10,000 Matching Annotations
  1. Last 7 days
    1. eLife Assessment

      This study offers a valuable advance for neuroscience by extending a visualization tool that enables intuitive assessment of how dendritic and synaptic currents shape the output of neurons. The evidence supporting the tool's capabilities is convincing and solid, with well-documented code, algorithmic innovation, and application to hippocampal pyramidal neurons - although experimental confirmation of the predictions is not provided. The work will be of interest to computational and systems neuroscientists seeking accessible methods to examine dendritic computations.

    2. Reviewer #1 (Public review):

      Summary:

      Fogel & Ujfalussy report an extension of a visualization tool that was originally designed to enable an understanding of detailed biophysical neuron models. Named "extended currentscape", this new iteration enables visual assessment of individual currents across a neuron's spatially extended dendritic arbor with simultaneous readout of somatic currents and voltage. The overall aim was to permit a visually intuitive understanding for how a model neuron's inputs determine its output. This goal was worthwhile and the authors achieved it. Their manuscript makes two additional contributions of note: (1) a clever algorithmic approach to model the axial propagation of ionic currents (recursively traversing acyclic graph subsections) and (2) interesting, albeit not easily testable, insights into important neurophysiological phenomena such as complex spike generation and place field dynamics. Overall, this study provides a valuable and well-characterized biophysical modeling resource to the neuroscience community.

      Strengths:

      The authors significantly extended a previously published open-source biophysical modeling tool. Beyond providing important new capabilities, the potential impact of "extended currentscape" is boosted by its integration with preexisting resources in the field.

      The code is well-documented and freely available via GitHub.

      The author's clever portioning algorithm to relate dendritic/synaptic currents to somatic yielded multiple intriguing observations regarding when and why CA1 pyramidal neurons fire complex spikes versus single action potentials. This topic carries major implications for how the hippocampus represents and stores information about an animal's environment.

      Weaknesses:

      While extended currentscape is clearly a valuable contribution to the neuroscience community, this reviewer would argue that it is framed in a way that oversells its capabilities. The Abstract, Introduction, Results, and Methods all contain phrases implying that extended currentscape infers dendritic/synaptic currents contributing to somatic output., i.e. backwards inference of unknown inputs from a known output. This is not the case; inputs are simulated and then propagated through the model neuron using a clever partitioning algorithm that essentially traverses a biologically undirected graph structure by treating it like a time series of tiny directed graphs. This is an impressive solution, but it does not infer a neuron's input structure.

      Because a directed acyclic graph architecture is shown in Figure 2, it is unintuitive that the authors can infer bidirectional current flow, e.g. Figure 3 showing current flowing from basal dendrites and axon to soma, and further towards the apical dendrites. This is explained in Methods, but difficult to parse from Results amidst lots of rather abstract jargon (target, reference, collision, compartment). Figure 2 would have presented an opportunity to clearly illustrate the author's portioning algorithm by (1) rooting it in the exact morphology of one of their multicompartmental model neurons and (2) illustrating that "target" and "reference" have arbitrary morphological meanings; they describe the direction of current flow which is reevaluated at each time step.

      Analyses in Figure 7, C and D, are insightfully devised and illuminating. However, they could use some reconciliation with Figure 5 regarding initiation of individual APs versus CSBs within place fields.

      The intriguing observations generated by extended currentscape also point to its main weakness, which the authors openly acknowledge: as of now, no experimental methods exist to conclusively tests its predictions.

    3. Reviewer #2 (Public review):

      Summary


      The electrical activity of neurons and neuronal circuits is dictated by the concerted activity of multiple ionic currents. Because directly investigating these currents experimentally isn't possible with current methods, researchers rely on biophysical models to develop hypotheses and intuitions about their dynamics. Models of neural activity produce large amounts of data that is hard to visualize and interpret. The currentscape technique helps visualize the contributions of currents to membrane potential activity, but it's limited to model neurons without spatial properties. The extended currentscape technique overcomes this limitation by tracking the contributions of the different currents from distant locations. This extension allows tracking not only the types of currents that contribute to the activity in a given location, but also visualizing the spatial region where the currents originate. The method is applied to study the initiation of complex spike bursts in a model hippocampal place cell. 



      Strengths.


      The visualization method introduced in this work represents a significant improvement over the original currentscape technique. The extended currentscape method enables investigation of the contributions of currents in spatially extended models of neurons and circuits. 



      Weaknesses.


      The case study is interesting and highlights the usefulness of the visualization method. A simpler case study may have been sufficient to exemplify the method, while also allowing readers to compare the visualizations against their own intuitions of how currents should flow in a simpler setting.

    4. Author response:

      We are very pleased to hear the overall positive views and constructive criticisms of eLife Editors and Reviewers on our work. In particular, we appreciate their global assessment that the work offers a valuable tool for neuroscientists to visualize and assess dendritic computations.

      We will clarify in a revised version of the manuscript that we do not infer the synaptic inputs of the neuron. Also, we will add a new simulation with simpler morphology to illustrate the method under more intuitive conditions. We will also clarify the meaning of the "target" and "reference" compartments. These labels do not depend on the direction of the current flow, but we can freely chose any compartment to be the target, and then the axial currents will be evaluated relative to that compartment in each time step.

    1. eLife Assessment

      This study presents valuable findings from a spatiotemporal analysis of arbovirus case notification data from 2013 to 2020 in Brazil, reporting associations between covariates representing potential drivers of arbovirus transmission and recorded incidence. The work is methodologically solid, though it is unclear how much explanatory power inclusion of the covariates adds. The findings will be of interest to researchers working on the epidemiology of arboviruses.

    2. Reviewer #1 (Public review):

      Summary:

      The authors used fine-level resolution epidemiological data to describe the spatiotemporal patterns of dengue, chikungunya and Zika. They assessed which factors best captured the historic transmission dynamics in Brazil. It was used epidemiological data from 2013 to 2020. They tested the association between arbovirus incidence and environment, human connectivity and socioeconomic, and climate variables, including extreme weather conditions.

      Strengths:

      The authors used granular epidemiological data at the subnational level and weekly case notification time series. Furthermore, they considered more than one hundred variables. Among the variables, it is highlighted that they also considered human connectivity and extreme weather events.

      The authors used appropriate statistical methods accounting for the spatiotemporal structure and used the negative binomial to handle overdispersion; They applied a systematic covariate screening, using WAIC and performed sensitivity analysis. Their results suggest an important role of climate variables such as El Niño South Oscillation Anomalies, and that extremes in wetness and drought may drive infections outside regular patterns; it also suggests that temperature variations and extremes may be more associated with the incidence than the mean temperature; in addition, human connectivity networks are also pointed out as a key driver factor at fine level scale.

      Weaknesses:

      The authors have not accounted for the correlation between diseases. They have not considered the co-occurrence of diseases by applying a joint modelling approach, nor have they discussed this as a possibility for future work. Still, regarding the methods, they used a simplified lag treatment. They could have included into the discussion, examples of methods like Distributed Lag Models. This can be used in contexts when analysing meteorological covariates and extreme weather events.

      They also have not considered the population's immunity to the different serotypes of dengue, which can reflect in peaks of incidence when a new serotype starts to circulate in a certain region. It is important to bring this into the discussion section.

      Whether the authors achieved their aims, and whether the results support their conclusions:

      The authors assess variables which may be associated with different vector-borne disease incidence and the magnitude of these associations. Conducting a fine-scale resolution analysis (spatial and temporal), they emphasised the role of environmental and extreme weather conditions. Their findings are coherent with their analysis and corroborate some of the existing literature.

      Discussion of the likely impact of the work on the field, and the utility of the methods and data to the community:

      Their work shows how the different vector-borne diseases are influenced by environmental and climatic factors and that human connectivity may play an important role at the fine level spatial and temporal scale. This work brings a picture of the spatial and temporal distributions of dengue, chikungunya and Zika, at the municipal level in Brazil (2013-2020). The material and methods are well described, and the source is made available, allowing reproducibility by other researchers and academics.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript looks at a wide variety of likely important drivers of arbovirus transmission across municipalities in Brazil. The results are intriguing due to their relevance and breadth, but the approach also brings challenges, which make the results hard to interpret.

      Strengths:

      Important and complex problem, excellent spatiotemporal resolution, collection of important covariates, and holistic analysis.

      Weaknesses:

      There are two key weaknesses. First, it is difficult to understand the actual contributions of each included covariate. The principal fit metric is WAIC, and importance is characterized by rank based on univariate fit. WAIC is a valuable comparison metric, but does not indicate how well the best model (or any other) fits the data. Figures 5B and S2-S4 show what look like good fits, but it also seems possible that most of this fit could be coming from the random effects rather than the covariates. It would be helpful to show the RE-only model as a comparator in these figures and also to consider other metrics that could help show overall fit (e.g., R^2). How much variance is actually being explained by the covariates?

      Relatedly, the mean absolute errors reported are approximately 2-8 across the viruses, which sounds good on the surface. But many of the actual counts are zeros, so it's hard to tell if this is really good. Comparison to the mean and median observed case counts would be helpful.

      Second, some of the results/discussion on specific variables and covariates were confusing. For example, the relationships between relative humidity and temperature vary substantially between pathogens and minimum or maximum temperature values. However, as transmission of three viruses relies on the same mosquito and minimum and maximum temperatures are highly correlated, we would expect these relationships to be very similar. One concern is clarity, and another is that some of the findings may be spurious - potentially related to how much of the variance is accounted for by the random effects alone (see above) and the wide range of covariates assessed (thus increasing the chance of something improving fit).

      Underlying much of this are likely nonlinear relationships. The authors comment on this as a likely reason for some of the specific relationships, but it is not a very strong argument because the variable selection process is completely based on (generalized) linear univariate regressions.

      Lastly, the mischaracterization of arboviral disease is a big challenge, as noted in the discussion. Only a subset of cases in Brazil are laboratory confirmed, but I couldn't find any statement about whether the cases used here were laboratory confirmed or not. I suspect that they are a combination of confirmed and suspect cases. A sensitivity analysis with only confirmed cases would increase confidence in the results.

    4. Author response:

      We thank the reviewers for their time and work assessing our manuscript, and for their constructive suggestions for improvements. Based on the reviews, our plan is to adapt the work as follows:

      (1)  Perform a sensitivity analysis considering only confirmed dengue, Zika, and chikungunya cases,

      (2)  Explore and discuss the potential correlation between diseases,

      (3)  Compare the baseline and final models,

      (4)  Assess model fit using a wider variety of metrics.

      We would like to emphasise that our research question was to explore drivers of arbovirus incidence outside of seasonal trends. We therefore designed our models with flexible spatiotemporal random effects to capture baseline patterns, and as the reviewers have highlighted, much of the variance is explained by these random effects. To expand on point 3 above, we will perform a comparison of the baseline random effect models and the final multivariable models to show the differences between the models and quantify the additional impact of the meteorological variables in the final models.

    1. eLife Assessment

      This important study investigates how the nervous system adapts to changes in body mechanics using a tendon transfer surgery that imposes a mismatch between muscle contraction and mechanical action. Using electromyography (EMG) to track muscle activity in two macaque monkeys, the authors conclude that there is a two-phase recovery process that reflects different underlying strategies. However, neither monkey's data includes a full set of EMG and kinematic measurements, and the two datasets are not sufficiently aligned with each other from a behavioural point of view; as a result, the evidence supporting the conclusions is solid but could be improved.

    2. Reviewer #1 (Public review):

      Summary:

      Many studies have investigated adaptation to altered sensorimotor mappings or to an altered mechanical environment. This paper asks a different but also important question in motor control and neurorehabilitation: how does the brain adapt to changes in the controlled plant? The authors addressed this question by performing a tendon transfer surgery in two monkeys during which the swapped tendons flexing and extending the digits. They then monitored changes in task performance, muscle activation and kinematics post-recovery over several months, to assess changes in putative neural strategies.

      Strengths:

      (1) The authors performed complicated tendon transfer experiments to address their question of how the nervous system adapts to changes in the organisation of the neuromusculoskeletal system, and present very interesting data characterising neural (and in one monkey, also behavioural) changes post tendon transfer over several months.

      (2) The fact that the authors had to employ to two slightly different tasks -one more artificial, the other more naturalistic- in the two monkeys and yet found qualitatively similar changes across them makes the findings more compelling.

      (3) The paper is quite well written, and the analyses are sound, although some analyses could be improved (suggestions below).

      Weaknesses:

      (1) I think this is an important paper, paper but I'm puzzled about a tension in the results. On the one hand, it looks like the behavioural gains post-TT happen rather smoothly over time (Figure 5). On the other, muscle synergy activations changes abruptly at specific days (around day ~65 for Monkey A and around day ~45 for monkey B; e.g., Figure 6). How do the authors reconcile this tension? In other words, how do they think that this drastic behavioural transition can arise from what appears to be step-by-step, continuous changes in muscle coordination? Is it "just" subtle changes in movements/posture exploiting the mechanical coupling between wrist and finger movements combined with subtle changes in synergies and they just happen to all kick in at the same time? This feels to me the core of the paper and should be addressed more directly.

      (2) The muscles synergy analyses, which are an important part of the paper, could be improved. In particular:

      (2a) When measuring the cross-correlation between the activation of synergies, the authors should include error bars, and should also look at the lag between the signals.

      (2b) Figure 7C and related figures, the authors state that the activation of muscle synergies revert to pre-TT patterns toward the end of the experiments. However, there are noticeable differences for both monkeys (at the end of the "task range" for synergy B for monkey A, and around 50 % task range for synergy B for monkey B). The authors should measure this, e.g., by quantifying the per-sample correlation between pre-TT and post-TT activation amplitudes. Same for Figures 8I,J, etc.

      (2c) In Figures 9 and 10, the authors show the cross-correlation of the activation coefficients of different synergies; the authors should also look at the correlation between activation profiles because it provides additional information.

      (2d) Figure 11: the authors talk about a key difference in how Synergy B (the extensor finger) evolved between monkeys post-TT. However, to me this figure feels more like a difference in quantity -the time course- than quality, since for both monkeys the aaEMG levels pretty much go back to close to baseline levels -even if there's a statistically significant difference only for Monkey B. What am I missing?

      (2e) Lines 408-09 and above: The authors claim that "The development of a compensatory strategy, primarily involving the wrist flexor synergy (Synergy C), appears crucial for enabling the final phase of adaptation", which feels true intuitively and also based on the analysis in Figure 8, but Figure 11 suggests this is only true for Monkey A . How can these statements be reconciled?

      (3) Experimental design: at least for the monkey who was trained on the "artificial task" (Monkey A), it would have been good if the authors had also tested him on naturalistic grasping, like the second monkey, to see to what extent the neural changes generalise across behaviours or are task-specific. Do the authors have some data that could be used to assessed this even if less systematically?

      (4) Monkey's B behaviour pre-tendon transfer seems more variable than that of Monkey A (e.g., the larger error bars in Figure 5 compared to monkey A, the fluctuating cross-correlation between FDS pre and EDC post in Figure 6Q), this should be quantified to better ground the results since it also shows more variability post-TT.

      (5) Minor: Figure 12 is interesting and supports the idea that monkeys may exploit the biomechanical coupling between wrist and fingers as part of their function recovery. It would be interesting to measure whether there is a change in such coupling (tenodesis) over time, e.g., by plotting change in wrist angle vs change in MCP angle as a scatter plot (one dot per trial), and in the same plot show all the days, colour coded by day. Would the relationship remain largely constant or fluctuate slightly early on? I feel this analysis could also help address my point (1) above.

    3. Reviewer #2 (Public review):

      Summary:

      This study tackles an important question for both basic science understanding and translational relevance - how does the nervous system learn to control a changing body? Of course, all bodies change slowly over time, including basic parameters like size and weight distribution, but many types of diseases and injuries also alter the body and require neural adaptation to sustain normal control. A dramatic example from the clinic is the use of tendon transfer surgery in patients with near tetraplegia that allows them to use more proximal arm muscles to control the hand. Here, the authors sought to ask what strategies may be used when an animal adapts its motor control in response to tendon transfer. They focus on whether recovered functions leverage fractionated control over each muscle separately or, alternatively, whether there is evidence for modular control in which pre-existing synergies are recruited differently after the surgery. Overall, this work is very promising and advances the use of tendon transfer in animal models as a powerful way to study motor control flexibility, but the incomplete data and difficulty comparing between the two subjects mean that evidence is lacking for some of the conclusions.

      Strengths:

      A major strength of this paper is its motivating idea of using tendon transfer between flexor and extensor muscles in non-human primate wrist control to ask what adaptations are possible, how they evolve over time, and what might be the underlying neural control strategies. This is a creative and ambitious approach. Moreover, these surgeries are likely very challenging to do properly, and the authors rigorously documented the effectiveness of the transfer, particularly for Monkey A.

      The results are promising, and there are two very interesting findings suggested by the data. First, when a single muscle out of a related group is manipulated, there is aberrant muscle activity detected across related muscles that are coordinated with each other and impacted as a group. For example, when the main finger extensor muscle now becomes a flexor, the timing of its activation is changed, and this is accompanied by similar changes in a more minor finger extensor as well as in wrist extensor muscles. This finding was observed in both monkeys and likely reflects a modular adaptive response. Second, there is a biphasic response in the weeks following injury, with an early phase in which the magnitude of an extensor synergy was increased and the timing of flexor and extensor recruitment was altered, followed by a later phase in which the timing and overall magnitude are restored.

      Weaknesses:

      The most notable weakness of the study is the incompleteness of the data. Monkey A has excellent quality EMG in all relevant muscles, but no analysis of video data, while Monkey B has some video data kinematics and moderate quality EMG, but the signal in the transferred FDS muscle was lost. These issues could be overcome by aligning data between the two monkeys, but the behavior tasks performed by each monkey are different, and so are the resulting muscle synergies detected (e.g., for synergies C and D), and different timepoints were analyzed in each monkey. As a result, it is difficult to make general conclusions from the study, and it awaits further analysis or the addition of another subject.

      A second weakness is the insufficient analysis of the movements themselves, particularly for Monkey A. The main metrics analyzed were the time from task engagement (touch) to action onset and the time spent in an off-target location - neither of these measures can be related directly to muscle activity or the movement. Since the authors have video data for both monkeys, it is surprising that it was not used to extract landmarks for kinematic analysis, or at least hand/endpoint trajectory, and how it is adjusted over time. Adding more behavior data and aligning it with the EMG data would be very helpful for characterizing motor recovery and is needed to support conclusions about underlying neural control strategies for functional improvement.

      Considering specific conclusions, the statement that the monkeys learned to use "tenodesis" over time by increasing activation of a wrist flexor muscle synergy does not seem to be fully supported by the data. Monkey A data includes EMG for two wrist flexors and a clear wrist flexor synergy, but it seems that, when comparing baseline and the final post-surgery timepoints, the main change is decreased activity around grasp after tendon transfer (at 0% of the task range if I understand this correctly) (Figure 8E and Figure S2-H vs R and -I vs S). It is clear that Monkey B increases the flexion of the wrist joint over time from the kinematic data, but the activity pattern in the only recorded wrist flexor (PL) doesn't change much with time (Figure S2-AN) and this monkey does not have a clear wrist flexor synergy (PL is active in the flexor synergy A while synergy C mainly reflects deltoid activity). Given these issues, it is not clear how to align the EMG and kinematic data and interpret these findings.

      A more minor point regarding conclusions: statements about poor task performance and high energy expenditure being the costs that drive exploration for a new strategy are speculative and should be presented as such. Although the monkeys did take longer to complete the tasks after the surgery, they were still able to perform it successfully and in less than a second and no measurements of energy expenditure were taken.

      A small concern is whether the tendon transfer effect may fail over time, either due to scar tissue formation or tendon tearing, and it would be ideal if the integrity of the intervention were re-assessed at the end of the study.

    4. Reviewer #3 (Public review):

      Summary:

      In this study, Philipp et al. investigate how a monkey learns to compensate for a large, chronic biomechanical perturbation - a tendon transfer surgery, swapping the actions of two muscles that flex and extend the fingers. After performing the surgery and confirming that the muscle actions are swapped, the authors follow the monkeys' performance on grasping tasks over several months. There are several main findings:

      (1) There is an initial stage of learning (around 60 days), where monkeys simply swap the activation timing of their flexors and extensors during the grasp task to compensate for the two swapped muscles.

      (2) This is (seemingly paradoxically) followed by a stage where muscle activation timing returns almost to what it was pre-surgery, suggesting that monkeys suddenly swap to a new strategy that is better than the simple swap.

      (3) Muscle synergies seem remarkably stable through the entire learning course, indicating that monkeys do not fractionate their muscle control to swap the activations of only the two transferred muscles.

      (4) Muscle synergy activation shows a similar learning course, where the flexion synergy and extension synergy activations are temporarily swapped in the first learning stage and then revert to pre-surgery timing in the second learning stage.

      (5) The second phase of learning seems to arise from making new, compensatory movements (supported by other muscle synergies) that get around the problem of swapped tendons.

      Strengths:

      This study is quite remarkable in scope, studying two monkeys over a period of months after a difficult tendon-transfer surgery. As the authors point out, this kind of perturbation is an excellent testbed for the kind of long-term learning that one might observe in a patient after stroke or injury, and provides unique benefits over more temporary perturbations like visuomotor transformations and studying learning through development. Moreover, while the two-stage learning course makes sense, I found the details to be genuinely surprising--specifically the fact that: (1) muscle synergies continue to be stable for months after the surgery, despite now being maladaptive; and (2) muscle activation timing reverts to pre-surgery levels by the end of the learning course. These two facts together initially make it seem like the monkey simply ignores the new biomechanics by the end of the learning course, but the authors do well to explain that this is mainly because the monkeys develop a new kind of movement to circumvent the surgical manipulation.

      I found these results fascinating, especially in comparison to some recent work in motor cortex, showing that a monkey may be able to break correlations between the activities of motor cortical neurons, but only after several sessions of coaching and training (Oby et al. PNAS 2019). Even then, it seemed like the monkey was not fully breaking correlations but rather pushing existing correlations harder to succeed at the virtual task (a brain-computer interface with perturbed control).

      Weaknesses:

      I found the analysis to be reasonably well considered and relatively thorough. However, I do have a few suggestions that I think may elevate the work, should the authors choose to pursue them.

      First, I find myself wondering about the physical healing process from the tendon transfer surgery and how it might contribute to the learning. Specifically, how long does it take for the tendons to heal and bear forces? If this itself takes a few months, it would be nice to see some discussion of this.

      Second, I see that there are some changes in the muscle loadings for each synergy over the days, though they are relatively small. The authors mention that the cosine distances are very small for the conserved synergies compared to distances across synergies, but it would be good to get a sense for how variable this measure is within synergy. For example, what is the cosine similarity for a conserved synergy across different pre-surgery days? This might help inform whether the changes post-surgery are within a normal variation or whether they reflect important changes in how the muscles are being used over time.

      Last, and maybe most difficult (and possibly out of scope for this work): I would have ideally liked to see some theoretical modeling of the biomechanics so I could more easily understand what the tendon transfer did or how specific synergies affect hand kinematics before and after the surgery. Especially given that the synergies remained consistent, such an analysis could be highly instructive for a reader or to suggest future perturbations to further probe the effects of tendon transfer on long-term learning.

    5. Author response:

      Thank you for the thorough assessment and insightful reviews of our manuscript, "Multi-timescale neural adaptation underlying long-term musculoskeletal reorganization." We are very encouraged by the positive evaluation – particularly the recognition of the study as "important" with "solid" evidence – and we appreciate the constructive feedback provided in the public reviews.

      As requested, we would like to provide this provisional author response to accompany the first version of the Reviewed Preprint. While we plan to provide a detailed point-by-point response upon submission of the revised manuscript, this email outlines our overall revision plan based on the public reviews.

      We found the reviewers' comments to be extremely helpful and largely aligned with our own assessment of areas for clarification and strengthening. We plan a full revision that will address all points raised.

      Regarding Interpretations and Clarity:

      Several comments focused on clarifying key interpretations. We agree with these suggestions and have already incorporated significant textual revisions into the manuscript to:

      More explicitly articulate the proposed multi-timescale model that reconciles the smooth behavioral recovery with the abrupt neural shifts (addressing a core point from R1).

      Refine the interpretation of the compensatory tenodesis strategy, clarifying the distinct neural implementations observed in each monkey and the crucial role of temporal re-timing versus amplitude scaling (addressing points from R1 and R2).

      Correct our interpretation regarding the apparent differences in the "arms race" phenomenon, framing it more parsimoniously in terms of observational windows and individual adaptation rates (addressing R1).

      Ensure consistent and unambiguous terminology (e.g., using "activation profiles") throughout the text and figure captions (addressing R1).

      Carefully adjust language to distinguish between direct empirical findings and interpretations regarding concepts like energetic cost and the drivers of adaptation (addressing R2).

      Explicitly address the potential confound of physical tendon healing, clarifying in the Methods and Discussion why our surgical technique allows us to interpret the findings primarily in terms of neural learning (addressing R3).

      Regarding New Analyses and Data Presentation:

      The reviewers also provided excellent suggestions for new analyses to enhance the rigor and depth of our findings. We plan to undertake these analyses for the full revision, including:

      Adding measures of trial-to-trial variability (e.g., SEM envelopes) and time-lag analysis to our cross-correlation results (addressing R1).

      Performing a point-by-point statistical comparison to better characterize the subtle differences between pre-surgery and final recovered synergy profiles (addressing R1).

      Formally quantifying the baseline behavioral variability between the monkeys (addressing R1).

      Creating a new kinematic plot visualizing the refinement of the tenodesis skill over time (addressing R1).

      Establishing a baseline for normal day-to-day synergy variability by analyzing pre-surgery data (addressing R3).

      Incorporating additional behavioral/kinematic data (pull times and grasp aperture) into Figure 5 to provide a clearer link between neural changes and functional recovery (addressing R2).

      We have also noted the reviewers' suggestions regarding figure clarity and plan improvements where possible. We have already addressed some specific recommendations (e.g., elaborating captions for Figs 6 & 7, adding a supplementary table for muscle acronyms).

      We plan to address the 'Recommendations for the authors' thoroughly during the preparation of the revised manuscript. We are very grateful for all these recommendations, as we are confident they will significantly improve the quality, clarity, and impact of our work. We hope that these comprehensive revisions might also strengthen the final eLife assessment.

    1. eLife Assessment

      The authors have performed a potentially valuable new kind of analysis in connectomics, mapping to an interesting developmental problem of synaptic input to sensory neurons. While the analysis itself is solid, the authors have drawn broader conclusions than are directly supported by the presented data. With more measured claims and greater clarity and explanations for the analysis, the study could potentially become more convincing.

    2. Reviewer #1 (Public review):

      Summary:

      The authors analyse electron microscopy data of the nociceptive circuit in fly larvae at two developmental stages. They look for ways in which the connectivity of the circuit differs between these two stages, when neurons grow by a factor of about 5. They find that average synaptic weights do not change significantly, and that the density of synaptic inputs onto a dendrite is also unchanged despite the extreme change in size. Further, they find that synaptic weights become less variable and that synapses between pairs of neurons do not become more correlated over development. The second of these findings is evidence against many known long-term synaptic plasticity mechanisms having a significant effect on this circuit.<br /> They combine their first result with theoretical modelling to show that invariances in weight and density preserve neuronal responses despite scaling, and conclude that this is the mechanism by which the circuit can maintain useful function throughout development.

      Strengths:

      The paper carefully analyses a rich dataset of electron microscopy data and clearly highlights how the data support the authors' findings and not obvious alternative hypotheses. The overall finding, that this particular circuit can maintain stable responses using a local conservation of synaptic inputs, is quite striking.

      Weaknesses:

      The main weakness of this paper is in its argument that such a mechanism of input conservation might be a general developmental rule. The vast majority of literature on spine density in mammals finds that spine density increases early in development before falling again (Bourgeois & Rakic, J Neurosci 1993; Petanjek at el, PNAS 2011; Wildenberg et al, Nat Comms 2023). I find the analyses in this manuscript convincing, but the authors should more clearly highlight that this mechanism might be specific to insect nociceptive circuits. A further minor weakness is the fact that only staging data is available, where different individuals are imaged at different developmental stages. This is unavoidable and acknowledged in the manuscript, but it makes it harder to draw clear conclusions about plasticity mechanisms and specific changes in synaptic weight distributions.

    3. Reviewer #2 (Public review):

      Summary:

      The authors utilize large volume electron microscopy ("connectomics") data to address how circuits remain stable during development. They focus on the development of the Drosophila nociceptive circuit between larval stages L1 and L3. Their analyses focus on changes to pre- and post-synaptic circuit partners (i.e., pre-synaptic axons and post-synaptic dendrites) and conduct a thorough analysis of eliminating likely changes to both that could balance circuits. Ultimately, they find that the change in axonal growth (i.e, cable length) is mismatched with dendritic growth, but that this is balanced by an increase in the synapse density of pre-synaptic axons.

      Strengths:

      The authors used connectomics, the gold standard for neural circuit tracing, to conduct their analyses, and thus their results are strongly supported by the quality of the data. They carefully eliminated several models for how pre- and post-synaptic changes could co-develop to preserve circuit stability until they identified a major driver in changes in the timing of axon development relative to dendritic development. I also admired their willingness to be transparent about the limitations of their studies, including a lack of analyses of changes to inhibitory inputs and a lack of dynamics in their data. Overall, it's difficult to argue their results are wrong, but they may be incomplete. That said, it's difficult to account for every variable, and they covered the more salient topics, and it's my opinion that this is an important contribution that moves the field forward while also being careful to note its limitations that could and should motivate future work.

      Weaknesses:

      I identified a few weaknesses that could benefit from revisions:

      (1) I found parts of the text confusing, verging on misleading, specifically as it relates to other species. For example, in Line 93, the authors state that they have shown that synapses per unit dendrite length remain remarkably constant across species and brain regions. This was mentioned throughout the manuscript, and it wasn't clear to me whether this was referring to across development or in adults. If over-development, this contrasts with other recently published work of our own comparing synapse densities in the developing mouse and rhesus macaque. Whether they are different or the same is equally interesting and should be discussed more clearly. Related to this, it's not clear that mammalian circuits over development remain stable. For example, our work shows that the ratio of excitatory and inhibitory synapses changes quite a lot in developing mice and primates.

      (2) I was not convinced by the use of axon-dendritic cable overlap. While axons and dendrites certainly need to be close together to make a synapse, I don't understand why this predicts they will connect. In connectomic data, axons pass by hundreds if not thousands of potential post-synaptic partners without making a synapse. Ultimately, the authors' data on changes in axon cable length between L1 and L3 would predict more overlap, but I found the use of overlap confusing and unnecessary, relative to the concreteness of their other analyses. I would suggest removing this from their analyses or providing a stronger argument for how overlap predicts connectivity.

      (3) Figure 7. For non-computational neuroscientists, I think it would be tremendously helpful to include a table that outlines the metrics you used. The text states you constrained these models with your EM data, but it would be helpful to summarize the range of numerical data you used for each parameter.

      (4) The most important finding to me was the asymmetry between axon and dendrite development. Perhaps beyond the scope of this work, it raises the question of whether there are privileged axons that uniquely increase their synapse density. Figure 5D alludes to this, where the fold change in cable length is not proportional to the change in synapse density. Could it be that over development, specific inputs become dominant while others prune their synapses, resulting in an overall balanced circuit, but dominance of specific partners changes? Either answer (i.e., yes, there are privileged circuits that emerge from L1 to L3, or no) would be very interesting and greatly elevate the significance of this work.

      (5) Related to my comment #1, can the authors comment on whether these changes are unique to Drosophila nociceptive circuits? Do all circuits remain balanced over development in flies? Finally, could you clarify why L1 to L3 was chosen?

    4. Reviewer #3 (Public review):

      Summary:

      Fritz et al. investigate the changes in synaptic connectivity between two different life stages of the Drosophila larva, L1 and L3. They focus on 3 types of nociceptive mechanosensory neurons and their connecting 6 downstream interneurons. Connectomic analysis reveals that connectivity and dendritic density are stable across development; however, axonal density, axodendritic overlap, and the number of synapses increase. Finally, using a modeling approach, they demonstrate that this conservation of most features enables stable output across life stages.

      Strengths:

      The authors analyse two different connectomes from fly larvae in two different life stages. By now, there are only very few such samples available; thus, this is a novel approach and will be helpful to guide further comparative connectomic studies in the future.

      Weaknesses:

      The authors analyze only a minimal circuit with 9 different cell types on each hemisphere; thus, their findings might be specialised for this specific nociceptive sensory to interneuron peripheral circuit. Also, more animals might need to be analyzed in different life stages to generalize these findings.

    1. eLife Assessment

      This paper contains valuable ideas for methodology concerned with the identification of genes associated with disease prognosis in a broad range of cancers. However, there are concerns that the statistical properties of MEMORY are incompletely investigated and described. Further, more precise details about the implementation of the method would increase the replicability of the findings by other researchers.

    2. Reviewer #1 (Public review):

      Summary:

      The authors propose a new technique which they name "Multi-gradient Permutation Survival Analysis (MEMORY)" that they use to identify "Genes Steadily Associated with Prognosis (GEARs)" using RNA-seq data from the TCGA database. The contribution of this method is one of the key stated aims of the paper. The majority of the paper focuses on various downstream analyses that make use of the specific GEARs identified by MEMORY to derive biological insights, with a particular focus on lung adenocarcinoma (LUAD) and breast invasive carcinoma (BRCA) which are stated to be representative of other cancers and are observed to have enriched mitosis and immune signatures, respectively. Through the lens of these cancers, these signatures are the focus of significant investigation in the paper.

      Strengths:

      The approach for MEMORY is well-defined and clearly presented, albeit briefly. This affords statisticians and bioinformaticians the ability to effectively scrutinize the proposed methodology and may lead to further advancements in this field. The scientific aspects of the paper (e.g., the results based on the use of MEMORY and the downstream bioinformatics workflows) are conveyed effectively and in a way that is digestible to an individual that is not deeply steeped in the cancer biology field.

      Weaknesses:

      Comparatively little of the paper is devoted to the justification of MEMORY (i.e., the authors' method) for identification of genes that are important broadly for the understanding of cancer. The authors' approach is explained in the methods section of the paper, but no comparison or reference is made to any other methods that have been developed for similar purposes, and no results are shown to illustrate the robustness of the proposed method (e.g., is it sensitive to subtle changes in how it is implemented).

      For example, in the first part of the MEMORY algorithm, gene expression values are dichotomized at the sample median, and a log-rank test is performed. This would seemingly result in an unnecessary loss of information for detecting an association between gene expression and survival. Moreover, while dichotomizing gene expressions at the median is optimal from an information theory perspective (i.e., it creates equally sized groups), there is no reason to believe that median-dichotomization is correct vis-à-vis the relationship between gene expression and survival. If a gene really matters and expression only differentiates survival more towards the tail of the empirical gene expression distribution, median-dichotomization could dramatically lower power to detect group-wise differences. Notwithstanding this point, the reviewer acknowledges that dichotomization offers a straightforward approach to model gene expression and is widely used. This approach is nonetheless an example of a limitation of the current version of MEMORY that could be addressed to improve the methodology.

      If I understand correctly, for each cancer the authors propose to search for the smallest subsample size (i.e., the smallest value of k_{j}) were there is at least one gene with a survival analysis p-value <0.05 for each of the 1000 sampled datasets. Then, any gene with a p-value <0.05 in 80% of the 1000 sampled datasets would be called a GEAR for that cancer. The 80% value here is arbitrary but that is a minor point. I acknowledge that something must be chosen.

      Presumably the gene with the largest effect for the cancer will define the value of K_{j} and, if the effect is large, this may result in other genes with smaller effects not being defined as a GEAR for that cancer by virtue of the 80% threshold. Thus, a gene being a GEAR is related to the strength of association for other genes in addition to its own strength of association. One could imagine that a gene that has a small-to-moderate effect consistently across many cancers may not show up as GEAR in any of them (if there are [potentially different] genes with more substantive effects for those cancers). Is this desirable?

      The term "steadily associated" implies that a signal holds up across subsample gradients. Effectively this makes the subsampling a type of indirect adjustment to ensure the evidence of association is strong enough. How well this procedure performs in repeated use (i.e., as a statistical procedure) is not clear.

      Assuredly subsampling sets the bar higher than requiring a nominal p-value to be beneath the 0.05 threshold based on analysis of the full data set. The author's note that the MEMORY has several methodological limitations, "chief among them is the need for rigorous, large-scale multiple-testing adjustment before any GEAR list can be considered clinically actionable." The reviewer agrees and would add that it may be difficult to address this limitation within the author's current framework. Moreover, should the author's method be used before such corrections are available given their statement? Perhaps clarification of what it means to be clinically actionable could help here. If a researcher uses MEMORY to screen for GEARs based on the current methodology, what do the authors recommend be done to select a subset of GEARs worthy of additional research/investment?

    3. Reviewer #2 (Public review):

      Summary:

      The authors are trying to come up with a list of genes (GEAR genes) that are consistently associated with cancer patient survival based on TCGA database. A method named "Multi-gradient Permutation Survival Analysis" was created based on bootstrapping and gradually increasing the sample size of the analysis. Only the genes with consistent performance in this analysis process are chosen as potential candidates for further analyses.

      Strengths:

      The authors describe in details their proposed method and the list of the chosen genes from the analysis. Scientific meaning and potential values of their findings are discussed in the context of published results in this field.

      Weaknesses:

      Some steps of the proposed method (especially the definition survival analysis similarity (SAS) need further clarification or details since it would be difficult if anyone tries to reproduce the results.

      If the authors can improve the clarity of the manuscript, including the proposed method and there is no major mistake there, the proposed approach can be applied to other diseases (assuming TCGA type of data is available for them) to identify potential gene lists, based on which drug screening can be performed to identify potential target for development.

    4. Reviewer #4 (Public review):

      Thank you to the authors for their detailed responses and changes in relation to my questions. They have addressed all my concerns around methodological and inference clarity. I would still recommend against the use of feature/pathway selection techniques where there is no way of applying formal error control. I am pleased to read, however, that the authors are planning to develop this in future work. My edited review reflects these changes:

      The authors apply what I gather is a novel methodology titled "Multi-gradient Permutation Survival Analysis" to identify genes that are robustly associated with prognosis ("GEARs") using tumour expression data from 15 cancer types available in the TCGA. The resulting lists of GEARs are then interrogated for biological insights using a range of techniques including connectivity and gene enrichment analysis.

      I reviewed this paper primarily from a statistical perspective. Evidently an impressive amount of work has been conducted, concisely summarised, and great effort has been undertaken to add layers of insight to the findings. I am no stranger to what an undertaking this would have been. My primary concern, however, is that the novel statistical procedure proposed, and applied to identify the gene lists, as far as I can tell offers no statistical error control nor quantification. Consequently we have no sense what proportion of the highlighted GEAR genes and networks are likely to just be noise.

      Major comments:

      The main methodology used to identify the GEAR genes, "Multi-gradient Permutation Survival Analysis" does not formally account for multiple testing and offers no formal error control. Meaning we are left without knowing what the family wise (aka type 1) error rate is among the GEAR lists, nor the false discovery rate. I appreciate the emphasis on reproducibility, but I would generally recommend against the use of any feature selection methodology which does not provide error quantification because otherwise we do not know if we are encouraging our colleagues and/or readers to put resource into lists of genes that contain more noise than not. I am glad though and appreciative that the authors intend to develop this in future work.

      The authors make a good point that, despite lack of validation in an external independent dataset, it is still compelling work given the functional characterisation and literature validation. I am pleased though that the authors agree validation in an independent dataset is an important next step, and plan to do so in future work.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors propose a new technique which they name "Multi-gradient Permutation Survival Analysis (MEMORY)" that they use to identify "Genes Steadily Associated with Prognosis (GEARs)" using RNA-seq data from the TCGA database. The contribution of this method is one of the key stated aims of the paper. The vast majority of the paper focuses on various downstream analyses that make use of the specific GEARs identified by MEMORY to derive biological insights, with a particular focus on lung adenocarcinoma (LUAD) and breast invasive carcinoma (BRCA) which are stated to be representative of other cancers and are observed to have enriched mitosis and immune signatures, respectively. Through the lens of these cancers, these signatures are the focus of significant investigation in the paper.

      Strengths:

      The approach for MEMORY is well-defined and clearly presented, albeit briefly. This affords statisticians and bioinformaticians the ability to effectively scrutinize the proposed methodology and may lead to further advancements in this field.

      The scientific aspects of the paper (e.g., the results based on the use of MEMORY and the downstream bioinformatics workflows) are conveyed effectively and in a way that is digestible to an individual who is not deeply steeped in the cancer biology field.

      Weaknesses:

      I was surprised that comparatively little of the paper is devoted to the justification of MEMORY (i.e., the authors' method) for the identification of genes that are important broadly for the understanding of cancer. The authors' approach is explained in the methods section of the paper, but no rationale is given for why certain aspects of the method are defined as they are. Moreover, no comparison or reference is made to any other methods that have been developed for similar purposes and no results are shown to illustrate the robustness of the proposed method (e.g., is it sensitive to subtle changes in how it is implemented).

      For example, in the first part of the MEMORY algorithm, gene expression values are dichotomized at the sample median and a log-rank test is performed. This would seemingly result in an unnecessary loss of information for detecting an association between gene expression and survival. Moreover, while dichotomizing at the median is optimal from an information theory perspective (i.e., it creates equally sized groups), there is no reason to believe that median-dichotomization is correct vis-à-vis the relationship between gene expression and survival. If a gene really matters and expression only differentiates survival more towards the tail of the empirical gene expression distribution, median-dichotomization could dramatically lower the power to detect group-wise differences.

      Thanks for these valuable comments!! We understand the reviewer’s concern regarding the potential loss of information caused by median-based dichotomization. In this study, we adopted the median as the cut-off value to stratify gene expression levels primarily for the purpose of data balancing and computational simplicity. This approach ensures approximately equal group sizes, which is particularly beneficial in the context of limited sample sizes and repeated sampling. While we acknowledge that this method may discard certain expression nuances, it remains a widely used strategy in survival analysis. To further evaluate and potentially enhance sensitivity, alternative strategies such as percentile-based cutoffs or survival models using continuous expression values (e.g., Cox regression) may be explored in future optimization of the MEMORY pipeline. Nevertheless, we believe that this dichotomization approach offers a straightforward and effective solution for the initial screening of survival-associated genes. We have now included this explanation in the revised manuscript (Lines 391–393).

      Specifically, the authors' rationale for translating the Significant Probability Matrix into a set of GEARs warrants some discussion in the paper. If I understand correctly, for each cancer the authors propose to search for the smallest sample size (i.e., the smallest value of k_{j}) were there is at least one gene with a survival analysis p-value <0.05 for each of the 1000 sampled datasets. I base my understanding on the statement "We defined the sampling size k_{j} reached saturation when the max value of column j was equal to 1 in a significant-probability matrix. The least value of k_{j} was selected". Then, any gene with a p-value <0.05 in 80% of the 1000 sampled datasets would be called a GEAR for that cancer. The 80% value here seems arbitrary but that is a minor point. I acknowledge that something must be chosen. More importantly, do the authors believe this logic will work effectively in general? Presumably, the gene with the largest effect for a cancer will define the value of K_{j}, and, if the effect is large, this may result in other genes with smaller effects not being selected for that cancer by virtue of the 80% threshold. One could imagine that a gene that has a small-tomoderate effect consistently across many cancers may not show up as a gear broadly if there are genes with more substantive effects for most of the cancers investigated. I am taking the term "Steadily Associated" very literally here as I've constructed a hypothetical where the association is consistent across cancers but not extremely strong. If by "Steadily Associated" the authors really mean "Relatively Large Association", my argument would fall apart but then the definition of a GEAR would perhaps be suboptimal. In this latter case, the proposed approach seems like an indirect way to ensure there is a reasonable effect size for a gene's expression on survival.

      Thank you for the comment and we apologize for the confusion! 𝐴<sub>𝑖𝑗</sub> refers to the value of gene i under gradient j in the significant-probability matrix, primarily used to quantify the statistical probability of association with patient survival for ranking purposes. We believe that GEARs are among the top-ranked genes, but there is no established metric to define the optimal threshold. An 80% threshold is previously employed as an empirical standard in studies related to survival estimates [1]. In addition, we acknowledge that the determination of the saturation point 𝑘<sub>𝑗</sub> is influenced by the earliest point at which any gene achieves consistent significance across 1000 permutations. We recognize that this may lead to the under representation of genes with moderate but consistent effects, especially in the presence of highly significant genes that dominate the statistical landscape. We therefore empirically used 𝐴<sub>𝑖𝑗</sub> > 0.8 the threshold to distinguish between GEARs and non-GEARs. Of course, this parameter variation may indeed result in the loss of some GEARs or the inclusion of non-GEARs. We also agree that future studies could investigate alternative metrics and more refined thresholds to improve the application of GEARs.

      Regarding the term ‘Steadily Associated’, we define GEARs based on statistical robustness across subsampled survival analyses within individual cancer types, rather than cross-cancer consistency or pan-cancer moderate effects. Therefore, our operational definition of “steadiness” emphasizes within-cancer reproducibility across sampling gradients, which does not necessarily exclude high-effect-size genes. Nonetheless, we agree that future extensions of MEMORY could incorporate cross-cancer consistency metrics to capture genes with smaller but reproducible pan-cancer effects.

      The paper contains numerous post-hoc hypothesis tests, statements regarding detected associations and correlations, and statements regarding statistically significant findings based on analyses that would naturally only be conducted in light of positive results from analyses upstream in the overall workflow. Due to the number of statistical tests performed and the fact that the tests are sometimes performed using data-driven subgroups (e.g., the mitosis subgroups), it is highly likely that some of the findings in the work will not be replicable. Of course, this is exploratory science, and is to be expected that some findings won't replicate (the authors even call for further research into key findings). Nonetheless, I would encourage the authors to focus on the quantification of evidence regarding associations or claims (i.e., presenting effect estimates and uncertainty intervals), but to avoid the use of the term statistical significance owing to there being no clear plan to control type I error rates in any systematic way across the diverse analyses there were performed.

      Thank you for the comment! We agree that rigorous control of type-I error is essential once a definitive list of prognostic genes is declared. The current implementation of MEMORY, however, is deliberately positioned as an exploratory screening tool: each gene is evaluated across 10 sampling gradients and 1,000 resamples per gradient, and the only quantity carried forward is its reproducibility probability (𝐴<sub>𝑖𝑗</sub>).

      Because these probabilities are derived from aggregate “votes” rather than single-pass P-values, the influence of any one unadjusted test is inherently diluted. In another words, whether or not a per-iteration BH adjustment is applied does not materially affect the ranking of genes by reproducibility, which is the key output at this stage. However, we also recognize that a clinically actionable GEARs catalogue will require extensive, large-scale multiple-testing adjustments. Accordingly, future versions of MEMORY will embed a dedicated false-positive control framework tailored to the final GEARs list before any translational application. We have added this point in the ‘Discussion’ in the revised manuscript (Lines 350-359).

      A prespecified analysis plan with hypotheses to be tested (to the extent this was already produced) and a document that defines the complete scope of the scientific endeavor (beyond that which is included in the paper) would strengthen the contribution by providing further context on the totality of the substantial work that has been done. For example, the focus on LUAD and BRCA due to their representativeness could be supplemented by additional information on other cancers that may have been investigated similarly but where results were not presented due to lack of space.

      We thank the reviewer for requesting greater clarity on the analytic workflow. The MEMORY pipeline was fully specified before any results were examined and is described in ‘Methods’ (Lines 386–407). By contrast, the pathway-enrichment and downstream network/mutation analyses were deliberately exploratory: their exact content necessarily depended on which functional categories emerged from the unbiased GEAR screen.

      Our screen revealed a pronounced enrichment of mitotic signatures in LUAD and immune signatures in BRCA.

      We then chose these two cancer types for deeper “case-study” analysis because they contained the largest sample sizes among all cancers showing mitotic- or immune-dominated GEAR profiles, and provided the greatest statistical power for follow-up investigations. We have added this explanation into the revised manuscript (Line 163, 219-220).

      Reviewer #2 (Public review):

      Summary:

      The authors are trying to come up with a list of genes (GEAR genes) that are consistently associated with cancer patient survival based on TCGA database. A method named "Multi-gradient Permutation Survival Analysis" was created based on bootstrapping and gradually increasing the sample size of the analysis. Only the genes with consistent performance in this analysis process are chosen as potential candidates for further analyses.

      Strengths:

      The authors describe in detail their proposed method and the list of the chosen genes from the analysis. The scientific meaning and potential values of their findings are discussed in the context of published results in this field.

      Weaknesses:

      Some steps of the proposed method (especially the definition of survival analysis similarity (SAS) need further clarification or details since it would be difficult if anyone tries to reproduce the results. In addition, the multiplicity (a large number of p-values are generated) needs to be discussed and/or the potential inflation of false findings needs to be part of the manuscript.

      Thank you for the reviewer’s insightful comments. Accordingly, in the revised manuscript, we have provided a more detailed explanation of the definition and calculation of Survival-Analysis Similarity (SAS) to ensure methodological clarity and reproducibility (Lines 411-428); and the full code is now publicly available on GitHub (https://github.com/XinleiCai/MEMORY). We have also expanded the ‘Discussion’ to clarify our position on false-positive control: future releases of MEMORY will incorporate a dedicated framework to control false discoveries in the final GEARs catalogue, where itself will be subjected to rigorous, large-scale multiple-testing adjustment.

      If the authors can improve the clarity of the proposed method and there is no major mistake there, the proposed approach can be applied to other diseases (assuming TCGA type of data is available for them) to identify potential gene lists, based on which drug screening can be performed to identify potential target for development.

      Thank you for the suggestion. All source code has now been made publicly available on GitHub for reference and reuse. We agree that the GEAR lists produced by MEMORY hold considerable promise for drugscreening and target-validation efforts, and the framework could be applied to any disease with TCGA-type data. Of course, we also notice that the current GEAR catalogue should first undergo rigorous, large-scale multipletesting correction to further improve its precision before broader deployment.

      Reviewer #3 (Public review):

      Summary:

      The authors describe a valuable method to find gene sets that may correlate with a patient's survival. This method employs iterative tests of significance across randomised samples with a range of proportions of the original dataset. Those genes that show significance across a range of samples are chosen. Based on these gene sets, hub genes are determined from similarity scores.

      Strengths:

      MEMORY allows them to assess the correlation between a gene and patient prognosis using any available transcriptomic dataset. They present several follow-on analyses and compare the gene sets found to previous studies.

      Weaknesses:

      Unfortunately, the authors have not included sufficient details for others to reproduce this work or use the MEMORY algorithm to find future gene sets, nor to take the gene findings presented forward to be validated or used for future hypotheses.

      Thank you for the reviewer’s comments! We apologize for the inconvenience and the lack of details.

      Followed the reviewer’s valuable suggestion, we have now made all source code and relevant scripts publicly available on GitHub to ensure full reproducibility and facilitate future use of the MEMORY algorithm for gene discovery and hypothesis generation.

      Reviewer #4 (Public review):

      The authors apply what I gather is a novel methodology titled "Multi-gradient Permutation Survival Analysis" to identify genes that are robustly associated with prognosis ("GEARs") using tumour expression data from 15 cancer types available in the TCGA. The resulting lists of GEARs are then interrogated for biological insights using a range of techniques including connectivity and gene enrichment analysis.

      I reviewed this paper primarily from a statistical perspective. Evidently, an impressive amount of work has been conducted, and concisely summarised, and great effort has been undertaken to add layers of insight to the findings. I am no stranger to what an undertaking this would have been. My primary concern, however, is that the novel statistical procedure proposed, and applied to identify the gene lists, as far as I can tell offers no statistical error control or quantification. Consequently, we have no sense of what proportion of the highlighted GEAR genes and networks are likely to just be noise.

      Major comments:

      (1) The main methodology used to identify the GEAR genes, "Multi-gradient Permutation Survival Analysis" does not formally account for multiple testing and offers no formal error control. Meaning we are left with no understanding of what the family-wise (aka type 1) error rate is among the GEAR lists, nor the false discovery rate. I would generally recommend against the use of any feature selection methodology that does not provide some form of error quantification and/or control because otherwise we do not know if we are encouraging our colleagues and/or readers to put resources into lists of genes that contain more noise than not. There are numerous statistical techniques available these days that offer error control, including for lists of p-values from arbitrary sets of tests (see expansion on this and some review references below).

      Thank you for your thoughtful and important comment! We fully agree that controlling type I error is critical when identifying gene sets for downstream interpretation or validation. As an exploratory study, our primary aim was to define and screen for GEARs by using the MEMORY framework; however, we acknowledge that the current implementation of MEMORY does not include a formal procedure for error control. Given that MEMORY relies on repeated sampling and counts the frequency of statistically significant p-values, applying standard p-value–based multiple-testing corrections at the individual test level would not meaningfully reduce the false-positive rate in this framework.

      We believe that error control should instead be applied at the level of the final GEAR catalogue. However, we also recognize that conventional correction methods are not directly applicable. In future versions of MEMORY, we plan to incorporate a dedicated and statistically appropriate false-positive control module tailored specifically to the aggregated outputs of the pipeline. We have clarified this point explicitly in the revised manuscript. (Lines 350-359)

      (2) Similarly, no formal significance measure was used to determine which of the strongest "SAS" connections to include as edges in the "Core Survival Network".

      We agree that the edges in the Core Survival Network (CSN) were selected based on the top-ranked SAS values rather than formal statistical thresholds. This was a deliberate design choice, as the CSN was intended as a heuristic similarity network to prioritize genes for downstream molecular classification and biological exploration, not for formal inference. To address potential concerns, we have clarified this intent in the revised manuscript, and we now explicitly state that the network construction was based on empirical ranking rather than statistical significance (Lines 422-425).

      (3) There is, as far as I could tell, no validation of any identified gene lists using an independent dataset external to the presently analysed TCGA data.

      Thank you for the comment. We acknowledge that no independent external dataset was used in the present study to validate the GEARs lists. However, the primary aim of this work was to systematically identify and characterize genes with robust prognostic associations across cancer types using the MEMORY framework. To assess the biological relevance of the resulting GEARs, we conducted extensive downstream analyses including functional enrichment, mutation profiling, immune infiltration comparison, and drug-response correlation. These analyses were performed across multiple cancer types and further supported by a wide range of published literature.

      We believe that this combination of functional characterization and literature validation provides strong initial support for the robustness and relevance of the GEARs lists. Nonetheless, we agree that validation in independent datasets is an important next step, and we plan to carry this out in future work to further strengthen the clinical application of MEMORY.

      (4) There are quite a few places in the methods section where descriptions were not clear (e.g. elements of matrices referred to without defining what the columns and rows are), and I think it would be quite challenging to re-produce some aspects of the procedures as currently described (more detailed notes below).

      We apologize for the confusion. In the revised manuscript, we have provided a clearer and more detailed description of the computational workflow of MEMORY to improve clarity and reproducibility.

      (5) There is a general lack of statistical inference offered. For example, throughout the gene enrichment section of the results, I never saw it stated whether the pathways highlighted are enriched to a significant degree or not.

      We apologize for not clearly stating this information in the original manuscript. In the revised manuscript, we have updated the figure legend to explicitly report the statistical significance of the enriched pathways (Line 870, 877, 879-880).

      Reviewer #1 (Recommendations for the authors):

      Overall, the paper reads well but there are numerous small grammatical errors that at times cost me non-trivial amounts of time to understand the authors' key messages.

      We apologize for the grammatical errors that hindered clarity. In response, we have thoroughly revised the manuscript for grammar, spelling, and overall language quality.

      Reviewer #2 (Recommendations for the authors):

      Major comments:

      (1) Line 427: survival analysis similarity (SAS) definition. Any reference on this definition and why it is defined this way? Can the SAS value be negative? Based on line 429 definition, if A and B are exactly the same, SAS ~ 1; completely opposite, SAS =0; otherwise, SAS could be any value, positive or negative. So it is hard to tell what SAS is measuring. It is important to make sure SAS can measure the similarity in a systematic and consistent way since it is used as input in the following network analysis.

      We apologize for the confusion caused by the ambiguity in the original SAS formula. The SAS metric was inspired by the Jaccard index, but we modified the denominator to increase contrast between gene pairs. Specifically, the numerator counts the number of permutations in which both genes are simultaneously significant (i.e., both equal to 1), while the denominator is the sum of the total number of significant events for each gene minus twice the shared significant count. An additional +1 term was included in the denominator to avoid division by zero. This formulation ensures that SAS is always non-negative and bounded between 0 and 1, with higher values indicating greater similarity. We have clarified this definition and updated the formula in the revised manuscript (Lines 405-425). 

      (2) For the method with high dimensional data, multiplicity adjustment needs to be discussed, but it is missing in the manuscript. A 5% p-value cutoff was used across the paper, which seems to be too liberal in this type of analysis. The suggestion is to either use a lower cutoff value or use False Discovery Rate (FDR) control methods for such adjustment. This will reduce the length of the gene list and may help with a more focused discussion.

      We appreciate the reviewer’s suggestion regarding multiplicity. MEMORY is intentionally positioned as an exploratory screen: each gene is tested across 10 sampling gradients and 1,000 resamples, and only its reproducibility probability (𝐴<sub>𝑖𝑗</sub>) is retained. Because this metric is an aggregate of 1,000 “votes” the influence of any single unadjusted P-value is already strongly diluted; adding a per-iteration BH/FDR step therefore has negligible impact on the reproducibility ranking that drives all downstream analyses.

      That said, we recognize that a clinically actionable GEARs catalogue must undergo formal, large-scale multipletesting correction. Future releases of MEMORY will incorporate an error control module applied to the consolidated GEAR list before any translational use. We have now added a statement to this effect in the revised manuscript (Lines 350-359).

      (3) To allow reproducibility from others, please include as many details as possible (software, parameters, modules etc.) for the analyses performed in different steps.

      All source codes are now publically available on GitHub. We have also added the GitHub address in the section Online Content.

      Minor comments or queries:

      (4) The manuscript needs to be polished to fix grammar, incomplete sentences, and missing figures.

      Thank you for the suggestion. We have thoroughly proofread the manuscript to correct grammar, complete any unfinished sentences, and restore or renumber all missing figure panels. All figures are now properly referenced in the text.

      (5) Line 131: "survival probability of certain genes" seems to be miss-leading. Are you talking about its probability of associating with survival (or prognosis)?

      Sorry for the oversight. What we mean is the probability that a gene is found to be significantly associated with survival across the 1,000 resamples. We have revised the statement to “significant probability of certain genes” (Line 102).

      (6) Lines 132, 133: "remained consistent": the score just needs to stay > 0.8 as the sample increases, or the score needs to be monotonously non-decreasing?

      We mean the score stay above 0.8. We understand “remained consistent” is confusing and now revised it to “remained above 0.8”.

      (7) Lines 168-170 how can supplementary figure 5A-K show "a certain degree of correlation with cancer stages"?

      Sorry for the confusion! We have now revised Supplementary Figure 5A–K to support the visual impression with formal statistics. For each cancer type, we built a contingency table of AJCC stage (I–IV) versus hub-gene subgroup (Low, Mid, High) and applied Pearson’s 𝑥<sup>2</sup> test (Monte-Carlo approximation, 10⁵ replicates when any expected cell count < 5). The 𝑥<sup>2</sup> statistic and p-value are printed beneath every panel; eight of the eleven cancers show a significant association (p-value < 0.05), while LUSC, THCA and PAAD do not.We have replaced the vague phrase “a certain degree of correlation” with this explicit statistical statement in the revised manuscript (Lines 141-143).

      (8) Lines 172-174: since the hub genes are a subset of GEAR genes through CSN construction, it is not a surprise of the consistency. any explanation about PAAD that is shown only in GOEA with GEARs but not with hub genes?

      Thanks for raising this interesting point! In PAAD the Core Survival Network is unusually diffuse: the top-ranked SAS edges are distributed broadly rather than converging on a single dense module. Because of this flat topology, the ten highest-degree nodes (our hub set) do not form a tightly interconnected cluster, nor are they collectively enriched in the mitosis-related pathway that dominates the full GEAR list. This might explain that the mitotic enrichment is evident when all PAAD GEARs were analyzed but not when the analysis is confined to the far smaller—and more functionally dispersed—hub-gene subset.

      (9) Lines 191: how the classification was performed? Tool? Cutoff values etc?

      The hub-gene-based molecular classification was performed in R using hierarchical clustering. Briefly, we extracted the 𝑙𝑜𝑔<sub>2</sub>(𝑇𝑃𝑀 +1) expression matrix of hub genes, computed Euclidean distances between samples, and applied Ward’s minimum variance method (hclust, method = "ward.D2"). The resulting dendrogram was then divided into three groups (cutree, k = 3), corresponding to low, mid, and high expression classes. These parameters were selected based on visual inspection of clustering structure across cancer types. We have added this information to the revised ‘Methods’ section (Lines 439-443).

      (10) Lines 210-212: any statistics to support the conclusion? The bar chat of Figure 3B seems to support that all mutations favor ML & MM.

      We agree that formal statistical support is important for interpreting groupwise comparisons. In this case, however, several of the driver events, such as ROS1 and ERBB2, had very small subgroup counts, which violate the assumptions of Pearson’s 𝑥<sup>2</sup> test. While we explored 𝑥<sup>2</sup> and Fisher’s exact tests, the results were unstable due to sparse counts. Therefore, we chose to present these distributions descriptively to illustrate the observed subtype preferences across different driver mutations (Figure 3B). We have revised the manuscript text to clarify this point (Lines 182-188).

      (11) Line 216: should supplementary Figure 6H-J be "6H-I"?

      We apologize for the mistake. We have corrected it in the revised manuscript.

      (12) Line 224: incomplete sentence starting with "To further the functional... ".

      Thanks! We have made the revision and it states now “To further expore the functional implications of these mutations, we enriched them using a pathway system called Nested Systems in Tumors (NeST)”.

      (13) Lines 261-263: it is better to report the median instead of the mean. Use log scale data for analysis or use non-parametric methods due to the long tail of the data.

      Thank you for the very helpful suggestion. In the revised manuscript, we now report the median instead of the mean to better reflect the distribution of the data. In addition, we have applied log-scale transformation where appropriate and replaced the original statistical tests with non-parametric Wilcoxon ranksum tests to account for the long-tailed distribution. These changes have been implemented in both the main text and figure legends (Lines 234–237, Figure 5F).

      (14) Line 430: why based on the first sampling gradient, i.e. k_1 instead of the k_j selected? Or do you mean k_j here?

      Thanks for this question! We deliberately based SAS on the vectors from the first sampling gradient ( 𝑘<sub>1</sub>, ≈ 10 % of the cohort). At this smallest sample size, the binary significance patterns still contain substantial variation, and many genes are not significant in every permutation. Based on this, we think the measure can meaningfully identify gene pairs that behave concordantly throughout the gradient permutation. 

      We have now added a sentence to clarify this in the Methods section (Lines 398–403).

      (15) Need clarification on how the significant survival network was built.

      Thank you for pointing this out. We have now provided a more detailed clarification of how the Survival-Analysis Similarity (SAS) metric was defined and applied in constructing the core survival network (CSN), including the rationale for key parameter choices (Lines 409–430). Additionally, we have made full source code publicly available on GitHub to facilitate transparency and reproducibility (https://github.com/XinleiCai/MEMORY).

      (16) Line 433: what defines the "significant genes" here? Are they the same as GEAR genes? And what are total genes, all the genes?

      We apologize for the inconsistency in terminology, which may have caused confusion. In this context,

      “significant genes” refers specifically to the GEARs (Genes Steadily Associated with Prognosis). The SAS values were calculated between each GEAR and all genes. We have revised the manuscript to clarify this by consistently using the term “GEARs” throughout.

      (17) Line 433: more detail on how SAS values were used will be helpful. For example, were pairwise SAS values fed into Cytoscape as an additional data attribute (on top of what is available in TCGA) or as the only data attribute for network building?

