Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity):
A previous study by Komada et al. demonstrated that MAP7 is expressed in both Sertoli and germ cells, and that Map7 gene-trap mutant mice display disrupted microtubule bundle formation in Sertoli cells, accompanied by defects in spermatid manchettes and germ cell loss. In the current study, Kikuchi et al. investigated the role of MAP7 in the formation of the Sertoli cell apical domain during the first wave of spermatogenesis. They generated a GFP-tagged MAP7 mouse line and demonstrated that the endogenous MAP7 protein localizes to the apical microtubules in Sertoli cells and to the manchette microtubules in step 9-11 spermatids. They also generated a new Map7 knockout (KO) mouse line in a genetic background distinct from the one used in the previous study. Focusing on stages before the emergence of step 9-11 spermatids, the authors aimed to isolate defects caused by the function of MAP7 in Sertoli cells. They report that loss of MAP7 impairs Sertoli cell polarity and apical domain formation, accompanied by the microtubule remodeling defect. Using the GFP-tagged MAP7 line, they performed immunoprecipitation-mass spectrometry and identified several MAP7-interacting proteins in the testis, including MYH9. They further observed that MAP7 deletion alters the distribution of MYH9. Single-cell RNA sequencing revealed that the loss of MAP7 in Sertoli cells resulted in slight transcriptomic shifts but had no significant impact on their functional differentiation. Single-cell RNA sequencing analysis also showed delayed meiotic progression in the MAP7-deficient testis. Overall, while the study provides some interesting discoveries of early Sertoli cell defects in MAP7-deficient testes, some conclusions are premature and not fully supported by the presented data. The mechanistic investigations remain limited in depth.
Response: We thank the reviewer for this insightful summary. We agree that some of our initial interpretations were speculative and have revised the relevant sections to more accurately reflect the limitations of the current data. We also acknowledge that further mechanistic studies will be important to strengthen our conclusions, and we have outlined these plans in the individual responses below.
Major comments:
• Although the infertility phenotype of the Map7 gene-trap mutant mice has been reported previously, it remains essential to assess fertility in this newly generated MAP7 knockout line. While the authors present testis size and histological differences between WT and KO mice (Extended Fig. 2e and 2f), there is no corresponding description or interpretation in the main text regarding fertility outcomes.
Response: We thank the reviewer for raising this point. Although we had presented the differences in testis size and histology between wild-type and Map7-/- mice, we agree that a description of the corresponding fertility outcomes was missing from the main text. We have now revised the relevant part of the Results section as follows: “Consistent with observations in Map7 gene-trap mice, Map7-/- males exhibited reduced testis size and spermatogenic defects (Supplemental Fig. 2E, F). Notably, the cauda epididymis of Map7-/- males contained no mature spermatozoa (Supplemental Fig. 2F), indicating male infertility.” (page 5, line 33–page 6, line 2)
• In Figure 2C, the authors identified Sertoli cells, spermatogonia cells, and spermatocytes using SEM, based on their cell morphology and adhesion to the basement membrane. Given that the loss of MAP7 disrupts the polarity and architecture of Sertoli cells, the position of germ cells will be affected, making this identification criterion less reliable.
Response: We appreciate the reviewer’s comment. While the reviewer notes that cell identification was based on cell morphology and adhesion to the basement membrane, we clarify that nuclear morphology was also considered, as described in the original manuscript. Specifically, germ cells have spherical nuclei, whereas Sertoli cell nuclei are irregularly shaped (representative segmentation results can be provided as an additional Supplemental Figure upon request). Round spermatids at P21 can be distinguished from spermatocytes by their smaller nuclear size. In addition, spermatogonia remain attached to the basement membrane even in Map7-/- testes, as confirmed by GFRα1-positive spermatogonial stem cells (Figure 6A). Together, these features ensure reliable identification of each cell type, independent of the altered polarity observed in Map7-deficient Sertoli cells.
• In Figure 2e, the number of Sox9-positive Sertoli cells in MAP7 knockout mice appears higher than that in the control at P17. Quantification of total Sox9-positive cells should be done to determine whether MAP7 deletion increases Sertoli cell numbers.
Response: As suggested by the reviewer, we will quantify the density of SOX9-positive Sertoli cells per unit area of seminiferous tubule at P10 and P17 in Map7+/- and Map7-/- testes, and include the results in the revised manuscript.
• To determine whether MAP7's role in regulating Sertoli cell polarity relies on germ cells, the authors treated mice with busulfan at P28 to delete germ cells, a stage after Sertoli cell polarity defect has developed in MAP7 knockout mice. This data is insufficient to support the conclusion that MAP7 regulates Sertoli cell polarity independently of the presence of germ cells. Germ cell deletion should be done before the Sertoli cell defect develops to address this question.
Response: We appreciate the reviewer’s thoughtful comment regarding the interpretation of the busulfan experiments. While depletion of germ cells at P28 enabled us to assess Sertoli cell polarity in the absence of postnatal spermatogonia, these experiments do not definitively determine whether MAP7 regulates Sertoli cell polarity independently of germ cells. Neonatal germ-cell depletion would more directly test germ cell–independent effects; however, systemic busulfan administration at early developmental stages is highly toxic, often causing bone marrow failure and multi-organ damage, which precludes survival and confounds analysis of testis-specific effects. Although germ cell ablation could, in principle, be achieved using transgenic approaches that exploit the natural resistance of mice to diphtheria toxin (DTX) (reviewed in Smith et al., Andrology, 2015), these strategies require multiple transgenes and show minor variability in efficiency, making them impractical for our current experiments. Generating the necessary genetic combinations would require considerable time. We therefore plan to pursue alternative genetic approaches in future work.
