LKB1), CaM kinase kinase β (CaMKKβ) and transforming growth factor‐β‐activating kinase 1 (TAK1) are the known upstream kinases directly phosphorylating T172 of AMPKα to activate AMPK (Herrero-Martin et al., 2009; Woods et al., 2005; Woods et al., 2003). Our findings therefore predict activation of these kinases during excitotoxicity (Figure 4C)." The first question arising here is whether these three kinases are the only ones know to phosphorylate AMPKα. Even if this is true, it is highly speculative to suggest that the findings of the present study predict the activation of these kinases during excitotoxicity, without providing the necessary experimental data, since the increased phosphorylation of AMPK may be an indirect effect of the reduced function of a phosphatase. Thus the proposed model does not hold.
Response: Agree. We have therefore revised our interpretation of the results to reflect this possibility. The Revised sentence on page 13 reads “**Liver kinase B1 homolog (LKB1), CaM kinase kinase β (CaMKKβ) and transforming growth factor‐β‐activating kinase 1 (TAK1) are the known upstream kinases directly phosphorylating T172 of AMPKα to activate AMPK (Herrero-Martin et al., 2009; Woods et al., 2005; Woods et al., 2003), while a member of the metal-dependent protein phosphatase (PPM) family could dephosphorylate T172 of AMPK in cells (Garcia-Haro et al., 2010). Our findings therefore predict activation of these kinases and/or inactivation of the PPM family phosphatase in neurons during excitotoxicity (Figure 4C).”
Additionally, we also deleted the schematic diagram depicting the possibility of activation of LKB1, CaMKKβ and TAK1 in Figure 4 of the revised manuscript.
__**Minor points**
__
Minor Comment: Highlights could present the key points of the study in a more straightforward manner.
Response: Agree. We have edited the highlights in our revised manuscript to make them more straightforward.
Minor comment: Figure 4A is too complicated. Proteins considered as hubs of signaling pathways in neurons should be somehow highlighted to distinguish them.
Response: Agree. We have now highlighted the signalling hubs by shading them in green in the revised figure. As we merged figures 2 and 4 of the original manuscript, these signalling hubs are presented in Figure 2B of the revised manuscript.
Minor Comment: The analysis of proteins with enhanced truncation and reduced phosphorylation such as CRMP2 and DCLK1 is fragmented. In addition, the authors should mention the criteria based on which these proteins were selected for further analysis.
Response: IPA analysis revealed synaptogenesis and axonal guidance as the top-ranked perturbed canonical signalling pathways governed by neuronal proteins undergoing significantly increased proteolytic processing and altered phosphorylation. As CRMP2 and DCLK1 are the key players in these pathways, they were chosen for further biochemical analysis to validate the TAILS results. To address this point, we added a few statements in the sections describing results of biochemical analysis of CRMP2 and DCLK1 in the revised manuscript. The additional sentences on page 13 now read “IPA analysis of the significantly modified neuronal proteins identified in our study predicted perturbation of signalling pathways governing axonal guidance and synaptogenesis in neurons during excitotoxicity (Figure S7). Since CRMP2 (also referred as DPYSL2) is a key player in neuronal axonal guidance and synaptogenesis (Evsyukova et al., 2013) and it underwent significant changes in phosphorylation state and proteolytic processing (Figures 5A and S7), it was chosen for validation of our proteomic results.” The additional sentences on page 15 read ”Similar to CRMP2, DCLK1 is also a key player in regulation of axonal guidance and synaptogenesis (Evsyukova et al., 2013). Since our TAILS results revealed significant proteolytic processing of DCLK1 (Figure S8A), it was chosen for validation of our proteomic results.”
Minor comment: The potential therapeutic relevance of phosphorylation and proteolytic processing events that occur during excitotoxicity can be further explored.
