Reviewer #3 (Public Review):
The import of soluble precursor proteins into the mitochondrial matrix is a complex process that involves two membranes, multiple protein interactions with the translocating substrate, and distinct forms of energetic input. The traditional approaches for in vitro measurement of protein translocation across membranes typically involve radiography or immunodetection-based assays. These end-point approaches, however, often lack optimal resolution to analyze the sequential processes of protein transport. Therefore, the development of techniques to dissect the kinetic steps of this process will be of great interest to the field of protein trafficking.
This study by Ford et al. employs a novel bioluminescence-based technique to analyze the import of presequence-containing precursors (PCPs) into the mitochondrial matrix in real time. As a follow-up study to previous work from the Collinson group (Pereira et al. 2019), this approach makes use of the split NanoLuc luciferase enzyme strategy, whereby mitochondria are isolated from yeast expressing matrix localized 'LgBiT' (encoded by the mt-S11 gene) and used for import experiments with purified PCPs containing 'SmBiT' (the 11-residue pep86 sequence). The light intensity that results from the high-affinity interaction of pep86 with mt-S11 is convincingly shown in this study to be a reliable reporter of protein import into the matrix space. Therefore, from a technical stance, this appears to be a very promising approach for making high-resolution measurements of the different kinetic steps of protein translocation.
The authors leverage this technology to seek insights into several features of mitochondrial protein import, with some observations challenging key long-standing paradigms in the field. Using series of PCP constructs differing in length and placement of the pep86 peptide, the authors perform luminescence-based import tests with varying protein concentration, energetic input, and presequence charge distribution. Fits to the time course data suggest two main kinetic steps that govern matrix-directed import: transit of the PCP across the TOM complex into the IMS and association of the PCP with the TIM23 motor complex. The results support some very interesting insights into TIM23-mediated protein import, including: that precursor accumulation is strongly dependent on length; that the kinetically limiting step of IM transport is engagement with the TIM23 complex, not transmembrane transport itself; and that presequence charge distribution differently affects import rate and matrix accumulation. The results of this study appear repeatable among samples and the mathematical fits to time courses are well explained. However, there remain some questions about the nature of the experimental approach and the interpretation of the kinetics data in terms of the underlying biological processes. These questions are as follows:
Major points
Overall system characterization and mathematical analysis
1) The Western-based characterization of the amount of matrix-localized 11S (shown in Figure 1 - figure supplement 1) shows that the concentration of 11S varies significantly (> twofold concentration difference, quantified as a ratio to Tom40) among yeast/mitochondria preps. Is there a particular reason for this large variability? Perhaps more significantly, the import efficiency (judged by luminescence amplitude) shows high batch variability as well (> twofold efficiency difference). While this series of experiments makes the case that the luminescence readout of import is not limited by matrix-localized 11S, it does raise a potential concern of batch-to-batch variation in import competence. Could this have any implications for the reproducibility of results by this assay, particularly regarding the kinetic parameters reported?
2) My understanding from the Pereira 2019 JMB paper is that the yeast expressing the matrix-targeted 11S were engineered so that the 11S construct contained a 35 residue presequence from ATP1. In Figure 1 - figure supplement 1, panel A, it looks like the mitochondria-derived 11S constructs are significantly larger than the purified 11S constructs used to calibrate concentration. If the added residues on the mitochondrial 11S constitute a presequence, then they should be cleaved up on import to yield the mature sized protein. Why are the mitochondrial 11S constructs so much larger than the purified ones? Explicit labeling of MW markers would be useful here.
3) From Figure 1D, given that the amplitude linearly increases with added Acp1-pep86 up to ~45 nM, this suggests that matrix-localized 11S is in stoichiometric excess of imported peptide within this range of added substrate. Given a matrix [11S] of 2.8 uM, a stoichiometrically equivalent amount of Acp1-pep86 would be equivalent to an import of <0.5% of added substrate, and it is suggested that import efficiency is actually much lower than that. How can this very low import efficiency be explained?
4) Apropos of point #3 above: Given the low efficiency of import observed for the purified PCP substrates in this study, one wonders if this due to the formation of off-pathway (translocation incompetent) precursors established during the import reaction, before substrates have a chance to engage OM receptors (e.g., due to aggregation, etc.) In this case, the interpretation of single-turnover conditions may instead be caused by a vast majority of PCP losing translocation competence, rather than the requirement for energetic resetting that is suggested. Might this be a possibility?
5) Import time courses in many cases show a progressive drop in luminescence at later time points after a maximum value has been reached. This reduction in signal cannot be accounted for by the two rate constants in the equation used in two-step kinetic model. How were such luminescence deviations accounted for when fitting data to obtain these kinetics parameters? What might be the reason for this downward drift in signal once maximum amplitude has been reached?