In the revised manuscript, we have modified the relevant section to more accurately reflect the limitations of the current experiments, as follows: “Busulfan was administered at P28, and testes were analyzed 6 weeks later, after complete elimination of germ cell lineages. Following treatment, Map7+/- mice showed testis-to-body weight ratios comparable to untreated Map7-/- mice (Supplemental Fig. 3D), and hematoxylin-eosin (HE) staining confirmed germ cell depletion (Fig. 2F; Supplemental Fig. 3E). In Map7+/- testes, most Sertoli nuclei remained basally positioned, indicating that once apical–basal polarity is established, it is stably maintained even in the absence of germ cells. In contrast, Map7-/- Sertoli nuclei were frequently misoriented toward the lumen under the same conditions (Fig. 2F; Supplemental Fig. 3E), suggesting that polarity defects in Map7-deficient Sertoli cells occur independently of germ cell presence.” (page 7, lines 20–28)
In addition, we have added the following sentences to the Discussion section to highlight the implication of these findings: “In addition, even after germ cell depletion by busulfan treatment, Map7-deficient Sertoli cells failed to reestablish basal nuclear positioning, indicating that loss of MAP7 causes an intrinsic polarity defect. These findings suggest that MAP7 acts as a cell-autonomous regulator of Sertoli cell polarity, rather than mediating effects indirectly through germ cell–Sertoli cell interactions.” (page 15, lines17–21)
• The resolution of the SEM images in Figure 3c is insufficient to evaluate tight and adherens junctions clearly. As such, these images do not convincingly support the claim that adherens junctions are absent in the KO testes.
Response: We thank the reviewer for this insightful comment. Tight junctions can be reliably identified in SEM images as dense intercellular structures accompanied by endoplasmic reticulum aligned along the cell boundaries. The region immediately apical to the tight junctions likely corresponds to adherens junctions, which are also associated with the endoplasmic reticulum. Unlike tight junctions, these regions exhibit wider intercellular spaces, consistent with the looser membrane apposition characteristic of adherens junctions, although they cannot be unambiguously distinguished from gap junctions or desmosomes based on morphology alone. In the original figure, 2× binning reduced image resolution, which may have contributed to the reviewer’s concern.
In the revised manuscript, we have re-acquired the SEM images in high-resolution mode, focusing on the relevant regions. The new high-resolution images have replaced the original panels in revised Figure 3C, providing clearer visualization of junctional structures at P10 and P21 in Map7+/- and Map7-/- testes. The original Figure 3C images have been moved to Supplemental Figure 4B for reference.
The corresponding section in the Results has been revised as follows in the updated manuscript: “We then performed SEM to examine the effects of Map7 KO. In P21 Map7+/- testes, electron-dense regions along the basal side of Sertoli–Sertoli junctions corresponded to tight junctions closely associated with the endoplasmic reticulum, consistent with previous reports (Luaces et al. 2023) (Fig. 3C; Supplemental Fig. 4B). The region immediately apical to the tight junctions likely represents adherens junctions, which were also associated with the endoplasmic reticulum. Unlike tight junctions, these regions displayed wider intercellular spaces, reflecting the looser membrane apposition typical of adherens junctions, though they could not be definitively distinguished from gap junctions or desmosomes based on morphology alone (Fig. 3C; Supplemental Fig. 4B). At P10, both Map7+/- and Map7-/- testes lacked clearly defined tight junctions and adherens junction–like structures (Fig. 3C; Supplemental Fig. 4B). In P21 Map7-/- mice, Sertoli cells formed expanded basal tight junctions but failed to establish adherens junction–like structures (Fig. 3C; Supplemental Fig. 4B).” (page 8, line 34–page 9, line 12)
• GFP-tagged reporter mice and HeLa cells were used for immunoprecipitation-mass spectrometry to identify proteins that interact with MAP7. Given that the authors aimed to elucidate the mechanism by which MAP7 regulates Sertoli cell cytoskeleton organization, the rationale for including HeLa cells is unclear and should be better justified or reconsidered.
Response: We thank the reviewer for this comment. MAP7-egfpKI HeLa cells were used as a complementary system to identify MAP7-associated proteins, providing sufficient material and a controlled environment for robust detection. By comparing IP-MS results from MAP7-egfpKI HeLa cells and P17–P20 Map7-egfpKI testes, we can distinguish proteins that are specific to polarized Sertoli cells: proteins detected exclusively in P17–P20 testes may be involved in Sertoli cell polarization, whereas proteins detected in both systems likely represent general MAP7-associated factors that are not specific to Sertoli cell polarity.
This rationale has been clarified in the revised manuscript by adding the following sentence to the Results section: “MAP7-egfpKI HeLa cells were used as a complementary system, providing sufficient material and a controlled environment for robust detection of MAP7-associated proteins. Comparison of IP-MS results between MAP7-egfpKI HeLa cells and P17–P20 Map7-egfpKI testes allows identification of MAP7-associated proteins that are specific to polarized Sertoli cells, whereas proteins detected in both systems likely represent general MAP7-associated proteins.” (page 9 lines 27-32)
• The authors observed that MYH9, one of the MAP7-interacting proteins, does not colocalize with ectopic microtubule and F-actin structures in MAP7 KO testes and concluded that MAP7 facilitates the integration of microtubules and F-actin via interaction with NMII heavy chains. This conclusion is speculative and not adequately supported by the presented data.