Response: Thanks for the suggestion. We have added a paragraph describing the additional evidence that protein kinase inhibitors and cell-permeable inhibitors blocking calpain cleavage of specific neuronal proteins as potential neuroprotectants to reduce brain damage induced by ischemic stroke. The additional sentences near the end of the Discussion section (page 25) now read “Since CRMP2 is key player in axonal guidance and synaptogenesis revealed by our proteomic analysis as the most perturbed cellular processes in excitotoxicity, blockade of its cleavage to form the truncated CRMP fragment is another potential neuroprotective strategy. Indeed, a cell-permeable Tat-CRMP2 peptide encompassing residues 491-508 close to the identified cleavage sites of CRMP2 could block calpain-mediated cleavage of neuronal CRMP2 and protect neurons against excitotoxic cell death (Yang et al., 2016)**.”
The additional paragraph at the end of the Discussion section (page 25) now reads: “Besides the neuronal proteins undergoing enhanced proteolytic processing during excitotoxicity, protein kinases predicted by our phosphoproteomic results to be activated during excitotoxicity are also targets for the development of neuroprotective drugs. For example, our results demonstrated significant activation of neuronal AMPK during excitotoxicity, suggesting that aberrant activation of AMPK can contribute to neuronal death. Of relevance, small-molecule AMPK inhibitors could protect against neuronal death induced by ischemia in vitro, and brain damages induced by ischemic stroke in vivo. Likewise, inhibitors of Src and other Src-family kinases were known to protect against neuronal loss in vivo in a rat model of in traumatic brain injury (Liu et al., 2008a; Liu et al., 2017). Future investigation of the role of the excitotoxicity-activated protein kinases in excitotoxic neuronal death will reveal if small-molecule inhibitors of these kinases are potential neuroprotective drug candidates.”
Minor comment: I am sorry but I could not find Figure 8, which is supposed to show the "In vivo model of NMDA neurotoxicity" (please, see page 30).
Response: Our apology for the mistake. This should be Figure 6 of the revised manuscript.
Minor comment: Introduction: O'Collins et al., 2006; Savitz and Fisher, 2007; both references are missing.
Response:* This was an oversight from our part and the references have been added to the revised manuscript.**
*
Minor comment: Figure S1A-B: vehicle treatment time course is needed.
Response: All neurons were cultured in neurobasal media for seven days. The control neurons were incubated in culture media while we started treating the other neurons with glutamate for MTT and LDH assay. The additional paragraph describing the design of the cell viability/death assays in page 32 reads “Primary cortical neurons were incubated for 480 min with and without the addition of 100 μM of glutamate. The control neurons were incubated for 480 min in culture medium. For neurons treated with glutamate for 30 min, 60 min, 120 min and 240 min, they were pre-incubated in culture medium for 450 min, 420 min, 360 min and 240 min, respectively prior to the addition of glutamate to induce excitotoxicity. For neurons treated with glutamate for 480 min, they were treated with glutamate just after seven days of culture in neurobasal media.”
Minor comment: Figure 5E: Control close-up is missing.
Response: A close-up view of the control neurons is now provided in Figure 4E of the revised manuscript.
*
*
Minor comment: "Moreover, the number of CRMP2-containing dendritic blebs in neurons at 240 min of glutamate treatment was significantly higher than that in neurons at 30 min of treatment (inset of Figure 5E)." Such a statistic is not shown in the graph.
Response: The statistical analysis results are now added to the revised manuscript in Figure 5E.
Minor comment: "Consistent with this prediction, our bioinformatic analysis revealed that the identified cleavage sites in most of the significantly degraded neuronal proteins during excitotoxicity are mapped within functional domains with well-defined three-dimensional structures (Figures 6A)." Authors might mean figure S12A?
Response: Correct. Our apology for the mislabelling. This has been corrected to “S12A”in the revised manuscript.
Minor comment: "Neuronal Src was identified by the three criteria of our bioinformatic analysis to be cleaved by calpains to form a stable truncated protein fragment during excitotoxicity (Figures 6A and Table S6)." Authors might mean figure 6D?