Import kinetics: dependence on total protein size
6) In Figure 3 - figure supplement 1, some of the kinetic parameters from the PCP concentration-dependent responses are quite noisy. For instance, responses for the shortest constructs (L and DL) show a lot of variability in the k1 and k2 parameters. Is this (partly) due to difficulty in resolving these two parameters during the nonlinear least-squares fitting protocol for these particular constructs?
7) The data in Figure 3, panels E and F (derived from Figure 3 - figure supplement 1) in some cases show non-linear dependence of kinetic parameters on the 'N to pep86 distance' for the length (panel E) and position (panel F) variants. For instance, from the length series, the k1 mean goes from 132 to 385 to 237 nM for the DL, DDL, and DDDL constructs, respectively. The variances suggest that these differences are real. Is there a reason that kinetic parameters would have such non-monotonic dependence on length?
Import kinetics: dependence on energetic input
8) The data of Figure 4A show the results of partial dissipation of the membrane potential by 10 nM valinomycin. Most studies designed to cause a gradual dissipation of membrane potential do so by protonophore (e.g., CCCP) titration. Given that matrix-directed import is completely blocked by low micromolar amounts of this potent ionophore, it would be useful to have an independent readout (e.g., TMRM measurements) of the residual membrane potential that exists upon treatment with the lower concentrations of valinomycin used here.
9) The step associated with k1, designated as transport across the TOM complex, is suggested to go to completion before starting the step associated with k2, engagement of the TIM23 complex. The k1 step shows a strong dependence on membrane potential (Fig. 4A, middle), particularly for the length series. Why would this be, given that no part of translocation across the OM should be associated with a valinomycin-sensitive electric potential?
Working model
10) One of the most surprising outcomes of this study is that passive transport of substrates across the TOM complex and energy-coupled transport via the TIM23 complex are kinetically separable and independent events. As the authors note in the Discussion, the current paradigm of the field is that matrix-targeted substrates concurrently traverse the OM and IM via the TIM-TIM23 supercomplex, and this model is supported by quite a bit of experimental evidence. Even in this study, the fact that the PCP-pep86-DHFR construct exposes the pep86 sequence to the matrix in the presence of MTX (Figure 2) is evidence of a two membrane-spanning intermediate. Key mechanistic questions arise regarding the model proposed in this study. For example, if PCPs traverse the TOM complex as a stand-alone step, what is the driving force (e.g., a simple pathway of protein interactions with increasing affinity)? And would soluble, matrix-directed substrates be expected to accumulate in the very restricted space of the IMS? If so, how would TIM23-directed membrane proteins keep from aggregating in the aqueous IMS? These questions would be worth addressing in the discussion of the model.
Import kinetics: dependence on MTS charge distribution
11) The fact that import rates are increased with a more electropositive presequence makes sense in terms of the electrophoretic pull exerted on the PCP (matrix, negative). However, the greater accumulation of precursors containing more electronegative presequences remains puzzling. In the manuscript, this is explained based on the concept that accumulation of positive charges will cause partial collapse the membrane potential. However, I am still uncertain about this explanation for a few reasons. First, for each PCP, the presequence will constitute just a small fraction of the total length of the precursor, and therefore contribute a small fraction of the total charge density of imported protein. Would such a small change in total PCP charge be expected to have the dramatic effect observed among samples? Second, given the small amount of protein imported under these conditions, would the total charge of imported PCPs be expected to affect transmembrane ion distribution so significantly? For instance, as I recall, it takes up to micromolar amounts of mitochondria-targeted lipophilic cations (e.g., TPP+) to cause a major change in the TMRM-detected membrane potential. Finally, I would expect isolated mitochondria to be capable of respiratory control. It is well known, for example, that isolated mitochondria can respond to temporary draw-down of the membrane potential (e.g., by ADP/Pi addition) by going into state 3 respiration and restoring membrane gradients. Why would that not be the case here (Figure 5D)?
General
12) Although the spectral approach in this study is developed as an alternative to the more traditional import assays, it would be useful to have some control import tests (done with Westerns or autoradiography) as complements to the luminescence-based imports. For example, control tests to accompany Figure 1 that show import efficiency or tests that accompany Figure 3 to show import of the different length and position series constructs. Perhaps this could be done with immunodetection of Acp1 or the pep86 epitope, showing protease-protected, processed import substrates that appear in a membrane potential/ATP-dependent manner. Even if the results from the more traditional techniques ran contrary to the results using the NanoLuc system, this would still allow the authors to compare which effects are consistent and which are dissimilar between different approaches.
13) The authors might also consider conducting imports with mitoplasts as a way to test the kinetic model that includes the TIM23-mediated step alone.
14) It is difficult to follow the logic in the Discussion regarding the number of TIM23 sites limiting the number of 11S imported into mitochondria in live cells (page 15, lines 23-27). Are the authors suggesting that in vivo, one TIM23 complex serves to transport a single protein? This needs to be clarified.