      The SAS values were used as the sole metric for defining connections (edges) between genes in the construction of the core survival network (CSN). Specifically, we calculated pairwise SAS values between each GEAR and all other genes, then selected the top 1,000 gene pairs with the highest SAS scores to construct the network. No additional data attributes from TCGA (such as expression levels or clinical features) were used in this step. These selected pairs were imported into Cytoscape solely based on their SAS values to visualize the CSN.

      (18) Line 434: what is "ranking" here, by degree? Is it the same as "nodes with top 10 degrees" at line 436?

      The “ranking” refers specifically to the SAS values between gene pairs. The top 1,000 ranked SAS values were selected to define the edges used in constructing the Core Survival Network (CSN).

      Once the CSN was built, we calculated the degree (number of connections) for each node (i.e., each gene). The

      “top 10 degrees” mentioned on Line 421 refers to the 10 genes with the highest node degrees in the CSN. These were designated as hub genes for downstream analyses.

      We have clarified this distinction in the revised manuscript (Line 398-403).

      (19) Line 435: was the network built in Cytoscape? Or built with other tool first and then visualized in Cytoscape?

      The network was constructed in R by selecting the top 1,000 gene pairs with the highest SAS values to define the edges. This edge list was then imported into Cytoscape solely for visualization purposes. No network construction or filtering was performed within Cytoscape itself. We have clarified this in the revised ‘Methods’ section (Lines 424-425).

      (20) Line 436: the degree of each note was calculated, what does it mean by "degree" here and is it the same as the number of edges? How does it link to the "higher ranked edges" in Line 165?

      The “degree” of a node refers to the number of edges connected to that node—a standard metric in graph theory used to quantify a node’s centrality or connectivity in the network. It is equivalent to the number of edges a gene shares with others in the CSN.

      The “higher-ranked edges” refer to the top 1,000 gene pairs with the highest SAS values, which we used to construct the Core Survival Network (CSN). The degree for each node was computed within this fixed network, and the top 10 nodes with the highest degree were selected as hub genes. Therefore, the node degree is largely determined by this pre-defined edge set.

      (21) Line 439: does it mean only 1000 SAS values were used or SAS values from 1000 genes, which should come up with 1000 choose 2 pairs (~ half million SAS values).

      We computed the SAS values between each GEAR gene and all other genes, resulting in a large number of pairwise similarity scores. Among these, we selected the top 1,000 gene pairs with the highest SAS values—regardless of how many unique genes were involved—to define the edges in the Core Survival Network (CSN). In another words, the network is constructed from the top 1,000 SAS-ranked gene pairs, not from all possible combinations among 1,000 genes (which would result in nearly half a million pairs). This approach yields a sparse network focused on the strongest co-prognostic relationships.

      We have clarified this in the revised ‘Methods’ section (Lines 409–430).

      (22) Line 496: what tool is used and what are the parameters set for hierarchical clustering if someone would like to reproduce the result?

      The hierarchical clustering was performed in R using the hclust function with Ward's minimum variance method (method = "ward.D2"), based on Euclidean distance computed from the log-transformed expression matrix (𝑙𝑜𝑔<sub>2</sub>(𝑇𝑃𝑀 +1)). Cluster assignment was done using the cutree function with k = 3 to define low, mid, and high expression subgroups. These settings have now been explicitly stated in the revised ‘Methods’ section (Lines 439–443) to facilitate reproducibility.

      (23) Lines 901-909: Figure 4 missing panel C. Current panel C seems to be the panel D in the description.

      Sorry for the oversights and we have now made the correction (Line 893).

      (24) Lines 920-928: Figure 6C: considering a higher bar to define "significant".

      We agree that applying a more stringent cutoff (e.g., p < 0.01) may reduce potential false positives. However, given the exploratory nature of this study, we believe the current threshold remains appropriate for the purpose of hypothesis generation.

      Reviewer #3 (Recommendations for the authors):

      (1) The title says the genes that are "steadily" associated are identified, but what you mean by the word "steadily" is not defined in the manuscript. Perhaps this could mean that they are consistently associated in different analyses, but multiple analyses are not compared.

      In our manuscript, “steadily associated” refers to genes that consistently show significant associations with patient prognosis across multiple sample sizes and repeated resampling within the MEMORY framework (Lines 65–66). Specifically, each gene is evaluated across 10 sampling gradients (from ~10% to 100% of the cohort) with 1,000 permutations at each level. A gene is defined as a GEAR if its probability of being significantly associated with survival remains ≥ 0.8 throughout the whole permutation process. This stability in signal under extensive resampling is what we refer to as “steadily associated.”

      (2) I think the word "gradient" is not appropriately used as it usually indicates a slope or a rate of change. It seems to indicate a step in the algorithm associated with a sampling proportion.

      Thank you for pointing out the potential ambiguity in our use of the term “gradient.” In our study, we used “gradient” to refer to stepwise increases in the sample proportion used for resampling and analysis. We have now revised it to “progressive”.

      (3) Make it clear that the name "GEARs" is introduced in this publication.

      Done.

      (4) Sometimes the document is hard to understand, for example, the sentence, "As the number of samples increases, the survival probability of certain genes gradually approaches 1." It does not appear to be calculating "gene survival probability" but rather a gene's association with patient survival. Or is it that as the algorithm progresses genes are discarded and therefore do have a survival probability? It is not clear.

      What we intended to describe is the probability that a gene is judged significant in the 1,000 resamples at a given sample-size step, that is, its reproducibility probability in the MEMORY framework. We have now revised the description (Lines 101-104).

      (5) The article lacks significant details, like the type of test used to generate p-values. I assume it is the log-rank test from the R survival package. This should be explicitly stated. It is not clear why the survminer R package is required or what function it has. Are the p-values corrected for multiple hypothesis testing at each sampling?

      We apologize for the lack of details. In each sampling iteration, we used the log-rank test (implemented via the survdiff function in the R survival package) to evaluate the prognostic association of individual genes. This information has now been explicitly added to the revised manuscript.

      The survminer package was originally included for visualization purposes, such as plotting illustrative Kaplan– Meier curves. However, since it did not contribute to the core statistical analysis, we have now removed this package from the Methods section to avoid confusion (Lines 386-407).

      As for multiple-testing correction, we did not adjust p-values in each iteration, because the final selection of GEARs is based on the frequency with which a gene is found significant across 1,000 resamples (i.e., its reproducibility probability). Classical FDR corrections at the per-sample level do not meaningfully affect this aggregate metric. That said, we fully acknowledge the importance of multiple-testing control for the final GEARs catalogue. Future versions of the MEMORY framework will incorporate appropriate adjustment procedures at that stage.

      (6) It is not clear what the survival metric is. Is it overall survival (OS) or progression-free survival (PFS), which would be common choices?

      It’s overall survival (OS).

      (7) The treatment of the patients is never considered, nor whether the sequencing was performed pre or posttreatment. The patient's survival will be impacted by the treatment that they receive, and many other factors like commodities, not just the genomics.

      We initially thought there exist no genes significantly associated with patient survival (GEARs) without counting so many different influential factors. This is exactly what motivated us to invent the

      MEMORY. However, this work proves “we were wrong”, and it demonstrates the real power of GEARs in determining patient survival. Of course, we totally agree with the reviewer that incorporating therapy variables and other clinical covariates will further improve the power of MEMORY analyses.

      (8) As a paper that introduces a new analysis method, it should contain some comparison with existing state of the art, or perhaps randomised data.

      Our understanding is --- the MEMORY presents as an exploratory and proof-of-concept framework. Comparison with regular survival analyses seems not reasonable. We have added some discussion in revised manuscript (Lines 350-359).

      (9) In the discussion it reads, "it remains uncertain whether there exists a set of genes steadily associated with cancer prognosis, regardless of sample size and other factors." Of course, there are many other factors that may alter the consistency of important cancer genes, but sample size is not one of them. Sample size merely determines whether your study has sufficient power to detect certain gene effects, it does not effect whether genes are steadily associated with cancer prognosis in different analyses. (Of course, this does depend on what you mean by "steadily".)

      We totally agree with reviewer that sample size itself does not alter a gene’s biological association with prognosis; it only affects the statistical power to detect that association. Because this study is exploratory and we were initially uncertain whether GEARs existed, we first examined the impact of sample-size variation—a dominant yet experimentally tractable source of heterogeneity—before considering other, less controllable factors.

      Reviewer #4 (Recommendations for the authors):

      Other more detailed comments:

      (1) Introduction

      L93: When listing reasons why genes do not replicate across different cohorts / datasets, there is also the simple fact that some could be false positives

      We totally agree that some genes may simply represent false-positive findings apart from biological heterogeneity and technical differences between cohorts. Although the MEMORY framework reduces this risk by requiring high reproducibility across 1,000 resamples and multiple sample-size tiers, it cannot eliminate false positives completely. We have added some discussion and explicitly note that external validation in independent datasets is essential for confirming any GEAR before clinical application.

      (2) Results Section

      L143: Language like "We also identified the most significant GEARs in individual cancer types" I think is potentially misleading since the "GEAR" lists do not have formal statistical significance attached.

      We removed “significant” ad revised it to “top 1” (Line 115).

      L153 onward: The pathway analysis results reported do not include any measures of how statistically significant the enrichment was.

      We have now updated the figure legends to clearly indicate that the displayed pathways represent the top significantly enriched results based on adjusted p-values from GO enrichment analyses (Lines 876-878).

      L168: "A certain degree of correlation with cancer stages (TNM stages) is observed in most cancer types except for COAD, LUSC and PRAD". For statements like this statistical significance should be mentioned in the same sentence or, if these correlations failed to reach significance, that should be explicitly stated.

      In the revised Supplementary Figure 5A–K, we now accompany the visual trends with formal statistical testing. Specifically, for each cancer type, we constructed a contingency table of AJCC stage (I–IV) versus hub-gene subgroup (Low, Mid, High) and applied Pearson’s 𝑥<sup>2</sup> test (using Monte Carlo approximation with 10⁵ replicates if any expected cell count was < 5). The resulting 𝑥<sup>2</sup> statistic and p-value are printed beneath each panel. Of the eleven cancer types analyzed, eight showed statistically significant associations (p < 0.05), while COAD, LUSC, and PRAD did not. Accordingly, we have make the revision in the manuscript (Line 137139).

      L171-176: When mentioning which pathways are enriched among the gene lists, please clarify whether these levels of enrichment are statistically significant or not. If the enrichment is significant, please indicate to what degree, and if not I would not mention.

      We agree that the statistical significance of pathway enrichment should be clearly stated and made the revision throughout the manuscript (Line 869, 875, 877).

      (3) Methods Section

      L406 - 418: I did not really understand, nor see it explained, what is the motivation and value of cycling through 10%, 20% bootstrapped proportions of patients in the "gradient" approach? I did not see this justified, or motivated by any pre-existing statistical methodology/results. I do not follow the benefit compared to just doing one analysis of all available samples, and using the statistical inference we get "for free" from the survival analysis p-values to quantify sampling uncertainty.

      The ten step-wise sample fractions (10 % to 100 %) allow us to transform each gene’s single log-rank P-value into a reproducibility probability: at every fraction we repeat the test 1,000 times and record the proportion of permutations in which the gene is significant. This learning-curve-style resampling not only quantifies how consistently a gene associates with survival under different power conditions but also produces the 0/1 vectors required to compute Survival-Analysis Similarity (SAS) and build the Core Survival Network. A single one-off analysis on the full cohort would yield only one P-value per gene, providing no binary vectors at all—hence no basis for calculating SAS or constructing the network. 

      L417: I assume p < 0.05 in the survival analysis means the nominal p-value, unadjusted for multiple testing. Since we are in the context of many tests please explicitly state if so.

      Yes, p < 0.05 refers to the nominal, unadjusted p-value from each log-rank test within a single permutation. In MEMORY these raw p-values are converted immediately into 0/1 “votes” and aggregated over 1 000 permutations and ten sample-size tiers; only the resulting reproducibility probability (𝐴<sub>𝑖𝑗</sub>) is carried forward. No multiple-testing adjustment is applied at the individual-test level, because a per-iteration FDR or BH step would not materially affect the final 𝐴<sub>𝑖𝑗</sub> ranking. We have revised the manuscript (Line 396)

      L419-426: I did not see defined what the rows are and what the columns are in the "significant-probability matrix". Are rows genes, columns cancer types? Consequently I was not really sure what actually makes a "GEAR". Is it achieving a significance probability of 0.8 across all 15 cancer subtypes? Or in just one of the tumour datasets?

      In the significant-probability matrix, each row represents a gene, and each column corresponds to a sampling gradient (i.e., increasing sample-size tiers from ~10% to 100%) within a single cancer type. The matrix is constructed independently for each cancer.

      GEAR is defined as achieving a significance probability of 0.8 within a single tumor type. Not need to achieve significance probability across all 15 cancer subtypes.

      L426: The significance probability threshold of 0.8 across 1,000 bootstrapped nominal tests --- used to define the GEAR lists --- has, as far as I can tell, no formal justification. Conceptually, the "significance probability" reflects uncertainty in the patients being used (if I follow their procedure correctly), but as mentioned above, a classical p-value is also designed to reflect sampling uncertainty. So why use the bootstrapping at all?

      Moreover, the 0.8 threshold is applied on a per-gene basis, so there is no apparent procedure "built in" to adapt to (and account for) different total numbers of genes being tested. Can the authors quantify the false discovery rate associated with this GEAR selection procedure e.g. by running for data with permuted outcome labels? And why do the gradient / bootstrapping at all --- why not just run the nominal survival p-values through a simple Benjamini-Hochberg procedure, and then apply and FDR threshold to define the GEAR lists? Then you would have both multiplicity and error control for the final lists. As it stands, with no form of error control or quantification of noise rates in the GEAR lists I would not recommend promoting their use. There is a long history of variable selection techniques, and various options the authors could have used that would have provided formal error rates for the final GEAR lists (see seminal reviews by eg Heinze et al 2018 Biometrical

      Journal, or O'Hara and Sillanpaa, 2009, Bayesian Analysis), including, as I say, simple application of a Benjamini-Hochberg to achive multiplicity adjusted FDR control.

      Thank you. We chose the 10 × 1,000 resampling scheme to ask a different question from a single Benjamini–Hochberg scan: does a gene keep re-appearing as significant when cohort composition and statistical power vary from 10 % to 100 % of the data? Converting the 1,000 nominal p-values at each sample fraction into a reproducibility probability 𝐴<sub>𝑖𝑗</sub> allows us to screen for signals that are stable across wide sampling uncertainty rather than relying on one pass through the full cohort. The 0.8 cut-off is an intentionally strict, empirically accepted robustness threshold (analogous to stability-selection); under the global null the chance of exceeding it in 1,000 draws is effectively zero, so the procedure is already highly conservative even before any gene-wise multiplicity correction [1]. Once MEMORY moves beyond this exploratory stage and a final, clinically actionable GEAR catalogue is required, we will add a formal FDR layer after the robustness screen, but for the present proof-of-concept study, we retain the resampling step specifically to capture stability rather than to serve as definitive error control.

      L427-433: I gathered that SAS reflects, for a particular pair of genes, how likely they are to be jointly significant across bootstraps. If so, perhaps this description or similar could be added since I found a "conceptual" description lacking which would have helped when reading through the maths. Does it make sense to also reflect joint significance across multiple cancer types in the SAS? Or did I miss it and this is already reflected?

      SAS is indeed meant to quantify, within a single cancer type, how consistently two genes are jointly significant across the 1,000 bootstrap resamples performed at a given sample-size tier. In another words, SAS is the empirical probability that the two genes “co-light-up” in the same permutation, providing a measure of shared prognostic behavior beyond what either gene shows alone. We have added this plain language description to the ‘Methods’ (Lines 405-418).

      In the current implementation SAS is calculated separately for each cancer type; it does not aggregate cosignificance across different cancers. Extending SAS to capture joint reproducibility across multiple tumor types is an interesting idea, especially for identifying pan-cancer gene pairs, and we note this as a potential future enhancement of the MEMORY pipeline.

      L432: "The SAS of significant genes with total genes was calculated, and the significant survival network was constructed" Are the "significant genes" the "GEAR" list extracted above according to the 0.8 threshold? If so, and this is a bit pedantic, I do not think they should be referred to as "significant genes" and that this phrase should be reserved for formal statistical significance.

      We have replaced “significant genes” with “GEAR genes” to avoid any confusion (Lines 421-422).

      L434: "some SAS values at the top of the rankings were extracted, and the SAS was visualized to a network by Cytoscape. The network was named core survival network (CSN)". I did not see it explicitly stated which nodes actually go into the CSN. The entire GEAR list? What threshold is applied to SAS values in order to determine which edges to include? How was that threshold chosen? Was it data driven? For readers not familiar with what Cytoscape is and how it works could you offer more of an explanation in-text please? I gather it is simply a piece of network visualisation/wrangling software and does not annotate additional information (e.g. external experimental data), which I think is an important point to clarify in the article without needing to look up the reference.

      We have now clarified these points in the revised ‘Methods’ section, including how the SAS threshold was selected and which nodes were included in the Core Survival Network (CSN). Specifically, the CSN was constructed using the top 1,000 gene pairs with the highest SAS values. This threshold was not determined by a fixed numerical cutoff, but rather chosen empirically after comparing networks built with varying numbers of edges (250, 500, 1,000, 2,000, 6,000, and 8,000; see Reviewer-only Figure 1). We observed that, while increasing the number of edges led to denser networks, the set of hub genes remained largely stable. Therefore, we selected 1,000 edges as a balanced compromise between capturing sufficient biological information and maintaining computational efficiency and interpretability.

      The resulting node list (i.e., the genes present in those top-ranked pairs) is provided in Supplementary Table 4. Cytoscape was used solely as a network visualization platform, and no external annotations or experimental data were added at this stage. We have added a brief clarification in the main text to help readers understand.

      L437: "The effect of molecular classification by hub genes is indicated that 1000 to 2000 was a range that the result of molecular classification was best." Can you clarify how "best" is assessed here, i.e. by what metric and with which data?

      We apologize for the confusion. Upon constructing the network, we observed that the number of edges affected both the selection of hub genes and the computational complexity. We analyzed the networks with 250, 500, 1,000, 2,000, 6,000 and 8,000 edges, and found that the differences in selected hub genes were small (Author response image 1). Although the networks with fewer edges had lower computational complexity, the choice of 1000 edges was a compromise to the balance between sufficient biological information and manageable computational complexity. Thus, we chose the network with 1,000 edges as it offered a practical balance between computational efficiency and the biological relevance of the hub genes.

      Author response image 1.

      The intersection of the network constructed by various number of edges.

      References

      (1) Gebski, V., Garès, V., Gibbs, E. & Byth, K. Data maturity and follow-up in time-to-event analyses.International Journal of Epidemiology 47, 850–859 (2018).

    1. eLife Assessment

      Davies et al. present a valuable study proposing that Shot can act as a molecular linker between microtubules and actin during dendrite pruning, suggesting an intriguing role in non-centrosomal microtubule organization. However, the experimental evidence is incomplete and does not robustly support these claims, and the lack of a cohesive model connecting the findings weakens the overall impact. While the data suggest that Shot, actin, and microtubule nucleation contribute to dendritic pruning, their precise interplay remains unresolved.

    2. Reviewer #1 (Public review):

      Summary:

      The Neuronal microtubule cytoskeleton is essential long long-range transport in axons and dendrites. The axon-specific plus-end out microtubule organization vs the dendritic-specific plus-end in organization allows for selective transport into each neurite, setting up neuronal polarity. In addition, the dendritic microtubule organization is thought to be important for dendritic pruning in Drosophila during metamorphosis. However, the precise mechanisms that organize microtubules in neurons are still incompletely understood.

      In the current manuscript, the authors describe the spectraplakin protein Shot as important in developmental dendritic pruning. They find that Shot has dendritic microtubule polarity defects, which, based on their rescues and previous work, is likely the reason for the pruning defect.

      Since Shot is a known actin-microtubule crosslinker, they also investigate the putative role of actin and find that actin is also important for dendritic pruning. Finally, they find that several factors that have been shown to function as a dendritic MTOC in C. elegans also show a defect in Drosophila upon depletion.

      Strengths:

      Overall, this work was technically well-performed, using advanced genetics and imaging. The author reports some interesting findings identifying new players for dendritic microtubule organization and pruning.

      Weaknesses:

      The evidence for Shot interacting with actin for its functioning is contradictory. The Shot lacking the actin interaction domain did not rescue the mutant; however, it also has a strong toxic effect upon overexpression in wildtype (Figure S3), so a potential rescue may be masked. Moreover, the C-terminus-only construct, which carries the GAS2-like domain, was sufficient to rescue the pruning. This actually suggests that MT bundling/stabilization is the main function of Shot (and no actin binding is needed). On the other hand, actin depolymerization leads to some microtubule defects and subtle changes in shot localization in young neurons (not old ones). More importantly, it did not enhance the microtubule or pruning defects of the Shot domain, suggesting these act in the same pathway. Interesting to note is that Mical expression led to microtubule defects but not to pruning defects. This argues that MT organization effects alone are not enough to cause pruning defects. This may be be good to discuss. For the actin depolymerization, the authors used overexpression of the actin-oxidizing Mical protein. However, Mical may have another target. It would be good to validate key findings with better characterized actin targeting tools.

      In analogy to C. elegans, where RAB-11 functions as a ncMTOC to set up microtubules in dendrites, the authors investigated the role of these in Drosophila. Interestingly, they find that rab-11 also colocalizes to gamma tubulin and its depletion leads to some microtubule defects. Furthermore, they find a genetic interaction between these components and Shot; however, this does not prove that these components act together (if at all, it would be the opposite). This should be made more clear. What would be needed to connect these is to address RAB-11 localization + gamma-tubulin upon shot depletion.

      All components studied in this manuscript lead to a partial reversal of microtubules in the dendrite. However, it is not clear from how the data is represented if the microtubule defect is subtle in all animals or whether it is partially penetrant stronger effect (a few animals/neurons have a strong phenotype). This is relevant as this may suggest that other mechanisms are also required for this organization, and it would make it markedly different from C. elegans. This should be discussed and potentially represented differently.

    3. Reviewer #2 (Public review):

      Summary:

      In their manuscript, the authors reveal that the spectraplakin Shot, which can bind both microtubules and actin, is essential for the proper pruning of dendrites in a developing Drosophila model. A molecular basis for the coordination of these two cytoskeletons during neuronal development has been elusive, and the authors' data point to the role of Shot in regulating microtubule polarity and growth through one of its actin-binding domains. The authors also propose an intriguing new activity for a spectraplakin: functioning as part of a microtubule-organizing center (MTOC).

      Strengths:

      (1) A strength of the manuscript is the authors' data supporting the idea that Shot regulates dendrite pruning via its actin-binding CH1 domain and that this domain is also implicated in Shot's ability to regulate microtubule polarity and growth (although see comments below); these data are consistent with the authors' model that Shot acts through both the actin and microtubule cytoskeletons to regulate neuronal development.

      (2) Another strength of the manuscript is the data in support of Rab11 functioning as an MTOC in young larvae but not older larvae; this is an important finding that may resolve some debates in the literature. The finding that Rab11 and Msps coimmunoprecipitate is nice evidence in support of the idea that Rab11(+) endosomes serve as MTOCs.

      Weaknesses:

      (1) A significant, major concern is that most of the authors' main conclusions are not (well) supported, in particular, the model that Shot functions as part of an MTOC. The story has many interesting components, but lacks the experimental depth to support the authors' claims.

      (2) One of the authors' central claims is that Shot functions as part of a non-centrosomal MTOC, presumably a MTOC anchored on Rab11(+) endosomes. For example, in the Introduction, last paragraph, the authors summarize their model: "Shot localizes to dendrite tips in an actin-dependent manner where it recruits factors cooperating with an early-acting, Rab11-dependent MTOC." This statement is not supported. The authors do not show any data that Shot localizes with Rab11 or that Rab11 localization or its MTOC activity is affected by the loss of Shot (or otherwise manipulating Shot). A genetic interaction between Shot and Rab11 is not sufficient to support this claim, which relies on the proteins functioning together at a certain place and time. On a related note, the claim that Shot localization to dendrite tips is actin-dependent is not well supported: the authors show that the CH1 domain is needed to enrich Shot at dendrite tips, but they do not directly manipulate actin (it would be helpful if the authors showed the overexpression of Mical disrupted actin, as they predict).

      (3) The authors show an image that Shot colocalizes with the EB1-mScarlet3 comet initiation sites and use this representative image to generate a model that Shot functions as part of an MTOC. However, this conclusion needs additional support: the authors should quantify the frequency of EB1 comets that originate from Shot-GFP aggregates, report the orientation of EB1 comets that originate from Shot-GFP aggregates (e.g., do the Shot-GFP aggregates correlate with anterogradely or retrogradely moving EB1 comets), and characterize the developmental timing of these events. The genetic interaction tests revealing ability of shot dsRNA to enhance the loss of microtubule-interacting proteins (Msps, Patronin, EB1) and Rab11 are consistent with the idea that Shot regulates microtubules, but it does not provide any spatial information on where Shot is interacting with these proteins, which is critical to the model that Shot is acting as part of a dendritic MTOC.

      (4) It is unclear whether the authors are proposing that dendrite pruning defects are due to an early function of Shot in regulating microtubule polarity in young neurons (during 1st instar larval stages) or whether Shot is acting in another way to affect dendrite pruning. It would be helpful for the authors to present and discuss a specific model regarding Shot's regulation of dendrite pruning in the Discussion.

      (5) The authors argue that a change in microtubule polarity contributes to dendrite pruning defects. For example, in the Introduction, last paragraph, the authors state: "Loss of Shot causes pruning defects caused by mixed orientation of dendritic microtubules." The authors show a correlative relationship, not a causal one. In Figure 4, C and E, the authors show that overexpression of Mical disrupts microtubule polarity but not dendrite pruning, raising the question of whether disrupting microtubule polarity is sufficient to cause dendrite pruning defects. The lack of an association between a disruption in microtubule polarity and dendrite pruning in neurons overexpressing Mical is an important finding.

      (6) The authors show that a truncated Shot construct with the microtubule-binding domain, but no actin-binding domain (Shot-C-term), can rescue dendrite pruning defects and Khc-lacZ localization, whereas the longer Shot construct that lacks just one actin-binding domain ("delta-CH1") cannot. Have the authors confirmed that both proteins are expressed at equivalent levels? Based on these results and their finding that over-expression of Shot-delta-CH1 disrupts dendrite pruning, it seems possible that Shot-delta-CH1 may function as a dominant-negative rather than a loss-of-function. Regardless, the authors should develop a model that takes into account their findings that Shot, without any actin-binding domains and only a microtubule-binding domain, shows robust rescue.

      (7) The authors state that: "The fact that Shot variants lacking the CH1 domain cannot rescue the pruning defects of shot[3] mutants suggested that dendrite tip localization of Shot was important for its function." (pages 10-11). This statement is not accurate: the Shot C-term construct, which lacks the CH1 domain (as well as other domains), is able to rescue dendrite pruning defects.

      (8) The authors state that: "In further support of non-functionality, overexpression of Shot[deltaCH1] caused strong pruning defects (Fig. S3)." (page 8). Presumably, these results indicate that Shot-delta-CH1 is functioning as a dominant-negative since a loss-of-function protein would have no effect. The authors should revise how they interpret these results. This comment is related to another comment about the ability of Shot constructs to rescue the shot[3] mutant.

    4. Author response:

      We thank the reviewers for their comments. We are paraphrasing their three main criticisms below and provide responses and outlines of how we are going to address them.

      Criticism 1: Actin binding by Shot may not be required for Shot's function in dendritic microtubule organization (Point 1 by Reviewer 1, points 6-8 by reviewer 2).

      This criticism is mainly based on our finding that, while a version of Shot lacking just the high affinity actin binding site cannot rescue the pruning and orientation defects of shot<sup>3</sup> mutants, expression of a construct harboring just the microtubule and EB1 binding sites can. The reviewers also point out that a Shot construct lacking one of its actin binding domains (deltaCH1), causes pruning defects when overexpressed in wild type cells.

      We thank the reviewers for this comment. We concede that we did not properly explain our reasoning and conclusions regarding the role of actin binding in Shot dendritic function. From the literature, there is evidence that Shot fragments containing the C-terminal microtubule binding domain alone have positive effects on neuronal microtubule stability and organization by a gain-of-function mechanism. This is likely due to two reasons: firstly, the activity of these constructs is unrestrained by localization. For example, in axons, full length Shot localizes adjacent to the membrane and to growth cones, while a Shot C-terminal construct (lacking the actin-binding and spectrin-repeat domains) decorates axonal microtubules [1]. Secondly, the actin binding site appears to inhibit microtubule binding by an intramolecular mechanism that is relieved by actin binding [2]. Overexpression of such a construct also dramatically improves axonal microtubule defects in aged neurons [3]. Thus, actin recruitment may locally activate Shot's microtubule binding activity.

      To address this criticism, we will test if other UAS-Shot transgenes lacking the actin binding or microtubule binding domains can rescue the defects of Shot mutants. We will also try to provide more evidence that the C-terminal Shot construct exerts a gain-of-function effect on microtubules. We will adjust our interpretation accordingly.

      Criticism 2: The relationship between reversal of dendritic microtubule orientation and dendrite pruning defects could be correlative rather than causal (paragraph 1 by Reviewer 1, point 5 by reviewer 2).

      This criticism is based on our finding that Mical overexpression causes a partial reversal of dendritic microtubule orientation but no apparent dendrite pruning defects.

      We thank the reviewers for this comment. In fact, knockdown of EB1, which affects dendritic microtubule organisation via kinesin-2 [4], does not cause dendrite pruning defects by itself either, but strongly enhances the pruning defects caused by other microtubule manipulations [5]. This is likely because loss of EB1 destabilizes the dendritic cytoskeleton and thus also promotes dendrite degeneration. All other conditions that cause dendritic microtubule reversal also cause dendrite pruning defects [5 - 9]. As Mical is a known pruning factor [10], its overexpression may actually also destabilize dendrites, e. g., by severing actin filaments. However, we showed in the current manuscript that Mical overexpression causes a partial reversal of dendritic microtubule polarity and strongly enhances the dendrite pruning defects caused by Shot knockdown.

      To address this criticism, we will rephrase the corresponding section of our manuscript and specify that conditions that cause reversal of dendritic microtubule orientation either cause dendrite pruning defects, or act as genetic enhancers of pruning defects caused by other microtubule regulators. This wording better explains the relationship between dendritic microtubule orientation and dendrite pruning and also includes the Mical overexpression condition.

      Criticism 3: The presented data do not prove that Shot, Rab11 and Patronin act in a common pathway to establish dendritic plus end-in microtubule orientation (paragraphs 2-3 by Reviewer 1, point 1-4 by reviewer 2).

      While these factors genetically interact with each other during dendrite pruning, it is not clear whether (1) they colocalize at the tips of growing dendrites during early growth stages; (2) their respective localizations depend on each other; (3) they act at the same developmental stage in microtubule orientation.  

      We thank the reviewers for this comment. For technical reasons (e. g., incompatible transgenes, GAL4 drivers too weak), we could only partially address these questions at the time. We have now expanded our toolkit with additional drivers and fluorescently tagged transgenes. We will therefore test whether Shot and Rab11 or Patronin and Rab11 colocalize in growing dendrites during the early L1 stage, and if loss of Shot affects the localization or the activity of Patronin and Rab11 in dendrites. We will adapt our interpretation accordingly, and also add a comprehensive model.

      References

      (1) Alves Silva et al. (2012) J. Neurosci. 32:9143

      (2) Applewhite et al. (2013) Mol. Biol. Cell 24:2885

      (3) Okenve-Ramos et al. (2024) PLoS Biol. 22:e3002504

      (4) Mattie et al. (2010) Curr. Biol. 20:2169

      (5) Herzmann et al. (2018) Development 145:dev156950

      (6) Wang et al. (2019) eLife 8:e39964

      (7) Rui et al. (2020) EMBO Rep. 21:e48843

      (8) Tang et al. (2020) EMBO J. 39:e103549

      (9) Bu et al. (2022) Cell Rep. 39:110887

      (10) Kirilly et al. (2009) Nat. Neurosci. 12:1497

    1. eLife Assessment

      This study presents experiments suggesting intriguing mesoscale reorganization of functional connectivity across distributed cortical and subcortical circuits during learning. The approach is technically impressive and the results are potentially of valuable significance. However, in its current form, the strength of evidence is incomplete. More in-depth analyses and the acquisition of data from additional animals in the primary experiment could bolster these findings.

    2. Reviewer #1 (Public review):

      Summary:

      This study aims to address an important and timely question: how does the mesoscale architecture of cortical and subcortical circuits reorganize during sensorimotor learning? By using high-density, chronically implanted ultra-flexible electrode arrays, the authors track spiking activity across ten brain regions as mice learn a visual Go/No-Go task. The results indicate that learning leads to more sequential and temporally compressed patterns of activity during correct rejection trials, alongside changes in functional connectivity ranks that reflect shifts in the relative influence of visual, frontal, and motor areas throughout learning. The emergence of a more task-focused subnetwork is accompanied by broader and faster propagation of stimulus information across recorded regions.

      Strengths:

      A clear strength of this work is its recording approach. The combination of stable, high-throughput multi-region recordings over extended periods represents a significant advance for capturing learning-related network dynamics at the mesoscale. The conceptual framework is well motivated, building on prior evidence that decision-relevant signals are widely distributed across the brain. The analysis approach, combining functional connectivity rankings with information encoding metrics is well motivated but needs refinement. These results provide some valuable evidence of how learning can refine both the temporal precision and the structure of interregional communication, offering new insights into circuit reconfiguration during learning.

      Weaknesses:

      The technical approach is strong and the conceptual framing is compelling, but several aspects of the evidence remain incomplete. In particular, it is unclear whether the reported changes in connectivity truly capture causal influences, as the rank metrics remain correlational and show discrepancies with the manipulation results. The absolute response onset latencies also appear slow for sensory-guided behavior in mice, and it is not clear whether this reflects the method used to define onset timing or factors such as task structure or internal state. Furthermore, the small number of animals, combined with extensive repeated measures, raises questions about statistical independence and how multiple comparisons were controlled. The optogenetic experiments, while intended to test the functional relevance of rank-increasing regions, leave it unclear how effectively the targeted circuits were silenced. Without direct evidence of reliable local inhibition, the behavioral effects or lack thereof are difficult to interpret. Details on spike sorting are limited.

    3. Reviewer #2 (Public review):

      Summary:

      Wang et al. measure from 10 cortical and subcortical brain as mice learn a go/no-go visual discrimination task. They found that during learning, there is a reshaping of inter-areal connections, in which a visual-frontal subnetwork emerges as mice gain expertise. Also visual stimuli decoding became more widespread post-learning. They also perform silencing experiments and find that OFC and V2M are important for the learning process. The conclusion is that learning evoked a brain-wide dynamic interplay between different brain areas that together may promote learning.

      Strengths:

      The manuscript is written well and the logic is rather clear. I found the study interesting and of interest to the field. The recording method is innovative and requires exceptional skills to perform. The outcomes of the study are significant, highlighting that learning evokes a widespread and dynamics modulation between different brain areas, in which specific task-related subnetworks emerge.

      Weaknesses:

      I had several major concerns:

      (1) The number of mice was small for the ephys recordings. Although the authors start with 7 mice in Figure 1, they then reduce to 5 in panel F. And in their main analysis, they minimize their analysis to 6/7 sessions from 3 mice only. I couldn't find a rationale for this reduction, but in the methods they do mention that 2 mice were used for fruitless training, which I found no mention in the results. Moreover, in the early case, all of the analysis is from 118 CR trials taken from 3 mice. In general, this is a rather low number of mice and trial numbers. I think it is quite essential to add more mice.

      (2) Movement analysis was not sufficient. Mice learning a go/no-go task establish a movement strategy that is developed throughout learning and is also biased towards Hit trials. There is an analysis of movement in Figure S4, but this is rather superficial. I was not even sure that the 3 mice in Figure S4 are the same 3 mice in the main figure. There should be also an analysis of movement as a function of time to see differences. Also for Hits and FAs. I give some more details below. In general, most of the results can be explained by the fact that as mice gain expertise, they move more (also in CR during specific times) which leads to more activation in frontal cortex and more coordination with visual areas. More needs to be done in terms of analysis, or at least a mention of this in the text.

      (3) Most of the figures are over-detailed, and it is hard to understand the take-home message. Although the text is written succinctly and rather short, the figures are mostly overwhelming, especially Figures 4-7. For example, Figure 4 presents 24 brain plots! For rank input and output rank during early and late stim and response periods, for early and expert and their difference. All in the same colormap. No significance shown at all. The Δrank maps for all cases look essentially identical across conditions. The division into early and late time periods is not properly justified. But the main take home message is positive Δrank in OFC, V2M, V1 and negative Δrank in ThalMD and Str. In my opinion, one trio map is enough, and the rest could be bumped to the Supplementary section, if at all. In general, the figure in several cases do not convey the main take home messages. See more details below.

      (4) The analysis is sometimes not intuitive enough. For example, the rank analysis of input and output rank seemed a bit over complex. Figure 3 was hard to follow (although a lot of effort was made by the authors to make it clearer). Was there any difference between the output and input analysis? Also, the time period seems redundant sometimes. Also, there are other network analysis that can be done which are a bit more intuitive. The use of rank within the 10 areas was not the most intuitive. Even a dimensionality reduction along with clustering can be used as an alternative. In my opinion, I don't think the authors should completely redo their analysis, but maybe mention the fact that other analyses exist.

    4. Reviewer #3 (Public review):

      Summary:

      In the manuscript " Dynamics of mesoscale brain network during decision-making learning revealed by chronic, large-scale single-unit recording", Wang et al investigated mesoscale network reorganization during visual stimulus discrimination learning in mice using chronic, large-scale single-unit recordings across 10 cortical/subcortical regions. During learning, mice improved task performance mainly by suppressing licking on no-go trials. The authors found that learning induced restructuring of functional connectivity, with visual (V1, V2M) and frontal (OFC, M2) regions forming a task-relevant subnetwork during the acquisition of correct No-Go (CR) trials.

      Learning also compressed sequential neural activation and broadened stimulus encoding across regions. In addition, a region's network connectivity rank correlated with its timing of peak visual stimulus encoding.

      Optogenetic inhibition of orbitofrontal cortex (OFC) and high order visual cortex (V2M) impaired learning, validating its role in learning. The work highlights how mesoscale networks underwent dynamic structuring during learning.

      Strengths:

      The use of ultra-flexible microelectrode arrays (uFINE-M) for chronic, large-scale recordings across 10 cortical/subcortical regions in behaving mice represents a significant methodological advancement. The ability to track individual units over weeks across multiple brain areas will provide a rare opportunity to study mesoscale network plasticity.

      While limited in scope, optogenetic inhibition of OFC and V2M directly ties connectivity rank changes to behavioral performance, adding causal depth to correlational observations.

      Weaknesses:

      The weakness is also related to the strength provided by the method. It is demonstrated in the original method that this approach in principle can track individual units for four months (Luan et al, 2017). The authors have not showed chronically tracked neurons across learning. Without demonstrating that and taking advantage of analyzing chronically tracked neurons, this approach is not different from acute recording across multiple days during learning. Many studies have achieved acute recording across learning using similar tasks. These studies have recorded units from a few brain areas or even across brain-wide areas.

      Another weakness is that major results are based on analyses of functional connectivity that is calculated using the cross-correlation score of spiking activity (TSPE algorithm). Functional connection strengthen across areas is then ranked 1-10 based on relative strength. Without ground truth data, it is hard to judge the underlying caveats. I'd strongly advise the authors to use complementary methods to verify the functional connectivity and to evaluate the mesoscale change in subnetworks. Perhaps the authors can use one key information of anatomy, i.e. the cortex projects to the striatum, while the striatum does not directly affect other brain structures recorded in this manuscript.

    5. Author response:

      Reviewer #1 (Public review):

      Weaknesses:

      The technical approach is strong and the conceptual framing is compelling, but several aspects of the evidence remain incomplete. In particular, it is unclear whether the reported changes in connectivity truly capture causal influences, as the rank metrics remain correlational and show discrepancies with the manipulation results.

      We agree that our functional connectivity ranking analyses cannot establish causal influences. As discussed in the manuscript, besides learning-related activity changes, the functional connectivity may also be influenced by neuromodulatory systems and internal state fluctuations. In addition, the spatial scope of our recordings is still limited compared to the full network implicated in visual discrimination learning, which may bias the ranking estimates. In future, we aim to achieve broader region coverage and integrate multiple complementary analyses to address the causal contribution of each region.

      The absolute response onset latencies also appear slow for sensory-guided behavior in mice, and it is not clear whether this reflects the method used to define onset timing or factors such as task structure or internal state.

      We believe this may be primarily due to our conservative definition of onset timing. Specifically, we required the firing rate to exceed baseline (t-test, p < 0.05) for at least 3 consecutive 25-ms time windows. This might lead to later estimates than other studies, such as using the latency to the first spike after visual stimulus onset (~50-60 ms, Siegle et al., Nature, 2023) or the time to half-max response (~65 ms, Goldbach et al., eLife, 2021).

      Furthermore, the small number of animals, combined with extensive repeated measures, raises questions about statistical independence and how multiple comparisons were controlled.

      We agree that a larger sample size would strengthen the robustness of the findings. However, as noted above, the current dataset has inherent limitations in both the number of recorded regions and the behavioral paradigm. Given the considerable effort required to achieve sufficient unit yields across all targeted regions, we wish to adjust the set of recorded regions, improve behavioral task design, and implement better analyses in future studies. This will allow us to both increase the number of animals and extract more precise insights into mesoscale dynamics during learning.

      The optogenetic experiments, while intended to test the functional relevance of rank increasing regions, leave it unclear how effectively the targeted circuits were silenced. Without direct evidence of reliable local inhibition, the behavioral effects or lack thereof are difficult to interpret.

      We appreciate this important point. Due to the design of the flexible electrodes and the implantation procedure, bilateral co-implantation of both electrodes and optical fibers was challenging, which prevented us from directly validating the inhibition effect in the same animals used for behavior. In hindsight, we could have conducted parallel validations using conventional electrodes, and we will incorporate such controls in future work to provide direct evidence of manipulation efficacy.

      Details on spike sorting are limited.

      We will provide more details on spike sorting, including the exact parameters used in the automated sorting algorithm and the subsequent manual curation criteria.

      Reviewer #2 (Public review):

      Weaknesses:

      I had several major concerns:

      (1) The number of mice was small for the ephys recordings. Although the authors start with 7 mice in Figure 1, they then reduce to 5 in panel F. And in their main analysis, they minimize their analysis to 6/7 sessions from 3 mice only. I couldn't find a rationale for this reduction, but in the methods they do mention that 2 mice were used for fruitless training, which I found no mention in the results. Moreover, in the early case, all of the analysis is from 118 CR trials taken from 3 mice. In general, this is a rather low number of mice and trial numbers. I think it is quite essential to add more mice.

      We apologize for the confusion. As described in the Methods section, 7 mice (Figure 1B) were used for behavioral training without electrode array or optical fiber implants to establish learning curves, and an additional 5 mice underwent electrophysiological recordings (3 for visual-based decision-making learning and 2 for fruitless learning).

      As we noted in our response to Reviewer #1, the current dataset has inherent limitations in both the number of recorded regions and the behavioral paradigm. Given the considerable effort required to achieve high-quality unit yields across all targeted regions, we wish to adjust the set of recorded regions, improve behavioral task design, and implement better analyses in future studies. These improvements will enable us to collect data from a larger sample size and extract more precise insights into mesoscale dynamics during learning.

      (2) Movement analysis was not sufficient. Mice learning a go/no-go task establish a movement strategy that is developed throughout learning and is also biased towards Hit trials. There is an analysis of movement in Figure S4, but this is rather superficial. I was not even sure that the 3 mice in Figure S4 are the same 3 mice in the main figure. There should be also an analysis of movement as a function of time to see differences. Also for Hits and FAs. I give some more details below. In general, most of the results can be explained by the fact that as mice gain expertise, they move more (also in CR during specific times) which leads to more activation in frontal cortex and more coordination with visual areas. More needs to be done in terms of analysis, or at least a mention of this in the text.

      Due to the limitation in the experimental design and implementation, movement tracking was not performed during the electrophysiological recordings, and the 3 mice shown in Figure S4 were from a separate group. We have carefully examined the temporal profiles of mouse movements and found it did not fully match the rank dynamics, and we will add these results and related discussion in the revised manuscript. However, we acknowledge that without synchronized movement recordings in the main dataset, we cannot fully disentangle movement-related neural activity from task-related signals. We will make this limitation explicit in the revised manuscript and discuss it as a potential confound, along with possible approaches to address it in future work.

      (3) Most of the figures are over-detailed, and it is hard to understand the take-home message. Although the text is written succinctly and rather short, the figures are mostly overwhelming, especially Figures 4-7. For example, Figure 4 presents 24 brain plots! For rank input and output rank during early and late stim and response periods, for early and expert and their difference. All in the same colormap. No significance shown at all. The Δrank maps for all cases look essentially identical across conditions. The division into early and late time periods is not properly justified. But the main take home message is positive Δrank in OFC, V2M, V1 and negative Δrank in ThalMD and Str. In my opinion, one trio map is enough, and the rest could be bumped to the Supplementary section, if at all. In general, the figure in several cases do not convey the main take home messages. See more details below.

      We thank the reviewer for this valuable critique. The statistical significance corresponding to the brain plots (Figure 4 and Figure 5) was presented in Figure S3 and S5, but we agree that the figure can be simplified to focus on the key results. In the revised manuscript, we will condense these figures to focus on the most important comparisons and relocate secondary plots to the Supplementary section. This will make the visual presentation more concise and the take-home message clearer.

      (4) The analysis is sometimes not intuitive enough. For example, the rank analysis of input and output rank seemed a bit over complex. Figure 3 was hard to follow (although a lot of effort was made by the authors to make it clearer). Was there any difference between the output and input analysis? Also, the time period seems redundant sometimes. Also, there are other network analysis that can be done which are a bit more intuitive. The use of rank within the 10 areas was not the most intuitive. Even a dimensionality reduction along with clustering can be used as an alternative. In my opinion, I don't think the authors should completely redo their analysis, but maybe mention the fact that other analyses exist

      We appreciate the reviewer’s comment. In brief, the input- and output-rank analyses yielded largely similar patterns across regions in CR trials, although some differences were observed in certain areas (e.g., striatum in Hit trials) where the magnitude of rank change was not identical between input and output measures. We agree that the division into multiple time periods sometimes led to redundant results; we will combine overlapping results in the revision to improve clarity.

      We did explore dimensionality reduction applied to the ranking data. However, the results were not intuitive and required additional interpretation, which did not bring more insights. Still, we acknowledge that other analysis approaches might provide complementary insights. While we do not plan to completely reanalyze the dataset at this stage, we will include a discussion of these alternative methods and their potential advantages in the revised manuscript.

      Reviewer #3 (Public review):

      Weaknesses:

      The weakness is also related to the strength provided by the method. It is demonstrated in the original method that this approach in principle can track individual units for four months (Luan et al, 2017). The authors have not showed chronically tracked neurons across learning. Without demonstrating that and taking advantage of analyzing chronically tracked neurons, this approach is not different from acute recording across multiple days during learning. Many studies have achieved acute recording across learning using similar tasks. These studies have recorded units from a few brain areas or even across brain-wide areas.

      We appreciate the reviewer’s important point. We did attempt to track the same neurons across learning in this project. However, due to the limited number of electrodes implanted in each brain region, the number of chronically tracked neurons in each region was insufficient to support statistically robust analyses. Concentrating probes in fewer regions would allow us to obtain enough units tracked across learning in future studies to fully exploit the advantages of this method.

      Another weakness is that major results are based on analyses of functional connectivity that is calculated using the cross-correlation score of spiking activity (TSPE algorithm). Functional connection strengthen across areas is then ranked 1-10 based on relative strength. Without ground truth data, it is hard to judge the underlying caveats. I'd strongly advise the authors to use complementary methods to verify the functional connectivity and to evaluate the mesoscale change in subnetworks. Perhaps the authors can use one key information of anatomy, i.e. the cortex projects to the striatum, while the striatum does not directly affect other brain structures recorded in this manuscript

      We agree that the functional connectivity measured in this study relies on statistical correlations rather than direct anatomical connections. We plan to test the functional connection data with shorter cross-correlation delay criteria to see whether the results are consistent with anatomical connections and whether the original findings still hold.

    1. eLife Assessment

      This important study identifies a novel CRF-positive projection from the central amygdala and BNST to dorsal striatal cholinergic interneurons, revealing a previously unrecognized pathway by which stress signals modulate striatal function. The authors present strong and convincing evidence for the anatomical and functional connectivity of this circuit and demonstrate that alcohol disrupts CRF-mediated cholinergic activity, supporting its relevance to alcohol use disorder.

    2. Reviewer #1 (Public review):

      Summary:

      The authors show that corticotropin-releasing factor (CRF) neurons in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) monosynaptically target cholinergic interneurons (CINs) in the dorsal striatum of rodents. Functionally, activation of CRFR1 receptors increases CIN firing rate, and this modulation was reduced by pre-exposure to ethanol. This is an interesting finding, with potential significance for alcohol use disorders, but some conclusions could use additional support.

      Strengths:

      Well-conceived circuit mapping experiments identify a novel pathway by which the CeA and BNST can modulate dorsal striatal function by controlling cholinergic tone. Important insight into how CRF, a neuropeptide that is important in mediating aspects of stress, affective/motivational processes, and drug-seeking, modulates dorsal striatal function.

      Weaknesses:

      (1) Tracing and expression experiments were performed both in mice and rats (in a mostly non-overlapping way). While these species are similar in many ways, some conclusions are based on assumptions of similarities that the presented data do not directly show. In most cases, this should be addressed in the text (but see point number 2).

      (2) Experiments in rats show that CRFR1 expression is largely confined to a subpopulation of striatal CINs. Is this true in mice, too? Since most electrophysiological experiments are done in various synaptic antagonists and/or TTX, it does not affect the interpretation of those data, but non-CIN expression of CRFR1 could potentially have a large impact on bath CRF-induced acetylcholine release.

      (3) Experiments in rats show that about 30% of CINs express CRFR1 in rats. Did only a similar percentage of CINs in mice respond to bath application of CRF? The effect sizes and error bars in Figure 5 imply that the majority of recorded CINs likely responded. Were exclusion criteria used in these experiments?

      (4) The conclusion that prior acute alcohol exposure reduces the ability of subsequent alcohol exposure to suppress CIN activity in the presence of CRF may be a bit overstated. In Figure 6D (no ethanol pre-exposure), ethanol does not fully suppress CIN firing rate to baseline after CRF exposure. The attenuated effect of CRF on CIN firing rate after ethanol pre-treatment (6E) may just reduce the maximum potential effect that ethanol can have on firing rate after CRF, due to a lowered starting point. It is possible that the lack of significant effect of ethanol after CRF in pre-treated mice is an issue of experimental sensitivity. Related to this point, does pre-treatment with ethanol reduce the later CIN response to acute ethanol application (in the absence of CRF)?

      (5) More details about the area of the dorsal striatum being examined would be helpful (i.e., a-p axis).

    3. Reviewer #2 (Public review):

      Summary:

      Essoh and colleagues present a thorough and elegant study identifying the central amygdala and BNST as key sources of CRF input to the dorsal striatum. Using monosynaptic rabies tracing and electrophysiology, they show direct connections to cholinergic interneurons. The study builds on previous findings that CRF increases CIN firing, extending them by measuring acetylcholine levels in slices and applying optogenetic stimulation of CRF+ fibers. It also uncovers a novel interaction between alcohol and CRF signaling in the striatum, likely to spark significant interest and future research.

      Strengths:

      A key strength is the integration of anatomical and functional approaches to demonstrate these projections and assess their impact on target cells, striatal cholinergic interneurons.

      Weaknesses:

      The nature of the interaction between alcohol and CRF actions on cholinergic neurons remains unclear. Also, further clarification of the ACh sensor used and others is required

    4. Reviewer #3 (Public review):

      Summary:

      The authors demonstrate that CRF neurons in the extended amygdala form GABAergic synapses onto cholinergic interneurons and that CRF can excite these neurons. The evidence is strong, however, the authors fail to make a compelling connection showing CRF released from these extended amygdala neurons is mediating any of these effects. Further, they show that acute alcohol appears to modulate this action, although the effect size is not particularly robust.

      Strengths:

      This is an exciting connection from the extended amygdala to the striatum that provides a new direction for how these regions can modulate behavior. The work is rigorous and well done.

      Weaknesses:

      While the authors show that opto stim of these neurons can increase firing, this is not shown to be CRFR1 dependent. In addition, the effects of acute ethanol are not particularly robust or rigorously evaluated. Further, the opto stim experiments are conducted in an Ai32 mouse, so it is impossible to determine if that is from CEA and BNST, vs. another population of CRF-containing neurons. This is an important caveat.

    5. Reviewer #4 (Public review):

      Summary:

      This manuscript presents a compelling and methodologically rigorous investigation into how corticotropin-releasing factor (CRF) modulates cholinergic interneurons (CINs) in the dorsal striatum - a brain region central to cognitive flexibility and action selection-and how this circuit is disrupted by alcohol exposure. Through an integrated series of anatomical, optogenetic, electrophysiological, and imaging experiments, the authors uncover a previously uncharacterized CRF⁺ projection from the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) to dorsal striatal CINs.

      Strengths:

      Key strengths of the study include the use of state-of-the-art monosynaptic rabies tracing, CRF-Cre transgenic models, CRFR1 reporter lines, and functional validation of synaptic connectivity and neurotransmitter release. The finding that CRF enhances CIN excitability and acetylcholine (ACh) release via CRFR1, and that this effect is attenuated by acute alcohol exposure and withdrawal, provides important mechanistic insight into how stress and alcohol interact to impair striatal function. These results position CRF signaling in CINs as a novel contributor to alcohol use disorder (AUD) pathophysiology, with implications for relapse vulnerability and cognitive inflexibility associated with chronic alcohol intake.

      The study is well-structured, with a clear rationale, thorough methodology, and logical progression of results. The discussion effectively contextualizes the findings within broader addiction neuroscience literature and suggests meaningful future directions, including therapeutic targeting of CRFR1 signaling in the dorsal striatum.

      Weaknesses:

      Minor areas for improvement include occasional redundancy in phrasing, slightly overlong descriptions in the abstract and significance sections, and a need for more concise language in some places. Nevertheless, these do not detract from the manuscript's overall quality or impact.

      Overall, this is a highly valuable contribution to the fields of addiction neuroscience and striatal circuit function, offering novel insights into stress-alcohol interactions at the cellular and circuit level, which requires minor editorial revisions.

    6. Author response:

      We have outlined a clear plan to revise and strengthen the manuscript by addressing key experimental concerns raised in the public reviews.

      Summary of Planned Revisions:

      We intend to address the following points through new experiments or additional analyses:

      Reviewer #1, Concern 2:<br /> “CRFR1 expression is largely confined to a subpopulation of striatal CINs in rats—Is this also true in mice?”

      To address this, we will obtaine CRFR1-GFP mice and perform immunohistochemistry for ChAT to assess the overlap between CRFR1-GFP+ neurons and CINs in the dorsal striatum. This will allow us to directly determine whether CRFR1 expression is similarly restricted in mice as it is in rats.

      Reviewer #1, Concern 3:<br /> “In rats, ~30% of CINs express CRFR1. Did a similar proportion of CINs in mice respond to CRF application?”

      We will revisit and re-analyze our electrophysiological dataset to calculate the percentage of recorded CINs in mice that respond to bath-applied CRF. Our preliminary analysis suggests a higher response rate (>90%), and we will reconcile this with expression data, discuss possible mechanisms (e.g., indirect effects or species-specific differences), and provide a clear explanation in the revised manuscript.

      Reviewer #2, Recommendation 5:<br /> “Can the authors quantify the onset delay of optogenetic responses from CRF+ axons onto CINs?”

      We initially performed this experiment in a single animal. To strengthen our conclusion of monosynaptic connectivity, we will increase the sample size (additional injections in CRF-Cre mice) and quantify the onset latency of optogenetically evoked responses in CINs.

      Reviewer #2, Recommendation 7:<br /> “Are CRFR1+ CINs equally distributed in DMS vs. DLS?”

      We will re-analyze existing immunohistochemical images from Figure 4 to compare the density (cells/µm²) of CRFR1+ CINs in the dorsomedial vs. dorsolateral striatum. This analysis will help clarify whether there is a regional bias in CRFR1 expression across striatal subdomains

      .

      Reviewer #3, Recommendation 1:<br /> “Test whether CRFR1 mediates the effect of optogenetic stimulation on CIN firing.”

      We will directly test CRFR1-dependence of optogenetically evoked CIN excitation by applying a CRFR1 antagonist during optical stimulation of CRF+ terminals and evaluating the effect on CIN firing. This will clarify whether the CRF effect is receptor-mediated and strengthen the interpretation of our functional findings.

      We may conduct more experiment to address other concerns. These targeted experiments will significantly enhance the rigor and mechanistic insight of our study.

    1. eLife Assessment

      This study investigates how sleep loss and circadian disruption affect whole-organ metabolism in flies (Drosophila melanogaster) and reports that wild-type flies align metabolism in anticipation of diurnal rhythm, while mutant flies with impaired sleep or circadian function shift to reactive or misaligned metabolism. The integration of chamber-based flow-through respirometry with LC-MS metabolomics is innovative, and the significance of the findings is valuable. However, the strength of evidence needed to support the conclusions is incomplete based on concerns regarding the inappropriate use of constant darkness to disrupt circadian rhythms and the lack of details justifying the methods used to correlate respirometry data with whole-body metabolomics.

    2. Reviewer #1 (Public review):

      Summary:

      This study by Akhtar et al. aims to investigate the link between systemic metabolism and respiratory demands, and how sleep and the circadian clock regulate metabolic states and respiratory dynamics. The authors leverage genetic mutants that are defective in sleep and circadian behavior in combination with indirect respirometry and steady-state LC-MS-based metabolomics to address this question in the Drosophila model.

      First, the authors performed respirometry (on groups of 25 flies) to measure oxygen consumption (VO2) and carbon dioxide production (VCO2) to calculate the respiratory quotient (RQ) across the 24-hour day (12h:12h light-dark cycle) and assess metabolic fuel utilization. They observed that among all the genotypes tested, wild type (WT) flies and per0 flies in LD and WT flies in DD exhibit RQ >1. They concluded the >1 RQ is consistent with active lipogenesis. In contrast, the short-sleep mutants fumin (fmn) and sleepless (sss) showed significantly different RQ; the fmn exhibits a slight reduction in RQ values, suggesting increased reliance on carbohydrate metabolism, while sss exhibits even lower RQ (0.94), consistent with a shift toward lipid and protein catabolism.

      The authors then proceeded to bin these measurements in 12-hour partitions, ZT0-12 and ZT12-24, to assess diurnal differences in average values of VO2, VCO2, and RQ. They observed significant day-night differences in metabolic rates in WT-LD flies, with higher rates during the day. The diurnal differences remain in the short-sleep mutants, but the overall metabolic rates are higher. WT-DD flies exhibit the lowest respiratory activity, although the day-night differences remain in free-running conditions. Finally, per01 mutants exhibit no significant change in day-night respiratory rates, suggesting that a functional circadian clock is necessary for diurnal differences in metabolic rates.

      They then performed finer-resolution 24-hour rhythmic analysis (RAIN and JTK) to determine if VO2, VCO2, and RQ exhibit 24-hour rhythmic and if there are genotype-specific differences. Based on their criteria, VCO2 is rhythmic in all conditions tested, while VO2 is rhythmic in all conditions except in fmn-LD. Finally, RQ is rhythmic in all 3 mutants but not in WT-LD and WT-DD. Peak phases for the rhythms were deduced using JTK lag values.

      The authors proceeded to leverage a previously published steady-state metabolite dataset to investigate the potential association of RQ with metabolite profiles. Spearman correlation was performed to identify metabolites that exhibit coupling to respiratory output. Positive and negative lag analysis were subsequently performed to further characterize these associations based on the timing of the metabolite peak changes relative to RQ fluctuations. The authors suggest that a positive lag indicates that metabolite changes occur after shifts in RQ, and a negative lag signifies that metabolite changes precede RQ changes. To visualize metabolic pathways that exhibit these temporal relationships, a clustered heatmap and enrichment analysis were performed. Through these analyses, they concluded that both sleep and circadian systems are essential for aligning metabolic substrate selection with energy demands, and different metabolic pathways are misregulated in the different mutants with sleep and circadian defects.

      Strength:

      The research questions this study explores are significant, given that metabolism and respiratory demand are central to animal biology. The experimental methods used, including the well-characterized fly genetic mutants, the newly developed method for indirect calorimetry measurements, and LC-MS-based metabolomics, are all appropriate. This study provides insights into the impact of sleep and circadian rhythm disruption on metabolism and respiratory demand and serves as a foundation for future mechanistic investigations.

      Weaknesses:

      There are some conceptual flaws that the authors need to address regarding circadian biology, and some of the conclusions can be better supported by additional analysis to provide a stronger foundation for future functional investigation. At times, the methods, especially the statistical analysis, are not well articulated; they need to be better explained.

    3. Reviewer #2 (Public review):

      This is an innovative and technically strong study that integrates dual-gas respirometry with LC-MS metabolomics to examine how sleep and circadian disruption shape metabolism in Drosophila. The combination of continuous O₂/CO₂ measurements with high-temporal-resolution metabolite profiling is novel and provides fresh insight into how wild-type flies maintain anticipatory fuel alignment, while mutants shift to reactive or misaligned metabolism. The use of lag-shift correlation analysis is particularly clever, as it highlights temporal coordination rather than static associations. Together, the findings advance our understanding of how circadian clocks and sleep contribute to metabolic efficiency and redox balance.

      However, there are several areas where the manuscript could be strengthened. The authors should acknowledge that their findings may be gene-specific. Because sleep deprivation was not performed, it remains uncertain whether the observed metabolic shifts generalize to sleep loss broadly or are restricted to the fmn and sss mutants. This concern also connects to the finding of metabolic misalignment under constant darkness despite an intact clock. The conclusion that external entrainment is essential for maintaining energy homeostasis in flies may not translate to mammals. It would help to reference supporting data for the finding and discuss differences across species. Ideally, complementary circadian (light-dark cycle disruption) or sleep deprivation (for several hours) experiments, or citation of comparable studies, would strengthen the generality of the findings. Figures 1-4 are straightforward and clear, but when the manuscript transitions to the metabolite-respiration correlations, there is little description of the metabolomics methods or datasets, which should be clarified. The Discussion is at times repetitive and could be tightened, with the main message (i.e., wild-type flies align metabolism in advance, while mutants do not) kept front and center. Terms such as "anticipatory" and "reactive" should be defined early and used consistently throughout.

      Overall, this is a strong and novel contribution. With clarification of scope, refinement of presentation, and a more focused Discussion, the paper will make a significant impact.

    4. Reviewer #3 (Public review):

      Summary:

      The authors investigate how sleep loss and circadian disruption affect whole-organism metabolism in Drosophila melanogaster. They used chamber-based flow-through respirometry to measure oxygen consumption and carbon dioxide production in wild-type flies and in mutants with impaired sleep or circadian function. These measurements were then integrated with a previously published metabolomics dataset to explore how respiratory dynamics align with metabolic pathways. The central claim is that wild-type flies display anticipatory coordination of metabolic processes with circadian time, while mutants exhibit reactive shifts in substrate use, redox imbalance, and signs of mitochondrial stress.

      Strengths:

      The study has several strengths. Continuous high-resolution respirometry in flies is challenging, and its application across multiple genotypes provides good comparative insight. The conceptual framework distinguishing anticipatory from reactive metabolic regulation is interesting. The translational framing helps place the work in a broader context of sleep, circadian biology, and metabolic health.

      Weaknesses:

      At the same time, the evidence supporting the conclusions is somewhat limited. The metabolomics data were not newly generated but repurposed from prior work, reducing novelty. The biological replication in the respirometry assays is low, with only a small number of chambers per genotype. Importantly, respiratory parameters in flies are strongly influenced by locomotor activity, yet no direct measurements of activity were included, making it difficult to separate intrinsic metabolic changes from behavioral differences in mutants. In addition, repeated claims of "mitochondrial stress" are not directly substantiated by assays of mitochondrial function. The study also excluded female flies entirely, despite well-documented sex differences in metabolism, which narrows the generality of the findings.