Response: We thank the reviewer for this insightful comment. We agree that our initial conclusion was speculative and have revised the relevant section to more accurately reflect the limitations of the current data. The revised text now reads as follows: “These findings indicate that MYH9 localization at the luminal interface depends on MAP7, and suggest that MAP7 helps coordinate microtubules and F-actin, potentially via its association with NMII heavy chains.” (page 10, lines 13–15)
To further elucidate this mechanism, we will perform biochemical domain-mapping to define the MAP7 region responsible for MYH9 complex formation. We have already established a series of human MAP7 deletion mutants (as reported previously, EMBO Rep., 2018) and will conduct co-immunoprecipitation assays in HEK293 cells to identify the specific MAP7 domain required for complex formation with MYH9. Based on these results, we plan to use AlphaFold3 to predict the three-dimensional structure of the MAP7–MYH9 complex. These analyses will help clarify how MAP7 associates with the actomyosin network and provide additional mechanistic insights that complement our in vivo observations of MYH9 mislocalization in Map7-/- testes.
• The authors used Spearman correlation coefficients to analyze six Sertoli cell clusters and generated a minimum spanning tree to infer differentiation trajectories. However, details on the method used for constructing the tree are lacking. Moreover, relying solely on Spearman correlation to define differentiation topology is oversimplified.
Response: We appreciate the reviewer’s valuable feedback. We agree that Spearman correlation alone is insufficient to infer differentiation topology. In response, we reanalyzed the data using Monocle3, which implements branch-aware pseudotime inference to capture both cluster continuity and differentiation directionality. This reanalysis provides a more accurate reconstruction of differentiation trajectories among the six Sertoli cell clusters. Although the overall trajectories appeared different and a higher proportion of Map7-/- Sertoli cells exhibited very low pseudotime values, comparison of the control and Map7-/- trajectories revealed that the average node degree was nearly identical, indicating that the local graph structure—reflecting the connectivity among neighboring cells—was largely preserved. The numbers of branch points and the graph diameter differed slightly, likely due to differences in sample size (311 control vs. 434 Map7-/- Sertoli cells) and distribution bias rather than major topological changes. Accordingly, Figures 5C and 5D have been replaced with the updated Monocle3-based trajectory analysis, and the corresponding text in the Results section and figure legend have been revised as follows:
“To reconstruct differentiation trajectories among the six Sertoli cell clusters, we reanalyzed the datasets using Monocle3, which incorporates branch-aware pseudotime inference. Cluster C1 was selected as the root based on shared specificity and entropy scores, consistent with its metabolically active and transcriptionally diverse profile (Fig. 5B, C; Supplemental Fig. 7). While the overall trajectories appeared altered, the proportion of Map7-/- Sertoli cells with very low pseudotime values was only modestly increased (Fig. 5D). Comparison with controls showed that the average node degree was nearly identical (Fig. 5C), indicating that the local graph structure, reflecting connectivity among neighboring cells, remained largely intact. Minor differences in branch points and graph diameter likely reflect inherent variability in the data rather than major topological changes (Supplemental Fig. 6B). Consistent with this, the relative proportions of the six clusters showed only modest shifts, suggesting that the overall architecture of Sertoli cell differentiation is largely preserved in the absence of MAP7.” (page 11, lines 7-18)
“(C) Control and Map7-/- Sertoli cells were visualized separately using UMAPs constructed in Seurat. Using the same datasets, pseudotime trajectories were inferred with Monocle3. For root selection, shared_score (cluster overlap), specificity_score (cluster uniqueness), and entropy_score (transcriptional diversity) were computed, resulting in cluster 1 being selected as the root. The numbers of nodes, edges, branch points, average degree, and diameter of each trajectory are shown below the corresponding UMAPs. (D) Parallel comparison of pseudotime distributions between control and Map7-/- populations.” (page 30, lines 5-12)
Minor comments:
• Several extended data figures are redundant with main figures and do not provide additional value (e.g., Fig. 2d vs. Extended Data Fig. 3a; Fig. 2f vs. Extended Data Fig. 3d; Fig. 2C vs. Extended Data Fig. 4b; Fig. 3d vs. Extended Data Fig. 4c). The authors should consolidate or remove duplicates.
Response: Regarding the concerns about redundancy between main and Supplemental figures, we would like to clarify the rationale for retaining certain Supplemental figures.
Fig. 2D vs. Supplemental Fig. 3A: Due to space limitations in the main figure, only the merged three-color image was shown. We believe that the single-color grayscale images in Supplemental Fig. 3A provide additional clarity, allowing easier visualization of SOX9-positive Sertoli cell distribution and differences in F-actin structure.
Fig. 2F vs. Supplemental Fig. 3E: In the main figure, only the high-magnification image was shown due to space constraints. The lower-magnification image in Supplemental Fig. 3E demonstrates that the selected field was not chosen arbitrarily, providing context for the observed structures. In addition, Supplemental Fig. 3E includes both low- and high-magnification images of age-matched busulfan (-) testes as a control for the busulfan (+) condition, further supporting the validity of the comparison.