Response: Correct. Our apology for the mislabelling. Since we merged figures 2 and 4 of the original manuscript. This has been corrected to now read “(Figure 5D)” on page 18 of the revised manuscript.
Minor comment: Figure 2B: Clusters 1, 3, 4 and 6 do not follow treatment trends homogenously in all time points. For example in cluster 1 there is a phosphopeptide following the pattern 1, 0, -1 and another one following the pattern 0, 1, -1, which is actually a very different pattern even if the end value is stable (-1). The first example could belong to the cluster 6 as well, while the second example to cluster 5. Please elaborate on the rationale behind the categorization. Is there any other clustering method that can be used without making the categorization more complicated?
Response: Since we merged Figures 2 and 4 of the original manuscript. This comment relates to the right panel of Figure 2A of the revised manuscript. The rationale behind the categorization of the phosphopeptides into six clusters was based upon the patterns of changes of their abundance (i.e. average of log-2 normalized z-score of phosphopeptide intensity) in three sample groups. **We calculated the number of permutations where the number of sample groups in set (n) = 3 (i.e. Control neurons, neurons of 30 min glutamate treatment and neurons of 240 min glutamate treatment) and number of sample groups in each permutation (r) = 3 (i.e. all three sample groups should be present in each permutation). Hence the number of permutations is 6. The six clusters refer to the six possible permutations of the patterns of abundance changes of the identified phosphopeptides rather than the end results.
Minor comment: A problem of the manuscript is its length and lack of coherence. Apart from presenting the data from the proteomics, phosphoproteomics and N-terminomics analyses, the authors focus on several different proteins to perform validation experiments and further characterize the biological significance of their modification. Because these proteins do not fall on the same pathway, the authors end up presenting several independent stories that complicate the reader.
Response: We agree that proteins that do not operate in the same signalling pathway were chosen for further biochemical analysis. Their choice was justified because they are key players in the most perturbed canonical signalling pathways identified by bioinformatic analysis with the IPA software. We agree that this may complicate the reader. However, it also helps to illustrate that excitotoxic neuronal death is a complicated cell death process caused by dysregulation of multiple neuronal proteins which regulate different cellular processes.
Minor comment: Moreover, it is necessary for the authors to restructure their introduction, and avoid over-representing previous research on nerinetide, which is not used anywhere in the manuscript. Instead, the introduction must be more focused to better capture the necessity and essence of the present study.
Response: We agree. Based on the reviewer’s comments, we decided to restructure the introduction by shortening the description of the results of Nerinetide research. Please refer to the track changes of the revised manuscript for the changes.
Minor comment: Taking into account figures 1 and S2 I understand that the authors combined samples of neuronal cell cultures (treated or not with Glu) with samples from mouse brains (that have undergone ischemic stroke/TBI or sham operation). If this is the case, why did the authors do that? How did they combine the different samples? And why this is not mentioned anywhere is the main text?
Response: For a data-independent acquisition (DIA) based mass spectrometry experiment, it is essential we generate a library of identifiable peptides first using a standard data-dependent acquisition (DDA) approach. For the DIA type experiment to work, the identified peptides have to be in that library first. Excitotoxicity is a major mechanism of neuronal loss caused by ischemic stroke and traumatic brain injury. We therefore included the brains of sham-operated mice, brains of mice suffering ischemic stroke and traumatic brain injury to construct the spectral libraries and that is why the library contains pooled samples from the representative samples. Pre-fractionation of the pooled peptides was also performed to increase the number of identifiable peptides and generate a deeper library.
- Once we generated that library, all samples are analysed individually as a separate DIA experiment. The DIA approach then makes use of the generated library for identification and quantitation. This methodology allows for deeper identification and lower number of missing values.