    5. Author response:

      We thank the reviewers for their thoughtful public feedback. Our revision will clarify scope and methods/statistics, as well as streamline the narrative so the central message is clear: wild-type flies exhibit anticipatory alignment of fuel selection with circadian time, whereas short-sleep and clock mutants show reactive or misaligned metabolism under our conditions.

      Major conceptual and experimental revisions:

      (1) We will define “anticipatory” (clock-aligned, pre-emptive substrate choice) and “reactive” (post-hoc substrate shifts) up front and use these terms consistently. We will clearly distinguish diurnal (LD) from circadian (DD) regulation and avoid implying that DD abolishes rhythmicity. Claims will be limited to the tested genotypes (fmn, sss, and per<sup>01</sup>) without generalizing to all forms of sleep loss or to mammals (although we will speculate in the discussion about translation and generalizability). We will temper language around external entrainment in DD to “contributes strongly under our conditions in flies.”

      (2) We will expand the respirometry and rhythmicity sections (RAIN/JTK parameters, period/phase outputs, multiple-testing control). We will clarify that each measurement is an average of 300 flies per genotype (25 flies/chamber, 4 chambers/experiment, 3 experimental days) and specify the chamber as the experimental unit with n and error structure in each figure legend. For metabolomics–respirometry correlations, we will briefly describe dataset parameters, time-matching across ZT, normalization, Spearman correlations, and lag interpretation.

      (3) We are performing additional experimental measurements through tissue respirometry of gut tissues and ROS staining to support our claims of “mitochondrial stress” in the short sleeping mutants. We note that this has already been shown for fmn in Vaccaro et al (Cell, 2020) and we will extend this to the other mutants studied in our work.

      Reviewer-specific points

      Reviewer #1.

      We will clarify the circadian/diurnal framing, fully report rhythmicity analyses (parameters, n, q-values, phases), and better explain the metabolomics-respiration coupling with a concise workflow figure and supplementary table. The conclusion that sleep and clock systems align substrate selection with energy demand will be presented as supported under our tested conditions and positioned as groundwork for future mechanistic studies.

      Reviewer #2.

      We will state explicitly that findings may be gene-specific and avoid inferring generality to all sleep loss. We will soften cross-species language about external entrainment and add a brief note on species differences. For behavioral context (activity/feeding/sleep in fmn andsss), we will cite our related manuscript in revision (Malik et al, https://www.biorxiv.org/content/10.1101/2023.10.30.564837v2) in which we have measured both activity and feeding for fmn, sss, and wt flies. We will add a concise description of LC-MS processing and pathway analysis and define “anticipatory”/“reactive” early, using them consistently.

      Reviewer #3.

      We acknowledge that metabolomics were repurposed and emphasize the novelty of integrating continuous VCO2 and VO2 respirometry with temporal lag analysis. We will report replication clearly (chambers as the unit, n per genotype) and acknowledge locomotor activity as a potential confound, pointing to the related manuscript (Malik et al) for independent activity/feeding measurements and experimental measures of mitochondrial stress as outlined above. We will also further note that only males were studied, outlining this as a limitation and a future direction.

    1. eLife Assessment

      This important work presents technical and conceptual advances with the release of MorphoNet 2.0, a versatile and accessible platform for 3D+T segmentation and analysis. The authors provide compelling evidence across diverse datasets, and the clarity of the manuscript together with the software's usability broadens its impact. Although the strength of some improvements is hard to fully gauge given sample complexity, the tool is a significant step forward that will likely impact many biological imaging fields.

    2. Reviewer #2 (Public review):

      Summary:

      This article presents Morphonet 2.0, a software designed to visualise and curate segmentations of 3D and 3D+t data. The authors demonstrate its capabilities on five published datasets, showcasing how even small segmentation errors can be automatically detected, easily assessed and corrected by the user. This allows for more reliable ground truths which will in turn be very much valuable for analysis and training deep learning models. Morphonet 2.0 offers intuitive 3D inspection and functionalities accessible to a non-coding audience, thereby broadening its impact.

      Strengths:

      The work proposed in this article is expected to be of great interest for the community, by enabling easy visualisation and correction of complex 3D(+t) datasets. Moreover, the article is clear and well written making MorphoNet more likely to be used. The goals are clearly defined, addressing an undeniable need in the bioimage analysis community. The authors use a diverse range of datasets, successfully demonstrating the versatility of the software.

      We would also like to highlight the great effort that was made to clearly explain which type of computer configurations are necessary to run the different dataset and how to find the appropriate documentation according to your needs. The authors clearly carefully thought about these two important problems and came up with very satisfactory solutions.

      Weaknesses:

      Sometimes, it can be a bit difficult to assess the strength of the improvements made by the proposed methods, but this is not something the authors could easily address, given the great complexity of the samples

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      The authors present a substantial improvement to their existing tool, MorphoNet, intended to facilitate assessment of 3D+t cell segmentation and tracking results, and curation of high-quality analysis for scientific discovery and data sharing. These tools are provided through a user-friendly GUI, making them accessible to biologists who are not experienced coders. Further, the authors have re-developed this tool to be a locally installed piece of software instead of a web interface, making the analysis and rendering of large 3D+t datasets more computationally efficient. The authors evidence the value of this tool with a series of use cases, in which they apply different features of the software to existing datasets and show the improvement to the segmentation and tracking achieved. 

      While the computational tools packaged in this software are familiar to readers (e.g., cellpose), the novel contribution of this work is the focus on error correction. The MorphoNet 2.0 software helps users identify where their candidate segmentation and/or tracking may be incorrect. The authors then provide existing tools in a single user-friendly package, lowering the threshold of skill required for users to get maximal value from these existing tools. To help users apply these tools effectively, the authors introduce a number of unsupervised quality metrics that can be applied to a segmentation candidate to identify masks and regions where the segmentation results are noticeably different from the majority of the image. 

      This work is valuable to researchers who are working with cell microscopy data that requires high-quality segmentation and tracking, particularly if their data are 3D time-lapse and thus challenging to segment and assess. The MorphoNet 2.0 tool that the authors present is intended to make the iterative process of segmentation, quality assessment, and re-processing easier and more streamlined, combining commonly used tools into a single user interface.   

      We sincerely thank the reviewer for their thorough and encouraging evaluation of our work. We are grateful that they highlighted both the technical improvements of MorphoNet 2.0 and its potential impact for the broader community working with complex 3D+t microscopy datasets. We particularly appreciate the recognition of our efforts to make advanced segmentation and tracking tools accessible to non-expert users through a user-friendly and locally installable interface, and for pointing out the importance of error detection and correction in the iterative analysis workflow. The reviewer’s appreciation of the value of integrating unsupervised quality metrics to support this process is especially meaningful to us, as this was a central motivation behind the development of MorphoNet 2.0. We hope the tool will indeed facilitate more rigorous and reproducible analyses, and we are encouraged by the reviewer’s positive assessment of its utility for the community.

      One of the key contributions of the work is the unsupervised metrics that MorphoNet 2.0 offers for segmentation quality assessment. These metrics are used in the use cases to identify low-quality instances of segmentation in the provided datasets, so that they can be improved with plugins directly in MorphoNet 2.0. However, not enough consideration is given to demonstrating that optimizing these metrics leads to an improvement in segmentation quality. For example, in Use Case 1, the authors report their metrics of interest (Intensity offset, Intensity border variation, and Nuclei volume) for the uncurated silver truth, the partially curated and fully curated datasets, but this does not evidence an improvement in the results. Additional plotting of the distribution of these metrics on the Gold Truth data could help confirm that the distribution of these metrics now better matches the expected distribution. 

      Similarly, in Use Case 2, visual inspection leads us to believe that the segmentation generated by the Cellpose + Deli pipeline (shown in Figure 4d) is an improvement, but a direct comparison of agreement between segmented masks and masks in the published data (where the segmentations overlap) would further evidence this. 

      We agree that demonstrating the correlation between metric optimization and real segmentation improvement is essential. We have added new analysis comparing the distributions of the unsupervised metrics with the gold truth data before and after curation. Additionally, we provided overlap scores where ground truth annotations are available, confirming the improvement. We also explicitly discussed the limitation of relying solely on unsupervised metrics without complementary validation.

      We would appreciate the authors addressing the risk of decreasing the quality of the segmentations by applying circular logic with their tool; MorphoNet 2.0 uses unsupervised metrics to identify masks that do not fit the typical distribution. A model such as StarDist can be trained on the "good" masks to generate more masks that match the most common type. This leads to a more homogeneous segmentation quality, without consideration for whether these metrics actually optimize the segmentation 

      We thank the reviewer for this important and insightful comment. It raises a crucial point regarding the risk of circular logic in our segmentation pipeline. Indeed, relying on unsupervised metrics to select “good” masks and using them to train a model like StarDist could lead to reinforcing a particular distribution of shapes or sizes, potentially filtering out biologically relevant variability. This homogenization may improve consistency with the chosen metrics, but not necessarily with the true underlying structures.

      We fully agree that this is a key limitation to be aware of. We have revised the manuscript to explicitly discuss this risk, emphasizing that while our approach may help improve segmentation quality according to specific criteria, it should be complemented with biological validation and, when possible, expert input to ensure that important but rare phenotypes are not excluded.

      In Use case 5, the authors include details that the errors were corrected by "264 MorphoNet plugin actions ... in 8 hours actions [sic]". The work would benefit from explaining whether this is 8 hours of human work, trying plugins and iteratively improving, or 8 hours of compute time to apply the selected plugins. 

      We clarified that the “8 hours” refer to human interaction time, including exploration, testing, and iterative correction using plugins. 

      Reviewer #2 (Public review):

      Summary: 

      This article presents Morphonet 2.0, a software designed to visualise and curate segmentations of 3D and 3D+t data. The authors demonstrate their capabilities on five published datasets, showcasing how even small segmentation errors can be automatically detected, easily assessed, and corrected by the user. This allows for more reliable ground truths, which will in turn be very much valuable for analysis and training deep learning models. Morphonet 2.0 offers intuitive 3D inspection and functionalities accessible to a non-coding audience, thereby broadening its impact. 

      Strengths: 

      The work proposed in this article is expected to be of great interest to the community by enabling easy visualisation and correction of complex 3D(+t) datasets. Moreover, the article is clear and well written, making MorphoNet more likely to be used. The goals are clearly defined, addressing an undeniable need in the bioimage analysis community. The authors use a diverse range of datasets, successfully demonstrating the versatility of the software. 

      We would also like to highlight the great effort that was made to clearly explain which type of computer configurations are necessary to run the different datasets and how to find the appropriate documentation according to your needs. The authors clearly carefully thought about these two important problems and came up with very satisfactory solutions. 

      We would like to sincerely thank the reviewer for their positive and thoughtful feedback. We are especially grateful that they acknowledged the clarity of the manuscript and the potential value of MorphoNet 2.0 for the community, particularly in facilitating the visualization and correction of complex 3D(+t) datasets. We also appreciate the reviewer’s recognition of our efforts to provide detailed guidance on hardware requirements and access to documentation—two aspects we consider crucial to ensuring the tool is both usable and widely adopted. Their comments are very encouraging and reinforce our commitment to making MorphoNet 2.0 as accessible and practical as possible for a broad range of users in the bioimage analysis community.

      Weaknesses: 

      There is still one concern: the quantification of the improvement of the segmentations in the use cases and, therefore, the quantification of the potential impact of the software. While it appears hard to quantify the quality of the correction, the proposed work would be significantly improved if such metrics could be provided. 

      The authors show some distributions of metrics before and after segmentations to highlight the changes. This is a great start, but there seem to be two shortcomings: first, the comparison and interpretation of the different distributions does not appear to be trivial. It is therefore difficult to judge the quality of the improvement from these. Maybe an explanation in the text of how to interpret the differences between the distributions could help. A second shortcoming is that the before/after metrics displayed are the metrics used to guide the correction, so, by design, the scores will improve, but does that accurately represent the improvement of the segmentation? It seems to be the case, but it would be nice to maybe have a better assessment of the improvement of the quality. 

      We thank the reviewer for this constructive and important comment. We fully agreed that assessing the true quality improvement of segmentation after correction is a central and challenging issue. While we initially focused on changes in the unsupervised quality metrics to illustrate the effect of the correction, we acknowledged that interpreting these distributions was not always straightforward, and that relying solely on the metrics used to guide the correction introduced an inherent bias in the evaluation.

      To address the first point, we revised the manuscript to provide clearer guidance on how to interpret the changes in metric distributions before and after correction, with additional examples to make this interpretation more intuitive.

      Regarding the second point, we agreed that using independent, external validation was necessary to confirm that the segmentation had genuinely improved. To this end, we included additional assessments using complementary evaluation strategies on selected datasets where ground truth was accessible, to compare pre- and post-correction segmentations with an independent reference. These results reinforced the idea that the corrections guided by unsupervised metrics generally led to more accurate segmentations, but we also emphasized their limitations and the need for biological validation in real-world cases.

      Reviewer #3 (Public review): 

      Summary: 

      A very thorough technical report of a new standalone, open-source software for microscopy image processing and analysis (MorphoNet 2.0), with a particular emphasis on automated segmentation and its curation to obtain accurate results even with very complex 3D stacks, including timelapse experiments. 

      Strengths: 

      The authors did a good job of explaining the advantages of MorphoNet 2.0, as compared to its previous web-based version and to other software with similar capabilities. What I particularly found more useful to actually envisage these claimed advantages is the five examples used to illustrate the power of the software (based on a combination of

      Python scripting and the 3D game engine Unity). These examples, from published research, are very varied in both types of information and image quality, and all have their complexities, making them inherently difficult to segment. I strongly recommend the readers to carefully watch the accompanying videos, which show (although not thoroughly) how the software is actually used in these examples. 

      We sincerely thanked the reviewer for their thoughtful and encouraging feedback. We were particularly pleased that the reviewer appreciated the comparative analysis of MorphoNet 2.0 with both its earlier version and existing tools, as well as the relevance of the five diverse and complex use cases we had selected. Demonstrating the software’s versatility and robustness across a variety of challenging datasets was a key goal of this work, and we were glad that this aspect came through clearly. We also appreciated the reviewer’s recommendation to watch the accompanying videos, which we had designed to provide a practical sense of how the tool was used in real-world scenarios. Their positive assessment was highly motivating and reinforced the value of combining scripting flexibility with an interactive 3D interface.

      Weaknesses: 

      Being a technical article, the only possible comments are on how methods are presented, which is generally adequate, as mentioned above. In this regard, and in spite of the presented examples (chosen by the authors, who clearly gave them a deep thought before showing them), the only way in which the presented software will prove valuable is through its use by as many researchers as possible. This is not a weakness per se, of course, but just what is usual in this sort of report. Hence, I encourage readers to download the software and give it time to test it on their own data (which I will also do myself).   

      We fully agreed that the true value of MorphoNet 2.0 would be demonstrated through its practical use by a wide range of researchers working with complex 3D and 3D+t datasets. In this regard, we improved the user documentation and provided a set of example datasets to help new users quickly familiarize themselves with the platform. We were also committed to maintaining and updating MorphoNet 2.0 based on user feedback to further support its usability and impact.

      In conclusion, I believe that this report is fundamental because it will be the major way of initially promoting the use of MorphoNet 2.0 by the objective public. The software itself holds the promise of being very impactful for the microscopists' community. 

      Reviewer #1 (Recommendations for the authors): 

      (1) In Use Case 1, when referring to Figure 3a, they describe features of 3b? 

      We corrected the mismatch between Figure 3a and 3b descriptions.

      (2) In Figure 3g-I, columns for Curated Nuclei and All Nuclei appear to be incorrectly labelled, and should be the other way around. 

      We corrected  the label swapped between “Curated Nuclei” and “All Nuclei.”

      (3) Some mention of how this will be supported in the future would be of interest. 

      We added a note on long-term support plans  

      (4) Could Morphonet be rolled into something like napari and integrated into its environment with access to its plugins and tools? 

      We thank the reviewer for this pertinent suggestion. We fully recognize the growing importance of interoperability within the bioimage analysis community, and we have been working on establishing a bridge between MorphoNet and napari to enable data exchange and complementary use of the two tools. As a platform, all new developments are first evaluated by our beta testers before being officially released to the user community and subsequently documented. The interoperability component is still under active development and will be announced shortly in a beta-testing phase. For this reason, we were not able to include it in the present manuscript, but we plan to document it in a future release.

      (5) Can meshes be extracted/saved in another format? 

      We agreed that the ability to extract and save meshes in standard formats was highly useful for interoperability with other tools. We implemented this feature in the new version of MorphoNet, allowing users to export meshes in commonly used formats such as OBJ or STL. Response: We thank the reviewer for this pertinent suggestion. We fully recognize the growing importance of interoperability within the bioimage analysis community, and we have been working on establishing a bridge between MorphoNet and napari to enable data exchange and complementary use of the two tools. As a platform, all new developments are first evaluated by our beta testers before being officially released to the user community and subsequently documented. The interoperability component is still under active development and will be announced shortly in a beta-testing phase. For this reason, we were not able to include it in the present manuscript, but we plan to document it in a future release.

      Reviewer #2 (Recommendations for the authors): 

      As a comment, since the authors mentioned the recent progress in 3D segmentation of various biological components, including organelles, it could be interesting to have examples of Morphonet applied to investigate subcellular structures. These present different challenges in visualization and quantification due to their smaller scale.

      We thank the reviewer for this insightful suggestion. We fully agree that applying MorphoNet 2.0 to the analysis of sub-cellular structures is a promising direction, particularly given the specific challenges these datasets present in terms of resolution, visualization, and quantification. While our current use cases focus on cellular and tissue-level segmentation, we are actively interested in extending the applicability of the tool to finer scales. We are currently exploring plugins for spot detection and curation in single-molecule FISH data. However, this requires more time to properly validate relevant use cases, and we plan to include this functionality in the next release.

      Another comment is that the authors briefly mention two other state-of-the-art softwares (namely FIJI and napari) but do not really position MorphoNet against them. The text would likely benefit from such a comparison so the users can better decide which one to use or not. 

      We agreed that providing a clearer comparison between MorphoNet 2.0 and other widely used tools such as FIJI and Napari would greatly benefit readers and potential users. In response, we included a new paragraph in the supplementary materials of the revised manuscript, highlighting the main features, strengths, and limitations of each tool in the context of 3D+t segmentation, visualization, and correction workflows. This addition helped users better understand the positioning of MorphoNet 2.0 and make informed choices based on their specific needs.

      Minor comments: 

      L 439: The Deli plugin is mentioned but not introduced in the main text; it could be helpful to have an idea of what it is without having to dive into the supplementary material. 

      We included a brief description in the main text and thoroughly revise the help pages to improve clarity

      Figure 4: It is not clear how the potential holes created by the removal of objects are handled. Are the empty areas filled by neighboring cells, for example, are they left empty? 

      We clarified in the figure legend of Figure 4.

      Please remove from the supplementary the use cases that are already in the main text. 

      We cleaned up redundant use case descriptions.

      Typos: 

      L 22: the end of the sentence is missing. 

      L 51: There are two "."   

      L 370: replace 'et' with 'and'.   

      L 407-408, Figure 3: panels g-i, the columns 'curated nuclei' and 'all nuclei' seem to be inverted. 

      L 549: "four 4". 

      Reviewer #3 (Recommendations for the authors): 

      Dear Authors, what follows are "minor comments" (the only sort of comment I have for this nice report): 

      Minor issues: 

      (1) Not being a user of MorphoNet, I found that reading the manuscript was a bit hard due to the several names of plugins or tools that are mentioned, many times without a clear explanation of what they do. One way of improving this could be to add a table, a sort of glossary, with those names, a brief explanation of what they are, and a link to their "help" page on the web. 

      We understood that the manuscript might be difficult to follow for readers unfamiliar with MorphoNet, especially due to the numerous plugin and tool names referenced. To address this, we carried out a complete overhaul of the help pages to make them clearer, more structured, and easier to navigate.

      (2) Figure 4d, orthogonal view: It is claimed that this segmentation is correct according to the original intensity image, but it is not clear why some cells in the border actually appear a lot bigger than other cells in the embryo. It does look like an incomplete segmentation due to the poor image quality at the border. Whether this is the case or if the authors consider the contrary, it should be somehow explained/discussed in the figure legend or the main text. 

      We revised the figure legend and main text to acknowledge the challenge of segmenting peripheral regions with low signal-to-noise ratios and discussed how this affects segmentation.

      Small writing issues I could spot:   

      Line 247: there is a double point after "Sup. Mat..". 

      Line 329: probably a diagrammation error of the pdf I use to review, there is a loose sentence apparently related to a figure: "Vegetal view ofwith smoothness". 

      Line 393 (and many other places): avoid using numbers when it is not a parameter you are talking about, and the number is smaller than 10. In this case, it should be: "The five steps...". 

      Line 459: Is "opposite" referring to "Vegetal", like in g? In addition, it starts with lower lowercase. 

      Lines 540-541: Check if redaction is correct in "...projected the values onto the meshed dual of the object..." (it sounds obscure to me). 

      Lines 548-549: Same thing for "...included two groups of four 4 nuclei and one group of 3 fused nuclei.". 

      Line 637: Should it be "Same view as b"? 

      Line 646: "The property highlights..."? 

      Line 651: In the text, I have seen a "propagation plugin" named as "Prope", "Propa", and now "Propi". Are they all different? Is it a mistake? Please, see my first "Minor issue", which might help readers navigate through this sort of confusing nomenclature. 

      Line 702: I personally find the use of the term "eco-system" inappropriate in this context. We scientists know what an ecosystem is, and the fact that it has now become a fashionable word for politicians does not make it correct in any context. 

      We thank the reviewer for their careful reading of the manuscript and for pointing out these writing and typographic issues. We corrected all the mentioned points in the revised version, including punctuation, sentence clarity, consistent naming of tools (e.g., the propagation plugin), and appropriate use of terms such as “ecosystem.” We also appreciated the suggestion to avoid numerals for numbers under ten when not referring to parameters, and we ensured consistency throughout the text. These corrections improved the clarity and readability of the manuscript, and we were grateful for the reviewer’s attention to detail.

    1. eLife Assessment

      The study presents important insights into the regulation of muscle hypertrophy, regulated by Muscle Ankyrin Repeat Proteins (MARPs) and mTOR. The methods are overall solid and complementary, with only minor limitations. Overall, the findings will be of interest for both muscle-biology specialists and the broader mechanobiology community.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors employ diaphragm denervation in rats and mice to study titin‑based mechanosensing and longitudinal muscle hypertrophy. By integrating bulk RNA‑seq, proteomics, and phosphoproteomics, they map the stretch‑responsive signalling landscape, uncovering robust induction of the muscle‑ankyrin‑repeat proteins (MARP1‑3) together with enhanced phosphorylation of titin's N2A element. Genetic ablation of MARPs in mice amplifies longitudinal fibre growth and is accompanied by activation of the mTOR pathway, whereas systemic rapamycin treatment suppresses the hypertrophic response, highlighting mTORC1 as a key downstream effector of titin/MARP signalling.

      Strengths:

      The authors address a clear biological question: "how titin‑associated factors translate mechanical stretch into longitudinal fibre growth" using a unique and clinically relevant animal model of diaphragm denervation. Using a comprehensive multiomics approach, the authors identify MARPs as potential mediators of these effects and use a genetic mouse model to provide compelling evidence supporting causality. Additionally, connecting these findings to rapamycin, a drug widely used clinically, further increases the relevance and potential impact of the study.

      Weaknesses:

      There are several areas where the manuscript could be substantially improved.

      (1) The statistical analysis of multi-omics data needs clarification. Typically, analyses across multiple experimental groups require controlling the false discovery rate (FDR) simultaneously to avoid reporting false-positive findings. It would be very helpful if the authors could specify whether adjusted p-values were calculated using a multi-factorial statistical model (e.g., ~group) or through separate pairwise contrasts.

      (2) There are three separate points regarding MARP3 that could be improved. First, the authors report that MARP3-KO mice exhibit smaller increases in muscle mass after diaphragm denervation compared to wild-type mice (a -13% difference), indicating MARP3 likely promotes rather than attenuates hypertrophy. However, the manuscript currently states the opposite (lines 215-216); this interpretation should be revisited. Second, it would be valuable if the authors could provide data showing whether MARP3 transcript or protein levels change response to denervation - if they do not, discussing mechanisms behind the observed phenotype would help clarify the findings. Finally, given that some MARP-KO mice already exhibit baseline differences, employing and reporting the full two-way ANOVA ( including genotype × treatment interaction) would allow a direct statistical assessment of whether MARP deficiency modifies the muscle's response to stretch. This analysis would help clearly resolve any existing ambiguity.

      (3) The current presentation of multi-omics data is somewhat difficult to follow, making it challenging to determine whether observed changes occur at the transcript or protein level due to inconsistent gene/protein naming and capitalization (e.g., proper forms are mTOR, p70 S6K, 4E-BP1). Clearly organizing and presenting transcript and protein-level changes side-by-side, especially for key molecules discussed in later experiments, would make the data more accessible and provide clearer insights into the biology of titin-mediated mechanosensing.

      (4) The current analysis relies on total protein measurements downstream of mTOR, yet mTOR's primary mode of action is to change phosphorylation status. Because the authors have already generated a phosphoproteomic dataset, it would be very helpful to report - or at least comment on - whether known mTOR target phosphosites were detected and how they respond to denervation and rapamycin. Including even a brief summary of canonical sites such as S6K1 Thr389 or 4E‑BP1 Thr37/46 would make the link between mTOR activity and hypertrophy much clearer.

      (5) Finally, since rapamycin blocks only a subset of mTOR signalling, a brief discussion that distinguishes rapamycin‑sensitive from rapamycin‑insensitive pathways would be valuable. Clarifying whether diaphragm stretch relies exclusively on the sensitive branch or also engages the resistant branch would place the results in a broader mTOR context and deepen the mechanistic narrative.

    3. Reviewer #2 (Public review):

      Summary:

      Muscle hypertrophy is a major regulator of human health and performance. Here, van der Pilj and colleagues assess the role of the giant elastic protein, titin, in regulating the longitudinal hypertrophy of diaphragm muscles following denervation. Interestingly, the authors find an early hypertrophic response, with 30% new serial sarcomeres added within 6 days, followed by subsequent muscle atrophy. Using RBM20 mutant mice, which express a more compliant titin, the authors discovered that this longitudinal hypertrophy is mediated via titin mechanosensing. Through an omics approach, it is suggested that the Muscle ankyrin proteins may regulate this approach. Genetic ablation of MARPs 1-3 blocks the hypertrophic response, although single knockouts are more variable, suggesting extensive complementation between these titin binding proteins. Finally, it is found through the administration of rapamycin that the mTOR signalling pathway plays a role in longitudinal hypertrophic growth.

      Strengths:

      This paper is well written and uses an impressive suite of genetic mouse models to address this interesting question of what drives longitudinal muscle growth.

      Weaknesses:

      While the findings are of interest, they lack sufficient mechanistic detail in the current state to separate cross-sectional versus longitudinal hypertrophy. The authors have excellent tools such as the RBM20 model to functionally dissect mTOR signalling to these processes. It is also unclear if this process is unique to the diaphragm or is conserved across other muscle groups during eccentric contractions.

    1. eLife Assessment

      This important study examines the potential role of ARHGAP36 transcriptional regulation by FOXC1 in controlling sonic hedgehog signaling in human neuroblastoma. While there are many solid findings that strongly support this signaling pathway, there are some aspects of the study that are underdeveloped.

    2. Reviewer #1 (Public review):

      This thoughtful and thorough mechanistic and functional study reports ARHGAP36 as a direct transcriptional target of FOXC1, which regulates Hedgehog signaling (SUFU, SMO, and GLI family transcription factors) through modulation of PKAC. Clinical outcome data from patients with neuroblastoma, one of the most common extracranial solid malignancies in children, demonstrate that ARHGAP36 expression is associated with improved survival. Although this study largely represents a robust and near-comprehensive set of focused investigations on a novel target of FOXC1 activity, several significant omissions undercut the generalizability of the findings reported.

      (1) It is notable that the volcano plot in Figure 1a does now show evidence of canonical Hedgehog gene regulation, even though the subsequent studies in this paper clearly demonstrate that ARHGAP36 regulates Hedgehog signal transduction. Is this because canonical Hedgehog target genes (GLI1, PTCH1, SUFU) simply weren't labeled? Or is there a technical limitation that needs to be clarified? A note about Hedgehog target genes is made in conjunction with Table S1, but the justification or basis of defining these genes as Hedgehog targets is unclear. More broadly, it would be useful to see ontology analyses from these gene expression data to understand FOXC1 target genes more broadly. Ontology analyses are included in a supplementary table, but network visualizations would be much preferred.

      (2) Likewise, the ChIP-seq data in Figure 2 are under-analyzed, focusing only on the ARHGAP36 locus and not more broadly on the FOXC1 gene expression program. This is a missed opportunity that should be remedied with unbiased analyses intersecting differentially expressed FOXC1 peaks with differentially expressed genes from RNA-sequencing data displayed in Figure 1.

      (3) RNA-seq and ChIP-seq data strongly suggest that FOXC1 regulates ARHGAP36 expression, and the authors convincingly identify genomic segments at the ARHGAP36 locus where FOXC1 binds, but they do not test if FOXC1 specifically activates this locus through the creation of a luciferase or similar promoter reporter. Such a reagent and associated experiments would not only strengthen the primary argument of this investigation but could serve as a valuable resource for the community of scientists investigating FOXC1, ARHGAP36, the Hedgehog pathway, and related biological processes. CRISPRi targeting of the identified regions of the ARHGAP locus is a useful step in the right direction, but these experiments are not done in a way to demonstrate FOXC1 dependency.

      (4) It would be useful to see individual fluorescence channels in association with images in Figure 3b.

      (5) Perhaps the most significant limitation of this study is the omission of in vivo data, a shortcoming the authors partly mitigate through the incorporation of clinical outcome data from pediatric neuroblastoma patients in the context of ARHGAP36 expression. The authors also mention that high levels of ARHGAP36 expression were also detected in "specific CNS, breast, lung, and neuroendocrine tumors," but do not provide clinical outcome data for these cohorts. Such analyses would be useful to understand the generalizability of their findings across different cancer types. More broadly, how were high, medium, and low levels of ARHGAP36 expression identified? "Terciles" are mentioned, but such an approach is not experimentally rigorous, and RPA or related approaches (nested rank statistics, etc) are recommended to find optimal cutpoints for ARHGAP36 expression in the context of neuroblastoma, "specific CNS, breast, lung, and neuroendocrine" tumor outcomes.

    3. Reviewer #2 (Public review):

      FOXC1 is a transcription factor essential for the development of neural crest-derived tissues and has been identified as a key biomarker in various cancers. However, the molecular mechanisms underlying its function remain poorly understood. In this study, the authors used RNA-seq, ChIP-seq, and FOXC1-overexpressing cell models to show that FOXC1 directly activates transcription of ARHGAP36 by binding to specific cis-regulatory elements. Elevated expression of FOXC1 or ARHGAP36 was found to enhance Hedgehog (Hh) signaling and suppress PKA activity. Notably, overexpression of either gene also conferred resistance to Smoothened (SMO) inhibitors, indicating ligand-independent activation of Hh signaling. Analysis of public gene expression datasets further revealed that ARHGAP36 expression correlates with improved 5-year overall survival in neuroblastoma patients. Together, these findings uncover a novel FOXC1-ARHGAP36 regulatory axis that modulates Hh and PKA signaling, offering new insights into both normal development and cancer progression.

      The main strengths of the study are:

      (1) Identification of a novel signaling pathway involving FOXC1 and ARHGAP36, which may play a critical role in both normal development and cancer biology.

      (2) Mechanistic investigation using RNA-seq, ChIP-seq, and functional assays to elucidate how FOXC1 regulates ARHGAP36 and how this axis modulates Hh signaling.

      (3) Clinical relevance demonstrated through analysis of neuroblastoma patient datasets, linking ARHGAP36 expression to improved 5-year overall survival.

      The main weaknesses of the study are:

      (1) Lack of validation in neuroblastoma models - the study does not directly test its findings in neuroblastoma cell models, limiting translational relevance.

      (2) Incomplete mechanistic insight into PKA regulation - the study does not fully elucidate how FOXC1-ARHGAP36 regulates PKAC activity at the molecular level.

      (3) Insufficient discussion of clinical outcome data - while ARHGAP36 expression correlates with improved survival in neuroblastoma, the manuscript lacks a clear interpretation of this unexpected finding, especially given the known oncogenic roles of FOXC1, ARHGAP36, and Hh signaling.

    4. Reviewer #3 (Public review):

      Summary:

      The focus of the research is to understand how transcription factors with high expression in neural crest cell-derived cancers (e.g., neuroblastoma) and roles in neural crest cell development function to promote malignancy. The focus is on the transcription factor FOXC1 and using murine cell culture, gain- and loss-of-function approaches, and ChIP profiling, among other techniques, to place PKAC inhibitor ARHGAP36 mechanistically between FOXC1 and another pathway associated with malignancy, Sonic Hedgehog (SHH).

      Strengths:

      Major strengths are the mechanistic approaches to identify FOXC1 direct targets, definitively showing that FOXC1 transcriptional regulation of ARHGAP36 leads to dysregulation of SHH signaling downstream of ARHGAP36 inhibition of PKC. Starting from a screen of Foxc1 OE to get to ARHGAP36 and then using genetic and pharmacological manipulation to work through the mechanism is very well done. There is data that will be of use to others studying FOXC1 in mesenchymal cell types, in particular, the FOXC1 ChIP-seq.

      Weaknesses:

      Work is almost all performed in NIH3T3 or similar cells (mouse cells, not patient or mouse-derived cancer cells), so the link to neuroblastoma that forms the major motivation of the work is not clear. The authors look at ARHGAP36 levels in association with the neuroblastoma patient survival; however, the finding, though interesting and quite compelling, is misaligned with what the literature shows about FOXC1 and SHH, their high expression is associated with increased malignancy (also maybe worse outcomes?). Therefore, ARHGAP36 expression may be more complicated in a tumor cell or may be unrelated to FOXC1 or SHH, leaving one to wonder what the work in NIH3T3 cells, though well done, is telling us about the mechanisms of FOXC1 as an oncogene in neuroblastoma cells or in any type of cancer cell. Does it really function as an SHH activator to drive tumor growth? The 'oncogenic relevance' and 'contribution to malignancy' claimed in the last paragraph of the introduction are currently weakly supported by the data as presented. This could be improved by studying some of these mechanisms in patient-derived neuroblastoma cells with high FOXC1 expression. Does inhibiting FOXC1 change SHH and ARHGAP36 and have any effect on cell proliferation or migration? Alternatively, does OE of FOXC1 in NIH3T3 cells increase their migration or stimulate proliferation in some way, and is this dependent on ARHGAP36 or SHH? Application of their mechanistic approaches in cancer cells or looking for hallmarks of cancer phenotypes with FOXC1 OE (and dependent on SHH or ARHGAP36) could help to make a link with cellular phenotypes of malignant cells.

    5. Author Response:

      Thank you for forwarding these helpful and thoughtful reviews - at a time when the review process in some journals can be a bit of a 'bloodsport', it is refreshing to receive such constructive and excellent comments.  We essentially agree with the key points the reviewers have made, and as an interim response provide clarification of two areas:

      1) As the reviewers highlighted, genome-wide analysis of ChIP-seq data from Foxc1 over-expression is indeed very worthwhile, and may offer insights for diverse malignancies where FOXC1 is over-expressed.  We have a manuscript in preparation integrating this data set with ATAC-and RNA-seq data to identify genes transcriptionally regulated by elevated levels of Foxc1.  In the interim, our full ChIP-seq data are available via the GEO accession number listed in the manuscript.

      2) Analysis in neuroblastoma cell lines and then xenografts is equally important. Experiments manipulating ARHGAP36 levels in human neuroblastoma cell lines are underway, however a detailed mechanistic understanding of how ARHGAP36 influences neuroblastoma prognosis will take time, and lies beyond the scope of the current manuscript.

    1. eLife Assessment

      This study is important as it demonstrates that 4-aminoquinoline antimalarials antagonize artemisinin activity under physiologically relevant conditions. Using isogenic parasite lines and a chemical probe, the authors provide mechanistic insight and compelling evidence implicating PfCRT in this antagonism. However, some weaknesses have been identified that limit full interpretation of the findings, which are based solely on in vitro assays, though the results have implications that will be of importance in optimizing future antimalarial combination strategies.

    2. Reviewer #1 (Public review):

      Summary:

      This study set out to investigate potential pharmacological drug-drug interactions between the two most common antimalarial classes, the artemisinins and quinolines. There is a strong rationale for this aim, because drugs from these classes are already widely used in Artemisinin Combination Therapies (ACTs) in the clinic, and drug combinations are an important consideration in the development of new medicines. Furthermore, whilst there is ample literature proposing many diverse mechanisms of action and resistance for the artemisinins and quinolines, it is generally accepted that the mechanisms for both classes involve heme metabolism in the parasite, and that artemisinin activity is dependent on activation by reduced heme. The study was designed to measure drug-drug interactions associated with a short pulse exposure (4 h) that is reminiscent of the short duration of artemisinin exposure obtained after in vivo dosing. Clear antagonism was observed between dihydroartemisinin (DHA) and chloroquine, which became even more extensive in chloroquine-resistant parasites. Antagonism was also observed in this assay for the more clinically-relevant ACT partner drugs piperaquine and amodiaquine, but not for other ACT partners mefloquine and lumefantrine, which don't share the 4-aminoquinoline structure or mode of action. Interestingly, chloroquine induced an artemisinin resistance phenotype in the standard in vitro Ring-stage Survival Assay, whereas this effect was not apparent for piperaquine.

      The authors also utilised a heme-reactive probe to demonstrate that the 4-aminoquinolines can inhibit heme-mediated activation of the probe within parasites, which suggests that the mechanism of antagonism involves the inactivation of heme, rendering it unable to activate the artemisinins. Measurement of protein ubiquitination showed reduced DHA-induced protein damage in the presence of chloroquine, which is also consistent with decreased heme-mediated activation, and/or with decreased DHA activity more generally.

      Overall, the study clearly demonstrates a mechanistic antagonism between DHA and 4-aminoquinoline antimalarials in vitro. It is interesting that this combination is successfully used to treat millions of malaria cases every year, which may raise questions about the clinical relevance of this finding. However, the conclusions in this paper are supported by multiple lines of evidence, and the data are clearly and transparently presented, leaving no doubt that DHA activity is compromised by the presence of chloroquine in vitro. It is perhaps fortunate that the clinical dosing regimens of 4-aminoquinoline-based ACTs have been sufficient to maintain clinical efficacy despite the non-optimal combination. Nevertheless, optimisation of antimalarial combinations and dosing regimens is becoming more important in the current era of increasing resistance to artemisinins and 4-aminoquinolines. Therefore, these findings should be considered when proposing new treatment regimens (including Tripe-ACTs) and the assays described in this study should be performed on new drug combinations that are proposed for new or existing antimalarial medicines.

      Strengths:

      This manuscript is clearly written, and the data presented are clear and complete. The key conclusions are supported by multiple lines of evidence, and most findings are replicated with multiple drugs within a class, and across multiple parasite strains, thus providing more confidence in the generalisability of these findings across the 4-aminoquinoline and peroxide drug classes.

      A key strength of this study was the focus on short pulse exposures to DHA (4 h in trophs and 3 h in rings), which is relevant to the in vivo exposure of artemisinins. Artemisinin resistance has had a significant impact on treatment outcomes in South-East Asia, and is now emerging in Africa, but is not detected using a 'standard' 48 or 72 h in vitro growth inhibition assay. It is only in the RSA (a short pulse of 3-6 h treatment of early ring stage parasites) that the resistance phenotype can be detected in vitro. Therefore, assays based on this short pulse exposure provide the most relevant approach to determine whether drug-drug interactions are likely to have a clinically relevant impact on DHA activity. These assays clearly showed antagonism between DHA and 4-aminoquinolines (chloroquine, piperaquine, amodiaquine, and ferroquine) in trophozoite stages. Interestingly, whilst chloroquine clearly induced an artemisinin-resistant phenotype in the RSA, piperaquine did not appear to impact the early ring stage activity of DHA, which may be fortunate considering that piperaquine is a currently recommended DHA partner drug in ACTs, whereas chloroquine is not!

      The evaluation of additional drug combinations at the end of this paper is a valuable addition, which increases the potential impact of this work. The finding of antagonism between piperaquine and OZ439 in trophozoites is consistent with the general interactions observed between peroxides and 4-aminoquinolines, and it would be interesting to see whether piperaquine impacts the ring-stage activity of OZ439.

      The evaluation of reactive heme in parasites using a fluorescent sensor, combined with the measurement of K48-linked ubiquitin, further supports the findings of this study, providing independent read-outs for the chloroquine-induced antagonism.

      The in-depth discussion of the interpretation and implications of the results is an additional strength of this manuscript. Whilst the discussion section is rather lengthy, there are important caveats to the interpretation of some of these results, and clear relevance to the future management of malaria that require these detailed explanations.

      Overall, this is a high-quality manuscript describing an important study that has implications for the selection of antimalarial combinations for new and existing malaria medicines.

      Weaknesses:

      This study is an in vitro study of parasite cultures, and therefore, caution should be taken when applying these findings to decisions about clinical combinations. The drug concentrations and exposure durations in these assays are intended to represent clinically relevant exposures, although it is recognised that the in vitro system is somewhat simplified and there may be additional factors that influence in vivo activity. I think this is reasonably well acknowledged in the manuscript.

      It is also important to recognise that the majority of the key findings regarding antagonism are based on trophozoite-stage parasites, and one must show caution when generalising these findings to other stages or scenarios. For example, piperaquine showed clear antagonism in trophozoite stages, but not in ring stages under these assay conditions.

      The key weakness in this manuscript is the over-interpretation of the mechanistic studies that implicate heme-mediated artemisinin activation as the mechanism underpinning antagonism by chloroquine. In particular, the manuscript title focuses on heme-mediated activation of artemisinins, but this study did not directly measure the activation of artemisinins. The data obtained from the activation of the fluorescent probe are generally supportive of chloroquine suppressing the heme-mediated activation of artemisinins, and I think this is the most likely explanation, but there are significant caveats that undermine this conclusion. Primarily, the inconsistency between the fluorescence profile in the chemical reactions and the cell-based assay raises questions about the accuracy of this readout. In the chemical reaction, mefloquine and chloroquine showed identical inhibition of fluorescence, whereas piperaquine had minimal impact. On the contrary, in the cell, chloroquine and piperaquine had similar impacts on fluorescence, but mefloquine had minimal impact. This inconsistency indicates that the cellular fluorescence based on this sensor does not give a simple direct readout of the reactivity of ferrous heme, and therefore, these results should be interpreted with caution. Indeed, the correlation between fluorescence and antagonism for the tested drugs is a correlation, not causation. There could be several reasons for the disconnect between the chemical and biological results, either via additional mechanisms that quench fluorescence, or the presence of biomolecules that alter the oxidation state or coordination chemistry of heme or other potential catalysts of this sensor. It is possible that another factor that influences the H-FluNox fluorescence in cells also influences the DHA activity in cells, leading to the correlation with activity. It should be noted that H-FluNox is not a chemical analogue of artemisinins. Its activation relies on Fenton-like chemistry, but with an N-O rather than O-O bond, and it possesses very different steric and electronic substituents around the reactive centre, which are known to alter reactivity to different iron sources. Despite these limitations, the authors have provided reasonable justification for the use of this probe to directly visualise heme reactivity in cells, and the results are still informative, but additional caution should be provided in the interpretation, and the results are not conclusive enough to justify the current title of the paper.

      Another interesting finding that was not elaborated by the authors is the impact of chloroquine on the DHA dose-response curves from the ring stage assays. Detection of artemisinin resistance in the RSA generally focuses on the % survival at high DHA concentrations (700 nM) as there is minimal shift in the IC50 (see Figure 2), however, chloroquine clearly induces a shift in the IC50 (~5-fold), where the whole curve is shifted to the right, whereas the increase in % survival is relatively small. This different profile suggests that the mechanism of chloroquine-induced antagonism is different from the mechanism of artemisinin resistance. Current evidence regarding the mechanism of artemisinin resistance generally points towards decreased heme-mediated drug activation due to a decrease in hemoglobin uptake, which should be analogous to the decrease in heme-mediated drug activation caused by chloroquine. However, these different dose-response curves suggest different mechanisms are primarily responsible. Additional mechanisms have been proposed for artemisinin resistance, involving redox or heat stress responses, proteostatic responses, mitochondrial function, dormancy, and PI3K signaling, among others. Whilst the H-FluNox probe generally supports the idea that chloroquine suppresses heme-mediated DHA activation, it remains plausible that chloroquine could induce these, or other, cellular responses that suppress DHA activity.

      The other potential weakness in the current manuscript is the interpretation of the OZ439 clinical data. Whilst the observed interaction with piperaquine and ferroquine may have been a contributing factor, it should also be recognised that the low pharmacokinetic exposure in these studies was the primary reason for treatment failure (Macintyre 2017).

      Impact:

      This study has important implications for the selection of drugs to form combinations for the treatment of malaria. The overall findings of antagonism between peroxide antimalarials and 4-aminoquinolines in the trophozoite stage are robust, and this carries across to the ring stage for chloroquine (but not piperaquine).

      The manuscript also provides a plausible mechanism to explain the antagonism, although future work will be required to further explore the details of this mechanism and to rule out alternative factors that may contribute.

      Overall, this is an important contribution to the field and provides a clear justification for the evaluation of potential drug combinations in relevant in vitro assays before clinical testing.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript by Rosenthal and Goldberg investigates interactions between artemisinins and their quinoline partner drugs currently used for treating uncomplicated Plasmodium falciparum malaria. The authors show that chloroquine (CQ), piperaquine, and amodiaquine antagonize dihydroartemisinin (DHA) activity, and in CQ-resistant parasites, the interaction is described as "superantagonism," linked to the pfcrt genotype. Mechanistically, application of the heme-reactive probe H-FluNox indicates that quinolines render cytosolic heme chemically inert, thereby reducing peroxide activation. The work is further extended to triple ACTs and ozonide-quinoline combinations, with implications for artemisinin-based combination therapy (ACT) design, including triple ACTs.

      Strengths:

      The manuscript is clearly written, methodologically careful, and addresses a clinically relevant question. The pulsing assay format more accurately models in vivo artemisinin exposure than conventional 72-hour assays, and the use of H-FluNox and Ac-H-FluNox probes provides mechanistic depth by distinguishing chemically active versus inert heme. These elements represent important refinements beyond prior studies, adding nuance to our understanding of artemisinin-quinoline interactions.

      Weaknesses:

      Several points warrant consideration. The novelty of the work is somewhat incremental, as antagonism between artemisinins and quinolines is well established. Multiple prior studies using standard fixed-ratio isobologram assays have shown that DHA exhibits indifferent or antagonistic interactions with chloroquine, piperaquine, and amodiaquine (e.g., Davis et al., 2006; Fivelman et al., 2007; Muangnoicharoen et al., 2009), with recent work highlighting the role of parasite genetic background, including pfcrt and pfmdr1, in modulating these interactions (Eastman et al., 2016). High-throughput drug screens likewise identify quinoline-artemisinin combinations as mostly antagonistic. The present manuscript adds refinement by applying pulsed-exposure assays and heme probes rather than establishing antagonism de novo.

      The dataset focuses on several parasite lines assayed in vitro, so claims about broad clinical implications should be tempered, and the discussion could more clearly address how in vitro antagonism may or may not translate to clinical outcomes. The conclusion that artemisinins are predominantly activated in the cytoplasm is intriguing but relies heavily on Ac-H-FluNox data, which may have limitations in accessing the digestive vacuole and should be acknowledged explicitly. The term "superantagonism" is striking but may appear rhetorical; clarifying its reproducibility across replicates and providing a mechanistic definition would strengthen the framing. Finally, some discussion points, such as questioning the clinical utility of DHA-PPQ, should be moderated to better align conclusions with the presented data while acknowledging the complexity of in vivo pharmacology and clinical outcomes.

      Despite these mild reservations, the data are interesting and of high quality and provide important new information for the field.

    4. Reviewer #3 (Public review):

      Summary:

      The authors present an in vitro evaluation of drug-drug interactions between artemisinins and quinoline antimalarials, as an important aspect for screening the current artemisinin-based combination therapies for Plasmodium falciparum. Using a revised pulsing assay, they report antagonism between dihydroartemisinin (DHA) and several quinolines, including chloroquine, piperaquine (PPQ), and amodiaquine. This antagonism is increased in CQ-resistant strains in isobologram analyses. Moreover, CQ co-treatment was found to induce artemisinin resistance even in parasites lacking K13 mutations during the ring-stage survival assay. This implies that drug-drug interactions, not just genetic mutations, can influence resistance phenotypes. By using a chemical probe for reactive heme, the authors demonstrate that quinolines inhibit artemisinin activation by rendering cytosolic heme chemically inert, thereby impairing the cytotoxic effects of DHA. The study also observed negative interactions in triple-drug regimens (e.g., DHA-PPQ-Mefloquine) and in combinations involving OZ439, a next-generation peroxide antimalarial. Taken together, these findings raise significant concerns regarding the compatibility of artemisinin and quinoline combinations, which may promote resistance or reduce efficacy.

      Throughout the manuscript, no combinations were synergistic, which necessitates comparing the claims to a synergistic combination as a control. The lack of this positive control makes it difficult to contextualize the observed antagonism. Including a known synergistic pair (e.g., artemisinin + lumefantrine) throughout the study would have provided a useful benchmark to assess the relative impact of the drug interactions described.

      Strengths:

      This study demonstrates the following strengths:

      (1) The use of a pulsed in vitro assay that is more physiologically relevant than the traditional 48h or 72h assays.

      (2) Small molecule probes, H-FluNox, and Ac-H-FluNox to detect reactive cytosolic heme, demonstrating that quinolines render heme inert and thereby block DHA activation.

      (3) Evaluates not only traditional combinations but also triple-drug combinations and next-generation artemisinins like OZ439. This broad scope increases the study's relevance to current treatment strategies and future drug development.

      (4) By using the K13 wild-type parasites, the study suggests that resistance phenotypes can emerge from drug-drug interactions alone, without requiring genetic resistance markers.

      Weaknesses:

      (1) No combinations are shown as synergistic: it could be valuable to have a combination that shows synergy as a positive control (e.g, artemisinin + lumefantrine) throughout the manuscript. The absence of a synergistic control combination in the experimental design makes it more challenging to evaluate the relative impact of the described drug interactions.

      (2) Evaluation of the choice of drug-drug interactions: How generalizable are the findings across a broad range of combinations, especially those with varied modes of action?

      (3) The study would also benefit from a characterization of the molecular basis for the observed heme inactivation by quinolines to support this hypothesis - while the probe experiments are valuable, they do not fully elucidate how quinolines specifically alter heme chemistry at the molecular level.

      (4) Suggestion of alternative combinations that show synergy could have improved the significance of the work.

      (5) All data are derived from in vitro experiments, without accompanying an in vivo validation. While the pulsing assay improves physiological relevance, it still cannot fully capture the complexity of drug pharmacokinetics, host-parasite interactions, or immune responses present in living organisms.

      (6) The absence of pharmacokinetic/pharmacodynamic modeling leaves questions about how the observed antagonism would manifest under real-world dosing conditions.

    5. Author response:

      Reviewer #1:

      We thank the reviewer for their thoughtful summary of this manuscript. It is important to note that DHA-PPQ did show antagonism in RSAs. In this modified RSA, 200 nM PPQ alone inhibited growth of PPQ-sensitive parasites approximately 20%. If DHA and PPQ were additive, then we would expect that addition of 200 nM PPQ would shift the DHA dose response curve to the left and result in a lower DHA IC50. Please refer to Figure 4a and b as examples of additive relationships in dose-response assays. We observed no significant shift in IC50 values between DHA alone and DHA + PPQ. This suggests antagonism, albeit not to the extent seen with CQ. We will modify the manuscript to emphasize this point. As the reviewer pointed out, it is fortunate that despite being antagonistic, clinically used artemisinin-4-aminoquinoline combinations are effective, provided that parasites are sensitive to the 4-aminoquinoline. It is possible that superantagonism is required to observe a noticeable effect on treatment efficacy (Sutherland et al. 2003 and Kofoed et al. 2003), but that classical antagonism may still have silent consequences. For example, if PPQ blocks some DHA activation, this might result in DHA-PPQ acting more like a pseudo-monotherapy. However, as the reviewer pointed out, while our data suggest that DHA-PPQ and AS-ADQ are “non-optimal” combinations, the clinical consequences of these interactions are unclear. We will modify the manuscript to emphasize the later point.

      While the Ac-H-FluNox and ubiquitin data point to a likely mechanism for DHA-quinoline antagonism, we agree that there are other possible mechanisms to explain this interaction.  We will temper the title and manuscript to reflect these limitations. Though we tried to measure DHA activation in parasites directly, these attempts were unsuccessful. We acknowledge that the chemistry of DHA and Ac-H-FluNox activation is not identical and that caution should be taken when interpreting these data. Nevertheless, we believe that Ac-H-FluNox is the best currently available tool to measure “active heme” in live parasites and is the best available proxy to assess DHA activation in live parasites. Both in vitro and in parasite studies point to a roll for CQ in modulating heme, though an exact mechanism will require further examination. Similar to the reviewer, we were perplexed by the differences observed between in vitro and in parasite assays with PPQ and MFQ. We proposed possible hypotheses to explain these discrepancies in the discussion section. Interestingly, our data corelate well with hemozoin inhibition assays in which all three antimalarials inhibit hemozoin formation in solution, but only CQ and PPQ inhibit hemozoin formation in parasites. In both assays, in-parasite experiments are likely to be more informative for mechanistic assessment.

      It remains unclear why K13 genotype influences RSA values, but not early ring DHA IC50 values. In K13<sup>WT</sup> parasites, both RSA values and DHA IC50 values were increased 3-5 fold upon addition of CQ. This suggests that CQ-mediated resistance is more robust than that conferred by K13 genotype. However, this does not necessarily suggest a different resistance mechanism. We acknowledge that in addition to modulating heme, it is possible that CQ may enhance DHA survival by promoting parasite stress responses. Future studies will be needed to test this alternative hypothesis. This limitation will be acknowledged in the manuscript. We will also address the reviewer’s point that other factors, including poor pharmacokinetic exposure, contributed to OZ439-PPQ treatment failure.

      Reviewer #2:

      We appreciate the positive feedback. We agree that there have been previous studies, many of which we cited, assessing interactions of these antimalarials. We also acknowledge that previous work, including our own, has shown that parasite genetics can alter drug-drug interactions. We will include the author’s recommended citations to the list of references that we cited. Importantly, our work was unique not only for utilizing a pulsing format, but also for revealing a superantagonistic phenotype, assessing interactions in an RSA format, and investigating a mechanism to explain these interactions. We agree with the reviewer that implications from this in vitro work should be cautious, but hope that this work contributes another dimension to critical thinking about drug-drug interactions for future combination therapies. We will modify the manuscript to temper any unintended recommendations or implications.

      The reviewer notes that we conclude “artemisinins are predominantly activated in the cytoplasm”. We recognize that the site of artemisinin activation is contentious. We were very clear to state that our data combined with others suggest that artemisinins can be activated in the parasite cytoplasm. We did not state that this is the primary site of activation. We were clear to point out that technical limitations may prevent Ac-H-FluNox signal in the digestive vacuole, but determined that low pH alone could not explain the absence of a digestive vacuole signal.

      With regard to the “reproducibility” and “mechanistic definition” of superantagonism, we observed what we defined as a one-sided superantagonistic relationship for three different parasites (Dd2, Dd2 PfCRT<sup>Dd2</sup>, and Dd2 K13<sup>R539T</sup>) for a total of nine independent replicates. In the text, we define that these isoboles are unique in that they had mean ΣFIC50 values > 2.4 and peak ΣFIC50 values >4 with points extending upward instead of curving back to the axis. As further evidence of the reproducibility of this relationship, we show that CQ has a significant rescuing effect on parasite survival to DHA as assessed by RSAs and IC50 values in early rings.

      Reviewer #3:

      We thank the reviewer for their positive feedback. We acknowledge that no combinations tested in this manuscript were synergistic. However, two combinations, DHA-MFQ and DHA-LM, were additive, which provides context for contextualizing antagonistic relationships. We have previously reported synergistic and additive isobolograms for peroxide-proteasome inhibitor combinations using this same pulsing format (Rosenthal and Ng 2021). These published results will be cited in the manuscript.

      We believe that these findings are specific to 4-aminoquinoline-peroxide combinations, and that these findings cannot be generalized to antimalarials with different mechanisms of action. Note that the aryl amino alcohols, MFQ and LM, were additive with DHA. Since the mechanism of action of MFQ and LM are poorly understood, it is difficult to speculate on a mechanism underlying these interactions.

      We agree with the reviewer that while the heme probe may provide some mechanistic insight to explain DHA-quinoline interactions, there is much more to learn about CQ-heme chemistry, particularly within parasites.

      The focus of this manuscript was to add a new dimension to considerations about pairings for combination therapies. It is outside the scope of this manuscript to suggest alternative combinations. However, we agree that synergistic combinations would likely be more strategic clinically.

      An in vitro setup allows us to eliminate many confounding variables in order to directly assess the impact of partner drugs on DHA activity. However, we agree that in vivo conditions are incredibly more complex, and explicitly state this.

      We agree that in the future, modeling studies could provide insight into how antagonism may contribute to real-world efficacy. This is outside the scope of our studies.

    1. eLife Assessment

      This study presents vassi, a Python package that streamlines the preparation of training data for machine-learning-based classification of social behaviors in animal groups. This package is a valuable resource for researchers with computational expertise, implementing a framework for the detection of directed social interactions within a group and an interactive tool for reviewing and correcting behavior detections. However, the strength of evidence that the method is widely applicable remains incomplete, performance on benchmark dyadic datasets is comparable to existing approaches, and performance scores on collective behavioral datasets are low. While the package can analyze behavior in large groups of animals, it only outputs dyadic interactions within these groups and does not account for behaviors where more than two animals may be interacting.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Nührenberg et al., describe vassi, a Python package for mutually exclusive behavioral classification of social behaviors. This package imports and organizes trajectory data and manual behavior labels, and then computes feature representations for use with available Python machine learning-based classification tools. These representations include all possible dyadic interactions within an animal group, enabling classification of social behaviors between pairs of animals at a distance. The authors validate this package by reproducing the behavior classification performance on a previously published dyadic mouse dataset, and demonstrate its use on a novel cichlid group dataset. The authors have created a package that is agnostic to the mechanism of tracking and will reduce the barrier of data preparation for machine learning, which can be a stumbling block for non-experts. The package also evaluates the classification performance with helpful visualizations and provides a tool for inspection of behavior classification results.

      Strengths:

      (1) A major contribution of this paper was creating a framework to extend social behavior classification to groups of animals such that the actor and receiver can be any member of the group, regardless of distance. To implement this framework, the authors created a Python package and an extensive documentation site, which is greatly appreciated. This package should be useful to researchers with a knowledge of Python, virtual environments, and machine learning, as it relies on scripts rather than a GUI interface and may facilitate the development of new machine learning algorithms for behavior classification.

      (2) The authors include modules for correctly creating train and test sets, and evaluation of classifier performance. This is extremely useful. Beyond evaluation, they have created a tool for manual review and correction of annotations. And they demonstrate the utility of this validation tool in the case of rare behaviors where correct classification is difficult, but the number of examples to review is reasonable.

      (3) The authors provide well-commented step-by-step instructions for the use of the package in the documentation.

      Weaknesses:

      (1) While the classification algorithm was not the subject of the paper, as the authors used off-the-shelf methods and were only able to reproduce the performance of the CALMS21 dyadic dataset, they did not improve upon previously published results. Furthermore, the results from the novel cichlid fish dataset, including a macro F1 score of 0.45, did not compellingly show that the workflow described in the paper produces useful behavioral classifications for groups of interacting animals performing rare social behaviors. I commend the authors for transparently reporting the results both with the macro F1 scores and the confusion matrices for the classifiers. The mutually exclusive, all-vs-all data annotation scheme of rare behaviors results in extremely unbalanced datasets such that categorical classification becomes a difficult problem. To try to address the performance limitation, the authors built a validation tool that allows the user to manually review the behavior predictions.

      (2) The pipeline makes a few strong assumptions that should be made more explicit in the paper.

      First, the behavioral classifiers are mutually exclusive and one-to-one. An individual animal can only be performing one behavior at any given time, and that behavior has only one recipient. These assumptions are implicit in how the package creates the data structure, and should be made clearer to the reader. Additionally, the authors emphasize that they have extended behavior classification to animal groups, but more accurately, they have extended behavioral classification to all possible pairs within a group.

      Second, the package expects comprehensive behavior labeling of the tracking data as input. Any frames not manually labeled are assumed to be the background category. Additionally, the package will interpolate through any missing segments of tracking data and assign the background behavioral category to those trajectory segments as well. The effects of these assumptions are not explored in the paper, which may limit the utility of this workflow for naturalistic environments.

      (3) Finally, the authors described the package as a tool for biologists and ethologists, but the level of Python and machine learning expertise required to use the package to develop a novel behavior classification workflow may be beyond the ability of many biologists. More accessible example notebooks would help address this problem.

    3. Reviewer #2 (Public review):

      Summary:

      The authors present a novel supervised behavioral analysis pipeline (vassi), which extends beyond previously available packages with its innate support of groups of any number of organisms. Importantly, this program also allows for iterative improvement upon models through revised behavioral annotation.

      Strengths:

      vassi's support of groups of any number of animals is a major advancement for those studying collective social behavior. Additionally, the built-in ability to choose different base models and iteratively train them is an important advancement beyond current pipelines. vassi is also producing behavioral classifiers with similar precision/recall metrics for dyadic behavior as currently published packages using similar algorithms.

      Weaknesses:

      vassi's performance on group behaviors is potentially too low to proceed with (F1 roughly 0.2 to 0.6). Different sources have slightly different definitions, but an F1 score of 0.7 or 0.8 is often considered good, while anything lower than 0.5 can typically be considered bad. There has been no published consensus within behavioral neuroscience (that I know of) on a minimum F1 score for use. Collective behavioral research is extremely challenging to perform due to hand annotation times, and there needs to be a discussion in the field as to the trade-off between throughput and accuracy before these scores can be either used or thrown out the door. It would also be useful to see the authors perform a few rounds of iterative corrections on these classifiers to see if performance is improved.

      While the interaction networks in Figure 2b-c look visually similar based on interaction pairs, the weights of the interactions appear to be quite different between hand and automated annotations. This could lead to incorrect social network metrics, which are increasingly popular in collective social behavior analysis. It would be very helpful to see calculated SNA metrics for hand versus machine scoring to see whether or not vassi is reliable for these datasets.

    4. Author response:

      We thank the reviewers and editors for their assessment and for identifying the main issues of our framework for automated classification of social interactions in animal groups. Based on the reviewers’ feedback, we would like to briefly summarize three areas in which we aim to improve both our manuscript and the software package.

      Firstly, we will revise our manuscript to better define the scope of our classification pipeline. As reviewer #1 correctly points out, our framework is built around the scoring and analysis of dyadic interactions within groups, rather than emergent group-level or collective behavior. This structure more faithfully reflects the way that researchers score social behaviors within groups, following focal individuals while logging all directed interactions of interest (e.g., grooming, aggression or courtship), and with whom these interactions are performed. Indeed, animal groups are often described as social networks of interconnected nodes (individuals), in which the connections between these nodes are derived from pairwise metrics, for example proximity or interaction frequency. For this reason, vassi does not aim to classify higher-level group behavior (i.e., the emergent, collective state of all group members) but rather the pair-wise interactions typically measured. Our classification pipeline replicates this structure, and therefore produces raw data that is familiar to researchers that study social animal groups with a focus on pairwise interactions. Since this may be seen as a limitation when studying group-level behavior (with more than two individuals involved, usually undirected), we will make this distinction between different forms of social interaction more clear in the introduction.