For the above-mentioned cases (Fig. 2D vs. Supplemental. 3A; Fig. 2F vs. Supplemental Fig. 3E), as well as other potentially overlapping figures (e.g., Fig. 3D vs. Supplemental Fig. 4C), we believe that the additional single-channel and lower-magnification images provide important context that cannot be fully conveyed in the main figures due to space limitations. Nevertheless, to address the reviewer’s concern, we will (i) clearly state the purpose of each Supplemental figure in the corresponding legends, and (ii) re-evaluate all figures to consolidate or remove any truly redundant panels. Our goal is to ensure that all figures collectively convey the data in the most concise and informative manner.
• Figure citations in the main text do not consistently match figure content. For example, on page 7 (lines 5-6), the text refers to Extended Data Fig. 4a for SOX9 staining. Yet, it is the extended Data Fig. 3a that contains the relevant data. Similarly, the reference to Extended Data Fig. 4b and 4c on page 7 (lines 7-8) for adult defects is inaccurate.
Response: We thank the reviewer for drawing attention to these inconsistencies. We have carefully checked all figure citations throughout the main text and corrected them so that they consistently match the figure content. The revised manuscript reflects these corrections.
• In Figure 2e, percentages of Sertoli cells across three layers are shown. The figure legend should specify which layer(s) show statistically significant differences between WT and KO.
Response: We are grateful to the reviewer for highlighting this point. Statistical comparisons were performed between Map7+/- and Map7-/- mice within each corresponding layer at P17. Statistical significance was assessed using Student’s t-test, and all three layers showed significant differences between Map7+/- and Map7-/- (P < 2.20 × 10⁻⁴). The figure legend has been revised accordingly as follows: “Statistical comparisons between Map7+/- and Map7-/- mice were performed for each corresponding layer at P17 using Student’s t-test. All three layers showed significant differences between Map7+/- and Map7-/- mice (*, P<2.20 × 10⁻⁴).” (page 28, lines 5-8)
• The current color scheme for F-actin and TUBB3 in Figure 3 lacks sufficient contrast. Adjusting to more distinguishable colors would improve readability.
Response: Response: We thank the reviewer for this helpful suggestion. In the original merged images, four channels (DNA, TUBB3, F-actin, and β-catenin) were displayed together, which reduced contrast between cytoskeletal signals. To improve clarity, we generated new merged images showing only TUBB3 and F-actin, allowing better visual distinction between these components. In addition, β-catenin and DNA are now displayed together as a separate merged image (β-catenin in yellow and DNA in blue) in the final column, highlighting the altered localization of β-catenin in Map7-/- testes.
• Since multiple scale bars with different units are present within the same figures, adding units directly above or beside each scale bar would improve readability.
Response: We thank the reviewer for the suggestion. Following this recommendation, we have added units directly above each scale bar in all figures to improve readability.
• It is recommended to directly mark Sertoli cells, spermatogonia, and spermatocytes on the SEM images in Figure 2C for clearer visualization.
Response: We thank the reviewer for the suggestion. We will follow this recommendation by performing segmentation and directly marking Sertoli cells, spermatogonia, and spermatocytes on the SEM images in Figure 2C to improve visualization.
• The quantification of Sertoli cell positioning shown in Fig. 2C is already described in the main text and is unnecessary in the figure.
Response: We appreciate the reviewer’s comment regarding the quantification of Sertoli cell positioning. Although the results are described in the main text, we believe that the visual presentation in Figure 2C is essential for conveying the spatial distribution pattern in an intuitive and comparative manner. To address the concern about redundancy, we have slightly revised the figure legend (page 27, lines 28–29) to clarify that this panel provides a visual summary of the quantitative data described in the text, thereby improving clarity without unnecessary duplication.
_Referee cross-commenting_
I concur with Reviewer 2 that the Map7-eGFP mouse model is a valuable tool for the research community. I also agree that performing MAP7-MYH9 double immunofluorescence staining to demonstrate their colocalization would further strengthen the authors' conclusions regarding their interaction. My overall assessment of the manuscript remains unchanged: the study represents an incremental advance that extends previous findings on MAP7 function but provides limited new mechanistic insight.
Reviewer #1 (Significance):
This study investigates the role of the microtubule-associated protein MAP7 in Sertoli cell polarity and apical domain formation during early stages of spermatogenesis. Using GFP-tagged and MAP7 knockout mouse models, the authors show that MAP7 localizes to apical microtubules and is required for Sertoli cell cytoskeletal organization and germ cell development. While the study identifies early Sertoli cell defects and candidate MAP7-interacting proteins, the mechanistic insights remain limited, and several conclusions require stronger experimental support. Overall, the discovery represents an incremental advance that extends prior findings on MAP7 function, providing additional but modest insights into the role of MAP7 in cytoskeletal regulation in male reproduction.
Response: We thank the reviewer for their constructive comments and thoughtful evaluation of our manuscript. We appreciate the positive feedback regarding the value of the Map7-egfpKI mouse model for the research community. We also thank the reviewer for the suggestion to perform MAP7–MYH9 double immunofluorescence staining to demonstrate colocalization, which we agree will further strengthen the mechanistic support.