These statements were added in the method section of the revised manuscript (page 33)*
Minor comment: Regarding figure 5D, the authors write in the main text "Consistent with our phosphoproteomic results, the truncated fragment CRMP2 fragments could not cross-react with the anti-pT509 CRMP2 antibody (Figure 5D)" In the upper blot the truncated CRMP2 fragment runs well below the 70 kDa marker. However, in the middle panel, where we see the blot with the phospho specific antibody, the respective area of the blot has been cropped, so we cannot see whether the truncated fragment cross-reacts with the phospho specific antibody.
Response: The presentation of the western blots in Figure 5D in the revised manuscript are now less cropped and clearly demonstrate there is no cross reactivity of the phospho specific antibody with the truncated fragment. Please refer to the revised Figure 5 for the updated Western blot images.
Minor comment: It is strange that only 1 and 13 proteins showed significant changes in abundance at 30 and 240min respectively. Especially after 240min of glutamate treatment one could expect that many proteins should change in their levels, since the neurons are almost diminished by cell death at that point. How could the authors explain this phenomenon? Additionally, in their previous publication, they showed that much more proteins change significantly in abundance following glutamate treatment (at 30min and 240min).
Response: Even though our global spectral libraries contain over 49,000 identifiable peptides derived from 6524 proteins, only 1696 quantifiable proteins were identified in the DIA mass spectrometry analysis (Figure 1) because we used stringent criteria for their identification: (i) false discovery rate of We agree with the reviewer that many more proteins are expected to change their abundance at 240 min as significant cell death was detected. However, if we had used less stringent false discovery rates of their identification and quantification, included proteins with just one unique identified peptide and lowered the threshold of abundance fold changes, many more proteins with significantly changed abundance would be detected. But we preferred to use these stringent criteria to ensure a high confidence in our identification of neuronal proteins undergoing significant changes during excitotoxicity.*
In agreement with the low number of neuronal proteins exhibiting significant changes in abundance reported in this manuscript, our previously published study (Hoque, et al. (2019) Cell Death & Diseases) detected only 26 neuronal proteins undergoing changes in abundance. Hence, we disagree with the reviewer that our previous publication reported much more proteins undergoing changes in abundance in excitotoxicity.
Reviewer #1 (Significance (Required)):
Comment on significance: The manuscript delivers a large amount of data, regarding changes in the proteome, the activation of specific kinases, phosphatases, as well as the molecular pathways that are activated at distinct time points of excitotoxicity. This information could be used in future studies to validate and develop potential therapeutic strategies that could protect against neuronal loss in various neurological disorders.
Response: We are excited that Reviewer #1 felt that this large amount of generated data will be useful for subsequent studies to validate and develop novel therapeutic strategies.
Comment on significance: The same group has very recently published a work very similar to the particular manuscript (Hoque et al. Cell Death and Disease, 2019). In their previous publication, the authors cover a large part of their current objectives. They performed again a proteomic and phosphoproteomic analysis of mouse primary cortical neurons treated with glutamate for distinct time points, in their aim to identify changes in expression and phosphorylation state of neuronal proteins upon excitotoxicity. Apart from the N-terminome, which they investigate in their current manuscript, the proteomic and phospho proteomic analysis are very similar. As such, and because of the fact that the current manuscript is very extensive, the authors should consider to minimize it, and include only their novel findings (changes in the N-terminome, the involvement of specific kinases that contribute to excitotoxic neuronal death, the regulatory mechanism of CRMP2, etc).
Response: Since the coverage of phosphoproteins undergoing changes in neurons during excitotoxicity identified in the current study is much higher than that of phosphoproteins identified in our previously published study, we prefer to retain the description of the phosphoproteomic findings in this manuscript. Nonetheless, we agree that the manuscript needs to be shortened. Our suggestions to shorten the manuscript are listed below:
- Move the description and results of global proteomic analysis to supplementary information. Since we made the same observation that only a small number of neuronal proteins undergo significant changes in abundance during excitotoxicity in our previously published study, moving the global proteomic analysis results away from the main text will not adversely impact the quality of the presentation.
- For the description of how we classified the identified N-terminal peptides as those derived from degradation and those derived from proteolytic processing, we would like to move it to the supplementary information.