      Secondly, we acknowledge the low performance of our classification pipeline on the cichlid group dataset. We included analyses in the first version of our manuscript that, in our opinion, can justify the use of our pipeline in such cases (comparison to proximity networks), but we understand the reviewers' concerns. Based on their comments, we will perform additional analyses to further assess whether the use of vassi on this dataset results in valid behavioral metrics. This may, for example, include a comparison of per-individual SNA metrics between pipeline results and ground truth, or equivalent comparisons on the level of group structure (e.g., hierarchy derived from aggression counts). We thank reviewer #2 for these suggestions. As the reviewers further point out, there is no consensus yet on when the performance of behavioral classifiers is sufficient for reliable downstream analyses, and although this manuscript does not have the scope to discuss this for the field, it may help to substantiate discussion in future research.

      Finally, we appreciate the reviewers feedback on vassi as a methodological framework and will address the remaining software-related issues by improving the documentation and accessibility of our example scripts. This will reduce the technical hurdle to use vassi in further research. Additionally, we aim to incorporate a third dataset to demonstrate how our framework can be used for iterative training on a sparsely annotated dataset of groups, while broadening the taxonomic scope of our manuscript.

    1. eLife Assessment

      This study provides useful insights into the ways in which germinal center B cell metabolism, particularly lipid metabolism, affects cellular responses. The authors use sophisticated mouse models to demonstrate that ether lipids are relevant for B cell homeostasis and efficient humoral responses. Although the data were collected from in vitro and in vivo experiments and analyzed using solid and validated methodology, more careful experiments and extensive revision of the manuscript will be required to strengthen the authors' conclusions.

    2. Reviewer #1 (Public review):

      In this manuscript, Hoon Cho et al. presents a novel investigation into the role of PexRAP, an intermediary in ether lipid biosynthesis, in B cell function, particularly during the Germinal Center (GC) reaction. The authors profile lipid composition in activated B cells both in vitro and in vivo, revealing the significance of PexRAP. Using a combination of animal models and imaging mass spectrometry, they demonstrate that PexRAP is specifically required in B cells. They further establish that its activity is critical upon antigen encounter, shaping B cell survival during the GC reaction.

      Mechanistically, they show that ether lipid synthesis is necessary to modulate reactive oxygen species (ROS) levels and prevent membrane peroxidation.

      Highlights of the Manuscript:

      The authors perform exhaustive imaging mass spectrometry (IMS) analyses of B cells, including GC B cells, to explore ether lipid metabolism during the humoral response. This approach is particularly noteworthy given the challenge of limited cell availability in GC reactions, which often hampers metabolomic studies. IMS proves to be a valuable tool in overcoming this limitation, allowing detailed exploration of GC metabolism.

      The data presented is highly relevant, especially in light of recent studies suggesting a pivotal role for lipid metabolism in GC B cells. While these studies primarily focus on mitochondrial function, this manuscript uniquely investigates peroxisomes, which are linked to mitochondria and contribute to fatty acid oxidation (FAO). By extending the study of lipid metabolism beyond mitochondria to include peroxisomes, the authors add a critical dimension to our understanding of B cell biology.

      Additionally, the metabolic plasticity of B cells poses challenges for studying metabolism, as genetic deletions from the beginning of B cell development often result in compensatory adaptations. To address this, the authors employ an acute loss-of-function approach using two conditional, cell-type-specific gene inactivation mouse models: one targeting B cells after the establishment of a pre-immune B cell population (Dhrs7b^f/f, huCD20-CreERT2) and the other during the GC reaction (Dhrs7b^f/f; S1pr2-CreERT2). This strategy is elegant and well-suited to studying the role of metabolism in B cell activation.

      Overall, this manuscript is a significant contribution to the field, providing robust evidence for the fundamental role of lipid metabolism during the GC reaction and unveiling a novel function for peroxisomes in B cells. However, several major points need to be addressed:

      Major Comments:

      Figures 1 and 2

      The authors conclude, based on the results from these two figures, that PexRAP promotes the homeostatic maintenance and proliferation of B cells. In this section, the authors first use a tamoxifen-inducible full Dhrs7b knockout (KO) and afterwards Dhrs7bΔ/Δ-B model to specifically characterize the role of this molecule in B cells. They characterize the B and T cell compartments using flow cytometry (FACS) and examine the establishment of the GC reaction using FACS and immunofluorescence. They conclude that B cell numbers are reduced, and the GC reaction is defective upon stimulation, showing a reduction in the total percentage of GC cells, particularly in the light zone (LZ).

      The analysis of the steady-state B cell compartment should also be improved. This includes a more detailed characterization of MZ and B1 populations, given the role of lipid metabolism and lipid peroxidation in these subtypes.

      Suggestions for Improvement:

      - B Cell compartment characterization: A deeper characterization of the B cell compartment in non-immunized mice is needed, including analysis of Marginal Zone (MZ) maturation and a more detailed examination of the B1 compartment. This is especially important given the role of specific lipid metabolism in these cell types. The phenotyping of the B cell compartment should also include an analysis of immunoglobulin levels on the membrane, considering the impact of lipids on membrane composition.

      - GC Response Analysis Upon Immunization: The GC response characterization should include additional data on the T cell compartment, specifically the presence and function of Tfh cells. In Fig. 1H, the distribution of the LZ appears strikingly different. However, the authors have not addressed this in the text. A more thorough characterization of centroblasts and centrocytes using CXCR4 and CD86 markers is needed.<br /> The gating strategy used to characterize GC cells (GL7+CD95+ in IgD− cells) is suboptimal. A more robust analysis of GC cells should be performed in total B220+CD138− cells.

      - The authors claim that Dhrs7b supports the homeostatic maintenance of quiescent B cells in vivo and promotes effective proliferation. This conclusion is primarily based on experiments where CTV-labeled PexRAP-deficient B cells were adoptively transferred into μMT mice (Fig. 2D-F). However, we recommend reviewing the flow plots of CTV in Fig. 2E, as they appear out of scale. More importantly, the low recovery of PexRAP-deficient B cells post-adoptive transfer weakens the robustness of the results and is insufficient to conclusively support the role of PexRAP in B cell proliferation in vivo.

      - In vitro stimulation experiments: These experiments need improvement. The authors have used anti-CD40 and BAFF for B cell stimulation; however, it would be beneficial to also include anti-IgM in the stimulation cocktail. In Fig. 2G, CTV plots do not show clear defects in proliferation, yet the authors quantify the percentage of cells with more than three divisions. These plots should clearly display the gating strategy. Additionally, details about histogram normalization and potential defects in cell numbers are missing. A more in-depth analysis of apoptosis is also required to determine whether the observed defects are due to impaired proliferation or reduced survival.

    3. Reviewer #2 (Public review):

      Summary:

      In this study, Cho et al. investigate the role of ether lipid biosynthesis in B cell biology, particularly focusing on GC B cell, by inducible deletion of PexRAP, an enzyme responsible for the synthesis of ether lipids.

      Strengths:

      Overall, the data are well-presented, the paper is well-written and provides valuable mechanistic insights into the importance of PexRAP enzyme in GC B cell proliferation.

      Weaknesses:

      More detailed mechanisms of the impaired GC B cell proliferation by PexRAP deficiency remain to be further investigated. In the minor part, there are issues with the interpretation of the data which might cause confusion for the readers.

    4. Author response:

      eLife Assessment

      This study provides useful insights into the ways in which germinal center B cell metabolism, particularly lipid metabolism, affects cellular responses. The authors use sophisticated mouse models to demonstrate that ether lipids are relevant for B cell homeostasis and efficient humoral responses. Although the data were collected from in vitro and in vivo experiments and analyzed using solid and validated methodology, more careful experiments and extensive revision of the manuscript will be required to strengthen the authors' conclusions.

      In addition to praise for the eLife system and transparency (public posting of the reviews; along with an opportunity to address them), we are grateful for the decision of the Editors to select this submission for in-depth peer review and to the referees for the thoughtful and constructive comments.

      In overview, we mostly agree with the specific comments and evaluation of strengths of what the work adds as well as with indications of limitations and caveats that apply to the breadth of conclusions. One can view these as a combination of weaknesses, of instances of reading more into the work than what it says, and of important future directions opened up by the findings we report. Regarding the positives, we appreciate the reviewers' appraisal that our work unveils a novel mechanism in which the peroxisomal enzyme PexRAP mediates B cell intrinsic ether lipid synthesis and promotes a humoral immune response. We are gratified by a recognition that a main contribution of the work is to show that a spatial lipidomic analysis can set the stage for discovery of new molecular processes in biology that are supported by using 2-dimensional imaging mass spectrometry techniques and cell type specific conditional knockout mouse models.

      By and large, the technical issues are items we will strive to improve. Ultimately, an over-arching issue in research publications in this epoch are the questions "when is enough enough?" and "what, or how much, advance will be broadly important in moving biological and biomedical research forward?" It appears that one limitation troubling the reviews centers on whether the mechanism of increased ROS and multi-modal death - supported most by the in vitro evidence - applies to germinal center B cells in situ, versus either a mechanism for decreased GC that mostly applies to the pre-GC clonal amplification (or recruitment into GC). Overall, we agree that this leap could benefit from additional evidence - but as resources ended we instead leave that question for the future other than the findings with S1pr2-CreERT2-driven deletion leading to less GC B cells. While we strove to be very careful in framing such a connection as an inference in the posted manuscript, we will revisit the matter via rechecking the wording when revising the text after trying to get some specific evidence.  

      In the more granular part of this provisional response (below), we will outline our plan prompted by the reviewers but also comment on a few points of disagreement or refinement (longer and more detailed explanation). The plan includes more detailed analysis of B cell compartments, surface level of immunoglobulin, Tfh cell population, a refinement of GC B cell markers, and the ex vivo GC B cell analysis for ROS, proliferation, and cell death. We will also edit the text to provide more detailed information and clarify our interpretation to prevent the confusion of our results.  At a practical level, some evidence likely is technologically impractical, and an unfortunate determinant is the lack of further sponsored funding for further work. The detailed point-by-point response to the reviewer’s comments is below.  

      Public Reviews:

      Reviewer #1 (Public review):

      In this manuscript, Sung Hoon Cho et al. presents a novel investigation into the role of PexRAP, an intermediary in ether lipid biosynthesis, in B cell function, particularly during the Germinal Center (GC) reaction. The authors profile lipid composition in activated B cells both in vitro and in vivo, revealing the significance of PexRAP. Using a combination of animal models and imaging mass spectrometry, they demonstrate that PexRAP is specifically required in B cells. They further establish that its activity is critical upon antigen encounter, shaping B cell survival during the GC reaction.

      Mechanistically, they show that ether lipid synthesis is necessary to modulate reactive oxygen species (ROS) levels and prevent membrane peroxidation.

      Highlights of the Manuscript:

      The authors perform exhaustive imaging mass spectrometry (IMS) analyses of B cells, including GC B cells, to explore ether lipid metabolism during the humoral response. This approach is particularly noteworthy given the challenge of limited cell availability in GC reactions, which often hampers metabolomic studies. IMS proves to be a valuable tool in overcoming this limitation, allowing detailed exploration of GC metabolism.

      The data presented is highly relevant, especially in light of recent studies suggesting a pivotal role for lipid metabolism in GC B cells. While these studies primarily focus on mitochondrial function, this manuscript uniquely investigates peroxisomes, which are linked to mitochondria and contribute to fatty acid oxidation (FAO). By extending the study of lipid metabolism beyond mitochondria to include peroxisomes, the authors add a critical dimension to our understanding of B cell biology.

      Additionally, the metabolic plasticity of B cells poses challenges for studying metabolism, as genetic deletions from the beginning of B cell development often result in compensatory adaptations. To address this, the authors employ an acute loss-of-function approach using two conditional, cell-type-specific gene inactivation mouse models: one targeting B cells after the establishment of a pre-immune B cell population (Dhrs7b^f/f, huCD20-CreERT2) and the other during the GC reaction (Dhrs7b^f/f; S1pr2-CreERT2). This strategy is elegant and well-suited to studying the role of metabolism in B cell activation.

      Overall, this manuscript is a significant contribution to the field, providing robust evidence for the fundamental role of lipid metabolism during the GC reaction and unveiling a novel function for peroxisomes in B cells.

      We appreciate these positive reactions and response, and agree with the overview and summary of the paper's approaches and strengths.

      However, several major points need to be addressed:

      Major Comments:

      Figures 1 and 2

      The authors conclude, based on the results from these two figures, that PexRAP promotes the homeostatic maintenance and proliferation of B cells. In this section, the authors first use a tamoxifen-inducible full Dhrs7b knockout (KO) and afterwards Dhrs7bΔ/Δ-B model to specifically characterize the role of this molecule in B cells. They characterize the B and T cell compartments using flow cytometry (FACS) and examine the establishment of the GC reaction using FACS and immunofluorescence. They conclude that B cell numbers are reduced, and the GC reaction is defective upon stimulation, showing a reduction in the total percentage of GC cells, particularly in the light zone (LZ).

      The analysis of the steady-state B cell compartment should also be improved. This includes a more detailed characterization of MZ and B1 populations, given the role of lipid metabolism and lipid peroxidation in these subtypes.

      Suggestions for Improvement:

      B Cell compartment characterization: A deeper characterization of the B cell compartment in non-immunized mice is needed, including analysis of Marginal Zone (MZ) maturation and a more detailed examination of the B1 compartment. This is especially important given the role of specific lipid metabolism in these cell types. The phenotyping of the B cell compartment should also include an analysis of immunoglobulin levels on the membrane, considering the impact of lipids on membrane composition.

      Although the manuscript is focused on post-ontogenic B cell regulation in Ab responses, we believe we will be able to polish a revised manuscript through addition of results of analyses suggested by this point in the review: measurement of surface IgM on and phenotyping of various B cell subsets, including MZB and B1 B cells, to extend the data in Supplemental Fig 1H and I. Depending on the level of support, new immunization experiments to score Tfh and analyze a few of their functional molecules as part of a B cell paper may be feasible.  

      - GC Response Analysis Upon Immunization: The GC response characterization should include additional data on the T cell compartment, specifically the presence and function of Tfh cells. In Fig. 1H, the distribution of the LZ appears strikingly different. However, the authors have not addressed this in the text. A more thorough characterization of centroblasts and centrocytes using CXCR4 and CD86 markers is needed.

      The gating strategy used to characterize GC cells (GL7+CD95+ in IgD− cells) is suboptimal. A more robust analysis of GC cells should be performed in total B220+CD138− cells.

      We first want to apologize the mislabeling of LZ and DZ in Fig 1H. The greenish-yellow colored region (GL7<sup>+</sup> CD35<sup>+</sup>) indicate the DZ and the cyan-colored region (GL7<sup>+</sup> CD35<sup>+</sup>) indicates the LZ.

      As a technical note, we experienced high background noise with GL7 staining uniquely with PexRAP deficient (Dhrs7b<sup>f/f</sup>; Rosa26-CreER<sup>T2</sup>) mice (i.e., not WT control mice). The high background noise of GL7 staining was not observed in B cell specific KO of PexRAP (Dhrs7b<sup>f/f</sup>; huCD20-CreER<sup>T2</sup>). Two formal possibilities to account for this staining issue would be if either the expression of the GL7 epitope were repressed by PexRAP or the proper positioning of GL7<sup>+</sup> cells in germinal center region were defective in PexRAP-deficient mice (e.g., due to an effect on positioning cues from cell types other than B cells). In a revised manuscript, we will fix the labeling error and further discuss the GL7 issue, while taking care not to be thought to conclude that there is a positioning problem or derepression of GL7 (an activation antigen on T cells as well as B cells).

      While the gating strategy for an overall population of GC B cells is fairly standard even in the current literature, the question about using CD138 staining to exclude early plasmablasts (i.e., analyze B220<sup>+</sup> CD138<sup>neg</sup> vs B220<sup>+</sup> CD138<sup>+</sup>) is interesting. In addition, some papers like to use GL7<sup>+</sup> CD38<sup>neg</sup> for GC B cells instead of GL7<sup>+</sup> Fas (CD95)<sup>+</sup>, and we thank the reviewer for suggesting the analysis of centroblasts and centrocytes. For the revision, we will try to secure resources to revisit the immunizations and analyze them for these other facets of GC B cells (including CXCR4/CD86) and for their GL7<sup>+</sup> CD38<sup>neg</sup>. B220<sup>+</sup> CD138<sup>-</sup> and B220<sup>+</sup> CD138<sup>+</sup> cell populations. 

      We agree that comparison of the Rosa26-CreERT2 results to those with B cell-specific loss-of-function raise a tantalizing possibility that Tfh cells also are influenced by PexRAP. Although the manuscript is focused on post-ontogenic B cell regulation in Ab responses, we hope to add a new immunization experiments that scores Tfh and analyzes a few of their functional molecules could be added to this B cell paper, depending on the ability to wheedle enough support / fiscal resources.

      - The authors claim that Dhrs7b supports the homeostatic maintenance of quiescent B cells in vivo and promotes effective proliferation. This conclusion is primarily based on experiments where CTV-labeled PexRAP-deficient B cells were adoptively transferred into μMT mice (Fig. 2D-F). However, we recommend reviewing the flow plots of CTV in Fig. 2E, as they appear out of scale. More importantly, the low recovery of PexRAP-deficient B cells post-adoptive transfer weakens the robustness of the results and is insufficient to conclusively support the role of PexRAP in B cell proliferation in vivo.

      In the revision, we will edit the text and try to adjust the digitized cytometry data to allow more dynamic range to the right side of the upper panels in Fig. 2E, and otherwise to improve the presentation of the in vivo CTV result. However, we feel impelled to push back respectfully on some of the concern raised here. First, it seems to gloss over the presentation of multiple facets of evidence. The conclusion about maintenance derives primarily from Fig. 2C, which shows a rapid, statistically significant decrease in B cell numbers (extending the finding of Fig. 1D, a more substantial decrease after a bit longer a period). As noted in the text, the rate of de novo B cell production does not suffice to explain the magnitude of the decrease.

      In terms of proliferation, we will improve presentation of the Methods but the bottom line is that the recovery efficiency is not bad (comparing to prior published work) inasmuch as transferred B cells do not uniformly home to spleen. In a setting where BAFF is in ample supply in vivo, we transferred equal numbers of cells that were equally labeled with CTV and counted B cells.  The CTV result might be affected by lower recovered B cell with PexRAP deficiency, generally, the frequencies of CTV<sup>low</sup> divided population are not changed very much. However, it is precisely because of the pitfalls of in vivo analyses that we included complementary data with survival and proliferation in vitro. The proliferation was attenuated in PexRAP-deficient B cells in vitro; this evidence supports the conclusion that proliferation of PexRAP knockout B cells is reduced. It is likely that PexRAP deficient B cells also have defect in viability in vivo as we observed the reduced B cell number in PexRAP-deficient mice. As the reviewer noticed, the presence of a defect in cycling does, in the transfer experiments, limit the ability to interpret a lower yield of B cell population after adoptive transfer into µMT recipient mice as evidence pertaining to death rates. We will edit the text of the revision with these points in mind.

      - In vitro stimulation experiments: These experiments need improvement. The authors have used anti-CD40 and BAFF for B cell stimulation; however, it would be beneficial to also include anti-IgM in the stimulation cocktail. In Fig. 2G, CTV plots do not show clear defects in proliferation, yet the authors quantify the percentage of cells with more than three divisions. These plots should clearly display the gating strategy. Additionally, details about histogram normalization and potential defects in cell numbers are missing. A more in-depth analysis of apoptosis is also required to determine whether the observed defects are due to impaired proliferation or reduced survival.

      As suggested by reviewer, testing additional forms of B cell activation can help explore the generality (or lack thereof) of findings. We plan to test anti-IgM stimulation together with anti-CD40 + BAFF as well as anti-IgM + TLR7/8, and add the data to a revised and final manuscript.

      With regards to Fig. 2G (and 2H), in the revised manuscript we will refine the presentation (add a demonstration of the gating, and explicate histogram normalization of FlowJo).

      It is an interesting issue in bioscience, but in our presentation 'representative data' really are pretty representative, so a senior author is reminded of a comment Tak Mak made about a reduction (of proliferation, if memory serves) to 0.7 x control. [His point in a comment to referees at a symposium related that to a salary reduction by 30% :) A mathematical alternative is to point out that across four rounds of division for WT cells, a reduction to 0.7x efficiency at each cycle means about 1/4 as many progeny.] 

      We will try to edit the revision (Methods, Legends, Results, Discussion] to address better the points of the last two sentences of the comment, and improve the details that could assist in replication or comparisons (e.g., if someone develops a PexRAP inhibitor as potential therapeutic).

      For the present, please note that the cell numbers at the end of the cultures are currently shown in Fig 2, panel I. Analogous culture results are shown in Fig 8, panels I, J, albeit with harvesting at day 5 instead of day 4. So, a difference of ≥ 3x needs to be explained. As noted above, a division efficiency reduced to 0.7x normal might account for such a decrease, but in practice the data of Fig. 2I show that the number of PexRAP-deficient B cells at day 4 is similar to the number plated before activation, and yet there has been a reasonable amount of divisions. So cell numbers in the culture of  mutant B cells are constant because cycling is active but decreased and insufficient to allow increased numbers ("proliferation" in the true sense) as programmed death is increased. In line with this evidence, Fig 8G-H document higher death rates [i.e., frequencies of cleaved caspase3<sup>+</sup> cell and Annexin V<sup>+</sup> cells] of PexRAP-deficient B cells compared to controls. Thus, the in vitro data lead to the conclusion that both decreased division rates and increased death operate after this form of stimulation.

      An inference is that this is the case in vivo as well - note that recoveries differed by ~3x (Fig. 2D), and the decrease in divisions (presentation of which will be improved) was meaningful but of lesser magnitude (Fig. 2E, F).  

      Reviewer #2 (Public review):

      Summary:

      In this study, Cho et al. investigate the role of ether lipid biosynthesis in B cell biology, particularly focusing on GC B cell, by inducible deletion of PexRAP, an enzyme responsible for the synthesis of ether lipids.

      Strengths:

      Overall, the data are well-presented, the paper is well-written and provides valuable mechanistic insights into the importance of PexRAP enzyme in GC B cell proliferation.

      We appreciate this positive response and agree with the overview and summary of the paper's approaches and strengths.

      Weaknesses:

      More detailed mechanisms of the impaired GC B cell proliferation by PexRAP deficiency remain to be further investigated. In the minor part, there are issues with the interpretation of the data which might cause confusion for the readers.

      Issues about contributions of cell cycling and divisions on the one hand, and susceptibility to death on the other, were discussed above, amplifying on the current manuscript text. The aggregate data support a model in which both processes are impacted for mature B cells in general, and mechanistically the evidence and work focus on the increased ROS and modes of death. Although the data in Fig. 7 do provide evidence that GC B cells themselves are affected, we agree that resource limitations had militated against developing further evidence about cycling specifically for GC B cells. We will hope to be able to obtain sufficient data from some specific analysis of proliferation in vivo (e.g., Ki67 or BrdU) as well as ROS and death ex vivo when harvesting new samples from mice immunized to analyze GC B cells for CXCR4/CD86, CD38, CD138 as indicated by Reviewer 1.  As suggested by Reviewer 2, we will further discuss the possible mechanism(s) by which proliferation of PexRAP-deficient B cells is impaired. We also will edit the text of a revision where to enhance clarity of data interpretation - at a minimum, to be very clear that caution is warranted in assuming that GC B cells will exhibit the same mechanisms as cultures in vitro-stimulated B cells.

    1. eLife Assessment

      This paper presents a computational method to infer from data a key feature of affinity maturation: the relationship between the affinity of B-cell receptors and their fitness. The approach, which is based on a simple population dynamics model but inferred using AI-powered Simulation-Based Inference, is novel and valuable. It exploits recently published data on replay experiments of affinity maturation. While the method is well-argued and the validation solid, the potential impact of the study is hindered by its complex presentation, which makes it hard to assess its claims reliably.

    2. Reviewer #1 (Public review):

      Summary:

      This paper aims to characterize the relationship between affinity and fitness in the process of affinity maturation. To this end, the authors develop a model of germinal center reaction and a tailored statistical approach, building on recent advances in simulation-based inference. The potential impact of this work is hindered by the poor organization of the manuscript. In crucial sections, the writing style and notations are unclear and difficult to follow.

      Strengths:

      The model provides a framework for linking affinity measurements and sequence evolution and does so while accounting for the stochasticity inherent to the germinal center reaction. The model's sophistication comes at the cost of numerous parameters and leads to intractable likelihood, which are the primary challenges addressed by the authors. The approach to inference is innovative and relies on training a neural network on extensive simulations of trajectories from the model.

      Weaknesses:

      The text is challenging to follow. The descriptions of the model and the inference procedure are fragmented and repetitive. In the introduction and the methods section, the same information is often provided multiple times, at different levels of detail. This organization sometimes requires the reader to move back and forth between subsections (there are multiple non-specific references to "above" and "below" in the text).

      The choice of some parameter values in simulations appears arbitrary and would benefit from more extensive justification. It remains unclear how the "significant uncertainty" associated with these parameters affects the results of inference. In addition, the performance of the inference scheme on simulated data is difficult to evaluate, as the reported distributions of loss function values are not very informative.

      Finally, the discussion of the similarities and differences with an alternative approach to this inference problem, presented in Dewitt et al. (2025), is incomplete.

    3. Reviewer #2 (Public review):

      Summary:

      This paper presents a new approach for explicitly transforming B-cell receptor affinity into evolutionary fitness in the germinal center. It demonstrates the feasibility of using likelihood-free inference to study this problem and demonstrates how effective birth rates appear to vary with affinity in real-world data.

      Strengths:

      (1) The authors leverage the unique data they have generated for a separate project to provide novel insights into a fundamental question.

      (2) The paper is clearly written, with accessible methods and a straightforward discussion of the limits of this model.

      (3) Code and data are publicly available and well-documented.

      Weaknesses (minor):

      (1) Lines 444-446: I think that "affinity ceiling" and "fitness ceiling" should be considered independent concepts. The former, as the authors ably explain, is a physical limitation. This wouldn't necessarily correspond to a fitness ceiling, though, as Figure 7 shows. Conversely, the model developed here would allow for a fitness ceiling even if the physical limit doesn't exist.

      (2) Lines 566-569: I would like to see this caveat fleshed out more and perhaps mentioned earlier in the paper. While relative affinity is far more important, it is not at all clear to me that absolute affinity can be totally ignored in modeling GC behavior.

      (3) One other limitation that is worth mentioning, though beyond the scope of the current work to fully address: the evolution of the repertoire is also strongly shaped by competition from circulating antibodies. (Eg: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600904/, http://www.sciencedirect.com/science/article/pii/S1931312820303978). This is irrelevant for the replay experiment modeled here, but still an important factor in general repertoires.

    1. eLife Assessment

      This valuable study proposes a theoretical model of clathrin coat formation based on membrane elasticity that seeks to determine whether this process occurs by increasing the area of a protein-coated patch with constant curvature, or by increasing the curvature of a protein-coated patch that forms in an initially flat conformation (so called constant curvature or constant area models). Identifying energetically favorable pathways and comparing the obtained shapes with experiments provides solid support to the constant-area pathway. This work will be of interest for biologists and biophysicists interested in membrane remodelling and endocytosis. It provides an innovative approach to tackle the question of constant curvature vs. constant area coat protein formation, although some of the model's assumption are only partially supported by experimental evidence.

    2. Reviewer #1 (Public review):

      Summary:

      The authors develop a set of biophysical models to investigate whether a constant area hypothesis or a constant curvature hypothesis explains the mechanics of membrane vesiculation during clathrin-mediated endocytosis.

      Strengths:

      The models that the authors choose are fairly well-described in the field and the manuscript is well-written.

      Weaknesses:

      One thing that is unclear is what is new with this work. If the main finding is that the differences are in the early stages of endocytosis, then one wonders if that should be tested experimentally. Also, the role of clathrin assembly and adhesion are treated as mechanical equilibrium but perhaps the process should not be described as equilibria but rather a time-dependent process. Ultimately, there are so many models that address this question that without direct experimental comparison, it's hard to place value on the model prediction.

      While an attempt is made to do so with prior published EM images, there is excessive uncertainty in both the data itself as is usually the case but also in the methods that are used to symmetrize the data. This reviewer wonders about any goodness of fit when such uncertainty is taken into account.

      Comments on revisions:

      I appreciate the authors edits, but I found that the major concerns I had still hold. Therefore, I did not alter my review.

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors employ theoretical analysis of an elastic membrane model to explore membrane vesiculation pathways in clathrin-mediated endocytosis. A complete understanding of clathrin-mediated endocytosis requires detailed insight into the process of membrane remodeling, as the underlying mechanisms of membrane shape transformation remain controversial, particularly regarding membrane curvature generation. The authors compare constant area and constant membrane curvature as key scenarios by which clathrins induce membrane wrapping around the cargo to accomplish endocytosis. First, they characterize the geometrical aspects of the two scenarios and highlight their differences by imposing coating area and membrane spontaneous curvature. They then examine the energetics of the process to understand the driving mechanisms behind membrane shape transformations in each model. In the latter part, they introduce two energy terms: clathrin assembly or binding energy, and curvature generation energy, with two distinct approaches for the latter. Finally, they identify the energetically favorable pathway in the combined scenario and compare their results with experiments, showing that the constant-area pathway better fits the experimental data.

      Strengths:

      The manuscript is well-written, well-organized, and presents the details of the theoretical analysis with sufficient clarity.<br /> The calculations are valid, and the elastic membrane model is an appropriate choice for addressing the differences between the constant curvature and constant area models.<br /> The authors' approach of distinguishing two distinct free energy terms-clathrin assembly and curvature generation-and then combining them to identify the favorable pathway is both innovative and effective in addressing the problem.<br /> Notably, their identification of the energetically favorable pathways, and how these pathways either lead to full endocytosis or fail to proceed due to insufficient energetic drives, is particularly insightful.

      Comments on revisions:

      The authors have carefully addressed all my comments, and the revised manuscript is now clear, rigorous, and satisfactory.

    4. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      Summary

      The authors develop a set of biophysical models to investigate whether a constant area hypothesis or a constant curvature hypothesis explains the mechanics of membrane vesiculation during clathrin-mediated endocytosis.

      Strengths

      The models that the authors choose are fairly well-described in the field and the manuscript is wellwritten.

      Thank you for your positive comments on our work.

      Weaknesses

      One thing that is unclear is what is new with this work. If the main finding is that the differences are in the early stages of endocytosis, then one wonders if that should be tested experimentally. Also, the role of clathrin assembly and adhesion are treated as mechanical equilibrium but perhaps the process should not be described as equilibria but rather a time-dependent process. Ultimately, there are so many models that address this question that without direct experimental comparison, it's hard to place value on the model prediction.

      Thank you for your insightful questions. We fully agree that distinguishing between the two models should ultimately be guided by experimental tests. This is precisely the motivation for including Fig. 5 in our manuscript, where we compare our theoretical predictions with experimental data. In the middle panel of Fig. 5, we observe that the predicted tip radius as a function of 𝜓<sub>𝑚𝑎𝑥</sub> from the constant curvature model (magenta curve) deviates significantly from both the experimental data points and the rolling median, highlighting the inconsistency of this model with the data.

      Regarding our treatment of clathrin assembly and membrane adhesion as mechanical equilibrium processes, our reasoning is based on a timescale separation argument. Clathrin assembly typically occurs over approximately 1 minute. In contrast, the characteristic relaxation time for a lipid membrane to reach mechanical equilibrium is given by , where 𝜇∼5 × 10<sup>-9</sup> 𝑁𝑠𝑚<sup>-1</sup> is the membrane viscosity, 𝑅<sub>0</sub> =50𝑛𝑚 is the vesicle size, 𝜅=20 𝑘<sub>𝐵</sub>𝑇 is the bending rigidity. This yields a relaxation time of 𝜏≈1.5 × 10<sup>−4</sup>𝑠, which is several orders of magnitude shorter than the timescale of clathrin assembly. Therefore, it is reasonable to treat the membrane shape as being in mechanical equilibrium throughout the assembly process.

      We believe the value of our model lies in the following key novelties:

      (1) Model novelty: We introduce an energy term associated with curvature generation, a contribution that is typically neglected in previous models.

      (2) Methodological novelty: We perform a quantitative comparison between theoretical predictions and experimental data, whereas most earlier studies rely on qualitative comparisons.

      (3) Results novelty: Our quantitative analysis enables us to unambiguously exclude the constant curvature hypothesis based on time-independent electron microscopy data.

      In the revised manuscript (line 141), we have added a statement about why we treat the clathrin assembly as in mechanical equilibrium.

      While an attempt is made to do so with prior published EM images, there is excessive uncertainty in both the data itself as is usually the case but also in the methods that are used to symmetrize the data. This reviewer wonders about any goodness of fit when such uncertainty is taken into account.

      Author response: We thank the reviewer for raising this important point. We agree that there is uncertainty in the experimental data. Our decision to symmetrize the data is based on the following considerations:

      (1) The experimental data provide a one-dimensional membrane profile corresponding to a cross-sectional view. To reconstruct the full two-dimensional membrane surface, we must assume rotational symmetry.

      (2)In addition to symmetrization, we also average membrane profiles within a certain range of 𝜓<sub>𝑚𝑎𝑥</sub> values (see Fig. 5d). This averaging helps reduce the uncertainty (due to biological and experimental variability) inherent to individual measurements.

      (3)To further address the noise in the experimental data, we compare our theoretical predictions not only with individual data points but also with a rolling median, which provides a smoothed representation of the experimental trends.

      These steps are taken to ensure a more robust and meaningful comparison between theory and experiments.

      In the revised manuscript (line 338), we have explained why we have to symmetrize the data:

      “To facilitate comparison between the axisymmetric membrane shapes predicted by the model and the non-axisymmetric profiles obtained from electron microscopy, we apply a symmetrization procedure to the experimental data, which consist of one-dimensional membrane profiles extracted from cross-sectional views, as detailed in Appendix 3 (see also Appendix 3--Fig. 1).”

      Reviewer #2:

      Summary

      In this manuscript, the authors employ theoretical analysis of an elastic membrane model to explore membrane vesiculation pathways in clathrin-mediated endocytosis. A complete understanding of clathrin-mediated endocytosis requires detailed insight into the process of membrane remodeling, as the underlying mechanisms of membrane shape transformation remain controversial, particularly regarding membrane curvature generation. The authors compare constant area and constant membrane curvature as key scenarios by which clathrins induce membrane wrapping around the cargo to accomplish endocytosis. First, they characterize the geometrical aspects of the two scenarios and highlight their differences by imposing coating area and membrane spontaneous curvature. They then examine the energetics of the process to understand the driving mechanisms behind membrane shape transformations in each model. In the latter part, they introduce two energy terms: clathrin assembly or binding energy, and curvature generation energy, with two distinct approaches for the latter. Finally, they identify the energetically favorable pathway in the combined scenario and compare their results with experiments, showing that the constant-area pathway better fits the experimental data.

      Thank you for your clear and comprehensive summary of our work.

      Strengths

      The manuscript is well-written, well-organized, and presents the details of the theoretical analysis with sufficient clarity. The calculations are valid, and the elastic membrane model is an appropriate choice for addressing the differences between the constant curvature and constant area models.

      The authors' approach of distinguishing two distinct free energy terms-clathrin assembly and curvature generation-and then combining them to identify the favorable pathway is both innovative and effective in addressing the problem.

      Notably, their identification of the energetically favorable pathways, and how these pathways either lead to full endocytosis or fail to proceed due to insufficient energetic drives, is particularly insightful.

      Thank you for your positive remarks regarding the innovative aspects of our work.

      Weaknesses and Recommendations

      Weakness: Membrane remodeling in cellular processes is typically studied in either a constant area or constant tension ensemble. While total membrane area is preserved in the constant area ensemble, membrane area varies in the constant tension ensemble. In this manuscript, the authors use the constant tension ensemble with a fixed membrane tension, σe. However, they also use a constant area scenario, where 'area' refers to the surface area of the clathrin-coated membrane segment. This distinction between the constant membrane area ensemble and the constant area of the coated membrane segment may cause confusion.

      Recommendation: I suggest the authors clarify this by clearly distinguishing between the two concepts by discussing the constant tension ensemble employed in their theoretical analysis.

      Thank you for raising this question.

      In the revised manuscript (line 136), we have added a sentence, emphasizing the implication of the term “constant area model”:

      “We emphasize that the constant area model refers to the assumption that the clathrin-coated area 𝑎<sub>0</sub> remains fixed. Meanwhile, the membrane tension 𝜎<sub>𝑒</sub> at the base is held constant, allowing the total membrane area 𝐴𝐴 to vary in response to deformations induced by the clathrin coat.”

      Weakness: As mentioned earlier, the theoretical analysis is performed in the constant membrane tension ensemble at a fixed membrane tension. The total free energy E_tot of the system consists of membrane bending energy E_b and tensile energy E_t, which depends on membrane tension, σe. Although the authors mention the importance of both E_b and E_t, they do not present their individual contributions to the total energy changes. Comparing these contributions would enable readers to cross-check the results with existing literature, which primarily focuses on the role of membrane bending rigidity and membrane tension.

      Recommendation: While a detailed discussion of how membrane tension affects their results may fall outside the scope of this manuscript, I suggest the authors at least discuss the total membrane area variation and the contribution of tensile energy E_t for the singular value of membrane tension used in their analysis.

      Thank you for the insightful suggestion. In the revised manuscript (line 916), we have added Appendix 6 and a supplementary figure to compare the bending energy 𝐸<sub>𝑏</sub> and the tension energy 𝐸<sub>𝑡</sub>. Our analysis shows that both energy components exhibit an energy barrier between the flat and vesiculated membrane states, with the tension energy contributing more significantly than the bending energy.

      In the revised manuscript (line 151), we have also added one paragraph explaining why we set the dimensionless tension . This choice is motivated by our use of the characteristic length as the length scale, and as the energy scale. In this way, the dimensionless tension energy is written as

      Where is the dimensionless area.

      Weakness: The authors introduce two different models, (1,1) and (1,2), for generating membrane curvature. Model 1 assumes a constant curvature growth, corresponding to linear curvature growth, while Model 2 relates curvature growth to its current value, resembling exponential curvature growth. Although both models make physical sense in general, I am concerned that Model 2 may lead to artificial membrane bending at high curvatures. Normally, for intermediate bending, ψ > 90, the bending process is energetically downhill and thus proceeds rapidly. The bending process is energetically downhill and thus proceeds rapidly. However, Model 2's assumption would accelerate curvature growth even further. This is reflected in the endocytic pathways represented by the green curves in the two rightmost panels of Fig. 4a, where the energy steeply increases at large ψ. I believe a more realistic version of Model 2 would require a saturation mechanism to limit curvature growth at high curvatures.

      Recommendation 1: I suggest the authors discuss this point and highlight the pros and cons of Model 2. Specifically, addressing the potential issue of artificial membrane bending at high curvatures and considering the need for a saturation mechanism to limit excessive curvature growth. A discussion on how Model 2 compares to Model 1 in terms of physical relevance, especially in the context of high curvature scenarios, would provide valuable insights for the reader.

      Thank you for raising the question of excessive curvature growth in our models and the constructive suggestion of introducing a saturation mechanism. In the revised manuscript (line 405), following your recommendation, we have added a subsection “Saturation effect at high membrane curvatures” in the discussion to clarify the excessive curvature issue and a possible way to introduce a saturation mechanism:

      “Note that our model involves two distinct concepts of curvature growth. The first is the growth of imposed curvature — referred to here as intrinsic curvature and denoted by the parameter 𝑐<sub>0</sub> — which is driven by the reorganization of bonds between clathrin molecules within the coat. The second is the growth of the actual membrane curvature, reflected by the increasing value of 𝜓<sub>𝑚𝑎𝑥</sub>.

      The latter process is driven by the former.

      Models (1,1) and (1,2) incorporate energy terms (Equation 6) that promote the increase of intrinsic curvature 𝑐<sub>0</sub>, which in turn drives the membrane to adopt a more curved shape (increasing 𝜓<sub>𝑚𝑎𝑥</sub>). In the absence of these energy contributions, the system faces an energy barrier separating a weakly curved membrane state (low 𝜓<sub>𝑚𝑎𝑥</sub>) from a highly curved state (high 𝜓<sub>𝑚𝑎𝑥</sub>). This barrier can be observed, for example, in the red curves of Figure 3(a–c) and in Appendix 6—Figure 1. As a result, membrane bending cannot proceed spontaneously and requires additional energy input from clathrin assembly.

      The energy terms described in Equation 6 serve to eliminate this energy barrier by lowering the energy difference between the uphill and downhill regions of the energy landscape. However, these same terms also steepen the downhill slope, which may lead to overly aggressive curvature growth.

      To mitigate this effect, one could introduce a saturation-like energy term of the form:

      where 𝑐<sub>𝑠</sub> represents a saturation curvature. Importantly, adding such a term would not alter the conclusions of our study, since the energy landscape already favors high membrane curvature (i.e., it is downward sloping) even without the additional energy terms. “

      Recommendation 2: Referring to the previous point, the green curves in the two rightmost panels of Fig. 4a seem to reflect a comparison between slow and fast bending regimes. The initial slow vesiculation (with small curvature growth) in the left half of the green curves is followed by much more rapid curvature growth beyond a certain threshold. A similar behavior is observed in Model 1, as shown by the green curves in the two rightmost panels of Fig. 4b. I believe this transition between slow and fast bending warrants a brief discussion in the manuscript, as it could provide further insight into the dynamic nature of vesiculation.

      Thank you for your constructive suggestion regarding the transition between slow and fast membrane bending. As you pointed out, in both Fig. 4a (model (1,2)) and Fig. 4b (model (1,1)), the green curves tend to extend vertically at the late stage. This suggests a significant increase in 𝑐<sub>0</sub> on the free energy landscape. However, we remain cautious about directly interpreting this vertical trend as indicative of fast endocytic dynamics, since our model is purely energetic and does not explicitly incorporate kinetic details. Meanwhile, we agree with your observation that the steep decrease in free energy along the green curve could correspond to an acceleration in dynamics. To address this point, we have added a paragraph in the revised manuscript (in Subsection “Cooperativity in the curvature generation process”) discussing this potential transition and its consistency with experimental observations (line 395):

      “Furthermore, although our model is purely energetic and does not explicitly incorporate dynamics, we observe in Figure 3(a) that along the green curve—representing the trajectory predicted by model (1,2)—the total free energy (𝐸<sub>𝑡𝑜𝑡</sub>) exhibits a much sharper decrease at the late stage (near the vesiculation line) compared to the early stage (near the origin). This suggests a transition from slow to fast dynamics during endocytosis. Such a transition is consistent with experimental observations, where significantly fewer number of images with large 𝜓<sub>𝑚𝑎𝑥</sub> are captured compared to those with small 𝜓<sub>𝑚𝑎𝑥</sub> (Mund et al., 2023).”

      The geometrical properties of both the constant-area and constant-curvature scenarios, as well depicted in Fig. 1, are somewhat straightforward. I wonder what additional value is presented in Fig. 2. Specifically, the authors solve differential shape equations to show how Rt and Rcoat vary with the angle ψ, but this behavior seems predictable from the simple schematics in Fig. 1. Using a more complex model for an intuitively understandable process may introduce counter-intuitive results and unnecessary complications, as seen with the constant-curvature model where Rt varies (the tip radius is not constant, as noted in the text) despite being assumed constant. One could easily assume a constant-curvature model and plot Rt versus ψ. I wonder What is the added value of solving shape equations to measure geometrical properties, compared to a simpler schematic approach (without solving shape equations) similar to what they do in App. 5 for the ratio of the Rt at ψ=30 and 150.

      Thank you for raising this important question. While simple and intuitive theoretical models are indeed convenient to use, their validity must be carefully assessed. The approximate model becomes inaccurate when the clathrin shell significantly deviates from its intrinsic shape, namely a spherical cap characterized by intrinsic curvature 𝑐<sub>0</sub>. As shown in the insets of Fig. 2b and 2c (red line and black points), our comparison between the simplified model and the full model demonstrates that the simple model provides a good approximation under the constant-area constraint. However, it performs poorly under the constant-curvature constraint, and the deviation between the full model and the simplified model becomes more pronounced as 𝑐<sub>0</sub> increases.

      In the revised manuscript, we have added a sentence emphasizing the discrepancy between the exact calculation with the idealized picture for the constant curvature model (line 181):

      “For the constant-curvature model, the ratio remains close to 1 only at small values of 𝑐<sub>0</sub>, as expected from the schematic representation of the model in Figure 1. However, as 𝑐<sub>0</sub> increases, the deviation from this idealized picture becomes increasingly pronounced.”

      Recommendation: The clathrin-mediated endocytosis aims at wrapping cellular cargos such as viruses which are typically spherical objects which perfectly match the constant-curvature scenario. In this context, wrapping nanoparticles by vesicles resembles constant-curvature membrane bending in endocytosis. In particular analogous shape transitions and energy barriers have been reported (similar to Fig.3 of the manuscript) using similar theoretical frameworks by varying membrane particle binding energy acting against membrane bending:

      DOI: 10.1021/la063522m

      DOI: 10.1039/C5SM01793A

      I think a short comparison to particle wrapping by vesicles is warranted.

      Thank you for your constructive suggestion to compare our model with particle wrapping. In the revised manuscript (line 475), we have added a subsection “Comparison with particle wrapping” in the discussion:

      “The purpose of the clathrin-mediated endocytosis studied in our work is the recycling of membrane and membrane-protein, and the cellular uptake of small molecules from the environment — molecules that are sufficiently small to bind to the membrane or be encapsulated within a vesicle. In contrast, the uptake of larger particles typically involves membrane wrapping driven by adhesion between the membrane and the particle, a process that has also been studied previously (Góźdź, 2007; Bahrami et al., 2016). In our model, membrane bending is driven by clathrin assembly, which induces curvature. In particle wrapping, by comparison, the driving force is the adhesion between the membrane and a rigid particle. In the absence of adhesion, wrapping increases both bending and tension energies, creating an energy barrier that separates the flat membrane state from the fully wrapped state. This barrier can hinder complete wrapping, resulting in partial or no engulfment of the particle. Only when the adhesion energy is sufficiently strong can the process proceed to full wrapping. In this context, adhesion plays a role analogous to curvature generation in our model, as both serve to overcome the energy barrier. If the particle is spherical, it imposes a constant-curvature pathway during wrapping. However, the role of clathrin molecules in this process remains unclear and will be the subject of future investigation.”

      Minor points:

      Line 20, abstract, "....a continuum spectrum ..." reads better.

      Line 46 "...clathrin results in the formation of pentagons ...." seems Ito be grammatically correct.

      Line 106, proper citation of the relevant literature is warranted here.

      Line 111, the authors compare features (plural) between experiments and calculations. I would write "....compare geometric features calculated by theory with those ....".

      Line 124, "Here, we choose a ..." (with comma after Here).

      Line 134, "The membrane tension \sigma_e and bending rigidity \kappa define a ...."

      Line 295, "....tip radius, and invagination ...." (with comma before and).

      Line 337, "abortive tips, and ..." (with comma before and).

      We thank you for your thorough review of our manuscript and have corrected all the issues raised.

    1. eLife Assessment

      This important manuscript provides compelling evidence that BK and CaV1.3 channels can co-localize as ensembles early in the biosynthetic pathway, including in the ER and Golgi. The findings, supported by a range of imaging and proximity assays, offer insights into channel organization in both heterologous and endogenous systems. While the data broadly support the central claims, mechanistic aspects remain unresolved, particularly regarding the determinants of mRNA co-localization, the temporal dynamics of ensemble trafficking, and the physiological implications of pre-assembly for channel function at the plasma membrane.

    2. Reviewer #1 (Public review):

      Summary:

      This manuscript by Pournejati et al investigates how BK (big potassium) channels and CaV1.3 (a subtype of voltage-gated calcium channels) become functionally coupled by exploring whether their ensembles form early-during synthesis and intracellular trafficking-rather than only after insertion into the plasma membrane. To this end, the authors use the PLA technique to assess the formation of ion channel associations in the different compartments (ER, Golgi or PM), single-molecule RNA in situ hybridization (RNAscope), and super-resolution microscopy.

      Strengths:

      The manuscript is well written and addresses an interesting question, combining a range of imaging techniques. The findings are generally well-presented and offer important insights into the spatial organization of ion channel complexes, both in heterologous and endogenous systems.

      Weaknesses:

      The authors have improved their manuscript after revisions, and some previous concerns have been addressed. Still, the main concern about this work is that the current experiments do not quantitatively or mechanistically link the ensembles observed intracellularly (in the endoplasmic reticulum (ER) or Golgi) to those found at the plasma membrane (PM). As a result, it is difficult to fully integrate the findings into a coherent model of trafficking. Specifically, the manuscript does not address what proportion of ensembles detected at the PM originated in the ER. Without data on the turnover or half-life of these ensembles at the PM, it remains unclear how many persist through trafficking versus forming de novo at the membrane. The authors report the percentage of PLA-positive ensembles localized to various compartments, but this only reflects the distribution of pre-formed ensembles. What remains unknown is the proportion of total BK and CaV1.3 channels (not just those in ensembles) that are engaged in these complexes within each compartment. Without this, it is difficult to determine whether ensembles form in the ER and are then trafficked to the PM, or if independent ensemble formation also occurs at the membrane. To support the model of intracellular assembly followed by coordinated trafficking, it would be important to quantify the fraction of the total channel population that exists as ensembles in each compartment. A comparable ensemble-to-total ratio across ER and PM would strengthen the argument for directed trafficking of pre-assembled channel complexes.

    3. Reviewer #2 (Public review):

      Summary:

      The co-localization of large conductance calcium- and voltage activated potassium (BK) channels with voltage-gated calcium channels (CaV) at the plasma membrane is important for the functional role of these channels in controlling cell excitability and physiology in a variety of systems.

      An important question in the field is where and how do BK and CaV channels assemble as 'ensembles' to allow this coordinated regulation - is this through preassembly early in the biosynthetic pathway, during trafficking to the cell surface or once channels are integrated into the plasma membrane. These questions also have broader implications for assembly of other ion channel complexes.

      Using an imaging based approach, this paper addresses the spatial distribution of BK-CaV ensembles using both overexpression strategies in tsa201 and INS-1 cells and analysis of endogenous channels in INS-1 cells using proximity ligation and superesolution approaches. In addition, the authors analyse the spatial distribution of mRNAs encoding BK and Cav1.3.

      The key conclusion of the paper that BK and CaV1.3 are co-localised as ensembles intracellularly in the ER and Golgi is well supported by the evidence. However, whether they are preferentially co-translated at the ER, requires further work. Moreover, whether intracellular pre-assembly of BK-CaV complexes is the major mechanism for functional complexes at the plasma membrane in these models requires more definitive evidence including both refinement of analysis of current data as well as potentially additional experiments.

      Strengths & Weaknesses

      (1) Using proximity ligation assays of overexpressed BK and CaV1.3 in tsa201 and INS-1 cells the authors provide strong evidence that BK and CaV can exist as ensembles (ie channels within 40 nm) at both the plasma membrane and intracellular membranes, including ER and Golgi. They also provide evidence for endogenous ensemble assembly at the Golgi in INS-1 cells and it would have been useful to determine if endogenous complexes are also observe in the ER of INS-1 cells. There are some useful controls but the specificity of ensemble formation would be better determined using other transmembrane proteins rather than peripheral proteins (eg Golgi 58K).

      (2) Ensemble assembly was also analysed using super-resolution (dSTORM) imaging in INS-1 cells. In these cells only 7.5% of BK and CaV particles (endogenous?) co-localise that was only marginally above chance based on scrambled images. More detailed quantification and validation of potential 'ensembles' needs to be made for example by exploring nearest neighbour characteristics (but see point 4 below) to define proportion of ensembles versus clusters of BK or Cav1.3 channels alone etc. For example, it is mentioned that a distribution of distances between BK and Cav is seen but data are not shown.

      (3) The evidence that the intracellular ensemble formation is in large part driven by co-translation, based on co-localisation of mRNAs using RNAscope, requires additional critical controls and analysis. The authors now include data of co-localised BK protein that is suggestive but does not show co-translation. Secondly, while they have improved the description of some controls mRNA co-localisation needs to be measured in both directions (eg BK - SCN9A as well as SCN9A to BK) especially if the mRNAs are expressed at very different levels. The relative expression levels need to be clearly defined in the paper. Authors also use a randomized image of BK mRNA to show specificity of co-localisation with Cav1.3 mRNA, however the mRNA distribution would not be expected to be random across the cell but constrained by ER morphology if co-translated so using ER labelling as a mask would be useful?

      (4) The authors attempt to define if plasma membrane assemblies of BK and CaV occur soon after synthesis. However, because the expression of BK and CaV occur at different times after transient transfection of plasmids more definitive experiments are required. For example, using inducible constructs to allow precise and synchronised timing of transcription. This would also provide critical evidence that co-assembly occurs very early in synthesis pathways - ie detecting complexes at ER before any complexes at Golgi or plasma membrane.

      (5) While the authors have improved the definition of hetero-clusters etc it is still not clear in superesolution analysis, how they separate a BK tetramer from a cluster of BK tetramers with the monoclonal antibody employed ie each BK channel will have 4 binding sites (4 subunits in tetramer) whereas Cav1.3 has one binding site per channel. Thus, how do authors discriminate between a single BK tetramer (molecular cluster) with potential 4 antibodies bound compared to a cluster of 4 independent BK channels.

      (6) The post-hoc tests used for one way ANOVA and ANOVA statistics need to be defined throughout

    4. Reviewer #3 (Public review):

      Summary:

      The authors present a clearly written and beautifully presented piece of work demonstrating clear evidence to support the idea that BK channels and Cav1.3 channels can co-assemble prior to their assertion in the plasma membrane.

      Strengths:

      The experimental records shown back up their hypotheses and the authors are to be congratulated for the large number of control experiments shown in the ms.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the Authors:

      (1) Clarify Mechanistic Interpretations

      (a) Provide stronger evidence or a more cautious interpretation regarding whether intracellular BK-CaV1.3 ensembles are precursors to plasma membrane complexes.

      This is an important point. We adjusted the interpretation regarding intracellular BKCa<sub>V</sub>1.3 hetero-clusters as precursors to plasma membrane complexes to reflect a more cautious stance, acknowledging the limitations of available data. We added the following to the manuscript.

      “Our findings suggest that BK and Ca<sub>V</sub>1.3 channels begin assembling intracellularly before reaching the plasma membrane, shaping their spatial organization and potentially facilitating functional coupling. While this suggests a coordinated process that may contribute to functional coupling, further investigation is needed to determine the extent to which these hetero-clusters persist upon membrane insertion.”

      (b) Discuss the limitations of current data in establishing the proportion of intracellular complexes that persist on the cell surface.

      We appreciate the suggestion. We expanded the discussion to address the limitations of current data in determining the proportion of intracellular complexes that persist on the cell surface. We added the following to the manuscript.

      “Our findings highlight the intracellular assembly of BK-Ca<sub>V</sub>1.3 hetero-clusters, though limitations in resolution and organelle-specific analysis prevent precise quantification of the proportion of intracellular complexes that ultimately persist on the cell surface. While our data confirms that hetero-clusters form before reaching the plasma membrane, it remains unclear whether all intracellular hetero-clusters transition intact to the membrane or undergo rearrangement or disassembly upon insertion. Future studies utilizing live cell tracking and high resolution imaging will be valuable in elucidating the fate and stability of these complexes after membrane insertion.”

      (2) Refine mRNA Co-localization Analysis

      (a) Include appropriate controls using additional transmembrane mRNAs to better assess the specificity of BK and CaV1.3 mRNA co-localization.

      We agree with the reviewers that these controls are essential. We explain better the controls used to address this concern. We added the following to the manuscript. 

      “To explore the origins of the initial association, we hypothesized that the two proteins are translated near each other, which could be detected as the colocalization of their mRNAs (Figure 5A and B). The experiment was designed to detect single mRNA molecules from INS-1 cells in culture. We performed multiplex in situ hybridization experiments using an RNAScope fluorescence detection kit to be able to image three mRNAs simultaneously in the same cell and acquired the images in a confocal microscope with high resolution. To rigorously assess the specificity of this potential mRNA-level organization, we used multiple internal controls. GAPDH mRNA, a highly expressed housekeeping gene with no known spatial coordination with channel mRNAs, served as a baseline control for nonspecific colocalization due to transcript abundance. To evaluate whether the spatial proximity between BK mRNA (KCNMA1) and Ca<sub>V</sub>1.3 mRNA (CACNA1D) was unique to functionally coupled channels, we also tested for Na<sup>V</sup>1.7 mRNA (SCN9A), a transmembrane sodium channel expressed in INS-1 cells but not functionally associated with BK. This allowed us to determine whether the observed colocalization reflected a specific biological relationship rather than shared expression context. Finally, to test whether this proximity might extend to other calcium sources relevant to BK activation, we probed the mRNA of ryanodine receptor 2 (RyR2), another Ca<sup>2+</sup> channel known to interact structurally with BK channels [32]. Together, these controls were chosen to distinguish specific mRNA colocalization patterns from random spatial proximity, shared subcellular distribution, or gene expression level artifacts.”

      (b) Quantify mRNA co-localization in both directions (e.g., BK with CaV1.3 and vice versa) and account for differences in expression levels.

      We thank the reviewer for this suggestion. We chose to quantify mRNA co-localization in the direction most relevant to the formation of functionally coupled hetero-clusters, namely, the proximity of BK (KCNMA1) mRNA to Ca<sub>V</sub>1.3 (CACNA1D) mRNA. Since BK channel activation depends on calcium influx provided by nearby Ca<sub>V</sub>1.3 channels, this directional analysis more directly informs the hypothesis of spatially coordinated translation and channel assembly. To address potential confounding effects of transcript abundance, we implemented a scrambled control approach in which the spatial coordinates of KCNMA1 mRNAs were randomized while preserving transcript count. This control resulted in significantly lower colocalization with CACNA1D mRNA, indicating that the observed proximity reflects a specific spatial association rather than expressiondriven overlap. We also assessed colocalization of CACNA1D with both KCNMA1, GAPDH mRNAs and SCN9 (NaV1.7); as you can see in the graph below these data support t the same conclusion but were not included in the manuscript.

      Author response image 1.

      (c) Consider using ER labeling as a spatial reference when analyzing mRNA localization

      We thank the reviewers for this suggestion. Rather than using ER labeling as a spatial reference, we assess BK and CaV1.3 mRNA localization using fluorescence in situ hybridization (smFISH) alongside BK protein immunostaining. This approach directly identifies BK-associated translation sites, ensuring that observed mRNA localization corresponds to active BK synthesis rather than general ER association. By evaluating BK protein alongside its mRNA, we provide a more functionally relevant measure of spatial organization, allowing us to assess whether BK is synthesized in proximity to CaV1.3 mRNA within micro-translational complexes. The results added to the manuscript is as follows.

      “To further investigate whether KCNMA1 and CACNA1D are localized in regions of active translation (Figure 7A), we performed RNAScope targeting KCNMA1 and CACNA1D alongside immunostaining for BK protein. This strategy enabled us to visualize transcript-protein colocalization in INS-1 cells with subcellular resolution. By directly evaluating sites of active BK translation, we aimed to determine whether newly synthesized BK protein colocalized with CACNA1D mRNA signals (Figure 7A). Confocal imaging revealed distinct micro-translational complex where KCNMA1 mRNA puncta overlapped with BK protein signals and were located adjacent to CACNA1D mRNA (Figure 7B). Quantitative analysis showed that 71 ± 3% of all KCNMA1 colocalized with BK protein signal which means that they are in active translation. Interestingly, 69 ± 3% of the KCNMA1 in active translation colocalized with CACNA1D (Figure 7C), supporting the existence of functional micro-translational complexes between BK and Ca<sub>V</sub>1.3 channels.”

      (3) Improve Terminology and Definitions

      (a) Clarify and consistently use terms like "ensemble," "cluster," and "complex," especially in quantitative analyses.

      We agree with the reviewers, and we clarified terminology such as 'ensemble,' 'cluster,' and 'complex' and used them consistently throughout the manuscript, particularly in quantitative analyses, to enhance precision and avoid ambiguity.  

      (b) Consider adopting standard nomenclature (e.g., "hetero-clusters") to avoid ambiguity.

      We agree with the reviewers, and we adapted standard nomenclature, such as 'heteroclusters,' in the manuscript to improve clarity and reduce ambiguity.

      (4) Enhance Quantitative and Image Analysis

      (a) Clearly describe how colocalization and clustering were measured in super-resolution data.

      We thank the reviewers for this suggestion. We have modified the Methods section to provide a clearer description of how colocalization and clustering were measured in our super-resolution data. Specifically, we now detail the image processing steps, including binary conversion, channel multiplication for colocalization assessment, and density-based segmentation for clustering analysis. These updates ensure transparency in our approach and improve accessibility for readers, and we added the following to the manuscript.

      “Super-resolution imaging: 

      Direct stochastic optical reconstruction microscopy (dSTORM) images of BK and 1.3 overexpressed in tsA-201 cells were acquired using an ONI Nanoimager microscope equipped with a 100X oil immersion objective (1.4 NA), an XYZ closed-loop piezo 736 stage, and triple emission channels split at 488, 555, and 640 nm. Samples were imaged at 35°C. For singlemolecule localization microscopy, fixed and stained cells were imaged in GLOX imaging buffer containing 10 mM β-mercaptoethylamine (MEA), 0.56 mg/ml glucose oxidase, 34 μg/ml catalase, and 10% w/v glucose in Tris-HCl buffer. Single-molecule localizations were filtered using NImOS software (v.1.18.3, ONI). Localization maps were exported as TIFF images with a pixel size of 5 nm. Maps were further processed in ImageJ (NIH) by thresholding and binarization to isolate labeled structures. To assess colocalization between the signal from two proteins, binary images were multiplied. Particles smaller than 400 nm<sup>2</sup> were excluded from the analysis to reflect the spatial resolution limit of STORM imaging (20 nm) and the average size of BK channels. To examine spatial localization preference, binary images of BK were progressively dilated to 20 nm, 40 nm, 60 nm, 80 nm, 100 nm, and 200 nm to expand their spatial representation. These modified images were then multiplied with the Ca<sub>V</sub>1.3 channel to quantify colocalization and determine BK occupancy at increasing distances from Ca<sub>V</sub>1.3. To ensure consistent comparisons across distance thresholds, data were normalized using the 200 nm measurement as the highest reference value, set to 1.”

      (b) Where appropriate, quantify the proportion of total channels involved in ensembles within each compartment.

      We thank the reviewers for this comment. However, our method does not allow for direct quantification of the total number of BK and Ca<sub>V</sub>1.3 channels expressed within the ER or ER exit sites, as we rely on proximity-based detection rather than absolute fluorescence intensity measurements of individual channels. Traditional methods for counting total channel populations, such as immunostaining or single-molecule tracking, are not applicable to our approach due to the hetero-clusters formation process. Instead, we focused on the relative proportion of BK and Ca<sub>V</sub>1.3 hetero-clusters within these compartments, as this provides meaningful insights into trafficking dynamics and spatial organization. By assessing where hetero-cluster preferentially localize rather than attempting to count total channel numbers, we can infer whether their assembly occurs before plasma membrane insertion. While this approach does not yield absolute quantification of ER-localized BK and Ca<sub>V</sub>1.3 channels, it remains a robust method for investigating hetero-cluster formation and intracellular trafficking pathways. To reflect this limitation, we added the following to the manuscript.

      “Finally, a key limitation of this approach is that we cannot quantify the proportion of total BK or Ca<sub>V</sub>1.3 channels engaged in hetero-clusters within each compartment. The PLA method provides proximity-based detection, which reflects relative localization rather than absolute channel abundance within individual organelles”.

      (5) Temper Overstated Claims

      (a) Revise language that suggests the findings introduce a "new paradigm," instead emphasizing how this study extends existing models.