We would like to clarify that several aspects of our findings represent novel contributions within a field where the mechanisms of microtubule remodeling during apical domain formation have remained largely unresolved. In particular, our study provides evidence that MAP7 is asymmetrically enriched at the apical microtubule network in Sertoli cells and contributes to the directional organization of these microtubules—an aspect of Sertoli cell polarity that has not been previously characterized. Our results further indicate that dynamic microtubule turnover, rather than stabilization alone, is required for proper apical domain formation, addressing a gap in current understanding of how microtubules are reorganized during early polarity establishment. In addition, the data support a role for MAP7 in coordinating microtubule and actomyosin organization, suggesting a scaffolding function that links these cytoskeletal systems. We also observe that Sertoli cell polarity can be functionally separated from cell identity and that disruptions in apical domain architecture precede delays in germ cell developmental progression. Taken together, these observations provide mechanistic insight that expands upon previous studies of MAP7 function at the cellular level.
The conclusions are supported by multiple, complementary lines of evidence, including knockout and Map7-egfpKI mouse models, high-resolution electron microscopy, immunoprecipitation–mass spectrometry, and single-cell RNA sequencing. While we agree that further experiments, such as MAP7–MYH9 double staining, will strengthen the mechanistic framework, we will also perform complementary biochemical analyses to provide additional insight. Specifically, we plan to conduct domain-mapping experiments to identify the MAP7 region required for MYH9 complex formation, coupled with co-immunoprecipitation assays in cultured cells to validate this association.
Although generating new mutant mouse lines is not feasible within the scope of this revision, and no in vitro system fully recapitulates Sertoli cell polarization, these complementary approaches will provide further mechanistic support. We believe that these planned experiments, together with the current dataset, will clarify the underlying mechanisms and reinforce the significance of our findings, while appropriately acknowledging the current limits of experimental evidence.
Reviewer #2 (Evidence, reproducibility and clarity):
In this manuscript the authors evaluate the role of Microtubule Associated Protein 7 (MAP7) in postnatal Sertoli cell development. The authors build two novel transgenic mouse lines (Map7-eGFP, Map7 knockout) which will be useful tools to the community. The transgenic mouse lines are used in paired advanced sequencing experiments and advanced imaging experiments to determine how Sertoli cell MAP7 is involved in the first wave of spermatogenesis. The authors identify MAP7 as an important regulator of Sertoli cell polarity and junction formation with loss of MAP7 disrupting intracellular microtubule and F-actin arrangement and Sertoli cell morphology. These structural issues impact the first wave of spermatogenesis causing a meiotic delay that limits round spermatid numbers. The authors also identify possible binding partners for MAP7, key among those MYH9.
The authors did a great job building a complex multi-modal project that addressed the question of MAP7 function from many angles. The is an excellent balance of using many advanced methods while still keeping the project narrowed, to use only tools to address the real questions. The lack of quality testing on the germ cells outside of TUNEL is disappointing, but the Conclusion section implies that this sort of work is being done currently so the omission in this manuscript is acceptable. However, there is an issue with the imaging portion of the work on MYH9. The conclusions from the MYH9 data is currently overstated, super-resolution imaging of Map7 knockouts with microtubule and F-actin stains, and imaging that uses MYH9 with either Map7-eGFP or anti-MAP7 are also needed to both support the MAP7-MYH9 interaction normally and lack of interaction with failure of MYH9 to localize to microtubules and F-actin in knockouts. Since a Leica SP8 was used for the imaging, using either Leica LIGHTNING or just higher magnification will likely be the easiest solution.
Response: We sincerely appreciate the reviewer’s thorough and positive evaluation of our study. We are encouraged that the reviewer recognized the overall strength of our multi-modal approach and the scientific value of the Map7-egfp knock-in and Map7 knockout genome-edited mouse models that we generated. We also thank the reviewer for highlighting the balance between methodological breadth and focused, hypothesis-driven investigation in our work.
Regarding the reviewer’s valuable comments on the imaging data, we have addressed them as follows. We improved the cytoskeletal imaging data as described in response to the reviewer’s minor comments. Specifically, in the revised Figure 3B, we replaced the original images with higher-resolution confocal images to provide a clearer view of cytoskeletal organization. In addition, following Reviewer #1’s suggestion, we modified the panel layout to enlarge each field and enhance the contrast between TUBB3 and F-actin channels, allowing better visualization of their altered localization in Map7-/- testes.
We agree that super-resolution imaging comparing control and Map7-/- testes stained for TUBB3 and F-actin would further strengthen the analysis. If the current resolution is still considered insufficient, we plan to perform additional imaging using a Carl Zeiss Airyscan or Leica Stellaris 5 system to further improve spatial resolution and confirm the observed cytoskeletal phenotypes. Finally, we will perform co-imaging of MYH9 with MAP7 to validate their spatial relationship under normal conditions, complementing the existing data obtained from Map7-/- testes.
This manuscript is nicely organized with almost all of the results spelled out very clearly and almost always paired with figures that make compelling and convincing support for the conclusions. There are minor revision suggestions for improving the manuscript listed below. These include synching up Figure and Supplemental Figure reference mismatches. There are also many minor, but important, details that need to be added to the Methods section including many catalog numbers and some references.
- Some of the imaging, especially Fig4F could benefit and be more convincing with super-resolution imaging in the 150nm range (SIM, Airyscan, LIGHTNING, SoRa) possibly even just imaging with a higher magnification objective (60x or 100x)
Response: We appreciate the reviewer’s suggestion to improve the resolution of the imaging data. In addition to revising Figure 3B as described above, we have also replaced the images in Figure 4F with higher-resolution confocal images to provide a clearer view of MYH9 localization relative to microtubules and F-actin. These revised images highlight that MYH9 specifically accumulates at apical regions where microtubules and F-actin intersect, forming the apical ES, but is not localized to the basal ES-associated F-actin structures. To retain spatial context and allow readers to appreciate the overall distribution pattern, the original lower-magnification images from Figure 4F have been moved to Supplemental Figure 5.