Comment on significance: The authors should describe in a simpler way the proteomic and bioinformatics analyses they are using in the manuscript. It is difficult to understand the methodology used if you are not an expert in proteomics and bioinformatics. My suggestion is to revise their text and make it simpler and more concise.
Response: We agree with this criticism. As we are not allowed to make a major revision of the manuscript at this stage, the revised manuscript contains only minor revisions that addresses all of the comments and suggestions provided by the two reviewers. Further changes will be added in the next revised version. Our suggestions to further restructure the manuscript are listed below:
Figure S5 depicting the rationale for classification of N-terminal peptides as products of degradation and those of proteolytic processing will be moved to the main text. The description of the rationale in the main text will be revised to help readers who are not experts in proteomics to better understand the rationale.
A diagram depicting the workflow of our TAILS method will be added as a supplementary figure.
For bioinformatic analysis of the proteomic results, we will provide in the supplementary information the definition of the following terms relevant to Ingenuity Pathway Analysis and PhosphoPath analysis of the perturbed biological processes and signalling pathways: (a) Canonical Signalling Pathways, (b) Cellular Processes and (c) Interaction Networks. A short description of how their identification benefits the mapping of the neurotoxic signalling networks in neurons will be provided in the supplementary information.
REVIEWER #2
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Comment: In this article, Ameen and collaborators identify the modified proteins during neuronal excitotoxicity by using an in vitro model in which mouse primary cortical neurons are treated 30 and 240 min with 100 µM Glutamate. They use different approaches: a quantitative label-free global and phospho-proteomic methods and a quantitative N-terminomic procedure called Terminal Amine Isotopic Labelleling of Subtrates (TAILS). Results show that 240 min glutamate has minimal impact on protein abundance (13 neuronal proteins show significant changes) but enhance a modification of phosphorylation state and proteolysis of nearly 900 proteins. A significant part of these proteins are involved signalling pathway involved in cell survival, synaptogenesis and axonal guidance.
The paper is globally well written and experiments are convincing. The methodology and the analysis are well described and well explain. The text and each figure are clear and accurate.
However, I have just one comment that needs answers and/or clarifications. Thanks for your work.
Response: We appreciate the compliment provided by this reviewer on our submitted manuscript.
**Minor comment:**
Minor comment: Primary neurons are used at DIV7 and it has been shown that at DIV7 the percentage of astrocytes is relatively low, however astrocytes plays a key role in glutamate recapture and release. It will be relevant to know the percentage of glial cell in the culture model of the authors and how astrocytes are involved in glutamate recapture and also in excitotoxicity.
Response: The compositions of the DIV7 cultures are: 94.1+/- 1.1 % neurons, 4.9%+/-1.1% astrocytes, and *
Reviewer #2 (Significance (Required)):
Comment on significance: Excitotoxicity is a cell death process involved in many neurological disorders. However, nowadays, there are no existent FDA-approved pharmacological agents targeted to protect against excitotoxicity leading to neuronal death. A better comprehension of excitotoxicity is required to improve prevention, therapy and reparation following the disease.
With this work, the authors highlighted modified proteins in excitotoxic neurons. Interestingly, few of these proteins are involved in cell survival, mRNA processing or axonal guidance. This atlas of phosphorylation and proteolytic processing events during excitotoxicity permit the identification of new therapeutic targets such as calpain-mediated cleavage of Src kinase. This atlas will interest a lot of team working on neurological disorders such as Alzheimer disease, Parkinson disease or stroke. It will permit to better characterize cellular/molecular events involved in neuronal loss and will permit to find new therapeutic targets.
Response: In response to this comment and a similar comment by Reviewer 1, we expanded the discussion to include the potential therapeutic values of our findings.
Comment on significance: My field of expertise: Stroke, cell death, excitotoxicity, signalling pathways and molecular targets, autophagy. I don't have sufficient expertise to evaluate proteomic analysis.
Response: No response is needed.