      We agree with the reviewers, and we have revised the language to avoid implying a 'new paradigm.' The following is the significance statement.

      “This work examines the proximity between BK and Ca<sub>V</sub>1.3 molecules at the level of their mRNAs and newly synthesized proteins to reveal that these channels interact early in their biogenesis. Two cell models were used: a heterologous expression system to investigate the steps of protein trafficking and a pancreatic beta cell line to study the localization of endogenous channel mRNAs. Our findings show that BK and Ca<sub>V</sub>1.3 channels begin assembling intracellularly before reaching the plasma membrane, revealing new aspects of their spatial organization. This intracellular assembly suggests a coordinated process that contributes to functional coupling.”

      (b) Moderate conclusions where the supporting data are preliminary or correlative.

      We agree with the reviewers, and we have moderated conclusions in instances where the supporting data are preliminary or correlative, ensuring a balanced interpretation. We added the following to the manuscript. 

      “This study provides novel insights into the organization of BK and Ca<sub>V</sub>1.3 channels in heteroclusters, emphasizing their assembly within the ER, at ER exit sites, and within the Golgi. Our findings suggest that BK and Ca<sub>V</sub>1.3 channels begin assembling intracellularly before reaching the plasma membrane, shaping their spatial organization, and potentially facilitating functional coupling. While this suggests a coordinated process that may contribute to functional coupling, further investigation is needed to determine the extent to which these hetero-clusters persist upon membrane insertion. While our study advances the understanding of BK and Ca<sub>V</sub>1.3 heterocluster assembly, several key questions remain unanswered. What molecular machinery drives this colocalization at the mRNA and protein level? How do disruptions to complex assembly contribute to channelopathies and related diseases? Additionally, a deeper investigation into the role of RNA binding proteins in facilitating transcript association and localized translation is warranted”.

      (6) Address Additional Technical and Presentation Issues

      (a) Include clearer figure annotations, especially for identifying PLA puncta localization (e.g., membrane vs. intracellular).

      We agree with the reviewers, and we have updated the figures to include clearer annotations that distinguish PLA puncta localized at the membrane versus those within intracellular compartments.

      (b) Reconsider the scale and arrangement of image panels to better showcase the data.

      We agree with the reviewers, and we have adjusted the scale and layout of the image panels to enhance data visualization and readability. Enlarged key regions now provide better clarity of critical features.

      (c) Provide precise clone/variant information for BK and CaV1.3 channels used.

      We thank the reviewers for their suggestion, and we now provide precise information regarding the BK and Ca<sub>V</sub>1.3 channel constructs used in our experiments, including their Addgene plasmid numbers and relevant variant details. These have been incorporated into the Methods section to ensure reproducibility and transparency. We added the following to the manuscript. 

      “The Ca<sub>V</sub>1.3 α subunit construct used in our study corresponds to the rat Ca<sub>V</sub>1.3e splice variant containing exons 8a, 11, 31b, and 42a, with a deletion of exon 32. The BK channel construct used in this study corresponds to the VYR splice variant of the mouse BKα subunit (KCNMA1)”.

      (d) Correct typographical errors and ensure proper figure/supplementary labeling throughout.

      Typographical errors have been corrected, and figure/supplementary labeling has been reviewed for accuracy throughout the manuscript.

      (7) Expand the Discussion

      (a) Include a brief discussion of findings such as BK surface expression in the absence of CaV1.3.

      We thank the reviewers for their suggestion. We expanded the Discussion to include a brief analysis of BK surface expression in the absence of Ca<sub>V</sub>1.3. We included the following in the manuscript. 

      “BK Surface Expression and Independent Trafficking Pathways

      BK surface expression in the absence of Ca<sub>V</sub>1.3 indicates that its trafficking does not strictly rely on Ca<sub>V</sub>1.3-mediated interactions. Since BK channels can be activated by multiple calcium sources, their presence in intracellular compartments suggests that their surface expression is governed by intrinsic trafficking mechanisms rather than direct calcium-dependent regulation. While some BK and Ca<sub>V</sub>1.3 hetero-clusters assemble into signaling complexes intracellularly, other BK channels follow independent trafficking pathways, demonstrating that complex formation is not obligatory for all BK channels. Differences in their transport kinetics further reinforce the idea that their intracellular trafficking is regulated through distinct mechanisms. Studies have shown that BK channels can traffic independently of Ca<sub>V</sub>1.3, relying on alternative calcium sources for activation [13, 41]. Additionally, Ca<sub>V</sub>1.3 exhibits slower synthesis and trafficking kinetics than BK, emphasizing that their intracellular transport may not always be coordinated. These findings suggest that BK and Ca<sub>V</sub>1.3 exhibit both independent and coordinated trafficking behaviors, influencing their spatial organization and functional interactions”.

      (b) Clarify why certain colocalization comparisons (e.g., ER vs. ER exit sites) are not directly interpretable.

      We thank the reviewer for their suggestion. A clarification has been added to the result section and discussion of the manuscript explaining why colocalization comparisons, such as ER versus ER exit sites, are not directly interpretable. We included the following in the manuscript.

      “Result:

      ER was not simply due to the extensive spatial coverage of ER labeling, we labeled ER exit sites using Sec16-GFP and probed for hetero-clusters with PLA. This approach enabled us to test whether the hetero-clusters were preferentially localized to ER exit sites, which are specialized trafficking hubs that mediate cargo selection and direct proteins from the ER into the secretory pathway. In contrast to the more expansive ER network, which supports protein synthesis and folding, ER exit sites ensure efficient and selective export of proteins to their target destinations”.

      “By quantifying the proportion of BK and Ca<sub>V</sub>1.3 hetero-clusters relative to total channel expression at ER exit sites, we found 28 ± 3% colocalization in tsA-201 cells and 11 ± 2% in INS-1 cells (Figure 3F). While the percentage of colocalization between hetero-clusters and the ER or ER exit sites alone cannot be directly compared to infer trafficking dynamics, these findings reinforce the conclusion that hetero-clusters reside within the ER and suggest that BK and Ca<sub>V</sub>1.3 channels traffic together through the ER and exit in coordination”.

      “Colocalization and Trafficking Dynamics

      The colocalization of BK and Ca<sub>V</sub>1.3 channels in the ER and at ER exit sites before reaching the Golgi suggests a coordinated trafficking mechanism that facilitates the formation of multi-channel complexes crucial for calcium signaling and membrane excitability [37, 38]. Given the distinct roles of these compartments, colocalization at the ER and ER exit sites may reflect transient proximity rather than stable interactions. Their presence in the Golgi further suggests that posttranslational modifications and additional assembly steps occur before plasma membrane transport, providing further insight into hetero-cluster maturation and sorting events. By examining BK-Ca<sub>V</sub>1.3 hetero-cluster distribution across these trafficking compartments, we ensure that observed colocalization patterns are considered within a broader framework of intracellular transport mechanisms [39]. Previous studies indicate that ER exit sites exhibit variability in cargo retention and sorting efficiency [40], emphasizing the need for careful evaluation of colocalization data. Accounting for these complexities allows for a robust assessment of signaling complexes formation and trafficking pathways”.

      Reviewer #1 (Recommendations for the authors):

      In addition to the general aspects described in the public review, I list below a few points with the hope that they will help to improve the manuscript: 

      (1) Page 3: "they bind calcium delimited to the point of entry at calcium channels", better use "sources" 

      We agree with the reviewer. The phrasing on Page 3 has been updated to use 'sources' instead of 'the point of entry at calcium channels' for clarity.

      (2) Page 3 "localized supplies of intracellular calcium", I do not like this term, but maybe this is just silly.

      We agree with the reviewer. The term 'localized supplies of intracellular calcium' on Page 3 has been revised to “Localized calcium sources”

      (3) Regarding the definitions stated by the authors: How do you distinguish between "ensembles" corresponding to "coordinated collection of BK and Cav channels" and "assembly of BK clusters with Cav clusters"? I believe that hetero-clusters is more adequate. The nomenclature does not respond to any consensus in the protein biology field, and I find that it introduces bias more than it helps. I would stick to heteroclusters nomenclature that has been used previously in the field. Moreover, in some discussion sections, the term "ensemble" is used in ways that border on vague, especially when talking about "functional signaling complexes" or "ensembles forming early." It's still acceptable within context but could benefit from clearer language to distinguish ensemble (structural proximity) from complex (functional consequence).

      We agree with the reviewer, and we recognize the importance of precise nomenclature and have adopted hetero-clusters instead of ensembles to align with established conventions in the field. This term specifically refers to the spatial organization of BK and Ca<sub>V</sub>1.3 channels, while functional complexes denote mechanistic interactions. We have revised sections where ensemble was used ambiguously to ensure clear distinction between structure and function.

      The definition of "cluster" is clearly stated early but less emphasized in later quantitative analyses (e.g., particle size discussions in Figure 7). Figure 8 is equally confusing, graphs D and E referring to "BK ensembles" and "Cav ensembles", but "ensembles" should refer to combinations of both channels, whereas these seem to be "clusters". In fact, the Figure legend mentions "clusters".

      We agree with the reviewer. Terminology has been revised throughout the manuscript to ensure consistency, with 'clusters' used appropriately in quantitative analyses and figure descriptions.

      (4) Methods: how are clusters ("ensembles") analysed from the STORM data? What is the logarithm used for? More info about this is required. Equally, more information and discussion about how colocalization is measured and interpreted in superresolution microscopy are required.

      We thank the reviewer for their suggestion, and additional details have been incorporated into the Methods section to clarify how clusters ('ensembles') are analyzed from STORM data, including the role of the logarithm in processing. Furthermore, we have expanded the discussion to provide more information on how colocalization is measured and interpreted in super resolution microscopy. We include the following in the manuscript.

      “Direct stochastic optical reconstruction microscopy (dSTORM) images of BK and Ca<sub>V</sub>1.3 overexpressed in tsA-201 cells were acquired using an ONI Nanoimager microscope equipped with a 100X oil immersion objective (1.4 NA), an XYZ closed-loop piezo 736 stage, and triple emission channels split at 488, 555, and 640 nm. Samples were imaged at 35°C. For singlemolecule localization microscopy, fixed and stained cells were imaged in GLOX imaging buffer containing 10 mM β-mercaptoethylamine (MEA), 0.56 mg/ml glucose oxidase, 34 μg/ml catalase, and 10% w/v glucose in Tris-HCl buffer. Single-molecule localizations were filtered using NImOS software (v.1.18.3, ONI). Localization maps were exported as TIFF images with a pixel size of 5 nm. Maps were further processed in ImageJ (NIH) by thresholding and binarization to isolate labeled structures. To assess colocalization between the signal from two proteins, binary images were multiplied. Particles smaller than 400 nm<sup>2</sup> were excluded from the analysis to reflect the spatial resolution limit of STORM imaging (20 nm) and the average size of BK channels. To examine spatial localization preference, binary images of BK were progressively dilated to 20 nm, 40 nm, 60 nm, 80 nm, 100 nm, and 200 nm to expand their spatial representation. These modified images were then multiplied with the Ca<sub>V</sub>1.3 channel to quantify colocalization and determine BK occupancy at increasing distances from Ca<sub>V</sub>1.3. To ensure consistent comparisons across distance thresholds, data were normalized using the 200 nm measurement as the highest reference value, set to 1”.

      (5) Related to Figure 2:

      (a) Why use an antibody to label GFP when PH-PLCdelta should be a membrane marker? Where is the GFP in PH-PKC-delta (intracellular, extracellular? Images in Figure 2E are confusing, there is a green intracellular signal.

      We thank the reviewer for their feedback. To clarify, GFP is fused to the N-terminus of PH-PLCδ and primarily localizes to the inner plasma membrane via PIP2 binding. Residual intracellular GFP signal may reflect non-membrane-bound fractions or background from anti-GFP immunostaining. We added a paragraph explaining the use of the antibody anti GFP in the Methods section Proximity ligation assay subsection. 

      (b) The images in Figure 2 do not help to understand how the authors select the PLA puncta located at the plasma membrane. How do the authors do this? A useful solution would be to indicate in Figure 2 an example of the PLA signals that are considered "membrane signals" compared to another example with "intracellular signals". Perhaps this was intended with the current Figure, but it is not clear.

      We agree with the reviewer. We have added a sentence to explain how the number of PLA puncta at the plasma membrane was calculated. 

      “We visualized the plasma membrane with a biological sensor tagged with GFP (PHPLCδ-GFP) and then probed it with an antibody against GFP (Figure 2E). By analyzing the GFP signal, we created a mask that represented the plasma membrane. The mask served to distinguish between the PLA puncta located inside the cell and those at the plasma membrane, allowing us to calculate the number of PLA puncta at the plasma membrane”.

      (c) Figure 2C: What is the negative control? Apologies if it is described somewhere, but I seem not to find it in the manuscript.

      We thank the reviewer for their suggestion. For the negative control in Figure 2C, BK was probed using the primary antibody without co-staining for Ca<sub>V</sub>1.3 or other proteins, ensuring specificity and ruling out non-specific antibody binding or background fluorescence. A sentence clarifying the negative control for Figure 2C has been added to the Results section, specifying that BK was probed using the primary antibody without costaining for Ca<sub>V</sub>1.3 or other proteins to ensure specificity. 

      “To confirm specificity, a negative control was performed by probing only for BK using the primary antibody, ensuring that detected signals were not due to non-specific binding or background fluorescence”.

      (d) What is the resolution in z of the images shown in Figure 2? This is relevant for the interpretation of signal localization.

      The z-resolution of the images shown in Figure 2 was approximately 270–300 nm, based on the Zeiss Airyscan system’s axial resolution capabilities. Imaging was performed with a step size of 300 nm, ensuring adequate sampling for signal localization while maintaining optimal axial resolution.

      “In a different experiment, we analyzed the puncta density for each focal plane of the cell (step size of 300 nm) and compared the puncta at the plasma membrane to the rest of the cell”.

      (e) % of total puncta in PM vs inside cell are shown for transfected cells, what is this proportion in INS-1 cells?

      This quantification was performed for transfected cells; however, we have not conducted the same analysis in INS-1 cells. Future experiments could address this to determine potential differences in puncta distribution between endogenous and overexpressed conditions.

      (6) Related to Figure 3:

      (a) Figure 3B: is this antibody labelling or GFP fluorescence? Why do they use GFP antibody labelling, if the marker already has its own fluorescence? This should at least be commented on in the manuscript.

      We thank the reviewer for their concern. In Figure 3B, GFP was labeled using an antibody rather than relying on its intrinsic fluorescence. This approach was necessary because GFP fluorescence does not withstand the PLA protocol, resulting in significant fading. Antibody labeling provided stronger signal intensity and improved resolution, ensuring optimal signal-to-noise ratio for accurate analysis.

      A clarification regarding the use of GFP antibody labeling in Figure 3B has been added to the Methods section, explaining that intrinsic GFP fluorescence does not endure the PLA protocol, necessitating antibody-based detection for improved signal and resolution.We added the following to the manuscript. 

      “For PLA combined with immunostaining, PLA was followed by a secondary antibody incubation with Alexa Fluor-488 at 2 μg/ml for 1 hour at 21˚C. Since GFP fluorescence fades significantly during the PLA protocol, resulting in reduced signal intensity and poor image resolution, GFP was labeled using an antibody rather than relying on its intrinsic fluorescence”.

      (b) Why is it relevant to study the ER exit sites? Some explanation should be included in the main text (page 11) for clarification to non-specialized readers. Again, the quantification should be performed on the proportion of clusters/ensembles out of the total number of channels expressed at the ER (or ER exit sites).

      We thank the reviewer for their feedback. We have modified this section to include a more detailed explanation of the relevance of ER exit sites to protein trafficking. ER exit sites serve as specialized sorting hubs that regulate the transition of proteins from the ER to the secretory pathway, distinguishing them from the broader ER network, which primarily facilitates protein synthesis and folding. This additional context clarifies why studying ER exit sites provides valuable insights into ensemble trafficking dynamics.

      Regarding quantification, our method does not allow for direct measurement of the total number of BK and Ca<sub>V</sub>1.3 channels expressed at the ER or ER exit sites. Instead, we focused on the proportion of hetero-clusters localized within these compartments, which provides insight into trafficking pathways despite the limitation in absolute channel quantification. We included the following in the manuscript in the Results section. 

      “To determine whether the observed colocalization between BK–Ca<sub>V</sub>1.3 hetero-clusters and the ER was not simply due to the extensive spatial coverage of ER labeling, we labeled ER exit sites using Sec16-GFP and probed for hetero-clusters with PLA. This approach enabled us to test whether the hetero-clusters were preferentially localized to ER exit sites, which are specialized trafficking hubs that mediate cargo selection and direct proteins from the ER into the secretory pathway. In contrast to the more expansive ER network, which supports protein synthesis and folding, ER exit sites ensure efficient and selective export of proteins to their target destinations”.

      “By quantifying the proportion of BK and Ca<sub>V</sub>1.3 hetero-clusters relative to total channel expression at ER exit sites, we found 28 ± 3% colocalization in tsA-201 cells and 11 ± 2% in INS-1 cells (Figure 3F). While the percentage of colocalization between hetero-clusters and the ER or ER exit sites alone cannot be directly compared to infer trafficking dynamics, these findings reinforce the conclusion that hetero-clusters reside within the ER and suggest that BK and Ca<sub>V</sub>1.3 channels traffic together through the ER and exit in coordination”.

      (7) Related to Figure 4:

      A control is included to confirm that the formation of BK-Cav1.3 ensembles is not unspecific. Association with a protein from the Golgi (58K) is tested. Why is this control only done for Golgi? No similar experiment has been performed in the ER. This aspect should be commented on.

      We thank the reviewer for their suggestion. We selected the Golgi as a control because it represents the final stage of protein trafficking before proteins reach their functional destinations. If BK and Ca<sub>V</sub>1.3 hetero-cluster formation is specific at the Golgi, this suggests that their interaction is maintained throughout earlier trafficking steps, including within the ER. While we did not perform an equivalent control experiment in the ER, the Golgi serves as an effective checkpoint for evaluating specificity within the broader protein transport pathway. We included the following in the manuscript.

      “We selected the Golgi as a control because it represents the final stage of protein trafficking, ensuring that hetero-cluster interactions observed at this point reflect specificity maintained throughout earlier trafficking steps, including within the ER”.

      (8) How is colocalization measured, eg, in Figure 6? Are the images shown in Figure 6 representative? This aspect would benefit from a clearer description.

      We thank the reviewer for their suggestion. A section clarifying colocalization measurement and the representativeness of Figure 6 images has been added to the Methods under Data Analysis. We included the following in the manuscript.

      For PLA and RNAscope experiments, we used custom-made macros written in ImageJ. Processing of PLA data included background subtraction. To assess colocalization, fluorescent signals were converted into binary images, and channels were multiplied to identify spatial overlap.

      (9) The text should be revised for typographical errors, for example:

      (a) Summary "evidence of" (CHECK THIS ONE)

      We agree with the reviewer, and we corrected the typographical errors

      (b) Table 1, row 3: "enriches" should be "enrich"

      We agree with the reviewer. The term 'enriches' in Table 1, row 3 has been corrected to 'enrich'.

      (c) Figure 2B "priximity"

      We agree with the reviewer. The typographical errors in Figure 2B has been corrected from 'priximity' to 'proximity'.

      (d) Legend of Figure 7 (C) "size of BK and Cav1.3 channels". Does this correspond to individual channels or clusters?

      We agree with the reviewer. The legend of Figure 7C has been clarified to indicate that 'size of BK and Cav1.3 channels' refers to clusters rather than individual channels.

      (e) Methods: In the RNASCOPE section, "Fig.4-supp1" should be "Fig. 5-supp1"

      (f) Page 15, Figure 5B is cited, should be Figure 6B

      We agree with the reviewer. The reference in the RNASCOPE section has been updated from 'Fig.4-supp1' to 'Fig. 5-supp1,' and the citation on Page 15 has been corrected from Figure 5B to Figure 6B.

      Reviewer #2 (Recommendations for the authors):

      (1) The abstract could be more accessible for a wider readership with improved flow.

      We thank the reviewer for their suggestion. We modified the summary as follows to provide a more coherent flow for a wider readership. 

      “Calcium binding to BK channels lowers BK activation threshold, substantiating functional coupling with calcium-permeable channels. This coupling requires close proximity between different channel types, and the formation of BK–Ca<sub>V</sub>1.3 hetero-clusters at nanometer distances exemplifies this unique organization. To investigate the structural basis of this interaction, we tested the hypothesis that BK and Ca<sub>V</sub>1.3 channels assemble before their insertion into the plasma membrane. Our approach incorporated four strategies: (1) detecting interactions between BK and Ca<sub>V</sub>1.3 proteins inside the cell, (2) identifying membrane compartments where intracellular hetero-clusters reside, (3) measuring the proximity of their mRNAs, and (4) assessing protein interactions at the plasma membrane during early translation. These analyses revealed that a subset of BK and Ca<sub>V</sub>1.3 transcripts are spatially close in micro-translational complexes, and their newly synthesized proteins associate within the endoplasmic reticulum (ER) and Golgi. Comparisons with other proteins, transcripts, and randomized localization models support the conclusion that BK and Ca<sub>V</sub>1.3 hetero-clusters form before their insertion at the plasma membrane”.

      (2) Figure 2B - spelling of proximity.

      We agree with the reviewer. The typographical errors in Figure 2B has been corrected from 'priximity' to 'proximity'.

      Reviewer #3 (Recommendations for the authors):

      Minor issues to improve the manuscript:

      (1) For completeness, the authors should include a few sentences and appropriate references in the Introduction to mention that BK channels are regulated by auxiliary subunits.

      We agree with the reviewer. We have revised the Introduction to include a brief discussion of how BK channel function is modulated by auxiliary subunits and provided appropriate references to ensure completeness. These additions highlight the broader regulatory mechanisms governing BK channel activity, complementing the focus of our study. We included the following in the manuscript. 

      “Additionally, BK channels are modulated by auxiliary subunits, which fine-tune BK channel gating properties to adapt to different physiological conditions. β and γ subunits regulate BK channel kinetics, altering voltage sensitivity and calcium responsiveness [18]. These interactions ensure precise control over channel activity, allowing BK channels to integrate voltage and calcium signals dynamically in various cell types. Here, we focus on the selective assembly of BK channels with Ca<sub>V</sub>1.3 and do not evaluate the contributions of auxiliary subunits to BK channel organization.”

      (2) Insert a space between 'homeostasis' and the square bracket at the end of the Introduction's second paragraph.

      We agree with the reviewer. A space has been inserted between 'homeostasis' and the square bracket in the second paragraph of the Introduction for clarity.

      (3) The images presented in Figures 2-5 should be increased in size (if permitted by the Journal) to allow the reader to clearly see the puncta in the fluorescent images. This would necessitate reconfiguring the figures into perhaps a full A4 page per figure, but I think the quality of the images presented really do deserve to "be seen". For example, Panels A & B could be at the top of Figure 2, with C & D presented below them. However, I'll leave it up to the authors to decide on the most aesthetically pleasing way to show these.

      We agree with the reviewer. We have increased the size of Figures 2–8 to enhance the visibility of fluorescent puncta, as suggested. To accommodate this, we reorganized the panel layout for each figure—for example, in Figure 2, Panels A and B are now placed above Panels C and D to support a more intuitive and aesthetically coherent presentation. We believe this revised configuration highlights the image quality and improves readability while conforming to journal layout constraints.

      (4) I think that some of the sentences could be "toned down"

      (a) eg, in the first paragraph below Figure 2, the authors state "that 46(plus minus)3% of the puncta were localised on intracellular membranes" when, at that stage, no data had been presented to confirm this. I think changing it to "that 46(plus minus)3% of the puncta were localised intracellularly" would be more precise.

      (b) Similarly, please consider replacing the wording of "get together at membranes inside the cell" to "co-localise intracellularly".

      (c) In the paragraph just before Figure 5, the authors mention that "the abundance of KCNMA1 correlated more with the abundance of CACNA1D than ... with GAPDH." Although this is technically correct, the R2 value was 0.22, which is exceptionally poor. I don't think that the paper is strengthened by sentences such as this, and perhaps the authors might tone this down to reflect this.

      (d) The authors clearly demonstrate in Figure 8 that a significant number of BK channels can traffic to the membrane in the absence of Cav1.3. Irrespective of the differences in transcription/trafficking time between the two channel types, the authors should insert a few lines into their discussion to take this finding into account.

      We appreciate the reviewer’s feedback regarding the clarity and precision of our phrasing.

      Our responses for each point are below.

      (a) We have modified the statement in the first paragraph below Figure 2, changing '46 ± 3% of the puncta were localized on intracellular membranes' to '46 ± 3% of the puncta were localized ‘intracellularly’ to ensure accuracy in the absence of explicit data confirming membrane association.

      (b) Similarly, we have replaced 'get together at membranes inside the cell' with 'colocalize intracellularly' to maintain clarity and avoid unintended implications. 

      (c) Regarding the correlation between KCNMA1 and CACNA1D abundance, we recognize that the R² value of 0.22 is relatively low. To reflect this appropriately, we have revised the phrasing to indicate that while a correlation exists, it is modest. We added the following to the manuscript. 

      “Interestingly, the abundance of KCNMA1 transcripts correlated more with the abundance of CACNA1D transcripts than with the abundance of GAPDH, a standard housekeeping gene, though with a modest R² value.”

      (d) To incorporate the findings from Figure 8, we have added discussion acknowledging that a substantial number of BK channels traffic to the membrane independently of Ca<sub>V</sub>1.3. This addition provides context for potential trafficking mechanisms that operate separately from ensemble formation.

      (5) For clarity, please insert the word "total" in the paragraph after Figure 3 "..."63{plus minus}3% versus 50%{plus minus}6% of total PLA puncta were localised at the ER". I know this is explicitly stated later in the manuscript, but I think it needs to be clarified earlier.

      We agree with the reviewer. The word 'total' has been inserted in the paragraph following Figure 3 to clarify the percentage of PLA puncta localized at the ER earlier in the manuscript

      (6) In the discussion, I think an additional (short) paragraph needs to be included to clarify to the reader why the % "colocalization between ensembles and the ER or the ER exit sites can't be compared or used to understand the dynamics of the ensembles". This may permit the authors to remove the last sentence of the paragraph just before the results section, "BK and Cav1.3 ensembles go through the Golgi."

      We thank the reviewer for their suggestion. We have added a short paragraph in the discussion to clarify why colocalization percentages between ensembles and the ER or ER exit sites cannot be compared to infer ensemble dynamics. This allowed us to remove the final sentence of the paragraph preceding the results section ('BK and Cav1.3 ensembles go through the Golgi).

      (7) In the paragraph after Figure 6, Figure 5B is inadvertently referred to. Please correct this to Figure 6B.

      We agree with the reviewer. The reference to Figure 5B in the paragraph after Figure 6 has been corrected to Figure 6B.

      (8) In the discussion under "mRNA co-localisation and Protein Trafficking", please insert a relevant reference illustrating that "disruption in mRNA localization... can lead to ion channel mislocalization".

      We agree with the reviewer. We have inserted a relevant reference under 'mRNA Colocalization and Protein Trafficking' to illustrate that disruption in mRNA localization can lead to ion channel mislocalization.

      (9) The supplementary Figures appear to be incorrectly numbered. Please correct and also ensure that they are correctly referred to in the text.

      We agree with the reviewer. The numbering of the supplementary figures has been corrected, and all references to them in the text have been updated accordingly.

      (10) The final panels of the currently labelled Figure 5-Supplementary 2 need to have labels A-F included on the image.

      We agree with the reviewer. Labels A-F have been added to the final panels of Figure 5-Supplementary 2.

      References

      (1) Shah, K.R., X. Guan, and J. Yan, Structural and Functional Coupling of Calcium-Activated BK Channels and Calcium-Permeable Channels Within Nanodomain Signaling Complexes. Frontiers in Physiology, 2022. Volume 12 - 2021.

      (2) Chen, A.L., et al., Calcium-Activated Big-Conductance (BK) Potassium Channels Traffic through Nuclear Envelopes into Kinocilia in Ray Electrosensory Cells. Cells, 2023. 12(17): p. 2125.

      (3) Berkefeld, H., B. Fakler, and U. Schulte, Ca2+-activated K+ channels: from protein complexes to function. Physiol Rev, 2010. 90(4): p. 1437-59.

      (4) Loane, D.J., P.A. Lima, and N.V. Marrion, Co-assembly of N-type Ca2+ and BK channels underlies functional coupling in rat brain. J Cell Sci, 2007. 120(Pt 6): p. 98595.

      (5) Boncompain, G. and F. Perez, The many routes of Golgi-dependent trafficking. Histochemistry and Cell Biology, 2013. 140(3): p. 251-260.

      (6) Kurokawa, K. and A. Nakano, The ER exit sites are specialized ER zones for the transport of cargo proteins from the ER to the Golgi apparatus. The Journal of Biochemistry, 2019. 165(2): p. 109-114.

      (7) Chen, G., et al., BK channel modulation by positively charged peptides and auxiliary γ subunits mediated by the Ca2+-bowl site. Journal of General Physiology, 2023. 155(6).

    1. eLife Assessment

      This useful study reports a method to detect and analyze a novel post-translational modification, lysine acetoacetylation (Kacac), finding it regulates protein metabolism pathways. The study unveils epigenetic modifiers involved in placing this mark, including key histone acetyltransferases such as p300, and concomitant HDACs, which remove the mark. Proteomic and bioinformatics analysis identified many human proteins with Kacac sites, potentially suggesting broad effects on cellular processes and disease mechanisms. The data presented are solid, although some concerns persist regarding inconsistencies in molecular weight of the enzyme used. The study will be of interest to those studying protein and metabolic regulation.

    2. Reviewer #2 (Public review):

      In the manuscript by Fu et al., the authors developed a chemo-immunological method for the reliable detection of Kacac, a novel post-translational modification, and demonstrated that acetoacetate and AACS serve as key regulators of cellular Kacac levels. Furthermore, the authors identified the enzymatic addition of the Kacac mark by acyltransferases GCN5, p300, and PCAF, as well as its removal by deacetylase HDAC3. These findings indicate that AACS utilizes acetoacetate to generate acetoacetyl-CoA in the cytosol, which is subsequently transferred into the nucleus for histone Kacac modification. A comprehensive proteomic analysis has identified 139 Kacac sites on 85 human proteins. Bioinformatics analysis of Kacac substrates and RNA-seq data reveal the broad impacts of Kacac on diverse cellular processes and various pathophysiological conditions. This study provides valuable additional insights into the investigation of Kacac and would serve as a helpful resource for future physiological or pathological research.

      Comments on revised version:

      The authors have made efforts to revise this manuscript and address my concerns. The revisions are appropriate and have improved the quality of the manuscript.

    3. Reviewer #3 (Public review):

      Summary:

      This paper presents a timely and significant contribution to the study of lysine acetoacetylation (Kacac). The authors successfully demonstrate a novel and practical chemo-immunological method using the reducing reagent NaBH4 to transform Kacac into lysine β-hydroxybutyrylation (Kbhb).

      Strengths:

      This innovative approach enables simultaneous investigation of Kacac and Kbhb, showcasing its potential in advancing our understanding of post-translational modifications and their roles in cellular metabolism and disease.

      Weaknesses:

      The experimental evidence presented in the article is insufficient to fully support the authors' conclusions. In the in vitro assays, the proteins used appear to be highly inconsistent with their expected molecular weights, as shown by Coomassie Brilliant Blue staining (Figure S3A). For example, p300, which has a theoretical molecular weight of approximately 270 kDa, appeared at around 37 kDa; GCN5/PCAF, expected to be ~70 kDa, appeared below 20 kDa. Other proteins used in the in vitro experiments also exhibited similarly large discrepancies from their predicted sizes. These inconsistencies severely compromise the reliability of the in vitro findings. Furthermore, the study lacks supporting in vivo data, such as gene knockdown experiments, to validate the proposed conclusions at the cellular level.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary

      Lysine acetoacetylation (Kacac) is a recently discovered histone post-translational modification (PTM) connected to ketone body metabolism. This research outlines a chemo-immunological method for detecting Kacac, eliminating the requirement for creating new antibodies. The study demonstrates that acetoacetate acts as the precursor for Kacac, which is catalyzed by the acyltransferases GCN5, p300, and PCAF, and removed by the deacetylase HDAC3. AcetoacetylCoA synthetase (AACS) is identified as a central regulator of Kacac levels in cells. A proteomic analysis revealed 139 Kacac sites across 85 human proteins, showing the modification's extensive influence on various cellular functions. Additional bioinformatics and RNA sequencing data suggest a relationship between Kacac and other PTMs, such as lysine βhydroxybutyrylation (Kbhb), in regulating biological pathways. The findings underscore Kacac's role in histone and non-histone protein regulation, providing a foundation for future research into the roles of ketone bodies in metabolic regulation and disease processes.

      Strengths 

      (1) The study developed an innovative method by using a novel chemo-immunological approach to the detection of lysine acetoacetylation. This provides a reliable method for the detection of specific Kacac using commercially available antibodies.

      (2) The research has done a comprehensive proteome analysis to identify unique Kacac sites on 85 human proteins by using proteomic profiling. This detailed landscape of lysine acetoacetylation provides a possible role in cellular processes.

      (3) The functional characterization of enzymes explores the activity of acetoacetyltransferase of key enzymes like GCN5, p300, and PCAF. This provides a deeper understanding of their function in cellular regulation and histone modifications.

      (4) The impact of acetyl-CoA and acetoacetyl-CoA on histone acetylation provides the differential regulation of acylations in mammalian cells, which contributes to the understanding of metabolic-epigenetic crosstalk.

      (5) The study examined acetoacetylation levels and patterns, which involve experiments using treatment with acetohydroxamic acid or lovastatin in combination with lithium acetoacetate, providing insights into the regulation of SCOT and HMGCR activities.

      We thank all the reviewers for their positive, insightful comments which have helped us improve our manuscript. We have revised the manuscript as suggested by the reviewers.

      Weakness 

      (1) There is a limitation to functional validation, related to the work on the biological relevance of identified acetoacetylation sites. Hence, the study requires certain functional validation experiments to provide robust conclusions regarding the functional implications of these modifications on cellular processes and protein function. For example, functional implications of the identified acetoacetylation sites on histone proteins would aid the interpretation of the results.

      We agree with the reviewer that investigating the functional role of individual histone Kacac sites is essential for understanding the epigenetic impact of Kacac marks on gene expression, signaling pathways, and disease mechanisms. This topic is out of the scope of this paper which focuses on biochemical studies and proteomics. Functional elucidation in specific pathways will be a critical direction for future investigation, ideally with the development of site-specific anti-Kacac antibodies.

      (2) The authors could have studied acetoacetylation patterns between healthy cells and disease models like cancer cells to investigate potential dysregulation of acetoacetylation in pathological conditions, which could provide insights into their PTM function in disease progression and pathogenesis.

      We appreciate the reviewer’s valuable suggestion. In our study, we measured Kacac levels in several types of cancer cell lines, including HCT116 (Fig. 2B), HepG2 (Supplementary Fig. S2), and HeLa cells (data not shown in the manuscript), and found that acetoacetate-mediated Kacac is broadly present in all these cancer cell lines. Our proteomics analysis linked Kacac to critical cellular functions, e.g. DNA repair, RNA metabolism, cell cycle regulation, and apoptosis, and identified promising targets that are actively involved in cancer progression such as p53, HDAC1, HMGA2, MTA2, LDHA. These findings suggest that Kacac has significant, non-negligible effects on cancer pathogenesis. We concur that exploring the acetoacetylation patterns in cancer patient samples with comparison with normal cells represents a promising direction for next-step research. We plan to investigate these big issues in future studies. 

      (3) The time-course experiments could be performed following acetoacetate treatment to understand temporal dynamics, which can capture the acetoacetylation kinetic change, thereby providing a mechanistic understanding of the PTM changes and their regulatory mechanisms.

      As suggested, time-course experiments were performed, and the data have been included in the revised manuscript (Supplementary Fig. S2A).

      (4) Though the discussion section indeed provides critical analysis of the results in the context of existing literature, further providing insights into acetoacetylation's broader implications in histone modification. However, the study could provide a discussion on the impact of the overlap of other post-translational modifications with Kacac sites with their implications on protein functions.

      We appreciate the reviewer’s helpful suggestion. We have added more discussions on the impact of the Kacac overlap with other post-translational modifications in the discussion section of the revised manuscript.

      Impact

      The authors successfully identified novel acetoacetylation sites on proteins, expanding the understanding of this post-translational modification. The authors conducted experiments to validate the functional significance of acetoacetylation by studying its impact on histone modifications and cellular functions.

      We appreciate the reviewer’s comments.

      Reviewer #2 (Public review):

      In the manuscript by Fu et al., the authors developed a chemo-immunological method for the reliable detection of Kacac, a novel post-translational modification, and demonstrated that acetoacetate and AACS serve as key regulators of cellular Kacac levels. Furthermore, the authors identified the enzymatic addition of the Kacac mark by acyltransferases GCN5, p300, and PCAF, as well as its removal by deacetylase HDAC3. These findings indicate that AACS utilizes acetoacetate to generate acetoacetyl-CoA in the cytosol, which is subsequently transferred into the nucleus for histone Kacac modification. A comprehensive proteomic analysis has identified 139 Kacac sites on 85 human proteins. Bioinformatics analysis of Kacac substrates and RNA-seq data reveals the broad impacts of Kacac on diverse cellular processes and various pathophysiological conditions. This study provides valuable additional insights into the investigation of Kacac and would serve as a helpful resource for future physiological or pathological research.

      The following concerns should be addressed:

      (1) A detailed explanation is needed for selecting H2B (1-26) K15 sites over other acetylation sites when evaluating the feasibility of the chemo-immunological method.

      The primary reason for selecting the H2B (1–26) K15acac peptide to evaluate the feasibility of our chemo-immunological method is that H2BK15acac was one of the early discovered modification sites in our preliminary proteomic screening data. The panKbhb antibody used herein is independent of peptide sequence so different modification sites on histones can all be recognized. We have added the explanation to the manuscript.

      (2) In Figure 2(B), the addition of acetoacetate and NaBH4 resulted in an increase in Kbhb levels. Specifically, please investigate whether acetoacetylation is primarily mediated by acetoacetyl-CoA and whether acetoacetate can be converted into a precursor of β-hydroxybutyryl (bhb-CoA) within cells. Additional experiments should be included to support these conclusions.

      We appreciate the reviewer’s valuable comments. In our paper, we had the data showing that acetoacetate treatment had very little effect on histone Kbhb levels in HEK293T cells, as observed in lanes 1–4 of Fig. 2A, demonstrating that acetoacetate minimally contributes to Kbhb generation. We drew the conclusion that histone Kacac is primarily mediated by acetoacetyl-CoA based on multiple pieces of evidence: first, we observed robust Kacac formation from acetoacetyl-CoA upon incubation with HATs and histone proteins or peptides, as confirmed by both western blotting (Figs. 3A, 3B; Supplementary Figs. S3C– S3F) and MALDI-MS analysis (Supplementary Fig. S4A). Second, treatment with hymeglusin—a specific inhibitor of hydroxymethylglutaryl-CoA synthase, which catalyzes the conversion of acetoacetyl-CoA to HMG-CoA—led to increased Kacac levels in HepG2 cells (PMID: 37382194). Third, we demonstrated that AACS whose function is to convert acetoacetate into acetoacetyl-CoA leads to marked histone Kacac upregulation (Fig. 2E). Collectively, these findings strongly support the conclusion that acetoacetate promotes Kacac formation primarily via acetoacetyl-CoA.

      (3) In Figure 2(E), the amount of pan-Kbhb decreased upon acetoacetate treatment when SCOT or AACS was added, whereas this decrease was not observed with NaBH4 treatment. What could be the underlying reason for this phenomenon?

      In the groups without NaBH₄ treatment (lanes 5–8, Figure 2E), the Kbhb signal decreased upon the transient overexpression of SCOT or AACS, owing to protein loading variation in these two groups (lanes 7 and 8). Both Ponceau staining and anti-H3 results showed a lower amount of histones in the AACS- or SCOT-treated samples. On the other hand, no decrease in the Kbhb signal was observed in the NaBH₄-treated groups (lanes 1–4), because NaBH₄ treatment elevated Kacac levels, thereby compensating for the reduced histone loading. The most important conclusion from this experiment is that AACS overexpression increased Kacac levels, whereas SCOT overexpression had no/little effect on histone Kacac levels in HEK293T cells.

      (4) The paper demonstrates that p300, PCAF, and GCN5 exhibit significant acetoacetyltransferase activity and discusses the predicted binding modes of HATs (primarily PCAF and GCN5) with acetoacetyl-CoA. To validate the accuracy of these predicted binding models, it is recommended that the authors design experiments such as constructing and expressing protein mutants, to assess changes in enzymatic activity through western blot analysis.

      We appreciate the reviewer’s valuable suggestion. Our computational modeling shows that acetoacetyl-CoA adopts a binding mode similar to that of acetyl-CoA in the tested HATs. This conclusion is supported by experimental results showing that the addition of acetyl-CoA significantly competed for the binding of acetoacetyl-CoA to HATs, leading to reduced enzymatic activity in mediating Kacac (Fig. 3C). Further structural biology studies to investigate the key amino acid residues involved in Kacac binding within the GCN5/PCAF binding pocket, in comparison to Kac binding—will be a key direction of future studies.

      (5) HDAC3 shows strong de-acetoacetylation activity compared to its de-acetylation activity. Specific experiments should be added to verify the molecular docking results. The use of HPLC is recommended, in order to demonstrate that HDAC3 acts as an eraser of acetoacetylation and to support the above conclusions. If feasible, mutating critical amino acids on HDAC3 (e.g., His134, Cys145) and subsequently analyzing the HDAC3 mutants via HPLC and western blot can further substantiate the findings.

      We appreciate the reviewer’s helpful suggestion. In-depth characterizations of HDAC3 and other HDACs is beyond this manuscript. We plan in the future to investigate the enzymatic activity of recombinant HDAC3, including the roles of key amino acid residues and the catalytic mechanism underlying Kacac removal, and to compare its activity with that involved in Kac removal.

      (6) The resolution of the figures needs to be addressed in order to ensure clarity and readability.

      Edits have been made to enhance figure resolutions in the revised manuscript.

      Reviewer #3 (Public review):

      Summary:

      This paper presents a timely and significant contribution to the study of lysine acetoacetylation (Kacac). The authors successfully demonstrate a novel and practical chemo-immunological method using the reducing reagent NaBH4 to transform Kacac into lysine β-hydroxybutyrylation (Kbhb).

      Strengths:

      This innovative approach enables simultaneous investigation of Kacac and Kbhb, showcasing their potential in advancing our understanding of post-translational modifications and their roles in cellular metabolism and disease.

      Weaknesses:

      The paper's main weaknesses are the lack of SDS-PAGE analysis to confirm HATs purity and loading consistency, and the absence of cellular validation for the in vitro findings through knockdown experiments. These gaps weaken the evidence supporting the conclusions.

      We appreciate the reviewer’s positive comments on the quality of this work and the importance to the field. The SDS-PAGE results of HAT proteins (Supplementary Fig. S3A) was added in the revised manuscript. The cellular roles of p300 and GCN5 as acetoacetyltransferases were confirmed in a recent study (PMID: 37382194). Their data are consistent with our studies herein and provide further support for our conclusion. We agree that knockdown experiments are essential to further validate the activities of these enzymes and plan to address this in future studies.

      Reviewer #1 (Recommendations for the authors):

      This study conducted the first comprehensive analysis of lysine acetoacetylation (Kacac) in human cells, identifying 139 acetoacetylated sites across 85 proteins in HEK293T cells. Kacac was primarily localized to the nucleus and associated with critical processes like chromatin organization, DNA repair, and gene regulation. Several previously unknown Kacac sites on histones were discovered, indicating its widespread regulatory role. Key enzymes responsible for adding and removing Kacac marks were identified: p300, GCN5, and PCAF act as acetoacetyltransferases, while HDAC3 serves as a remover. The modification depends on acetoacetate, with AACS playing a significant role in its regulation. Unlike Kbhb, Kacac showed unique cellular distribution and functional roles, particularly in gene expression pathways and metabolic regulation. Acetoacetate demonstrated distinct biological effects compared to βhydroxybutyrate, influencing lipid synthesis, metabolic pathways, and cancer cell signaling. The findings suggest that Kacac is an important post-translational modification with potential implications for disease, metabolism, and cellular regulation.

      Major Concerns

      (1) The authors could expand the study by including different cell lines and also provide a comparative study by using cell lines - such as normal vs disease (eg. Cancer cell like) - to compare and to increase the variability of acetoacetylation patterns across cell types. This could broaden the understanding of the regulation of PTMs in pathological conditions.

      We sincerely appreciate the reviewer’s valuable suggestions. We concur that a

      deeper investigation into Kacac patterns in cancer cell lines would significantly enhance understanding of Kacac in the human proteome. Nevertheless, due to constraints such as limited resource availability, we are currently unable to conduct very extensive explorations as proposed. Nonetheless, as shown in Fig. 2A, Fig. 2B, and Supplementary Fig. S2, our present data provide strong evidence for the widespread occurrence of acetoacetatemediated Kacac in both normal and cancer cell lines. Notably, our proteomic profiling identified several promising targets implicated in cancer progression, including p53, HDAC1, HMGA2, MTA2, and LDHA. We plan to conduct more comprehensive explorations of acetoacetylation patterns in cancer samples in future studies.

      (2) The paper lacks inhibition studies silencing the enzyme genes or inhibiting the enzyme using available inhibitors involved in acetoacetylation or using aceto-acetate analogues to selectively modulate acetoacetylation levels. This can validate their impact on downstream cellular pathways in cellular regulation.

      We appreciate the reviewer’s valuable suggestions. Our study, along with the previous research, has conducted initial investigations into the inhibition of key enzymes involved in the Kacac pathway. For example, inhibition of HMGCS, which catalyzes the conversion of acetoacetyl-CoA to HMG-CoA, was shown to enhance histone Kacac levels (PMID: 37382194). In our study, we examined the inhibitory effects of SCOT and HMGCR, both of which potentially influence cellular acetoacetyl-CoA levels. However, their respective inhibitors did not significantly affect histone Kacac levels. We also investigated the role of acetyl-CoA, which competes with acetoacetyl-CoA for binding to HAT enzymes and can function as a competitive inhibitor in histone Kacac generation. Furthermore, inhibition of HDAC activity by SAHA led to increased histone Kacac levels in HepG2 cells (PMID: 37382194), supporting our conclusion that HDAC3 functions as the eraser responsible for Kacac removal. These inhibition studies confirmed the functions of these enzymes and provided insights into their regulatory roles in modulating Kacac and its downstream pathways. Further in-depth investigations will explore the specific roles of these enzymes in regulating Kacac within cellular pathways.

      (3) The authors could validate the functional impact of pathways using various markers through IHC/IFC or western blot to confirm their RNA-seq analysis, since pathways could be differentially regulated at the RNA vs protein level.

      We agree that pathways can be differentially regulated at the RNA and protein levels. It is our future plan to select and fully characterize one or two gene targets to elaborate the presence and impact of Kacac marks on their functional regulation at both the gene expression and protein level.

      (4) Utilize in vitro reconstitution assays to confirm the direct effect of acetoacetylation on histone modifications and nucleosome assembly, establishing a causal relationship between acetoacetylation and chromatin regulation.

      We appreciate this suggestion, and this will be a very fine biophysics project for us and other researchers for the next step. We plan to do this and related work in a future paper to characterize the impact of lysine acetoacetylation on chromatin structure and gene expression. Technique of site-specific labelling will be required. Also, we hope to obtain monoclonal antibodies that directly recognize Kacac in histones to allow for ChIP-seq assays in cells.

      (5) The authors could provide a site-directed mutagenesis experiment by mutating a particular site, which can validate and address concerns regarding the specificity of a particular site involved in the mechanism.

      We agree that validating and characterizing the specificity of individual Kacac sites and understanding their functional implications are important for elucidating the mechanisms by which Kacac affects these substrate proteins. Such work will involve extensive biochemical and cellular studies. It is our future goal to select and fully characterize one or two gene targets in detail and in depth to elaborate the presence and impact of Kacac on their function regulation using comprehensive techniques (transfection, mutation, pulldown, and pathway analysis, etc.).

      (6) If possible, the authors could use an in vivo model system, such as mice, to validate the physiological relevance of acetoacetylation in a more complex system.  

      We currently do not have access to resources of relevant animal models. We will conduct in vivo screening and characterization of protein acetoacetylation in animal models and clinical samples in collaboration with prospective collaborators.

      Minor Concerns

      (1) The authors could discuss the overlap of Kacac sites with other post-translational modifications and their implications on protein functions. They could provide comparative studies with other PTMs, which can improvise a comprehensive understanding of acetoacetylation function in epigenetic regulation.

      We have expanded the discussion in the revised manuscript to address the overlap between Kacac and other post-translational modifications, along with their potential functional implications.

      (2) The authors could provide detailed information on the implications of their data, which would enhance the impact of the research and its relevance to the scientific community. Specifically, they could clarify the acetoacetylation (Kacac) significance in nucleosome assembly and its correlation with RNA processing.

      In the revised manuscript, we have added more elaborations on the implication and significance of Kacac in nucleosome assembly and RNA processing.

      Reviewer #3 (Recommendations for the authors):

      Major Comments:

      (1) Figures 3A, 3B, Supplementary Figures S3A-D

      I could not find the SDS-PAGE analysis results for the purified HATs used in the in vitro assay. It is imperative to display these results to confirm consistent loading amounts and sufficient purity of the HATs across experimental groups. Additionally, I did not observe any data on CBP, even though it was mentioned in the results section. If CBP-related experiments were not conducted, please remove the corresponding descriptions.

      We appreciate the reviewer’s valuable suggestion. The SDS-PAGE results for the HAT proteins have been included, and the part in the results section discussing CBP has been updated according to the reviewer’s suggestion in the revised manuscript.

      (2) Knockdown of Selected HATs and HDAC3 in cells

      The authors should perform gene knockdown experiments in cells, targeting the identified HATs and HDAC3, followed by Western blot and mass spectrometry analysis of Kacac expression levels. This would validate whether the findings from the in vitro assays are biologically relevant in cellular contexts.

      We appreciate the reviewer’s valuable suggestion. Our identified HATs, including p300 and GCN5, were reported as acetoacetyltransferases in cellular contexts by a recent study (PMID: 37382194). Their findings are precisely consistent with our biochemical results, providing additional evidence that p300 and GCN5 mediate Kacac both in vitro and in vivo. In addition, inhibition of HDAC activity by SAHA greatly increased histone Kacac levels in HepG2 cells (PMID: 37382194), supporting the role of HDAC3 as an eraser responsible for Kacac removal. We plan to further study these enzymes’ contributions to Kacac through gene knockdown experiments and investigate the specific functions of enzyme-mediated Kacac under some pathological contexts.

      Minor Comments:

      (1) Abstract accuracy

      In the Abstract, the authors state, "However, regulatory elements, substrate proteins, and epigenetic functions of Kacac remain unknown." Please revise this statement to align with the findings in Reference 22 and describe these elements more appropriately. If similar issues exist in other parts of the manuscript, please address them as well.

      The issues have been addressed in the revised manuscript based on the reviewer's comments.

      (2) Terminology issue

      GCN5 and PCAF are both members of the GNAT family. It is not accurate to describe "GCN5/PCAF/HAT1" as one family. Please refine the terminology to reflect the classification accurately.

      The description has been refined in the revised manuscript to accurately reflect the classification, in accordance with the reviewer's suggestion.

      (3) Discussion on HBO1

      Reference 22 has already established HBO1 as an acetoacetyltransferase. This paper should include a discussion of HBO1 alongside the screened p300, PCAF, and GCN5 to provide a more comprehensive perspective.

      More discussion on HBO1 alongside the other screened HATs has been added in the revised manuscript.

    1. eLife Assessment

      This useful study explores the role of RAP2A in asymmetric cell division (ACD) regulation in glioblastoma stem cells (GSCs), drawing parallels to Drosophila ACD mechanisms and proposing that an imbalance toward symmetric divisions drives tumor progression. While findings on RAP2A's role in GSC expansion are promising, and the reviewers found the study innovative and technically sound, the study is nevertheless still considered incomplete because of its reliance on neurosphere models without in vivo confirmation and insufficient mechanistic validation. Addressing those gaps would substantiate the study's claims.

    2. Reviewer #1 (Public review):

      Summary:

      The authors validate the contribution of RAP2A to GB progression. RAp2A participates in asymetric cell division, and the localization of several cell polarity markers including cno and Numb.

      Strengths:

      The use of human data, Drosophila models and cell culture or neurospheres is a good scenario to validate the hypothesis using complementary systems.

      Moreover, the mechanisms that determine GB progression, and in particular glioma stem cells biology, are relevant for the knowledge on glioblastoma and opens new possibilities to future clinical strategies.

      Weaknesses:

      While the manuscript presents a well-supported investigation into RAP2A's role in GBM, some methodological aspects could benefit from further validation. The major concern is the reliance on a single GB cell line (GB5), including multiple GBM lines, particularly primary patient-derived 3D cultures with known stem-like properties, would significantly enhance the study's robustness.

      Several specific points raised in previous reviews have improved this version of the manuscript:

      • The specificity of Rap2l RNAi has been further confirmed by using several different RNAi tools.

      • Quantification of phenotypic penetrance and survival rates in Rap2l mutants would help determine the consistency of ACD defects. The authors have substantially increased the number of samples analyzed including three different RNAi lines (both the number of NB lineages and the number of different brains analyzed) to confirm the high penetrance of the phenotype.

      • The observations on neurosphere size and Ki-67 expression require normalization (e.g., Ki-67+ cells per total cell number or per neurosphere size). This is included in the manuscript and now clarified in the text.

      • The discrepancy in Figures 6A and 6B requires further discussion. The authors have included a new analysis and further explanations and they can conclude that in 2 cell-neurospheres there are more cases of asymmetric divisions in the experimental condition (RAP2A) than in the control.

      • Live imaging of ACD events would provide more direct evidence. Live imaging was not done due to technical limitations. Despite being a potential contribution to the manuscript, the current conclusions of the manuscript are supported by the current data, and live experiments can be dispensable

      • Clarification of terminology and statistical markers (e.g., p-values) in Figure 1A would improve clarity. This has been improved.

      Comments on revisions:

      The manuscript has improved the clarity in general, and I think that it is suitable for publication. However, for future experiments and projects, I would like to insist in the relevance of validating the results in vivo using xenografts with 3D-primary patient-derived cell lines or GB organoids.

    3. Reviewer #2 (Public review):

      This study investigates the role of RAP2A in regulating asymmetric cell division (ACD) in glioblastoma stem cells (GSCs), bridging insights from Drosophila ACD mechanisms to human tumor biology. They focus on RAP2A, a human homolog of Drosophila Rap2l, as a novel ACD regulator in GBM is innovative, given its underexplored role in cancer stem cells (CSCs). The hypothesis that ACD imbalance (favoring symmetric divisions) drives GSC expansion and tumor progression introduces a fresh perspective on differentiation therapy. However, the dual role of ACD in tumor heterogeneity (potentially aiding therapy resistance) requires deeper discussion to clarify the study's unique contributions against existing controversies.

      Comments on revisions:

      More experiments as suggested in the original assessment of the submission are needed to justify the hypothesis drawn in the manuscript.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors validate the contribution of RAP2A to GB progression. RAp2A participates in asymmetric cell division, and the localization of several cell polarity markers, including cno and Numb.

      Strengths:

      The use of human data, Drosophila models, and cell culture or neurospheres is a good scenario to validate the hypothesis using complementary systems.

      Moreover, the mechanisms that determine GB progression, and in particular glioma stem cells biology, are relevant for the knowledge on glioblastoma and opens new possibilities to future clinical strategies.

      Weaknesses:

      While the manuscript presents a well-supported investigation into RAP2A's role in GBM, several methodological aspects require further validation. The major concern is the reliance on a single GB cell line (GB5), which limits the generalizability of the findings. Including multiple GBM lines, particularly primary patient-derived 3D cultures with known stem-like properties, would significantly enhance the study's relevance.

      Additionally, key mechanistic aspects remain underexplored. Further investigation into the conservation of the Rap2l-Cno/aPKC pathway in human cells through rescue experiments or protein interaction assays would be beneficial. Similarly, live imaging or lineage tracing would provide more direct evidence of ACD frequency, complementing the current indirect metrics (odd/even cell clusters, Numb asymmetry).

      Several specific points require attention:

      (1) The specificity of Rap2l RNAi needs further confirmation. Is Rap2l expressed in neuroblasts or intermediate neural progenitors? Can alternative validation methods be employed?

      There are no available antibodies/tools to determine whether Rap2l is expressed in NB lineages, and we have not been able either to develop any. However, to further prove the specificity of the Rap2l phenotype, we have now analyzed two additional and independent RNAi lines of Rap2l along with the original RNAi line analyzed. We have validated the results observed with this line and found a similar phenotype in the two additional RNAi lines now analyzed. These results have been added to the text ("Results section", page 6, lines 142-148) and are shown in Supplementary Figure 3.

      (2) Quantification of phenotypic penetrance and survival rates in Rap2l mutants would help determine the consistency of ACD defects.

      In the experiment previously mentioned (repetition of the original Rap2l RNAi line analysis along with two additional Rap2l RNAi lines) we have substantially increased the number of samples analyzed (both the number of NB lineages and the number of different brains analyzed). With that, we have been able to determine that the penetrance of the phenotype was 100% or almost 100% in the 3 different RNAi lines analyzed (n>14 different brains/larvae analyzed in all cases). Details are shown in the text (page 6, lines 142-148), in Supplementary Figure 3 and in the corresponding figure legend.

      (3) The observations on neurosphere size and Ki-67 expression require normalization (e.g., Ki-67+ cells per total cell number or per neurosphere size). Additionally, apoptosis should be assessed using Annexin V or TUNEL assays.

      The experiment of Ki-67+ cells was done considering the % of Ki-67+ cells respect the total cell number in each neurosphere. In the "Materials and methods" section it is well indicated: "The number of Ki67+ cells with respect to the total number of nuclei labelled with DAPI within a given neurosphere were counted to calculate the Proliferative Index (PI), which was expressed as the % of Ki67+ cells over total DAPI+ cells"

      Perhaps it was not clearly showed in the graph of Figure 5A. We have now changed it indicating: "% of Ki67+ cells/ neurosphere" in the "Y axis". 

      Unfortunately, we currently cannot carry out neurosphere cultures to address the apoptosis experiments. 

      (4) The discrepancy in Figures 6A and 6B requires further discussion.

      We agree that those pictures can lead to confusion. In the analysis of the "% of neurospheres with even or odd number of cells", we included the neurospheres with 2 cells both in the control and in the experimental condition (RAP2A). The number of this "2 cell-neurospheres" was very similar in both conditions (27,7 % and 27 % of the total neurospheres analyzed in each condition), and they can be the result of a previous symmetric or asymmetric division, we cannot distinguish that (only when they are stained with Numb, for example, as shown in Figure 6B). As a consequence, in both the control and in the experimental condition, these 2-cell neurospheres included in the group of "even" (Figure 6A) can represent symmetric or asymmetric divisions. However, in the experiment shown in Figure 6B, it is shown that in these 2 cellneurospheres there are more cases of asymmetric divisions in the experimental condition (RAP2A) than in the control.

      Nevertheless, to make more accurate and clearer the conclusions, we have reanalyzed the data taking into account only the neurospheres with 3-5-7 (as odd) or 4-6-8 (as even) cells. Likewise, we have now added further clarifications regarding the way the experiment has been analyzed in the methods.

      (5) Live imaging of ACD events would provide more direct evidence.

      We agree that live imaging would provide further evidence. Unfortunately, we currently cannot carry out neurosphere cultures to approach those experiments.

      (6) Clarification of terminology and statistical markers (e.g., p-values) in Figure 1A would improve clarity.

      We thank the reviewer for pointing out this issue. To improve clarity, we have now included a Supplementary Figure (Fig. S1) with the statistical parameters used. Additionally, we have performed a hierarchical clustering of genes showing significant or not-significant changes in their expression levels.

      (7) Given the group's expertise, an alternative to mouse xenografts could be a Drosophila genetic model of glioblastoma, which would provide an in vivo validation system aligned with their research approach.

      The established Drosophila genetic model of glioblastoma is an excellent model system to get deep insight into different aspects of human GBM. However, the main aim of our study was to determine whether an imbalance in the mode of stem cell division, favoring symmetric divisions, could contribute to the expansion of the tumor. We chose human GBM cell lines-derived neurospheres because in human GBM it has been demonstrated the existence of cancer stem cells (glioblastoma or glioma stem cells -GSCs--). And these GSCs, as all stem cells, can divide symmetric or asymmetrically. In the case of the Drosophila model of GBM, the neoplastic transformation observed after overexpressing the EGF receptor and PI3K signaling is due to the activation of downstream genes that promote cell cycle progression and inhibit cell cycle exit. It has also been suggested that the neoplastic cells in this model come from committed glial progenitors, not from stem-like cells.

      With all, it would be difficult to conclude the causes of the potential effects of manipulating the Rap2l levels in this Drosophila system of GBM. We do not discard this analysis in the future (we have all the "set up" in the lab). However, this would probably imply a new project to comprehensively analyze and understand the mechanism by which Rap2l (and other ACD regulators) might be acting in this context, if it is having any effect. 

      However, as we mentioned in the Discussion, we agree that the results we have obtained in this study must be definitely validated in vivo in the future using xenografts with 3D-primary patient-derived cell lines.

      Reviewer #2 (Public review):

      This study investigates the role of RAP2A in regulating asymmetric cell division (ACD) in glioblastoma stem cells (GSCs), bridging insights from Drosophila ACD mechanisms to human tumor biology. They focus on RAP2A, a human homolog of Drosophila Rap2l, as a novel ACD regulator in GBM is innovative, given its underexplored role in cancer stem cells (CSCs). The hypothesis that ACD imbalance (favoring symmetric divisions) drives GSC expansion and tumor progression introduces a fresh perspective on differentiation therapy. However, the dual role of ACD in tumor heterogeneity (potentially aiding therapy resistance) requires deeper discussion to clarify the study's unique contributions against existing controversies. Some limitations and questions need to be addressed.

      (1) Validation of RAP2A's prognostic relevance using TCGA and Gravendeel cohorts strengthens clinical relevance. However, differential expression analysis across GBM subtypes (e.g., MES, DNA-methylation subtypes ) should be included to confirm specificity.

      We have now included a Supplementary figure (Supplementary Figure 2), in which we show the analysis of RAP2A levels in the different GBM subtypes (proneural, mesenchymal and classical) and their prognostic relevance (i.e. the proneural subtype that presents RAP2A levels significantly higher than the others is the subtype that also shows better prognostic).

      (2) Rap2l knockdown-induced ACD defects (e.g., mislocalization of Cno/Numb) are well-designed. However, phenotypic penetrance and survival rates of Rap2l mutants should be quantified to confirm consistency.

      We have now analyzed two additional and independent RNAi lines of Rap2l along with the original RNAi line. We have validated the results observed with this line and found a similar phenotype in the two additional RNAi lines now analyzed. To determine the phenotypic penetrance, we have substantially increased the number of samples analyzed (both the number of NB lineages and the number of different brains analyzed). With that, we have been able to determine that the penetrance of the phenotype was 100% or almost 100% in the 3 different Rap2l RNAi lines analyzed (n>14 different brains/larvae analyzed in all cases). These results have been added to the text ("Results section", page 6, lines 142-148) and are shown in Supplementary Figure 3 and in the corresponding figure legend. 

      (3) While GB5 cells were effectively used, justification for selecting this line (e.g., representativeness of GBM heterogeneity) is needed. Experiments in additional GBM lines (especially the addition of 3D primary patient-derived cell lines with known stem cell phenotype) would enhance generalizability.