- SuppFig1D: Please add context in the legend to the meaning of the Yellow Stars and "O->U" labels. The latter would seem to be to indicate the Ovarian and Uterine sides of the image
Response: In response to this comment, we revised the figure legend to clarify the annotations. The legend now states: “O, ovary side; U, uterus side. Asterisks indicate secretory cells that lack planar cell polarity.”
- Pg6Line7: up to P23 or up to P35?
Response: We appreciate the reviewer’s attention to this detail. The text has been revised for clarity as follows: “To examine the temporal dynamics of Sertoli cell polarity establishment, we analyzed seminiferous tubule morphology across the first wave of spermatogenesis, from postnatal day (P)10 to P35. To specifically assess the role of MAP7 in Sertoli cells while minimizing contributions from germ cells, our analysis focused on stages up to P23, before MAP7 expression becomes detectable in step 9–11 spermatids (Fig. 1), to exclude potential secondary effects resulting from MAP7 loss in germ cells.” (page 6, lines 5-10)
- SuppFig4B: Does SuppFig4B reference back to Fig3B or Fig3C? If the latter please update this in the legend.
- Pg7Line21-23: Is SuppFig3D,E meant to be referenced and not SuppFig5A,B?
- Pg8Line22-25: Is SuppFig4A meant to be reference and not SuppFig5?
- Pg8Line34-Pg9Line: Is SuppFig4B meant to be reference and not SuppFig5B?
Response: We appreciate the reviewer’s careful reading. All mismatches in Supplemental figure references have been corrected, ensuring that each reference in the text now accurately corresponds to the appropriate data.
- Pg9Line28-33: Would the authors be willing to rework this figure to include images that more closely match the reported findings? The current version does not strongly support the idea that MYH9 fails to localize to microtubule and F-actin domains in Map7 knockout P17 seminiferous tubules. This could also just be a matter of acquiring these images at a higher magnification or with a lower-end (150nm range) super-resolution system (SIM, Airyscan, LIGHTNING, SoRa etc)
Response: Following the reviewer’s recommendation, we replaced the images in Figure 4F with higher-resolution confocal images to better visualize MYH9 localization relative to microtubules and F-actin in Map7+/- and Map7-/- testes. These revised images demonstrate that MYH9 specifically accumulates at apical regions where microtubules and F-actin intersect, but not at the basal ES-associated F-actin structures. To preserve spatial context, the original low-magnification images have been moved to Supplemental Figure 5. If additional resolution is required, we are prepared to acquire further images using an Airyscan or Stellaris 5 system.
- SuppFig7A: The legend notes these are P23 samples but the image label says 8W. Please update this to whichever is the correct age.
Response: We thank the reviewer for pointing out this discrepancy. The figure legend for Supplemental Figure 7A (now revised as Supplemental Figure 8A) has been corrected to indicate that the samples are from 8-week-old mice, consistent with the image label.
- Pg16Line4-5: Please include in the text the vendor and catalog number for the C57BL/6 mice
Response: The text now specifies: “C57BL/6NJcl mice were purchased from CLEA Japan (Tokyo, Japan)” (page 17, line 4). CLEA Japan does not assign catalog numbers to mouse strains.
- Pg16Line18-19: Please include in the text the catalog number for the DMEM
- Pg16Line19-20: Please include in the text the vendor and catalog number for the FBS
- Pg16Line20: Please include in the text the vendor and catalog number for the Pen-Strep
Response: We have added vendor and catalog information as follows: “Wild-type and MAP7-EGFPKI HeLa cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, 043-30085; Fujifilm Wako Pure Chemical, Osaka, Japan) supplemented with 10% fetal bovine serum (FBS, 35-015-CV; Corning, Corning, NY, USA) and penicillin–streptomycin (26253-84; Nacalai, Kyoto, Japan) at 37 °C in a humidified atmosphere containing 5% CO₂ 18.” (page 17, lines 18-22)
- Pg17Line6-12: Thank you for including organized and detailed information about the primers, please also define the PCR protocol used including temperatures, timing, and cycles for Map7 knockout genotyping
- Pg17Line20-27: Thank you for including organized and detailed information about the primers, please also define the PCR protocol used including temperatures, timing, and cycles for Map7-eGFP genotyping
Response: The text has been updated to include the PCR conditions used for genotyping as follows: “Genotyping PCR was routinely performed as follows. Genomic DNA was prepared by incubating a small piece of the cut toe in 180 µL of 50 mM NaOH at 95 °C for 15 min, followed by neutralization with 20 µL of 1 M Tris-HCl (pH 8.0). After centrifugation for 20 min, 1 µL of the resulting DNA solution was used as the PCR template. Each reaction (8 µL total volume) contained 4 µL of Quick Taq HS DyeMix (DTM-101; Toyobo, Osaka, Japan) and a primer mix. PCR cycling conditions were as follows: 94 °C for 2 min; 35 cycles of 94 °C for 30 s, 65 °C for 30 s, and 72 °C for 1 min; followed by a final extension at 72 °C for 2 min and a hold at 4 °C. PCR products were analyzed using agarose gel electrophoresis. This protocol was also applied to other mouse lines and alleles generated in this study.” (page 18, lines 17–25)
- Pg17Line30: Please include in the text the vendor and catalog number for the Laemmli sample buffer
Response: We clarified that the buffer was prepared in-house.