      We tried to explain this point in the paper (Results). As we mentioned, we tested six different GBM cell lines finding similar mRNA levels of RAP2A in all of them, and significantly lower levels than in control Astros (Fig. 3A). We decided to focus on the GBM cell line called GB5 as it grew well (better than the others) in neurosphere cell culture conditions, for further analyses. We agree that the addition of at least some of the analyses performed with the GB5 line using other lines (ideally in primary patientderive cell lines, as the reviewer mentions) would reinforce the results. Unfortunately, we cannot perform experiments in cell lines in the lab currently. We will consider all of this for future experiments.

      (4) Indirect metrics (odd/even cell clusters, NUMB asymmetry) are suggestive but insufficient. Live imaging or lineage tracing would directly validate ACD frequency.

      We agree that live imaging would provide further evidence. Unfortunately, we cannot approach those experiments in the lab currently.

      (5) The initial microarray (n=7 GBM patients) is underpowered. While TCGA data mitigate this, the limitations of small cohorts should be explicitly addressed and need to be discussed.

      We completely agree with this comment. We had available the microarray, so we used it as a first approach, just out of curiosity of knowing whether (and how) the levels of expression of those human homologs of Drosophila ACD regulators were affected in this small sample, just as starting point of the study. We were conscious of the limitations of this analysis and that is why we followed up the analysis in the datasets, on a bigger scale. We already mentioned the limitations of the array in the Discussion:

      "The microarray we interrogated with GBM patient samples had some limitations. For example, not all the human genes homologs of the Drosophila ACD regulators were present (i.e. the human homologs of the determinant Numb). Likewise, we only tested seven different GBM patient samples. Nevertheless, the output from this analysis was enough to determine that most of the human genes tested in the array presented altered levels of expression"[....] In silico analyses, taking advantage of the existence of established datasets, such as the TCGA, can help to more robustly assess, in a bigger sample size, the relevance of those human genes expression levels in GBM progression, as we observed for the gene RAP2A."

      (6) Conclusions rely heavily on neurosphere models. Xenograft experiments or patient-derived orthotopic models are critical to support translational relevance, and such basic research work needs to be included in journals.

      We completely agree. As we already mentioned in the Discussion, the results we have obtained in this study must be definitely validated in vivo in the future using xenografts with 3D-primary patient-derived cell lines.

      (7) How does RAP2A regulate NUMB asymmetry? Is the Drosophila Rap2l-Cno/aPKC pathway conserved? Rescue experiments (e.g., Cno/aPKC knockdown with RAP2A overexpression) or interaction assays (e.g., Co-IP) are needed to establish molecular mechanisms.

      The mechanism by which RAP2A is regulating ACD is beyond the scope of this paper. We do not even know how Rap2l is acting in Drosophila to regulate ACD. In past years, we did analyze the function of another Drosophila small GTPase, Rap1 (homolog to human RAP1A) in ACD, and we determined the mechanism by which Rap1 was regulating ACD (including the localization of Numb): interacting physically with Cno and other small GTPases, such as Ral proteins, and in a complex with additional ACD regulators of the "apical complex" (aPKC and Par-6). Rap2l could be also interacting physically with the "Ras-association" domain of Cno (domain that binds small GTPases, such as Ras and Rap1). We have added some speculations regarding this subject in the Discussion:

      "It would be of great interest in the future to determine the specific mechanism by which Rap2l/RAP2A is regulating this process. One possibility is that, as it occurs in the case of the Drosophila ACD regulator Rap1, Rap2l/RAP2A is physically interacting or in a complex with other relevant ACD modulators."

      (8) Reduced stemness markers (CD133/SOX2/NESTIN) and proliferation (Ki-67) align with increased ACD. However, alternative explanations (e.g., differentiation or apoptosis) must be ruled out via GFAP/Tuj1 staining or Annexin V assays.

      We agree with these possibilities.  Regarding differentiation, the potential presence of increased differentiation markers would be in fact a logic consequence of an increase in ACD divisions/reduced stemness markers. Unfortunately, we cannot approach those experiments in the lab currently.

      (9) The link between low RAP2A and poor prognosis should be validated in multivariate analyses to exclude confounding factors (e.g., age, treatment history).

      We have now added this information in the "Results section" (page 5, lines 114-123).

      (10) The broader ACD regulatory network in GBM (e.g., roles of other homologs like NUMB) and potential synergies/independence from known suppressors (e.g., TRIM3) warrant exploration.

      The present study was designed as a "proof-of-concept" study to start analyzing the hypothesis that the expression levels of human homologs of known Drosophila ACD regulators might be relevant in human cancers that contain cancer stem cells, if those human homologs were also involved in modulating the mode of (cancer) stem cell division. 

      To extend the findings of this work to the whole ACD regulatory network would be the logic and ideal path to follow in the future.

      We already mentioned this point in the Discussion:

      "....it would be interesting to analyze in the future the potential consequences that altered levels of expression of the other human homologs in the array can have in the behavior of the GSCs. In silico analyses, taking advantage of the existence of established datasets, such as the TCGA, can help to more robustly assess, in a bigger sample size, the relevance of those human genes expression levels in GBM progression, as we observed for the gene RAP2A."

      (11) The figures should be improved. Statistical significance markers (e.g., p-values) should be added to Figure 1A; timepoints/culture conditions should be clarified for Figure 6A.

      Regarding the statistical significance markers, we have now included a Supplementary Figure (Fig. S1) with the statistical parameters used. Additionally, we have performed a hierarchical clustering of genes showing significant or notsignificant changes in their expression levels. 

      Regarding the experimental conditions corresponding to Figure 6A, those have now been added in more detail in "Materials and Methods" ("Pair assay and Numb segregation analysis" paragraph).

      (12) Redundant Drosophila background in the Discussion should be condensed; terminology should be unified (e.g., "neurosphere" vs. "cell cluster").

      As we did not mention much about Drosophila ACD and NBs in the "Introduction", we needed to explain in the "Discussion" at least some very basic concepts and information about this, especially for "non-drosophilists". We have reviewed the Discussion to maintain this information to the minimum necessary.

      We have also reviewed the terminology that the Reviewer mentions and have unified it.

      Reviewer #1 (Recommendations for the authors):

      To improve the manuscript's impact and quality, I would recommend:

      (1) Expand Cell Line Validation: Include additional GBM cell lines, particularly primary patient-derived 3D cultures, to increase the robustness of the findings.

      (2) Mechanistic Exploration: Further examine the conservation of the Rap2lCno/aPKC pathway in human cells using rescue experiments or protein interaction assays.

      (3) Direct Evidence of ACD: Implement live imaging or lineage tracing approaches to strengthen conclusions on ACD frequency.

      (4) RNAi Specificity Validation: Clarify Rap2l RNAi specificity and its expression in neuroblasts or intermediate neural progenitors.

      (5) Quantitative Analysis: Improve quantification of neurosphere size, Ki-67 expression, and apoptosis to normalize findings.

      (6) Figure Clarifications: Address inconsistencies in Figures 6A and 6B and refine statistical markers in Figure 1A.

      (7) Alternative In Vivo Model: Consider leveraging a Drosophila glioblastoma model as a complementary in vivo validation approach.

      Addressing these points will significantly enhance the manuscript's translational relevance and overall contribution to the field.

      We have been able to address points 4, 5 and 6. Others are either out of the scope of this work (2) or we do not have the possibility to carry them out at this moment in the lab (1, 3 and 7). However, we will complete these requests/recommendations in other future investigations.

      Reviewer #2 (Recommendations for the authors):

      Major Revision /insufficient required to address methodological and mechanistic gaps.

      (1) Enhance Clinical Relevance

      Validate RAP2A's prognostic significance across multiple GBM subtypes (e.g., MES, DNA-methylation subtypes) using datasets like TCGA and Gravendeel to confirm specificity.

      Perform multivariate survival analyses to rule out confounding factors (e.g., patient age, treatment history).

      (2) Strengthen Mechanistic Insights

      Investigate whether the Rap2l-Cno/aPKC pathway is conserved in human GBM through rescue experiments (e.g., RAP2A overexpression with Cno/aPKC knockdown) or interaction assays (e.g., Co-IP).

      Use live-cell imaging or lineage tracing to directly validate ACD frequency instead of relying on indirect metrics (odd/even cell clusters, NUMB asymmetry).

      (3) Improve Model Systems & Experimental Design

      Justify the selection of GB5 cells and include additional GBM cell lines, particularly 3D primary patient-derived cell models, to enhance generalizability.

      It is essential to perform xenograft or orthotopic patient-derived models to support translational relevance.

      (5) Address Alternative Interpretations

      Rule out other potential effects of RAP2A knockdown (e.g., differentiation or apoptosis) using GFAP/Tuj1 staining or Annexin V assays.

      Explore the broader ACD regulatory network in GBM, including interactions with NUMB and TRIM3, to contextualize findings within known tumor-suppressive pathways.

      (6) Improve Figures & Clarity

      Add statistical significance markers (e.g., p-values) in Figure 1A and clarify timepoints/culture conditions for Figure 6A.

      Condense redundant Drosophila background in the discussion and ensure consistent terminology (e.g., "neurosphere" vs. "cell cluster").

      We have been able to address points 1, partially 3 and 6. Others are either out of the scope of this work or we do not have the possibility to carry them out at this moment in the lab. However, we are very interested in completing these requests/recommendations and we will approach that type of experiments in other future investigations.

    1. eLife Assessment

      This paper describes Unbend - a new method for measuring and correcting motions in cryo-EM images, with a particular emphasis on more challenging in situ samples such as lamella and whole cells. The method, which fits a B-spline model using cross-correlation-based local patch alignment of micrograph frames, represents a valuable tool for the cryo-EM community. The authors elegantly use 2D template matching to provide solid evidence that Unbend outperforms the previously reported method of Unblur by the same authors. The paper would benefit from the inclusion of a similar analysis for established alternative methods, such as MotionCor2.

    2. Reviewer #1 (Public review):

      Kong et al.'s work describes a new approach that does exactly what the title states: "Correction of local beam-induced sample motion in cryo-EM images using a 3D spline model." I find the method appropriate, logical, and well-explained. Additionally, the work suggests using 2DTM-related measurements to quantify the improvement of the new method compared to the old one in cisTEM, Unblur. I find this part engaging; it is straightforward, accurate, and, of course, the group has a strong command of 2DTM, presenting a thorough study.

      However, everything in the paper (except some correct general references) refers to comparisons with the full-frame approach, Unblur. Still, we have known for more than a decade that local correction approaches perform better than global ones, so I do not find anything truly novel in their proposal of using local methods (the method itself- Unbend- is new, but many others have been described previously). In fact, the use of 2DTM is perhaps a more interesting novelty of the work, and here, a more systematic study comparing different methods with these proposed well-defined metrics would be very valuable. As currently presented, there is no doubt that it is better than an older, well-established approach, and the way to measure "better" is very interesting, but there is no indication of how the situation stands regarding newer methods.

      Regarding practical aspects, it seems that the current implementation of the method is significantly slower than other patch-based approaches. If its results are shown to exceed those of existing local methods, then exploring the use of Unbend, possibly optimizing its code first, could be a valuable task. However, without more recent comparisons, the impact of Unbend remains unclear.

    3. Reviewer #2 (Public review):

      Summary:

      The authors present a new method, Unbend, for measuring motion in cryo-EM images, with a particular emphasis on more challenging in situ samples such as lamella and whole cells<br /> (that can be more prone to overall motion and/or variability in motion across a field of view). Building on their previous approach of full-frame alignment (Unblur), they now perform full-frame alignment followed by patch alignment, and then use these outputs to generate a 3D cubic spline model of the motion. This model allows them to estimate a continuous, per-pixel shift field for each movie frame that aims to better describe complex motions and so ultimately generate improved motion-corrected micrographs. Performance of Unbend is evaluated using the 2D template matching (2DTM) method developed previously by the lab, and results are compared to using full-frame correction alone. Several different in situ samples are used for evaluation, covering a broad range that will be of interest to the rapidly growing in situ cryo-EM community.

      Strengths:

      The method appears to be an elegant way of describing complex motions in cryo-EM samples, and the authors present convincing data that Unbend generally improves SNR of aligned micrographs as well as increases detection of particles matching the 60S ribosome template when compared to using full-frame correction alone. The authors also give interesting insights into how different areas of a lamella behave with respect to motion by using Unbend on a montage dataset collected previously by the group. There is growing interest in imaging larger areas of in situ samples at high resolution, and these insights contribute valuable knowledge. Additionally, the availability of data collected in this study through the EMPIAR repository will be much appreciated by the field.

      Weaknesses:

      While the improvements with Unbend vs. Unblur appear clear, it is less obvious whether Unbend provides substantial gains over patch motion correction alone (the current norm in the field). It might be helpful for readers if this comparison were investigated for the in situ datasets. Additionally, the authors are open that in cases where full motion correction already does a good job, the extra degrees of freedom in Unbend can perhaps overfit the motions, making the corrections ultimately worse. I wonder if an adaptive approach could be explored, for example, using the readout from full-frame or patch correction to decide whether a movie should proceed to the full Unbend pipeline, or whether correction should stop at the patch estimation stage.

    4. Reviewer #3 (Public review):

      Summary

      Kong and coauthors describe and implement a method to correct local deformations due to beam-induced motion in cryo-EM movie frames. This is done by fitting a 3D spline model to a stack of micrograph frames using cross-correlation-based local patch alignment to describe the deformations across the micrograph in each frame, and then computing the value of the deformed micrograph at each pixel by interpolating the undeformed micrograph at the displacement positions given by the spline model. A graphical interface in cisTEM allows the user to visualise the deformations in the sample, and the method has been proven to be successful by showing improvements in 2D template matching (2DTM) results on the corrected micrographs using five in situ samples.

      Impact

      This method has great potential to further streamline the cryo-EM single particle analysis pipeline by shortening the required processing time as a result of obtaining higher quality particles early in the pipeline, and is applicable to both old and new datasets, therefore being relevant to all cryo-EM users.

      Strengths

      (1) One key idea of the paper is that local beam induced motion affects frames continuously in space (in the image plane) as well as in time (along the frame stack), so one can obtain improvements in the image quality by correcting such deformations in a continuous way (deformations vary continuously from pixel to pixel and from frame to frame) rather than based on local discrete patches only. 3D splines are used to model the deformations: they are initialised using local patch alignments and further refined using cross-correlation between individual patch frames and the average of the other frames in the same patch stack.

      (2) Another strength of the paper is using 2DTM to show that correcting such deformations continuously using the proposed method does indeed lead to improvements. This is shown using five in situ datasets, where local motion is quantified using statistics based on the estimated motions of ribosomes.

      Weaknesses

      (1) While very interesting, it is not clear how the proposed method using 3D splines for estimating local deformations compares with other existing methods that also aim to correct local beam-induced motion by approximating the deformations throughout the frames using other types of approximation, such as polynomials, as done, for example MotionCor2.

      (2) The use of 2DTM is appropriate, and the results of the analysis are enlightening, but one shortcoming is that some relevant technical details are missing. For example, the 2DTM SNR is not defined in the article, and it is not clear how the authors ensured that no false positives were included in the particles counted before and after deformation correction. The Jupyter notebooks where this analysis was performed have not been made publicly available.

      (3) It is also not clear how the proposed deformation correction method is affected by CTF defocus in the different samples (are the defocus values used in the different datasets similar or significantly different?) or if there is any effect at all.

    1. eLife Assessment

      This study identifies the Periportal Lamellar Complex (PLC), an important new structure revealed by a novel 3D imaging method. However, the evidence supporting its distinct cellular identity and functional role is currently incomplete, as it relies on transcriptomic re-analysis and correlation without direct experimental validation. Addressing the key issues of methodological rigor and providing functional evidence is essential to fully substantiate these significant claims.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Chengjian Zhao et al. focused on the interactions between vascular, biliary, and neural networks in the liver microenvironment, addressing the critical bottleneck that the lack of high-resolution 3D visualization has hindered understanding of these interactions in liver disease.

      Strengths:

      This study developed a high-resolution multiplex 3D imaging method that integrates multicolor metallic compound nanoparticle (MCNP) perfusion with optimized CUBIC tissue clearing. This method enables the simultaneous 3D visualization of spatial networks of the portal vein, hepatic artery, bile ducts, and central vein in the mouse liver. The authors reported a perivascular structure termed the Periportal Lamellar Complex (PLC), which is identified along the portal vein axis. This study clarifies that the PLC comprises CD34⁺Sca-1⁺ dual-positive endothelial cells with a distinct gene expression profile, and reveals its colocalization with terminal bile duct branches and sympathetic nerve fibers under physiological conditions.

      Weaknesses:

      This manuscript is well-written, organized, and informative. However, there are some points that need to be clarified.

      (1) After MCNP-dye injection, does it remain in the blood vessels, adsorb onto the cell surface, or permeate into the cells? Does the MCNP-dye have cell selectivity?

      (2) All MCNP-dyes were injected after the mice were sacrificed, and the mice's livers were fixed with PFA. After the blood flow had ceased, how did the authors ensure that the MCNP-dyes were fully and uniformly perfused into the microcirculation of the liver?

      (3) It is advisable to present additional 3D perspective views in the article, as the current images exhibit very weak 3D effects. Furthermore, it would be better to supplement with some videos to demonstrate the 3D effects of the stained blood vessels.

      (4) In Figure 1-I, the authors used MCNP-Black to stain the central veins; however, in addition to black, there are also yellow and red stains in the image. The authors need to explain what these stains are in the legend.

      (5) There is a typo in the title of Figure 4F; it should be "stem cell".

      (6) Nuclear staining is necessary in immunofluorescence staining, especially for Figure 5e. This will help readers distinguish whether the green color in the image corresponds to cells or dye deposits.

    3. Reviewer #2 (Public review):

      Summary:

      The present manuscript of Xu et al. reports a novel clearing and imaging method focusing on the liver. The authors simultaneously visualized the portal vein, hepatic artery, central vein, and bile duct systems by injecting metal compound nanoparticles (MCNPs) with different colors into the portal vein, heart left ventricle, inferior vena cava, and the extrahepatic bile duct, respectively. The method involves: trans-cardiac perfusion with 4% PFA, the injection of MCNPs with different colors, clearing with the modified CUBIC method, cutting 200 micrometer thick slices by vibratome, and then microscopic imaging. The authors also perform various immunostaining (DAB or TSA signal amplification methods) on the tissue slices from MCNP-perfused tissue blocks. With the application of this methodical approach, the authors report dense and very fine vascular branches along the portal vein. The authors name them as 'periportal lamellar complex (PLC)' and report that PLC fine branches are directly connected to the sinusoids. The authors also claim that these structures co-localize with terminal bile duct branches and sympathetic nerve fibers, and contain endothelial cells with a distinct gene expression profile. Finally, the authors claim that PLC-s proliferate in liver fibrosis (CCl4 model) and act as a scaffold for proliferating bile ducts in ductular reaction and for ectopic parenchymal sympathetic nerve sprouting.

      Strengths:

      The simultaneous visualization of different hepatic vascular compartments and their combination with immunostaining is a potentially interesting novel methodological approach.

      Weaknesses:

      This reviewer has several concerns about the validity of the microscopic/morphological findings as well as the transcriptomics results. In this reviewer's opinion, the introduction contains overstatements regarding the potential of the method, there are severe caveats in the method descriptions, and several parts of the Results are not fully supported by the documentation. Thus, the conclusions of the paper may be critically viewed in their present form and may need reconsideration by the authors.

    4. Reviewer #3 (Public review):

      Summary:

      In the reviewed manuscript, researchers aimed to overcome the obstacles of high-resolution imaging of intact liver tissue. They report successful modification of the existing CUBIC protocol into Liver-CUBIC, a high-resolution multiplex 3D imaging method that integrates multicolor metallic compound nanoparticle (MCNP) perfusion with optimized liver tissue clearing, significantly reducing clearing time and enabling simultaneous 3D visualization of the portal vein, hepatic artery, bile ducts, and central vein spatial networks in the mouse liver. Using this novel platform, the researchers describe a previously unrecognized perivascular structure they termed Periportal Lamellar Complex (PLC), regularly distributed along the portal vein axis. The PLC originates from the portal vein and is characterized by a unique population of CD34⁺Sca-1⁺ dual-positive endothelial cells. Using available scRNAseq data, the authors assessed the CD34⁺Sca-1⁺ cells' expression profile, highlighting the mRNA presence of genes linked to neurodevelopment, biliary function, and hematopoietic niche potential. Different aspects of this analysis were then addressed by protein staining of selected marker proteins in the mouse liver tissue. Next, the authors addressed how the PLC and biliary system react to CCL4-induced liver fibrosis, implying PLC dynamically extends, acting as a scaffold that guides the migration and expansion of terminal bile ducts and sympathetic nerve fibers into the hepatic parenchyma upon injury.

      The work clearly demonstrates the usefulness of the Liver-CUBIC technique and the improvement of both resolution and complexity of the information, gained by simultaneous visualization of multiple vascular and biliary systems of the liver at the same time. The identification of PLC and the interpretation of its function represent an intriguing set of observations that will surely attract the attention of liver biologists as well as hepatologists; however, some claims need more thorough assessment by functional experimental approaches to decipher the functional molecules and the sequence of events before establishing the PLC as the key hub governing the activity of biliary, arterial, and neuronal liver systems. Similarly, the level of detail of the methods section does not appear to be sufficient to exactly recapitulate the performed experiments, which is of concern, given that the new technique is a cornerstone of the manuscript.

      Nevertheless, the work does bring a clear new insight into the liver structure and functional units and greatly improves the methodological toolbox to study it even further, and thus fully deserves the attention of readers.

      Strengths:

      The authors clearly demonstrate an improved technique tailored to the visualization of the liver vasulo-biliary architecture in unprecedented resolution.

      This work proposes a new biological framework between the portal vein, hepatic arteries, biliary tree, and intrahepatic innervation, centered at previously underappreciated protrusions of the portal veins - the Periportal Lamellar Complexes (PLCs).

      Weaknesses:

      Possible overinterpretation of the CD34+Sca1+ findings was built on re-analysis of one scRNAseq dataset.

      Lack of detail in the materials and methods section greatly limits the usefulness of the new technique to other researchers.

    1. eLife Assessment

      This study presents valuable findings on the role of KLF6 in in vitro endothelial cells exposed to altered (high or low) shear stress with a customized microfluidic device to investigate mechanisms of atherosclerosis. The finding that altered shear stress results in endothelial cell ferroptosis through reduced expression of KLF6 is compelling and adds a new layer of complexity to the pathogenesis of atherosclerotic plaques. However, the inclusion of an arterial cell line and re-evaluation of the statistical tests used would strengthen the authors' conclusions.

    2. Reviewer #1 (Public review):

      Summary:

      The authors used an in vitro microfluidic system where HUVECs are exposed to high, low, or physiologic (normal) shear stress to demonstrate that both high and low shear stress for 24 hours resulted in decreased KLF6 expression, decreased lipid peroxidation, and increased cell death, which was reversible upon treatment with Fer-1, the ferroptosis inhibitor. RNA sequencing (LSS vs normal SS) revealed decreased steroid synthesis and UPR signaling in low shear stress conditions, which they confirmed by showing reduced expression of proteins that mitigate ER stress under both LSS and HSS. Decreased KLF6 expression after exposure to HSS/LSS was associated with decreased expression of regulators of ER stress (PERK, BiP, MVD), which was restored with KLF6 overexpression. Overexpression of KLF6 also restored SLC7A11 expression, Coq10, and reduced c11 bodipy oxidation state- all markers of lipid peroxidation and ferroptosis. The authors then used vascular smooth muscle cells (atherosclerotic model) with HUVECs and monocytes to show that KLF6 overexpression reduces the adhesion of monocytes and lipid accumulation in conditions of low shear stress.

      Strengths:

      (1) The use of a microfluidic device to simulate shear stress while keeping the pressure constant when varying the shear stress applied is improved and more physiologic compared to traditional cone and shearing devices. Similarly, the utilization of both low and high shear stress in most experiments is a strength.

      (2) This study provides a link between disturbed shear stress and ferroptosis, which is novel, and fits nicely with existing knowledge that endothelial cell ferroptosis promotes atherosclerosis. This concept was also recently reported in September 2025, when a publication also demonstrated that LSS triggers ferroptosis in vascular endothelial cells (PMID: 40939914), which partly validates these findings.

      Weaknesses:

      (1) While HUVECs are commonly used in endothelial in vitro studies, it would be preferable to confirm the findings using an arterial cell line, such as human coronary artery cells, when studying mechanisms of early atherosclerosis. Furthermore, physiologic arterial shear stress is higher than venous shear stress, and different vascular beds have varying responses to altered shear stress; as such, the up- and downregulated pathways in HUVECs should be confirmed in an arterial system.

      (2) The authors provide convincing evidence of disturbances in shear stress inducing endothelial ferroptosis with assays for impaired lipid peroxidation and increased cell death that was reversed with a ferroptosis inhibitor. However, more detailed characterization of ferroptosis with iron accumulation assays, as well as evaluating GPX4 activity as a consequence of the impaired mevalonate pathway, and testing for concomitant apoptosis in addition to ferroptosis, would add to the data.

      (3) The authors state that KLF2 and KLF4 are not amongst the differentially expressed genes downregulated by reduced shear stress, which is contrary to previous data, where both KLF2 and KLF4 are well studied to be upregulated by physiologic laminar shear stress. While this might be due to the added pressure in their microfluidic system, it also might be due to changes in gene expression over time. In this case, a time course experiment would be needed. It is possible that KLF2, KLF4 and KLF6 are all reduced in low (and high) shear stress and cooperatively regulate the endothelial cell phenotype. Both KLF2 and KLF4 have been shown to be protective against atherosclerosis.

    3. Reviewer #2 (Public review):

      Summary:

      The manuscript by Cui et al. titled "abnormal shear stress induces ferroptosis in endothelial cells via KLF6 downregulation" investigated in a microfluidic device the effect of 24-hour low, medium, and high shear stress levels upon human vein endothelial cells. The authors found that KLF6 is an important regulator of endothelial cell ferroptosis through the BiP-PERK-Slc7a11 and MVD-ID11-CoQ10 axis under both low and high shear stress, postulating this may explain the spatial preference of atherosclerosis at bifurcations of the arteries.

      Strengths:

      The main strength of the study is the use of a microfluidic device within which the authors could vary the shear stress (low, medium, high), whilst keeping fluid pressure near the physiological range of 70 mmHg. Deciding to focus on transcription factors that respond to shear stress, the authors found KLF6 in their dataset, for which they provide compelling evidence that endothelial cell ferroptosis is triggered by both excessive and insufficient shear stress, inversely correlating with KLF6 expression. Importantly, it was demonstrated that cell death in endothelial cells during HSS and LSS was prevented through the addition of Fer-1, supporting the role of ferroptosis. Moreso, the importance of KLF6 as an essential regulator was demonstrated through KLF6 overexpression.

      Weaknesses:

      There are some major concerns with the results:

      (1) Inappropriate statistical tests were used (i.e., an unpaired t-test cannot be used to compare more than two groups).<br /> (2) Inconsistencies in western blot normalization as different proteins seem to have been used (GAPDH and B-actin) without specifying which is used when and why this differs.<br /> (3) Absence of transcriptomic analysis on HSS-exposed endothelial cells (which is not explained).

      Moreso, the conclusions are predominantly based on an in vitro microfluidic chip model seeded with HUVECs. Although providing mechanistic insight into the effects of shear stress on (venous) endothelial cells, it does not recapitulate the in vivo complexity. The absence of validation (a.o. levels of KLF6) in clinical samples and/or animal models limits the translatability of the reported findings towards atherosclerosis. Among others, assessing the spatial heterogeneity of KLF6 abundance in atherosclerotic plaques depending on its proximity to arterial bifurcations may be interesting.

      Points to be addressed:

      (1) As a statistical test, the authors report having used unpaired t-tests; however, often three groups are compared for which t-tests are inadequate. This is faulty as, amongst other things, it does not take multiple comparison testing into account.

      (2) Both B-Actin and GAPDH seem to have been used for protein-level normalization. Why? The Figure 2HL first panel reports B-actin, whereas the other three report GAPDH. The same applies to Figures 3E-F, where both are shown, and it is not mentioned which of the two has been used. Moreso, uncropped blots seem to be unavailable as supplementary data for proper review. These should be provided as supplementary data.

      (3) LSS and MSS were compared based on transcriptomic analysis. Conversely, RNA sequencing was not reported for the HSS. Why is this data missing? It would be valuable to assess transcriptomics following HSS, and also to allow transcriptomic comparison of LSS and HSS.

      (4) Actual sample sizes should be reported rather than "three or more". Moreso, it would be beneficial to show individual datapoints in bar graphs rather than only mean with SD if sample sizes are below 10 (e.g., Figures 1B-H, Figure 2G, etc.).

      (5) The authors claim that by modifying the thickness of the middle layer, shear stress could be modified, whilst claiming to keep on-site pressure within physiological ranges (approx. 70 mmHg) as a hallmark of their microfluidic devices. Has it been experimentally verified that pressures indeed remain around 70 mmHg?

      (6) A coculture model (VSMC, EC, monocytes) is mentioned in the last part of the results section without any further information. Information on this model should be provided in the methods section (seeding, cell numbers, etc.). Moreover, comparison of LSS vs LSS+KLF6 OE and HSS vs HSS+KLF6 OE is shown. It would benefit the interpretation of the outcomes if MSS were also shown. I twould also be beneficial to demonstrate differences between LSS, MSS, and HSS in this coculture model (without KLF6 OE).

      (7) The experiments were solely performed with a venous endothelial cell line (HUVECs). Was the use of an arterial endothelial cell line considered? It may translate better towards atherosclerosis, which occurs within arteries. HUVECs are not accustomed to the claimed near-physiological pressures.

    1. eLife Assessment

      This important study provides new insights into the synchronization of ripple oscillations in the hippocampus, both within and across hemispheres. Using carefully designed statistical methods, it presents compelling evidence that synchrony is significantly higher within a hemisphere than across. This study will be of interest to neuroscientists studying the hippocampus and memory.

    2. Reviewer #2 (Public review):

      Summary

      The authors completed a statistically rigorous analysis of the synchronization of sharp-wave ripples in the hippocampal CA1 across and within hemispheres. They used a publicly available dataset (collected in the Buzsaki lab) from 4 rats (8 sessions) recorded with silicon probes in both hemispheres. Each session contained approximately 8 hours of activity recorded during rest. The authors found that the characteristics of ripples did not differ between hemispheres, and that most ripples occurred almost simultaneously on all probe shanks within a hemisphere as well as across hemispheres. The differences in amplitude and exact timing of ripples between recording sites increased slightly with distance between recording sites. However, the phase coupling of ripples (in the 100-250 Hz range), changed dramatically with distance between recording sites. Ripples in opposite hemispheres were about 90% less coupled than ripples on nearby tetrodes in the same hemisphere. Phase coupling also decreased with distance within the hemisphere. Finally, pyramidal cell and interneuron spikes were coupled to the local ripple phase and less so to ripples at distant sites or the opposite hemisphere.

      The authors also analyzed the changes in ripple coupling in relation to a couple of behavioral variables. Interestingly, while exposure to a novel track increased ripple abundance by ~5%, it did not change any form of ripple coupling within or between hemispheres.

      Strengths

      The analysis was well-designed and rigorous. The authors used statistical tests well suited to the hypotheses being tested, and clearly explained these tests. The paper is very clearly written, making it easy to understand and reproduce the analysis. The authors included an excellent review of the literature to explain the motivation for their study.

      Weaknesses

      The authors have addressed all of my concerns and recommendations.

      This paper presents an important and unique analysis of ripple coupling. The same method could be used in the future to analyze the effects of other behavioral variables, such as satiety versus hunger, sleep deprivation, or enrichment, to address potential functions and causes of ripple coupling.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors analyze electrophysiological data recorded bilaterally from the rat hippocampus to investigate the coupling of ripple oscillations across the hemispheres. Commensurate with the majority of previous research, the authors report that ripples tend to co-occur across both hemispheres. Specifically, the amplitude of ripples across hemispheres is correlated but their phase is not. These data corroborate existing models of ripple generation suggesting that CA3 inputs (coordinated across hemispheres via the commisural fibers) drive the sharp-wave component while the individual ripple waves are the result of local interactions between pyramidal cells and interneurons in CA1.

      Strengths:

      The manuscript is well-written, the analyses well-executed and the claims are supported by the data.

      Weaknesses:

      One question left unanswered by this study is whether information encoded by the right and left hippocampi is correlated.

      Thank you for raising this important point. While our study demonstrates ripple co-occurrence across hemispheres, we did not directly assess whether the information encoded in each hippocampus is correlated. Addressing this question would require analyses of coordinated activity patterns, such as neuronal assemblies formed during novelty exposure, which falls beyond the scope of the present study. However, we agree this is an important avenue for future work, and we now acknowledge this limitation and outlined it as a future direction in the Conclusion section (lines 796–802).

      Reviewer #2 (Public review):

      Summary:

      The authors completed a statistically rigorous analysis of the synchronization of sharp-wave ripples in the hippocampal CA1 across and within hemispheres. They used a publicly available dataset (collected in the Buzsaki lab) from 4 rats (8 sessions) recorded with silicon probes in both hemispheres. Each session contained approximately 8 hours of activity recorded during rest. The authors found that the characteristics of ripples did not differ between hemispheres, and that most ripples occurred almost simultaneously on all probe shanks within a hemisphere as well as across hemispheres. The differences in amplitude and exact timing of ripples between recording sites increased slightly with the distance between recording sites. However, the phase coupling of ripples (in the 100-250 Hz range), changed dramatically with the distance between recording sites. Ripples in opposite hemispheres were about 90% less coupled than ripples on nearby tetrodes in the same hemisphere. Phase coupling also decreased with distance within the hemisphere. Finally, pyramidal cell and interneuron spikes were coupled to the local ripple phase and less so to ripples at distant sites or the opposite hemisphere.

      Strengths:

      The analysis was well-designed and rigorous. The authors used statistical tests well suited to the hypotheses being tested, and clearly explained these tests. The paper is very clearly written, making it easy to understand and reproduce the analysis. The authors included an excellent review of the literature to explain the motivation for their study.

      Weaknesses:

      The authors state that their findings (highly coincident ripples between hemispheres), contradict other findings in the literature (in particular the study by Villalobos, Maldonado, and Valdes, 2017), but fail to explain why this large difference exists. They seem to imply that the previous study was flawed, without examining the differences between the studies.

      The paper fails to mention the context in which the data was collected (the behavior the animals performed before and after the analyzed data), which may in fact have a large impact on the results and explain the differences between the current study and that by Villalobos et al. The Buzsaki lab data includes mice running laps in a novel environment in the middle of two rest sessions. Given that ripple occurrence is influenced by behavior, and that the neurons spiking during ripples are highly related to the prior behavioral task, it is likely that exposure to novelty changed the statistics of ripples. Thus, the authors should analyze the pre-behavior rest and post-behavior rest sessions separately. The Villalobos et al. data, in contrast, was collected without any intervening behavioral task or novelty (to my knowledge). Therefore, I predict that the opposing results are a result of the difference in recent experiences of the studied rats, and can actually give us insight into the memory function of ripples.

      We appreciate this thoughtful hypothesis and have now addressed it explicitly. Our main analysis was conducted on 1-hour concatenated SWS epochs recorded before any novel environment exposure (baseline sleep). This was not clearly stated in the original manuscript, so we have now added a clarifying paragraph (lines 131–143). The main findings therefore remain unchanged.

      To directly test the reviewer’s hypothesis, we performed the suggested comparison between pre- and post-maze rest sessions, including maze-type as a factor. These new analyses are now presented in a dedicated Results subsection (lines 475 - 493) and in Supplementary Figure 5.1. While we observed a modest increase in ripple abundance after the maze sessions — consistent with known experienced-dependent changes in ripple occurrence — the key findings of interhemispheric synchrony remained unchanged. Both pre- and post-maze sleep sessions showed robust bilateral time-locking of ripple events and similar dissociations between phase and amplitude coupling across hemispheres.

      In one figure (5), the authors show data separated by session, rather than pooled. They should do this for other figures as well. There is a wide spread between sessions, which further suggests that the results are not as widely applicable as the authors seem to think. Do the sessions with small differences between phase coupling and amplitude coupling have low inter-hemispheric amplitude coupling, or high phase coupling? What is the difference between the sessions with low and high differences in phase vs. amplitude coupling? I noticed that the Buzsaki dataset contains data from rats running either on linear tracks (back and forth), or on circular tracks (unidirectionally). This could create a difference in inter-hemisphere coupling, because rats running on linear tracks would have the same sensory inputs to both hemispheres (when running in opposite directions), while rats running on a circular track would have different sensory inputs coming from the right and left (one side would include stimuli in the middle of the track, and the other would include closer views of the walls of the room). The synchronization between hemispheres might be impacted by how much overlap there was in sensory stimuli processed during the behavior epoch.

      Thank you for this insightful suggestion. In our new analyses comparing pre- and post-maze sessions, we have also addressed this question. Supplementary Figures 4.1 and 5.1 (E-F) present coupling metrics averaged per session and include coding for maze type. Additionally, we have incorporated the reviewer’s hypothesis regarding sensory input differences and their potential impact on inter-hemispheric synchronization into a new Results subsection (lines 475–493).

      The paper would be a lot stronger if the authors analyzed some of the differences between datasets, sessions, and epochs based on the task design, and wrote more about these issues. There may be more publicly available bi-hemispheric datasets to validate their results.

      To further validate our findings, we have analyzed another publicly available dataset that includes bilateral CA1 recordings (https://crcns.org/data-sets/hc/hc-18). We have added a description of this dataset and our analysis approach in the Methods section (lines 119–125 and 144-145), and present the corresponding results in a new Supplementary Figure (Supplementary Figure 4.2). These new analyses replicated our main findings, confirming robust interhemispheric time-locking of ripple events and a greater dissociation between phase and amplitude coupling in ipsilateral versus contralateral recordings.

      Reviewer #1 (Recommendations for the authors):

      My only suggestion is that the introduction can be shortened. The authors discuss in great length literature linking ripples and memory, although the findings in the paper are not linked to memory. In addition, ripples have been implicated in non-mnemonic functions such as sleep and metabolic homeostasis.

      The reviewer`s suggestion is valid and aligns with the main message of our paper. However, we believe that the relationship between ripples and memory has been extensively discussed in the literature, sometimes overshadowing other important functional roles (based on the reviewer’s comment, we now also refer to non-mnemonic functions of ripples in the revised introduction [lines 87–89]). Thus, we find it important to retain this context because highlighting the publication bias towards mnemonic interpretations helps frame the need for studies like ours that revisit still incompletely understood basic ripple mechanisms.

      We also note that, based on a suggestion from reviewer 2, we have supplemented our manuscript with a new figure demonstrating ripple abundance increases during SWS following novel environment exposure (Supplementary Figure 5.1), linking it to memory and replicating the findings of Eschenko et al. (2008), though we present this result as a covariate, aimed at controlling for potential sources of variation in ripple synchronization.

      Reviewer #2 (Recommendations for the authors):

      It would be useful to include more information about the analyzed dataset in the methods section, e.g. how long were the recordings, how many datasets per rat, did the authors analyze the entire recording epoch or sub-divide it in any way, how many ripples were detected per recording (approximately).

      We have now included more detailed information in the Methods section (lines 104 - 145).

      A few of the references to sub-figures are mislabeled (e.g. lines 327-328).

      Thank you for noticing these inconsistencies. We have carefully reviewed and corrected all figure sub-panel labels and references throughout the manuscript.

      In Figure 7 C&D, are the neurons on the left sorted by contralateral ripple phase? It doesn't look like it. It would be easier to compare to ipsilateral if they were.

      In Figures 7C and 7D, neurons are sorted by their ipsilateral peak ripple phase, with the contralateral data plotted using the same ordering to facilitate comparison. To avoid confusion, we have clarified this explicitly in the figure legend and corresponding main text (lines 544–550).

      In Figure 6, using both bin sizes 50 and 100 doesn't contribute much.

      We used both 50 ms and 100 ms bin sizes to directly compare with previous studies (Villalobos et al. 2017 used 5 ms and 100 ms; Csicsvari et al. 2000 used 5–50 ms). Because the proportion of coincident ripples is a non-decreasing function of the window size, larger bins can inflate coincidence measures. Including a mid-range bin of 50 ms allowed us to show that high coincidence levels are reached well before the 100 ms upper bound, supporting that the 100 ms window is not an overshoot. We have added clarification on this point in the Methods section on ripple coincidence (lines 204–212).

    1. eLife Assessment

      This important study combines EEG, neural networks and multivariate pattern analysis to show that real-world size, retinal size and real-world depth are represented at different latencies. The evidence presented is convincing and the work will be of broader interest to the experimental and computational vision community.

    2. Reviewer #1 (Public review):

      Lu & Golomb combined EEG, artificial neural networks, and multivariate pattern analyses to examine how different visual variables are processed in the brain. The conclusions of the paper are mostly well supported.

      The authors find that not only real-world size is represented in the brain (which was known), but both retinal size and real-world depth is represented, at different time points or latencies, which may reflect different stages of processing. Prior work has not been able to answer the question of real-world depth due to stimuli used. The authors made this possible by assess real-world depth and testing it with appropriate methodology, accounting for retinal and real-world size. The methodological approach combining behavior, RSA, and ANNs is creative and well thought out to appropriately assess the research questions, and the findings may be very compelling if backed up with some clarifications and further analyses.

      The work will be of interest to experimental and computational vision scientists, as well as the broader computational cognitive neuroscience community as the methodology is of interest and the code is or will be made available. The work is important as it is currently not clear what the correspondence between many deep neural network models are and the brain are, and this work pushes our knowledge forward on this front. Furthermore, the availability of methods and data will be useful for the scientific community.

    3. Reviewer #3 (Public review):

      The authors used an open EEG dataset of observers viewing real-world objects. Each object had a real-world size value (from human rankings), a retinal size value (measured from each image), and a scene depth value (inferred from the above). The authors combined the EEG and object measurements with extant, pre-trained models (a deep convolutional neural network, a multimodal ANN, and Word2vec) to assess the time course of processing object size (retinal and real-world) and depth. They found that depth was processed first, followed by retinal size, and then real-world size. The depth time course roughly corresponded to the visual ANNs, while the real-world size time course roughly corresponded to the more semantic models.

      The time course result for the three object attributes is very clear and a novel contribution to the literature. The authors have revised the ANN motivations to increase clarity. Additionally, the authors have appropriately toned down some of the language about novelty, and the addition of a noise ceiling has helped the robustness of the work.

      While I appreciate the addition of Cornet in the Supplement, I am less compelled by the authors' argument for Word2Vec over LLMs for "pure" semantic embeddings. While I'm not digging in on this point, this choice may prematurely age this work.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Lu & Golomb combined EEG, artificial neural networks, and multivariate pattern analyses to examine how different visual variables are processed in the brain. The conclusions of the paper are mostly well supported, but some aspects of methods and data analysis would benefit from clarification and potential extensions.

      The authors find that not only real-world size is represented in the brain (which was known), but both retinal size and real-world depth are represented, at different time points or latencies, which may reflect different stages of processing. Prior work has not been able to answer the question of real-world depth due to the stimuli used. The authors made this possible by assessing real-world depth and testing it with appropriate methodology, accounting for retinal and real-world size. The methodological approach combining behavior, RSA, and ANNs is creative and well thought out to appropriately assess the research questions, and the findings may be very compelling if backed up with some clarifications and further analyses.

      The work will be of interest to experimental and computational vision scientists, as well as the broader computational cognitive neuroscience community as the methodology is of interest and the code is or will be made available. The work is important as it is currently not clear what the correspondence between many deep neural network models and the brain is, and this work pushes our knowledge forward on this front. Furthermore, the availability of methods and data will be useful for the scientific community.

      Reviewer #2 (Public Review):

      Summary:

      This paper aims to test if neural representations of images of objects in the human brain contain a 'pure' dimension of real-world size that is independent of retinal size or perceived depth. To this end, they apply representational similarity analysis on EEG responses in 10 human subjects to a set of 200 images from a publicly available database (THINGS-EEG2), correlating pairwise distinctions in evoked activity between images with pairwise differences in human ratings of real-world size (from THINGS+). By partialling out correlations with metrics of retinal size and perceived depth from the resulting EEG correlation time courses, the paper claims to identify an independent representation of real-world size starting at 170 ms in the EEG signal. Further comparisons with artificial neural networks and language embeddings lead the authors to claim this correlation reflects a relatively 'high-level' and 'stable' neural representation.

      Strengths:

      The paper features insightful figures/illustrations and clear figures.

      The limitations of prior work motivating the current study are clearly explained and seem reasonable (although the rationale for why using 'ecological' stimuli with backgrounds matters when studying real-world size could be made clearer; one could also argue the opposite, that to get a 'pure' representation of the real-world size of an 'object concept', one should actually show objects in isolation).

      The partial correlation analysis convincingly demonstrates how correlations between feature spaces can affect their correlations with EEG responses (and how taking into account these correlations can disentangle them better).

      The RSA analysis and associated statistical methods appear solid.

      Weaknesses:

      The claim of methodological novelty is overblown. Comparing image metrics, behavioral measurements, and ANN activations against EEG using RSA is a commonly used approach to study neural object representations. The dataset size (200 test images from THINGS) is not particularly large, and neither is comparing pre-trained DNNs and language models, or using partial correlations.

      Thanks for your feedback. We agree that the methods used in our study – such as RSA, partial correlations, and the use of pretrained ANN and language models – are indeed well-established in the literature. We therefore revised the manuscript to more carefully frame our contribution: rather than emphasizing methodological novelty in isolation, we now highlight the combination of techniques, the application to human EEG data with naturalistic images, and the explicit dissociation of real-world size, retinal size, and depth representations as the primary strengths of our approach. Corresponding language in the Abstract, Introduction, and Discussion has been adjusted to reflect this more precise positioning:

      (Abstract, line 34 to 37) “our study combines human EEG and representational similarity analysis to disentangle neural representations of object real-world size from retinal size and perceived depth, leveraging recent datasets and modeling approaches to address challenges not fully resolved in previous work.”

      (Introduction, line 104 to 106) “we overcome these challenges by combining human EEG recordings, naturalistic stimulus images, artificial neural networks, and computational modeling approaches including representational similarity analysis (RSA) and partial correlation analysis …”

      (Introduction, line 108) “We applied our integrated computational approach to an open EEG dataset…”

      (Introduction, line 142 to 143) “The integrated computational approach by cross-modal representational comparisons we take with the current study…”

      (Discussion, line 550 to 552) “our study goes beyond the contributions of prior studies in several key ways, offering both theoretical and methodological advances: …”

      The claims also seem too broad given the fairly small set of RDMs that are used here (3 size metrics, 4 ANN layers, 1 Word2Vec RDM): there are many aspects of object processing not studied here, so it's not correct to say this study provides a 'detailed and clear characterization of the object processing process'.

      Thanks for pointing this out. We softened language in our manuscript to reflect that our findings provide a temporally resolved characterization of selected object features, rather than a comprehensive account of object processing:

      (line 34 to 37) “our study combines human EEG and representational similarity analysis to disentangle neural representations of object real-world size from retinal size and perceived depth, leveraging recent datasets and modeling approaches to address challenges not fully resolved in previous work.”

      (line 46 to 48) “Our research provides a temporally resolved characterization of how certain key object properties – such as object real-world size, depth, and retinal size – are represented in the brain, …”

      The paper lacks an analysis demonstrating the validity of the real-world depth measure, which is here computed from the other two metrics by simply dividing them. The rationale and logic of this metric is not clearly explained. Is it intended to reflect the hypothesized egocentric distance to the object in the image if the person had in fact been 'inside' the image? How do we know this is valid? It would be helpful if the authors provided a validation of this metric.

      We appreciate the comment regarding the real-world depth metric. Specifically, this metric was computed as the ratio of real-world size (obtained via behavioral ratings) to measured retinal size. The rationale behind this computation is grounded in the basic principles of perspective projection: for two objects subtending the same retinal size, the physically larger object is presumed to be farther away. This ratio thus serves as a proxy for perceived egocentric depth under the simplifying assumption of consistent viewing geometry across images.

      We acknowledge that this is a derived estimate and not a direct measurement of perceived depth. While it provides a useful approximation that allows us to analytically dissociate the contributions of real-world size and depth in our RSA framework, we agree that future work would benefit from independent perceptual depth ratings to validate or refine this metric. We added more discussions about this to our revised manuscript:

      (line 652 to 657) “Additionally, we acknowledge that our metric for real-world depth was derived indirectly as the ratio of perceived real-world size to retinal size. While this formulation is grounded in geometric principles of perspective projection and served the purpose of analytically dissociating depth from size in our RSA framework, it remains a proxy rather than a direct measure of perceived egocentric distance. Future work incorporating behavioral or psychophysical depth ratings would be valuable for validating and refining this metric.”

      Given that there is only 1 image/concept here, the factor of real-world size may be confounded with other things, such as semantic category (e.g. buildings vs. tools). While the comparison of the real-world size metric appears to be effectively disentangled from retinal size and (the author's metric of) depth here, there are still many other object properties that are likely correlated with real-world size and therefore will confound identifying a 'pure' representation of real-world size in EEG. This could be addressed by adding more hypothesis RDMs reflecting different aspects of the images that may correlate with real-world size.

      We thank the reviewer for this thoughtful and important point. We agree that semantic category and real-world size may be correlated, and that semantic structure is one of the plausible sources of variance contributing to real-world size representations. However, we would like to clarify that our original goal was to isolate real-world size from two key physical image features — retinal size and inferred real-world depth — which have been major confounds in prior work on this topic. We acknowledge that although our analysis disentangled real-world size from depth and retinal size, this does not imply a fully “pure” representation; therefore, we now refer to the real-world size representations as “partially disentangled” throughout the manuscript to reflect this nuance.

      Interestingly, after controlling for these physical features, we still found a robust and statistically isolated representation of real-world size in the EEG signal. This motivated the idea that realworld size may be more than a purely perceptual or image-based property — it may be at least partially semantic. Supporting this interpretation, both the late layers of ANN models and the non-visual semantic model (Word2Vec) also captured real-world size structure. Rather than treating semantic information as an unwanted confound, we propose that semantic structure may be an inherent component of how the brain encodes real-world size.

      To directly address the your concern, we conducted an additional variance partitioning analysis, in which we decomposed the variance in EEG RDMs explained by four RDMs: real-world depth, retinal size, real-world size, and semantic information (from Word2Vec). Specifically, for each EEG timepoint, we quantified (1) the unique variance of real-world size, after controlling for semantic similarity, depth, and retinal size; (2) the unique variance of semantic information, after controlling for real-world size, depth, and retinal size; (3) the shared variance jointly explained by real-world size and semantic similarity, controlling for depth and retinal size. This analysis revealed that real-world size explained unique variance in EEG even after accounting for semantic similarity. And there was also a substantial shared variance, indicating partial overlap between semantic structure and size. Semantic information also contributed unique explanatory power, as expected. These results suggest that real-world size is indeed partially semantic in nature, but also has independent neural representation not fully explained by general semantic similarity. This strengthens our conclusion that real-world size functions as a meaningful, higher-level dimension in object representation space.

      We now include this new analysis and a corresponding figure (Figure S8) in the revised manuscript:

      (line 532 to 539) “Second, we conducted a variance partitioning analysis, in which we decomposed the variance in EEG RDMs explained by three hypothesis-based RDMs and the semantic RDM (Word2Vec RDM), and we still found that real-world size explained unique variance in EEG even after accounting for semantic similarity (Figure S9). And we also observed a substantial shared variance jointly explained by real-world size and semantic similarity and a unique variance of semantic information. These results suggest that real-world size is indeed partially semantic in nature, but also has independent neural representation not fully explained by general semantic similarity.”

      The choice of ANNs lacks a clear motivation. Why these two particular networks? Why pick only 2 somewhat arbitrary layers? If the goal is to identify more semantic representations using CLIP, the comparison between CLIP and vision-only ResNet should be done with models trained on the same training datasets (to exclude the effect of training dataset size & quality; cf Wang et al., 2023). This is necessary to substantiate the claims on page 19 which attributed the differences between models in terms of their EEG correlations to one of them being a 'visual model' vs. 'visual-semantic model'.

      We argee that the choice and comparison of models should be better contextualized.

      First, our motivation for selecting ResNet-50 and CLIP ResNet-50 was not to make a definitive comparison between model classes, but rather to include two widely used representatives of their respective categories—one trained purely on visual information (ResNet-50 on ImageNet) and one trained with joint visual and linguistic supervision (CLIP ResNet-50 on image–text pairs). These models are both highly influential and commonly used in computational and cognitive neuroscience, allowing for relevant comparisons with existing work (line 181-187).

      Second, we recognize that limiting the EEG × ANN correlation analyses to only early and late layers may be viewed as insufficiently comprehensive. To address this point, we have computed the EEG correlations with multiple layers in both ResNet and CLIP models (ResNet: ResNet.maxpool, ResNet.layer1, ResNet.layer2, ResNet.layer3, ResNet.layer4, ResNet.avgpool; CLIP: CLIP.visual.avgpool, CLIP.visual.layer1, CLIP.visual.layer2, CLIP.visual.layer3, CLIP.visual.layer4, CLIP.visual.attnpool). The results, now included in Figure S4, show a consistent trend: early layers exhibit higher similarity to early EEG time points, and deeper layers show increased similarity to later EEG stages. We chose to highlight early and late layers in the main text to simplify interpretation.

      Third, we appreciate the reviewer’s point that differences in training datasets (ImageNet vs. CLIP's dataset) may confound any attribution of differences in brain alignment to the models' architectural or learning differences. We agree that the comparisons between models trained on matched datasets (e.g., vision-only vs. multimodal models trained on the same image–text corpus) would allow for more rigorous conclusions. Thus, we explicitly acknowledged this limitation in the text:

      (line 443 to 445) “However, it is also possible that these differences between ResNet and CLIP reflect differences in training data scale and domain.”

      The first part of the claim on page 22 based on Figure 4 'The above results reveal that realworld size emerges with later peak neural latencies and in the later layers of ANNs, regardless of image background information' is not valid since no EEG results for images without backgrounds are shown (only ANNs).

      We revised the sentence to clarify that this is a hypothesis based on the ANN results, not an empirical EEG finding:

      (line 491 to 495) “These results show that real-world size emerges in the later layers of ANNs regardless of image background information, and – based on our prior EEG results – although we could not test object-only images in the EEG data, we hypothesize that a similar temporal profile would be observed in the brain, even for object-only images.”

      While we only had the EEG data of human subjects viewing naturalistic images, the ANN results suggest that real-world size representations may still emerge at later processing stages even in the absence of background, consistent with what we observed in EEG under with-background conditions.

      The paper is likely to impact the field by showcasing how using partial correlations in RSA is useful, rather than providing conclusive evidence regarding neural representations of objects and their sizes.

      Additional context important to consider when interpreting this work:

      Page 20, the authors point out similarities of peak correlations between models ('Interestingly, the peaks of significant time windows for the EEG × HYP RSA also correspond with the peaks of the EEG × ANN RSA timecourse (Figure 3D,F)'. Although not explicitly stated, this seems to imply that they infer from this that the ANN-EEG correlation might be driven by their representation of the hypothesized feature spaces. However this does not follow: in EEG-image metric model comparisons it is very typical to see multiple peaks, for any type of model, this simply reflects specific time points in EEG at which visual inputs (images) yield distinctive EEG amplitudes (perhaps due to stereotypical waves of neural processing?), but one cannot infer the information being processed is the same. To investigate this, one could for example conduct variance partitioning or commonality analysis to see if there is variance at these specific timepoints that is shared by a specific combination of the hypothesis and ANN feature spaces.

      Thanks for your thoughtful observation! Upon reflection, we agree that the sentence – "Interestingly, the peaks of significant time windows for the EEG × HYP RSA also correspond with the peaks of the EEG × ANN RSA timecourse" – was speculative and risked implying a causal link that our data do not warrant. As you rightly points out, observing coincident peak latencies across different models does not necessarily imply shared representational content, given the stereotypical dynamics of evoked EEG responses. And we think even variance partitioning analysis would still not suffice to infer that ANN-EEG correlations are driven specifically by hypothesized feature spaces. Accordingly, we have removed this sentence from the manuscript to avoid overinterpretation. 

      Page 22 mentions 'The significant time-window (90-300ms) of similarity between Word2Vec RDM and EEG RDMs (Figure 5B) contained the significant time-window of EEG x real-world size representational similarity (Figure 3B)'. This is not particularly meaningful given that the Word2Vec correlation is significant for the entire EEG epoch (from the time-point of the signal 'arriving' in visual cortex around ~90 ms) and is thus much less temporally specific than the realworld size EEG correlation. Again a stronger test of whether Word2Vec indeed captures neural representations of real-world size could be to identify EEG time-points at which there are unique Word2Vec correlations that are not explained by either ResNet or CLIP, and see if those timepoints share variance with the real-world size hypothesized RDM.

      We appreciate your insightful comment. Upon reflection, we agree that the sentence – "'The significant time-window (90-300ms) of similarity between Word2Vec RDM and EEG RDMs (Figure 5B) contained the significant time-window of EEG x real-world size representational similarity (Figure 3B)" – was speculative. And we have removed this sentence from the manuscript to avoid overinterpretation. 

      Additionally, we conducted two analyses as you suggested in the supplement. First, we calculated the partial correlation between EEG RDMs and the Word2Vec RDM while controlling for four ANN RDMs (ResNet early/late and CLIP early/late) (Figure S8). Even after regressing out these ANN-derived features, we observed significant correlations between Word2Vec and EEG RDMs in the 100–190 ms and 250–300 ms time windows. This result suggests that

      Word2Vec captures semantic structure in the neural signal that is not accounted for by ResNet or CLIP. Second, we conducted an additional variance partitioning analysis, in which we decomposed the variance in EEG RDMs explained by four RDMs: real-world depth, retinal size, real-world size, and semantic information (from Word2Vec) (Figure S9). And we found significant shared variance between Word2Vec and real-world size at 130–150 ms and 180–250 ms. These results indicate a partially overlapping representational structure between semantic content and real-world size in the brain.

      We also added these in our revised manuscript:

      (line 525 to 539) “To further probe the relationship between real-world size and semantic information, and to examine whether Word2Vec captures variances in EEG signals beyond that explained by visual models, we conducted two additional analyses. First, we performed a partial correlation between EEG RDMs and the Word2Vec RDM, while regressing out four ANN RDMs (early and late layers of both ResNet and CLIP) (Figure S8). We found that semantic similarity remained significantly correlated with EEG signals across sustained time windows (100-190ms and 250-300ms), indicating that Word2Vec captures neural variance not fully explained by visual or visual-language models. Second, we conducted a variance partitioning analysis, in which we decomposed the variance in EEG RDMs explained by three hypothesis-based RDMs and the semantic RDM (Word2Vec RDM), and we still found that real-world size explained unique variance in EEG even after accounting for semantic similarity (Figure S9). And we also observed a substantial shared variance jointly explained by realworld size and semantic similarity and a unique variance of semantic information. These results suggest that real-world size is indeed partially semantic in nature, but also has independent neural representation not fully explained by general semantic similarity.”

      Reviewer #3 (Public Review):

      The authors used an open EEG dataset of observers viewing real-world objects. Each object had a real-world size value (from human rankings), a retinal size value (measured from each image), and a scene depth value (inferred from the above). The authors combined the EEG and object measurements with extant, pre-trained models (a deep convolutional neural network, a multimodal ANN, and Word2vec) to assess the time course of processing object size (retinal and real-world) and depth. They found that depth was processed first, followed by retinal size, and then real-world size. The depth time course roughly corresponded to the visual ANNs, while the real-world size time course roughly corresponded to the more semantic models.

      The time course result for the three object attributes is very clear and a novel contribution to the literature. However, the motivations for the ANNs could be better developed, the manuscript could better link to existing theories and literature, and the ANN analysis could be modernized. I have some suggestions for improving specific methods.

      (1) Manuscript motivations

      The authors motivate the paper in several places by asking " whether biological and artificial systems represent object real-world size". This seems odd for a couple of reasons. Firstly, the brain must represent real-world size somehow, given that we can reason about this question. Second, given the large behavioral and fMRI literature on the topic, combined with the growing ANN literature, this seems like a foregone conclusion and undermines the novelty of this contribution.

      Thanks for your helpful comment. We agree that asking whether the brain represents real-world size is not a novel question, given the existing behavioral and neuroimaging evidence supporting this. Our intended focus was not on the existence of real-world size representations per se, but the nature of these representations, particularly the relationship between the temporal dynamics and potential mechanisms of representations of real-world size versus other related perceptual properties (e.g., retinal size and real-world depth). We revised the relevant sentence to better reflect our focue, shifting from a binary framing (“whether or not size is represented”) to a more mechanistic and time-resolved inquiry (“how and when such representations emerge”):

      (line 144 to 149) “Unraveling the internal representations of object size and depth features in both human brains and ANNs enables us to investigate how distinct spatial properties—retinal size, realworld depth, and real-world size—are encoded across systems, and to uncover the representational mechanisms and temporal dynamics through which real-world size emerges as a potentially higherlevel, semantically grounded feature.”

      While the introduction further promises to "also investigate possible mechanisms of object realworld size representations.", I was left wishing for more in this department. The authors report correlations between neural activity and object attributes, as well as between neural activity and ANNs. It would be nice to link the results to theories of object processing (e.g., a feedforward sweep, such as DiCarlo and colleagues have suggested, versus a reverse hierarchy, such as suggested by Hochstein, among others). What is semantic about real-world size, and where might this information come from? (Although you may have to expand beyond the posterior electrodes to do this analysis).

      We thank the reviewer for this insightful comment. We agree that understanding the mechanisms underlying real-world size representations is a critical question. While our current study does not directly test specific theoretical frameworks such as the feedforward sweep model or the reverse hierarchy theory, our results do offer several relevant insights: The temporal dynamics revealed by EEG—where real-world size emerges later than retinal size and depth—suggest that such representations likely arise beyond early visual feedforward stages, potentially involving higherlevel semantic processing. This interpretation is further supported by the fact that real-world size is strongly captured by late layers of ANNs and by a purely semantic model (Word2Vec), suggesting its dependence on learned conceptual knowledge.

      While we acknowledge that our analyses were limited to posterior electrodes and thus cannot directly localize the cortical sources of these effects, we view this work as a first step toward bridging low-level perceptual features and higher-level semantic representations. We hope future work combining broader spatial sampling (e.g., anterior EEG sensors or source localization) and multimodal recordings (e.g., MEG, fMRI) can build on these findings to directly test competing models of object processing and representation hierarchy.

      We also added these to the Discussion section:

      (line 619 to 638) “Although our study does not directly test specific models of visual object processing, the observed temporal dynamics provide important constraints for theoretical interpretations. In particular, we find that real-world size representations emerge significantly later than low-level visual features such as retinal size and depth. This temporal profile is difficult to reconcile with a purely feedforward account of visual processing (e.g., DiCarlo et al., 2012), which posits that object properties are rapidly computed in a sequential hierarchy of increasingly complex visual features. Instead, our results are more consistent with frameworks that emphasize recurrent or top-down processing, such as the reverse hierarchy theory (Hochstein & Ahissar, 2002), which suggests that high-level conceptual information may emerge later and involve feedback to earlier visual areas. This interpretation is further supported by representational similarities with late-stage artificial neural network layers and with a semantic word embedding model (Word2Vec), both of which reflect learned, abstract knowledge rather than low-level visual features. Taken together, these findings suggest that real-world size is not merely a perceptual attribute, but one that draws on conceptual or semantic-level representations acquired through experience. While our EEG analyses focused on posterior electrodes and thus cannot definitively localize cortical sources, we see this study as a step toward linking low-level visual input with higher-level semantic knowledge. Future work incorporating broader spatial coverage (e.g., anterior sensors), source localization, or complementary modalities such as MEG and fMRI will be critical to adjudicate between alternative models of object representation and to more precisely trace the origin and flow of real-world size information in the brain.”

      Finally, several places in the manuscript tout the "novel computational approach". This seems odd because the computational framework and pipeline have been the most common approach in cognitive computational neuroscience in the past 5-10 years.

      We have revised relevant statements throughout the manuscript to avoid overstating novelty and to better reflect the contribution of our study.

      (2) Suggestion: modernize the approach

      I was surprised that the computational models used in this manuscript were all 8-10 years old. Specifically, because there are now deep nets that more explicitly model the human brain (e.g., Cornet) as well as more sophisticated models of semantics (e.g., LLMs), I was left hoping that the authors had used more state-of-the-art models in the work. Moreover, the use of a single dCNN, a single multi-modal model, and a single word embedding model makes it difficult to generalize about visual, multimodal, and semantic features in general.

      Thanks for your suggestion. Indeed, our choice of ResNet and CLIP was motivated by their widespread use in the cognitive and computational neuroscience area. These models have served as standard benchmarks in many studies exploring correspondence between ANNs and human brain activity. To address you concern, we have now added additional results from the more biologically inspired model, CORnet, in the supplementary (Figure S10). The results for CORnet show similar patterns to those observed for ResNet and CLIP, providing converging evidence across models.

      Regarding semantic modeling, we intentionally chose Word2Vec rather than large language models (LLMs), because our goal was to examine concept-level, context-free semantic representations. Word2Vec remains the most widely adopted approach for obtaining noncontextualized embeddings that reflect core conceptual similarity, as opposed to the contextdependent embeddings produced by LLMs, which are less directly suited for capturing stable concept-level structure across stimuli.

      (3) Methodological considerations

      (a) Validity of the real-world size measurement

      I was concerned about a few aspects of the real-world size rankings. First, I am trying to understand why the scale goes from 100-519. This seems very arbitrary; please clarify. Second, are we to assume that this scale is linear? Is this appropriate when real-world object size is best expressed on a log scale? Third, the authors provide "sand" as an example of the smallest realworld object. This is tricky because sand is more "stuff" than "thing", so I imagine it leaves observers wondering whether the experimenter intends a grain of sand or a sandy scene region. What is the variability in real-world size ratings? Might the variability also provide additional insights in this experiment?

      We now clarify the origin, scaling, and interpretation of the real-world size values obtained from the THINGS+ dataset.

      In their experiment, participants first rated the size of a single object concept (word shown on the screen) by clicking on a continuous slider of 520 units, which was anchored by nine familiar real-world reference objects (e.g., “grain of sand,” “microwave oven,” “aircraft carrier”) that spanned the full expected size range on a logarithmic scale. Importantly, participants were not shown any numerical values on the scale—they were guided purely by the semantic meaning and relative size of the anchor objects. After the initial response, the scale zoomed in around the selected region (covering 160 units of the 520-point scale) and presented finer anchor points between the previous reference objects. Participants then refined their rating by dragging from the lower to upper end of the typical size range for that object. If the object was standardized in size (e.g., “soccer ball”), a single click sufficed. These size judgments were collected across at least 50 participants per object, and final scores were derived from the central tendency of these responses. Although the final size values numerically range from 0 to 519 (after scaling), this range is not known to participants and is only applied post hoc to construct the size RDMs.

      Regarding the term “sand”: the THINGS+ dataset distinguished between object meanings when ambiguity was present. For “sand,” participants were instructed to treat it as “a grain of sand”— consistent with the intended meaning of a discrete, minimal-size reference object. 

      Finally, we acknowledge that real-world size ratings may carry some degree of variability across individuals. However, the dataset includes ratings from 2010 participants across 1854 object concepts, with each object receiving at least 50 independent ratings. Given this large and diverse sample, the mean size estimates are expected to be stable and robust across subjects. While we did not include variability metrics in our main analysis, we believe the aggregated ratings provide a reliable estimate of perceived real-world size.

      We added these details in the Materials and Method section:

      (line 219 to 230) “In the THINGS+ dataset, 2010 participants (different from the subjects in THINGS EEG2) did an online size rating task and completed a total of 13024 trials corresponding to 1854 object concepts using a two-step procedure. In their experiment, first, each object was rated on a 520unit continuous slider anchored by familiar reference objects (e.g., “grain of sand,” “microwave oven,” “aircraft carrier”) representing a logarithmic size range. Participants were not shown numerical values but used semantic anchors as guides. In the second step, the scale zoomed in around the selected region to allow for finer-grained refinement of the size judgment. Final size values were derived from aggregated behavioral data and rescaled to a range of 0–519 for consistency across objects, with the actual mean ratings across subjects ranging from 100.03 (‘grain of sand’) to 423.09 (‘subway’).”

      (b) This work has no noise ceiling to establish how strong the model fits are, relative to the intrinsic noise of the data. I strongly suggest that these are included.

      We have now computed noise ceiling estimates for the EEG RDMs across time. The noise ceiling was calculated by correlating each participant’s EEG RDM with the average EEG RDM across the remaining participants (leave-one-subject-out), at each time point. This provides an upper-bound estimate of the explainable variance, reflecting the maximum similarity that any model—no matter how complex—could potentially achieve, given the intrinsic variability in the EEG data.

      Importantly, the observed EEG–model similarity values are substantially below this upper bound. This outcome is fully expected: Each of our model RDMs (e.g., real-world size, ANN layers) captures only a specific aspect of the neural representational structure, rather than attempting to account for the totality of the EEG signal. Our goal is not to optimize model performance or maximize fit, but to probe which components of object information are reflected in the spatiotemporal dynamics of the brain’s responses.

      For clarity and accessibility of the main findings, we present the noise ceiling time courses separately in the supplementary materials (Figure S7). Including them directly in the EEG × HYP or EEG × ANN plots would conflate distinct interpretive goals: the model RDMs are hypothesis-driven probes of specific representational content, whereas the noise ceiling offers a normative upper bound for total explainable variance. Keeping these separate ensures each visualization remains focused and interpretable. 

      Reviewer #1 (Recommendations For The Authors)::

      Some analyses are incomplete, which would be improved if the authors showed analyses with other layers of the networks and various additional partial correlation analyses.

      Clarity

      (1) Partial correlations methods incomplete - it is not clear what is being partialled out in each analysis. It is possible to guess sometimes, but it is not entirely clear for each analysis. This is important as it is difficult to assess if the partial correlations are sensible/correct in each case. Also, the Figure 1 caption is short and unclear.

      For example, ANN-EEG partial correlations - "Finally, we directly compared the timepoint-bytimepoint EEG neural RDMs and the ANN RDMs (Figure 3F). The early layer representations of both ResNet and CLIP were significantly correlated with early representations in the human brain" What is being partialled out? Figure 3F says partial correlation

      We apologize for the confusion. We made several key clarifications and corrections in the revised version.

      First, we identified and corrected a labeling error in both Figure 1 and Figure 3F. Specifically, our EEG × ANN analysis used Spearman correlation, not partial correlation as mistakenly indicated in the original figure label and text. We conducted parital correlations for EEG × HYP and ANN × HYP. But for EEG × ANN, we directly calculated the correlation between EEG RDMs and ANN RDM corresponding to different layers respectively. We corrected these errors: (1) In Figure 1, we removed the erroneous “partial” label from the EEG × ANN path and updated the caption to clearly outline which comparisons used partial correlation. (2) In Figure 3F, we corrected the Y-axis label to “(correlation)”.

      Second, to improve clarity, we have now revised the Materials and Methods section to explicitly describe what is partialled out in each parital correlation analysis:

      (line 284 to 286) “In EEG × HYP partial correlation (Figure 3D), we correlated EEG RDMs with one hypothesis-based RDM (e.g., real-world size), while controlling for the other two (retinal size and real-world depth).”

      (line 303 to 305) “In ANN (or W2V) × HYP partial correlation (Figure 3E and Figure 5A), we correlated ANN (or W2V) RDMs with one hypothesis-based RDM (e.g., real-world size), while partialling out the other two.”

      Finally, the caption of Figure 1 has been expanded to clarify the full analysis pipeline and explicitly specify the partial correlation or correlation in each comparison.

      (line 327 to 332) “Figure 1 Overview of our analysis pipeline including constructing three types of RDMs and conducting comparisons between them. We computed RDMs from three sources: neural data (EEG), hypothesized object features (real-world size, retinal size, and real-world depth), and artificial models (ResNet, CLIP, and Word2Vec). Then we conducted cross-modal representational similarity analyses between: EEG × HYP (partial correlation, controlling for other two HYP features), ANN (or W2V) × HYP (partial correlation, controlling for other two HYP features), and EEG × ANN (correlation).”

      We believe these revisions now make all analytic comparisons and correlation types full clear and interpretable.

      Issues / open questions

      (2) Semantic representations vs hypothesized (hyp) RDMs (real-world size, etc) - are the representations explained by variables in hyp RDMs or are there semantic representations over and above these? E.g., For ANN correlation with the brain, you could partial out hyp RDMs - and assess whether there is still semantic information left over, or is the variance explained by the hyp RDMs?

      Thank for this suggestion. As you suggested, we conducted the partial correlation analysis between EEG RDMs and ANN RDMs, controlling for the three hypothesis-based RDMs. The results (Figure S6) revealed that the EEG×ANN representational similarity remained largely unchanged, indicating that ANN representations capture much more additional representational structure not accounted for by the current hypothesized features. This is also consistent with the observation that EEG×HYP partial correlations were themselves small, but EEG×ANN correlations were much greater.

      We also added this statement to the main text:

      (line 446 to 451) “To contextualize how much of the shared variance between EEG and ANN representations is driven by the specific visual object features we tested above, we conducted a partial correlation analysis between EEG RDMs and ANN RDMs controlling for the three hypothesis-based RDMs (Figure S6). The EEG×ANN similarity results remained largely unchanged, suggesting that ANN representations capture much more additional rich representational structure beyond these features. ”

      (3) Why only early and late layers? I can see how it's clearer to present the EEG results. However, the many layers in these networks are an opportunity - we can see how simple/complex linear/non-linear the transformation is over layers in these models. It would be very interesting and informative to see if the correlations do in fact linearly increase from early to later layers, or if the story is a bit more complex. If not in the main text, then at least in the supplement.

      Thank you for the thoughtful suggestion. To address this point, we have computed the EEG correlations with multiple layers in both ResNet and CLIP models (ResNet: ResNet.maxpool, ResNet.layer1, ResNet.layer2, ResNet.layer3, ResNet.layer4, ResNet.avgpool; CLIP:CLIP.visual.avgpool, CLIP.visual.layer1, CLIP.visual.layer2, CLIP.visual.layer3, CLIP.visual.layer4, CLIP.visual.attnpool). The results, now included in Figure S4 and S5, show a consistent trend: early layers exhibit higher similarity to early EEG time points, and deeper layers show increased similarity to later EEG stages. We chose to highlight early and late layers in the main text to simplify interpretation, but now provide the full layerwise profile for completeness.

      (4) Peak latency analysis - Estimating peaks per ppt is presumably noisy, so it seems important to show how reliable this is. One option is to find the bootstrapped mean latencies per subject.

      Thanks for your suggestion. To estimate the robustness of peak latency values, we implemented a bootstrap procedure by resampling the pairwise entries of the EEG RDM with replacement. For each bootstrap sample, we computed a new EEG RDM and recalculated the partial correlation time course with the hypothesis RDMs. We then extracted the peak latency within the predefined significant time window. Repeating this process 1000 times allowed us to get the bootstrapped mean latencies per subject as the more stable peak latency result. Notably, the bootstrapped results showed minimal deviation from the original latency estimates, confirming the robustness of our findings. Accordingly, we updated the Figure 3D and added these in the Materials and Methods section:

      (line 289 to 298) “To assess the stability of peak latency estimates for each subject, we performed a bootstrap procedure across stimulus pairs. At each time point, the EEG RDM was vectorized by extracting the lower triangle (excluding the diagonal), resulting in 19,900 unique pairwise values. For each bootstrap sample, we resampled these 19,900 pairwise entries with replacement to generate a new pseudo-RDM of the same size. We then computed the partial correlation between the EEG pseudo-RDM and a given hypothesis RDM (e.g., real-world size), controlling for other feature RDMs, and obtained a time course of partial correlations. Repeating this procedure 1000 times and extracting the peak latency within the significant time window yielded a distribution of bootstrapped latencies, from which we got the bootstrapped mean latencies per subject.”

      (5) "Due to our calculations being at the object level, if there were more than one of the same objects in an image, we cropped the most complete one to get a more accurate retinal size. " Did EEG experimenters make sure everyone sat the same distance from the screen? and remain the same distance? This would also affect real-world depth measures.

      Yes, the EEG dataset we used (THINGS EEG2; Gifford et al., 2022) was collected under carefully controlled experimental conditions. We have confirmed that all participants were seated at a fixed distance of 0.6 meters from the screen throughout the experiment. We also added this information in the method (line 156 to 157).

      Minor issues/questions - note that these are not raised in the Public Review

      (6) Title - less about rigor/quality of the work but I feel like the title could be improved/extended. The work tells us not only about real object size, but also retinal size and depth. In fact, isn't the most novel part of this the real-world depth aspect? Furthermore, it feels like the current title restricts its relevance and impact... Also doesn't touch on the temporal aspect, or processing stages, which is also very interesting. There may be something better, but simply adding something like"...disentangled features of real-world size, depth, and retinal size over time OR processing stages".

      Thanks for your suggestion! We changed our title – “Human EEG and artificial neural networks reveal disentangled representations and processing timelines of object real-world size and depth in natural images”.

      (7) "Each subject viewed 16740 images of objects on a natural background for 1854 object concepts from the THINGS dataset (Hebart et al., 2019). For the current study, we used the 'test' dataset portion, which includes 16000 trials per subject corresponding to 200 images." Why test images? Worth explaining.

      We chose to use the “test set” of the THINGS EEG2 dataset for the following two reasons:

      (1) Higher trial count per condition: In the test set, each of the 200 object images was presented 80 times per subject, whereas in the training set, each image was shown only 4 times. This much higher trial count per condition in the test set allows for substantially higher signal-tonoise ratio in the EEG data.

      (2) Improved decoding reliability: Our analysis relies on constructing EEG RDMs based on pairwise decoding accuracy using linear SVM classifiers. Reliable decoding estimates require a sufficient number of trials per condition. The test set design is thus better suited to support high-fidelity decoding and robust representational similarity analysis.

      We also added these explainations to our revised manuscript (line 161 to 164).

      (8) "For Real-World Size RDM, we obtained human behavioral real-world size ratings of each object concept from the THINGS+ dataset (Stoinski et al., 2022).... The range of possible size ratings was from 0 to 519 in their online size rating task..." How were the ratings made? What is this scale - do people know the numbers? Was it on a continuous slider?

      We should clarify how the real-world size values were obtained from the THINGS+ dataset.

      In their experiment, participants first rated the size of a single object concept (word shown on the screen) by clicking on a continuous slider of 520 units, which was anchored by nine familiar real-world reference objects (e.g., “grain of sand,” “microwave oven,” “aircraft carrier”) that spanned the full expected size range on a logarithmic scale. Importantly, participants were not shown any numerical values on the scale—they were guided purely by the semantic meaning and relative size of the anchor objects. After the initial response, the scale zoomed in around the selected region (covering 160 units of the 520-point scale) and presented finer anchor points between the previous reference objects. Participants then refined their rating by dragging from the lower to upper end of the typical size range for that object. If the object was standardized in size (e.g., “soccer ball”), a single click sufficed. These size judgments were collected across at least 50 participants per object, and final scores were derived from the central tendency of these responses. Although the final size values numerically range from 0 to 519 (after scaling), this range is not known to participants and is only applied post hoc to construct the size RDMs.

      We added these details in the Materials and Method section:

      (line 219 to 230) “In the THINGS+ dataset, 2010 participants (different from the subjects in THINGS EEG2) did an online size rating task and completed a total of 13024 trials corresponding to 1854 object concepts using a two-step procedure. In their experiment, first, each object was rated on a 520unit continuous slider anchored by familiar reference objects (e.g., “grain of sand,” “microwave oven,” “aircraft carrier”) representing a logarithmic size range. Participants were not shown numerical values but used semantic anchors as guides. In the second step, the scale zoomed in around the selected region to allow for finer-grained refinement of the size judgment. Final size values were derived from aggregated behavioral data and rescaled to a range of 0–519 for consistency across objects, with the actual mean ratings across subjects ranging from 100.03 (‘grain of sand’) to 423.09 (‘subway’).”

      (9) "For Retinal Size RDM, we applied Adobe Photoshop (Adobe Inc., 2019) to crop objects corresponding to object labels from images manually... " Was this by one person? Worth noting, and worth sharing these values per image if not already for other researchers as it could be a valuable resource (and increase citations).

      Yes, all object cropping were performed consistently by one of the authors to ensure uniformity across images. We agree that this dataset could be a useful resource to the community. We have now made the cropped object images publicly available https://github.com/ZitongLu1996/RWsize.

      We also updated the manuscript accordingly to note this (line 236 to 239).

      (10) "Neural RDMs. From the EEG signal, we constructed timepoint-by-timepoint neural RDMs for each subject with decoding accuracy as the dissimilarity index " Decoding accuracy is presumably a similarity index. Maybe 1-accuracy (proportion correct) for dissimilarity?

      Decoding accuracy is a dissimilarity index instead of a similarity index, as higher decoding accuracy between two conditions indicates that they are more distinguishable – i.e., less similar – in the neural response space. This approach aligns with prior work using classification-based representational dissimilarity measures (Grootswagers et al., 2017; Xie et al., 2020), where better decoding implies greater dissimilarity between conditions. Therefore, there is no need to invert the decoding accuracy values (e.g., using 1 - accuracy).

      Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2017). Decoding dynamic brain patterns from evoked responses: A tutorial on multivariate pattern analysis applied to time series neuroimaging data. Journal of Cognitive Neuroscience, 29(4), 677-697.

      Xie, S., Kaiser, D., & Cichy, R. M. (2020). Visual imagery and perception share neural representations in the alpha frequency band. Current Biology, 30(13), 2621-2627.

      (11) Figure 1 caption is very short - Could do with a more complete caption. Unclear what the partial correlations are (what is being partialled out in each case), what are the comparisons "between them" - both in the figure and the caption. Details should at least be in the main text.

      Related to your comment (1). We revised the caption and the corresponding text.

      Reviewer #2 (Recommendations For The Authors):

      (1) Intro:

      Quek et al., (2023) is referred to as a behavioral study, but it has EEG analyses.

      We corrected this – “…, one recent study (Quek et al., 2023) …”

      The phrase 'high temporal resolution EEG' is a bit strange - isn't all EEG high temporal resolution? Especially when down-sampling to 100 Hz (40 time points/epoch) this does not qualify as particularly high-res.

      We removed this phrasing in our manuscript.

      (2) Methods:

      It would be good to provide more details on the EEG preprocessing. Were the data low-pass filtered, for example?

      We added more details to the manuscript:

      (line 167 to 174) “The EEG data were originally sampled at 1000Hz and online-filtered between 0.1 Hz and 100 Hz during acquisition, with recordings referenced to the Fz electrode. For preprocessing, no additional filtering was applied. Baseline correction was performed by subtracting the mean signal during the 100 ms pre-stimulus interval from each trial and channel separately. We used already preprocessed data from 17 channels with labels beginning with “O” or “P” (O1, Oz, O2, PO7, PO3, POz, PO4, PO8, P7, P5, P3, P1, Pz, P2) ensuring full coverage of posterior regions typically involved in visual object processing. The epoched data were then down-sampled to 100 Hz.”

      It is important to provide more motivation about the specific ANN layers chosen. Were these layers cherry-picked, or did they truly represent a gradual shift over the course of layers?

      We appreciate the reviewer’s concern and fully agree that it is important to ensure transparency in how ANN layers were selected. The early and late layers reported in the main text were not cherry-picked to maximize effects, but rather intended to serve as illustrative examples representing the lower and higher ends of the network hierarchy. To address this point directly, we have computed the EEG correlations with multiple layers in both ResNet and CLIP models (ResNet: ResNet.maxpool, ResNet.layer1, ResNet.layer2, ResNet.layer3, ResNet.layer4, ResNet.avgpool; CLIP: CLIP.visual.avgpool, CLIP.visual.layer1, CLIP.visual.layer2, CLIP.visual.layer3, CLIP.visual.layer4, CLIP.visual.attnpool). The results, now included in Figure S4, show a consistent trend: early layers exhibit higher similarity to early EEG time points, and deeper layers show increased similarity to later EEG stages.

      It is important to provide more specific information about the specific ANN layers chosen. 'Second convolutional layer': is this block 2, the ReLu layer, the maxpool layer? What is the 'last visual layer'?

      Apologize for the confusing! We added more details about the layer chosen:

      (line 255 to 257) “The early layer in ResNet refers to ResNet.maxpool layer, and the late layer in ResNet refers to ResNet.avgpool layer. The early layer in CLIP refers to CLIP.visual.avgpool layer, and the late layer in CLIP refers to CLIP.visual.attnpool layer.”

      Again the claim 'novel' is a bit overblown here since the real-world size ratings were also already collected as part of THINGS+, so all data used here is available.

      We removed this phrasing in our manuscript.

      Real-world size ratings ranged 'from 0 - 519'; it seems unlikely this was the actual scale presented to subjects, I assume it was some sort of slider?

      You are correct. We should clarify how the real-world size values were obtained from the THINGS+ dataset.

      In their experiment, participants first rated the size of a single object concept (word shown on the screen) by clicking on a continuous slider of 520 units, which was anchored by nine familiar real-world reference objects (e.g., “grain of sand,” “microwave oven,” “aircraft carrier”) that spanned the full expected size range on a logarithmic scale. Importantly, participants were not shown any numerical values on the scale—they were guided purely by the semantic meaning and relative size of the anchor objects. After the initial response, the scale zoomed in around the selected region (covering 160 units of the 520-point scale) and presented finer anchor points between the previous reference objects. Participants then refined their rating by dragging from the lower to upper end of the typical size range for that object. If the object was standardized in size (e.g., “soccer ball”), a single click sufficed. These size judgments were collected across at least 50 participants per object, and final scores were derived from the central tendency of these responses. Although the final size values numerically range from 0 to 519 (after scaling), this range is not known to participants and is only applied post hoc to construct the size RDMs.

      We added these details in the Materials and Method section:

      (line 219 to 230) “In the THINGS+ dataset, 2010 participants (different from the subjects in THINGS EEG2) did an online size rating task and completed a total of 13024 trials corresponding to 1854 object concepts using a two-step procedure. In their experiment, first, each object was rated on a 520unit continuous slider anchored by familiar reference objects (e.g., “grain of sand,” “microwave oven,” “aircraft carrier”) representing a logarithmic size range. Participants were not shown numerical values but used semantic anchors as guides. In the second step, the scale zoomed in around the selected region to allow for finer-grained refinement of the size judgment. Final size values were derived from aggregated behavioral data and rescaled to a range of 0–519 for consistency across objects, with the actual mean ratings across subjects ranging from 100.03 (‘grain of sand’) to 423.09 (‘subway’).”

      Why is conducting a one-tailed (p<0.05) test valid for EEG-ANN comparisons? Shouldn't this be two-tailed?

      Our use of one-tailed tests was based on the directional hypothesis that representational similarity between EEG and ANN RDMs would be positive, as supported by prior literature showing correspondence between hierarchical neural networks and human brain representations (e.g., Cichy et al., 2016; Kuzovkin et al., 2014). This is consistent with a large number of RSA studies which conduct one-tailed tests (i.e., testing the hypothesis that coefficients were greater than zero: e.g., Kuzovkin et al., 2018; Nili et al., 2014; Hebart et al., 2018; Kaiser et al., 2019; Kaiser et al., 2020; Kaiser et al., 2022). Thus, we specifically tested whether the similarity was significantly greater than zero.

      Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., & Oliva, A. (2016). Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Scientific reports, 6(1), 27755.

      Kuzovkin, I., Vicente, R., Petton, M., Lachaux, J. P., Baciu, M., Kahane, P., ... & Aru, J. (2018). Activations of deep convolutional neural networks are aligned with gamma band activity of human visual cortex. Communications biology, 1(1), 107.

      Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. (2014). A toolbox for representational similarity analysis. PLoS computational biology, 10(4), e1003553.

      Hebart, M. N., Bankson, B. B., Harel, A., Baker, C. I., & Cichy, R. M. (2018). The representational dynamics of task and object processing in humans. Elife, 7, e32816.

      Kaiser, D., Turini, J., & Cichy, R. M. (2019). A neural mechanism for contextualizing fragmented inputs during naturalistic vision. elife, 8, e48182.

      Kaiser, D., Inciuraite, G., & Cichy, R. M. (2020). Rapid contextualization of fragmented scene information in the human visual system. Neuroimage, 219, 117045.

      Kaiser, D., Jacobs, A. M., & Cichy, R. M. (2022). Modelling brain representations of abstract concepts. PLoS Computational Biology, 18(2), e1009837.

      Importantly, we note that using a two-tailed test instead would not change the significance of our results. However, we believe the one-tailed test remains more appropriate given our theoretical prediction of positive similarity between ANN and brain representations.

      The sentence on the partial correlation description (page 11 'we calculated partial correlations with one-tailed test against the alternative hypothesis that the partial correlation was positive (greater than zero)') didn't make sense to me; are you referring to the null hypothesis here?

      We revised this sentence to clarify that we tested against the null hypothesis that the partial correlation was less than or equal to zero, using a one-tailed test to assess whether the correlation was significantly greater than zero.

      (line 281 to 284) “…, we calculated partial correlations and used a one-tailed test against the null hypothesis that the partial correlation was less than or equal to zero, testing whether the partial correlation was significantly greater than zero.”

      (3) Results:

      I would prevent the use of the word 'pure', your measurement is one specific operationalization of this concept of real-world size that is not guaranteed to result in unconfounded representations. This is in fact impossible whenever one is using a finite set of natural stimuli and calculating metrics on those - there can always be a factor or metric that was not considered that could explain some of the variance in your measurement. It is overconfident to claim to have achieved some form of Platonic ideal here and to have taken into account all confounds.

      Your point is well taken. Our original use of the term “pure” was intended to reflect statistical control for known confounding factors, but we recognize that this wording may imply a stronger claim than warranted. In response, we revised all relevant language in the manuscript to instead describe the statistically isolated or relatively unconfounded representation of real-world size, clarifying that our findings pertain to the unique contribution of real-world size after accounting for retinal size and real-world depth.

      Figure 2C: It's not clear why peak latencies are computed on the 'full' correlations rather than the partial ones.

      No. The peak latency results in Figure 2C were computed on the partial correlation results – we mentioned this in the figure caption – “Temporal latencies for peak similarity (partial Spearman correlations) between EEG and the 3 types of object information.”

      SEM = SEM across the 10 subjects?

      Yes. We added this in the figure caption.

      Figure 3F y-axis says it's partial correlations but not clear what is partialled out here.

      We identified and corrected a labeling error in both Figure 1 and Figure 3F. Specifically, our EEG × ANN analysis used Spearman correlation, not partial correlation as mistakenly indicated in the original figure label and text. We conducted parital correlations for EEG × HYP and ANN × HYP. But for EEG × ANN, we directly calculated the correlation between EEG RDMs and ANN RDM corresponding to different layers respectively. We corrected these errors: (1) In Figure 1, we removed the erroneous “partial” label from the EEG × ANN path and updated the caption to clearly outline which comparisons used partial correlation. (2) In Figure 3F, we corrected the Y-axis label to “(correlation)”.

      Reviewer #3 (Recommendations For The Authors):

      (1) Several methodologies should be clarified:

      (a) It's stated that EEG was sampled at 100 Hz. I assume this was downsampled? From what original frequency?

      Yes. We added more detailed about EEG data:

      (line 167 to 174) “The EEG data were originally sampled at 1000Hz and online-filtered between 0.1 Hz and 100 Hz during acquisition, with recordings referenced to the Fz electrode. For preprocessing, no additional filtering was applied. Baseline correction was performed by subtracting the mean signal during the 100 ms pre-stimulus interval from each trial and channel separately. We used already preprocessed data from 17 channels with labels beginning with “O” or “P” (O1, Oz, O2, PO7, PO3, POz, PO4, PO8, P7, P5, P3, P1, Pz, P2) ensuring full coverage of posterior regions typically involved in visual object processing. The epoched data were then down-sampled to 100 Hz.”

      (b) Why was decoding accuracy used as the human RDM method rather than the EEG data themselves?

      Thanks for your question! We would like to address why we used decoding accuracy for EEG RDMs rather than correlation. While fMRI RDMs are typically calculated using 1 minus correlation coefficient, decoding accuracy is more commonly used for EEG RDMs (Grootswager et al., 2017; Xie et al., 2020). The primary reason is that EEG signals are more susceptible to noise than fMRI data. Correlation-based methods are particularly sensitive to noise and may not reliably capture the functional differences between EEG patterns for different conditions. Decoding accuracy, by training classifiers to focus on task-relevant features, can effectively mitigate the impact of noisy signals and capture the representational difference between two conditions.

      Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2017). Decoding dynamic brain patterns from evoked responses: A tutorial on multivariate pattern analysis applied to time series neuroimaging data. Journal of Cognitive Neuroscience, 29(4), 677-697.

      Xie, S., Kaiser, D., & Cichy, R. M. (2020). Visual imagery and perception share neural representations in the alpha frequency band. Current Biology, 30(13), 2621-2627.

      We added this explanation to the manuscript:

      (line 204 to 209) “Since EEG has a low SNR and includes rapid transient artifacts, Pearson correlations computed over very short time windows yield unstable dissimilarity estimates (Kappenman & Luck, 2010; Luck, 2014) and may thus fail to reliably detect differences between images. In contrast, decoding accuracy - by training classifiers to focus on task-relevant features - better mitigates noise and highlights representational differences.”

      (c) How were the specific posterior electrodes selected?

      The 17 posterior electrodes used in our analyses were pre-selected and provided in the THINGS EEG2 dataset, and corresponding to standard occipital and parietal sites based on the 10-10 EEG system. Specifically, we included all 17 electrodes with labels beginning with “O” or “P”, ensuring full coverage of posterior regions typically involved in visual object processing (Page 7).

      (d) The specific layers should be named rather than the vague ("last visual")

      Apologize for the confusing! We added more details about the layer information:

      (line 255 to 257) “The early layer in ResNet refers to ResNet.maxpool layer, and the late layer in ResNet refers to ResNet.avgpool layer. The early layer in CLIP refers to CLIP.visual.avgpool layer, and the late layer in CLIP refers to CLIP.visual.attnpool layer.”

      (line 420 to 434) “As shown in Figure 3F, the early layer representations of both ResNet and CLIP (ResNet.maxpool layer and CLIP.visual.avgpool) showed significant correlations with early EEG time windows (early layer of ResNet: 40-280ms, early layer of CLIP: 50-130ms and 160-260ms), while the late layers (ResNet.avgpool layer and CLIP.visual.attnpool layer) showed correlations extending into later time windows (late layer of ResNet: 80-300ms, late layer of CLIP: 70-300ms). Although there is substantial temporal overlap between early and late model layers, the overall pattern suggests a rough correspondence between model hierarchy and neural processing stages.

      We further extended this analysis across intermediate layers of both ResNet and CLIP models (from early to late, ResNet: ResNet.maxpool, ResNet.layer1, ResNet.layer2, ResNet.layer3, ResNet.layer4, ResNet.avgpool; from early to late, CLIP: CLIP.visual.avgpool, CLIP.visual.layer1, CLIP.visual.layer2, CLIP.visual.layer3, CLIP.visual.layer4, CLIP.visual.attnpool).”

      (e) p19: please change the reporting of t-statistics to standard APA format.

      Thanks for the suggestion. We changed the reporting format accordingly:

      (line 392 to 394) “The representation of real-word size had a significantly later peak latency than that of both retinal size, t(9)=4.30, p=.002, and real-world depth, t(9)=18.58, p<.001. And retinal size representation had a significantly later peak latency than real-world depth, t(9)=3.72, p=.005.”

      (2) "early layer of CLIP: 50-130ms and 160-260ms), while the late layer representations of twoANNs were significantly correlated with later representations in the human brain (late layer of ResNet: 80-300ms, late layer of CLIP: 70-300ms)."

      This seems a little strong, given the large amount of overlap between these models.

      We agree that our original wording may have overstated the distinction between early and late layers, given the substantial temporal overlap in their EEG correlations. We revised this sentence to soften the language to reflect the graded nature of the correspondence, and now describe the pattern as a general trend rather than a strict dissociation:

      (line 420 to 427) “As shown in Figure 3F, the early layer representations of both ResNet and CLIP (ResNet.maxpool layer and CLIP.visual.avgpool) showed significant correlations with early EEG time windows (early layer of ResNet: 40-280ms, early layer of CLIP: 50-130ms and 160-260ms), while the late layers (ResNet.avgpool layer and CLIP.visual.attnpool layer) showed correlations extending into later time windows (late layer of ResNet: 80-300ms, late layer of CLIP: 70-300ms). Although there is substantial temporal overlap between early and late model layers, the overall pattern suggests a rough correspondence between model hierarchy and neural processing stages.”

      (3) "Also, human brain representations showed a higher similarity to the early layer representation of the visual model (ResNet) than to the visual-semantic model (CLIP) at an early stage. "

      This has been previously reported by Greene & Hansen, 2020 J Neuro.

      Thanks! We added this reference.

      (4) "ANN (and Word2Vec) model RDMs"

      Why not just "model RDMs"? Might provide more clarity.

      We chose to use the phrasing “ANN (and Word2Vec) model RDMs” to maintain clarity and avoid ambiguity. In the literature, the term “model RDMs” is sometimes used more broadly to include hypothesis-based feature spaces or conceptual models, and we wanted to clearly distinguish our use of RDMs derived from artificial neural networks and language models. Additionally, explicitly referring to ANN or Word2Vec RDMs improves clarity by specifying the model source of each RDM. We hope this clarification justifies our choice to retain the original phrasing for clarity.

    1. eLife Assessment

      In this important study, the authors set out to determine the molecular interactions between the AQP2 from Trypanosoma brucei (TbAQP2) and the trypanocidal drugs pentamidine and melarsoprol to understand how TbAQP2 mutations lead to drug resistance. Using cryo-EM, molecular dynamics simulations, and lysis assays the authors present convincing evidence that mutations in TbAQP2 make permeation of trypanocidal drugs energetically less favourable, and that this impacts the ability of drugs to achieve a therapeutic dose. Overall, this data will be of interest for those working on aquaporins, and development of trypanosomiasis drugs as well as drugs targeting aquaporins in general.

    2. Reviewer #1 (Public review):

      This study presents cryoEM-derived structures of the Trypanosome aquaporin AQP2, in complex with its natural ligand, glycerol, as well as two trypanocidal drugs, pentamidine and melarsoprol, which use AQP2 as an uptake route. The structures are high quality and the density for the drug molecules is convincing, showing a binding site in the centre of the AQP2 pore.

      The authors then continue to study this system using molecular dynamics simulations. Their simulations indicate that the drugs can pass through the pore and identify a weak binding site in the centre of the pore, which corresponds with that identified through cryoEM analysis. They also simulate the effect of drug resistance mutations which suggests that the mutations reduce the affinity for drugs and therefore might reduce the likelihood that the drugs enter into the centre of the pore, reducing the likelihood that they progress through into the cell.

      While the cryoEM and MD studies are well conducted, it is a shame that the drug transport hypothesis was not tested experimentally. For example, did they do cryoEM with AQP2 with drug resistance mutations and see if they could see the drugs in these maps? They might not bind, but another possibility is that the binding site shifts, as seen in Chen et al? Do they have an assay for measuring drug binding? I think that some experimental validation of the drug binding hypothesis would strengthen this paper. The authors describe in their response why these experiments are challenging.

    3. Reviewer #2 (Public review):

      Summary:

      The authors present 3.2-3.7 Å cryo-EM structures of Trypanosoma brucei aquaglyceroporin-2 (TbAQP2) bound to glycerol, pentamidine or melarsoprol and combine them with extensive all-atom MD simulations to explain drug recognition and resistance mutations. The work provides a persuasive structural rationale for (i) why positively selected pore substitutions enable diamidine uptake, and (ii) how clinical resistance mutations weaken the high-affinity energy minimum that drives permeation. These insights are valuable for chemotherapeutic re-engineering of diamidines and aquaglyceroporin-mediated drug delivery.

      My comments are on the MD part

      Strengths:

      The study

      Integrates complementary cryo-EM, equilibrium and applied voltage MD simulations, and umbrella-sampling PMFs, yielding a coherent molecular-level picture of drug permeation.

      Offers direct structural rationalisation of long-standing resistance mutations in trypanosomes, addressing an important medical problem.

      Comments on revisions:

      Most of the weaknesses have been resolved during the revision process.

    4. Reviewer #3 (Public review):

      Summary:

      Recent studies have established that trypanocidal drugs, including pentamidine and melarsoprol, enter the trypanosomes via the glyceroaquaporin AQP2 (TbAQP2). Interestingly, drug resistance in trypanosomes is, at least in part, caused by recombination with the neighbouring gene, AQP3, which is unable to permeate pentamidine or melarsoprol. The effect of the drugs on cells expressing chimeric proteins is significantly reduced. In addition, controversy exists regarding whether TbAQP2 permeates the drugs like an ion channel, or whether it serves as a receptor that triggers downstream processes upon drug binding. In this study the authors set out to achieve these objectives: 1) to understand the molecular interactions between TbAQP2 and glycerol, pentamidine, and melarsoprol, and 2) to determine the mechanism by which mutations that arise from recombination with TbAQP3 result in reduced drug permeation.

      The cryo-EM structures provide details of glycerol and drug binding, and show that glycerol and the drugs occupy the same space within the pore. Finally, MD simulations and lysis assays are employed to determine how mutations in TbAQP2 result in reduced permeation of drugs by making entry and exit of the drug relatively more energy-expensive. Overall, the strength of evidence used to support the author's claims is solid.

      Strengths:

      The cryo-EM portion of the study is strong, and while the overall resolution of the structures is in the 3.5Å range, the local resolution within the core of the protein and the drug binding sites is considerably higher (~2.5Å).<br /> I also appreciated the MD simulations on the TbAQP2 mutants and the mechanistic insights that resulted from this data.

      Weaknesses:

      (1) The authors do not provide any experimental validation the drug binding sites in TbAQP2 due to lacking resources. However, the claims have been softened in the revised paper.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      This study presents cryoEM-derived structures of the Trypanosome aquaporin AQP2, in complex with its natural ligand, glycerol, as well as two trypanocidal drugs, pentamidine and melarsoprol, which use AQP2 as an uptake route. The structures are high quality, and the density for the drug molecules is convincing, showing a binding site in the centre of the AQP2 pore. 

      The authors then continue to study this system using molecular dynamics simulations. Their simulations indicate that the drugs can pass through the pore and identify a weak binding site in the centre of the pore, which corresponds with that identified through cryoEM analysis. They also simulate the effect of drug resistance mutations, which suggests that the mutations reduce the affinity for drugs and therefore might reduce the likelihood that the drugs enter into the centre of the pore, reducing the likelihood that they progress through into the cell. 

      While the cryoEM and MD studies are well conducted, it is a shame that the drug transport hypothesis was not tested experimentally. For example, did they do cryoEM with AQP2 with drug resistance mutations and see if they could see the drugs in these maps? They might not bind, but another possibility is that the binding site shifts, as seen in Chen et al. 

      TbAQP2 from the drug-resistant mutants does not transport either melarsoprol or pentamidine and there was thus no evidence to suggest that the mutant TbAQP2 channels could bind either drug. Moreover, there is not a single mutation that is characteristic for drug resistance in TbAQP2: references 12–15 show a plethora of chimeric AQP2/3 constructs in addition to various point mutations in laboratory strains and field isolates. In reference 17 we describe a substantial number of SNPs that reduced pentamidine and melarsoprol efficacy to levels that would constitute clinical resistance to acceptable dosage regimen. It thus appears that there are many and diverse mutations that are able to modify the protein sufficiently to induce resistance, and likely in multiple different ways, including the narrowing of the pore, changes to interacting amino acids, access to the pore etc. We therefore did not attempt to determine the structures of the mutant channels because we did not think that in most cases we would see any density for the drugs in the channel, and we would be unable to define ‘the’ resistance mechanism if we did in the case of one individual mutant TbAQP2. Our MD data suggests that pentamidine binding affinity is in the range of 50-300 µM for the mutant TbAQP2s selected for that test (I110W and L258Y/L264R), i.e. >1000-fold higher than TbAQP2WT. Thus these structures will be exceedingly challenging to determine with pentamidine in the pore but, of course, until the experiment has been tried we will not know for sure.

      Do they have an assay for measuring drug binding? 

      We tried many years ago to develop a <sup>3</sup>H-pentamidine binding assay to purified wild type TbAQP2 but we never got satisfactory results even though the binding should be in the doubledigit nanomolar range. This may be for any number of technical reasons and could also be partly because flexible di-benzamidines bind non-specifically to proteins at µM concentrations giving rise to high background. Measuring binding to the mutants was not tested given that they would be binding pentamidine in the µM range. If we were to pursue this further, then isothermal titration calorimetry (ITC) may be one way forward as this can measure µM affinity binding using unlabelled compounds, although it uses a lot of protein and background binding would need to be carefully assessed; see for example our work on measuring tetracycline binding to the tetracycline antiporter TetAB (https://doi.org/10.1016/j.bbamem.2015.06.026 ). Membrane proteins are also particularly tricky for this technique as the chemical activity of the protein solution must be identical to the chemical activity of the substrate solution which titrates in the molecule binding to the protein; this can be exceedingly problematic if any free detergent remains in the purified membrane protein. Another possibility may be fluorescence polarisation spectroscopy, although this would require fluorescently labelling the drugs which would very likely affect their affinity for TbAQP2 and how they interact with the wild type and mutant proteins – see the detailed SAR analysis in Alghamdi et al. 2020 (ref. 17). As you will appreciate, it would take considerable time and effort to set up an assay for measuring drug binding to mutants and is beyond the current scope of the current work.

      I think that some experimental validation of the drug binding hypothesis would strengthen this paper. Without this, I would recommend the authors to soften the statement of their hypothesis (i.e, lines 65-68) as this has not been experimentally validated.

      We agree with the referee that direct binding of drugs to the mutants would be very nice to have, but we have neither the time nor resources to do this. We have therefore softened the statement on lines 65-68 to read ‘Drug-resistant TbAQP2 mutants are still predicted to bind pentamidine, but the much weaker binding in the centre of the channel observed in the MD simulations would be insufficient to compensate for the high energy processes of ingress and egress, hence impairing transport at pharmacologically relevant concentrations.’ 

      Reviewer #2 (Public review): 

      Summary: 

      The authors present 3.2-3.7 Å cryo-EM structures of Trypanosoma brucei aquaglyceroporin-2 (TbAQP2) bound to glycerol, pentamidine, or melarsoprol and combine them with extensive allatom MD simulations to explain drug recognition and resistance mutations. The work provides a persuasive structural rationale for (i) why positively selected pore substitutions enable diamidine uptake, and (ii) how clinical resistance mutations weaken the high-affinity energy minimum that drives permeation. These insights are valuable for chemotherapeutic re-engineering of diamidines and aquaglyceroporin-mediated drug delivery. 

      My comments are on the MD part. 

      Strengths: 

      The study 

      (1) Integrates complementary cryo-EM, equilibrium, applied voltage MD simulations, and umbrella-sampling PMFs, yielding a coherent molecular-level picture of drug permeation. 

      (2) Offers direct structural rationalisation of long-standing resistance mutations in trypanosomes, addressing an important medical problem. 

      Weaknesses: 

      Unphysiological membrane potential. A field of 0.1 V nm ¹ (~1 V across the bilayer) was applied to accelerate translocation. From the traces (Figure 1c), it can be seen that the translocation occurred really quickly through the channel, suggesting that the field might have introduced some large changes in the protein. The authors state that they checked visually for this, but some additional analysis, especially of the residues next to the drug, would be welcome. 

      This is a good point from the referee, and we thank them for raising it. It is common to use membrane potentials in simulations that are higher than the physiological value, although these are typically lower than used here. The reason we used the higher value was to speed sampling and it still took 1,400 ns for transport in the physiologically correct direction, and even then, only in 1/3 repeats. Hence this choice of voltage was probably necessary to see the effect. The exceedingly slow rate of pentamidine permeation seen in the MD simulation was consistent with the experimental observations, as discussed in Alghamdi et al (2020) [ref. 17] where we estimated that TbAQP2-mediated pentamidine uptake in T. brucei bloodstream forms proceeds at just 9.5×10<sup>5</sup> molecules/cell/h; the number of functional TbAQP2 units in the plasma membrane is not known but their location is limited to the small flagellar pocket (Quintana et al. PLoS Negl Trop Dis 14, e0008458 (2020)). 

      The referee is correct that it is important to make sure that the applied voltage is not causing issues for the protein, especially for residues in contact with the drug. We have carried out RMSF analysis to better test this. The data show that comparing our simulations with the voltage applied to the monomeric MD simulations + PNTM with no voltage reveals little difference in the dynamics of the drug-contacting residues. 

      We have added these new data as Supplementary Fig12b with a new legend (lines1134-1138) 

      ‘b, RMSF calculations were run on monomeric TbAQP2 with either no membrane voltage or a 0.1V nm<sup>-1</sup> voltage applied (in the physiological direction). Shown are residues in contact with the pentamidine molecule, coloured by RMSF value. RMSF values are shown for residues Leu122, Phe226, Ile241, and Leu264. The data suggest the voltage has little impact on the flexibility or stability of the pore lining residues.’

      We have also added the following text to the manuscript (lines 524-530):

      ‘Membrane potential simulations were run using the computational electrophysiology protocol. An electric field of 0.1 V/nm was applied in the z-axis dimension only, to create a membrane potential of about 1 V (see Fig. S10a). Note that this is higher than the physiological value of 87.1 ± 2.1 mV at pH 7.3 in bloodstream T. brucei, and was chosen to improve the sampling efficiency of the simulations. The protein and lipid molecules were visually confirmed to be unaffected by this voltage, which we quantify using RMSF analysis on pentamidine-contacting residues (Fig. S12b).’ 

      Based on applied voltage simulations, the authors argue that the membrane potential would help get the drug into the cell, and that a high value of the potential was applied merely to speed up the simulation. At the same time, the barrier for translocation from PMF calculations is ~40 kJ/mol for WT. Is the physiological membrane voltage enough to overcome this barrier in a realistic time? In this context, I do not see how much value the applied voltage simulations have, as one can estimate the work needed to translocate the substrate on PMF profiles alone. The authors might want to tone down their conclusions about the role of membrane voltage in the drug translocation.

      We agree that the PMF barriers are considerable, however we highlight that other studies have seen similar landscapes, e.g. PMID 38734677 which saw a barrier of ca. 10-15 kcal/mol (ca. 4060 kJ/mol) for PNTM transversing the channel. This was reduced by ca. 4 kcal/mol when a 0.4 V nm ¹ membrane potential was applied, so we expect a similar effect to be seen here. 

      We have updated the Results to more clearly highlight this point and added the following text (lines 274-275):

      We note that previous studies using these approaches saw energy barriers of a similar size, and that these are reduced in the presence of a membrane voltage[17,31].’ 

      Pentamidine charge state and protonation. The ligand was modeled as +2, yet pKa values might change with the micro-environment. Some justification of this choice would be welcome. 

      Pentamidine contains two diamidine groups and each are expected to have a pKa above 10 in solution (PMID: 20368397), suggesting that the molecule will carry a +2 charge. Using the +2 charge is also in line with previous MD studies (PMID: 32762841). We have added the following text to the Methods (lines 506-509):

      ‘The pentamidine molecule used existing parameters available in the CHARMM36 database under the name PNTM with a charge state of +2 to reflect the predicted pKas of >10 for these groups [73] and in line with previous MD studies[17].’

      We note that accounting for the impact of the microenvironment is an excellent point – future studies might employ constant pH calculations to address this.

      The authors state that this RMSD is small for the substrate and show plots in Figure S7a, with the bottom plot being presumably done for the substrate (the legends are misleading, though), levelling off at ~0.15 nm RMSD. However, in Figure S7a, we see one trace (light blue) deviating from the initial position by more than 0.2 nm - that would surely result in an RMSD larger than 0.15, but this is somewhat not reflected in the RMSD plots. 

      The bottom plot of Fig. S9a (previously Fig. S7a) is indeed the RMSD of the drug (in relation to the protein). We have clarified the legend with the following text (lines 1037-1038): ‘… or for the pentamidine molecule itself, i.e. in relation to the Cα of the channel (bottom).’ 

      With regards the second comment, we assume the referee is referring to the light blue trace from Fig S9c. These data are actually for the monomeric channel rather than the tetramer. We apologise for not making this clearer in the legend. We have added the word ‘monomeric’ (line 1041).

      Reviewer #3 (Public review): 

      Summary: 

      Recent studies have established that trypanocidal drugs, including pentamidine and melarsoprol, enter the trypanosomes via the glyceroaquaporin AQP2 (TbAQP2). Interestingly, drug resistance in trypanosomes is, at least in part, caused by recombination with the neighbouring gene, AQP3, which is unable to permeate pentamidine or melarsoprol. The effect of the drugs on cells expressing chimeric proteins is significantly reduced. In addition, controversy exists regarding whether TbAQP2 permeates drugs like an ion channel, or whether it serves as a receptor that triggers downstream processes upon drug binding. In this study the authors set out to achieve three objectives: 

      (1) to determine if TbAQP2 acts as a channel or a receptor,

      We should clarify here that this was not an objective of the current manuscript as the transport activity has already been extensively characterised in the literature, as described in the introduction.

      (2) to understand the molecular interactions between TbAQP2 and glycerol, pentamidine, and melarsoprol, and 

      (3) to determine the mechanism by which mutations that arise from recombination with TbAQP3 result in reduced drug permeation. 

      Indeed, all three objectives are achieved in this paper. Using MD simulations and cryo-EM, the authors determine that TbAQP2 likely permeates drugs like an ion channel. The cryo-EM structures provide details of glycerol and drug binding, and show that glycerol and the drugs occupy the same space within the pore. Finally, MD simulations and lysis assays are employed to determine how mutations in TbAQP2 result in reduced permeation of drugs by making entry and exit of the drug relatively more energy-expensive. Overall, the strength of evidence used to support the author's claims is solid. 

      Strengths: 

      The cryo-EM portion of the study is strong, and while the overall resolution of the structures is in the 3.5Å range, the local resolution within the core of the protein and the drug binding sites is considerably higher (~2.5Å). 

      I also appreciated the MD simulations on the TbAQP2 mutants and the mechanistic insights that resulted from this data. 

      Weaknesses: 

      (1) The authors do not provide any empirical validation of the drug binding sites in TbAQP2. While the discussion mentions that the binding site should not be thought of as a classical fixed site, the MD simulations show that there's an energetically preferred slot (i.e., high occupancy interactions) within the pore for the drugs. For example, mutagenesis and a lysis assay could provide us with some idea of the contribution/importance of the various residues identified in the structures to drug permeation. This data would also likely be very valuable in learning about selectivity for drugs in different AQP proteins.

      On a philosophical level, we disagree with the requirement for ‘validation’ of a structure by mutagenesis. It is unclear what such mutagenesis would tell us beyond what was already shown experimentally through <sup>3</sup>H-pentamidine transport, drug sensitivity and lysis assays i.e. a given mutation will impact permeation to a certain extent. But on the structural level, what does mutagenesis tell us? If a bulky aromatic residue that makes many van der Waals interactions with the substrate is changed to an alanine residue and transport is reduced, what does this mean? It would confirm that the phenylalanine residue is very likely indeed making van der Waals contacts to the substrate, but we knew that already from the WT structure. And if it doesn’t have any effect? Well, it could mean that the van der Waals interactions with that particular residue are not that important or it could be that the substrate has changed its positions slightly in the channel and the new pose has similar energy of interactions to that observed in the wild type channel. Regardless of the result, any data from mutagenesis would be open to interpretation and therefore would not impact on the conclusions drawn in this manuscript. We might not learn anything new unless all residues interacting with the substrate are mutated, the structure of each mutant was determined and MD simulations were performed for all, which is beyond the scope of this work. Even then, the value for understanding clinical drug resistance would be limited, as this phenomenon has been linked to various chimeric rearrangements with adjacent TbAQP3 (references 12–15), each with a structure distinct from TbAQP2 with a single SNP. We also note that the recent paper by Chen et al. did not include any mutagenesis of the drug binding sites in TbAQP2 in their analysis of TbAQP2, presumably for similar reasons as discussed above.

      (2) Given the importance of AQP3 in the shaping of AQP2-mediated drug resistance, I think a figure showing a comparison between the two protein structures/AlphaFold structures would be beneficial and appropriate

      We agree that the comparison is of considerably interest and would contribute further to our understanding of the unique permeation capacities of TbAQP2. As such, we followed the reviewer’s suggestion and made an AlphaFold model of TbAQP3 and compared it to our structures of TbAQP2. The RMSD is 0.6 Å to the pentamidine-bound TbAQP2, suggesting that the fold of TbAQP3 has been predicted well, although the side chain rotamers cannot be assessed for their accuracy. Previous work has defined the selectivity filter of TbAQP3 to be formed by W102, R256, Y250. The superposition of the TbAQP3 model and the TbAQP2 pentamidine-bound structure shows that one of the amine groups is level with R256 and that there is a clash with Y250 and the backbone carbonyl of Y250, which deviates in position from the backbone of TbAQP2 in this region. There is also a clash with Ile252. 

      Although these observations are indeed interesting, on their own they are highly preliminary and extensive further work would be necessary to draw any convincing conclusions regarding these residues in preventing uptake of pentamidine and melarsoprol. The TbAQP3 AlphaFold model would need to be verified by MD simulations and then we would want to look at how pentamidine would interact with the channel under different experimental conditions like we have done with TbAQP2. We would then want to mutate to Ala each of the residues singly and in combination and assess them in uptake assays to verify data from the MD simulations. This is a whole new study and, given the uncertainties surrounding the observations of just superimposing TbAQP2 structure and the TbAQP3 model, we feel that, regrettably, this is just too speculative to add to our manuscript. 

      (3) A few additional figures showing cryo-EM density, from both full maps and half maps, would help validate the data. 

      Two new Supplementary Figures have been made, on showing the densities for each of the secondary structure elements (the new Figure S5) and one for the half maps showing the ligands (the new Figure S6). All the remaining supplementary figures have been renamed accordingly.

      (4) Finally, this paper might benefit from including more comparisons with and analysis of data published in Chen et al (doi.org/10.1038/s41467-024-48445-4), which focus on similar objectives. Looking at all the data in aggregate might reveal insights that are not obvious from either paper on their own. For example, melarsoprol binds differently in structures reported in the two respective papers, and this may tell us something about the energy of drug-protein interactions within the pore. 

      We already made the comparisons that we felt were most pertinent and included a figure (Fig. 5) to show the difference in orientation of melarsoprol in the two structures. We do not feel that any additional comparison is sufficiently interesting to be included. As we point out, the structures are virtually identical (RMSD 0.6 Å) and therefore there are no further mechanistic insights we would like to make beyond the thorough discussion in the Chen et al paper.

      Reviewer #1 (Recommendations for the authors): 

      (1) Line 65 - I don't think that the authors have tested binding experimentally, and so rather than 'still bind', I think that 'are still predicted to bind' is more appropriate. 

      Changed as suggested

      (2) Line 69 - remove 'and' 

      Changed as suggested

      (3) Line 111 - clarify that it is the protein chain which is 'identical'. Ligands not. 

      Changed to read ‘The cryo-EM structures of TbAQP2 (excluding the drugs/substrates) were virtually identical…

      (4) Line 186 - make the heading of this section more descriptive of the conclusion than the technique? 

      We have changed the heading to read: ‘Molecular dynamics simulations show impaired pentamidine transport in mutants’

      Reviewer #2 (Recommendations for the authors): 

      (1) Methods - a rate of 1 nm per ns is mentioned for pulling simulations, is that right? 

      Yes, for the generation of the initial frames for the umbrella sampling a pull rate of 1 nm/ns was used in either an upwards or downwards z-dimension

      (2) Figure S9 and S10 have their captions swapped. 

      The captions have been swapped to their proper positions.

      (3) Methods state "40 ns per window" yet also that "the first 50 ns of each window was discarded as equilibration". 

      Well spotted - this line should have read “the first 5 ns of each window was discarded as equilibration”. This has been corrected (line 541).

      Reviewer #3 (Recommendations for the authors): 

      (1) Abstract, line 68-70: incomplete sentence.

      The sentence has been re-written: ‘The structures of drug-bound TbAQP2 represent a novel paradigm for drug-transporter interactions and are a new mechanism for targeting drugs in pathogens and human cells.

      (2) Line 312-313: The paper you mention here came out in May 2024 - a year ago. I appreciate that they reported similar structural data, but for the benefit of the readers and the field, I would recommend a more thorough account of the points by which the two pieces of work differ. Is there some knowledge that can be gleaned by looking at all the data in the two papers together? For example, you report a glycerol-bound structure while the other group provides an apo one. Are there any mechanistic insights that can be gained from a comparison?

      We already made the comparisons that we felt were most pertinent and included a figure (Fig. 5) to show the difference in orientation of melarsoprol in the two structures. We do not feel that any additional comparison is sufficiently interesting to be included. As we point out, the structures are virtually identical (RMSD 0.6 Å) and therefore there are no further mechanistic insights we would like to make beyond the thorough discussion in the Chen et al paper.

      (3) Similarly, you can highlight the findings from your MD simulations on the TbAQP2 drug resistance mutants, which are unique to your study. How can this data help with solving the drug resistance problem?

      New drugs will need to be developed that can be transported by the mutant chimera AQP2s and the models from the MD simulations will provide a starting point for molecular docking studies. Further work will then be required in transport assays to optimise transport rather than merely binding. However, the fact that drug resistance can also arise through deletion of the AQP2 gene highlights the need for developing new drugs that target other proteins.

      (4) A glaring question that one has as a reader is why you have not attempted to solve the structures of the drug resistance mutants, either in complex with the two compounds or in their apo/glycerol-bound form? To be clear, I am not requesting this data, but it might be a good idea to bring this up in the discussion.

      TbAQP2 containing the drug-resistant mutants does not transport either melarsoprol or pentamidine (Munday et al., 2014; Alghamdi et al., 2020); there was thus no evidence to suggest that the mutant TbAQP2 channels could bind either drug. We therefore did not attempt to determine the structures of the mutant channels because we did not think that we would see any density for the drugs in the channel. Our MD data suggests that pentamidine binding affinity is in the range of 50-300 µM for the mutant TbAQP2, supporting the view that getting these structures would be highly challenging, but of course until the experiment is tried we will not know for sure.

      We also do not think we would learn anything new about doing structures of the drug-free structures of the transport-negative mutants of TbAQP2. The MD simulations have given novel insights into why the drugs are not transported and we would rather expand effort in this direction and look at other mutants rather than expend further effort in determining new structures.

      (5) Line 152-156: Is there a molecular explanation for why the TbAQP2 has 2 glycerol molecules captured in the selectivity filter while the PfAQP2 and the human AQP7 and AQP10 have 3?

      The presence of glycerol molecules represents local energy minima for binding, which will depend on the local disposition of appropriate hydrogen bonding atoms and hydrophobic regions, in conjunction with the narrowness of the channel to effectively bind glycerol from all sides. It is noticeable that the extracellular region of the channel is wider in TbAQP2 than in AQP7 and AQP10, so this may be one reason why additional ordered glycerol molecules are absent, and only two are observed. Note also that the other structures were determined by X-ray crystallography, and the environment of the crystal lattice may have significantly decreased the rate of diffusion of glycerol, increasing the likelihood of observing their electron densities.

      (6) I would also think about including the 8JY7 (TbAQP2 apo) structure in your analysis.

      We included 8JY7 in our original analyses, but the results were identical to 8JY6 and 8JY8 in terms of the protein structure, and, in the absence of any modelled substrates in 8JY7 (the interesting part for our manuscript), we therefore have not included the comparison.

      (7) I also think, given the importance of AQP3 in this context, it would be really useful to have a comparison with the AQP3 AlphaFold structure in order to examine why it does not permeate drugs.

      We made an AlphaFold model of TbAQP3 and compared it to our structures of TbAQP2. The RMSD is 0.6 Å to the pentamidine-bound TbAQP2, suggesting that the fold of TbAQP3 has been predicted well, although the side chain rotamers cannot be assessed for their accuracy. Previous work has defined the selectivity filter of TbAQP3 to be formed by W102, R256, Y250. The superposition of the TbAQP3 model and the TbAQP2 pentamidine-bound structure shows that one of the amine groups is level with R256 and that there is a clash with Y250 and the backbone carbonyl of Y250, which deviates in position from the backbone of TbAQP2 in this region. There is also a clash with Ile252. 

      Although these observations are interesting, on their own they are preliminary in the extreme and extensive further work will be necessary to draw any convincing conclusions regarding these residues in preventing uptake of pentamidine and melarsoprol. The TbAQP3 AlphaFold model would need to be verified by MD simulations and then we would want to look at how pentamidine would interact with the channel under different experimental conditions like we have done with TbAQP2. We would then want to mutate to Ala each of the residues singly and in combination and assess them in uptake assays to verify data from the MD simulations. This is a whole new study and, given the uncertainties surrounding the observations of just superimposing TbAQP2 structure and the TbAQP3 model, we feel this is just too speculative to add to our manuscript. 

      (8) To validate the densities representing glycerol and the compounds, you should show halfmap densities for these. 

      A new figure, Fig S6 has been made to show the half-map densities for the glycerol and drugs.

      (9) I would also like to see the density coverage of the individual helices/structural elements. 

      A new figure, Fig S5 has been made to show the densities for the structural elements.

      (10) While the LigPlot figure is nice, I think showing the data (including the cryo-EM density) is necessary validation.

      The LigPlot figure is a diagram (an interpretation of data) and does not need the densities as these have already been shown in Fig. 1c (the data).

      (11) I would recommend including a figure that illustrates the points described in lines 123-134.

      All of the points raised in this section are already shown in Fig. 2a, which was referred to twice in this section. We have added another reference to Fig.2a on lines 134-135 for completeness.

      (12) Line 202: I would suggest using "membrane potential/voltage" to avoid confusion with mitochondrial membrane potential. 

      We have changed this to ‘plasma membrane potential’ to differentiate it from mitochondrial membrane potential.

      (13) Figure 4: Label C.O.M. in the panels so that the figure corresponds to the legend. 

      We have altered the figure and added and explanation in the figure legend (lines 716-717):

      ‘Cyan mesh shows the density of the molecule across the MD simulation. and the asterisk shows the position of the centre of mass (COM).’

      (14) Figure S2: Panels d and e appear too similar, and it is difficult to see the stick representation of the compound. I would recommend either using different colours or showing a close-up of the site.

      We have clarified the figure by including two close-up views of the hot-spot region, one with melarsoprol overlaid and one with pentamidine overlaid

      (15) Figure S2: Typo in legend: 8YJ7 should be 8JY7.

      Changed as suggested  

      (16) Figure S3 and Figure S4: Please clarify which parts of the process were performed in cryoSPARC and which in Relion. 

      Figure S3 gives an overview of the processing and has been simplified to give the overall picture of the procedures. All of the details were included in the Methods section as other programmes are used, not just cryoSPARC and Relion. Given the complexities of the processing, we have referred the readers to the Methods section rather than giving confusing information in Fig. S3.

      We have updated the figure legend to Fig. S4 as requested.

      (17) Figure S9 and Figure S10: The legends are swapped in these two figures.

      The captions have been swapped to their proper positions.

      (18) For ease of orientation and viewing, I would recommend showing a vertical HOLE plot aligned with an image of the AQP2 pore. 

      The HOLE plot has been re-drawn as suggest (Fig. S2)

    1. eLife Assessment

      This study by Roseby and colleagues shows that region-specific mechanosensation - especially anterior-dorsal inputs - controls larval self-righting, and links this to Hox gene function in sensory neurons. The work is important for understanding how body plan cues shape sensorimotor behaviour, and the experimental toolkit will be of use to others. The strength of evidence is solid with respect to the assays developed and the involvement of the anterior region; it is incomplete with respect to dorso-ventral involvement in that region and the role of Hox genes in the process. These findings will be of broad interest to researchers studying neural circuits, developmental genetics, and the evolution of behaviour.