- Pg17Line32&SuppTable1: Thank you for including an organized and detailed table for the primary antibodies used, please also make either a similar table or expand the current table to include secondary antibody information
- Pg17Line32: Please note in the text which primary antibodies and secondary antibodies from Supp Table 1
Response: Supplementary Table 1 has been updated to include both primary and HRP-conjugated secondary antibodies. In the Immunoblotting section of the Materials and Methods, we specified the antibodies used: “The following primary antibodies were used: mouse anti-Actin (C4, 0869100-CF; MP Biomedicals, Irvine, CA, USA), mouse anti-Clathrin heavy chain (610500; BD Biosciences, Franklin Lakes, NJ, USA), rat anti-GFP (GF090R; Nacalai, 04404-84), rabbit anti-MAP7 (SAB1408648; Sigma-Aldrich, St. Louis, MO, USA), rabbit anti-MAP7 (C2C3, GTX120907; GeneTex, Irvine, CA, USA), and mouse anti-α-tubulin (DM1A, T6199; Sigma-Aldrich). Corresponding HRP-conjugated secondary antibodies were used for detection: goat anti-mouse IgG (12-349; Sigma-Aldrich), goat anti-rabbit IgG (12-348; Sigma-Aldrich), and goat anti-rat IgG (AP136P; Sigma-Aldrich). Detailed information for all primary and secondary antibodies is provided in Supplementary Table 1.” (page 19, lines 14-22)
- Pg18Line2: Please include in the text the vendor and catalog number for the Bouin's
Response: The text has been updated to indicate that Bouin’s solution was prepared in-house
- Pg18Line3: Please include in the text the catalog number for the CREST-coated glass slides
- Pg18Line7: Please include in the text the catalog number for the OCT compound
- Pg18Line11: Please include in the text the vendor and catalog number for the Donkey Serum
- Pg18Line11: Please include in the text the vendor and catalog number for the Goat Serum
Response: The text now includes vendor and catalog information for all these reagents, including CREST-coated slides (SCRE-01; Matsunami Glass, Osaka, Japan), OCT compound (4583; Sakura Finetechnical, Tokyo, Japan), donkey serum (017-000-121; Jackson ImmunoResearch Laboratories, PA, USA), and goat serum (005-000-121; Jackson ImmunoResearch Laboratories).
- Pg18Line13: Thank you for including an organized and detailed table for the primary antibodies used, please also make either a similar table or expand the current table to include secondary antibody information
Response: We thank the reviewer for the suggestion. Supplementary Table 1 already includes information for the antibodies used for immunoblotting, and we have now added information for the Alexa Fluor-conjugated secondary antibodies used for immunofluorescence in this study.
- Pg18Line18: Please include in the text the vendor and catalog number for the DAPI
Response: The text has been updated to include the vendor and catalog number for DAPI (D9542; Sigma-Aldrich).
- Pg18Line19: Please also include information about the objectives used including catalog numbers, detectors used (PMT vs HyD)
Response: We thank the reviewer for the suggestion. The following information has been added to the Histological analysis section in Materials and Methods: “Objectives used were HC PL APO 40×/1.30 OIL CS2 (11506428; Leica) and HC PL APO 63×/1.40 OIL CS2 (11506350; Leica), with digital zoom applied as needed for high-magnification imaging. DAPI was detected using PMT detectors, while Alexa Fluor 488, 594, and 647 signals were captured using HyD detectors. Images were acquired in sequential mode with detector settings adjusted to prevent signal bleed-through.” (page 20, lines 13-17)
- Pg18Line23: Please cite in the text the reference paper for Fiji (Schindelin et al. 2012 Nature Methods PMID: 22743772) and note the version of Fiji used
- Pg18Line24: Please note the version of Aivia used
Response: We have revised the text accordingly by citing the reference paper for Fiji (Schindelin et al., 2012, Nature Methods, PMID: 22743772) and noting the version used (v.2.16/1.54p). In addition, we have added the version of Aivia used in this study (version 14.1).
- Pg18Line25: If possible, please use a more robust and reliable system than Microsoft Excel to do statistics (Graphpad Prism, Stata, R, etc), if this is not possible please note the version of Microsoft Excel used
Response: We appreciate the reviewer’s suggestion. For basic statistical analyses such as the Student’s t-test, we used Microsoft Excel (Microsoft Office LTSC Professional Plus 2021), which has been sufficient for these standard calculations. For more advanced analyses, including ANOVA and single-cell RNA-seq analyses, we used R. These details have now been added to the text.
- Pg18Line25: Please cite in the text the reference paper for R (R Core Team 2021 R Foundation for Statistical Computing "R: A Language and Environment for Statistical Computing") and note the version of R used
- Pg18Line25: Please note the specific R package with version used to do ANOVA, and cite in the text the reference for this package
Response: We have cited the reference for R (R Core Team, 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria) and noted the version used (version 4.4.0) in the text. In addition, regarding ANOVA, we have added the following description: “For ANOVA analysis, linear models were fitted using the base stats package (lm function), and analysis of variance was conducted with the anova function.” (page 20, lines 23-25)
- Pg18Line25: Please clarify, was a R package called "AVNOVA" used to do ANOVA or is this a typo?
Response: We thank the reviewer for pointing this out. It was a typographical error — the correct term is “ANOVA”. The text has been corrected accordingly.
- Pg18Line32: Please include in the text the catalog number for the EPON 812 Resin
- Pg19Line3: Please include the version number for Stacker Neo
- Pg19Line5: Please include the vendor and version number for Amira 2022
- Pg19Line5: Please include the version number for Microscopy Image Browser
- Pg19Line5: Please include the version number for MATLAB that was used to run Microscopy Image Browser
Response: We added the catalog number for the EPON 812 resin and the vendor and version information for the software used. The following details have been included in the revised text:
EPON 812 resin: TAAB Embedding Resin Kit with DMP-30 (T004; TAAB Laboratory and Microscopy, Berks, UK)
Stacker Neo: version 3.5.3.0; JEOL
Amira 2022: version 2022.1; Thermo Fisher Scientific
Microscopy Image Browser: version 2.91
Note that although Microscopy Image Browser is written in MATLAB, we used the standalone version that does not require a separate MATLAB installation.
- Pg19Line: 9-10: Please include in the text the catalog number for the complete protease inhibitor
- Pg19Line14: Please include in the text the catalog number for the Magnetic Agarose Beads
- Pg19Line16: Please include in the text the catalog number for the GFP-Trap Magnetic Agarose Beads
Response: We have added the catalog numbers for the complete protease inhibitor (4693116001), control magnetic agarose beads (bmab), and GFP-Trap magnetic agarose beads (gtma).
- Pg19Line21: Please note in the text which primary antibodies and secondary antibodies from Supp Table 1
- Pg19Line21-22: Please include in the text the catalog number for the ECL Prime
Response: We thank the reviewer for the helpful suggestions. The description regarding immunoblotting (“Eluted samples were separated by SDS–PAGE, transferred to PVDF membranes…”) was reorganized: overlapping content has been removed, and the necessary information has been integrated into the “Immunoblotting” section, where details of the primary and secondary antibodies (listed in Supplementary Table 1) are already provided. In addition, the information for ECL Prime has been updated to “Amersham ECL Prime (RPN2236; Cytiva, Tokyo, Japan)”.
- Pg20Line2: Please include the version number for Xcalibur
Response: The version of Xcalibur used in this study (version 4.0.27.19) has been added to the text.
- Pg20Line5: Please cite in the text the reference paper for SWISS-PROT (Bairoch and Apweiler 1999 Nucleic Acid Research PMID: 9847139)
Response: The reference paper for SWISS-PROT (Bairoch and Apweiler, 1999, Nucleic Acids Research, PMID: 9847139) has been cited in the text.
- Pg19Line26: Please include in the text the catalog number for the NuPAGE gels
- Pg19Line28: Please include in the text the catalog number for the SimpleBlue SafeStain
Response: Both catalog numbers have been added in the Mass spectrometry section as follows: 4–12% NuPAGE gels (NP0321PK2; Thermo Fisher Scientific) and SimplyBlue SafeStain (LC6060; Thermo Fisher Scientific).
- Pg20Line26: Please include in the text the catalog number for the Chromium Singel Cell 3' Reagent Kits v3
Response: The catalog number for the Chromium Single Cell 3′ Reagent Kits v3 (PN-1000075; 10x Genomics) has been added to the text.
- Pg21Line3: Please cite in the text the reference paper for R (R Core Team 2021 R Foundation for Statistical Computing "R: A Language and Environment for Statistical Computing")
Response: The reference for R (R Core Team, 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria) has already been cited in the “Histological analysis” section, where ANOVA analysis is described.
- Pg21Line3 Please cite in the text the reference for RStudio (Posit team (2025). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. URL http://www.posit.co/.)
Response: The reference for RStudio (Posit team, 2025. RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA, USA. URL: http://www.posit.co/) has been added to the text.
- Pg21Line23: Please include the version number for Metascape
Response: The version of Metascape used in this study (v3.5.20250701) has been added to the text.
- SuppFig12: please update the legend to include a description after the title and update the figure labeling to correspond to the legend. Also, this figure is currently not referenced anywhere in the text.
Response: We have updated the legend for Supplemental Figure 12 (Supplemental Figure 13) to include a descriptive sentence after the title and have adjusted the figure labeling to match the legend. The revised legend now reads: “Full-scan images of the agarose gels shown in Supplemental Figs. 1B and 2C are displayed in the upper and lower left panels, respectively, while the corresponding full-scan images of the immunoblots shown in Supplemental Figs. 1C and 2D are presented in the upper and lower right panels, respectively.”
As these images serve as source data, they are not referenced directly in the main text.
_Referee cross-commenting_
I generally agree with Reviewer 1 and specifically concur related to adding details about fertility assessment of the Map7 Knockout line, and enhancing the SEM imaging.
Response: As noted in our response to Reviewer #1, we have re-acquired the SEM images in high-resolution mode, focusing on the relevant regions. The new high-resolution images have replaced the original panels in revised Figure 3C, providing clearer visualization of junctional structures at P10 and P21 in Map7+/- and Map7-/- testes. The original Figure 3C images have been moved to Supplemental Figure 4B for reference.
Reviewer #2 (Significance):
There are mouse lines, and datasets that will be useful resources to the field. This work also advances our understanding of a period in Sertoli cell development that is critical to fertility but very understudied.
Response: We thank the reviewer for the positive comments and for recognizing the potential value of our mouse lines and datasets to the field, as well as the significance of our work in advancing the understanding of this critical but understudied period in Sertoli cell development.