    2. Reviewer #1 (Public review):

      Summary:

      Roseby and colleagues report on a body region-specific sensory control of the fly larval righting response, a body contortion performed by fly larvae to correct their posture when they find themselves in an inverted (dorsal side down) position. This is an important topic because of the general need for animals to move about in the correct orientation and the clever methodologies used in this paper to uncover the sensory triggers for the behavior. Several innovative methodologies are developed, including a body region-specific optogenetic approach along different axial positions of the larva, region-specific manipulation of surface contacts with the substrate, and a 'water unlocking' technique to initiate righting behaviors, a strength of the manuscript. The authors found that multidendritic neurons, particularly the daIV neurons, are necessary for righting behavior. The contribution of daIV neurons had been shown by the authors in a prior paper (Klann et al, 2021), but that study had used constitutive neuronal silencing. Here, the authors used acute inactivation to confirm this finding. Additionally, the authors describe an important role for anterior sensory neurons and a need for dorsal substrate contact. Conversely, ventral sensory elements inhibit the righting behavior, presumably to ensure that the ventral-side-down position dominates. They move on to test the genetic basis for righting behavior and, consistent with the regional specificity they observe, implicate sensory neuron expression of Hox genes Antennapedia and Abdominal-b in self-righting.

      Strengths:

      Strengths of this paper include the important question addressed and the elegant and innovative combination of methods, which led to clear insights into the sensory biology of self-righting, and that will be useful for others in the field. This is a substantial contribution to understanding how animals correct their body position. The manuscript is very clearly written and couched in interesting biology.

      Limitations:

      (1) The interpretation of functional experiments is complicated by the proposed excitatory and inhibitory roles of dorsal and ventral sensory neuron activity, respectively. So, while silencing of an excitatory (dorsal) element might slow righting, silencing of inputs that inhibit righting could speed the behavior. Silencing them together, as is done here, could nullify or mask important D-V-specific roles. Selective manipulation of cells along the D-V axis could help address this caveat.

      (2) Prior studies from the authors implicated daIV neurons in the righting response. One of the main advances of the current manuscript is the clever demonstration of region-specific roles of sensory input. However, this is only confirmed with a general md driver, 190(2)80, and not with the subset-specific Gal4, so it is not clear if daIV sensory neurons are also acting in a regionally specific manner along the A-P axis.

      (3) The manuscript is narrowly focused on sensory neurons that initiate righting, which limits the advance given the known roles for daIV neurons in righting. With the suite of innovative new tools, there is a missed opportunity to gain a more general understanding of how sensory neurons contribute to the righting response, including promoting and inhibiting righting in different regions of the larva, as well as aspects of proprioceptive sensing that could be necessary for righting and account for some of the observed effects of 109(2)80.

      (4) Although the authors observe an influence of Hox genes in righting, the possible mechanisms are not pursued, resulting in an unsatisfying conclusion that these genes are somehow involved in a certain region-specific behavior by their region-specific expression. Are the cells properly maintained upon knockdown? Are axon or dendrite morphologies of the cells disrupted upon knockdown?

      (5) There could be many reasons for delays in righting behavior in the various manipulations, including ineffective sensory 'triggering', incoherent muscle contraction patterns, initiation of inappropriate behaviors that interfere with righting sequencing, and deficits in sensing body position. The authors show that delays in righting upon silencing of 109(2)80 are caused by a switch to head casting behavior. Is this also the case for silencing of daIV neurons, Hox RNAi experiments, and silencing of CO neurons? Does daIII silencing reduce head casting to lead to faster righting responses?

      (6) 109(2)80 is expressed in a number of central neurons, so at least some of the righting phenotype with this line could be due to silenced neurons in the CNS. This should at least be acknowledged in the manuscript and controlled for, if possible, with other Gal4 lines.

      Other points

      (7) Interpretation of roles of Hox gene expression and function in righting response should consider previous data on Hox expression and function in multidendritic neurons reported by Parrish et al. Genes and Development, 2007.

      (8) The daIII silencing phenotype could conceivably be explained if these neurons act as the ventral inhibitors. Do the authors have evidence for or against such roles?

    3. Reviewer #2 (Public review):

      Summary

      This work explores the relationship between body structure and behavior by studying self-righting in Drosophila larvae, a conserved behavior that restores proper orientation when turned upside-down. The authors first introduce a novel "water unlocking" approach to induce self-righting behavior in a controlled manner. Then, they develop a method for region-specific inhibition of sensory neurons, revealing that anterior, but not posterior, sensory neurons are essential for proper self-righting. Deep-learning-based behavioral analysis shows that anterior inhibition prolongs self-righting by shifting head movement patterns, indicating a behavioral switch rather than a mere delay. Additional genetic and molecular experiments demonstrate that specific Hox genes are necessary in sensory neurons, underscoring how developmental patterning genes shape region-specific sensory mechanisms that enable adaptive motor behaviors.

      Strengths

      The work of Roseby et al. does what it says on the tin. The experimental design is elegant, introducing innovative methods that will likely benefit the fly behavior community, and the results are robustly supported, without overstatement.

      Weaknesses:

      The manuscript is clearly written, flows smoothly, and features well-designed experiments. Nevertheless, there are areas that could be improved. Below is a list of suggestions and questions that, if addressed, would strengthen this work:

      (1) Figure 1A illustrates the sequence of self-righting behavior in a first instar larva, while the experiments in the same figure are performed on third instar larvae. It would be helpful to clarify whether the sequence of self-righting movements differs between larval stages. Later on in the manuscript, experiments are conducted on first instar larvae without explanation for the choice of stage. Providing the rationale for using different larval stages would improve clarity.

      (2) What was the genotype of the larvae used for the initial behavioral characterization (Figure 1)? It is assumed they were wild type or w1118, but this should be stated explicitly. This also raises the question of whether different wild-type strains exhibit this behavior consistently or if there is variability among them. Has this been tested?

      (3) Could the observed slight leftward bias in movement angles of the tail (Figure 1I and S1) be related to the experimental setup, for example, the way water is added during the unlocking procedure? It would be helpful to include some speculation on whether the authors believe this preference to be endogenous or potentially a technical artifact.

      (4) The genotype of the larvae used for Figure 2 experiments is missing.

      (5) The experiment shown in Figure 2E-G reports the proportion of larvae exhibiting self-righting behavior. Is the self-righting speed comparable to that measured using the setup in Figure 1?

      (6) Line 496 states: "However, the effect size was smaller than that for the entire multidendritic population, suggesting neurons other than the daIVs are important for self-righting". Although I agree that this is the more parsimonious hypothesis, an alternative interpretation of the observed phenomenon could be that the effect is not due to the involvement of other neuronal populations, but rather to stronger Gal4 expression in daIVs with the general driver compared to the specific one. Have the authors (or someone else) measured or compared the relative strengths of these two drivers?

      (7) Is there a way to quantify or semi-quantify the expression of the Hox genes shown in Figure 6A? Also, was this experiment performed more than once (are there any technical replicates?), or was the amount of RNA material insufficient to allow replication?

      (8) Since RNAi constructs can sometimes produce off-target effects, it is generally advisable to use more than one RNAi line per gene, targeting different regions. Given that Hox genes have been extensively studied, the RNAis used in Figure 6B are likely already characterized. If this were the case, it would strengthen the data to mention it explicitly and provide references documenting the specificity and knockdown efficiency of the Hox gene RNAis employed. For example, does Antp RNAi expression in the 109(2)80 domain decrease Antp protein levels in multidendritic anterior neurons in immunofluorescence assays?

      (9) In addition to increasing self-righting time, does Antp downregulation also affect head casting behavior or head movement speed? A more detailed behavioral characterization of this genetic manipulation could help clarify how closely it relates to the behavioral phenotypes described in the previous experiments.

      (10) Does down-regulation of Antp in the daIV domain also increase self-righting time?

    4. Author response:

      We are very pleased to hear the overall positive views and constructive criticisms of eLife Editors and Reviewers on our work. In particular, we appreciate their global assessment that the work is important for understanding how body plan cues shape sensorimotor behavioural patterns, that the strength of evidence is solid, and their views that our experimental toolkit will be useful to others. We also very much appreciate eLife’s assessment that our findings will be of broad interest to researchers studying neural circuits, developmental genetics, and the evolution of behaviour.

      Regarding Reviewer 1, we thank them for their positive comments on the value of our study, highlighting that our paper addresses an important question using an elegant and innovative combination of methods, which leads to clear insights into the sensory biology of self-righting, which they consider shall be useful for others in the field. We are also very pleased to hear that they consider that our study makes a substantial contribution to understanding how animals correct their body position and that the manuscript is very clearly written and couched in interesting biology. In a revised version of the manuscript, we will consider some of the interesting points raised by Rev1, including the possibility of conducting new experiments using neuronal subset-specific Gal4s, to establish whether daIV sensory neurons are also acting in a regionally specific manner along the A-P axis.

      Turning to the comments by Rev2, we are grateful to them for considering that our experimental design is elegant, and that it introduces innovative methods that will likely benefit the fly behavior community, and the results are robustly supported. In connection to other comments, in a revised manuscript we will consider addressing the question of whether normal levels of expression of the Hox gene Antennapedia within the daIV domain are essential for self-righting. We will also seek to add technical replicates to our Hox expression molecular analysis, amend typos and incorporate several of the constructive corrections mentioned.

    1. eLife Assessment

      This important study uses single-neuron Patch-seq RNA sequencing to investigate the process by which RNA editing can produce protein diversity and regulate function in various cellular contexts. The computational analyses of the data collected are convincing, and from an analytical standpoint, this paper is a notable advance in seeking to provide a biological context for massive amounts of data in the field. The study would be of interest to biologists looking at the effects of RNA editing in the diversification of cellular behaviour.

    2. Reviewer #1 (Public review):

      The importance of RNA editing in producing protein diversity is a widespread process that can regulate how genes function in various cellular contexts. Despite the importance of the process, we still lack a thorough knowledge of the profile of RNA editing targets in known cells. Crane and colleagues take advantage of a recently acquired scRNAseq database for Drosophila type Ib and Is larval motoneurons and identify the RNA editing landscape that differs in those cells. They find both canonical (A --> I) and non-canonical sites and characterize the targets, their frequencies, and determine some of the "rules" that influence RNA editing. They compare their database with existing databases to determine a reliance on the most well-known deaminase enzyme ADAR, determine the activity-dependence of editing profiles, and identify editing sites that are specific to larval Drosophila, differing from adults. The authors also identify non-canonical editing sites, especially in the newly appreciated and identified regulator of synaptic plasticity, Arc1.

      The paper represents a strong analysis of recently made RNAseq databases from their lab and takes a notable approach to integrate this with other databases that have been recently produced from other sources. One of the places where this manuscript succeeds is in a thorough approach to analyzing the considerable amount of data that is out there regarding RNAseq in these differing motoneurons, but also in comparing larvae to adults. This is a strong advance. It also enables the authors to begin to determine rules for RNA editing. From an analytical standpoint, this paper is a notable advance in seeking to provide a biological context for massive amounts of data in the field. Further, it addresses some biological aspects in comparing WT and adar mutants to assess one potential deaminase, addresses activity-dependence, and begins to reveal profiles of canonical and non-canonical editing.

    3. Reviewer #2 (Public review):

      Summary:

      The study uses single-neuron Patch-seq RNA sequencing in two subgroups of Drosophila larval motoneurons (1s and 1b) and identifies 316 high-confidence canonical mRNA edit sites, which primarily (55%) occur in the coding regions of the mRNAs (CDS). Most of the canonical mRNA edits in the CDS regions include neuronal and synaptic proteins such as Complexin, Cac, Para, Shab, Sh, Slo, EndoA, Syx1A, Rim, RBP, Vap33, and Lap, which are involved in neuronal excitability and synaptic transmission. Of the 316 identified canonical edit sites, 60 lead to missense RNAs in a range of proteins (nAChRalpha5, nAChRalpha6, nAChRbeta1, ATPalpha, Cacophony, Para, Bsk, Beag, RNase Z) that are likely to have an impact on the larval motoneurons' development and function. Only 27 sites show editing levels higher than 90% and a similar editing profile is observed between the 1s and 1b motoneurons when looking at the number of edit sites and the fraction of reads edited per cell, with only 26 RNA editing sites showing a significant difference in the editing level. The variability of edited and unedited mRNAs suggests stochastic editing. The two subsets of motoneurons show many noncanonical editing sites, which, however, are not enriched for neuron-specific genes, therefore causing more silent changes compared to canonical editing sites. Comparison of the mRNA editing sites and editing rate of the single neuron Patch-seq RNA sequencing dataset to three other RNAseq datasets, one from same stage larval motoneurons and two from adult heads nuclei, show positive correlations in editing frequencies of CDS edits between the patch-sec larval 1b + 1s MNs and all other three datasets, with stronger correlations for previously annotated edits and weaker correlations for unannotated edits. Several of the identified editing targets are only present in the single neuron Patch-seq RNA sequencing dataset, suggesting cell-type-specific or developmental-specific editing. Editing appears to be resistant to changes in neuronal activity as only a few sites show evidence of being activity-regulated.

      Strengths:

      The study employs GAL4 driver lines available in the Drosophila model to identify two subtypes of motoneurons with distinct biophysical and morphological features. In combination with single-neuron Patch-seq RNA sequencing, it provides a unique opportunity to identify RNA editing sites and rates specific to specific motoneuron subtypes. The RNA seq data is robustly analysed, and high-confidence mRNA edit sites of both canonical and noncanonical RNA editing are identified.

      The mRNA editing sites identified from the single neuron Patch-seq RNA sequencing data are compared to editing sites identified across other RNAseq datasets collected from animals at similar or different developmental stages, allowing for the identification of editing sites that are common to all or specific to a single dataset.

      Weaknesses:

      Although the analysed motoneurons come from two distinct subtypes, it is unclear from how many Drosophila larvae the motoneurons were collected and from which specific regions along the ventral nerve cord (VNC). Therefore, the study does not consider possible differences in editing rate between samples from different larvae that could be in different active states or neurons located at different regions of the VNC, which would receive inputs from slightly different neuronal networks.

      The RNA samples include RNAs located both in the nucleus and the cytoplasm, introducing a potential compartmental mismatch between the RNA and the enzymes mediating the editing, which could influence editing rate. Similarly, the age of the RNAs undergoing editing is unknown, which may influence the measured editing rates.

    4. Reviewer #3 (Public review):

      Summary:

      The study consists of extensive computational analyses of their previously released Patch-seq data on single MN1-Ib and MNISN-Is neurons. The authors demonstrate the diversity of A>I editing events at single-cell resolution in two different neuronal cell types, identifying numerous A>I editing events that vary in their proportion, including those that cause missense mutations in conserved amino acids. They also consider "noncanonical" edits, such as C>T and G>A, and integrate publicly available data to support these analyses.

      In general, the study contains a valuable resource to assess RNA editing in single neurons and opens several questions regarding the diversity and functional implications of RNA editing at single-cell resolution. The conclusions from the study are generally supported by their data; however, the study is currently based on computational predictions and would therefore benefit from experimentation to support their hypotheses and demonstrate the effects of the editing events identified on neuronal function and phenotype.

      Strengths:

      The study uses samples that are technically difficult to prepare to assess cell-type-specific RNA editing events in a natural model. The study also uses public data from different developmental stages that demonstrate the importance of considering cell type and developmental stage-specific RNA regulation. These critical factors, particularly that of developmental timing, are often overlooked in mechanistic studies.

      Extensive computational analysis, using public pipelines, suitable filtering criteria, and accessible custom code, identifies a number of RNA editing events that have the potential to impact conserved amino acids and have subsequent effects on protein function. These observations are supported through the integration of several public data sets to investigate the occurrence of the edits in other data sets, with many identified across multiple data sets. This approach allowed the identification of a number of novel A>I edits, some of which appear to be specific to this study, suggesting cell/developmental specificity, whilst others are present in the public data sets but went unannotated.

      The study also considers the role of Adar in the generation of A>I edits, as would be expected, by assessing the effect of Adar expression on editing rates using public data from adar mutant tissue to demonstrate that the edits conserved between experiments are mainly Adar-sensitive. This would be stronger if the authors also performed Patch-seq experiments in adar mutants to increase confidence in the identified edit sites.

      Weaknesses:

      Whilst the study makes interesting observations using advanced computational approaches, it does not demonstrate the functional implications of the observed editing events. The functional impact of the edits is inferred from either the nature of the change to the coding sequence and the amino acid conservation, or through integration of other data sets. Although these could indeed imply function, further experimentation would be required to confirm such as using their Alphafold models to predict any changes in structure. This limitation is acknowledged by the authors, but the overall strength of the interpretation of the analysis could be softened to represent this.

      The study uses public data from more diverse cellular populations to confirm the role of Adar in introducing the A>I edits. Whilst this is convincing, the ideal comparison to support the mechanism behind the identified edits would be to perform patch-seq experiments on 1b or 1s neurons from adar mutants. However, although this should be considered when interpreting the data, these experiments would be a large amount of work and beyond the scope of the paper.

      By focusing on the potential impact of editing events that cause missense mutations in the CDS, the study may overlook the importance of edits in noncoding regions, which may impact miRNA or RNA-binding protein target sites. Further, the statement that noncanonical edits and those that induce silent mutations are likely to be less impactful is very broad and should be reconsidered. This is particularly the case when suggesting that silent mutations may not impact the biology. Given the importance of codon usage in translational fidelity, it is possible that silent mutations induced by either A>I or noncanonical editing in the CDS impact translation efficiency. Indeed, this could have a greater impact on protein production and transcript levels than a single amino acid change alone.

    5. Author response:

      Reviewer #1:

      Indicated the paper provided a strong analysis of RNAseq databases to provide a biological context and resource for the massive amounts of data in the field on RNA editing. The reviewer noted that future studies will be important to define the functional consequences of the individual edits and why the RNA editing rules we identified exist. We address these comments below.

      (1) The reviewer wondered about the role of noncanonical editing to neuronal protein expression.

      Indeed, the role of noncanonical editing has been poorly studied compared to the more common A-to-I ADAR-dependent editing. Most non-canonical coding edits we found actually caused silent changes at the amino acid level, suggesting evolutionary selection against this mechanism as a pathway for generating protein diversity. As such, we suspect that most of these edits are not altering neuronal function in significant ways. Two potential exceptions to this were non-canonical edits that altered conserved residues in the synaptic proteins Arc1 and Frequenin 1. The C-to-T coding edit in the activity-regulated Arc1 mRNA that encodes a retroviral-like Gag protein involved in synaptic plasticity resulted in a P124L amino acid change (see Author response image 1 panel A below). ~50% of total Arc1 mRNA was edited at this site in both Ib and Is neurons, suggesting a potentially important role if the P124L change alters Arc1 structure or function. Given Arc1 assembles into higher order viral-like capsids, this change could alter capsid formation or structure. Indeed, P124 lies in the hinge region separating the N- and C-terminal capsid assembly regions (panel B) and we hypothesize this change will alter the ability of Arc1 capsids to assemble properly. We plan to experimentally test this by rescuing Arc1 null mutants with edited versus unedited transgenes to see how the previously reported synaptic phenotypes are modified. We also plan to examine the ability of the change to alter Arc1 capsid assembly in a collaboration using CyroEM.

      Author response image 1.

      A. AlphaFold predictions of Drosophila Arc1 and Frq1 with edit site noted. B. Structure of the Drosophila Arc1 capsid. Monomeric Arc1 conformation within the capsid is shown on the right with the location of the edit site indicated.

      The other non-canonical edit (G-to-A) that stood out was in Frequenin 1 (Frq1), a multi-EF hand containing Ca<sup>2+</sup> binding protein that regulates synaptic transmission, that resulted in a G2E amino acid substitution (location within Frq1shown in panel A above). This glycine residue is conserved in all Frq homologs and is the site of N-myristoylation, a co-translational lipid modification to the glycine after removal of the initiator methionine by an aminopeptidase. Myristoylation tethers Frq proteins to the plasma membrane, with a Ca<sup>2+</sup>-myristoyl switch allowing some family members to cycle on and off membranes when the lipid domain is sequestered in the absence of Ca<sup>2+</sup>. Although the G2E edit is found at lower levels (20% in Ib MNs and 18% in Is MNs), it could create a pool of soluble Frq1 that alters it’s signaling. We plan to functionally assay the significance of this non-canonical edit as well. Compared to edits that alter amino acid sequence, determining how non canonical editing of UTRs might regulate mRNA dynamics is a harder question at this stage and will require more experimental follow-up.

      (2) The reviewer noted the last section of the results might be better split into multiple parts as it reads as a long combination of two thoughts.

      We agree with the reviewer that the last section is important, but it was disconnected a bit from the main story and was difficult for us to know exactly where to put it. All the data to that point in the paper was collected from our own PatchSeq analysis from individual larval motoneurons. We wanted to compare these results to other large RNAseq datasets obtained from pooled neuronal populations and felt it was best to include this at the end of the results section, as it no longer related to the rules of RNA editing within single neurons. We used these datasets to confirm many of our edits, as well as find evidence for some developmental and neuron-specific cell type edits. We also took advantage of RNAseq from neuronal datasets with altered activity to explore how activity might alter the editing machinery. We felt it better to include that data in this final section given it was not collected from our original PatchSeq approach.

      Reviewer #2:

      Noted the study provided a unique opportunity to identify RNA editing sites and rates specific to individual motoneuron subtypes, highlighting the RNAseq data was robustly analyzed and high-confidence hits were identified and compared to other RNAseq datasets. The reviewer provided some suggestions for future experiments and requested a few clarifications.

      (1) The reviewer asked about Figure 1F and the average editing rate per site described later in the paper.

      Indeed, Figure 1F shows the average editing rate for each individual gene for all the Ib and Is cells, so we primarily use that to highlight the variability we find in overall editing rate from around 20% for some sites to 100% for others. The actual editing rate for each site for individual neurons is shown in Figure 4D that plots the rate for every edit site and the overall sum rate for that neuron in particular.

      (2) The reviewer also noted that it was unclear where in the VNC the individual motoneurons were located and how that might affect editing.

      The precise segment of the larvae for every individual neuron that was sampled by Patch-seq was recorded and that data is accessible in the original Jetti et al 2023 paper if the reader wants to explore any potential anterior to posterior differences in RNA editing. Due to the technical difficulty of the Patch-seq approach, we pooled all the Ib and Is neurons from each segment together to get more statistical power to identify edit sites. We don’t believe segmental identify would be a major regulator of RNA editing, but cannot rule it out.

      (3) The reviewer also wondered if including RNAs located both in the nucleus and cytoplasm would influence editing rate.

      Given our Patch-seq approach requires us to extract both the cytoplasm and nucleus, we would be sampling both nuclear and cytoplasmic mRNAs. However, as shown in Figure 8 – figure supplement 3 D-F, the vast majority of our edits are found in both polyA mRNA samples and nascent nuclear mRNA samples from other datasets, indicating the editing is occurring co-transcriptionally and within the nucleus. As such, we don't think the inclusion of cytoplasmic mRNA is altering our measured editing rates for most sites. This may not be true for all non-canonical edits, as we did see some differences there, indicating some non-canonical editing may be happening in the cytoplasm as well.

      Reviewer #3:

      indicated the work provided a valuable resource to access RNA editing in single neurons. The reviewer suggested the value of future experiments to demonstrate the effects of editing events on neuronal function. This will be a major effort for us going forwards, as we indeed have already begun to test the role of editing in mRNAs encoding several presynaptic proteins that regulate synaptic transmission. The reviewer also had several other comments as discussed below.

      (1) The reviewer noted that silent mutations could alter codon usage that would result in translational stalling and altered protein production.

      This is an excellent point, as silent mutations in the coding region could have a more significant impact if they generate non-preferred rare codons. This is not something we have analyzed, but it certainly is worth considering in future experiments. Our initial efforts are on testing the edits that cause predictive changes in presynaptic proteins based on the amino acid change and their locale in important functional domains, but it is worth considering the silent edits as well as we think about the larger picture of how RNA editing is likely to impact not only protein function but also protein levels.

      (2) The reviewer noted future studies could be done using tools like Alphafold to test if the amino acid changes are predicted to alter the structure of proteins with coding edits.

      This is an interesting approach, though we don’t have much expertise in protein modeling at that level. We could consider adding this to future studies in collaboration with other modeling labs.

      (3) The reviewer wondered if the negative correlation between edits and transcript abundance could indicate edits might be destabilizing the transcripts.

      This is an interesting idea, but would need to be experimentally tested. For the few edits we have generated already to begin functionally testing, including our published work with editing in the C-terminus of Complexin, we haven’t seen a change in mRNA levels causes by these edits. However, it would not be surprising to see some edits reducing transcript levels. A set of 5’UTR edits we have generated in Syx1A seem to be reducing protein production and may be acting in such a manner.

      (4) The reviewer wondered if the proportion of edits we report in many of the figures is normalized to the length of the transcript, as longer transcripts might have more edits by chance.

      The figures referenced by the reviewer (1, 2 and 7) show the number of high-confidence editing sites that fall into the 5’ UTR, 3’ UTR, or CDS categories. Our intention here was to highlight that the majority of the high confidence edits that made it through the stringent filtering process were in the coding region. This would still be true if we normalized to the length of the given gene region. However, it would be interesting to know if these proportions match the expected proportions of edits in these gene regions given a random editing rate per gene region length across the Drosophila genome, although we did not do this analysis.    

      (5) The reviewer noted that future studies could expand on the work to examine miRNA or other known RBP binding sites that might be altered by the edits.

      This is another avenue we could pursue in the future. We did do this analysis for a few of the important genes encoding presynaptic proteins (these are the most interesting to us given the lab’s interest in the synaptic vesicle fusion machinery), but did not find anything obvious for this smaller subset of targets.

      (6) The reviewer suggested sequence context for Adar could also be investigated for the hits we identified.

      We haven’t pursued this avenue yet, but it would be of interest to do in the future. In a similar vein, it would be informative to identify intron-exon base pairing that could generate the dsDNA template on which ADAR acts.

      (7) The reviewer noted the disconnect between Adar mRNA levels and overall editing levels reported in Figure 4A/B.

      Indeed, the lack of correlation between overall editing levels and Adar mRNA abundance has been noted previously in many studies. For the type of single cell Patch-seq approach we took to generate our RNAseq libraries, the absolute amount of less abundant transcripts obtained from a single neuron can be very noisy. As such, the few neurons with no detectable Adar mRNA are likely to represent that single neuron noise in the sampling. Per the reviewer’s question, these figure panels only show A-to-I edits, so they are specific to ADAR.

      (8) The reviewer notes the scale in Figure 5D can make it hard to visualize the actual impact of the changes.

      The intention of Figure 5D was to address the question of whether sites with high Ib/Is editing differences were simply due to higher Ib or Is mRNA expression levels. If this was the case, then we would expect to see highly edited sites have large Ib/Is TPM differences. Instead, as the figure shows, the vast majority of highly-edited sites were in mRNAs that were NOT significantly different between Ib and Is (red dots in graph) and are therefore clustered together near “0 Difference in TPMs”. TPMs and editing levels for all edit sites can be found in Table 1, and a visualization of these data for selected sites is shown in Figure 5E.

    1. eLife Assessment

      This study provides useful insights into the ways in which germinal center B cell metabolism, particularly lipid metabolism, affects cellular responses. The authors use sophisticated mouse models to convincingly demonstrate that ether lipids are relevant for B cell homeostasis and efficient humoral responses. The authors then conducted in vivo as well as in vitro experiments, thereby strengthening their conclusions.

    2. Reviewer #1 (Public review):

      In this manuscript, Hoon Cho et al. present a novel investigation into the role of PexRAP, an intermediary in ether lipid biosynthesis, in B cell function, particularly during the Germinal Center (GC) reaction. The authors profile lipid composition in activated B cells both in vitro and in vivo, revealing the significance of PexRAP. Using a combination of animal models and imaging mass spectrometry, they demonstrate that PexRAP is specifically required in B cells. They further establish that its activity is critical upon antigen encounter, shaping B cell survival during the GC reaction.

      Mechanistically, they show that ether lipid synthesis is necessary to modulate reactive oxygen species (ROS) levels and prevent membrane peroxidation.

      Highlights of the Manuscript:

      The authors perform exhaustive imaging mass spectrometry (IMS) analyses of B cells, including GC B cells, to explore ether lipid metabolism during the humoral response. This approach is particularly noteworthy given the challenge of limited cell availability in GC reactions, which often hampers metabolomic studies. IMS proves to be a valuable tool in overcoming this limitation, allowing detailed exploration of GC metabolism.

      The data presented is highly relevant, especially in light of recent studies suggesting a pivotal role for lipid metabolism in GC B cells. While these studies primarily focus on mitochondrial function, this manuscript uniquely investigates peroxisomes, which are linked to mitochondria and contribute to fatty acid oxidation (FAO). By extending the study of lipid metabolism beyond mitochondria to include peroxisomes, the authors add a critical dimension to our understanding of B cell biology.

      Additionally, the metabolic plasticity of B cells poses challenges for studying metabolism, as genetic deletions from the beginning of B cell development often result in compensatory adaptations. To address this, the authors employ an acute loss-of-function approach using two conditional, cell-type-specific gene inactivation mouse models: one targeting B cells after the establishment of a pre-immune B cell population (Dhrs7b^f/f, huCD20-CreERT2) and the other during the GC reaction (Dhrs7b^f/f; S1pr2-CreERT2). This strategy is elegant and well-suited to studying the role of metabolism in B cell activation.

      Overall, this manuscript is a significant contribution to the field, providing robust evidence for the fundamental role of lipid metabolism during the GC reaction and unveiling a novel function for peroxisomes in B cells.

      Comments on revisions:

      There are still some discrepancies in gating strategies. In Fig. 7B legend (lines 1082-1083), they show representative flow plots of GL7+ CD95+ GC B cells among viable B cells, so it is not clear if they are IgDneg, as the rest of the GC B cells aforementioned in the text.

      Western blot confirmation: We understand the limitations the authors enumerate. Perhaps an RT-qPCR analysis of the Dhrs7b gene in sorted GC B cells from the S1PR2-CreERT2 model could be feasible, as it requires a smaller number of cells. In any case, we agree with the authors that the results obtained using the huCD20-CreERT2 model are consistent with those from the S1PR2-CreERT2 model, which adds credibility to the findings and supports the conclusion that GC B cells in the S1PR2-CreERT2 model are indeed deficient in PexRAP

      Lines 222-226: We believe the correct figure is 4B, whereas the text refers to 4C.

      Supplementary Figure 1 (line 1147): The figure title suggests that the data on T-cell numbers are from mice in a steady state. However, the legend indicates that the mice were immunized, which means the data are not from steady-state conditions.

    3. Reviewer #2 (Public review):

      Summary:

      In this study, Cho et al. investigate the role of ether lipid biosynthesis in B cell biology, particularly focusing on GC B cell, by inducible deletion of PexRAP, an enzyme responsible for the synthesis of ether lipids.

      Strengths:

      Overall, the data are well-presented, the paper is well-written and provides valuable mechanistic insights into the importance of PexRAP enzyme in GC B cell proliferation.

      Weaknesses:

      More detailed mechanisms of the impaired GC B cell proliferation by PexRAP deficiency remain to be further investigated. In minor part, there are issues for the interpretation of the data which might cause confusions by readers.

      Comments on revisions:

      The authors improved the manuscript appropriately according to my comments.

    4. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public review):

      In this manuscript, Hoon Cho et al. present a novel investigation into the role of PexRAP, an intermediary in ether lipid biosynthesis, in B cell function, particularly during the Germinal Center (GC) reaction. The authors profile lipid composition in activated B cells both in vitro and in vivo, revealing the significance of PexRAP. Using a combination of animal models and imaging mass spectrometry, they demonstrate that PexRAP is specifically required in B cells. They further establish that its activity is critical upon antigen encounter, shaping B cell survival during the GC reaction. Mechanistically, they show that ether lipid synthesis is necessary to modulate reactive oxygen species (ROS) levels and prevent membrane peroxidation.

      Highlights of the Manuscript:

      The authors perform exhaustive imaging mass spectrometry (IMS) analyses of B cells, including GC B cells, to explore ether lipid metabolism during the humoral response. This approach is particularly noteworthy given the challenge of limited cell availability in GC reactions, which often hampers metabolomic studies. IMS proves to be a valuable tool in overcoming this limitation, allowing detailed exploration of GC metabolism.

      The data presented is highly relevant, especially in light of recent studies suggesting a pivotal role for lipid metabolism in GC B cells. While these studies primarily focus on mitochondrial function, this manuscript uniquely investigates peroxisomes, which are linked to mitochondria and contribute to fatty acid oxidation (FAO). By extending the study of lipid metabolism beyond mitochondria to include peroxisomes, the authors add a critical dimension to our understanding of B cell biology.

      Additionally, the metabolic plasticity of B cells poses challenges for studying metabolism, as genetic deletions from the beginning of B cell development often result in compensatory adaptations. To address this, the authors employ an acute loss-of-function approach using two conditional, cell-type-specific gene inactivation mouse models: one targeting B cells after the establishment of a pre-immune B cell population (Dhrs7b^f/f, huCD20-CreERT2) and the other during the GC reaction (Dhrs7b^f/f; S1pr2-CreERT2). This strategy is elegant and well-suited to studying the role of metabolism in B cell activation.

      Overall, this manuscript is a significant contribution to the field, providing robust evidence for the fundamental role of lipid metabolism during the GC reaction and unveiling a novel function for peroxisomes in B cells. 

      Comments on revisions:

      There are still some discrepancies in gating strategies. In Fig. 7B legend (lines 1082-1083), they show representative flow plots of GL7+ CD95+ GC B cells among viable B cells, so it is not clear if they are IgDneg, as the rest of the GC B cells aforementioned in the text.

      We apologize for missing this item in need of correction in the revision and sincerely thank the reviewer for the stamina and care in picking this up. The data shown in Fig. 7B represented cells (events) in the IgD<sup>neg</sup> Dump<sup>neg</sup> viable lymphoid gate. We will correct this omission/blemish in the final revision that becomes the version of record.

      Western blot confirmation: We understand the limitations the authors enumerate. Perhaps an RT-qPCR analysis of the Dhrs7b gene in sorted GC B cells from the S1PR2-CreERT2 model could be feasible, as it requires a smaller number of cells. In any case, we agree with the authors that the results obtained using the huCD20-CreERT2 model are consistent with those from the S1PR2-CreERT2 model, which adds credibility to the findings and supports the conclusion that GC B cells in the S1PR2-CreERT2 model are indeed deficient in PexRAP.

      We will make efforts to go back through the manuscript and highlight this limitation to readers, i.e., that we were unable to get genetic evidence to assess what degree of "counter-selection" applied to GC B cells in our experiments.

      We agree with the referee that optimally to support the Imaging Mass Spectrometry (IMS) data showing perturbations of various ether lipids within GC after depletion of PexRAP, it would have been best if we could have had a qRT2-PCR that allowed quantitation of the Dhrs7b-encoded mRNA in flow-purified GC B cells, or the extent to which the genomic DNA of these cells was in deleted rather than 'floxed' configuration.

      While the short half-life of ether lipid species leads us to infer that the enzymatic function remains reduced/absent, it definitely is unsatisfying that the money for experiments ran out in June and the lab members had to move to new jobs.

      Lines 222-226: We believe the correct figure is 4B, whereas the text refers to 4C.

      As for the 1st item, we apologize and will correct this error.

      Supplementary Figure 1 (line 1147): The figure title suggests that the data on T-cell numbers are from mice in a steady state. However, the legend indicates that the mice were immunized, which means the data are not from steady-state conditions. 

      We will change the wording both on line 1147 and 1152.

      Reviewer #2 (Public review):

      Summary:

      In this study, Cho et al. investigate the role of ether lipid biosynthesis in B cell biology, particularly focusing on GC B cell, by inducible deletion of PexRAP, an enzyme responsible for the synthesis of ether lipids.

      Strengths:

      Overall, the data are well-presented, the paper is well-written and provides valuable mechanistic insights into the importance of PexRAP enzyme in GC B cell proliferation.

      Weaknesses:

      More detailed mechanisms of the impaired GC B cell proliferation by PexRAP deficiency remain to be further investigated. In minor part, there are issues for the interpretation of the data which might cause confusions by readers.

      Comments on revisions:

      The authors improved the manuscript appropriately according to my comments.

      To re-summarize, we very much appreciate the diligence of the referees and Editors in re-reviewing this work at each cycle and helping via constructive peer review, along with their favorable comments and overall assessments. The final points will be addressed with minor edits since there no longer is any money for further work and the lab people have moved on.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      In this manuscript, Sung Hoon Cho et al. presents a novel investigation into the role of PexRAP, an intermediary in ether lipid biosynthesis, in B cell function, particularly during the Germinal Center (GC) reaction. The authors profile lipid composition in activated B cells both in vitro and in vivo, revealing the significance of PexRAP. Using a combination of animal models and imaging mass spectrometry, they demonstrate that PexRAP is specifically required in B cells. They further establish that its activity is critical upon antigen encounter, shaping B cell survival during the GC reaction. 

      Mechanistically, they show that ether lipid synthesis is necessary to modulate reactive oxygen species (ROS) levels and prevent membrane peroxidation.

      Highlights of the Manuscript:

      The authors perform exhaustive imaging mass spectrometry (IMS) analyses of B cells, including GC B cells, to explore ether lipid metabolism during the humoral response. This approach is particularly noteworthy given the challenge of limited cell availability in GC reactions, which often hampers metabolomic studies. IMS proves to be a valuable tool in overcoming this limitation, allowing detailed exploration of GC metabolism.

      The data presented is highly relevant, especially in light of recent studies suggesting a pivotal role for lipid metabolism in GC B cells. While these studies primarily focus on mitochondrial function, this manuscript uniquely investigates peroxisomes, which are linked to mitochondria and contribute to fatty acid oxidation (FAO). By extending the study of lipid metabolism beyond mitochondria to include peroxisomes, the authors add a critical dimension to our understanding of B cell biology.

      Additionally, the metabolic plasticity of B cells poses challenges for studying metabolism, as genetic deletions from the beginning of B cell development often result in compensatory adaptations. To address this, the authors employ an acute loss-of-function approach using two conditional, cell-type-specific gene inactivation mouse models: one targeting B cells after the establishment of a pre-immune B cell population (Dhrs7b^f/f, huCD20-CreERT2) and the other during the GC reaction (Dhrs7b^f/f; S1pr2-CreERT2). This strategy is elegant and well-suited to studying the role of metabolism in B cell activation.

      Overall, this manuscript is a significant contribution to the field, providing robust evidence for the fundamental role of lipid metabolism during the GC reaction and unveiling a novel function for peroxisomes in B cells.

      We appreciate these positive reactions and response, and agree with the overview and summary of the paper's approaches and strengths.

      However, several major points need to be addressed:

      Major Comments:

      Figures 1 and 2

      The authors conclude, based on the results from these two figures, that PexRAP promotes the homeostatic maintenance and proliferation of B cells. In this section, the authors first use a tamoxifen-inducible full Dhrs7b knockout (KO) and afterwards Dhrs7bΔ/Δ-B model to specifically characterize the role of this molecule in B cells. They characterize the B and T cell compartments using flow cytometry (FACS) and examine the establishment of the GC reaction using FACS and immunofluorescence. They conclude that B cell numbers are reduced, and the GC reaction is defective upon stimulation, showing a reduction in the total percentage of GC cells, particularly in the light zone (LZ).

      The analysis of the steady-state B cell compartment should also be improved. This includes a  more detailed characterization of MZ and B1 populations, given the role of lipid metabolism and lipid peroxidation in these subtypes.

      Suggestions for Improvement:

      B Cell compartment characterization: A deeper characterization of the B cell compartment in non-immunized mice is needed, including analysis of Marginal Zone (MZ) maturation and a more detailed examination of the B1 compartment. This is especially important given the role of specific lipid metabolism in these cell types. The phenotyping of the B cell compartment should also include an analysis of immunoglobulin levels on the membrane, considering the impact of lipids on membrane composition.

      Although the manuscript is focused on post-ontogenic B cell regulation in Ab responses, we believe we will be able to polish a revised manuscript through addition of results of analyses suggested by this point in the review: measurement of surface IgM on and phenotyping of various B cell subsets, including MZB and B1 B cells, to extend the data in Supplemental Fig 1H and I. Depending on the level of support, new immunization experiments to score Tfh and analyze a few of their functional molecules as part of a B cell paper may be feasible.   

      Addendum / update of Sept 2025: We added new data with more on MZB and B1 B cells, surface IgM, and on Tfh populations. 

      GC Response Analysis Upon Immunization: The GC response characterization should include additional data on the T cell compartment, specifically the presence and function of Tfh cells. In Fig. 1H, the distribution of the LZ appears strikingly different. However, the authors have not addressed this in the text. A more thorough characterization of centroblasts and centrocytes using CXCR4 and CD86 markers is needed.

      The gating strategy used to characterize GC cells (GL7+CD95+ in IgD− cells) is suboptimal. A more robust analysis of GC cells should be performed in total B220+CD138− cells.

      We first want to apologize the mislabeling of LZ and DZ in Fig 1H. The greenish-yellow colored region (GL7<sup>+</sup> CD35<sup>+</sup>) indicate the DZ and the cyan-colored region (GL7<sup>+</sup> CD35<sup>+</sup>) indicates the LZ.    Addendum / update of Sept 2025: We corrected the mistake, and added new experimental data using the CD138 marker to exclude preplasmablasts.  

      As a technical note, we experienced high background noise with GL7 staining uniquely with PexRAP deficient (Dhrs7b<sup>f/f</sup>; Rosa26-CreER<sup>T2</sup>) mice (i.e., not WT control mice). The high background noise of GL7 staining was not observed in B cell specific KO of PexRAP (Dhrs7b<sup>f/f</sup>; huCD20-CreER<sup>T2</sup>). Two formal possibilities to account for this staining issue would be if either the expression of the GL7 epitope were repressed by PexRAP or the proper positioning of GL7<sup>+</sup> cells in germinal center region were defective in PexRAPdeficient mice (e.g., due to an effect on positioning cues from cell types other than B cells). In a revised manuscript, we will fix the labeling error and further discuss the GL7 issue, while taking care not to be thought to conclude that there is a positioning problem or derepression of GL7 (an activation antigen on T cells as well as B cells).

      While the gating strategy for an overall population of GC B cells is fairly standard even in the current literature, the question about using CD138 staining to exclude early plasmablasts (i.e., analyze B220<sup>+</sup> CD138<sup>neg</sup> vs B220<sup>+</sup> CD138<sup>+</sup>) is interesting. In addition, some papers like to use GL7<sup>+</sup> CD38<sup>neg</sup> for GC B cells instead of GL7<sup>+</sup> Fas (CD95)<sup>+</sup>, and we thank the reviewer for suggesting the analysis of centroblasts and centrocytes. For the revision, we will try to secure resources to revisit the immunizations and analyze them for these other facets of GC B cells (including CXCR4/CD86) and for their GL7<sup>+</sup> CD38<sup>neg</sup>. B220<sup>+</sup> CD138<sup>-</sup> and B220<sup>+</sup> CD138<sup>+</sup> cell populations. 

      We agree that comparison of the Rosa26-CreERT2 results to those with B cell-specific lossof-function raise a tantalizing possibility that Tfh cells also are influenced by PexRAP. Although the manuscript is focused on post-ontogenic B cell regulation in Ab responses, we hope to add a new immunization experiments that scores Tfh and analyzes a few of their functional molecules could be added to this B cell paper, depending on the ability to wheedle enough support / fiscal resources.  

      Addendum / update of Sept 2025: Within the tight time until lab closure, and limited $$, we were able to do experiments that further reinforced the GC B cell data - including stains for DZ vs LZ sub-subsetting - and analyzed Tfh cells. We were not able to explore changes in functional antigenic markers on the GC B or Tfh cells. 

      The authors claim that Dhrs7b supports the homeostatic maintenance of quiescent B cells in vivo and promotes effective proliferation. This conclusion is primarily based on experiments where CTV-labeled PexRAP-deficient B cells were adoptively transferred into μMT mice (Fig. 2D-F). However, we recommend reviewing the flow plots of CTV in Fig. 2E, as they appear out of scale. More importantly, the low recovery of PexRAP-deficient B cells post-adoptive transfer weakens the robustness of the results and is insufficient to conclusively support the role of PexRAP in B cell proliferation in vivo.

      In the revision, we will edit the text and try to adjust the digitized cytometry data to allow more dynamic range to the right side of the upper panels in Fig. 2E, and otherwise to improve the presentation of the in vivo CTV result. However, we feel impelled to push back respectfully on some of the concern raised here. First, it seems to gloss over the presentation of multiple facets of evidence. The conclusion about maintenance derives primarily from Fig. 2C, which shows a rapid, statistically significant decrease in B cell numbers (extending the finding of Fig. 1D, a more substantial decrease after a bit longer a period). As noted in the text, the rate of de novo B cell production does not suffice to explain the magnitude of the decrease. 

      In terms of proliferation, we will improve presentation of the Methods but the bottom line is that the recovery efficiency is not bad (comparing to prior published work) inasmuch as transferred B cells do not uniformly home to spleen. In a setting where BAFF is in ample supply in vivo, we transferred equal numbers of cells that were equally labeled with CTV and counted B cells. The CTV result might be affected by lower recovered B cell with PexRAP deficiency, generally, the frequencies of CTV<sup>low</sup> divided population are not changed very much. However, it is precisely because of the pitfalls of in vivo analyses that we included complementary data with survival and proliferation in vitro. The proliferation was attenuated in PexRAP-deficient B cells in vitro; this evidence supports the conclusion that proliferation of PexRAP knockout B cells is reduced. It is likely that PexRAP deficient B cells also have defect in viability in vivo as we observed the reduced B cell number in PexRAP-deficient mice. As the reviewer noticed, the presence of a defect in cycling does, in the transfer experiments, limit the ability to interpret a lower yield of B cell population after adoptive transfer into µMT recipient mice as evidence pertaining to death rates. We will edit the text of the revision with these points in mind. 

      In vitro stimulation experiments: These experiments need improvement. The authors have used anti-CD40 and BAFF for B cell stimulation; however, it would be beneficial to also include antiIgM in the stimulation cocktail. In Fig. 2G, CTV plots do not show clear defects in proliferation, yet the authors quantify the percentage of cells with more than three divisions. These plots should clearly display the gating strategy. Additionally, details about histogram normalization and potential defects in cell numbers are missing. A more in-depth analysis of apoptosis is also required to determine whether the observed defects are due to impaired proliferation or reduced survival. 

      As suggested by reviewer, testing additional forms of B cell activation can help explore the generality (or lack thereof) of findings. We plan to test anti-IgM stimulation together with anti-CD40 + BAFF as well as anti-IgM + TLR7/8, and add the data to a revised and final manuscript. 

      Addendum / update of Sept 2025: The revision includes results of new experiments in which anti-IgM was included in the stimulation cocktail, as well as further data on apoptosis and distinguishing impaired cycling / divisions from reduced survival .

      With regards to Fig. 2G (and 2H), in the revised manuscript we will refine the presentation (add a demonstration of the gating, and explicate histogram normalization of FlowJo). 

      It is an interesting issue in bioscience, but in our presentation 'representative data' really are pretty representative, so a senior author is reminded of a comment Tak Mak made about a reduction (of proliferation, if memory serves) to 0.7 x control. [His point in a comment to referees at a symposium related that to a salary reduction by 30% :) A mathematical alternative is to point out that across four rounds of division for WT cells, a reduction to  0.7x efficiency at each cycle means about 1/4 as many progeny.] 

      We will try to edit the revision (Methods, Legends, Results, Discussion] to address better the points of the last two sentences of the comment, and improve the details that could assist in replication or comparisons (e.g., if someone develops a PexRAP inhibitor as potential therapeutic). 

      For the present, please note that the cell numbers at the end of the cultures are currently shown in Fig 2, panel I. Analogous culture results are shown in Fig 8, panels I, J, albeit with harvesting at day 5 instead of day 4. So, a difference of ≥ 3x needs to be explained. As noted above, a division efficiency reduced to 0.7x normal might account for such a decrease, but in practice the data of Fig. 2I show that the number of PexRAP-deficient B cells at day 4 is similar to the number plated before activation, and yet there has been a reasonable amount of divisions. So cell numbers in the culture of mutant B cells are constant because cycling is active but decreased and insufficient to allow increased numbers ("proliferation" in the true sense) as programmed death is increased. In line with this evidence, Fig 8G-H document higher death rates [i.e., frequencies of cleaved caspase3<sup>+</sup> cell and Annexin V<sup>+</sup> cells] of PexRAP-deficient B cells compared to controls. Thus, the in vitro data lead to the conclusion that both decreased division rates and increased death operate after this form of stimulation. 

      An inference is that this is the case in vivo as well - note that recoveries differed by ~3x (Fig. 2D), and the decrease in divisions (presentation of which will be improved) was meaningful but of lesser magnitude (Fig. 2E, F). 

      Reviewer #2 (Public review):

      Summary:

      In this study, Cho et al. investigate the role of ether lipid biosynthesis in B cell biology, particularly focusing on GC B cell, by inducible deletion of PexRAP, an enzyme responsible for the synthesis of ether lipids.

      Strengths:

      Overall, the data are well-presented, the paper is well-written and provides valuable mechanistic insights into the importance of PexRAP enzyme in GC B cell proliferation.

      We appreciate this positive response and agree with the overview and summary of the paper's approaches and strengths. 

      Weaknesses:

      More detailed mechanisms of the impaired GC B cell proliferation by PexRAP deficiency remain to be further investigated. In the minor part, there are issues with the interpretation of the data which might cause confusion for the readers.

      Issues about contributions of cell cycling and divisions on the one hand, and susceptibility to death on the other, were discussed above, amplifying on the current manuscript text. The aggregate data support a model in which both processes are impacted for mature B cells in general, and mechanistically the evidence and work focus on the increased ROS and modes of death. Although the data in Fig. 7 do provide evidence that GC B cells themselves are affected, we agree that resource limitations had militated against developing further evidence about cycling specifically for GC B cells. We will hope to be able to obtain sufficient data from some specific analysis of proliferation in vivo (e.g., Ki67 or BrdU) as well as ROS and death ex vivo when harvesting new samples from mice immunized to analyze GC B cells for CXCR4/CD86, CD38, CD138 as indicated by Reviewer 1. As suggested by Reviewer 2, we will further discuss the possible mechanism(s) by which proliferation of PexRAP-deficient B cells is impaired. We also will edit the text of a revision where to enhance clarity of data interpretation - at a minimum, to be very clear that caution is warranted in assuming that GC B cells will exhibit the same mechanisms as cultures in vitro-stimulated B cells. 

      Addendum / update of Sept 2025: We were able to obtain results of intravital BrdU incorporation into GC B cells to measure cell cycling rates. The revised manuscript includes these results as well as other new data on apoptosis / survival, while deleting the data about CD138 populations whose interpretation was reasonably questioned by the referees.  

      Reviewer #1 (Recommendations for the authors):

      We believe the evidence presented to support the role of PexRAP in protecting B cells from cell death and promoting B cell proliferation is not sufficiently robust and requires further validation in vivo. While the study demonstrates an increase in ether lipid content within the GC compartment, it also highlights a reduction in mature B cells in PexRAP-deficient mice under steady-state conditions. However, the IMS results (Fig. 3A) indicate that there are no significant differences in ether lipid content in the naïve B cell population. This discrepancy raises an intriguing point for discussion: why is PexRAP critical for B cell survival under steady-state conditions?

      We thank the referee for all their care and input, and we agree that further intravital analyses could strengthen the work by providing more direct evidence of impairment of GC B cells in vivo. To revise and improve this manuscript before creation of a contribution of record, we performed new experiments to the limit of available funds and have both (i) added these new data and (ii) sharpened the presentation to correct what we believe to be one inaccurate point raised in the review. 

      (A) Specifically, we immunized mice with a B cell-specific depletion of PexRAP (Dhrs7b<sup>D/D-B</sup> mice) and measured a variety of readouts of the GC B cells' physiology in vivo: proliferation by intravital incorporation of BrdU, ROS in the viable GC B cell gate, and their cell death by annexin V staining directly ex vivo. Consistent with the data with in vitro activated B cells, these analyses showed increased ROS (new - Fig. 7D) and higher frequencies of Annexin V<sup>+</sup> 7AAD<sup>+</sup> in GC B cells (GL7<sup>+</sup> CD38<sup>-</sup> B cell-gate) of immunized Dhrs7b<sup>D/D-B</sup> mice compared with WT controls (huCD20-CreERT2<sup>+/-</sup>, Dhrs7b<sup>+/+</sup>)  (new - Fig. 7E). Collectively, these results indicate that PexRAP aids (directly or indirectly) in controlling ROS in GC B cells and reduces B cell death, likely contributing to the substantially decreased overall GC B cell population. These new data are added to the revised manuscript in Figure 7.  

      Moreover, in each of two independent experiments (each comprising 3 vs 3 immunized mice), BrdU<sup>+</sup> events among GL7<sup>+</sup> CD38<sup>-</sup> (GC B cell)-gated cells were reduced in the B cell-specific PexRAP knockouts compared with WT controls (new, Fig. 7F and Supplemental Fig 6E). This result on cell cycle rates in vivo is presented with caution in the revised manuscript text because the absolute labeling fractions were somewhat different in Expt 1 vs Expt 2. This situation affords a useful opportunity to comment on the culture of "P values" and statistical methods. It is intriguing to consider how many successful drugs are based on research published back when the standard was to interpret a result of this sort more definitively despite a merged "P value" that was not a full 2 SD different from the mean. In the optimistic spirit of the eLife model, it can be for the attentive reader to decide from the data (new, Fig. 7F and Supplemental Fig 6E) whether to interpret the BrdU results more strongly that what we state in the revised text.  

      (B) On the issue of whether or not the loss of PexRAP led to perturbations of the lipidome of B cells prior to activation, we have edited the manuscript to do a better job making this point more clear.  

      We point out to readers that in the resting, pre-activation state abnormalities were detected in naive B cells, not just in activated and GC B cells. In brief, the IMS analysis and LC-MS-MS analysis detected statistically significant differences in some, but not all, the ether phospholipids species in PexRAP deficient cells (some of which was in Supplemental Figure 2 of the original version). 

      With this appropriate and helpful concern having been raised, we realize that this important point merited inclusion in the main figures. We point specifically to a set of phosphatidyl choline ions shown in Fig. 3 (revised - panels A, B, D) of the revised manuscript (PC O-36:5; PC O-38:5; PC O-40:6 and -40:7). 

      For this ancillary record (because a discourse on the limitations of each analysis), we will note issues such as the presence of many non-B cells in each pixel of the IMS analyses (so that some or many "true positives" will fail to achieve a "significant difference") and for the naive B cells, differential rates of synthesis, turnover, and conversion (e.g., addition of another 2-carbon unit or saturation / desaturation of one side-chain). To the extent the concern reflects some surprise and perhaps skepticism that what seem relatively limited differences (many species appear unaffected, etc), we share in the sentiment. But the basic observation is that there are differences, and a reasonable connection between the altered lipid profile and evidence of effects on survival or proliferation (i.e., integration of survival and cell cycling / division). 

      Additionally, it would be valuable to evaluate the humoral response in a T-independent setting. This would clarify whether the role of PexRAP is restricted to GC B cells or extends to activated B cells in general. 

      We agree that this additional set of experiments would be nice and would extend work incrementally by testing the generality of the findings about Ab responses. The practical problem is that money and time ran out while testing important items that strengthen the evidence about GC B cells. 

      Finally, the manuscript would benefit from a thorough revision to improve its readability and clarity. Including more detailed descriptions of technical aspects, such as the specific stimuli and time points used in analyses, would greatly enhance the flow and comprehension of the study. Furthermore, the authors should review figure labeling to ensure consistency throughout the manuscript, and carefully cite the relevant references. For instance, S1PR2 CreERT2 mouse is established by Okada and Kurosaki (Shinnakasu et al ,Nat. Immunol, 2016)

      We appreciate this feedback and comment, inasmuch as both the clarity and scholarship matter greatly to us for a final item of record. For the revision, we have given our best shot to editing the text in the hopes of improved clarity, reduction of discrepancies (helpfully noted in the Minor Comments), and further detail-rich descriptions of procedures. We also edited the figure labeling to give a better consistency. While we note that the appropriate citation of Shinnakasu et al (2016) was ref. #69 of the original and remains as a citation, we have rechecked other referencing and try to use citations with the best relevant references.  

      Minor Comments: The labeling of plots in Fig. 2 should be standardized. For example, in Fig. 2C, D, and G, the same mouse strain is used, yet the Cre+ mouse is labeled differently in each plot. 

      We agree and have tried to tighten up these features in the panels noted as well as more generally (e.g., Fig. 4, 5, 6, 7, 9; consistency of huCD20-CreERT2 / hCD20CreERT2).

      According to the text, the results shown in Fig. 1G and H correspond to a full KO  (Dhrs7b^f/f; Rosa26-CreERT2 mice). However, Fig. 1H indicates that the bottom image corresponds to Dhrs7b^f/f, huCD20-CreERT2 mice (Dhrs7bΔ/Δ -B). 

      We have corrected Fig. 1H to be labeled as Dhrs7b<sup>Δ/Δ</sup> (with the data on Dhrs7b<sup>Δ/Δ-B</sup> presented in Supplemental Figure 4A, which is correctly labeled). Thank you for picking up this error that crept in while using copy/paste in preparation of figure panels and failing to edit out the "-B"!  

      Similarly, the gating strategy for GC cells in the text mentions IgD− cells, while the figure legend refers to total viable B cells. These discrepancies need clarification.

      We believe we located and have corrected this issue in the revised manuscript.   

      Figures 3 and 4. The authors claim that B cell expression of PexRAP is required to  achieve normal concentrations of ether phospholipids. 

      Suggestions for Improvement: 

      Lipid Metabolism Analysis: The analysis in Fig. 3 is generally convincing but could be strengthened by including an additional stimulation condition such as anti-IgM plus antiCD40. In Fig. 4C, the authors display results from the full KO model. It would be helpful to include quantitative graphs summarizing the parameters displayed in the images.

      We have performed new experiments (anti-IgM + anti-CD40) and added the data to the revised manuscript (new - Supplemental Fig. 2H and Supplemental Fig 6, D & F). Conclusions based on the effects are not changed from the original. 

      As a semantic comment and point of scientific process, any interpretation ("claim") can - by definition - only be taken to apply to the conditions of the experiment. Nonetheless, it is inescapable that at least for some ether P-lipids of naive, resting B cells, and for substantially more in B cells activated under the conditions that we outline, B cell expression of PexRAP is required. 

      With regards to the constructive suggestion about a new series of lipidomic analyses, we agree that for activated B cells it would be nice and increase insight into the spectrum of conditions under which the PexRAP-deficient B cells had altered content of ether phospholipids. However, in light of the costs of metabolomic analyses and the lack of funds to support further experiments, and the accuracy of the point as stated, we prioritized the experiments that could fit within the severely limited budget. 

      [One can add that our results provide a premise for later work to analyze a time course after activation, and to perform isotopomer (SIRM) analyses with [13] C-labeled acetate or glucose, so as to understand activation-induced increases in the overall   To revise the manuscript, we did however extrapolate from the point about adding BCR cross-linking to anti-CD40 as a variant form of activating the B cells for measurements of ROS, population growth, and rates of division (CTV partitioning). The results of these analyses, which align with and thereby strengthen the conclusions about these functional features from experiments with anti-CD40 but no anti-IgM, are added to Supplemental Fig 2H and Supplemental Fig 6D, F. 

      Figures 5, 6, and 7

      The authors claim that Dhrs7b in B cells shapes antibody affinity and quantity. They use two mouse models for this analysis: huCD20-CreERT2 and Dhrs7b f/f; S1pr2-CreERT2 mice. 

      Suggestions for Improvement:

      Adaptive immune response characterization: A more comprehensive characterization of the adaptive immune response is needed, ideally using the Dhrs7b f/f; S1pr2-CreERT2 model. This should include: Analysis of the GC response in B220+CD138− cells. Class switch recombination analysis. A detailed characterization of centroblasts, centrocytes, and Tfh populations. Characterization of effector cells (plasma cells and memory cells).

      Within the limits of time and money, we have performed new experiments prompted by this constructive set of suggestions. 

      Specifically, we analyzed the suggested read-outs in the huCD20-CreERT2, Dhrs7b<sup>f/f</sup> model after immunization, recognizing that it trades greater signal-noise for the fact that effects are due to a mix of the impact on B cells during clonal expansion before GC recruitment and activities within the GC. In brief, the results showed that 

      (a) the GC B cell population - defined as CD138<sup>neg</sup> GL7<sup>+</sup> CD38<sup>lo/neg</sup> IgD<sup>neg</sup> B cells - was about half as large for PexRAP-deficient B cells net of any early- or preplasmablasts (CD138<sup>+</sup> events) (new - Fig 5G); 

      (b) the frequencies of pre- / early plasmablasts (CD138<sup>+</sup> GL7<sup>+</sup> CD38<sup>neg</sup>) events (see new - Fig. 6H, I; also, new Supplemental Fig 5D) were so low as to make it unlikely that our data with the S1pr2-CreERT2 model (in Fig 7B, C) would be affected meaningfully by analysis of the CD138 levels;

      (c) There was a modest decrease in centrocytes (LZ) but not centroblasts (DZ) (new - Fig 5H, I) - consistent with the immunohistochemical data of Supplemental Fig. 5A-C). 

      Because of time limitations (the "shelf life" of funds and the lab) and insufficient stock of the S1pr2-CreERT2, Dhrs7b<sup>f/f</sup> mice as well as those that would be needed as adoptive transfer recipients because of S1PR2 expression in (GC-)Tfh, the experiments were performed instead with the huCD20-CreERT2, Dhrs7b<sup>f/f</sup> model. We would also note that using this Cre transgene better harmonizes the centrocyte/centroblast and Tfh data with the existing data on these points in Supplemental Fig. 4. 

      (d) Of note, the analyses of Tfh and GC-Tfh phenotype cells using the huCD20-CreERT2 B cell type-specific inducible Cre system to inactivate Dhrs7b (new - Supplemental Fig 1G-I; which, along with new - Supplemental Fig 5E) provide evidence of an abnormality that must stem from a function or functions of PexRAP in B cells, most likely GC B cells. Specifically, it is known that the GC-Tfh population proliferates and is supported by the GC B cells, and the results of B cell-specific deletion show substantial reductions in Tfh cells (both the GC-Tfh gating and the wider gate for plots of CXCR5/PD-1/ fluorescence of CD4 T cells 

      Timepoint Consistency: The NP response (Fig. 5) is analyzed four weeks postimmunization, whereas SRBC (Supp. Fig. 4) and Fig. 7 are analyzed one week or nine days post-immunization. The NP system analysis should be repeated at shorter timepoints to match the peak GC reaction.

      This comment may stem from a misunderstanding. As diagrammed in Fig. 5A, the experiments involving the NP system were in fact measured at 7 d after a secondary (booster) immunization. That timing is approximately the peak period and harmonizes with the 7 d used for harvesting SRBC-immunized mice. So in fact the data with each system were obtained at a similar time point. Of course the NP experiments involved a second immunization so that many plasma cell and Ab responses derived from memory B cells generated by the primary immunization. However, the field at present is dominated by the view that the vast majority of the GC B cells after this second immunization (which historically we perform with alum adjuvant) are recruited from the naive rather than the memory B cell pool. For the revised manuscript, we have taken care that the Methods, Legend, and Figure provide the information to readers, and expanded the statement of a rationale. 

      It may seem a technicality but under NIH regulations we are legally obligated to try to minimize mouse usage. It also behooves researchers to use funds wisely. In line with those imperatives, we used systems that would simultaneously allow analyses of GC B cells, identification of affinity maturation (which is minimal in our hands at a 7 d time point after primary NP-carrier immunization), and a switched repertoire (also minimal), and where with each immunogen the GC were scored at 7-9 d after immunization (9 d refers to the S1pr2-CreERT2 experiments). Apart from the end of funding, we feel that what little might be learned from performing a series of experiments that involve harvests 7 d after a primary immunization with NP-ovalbumin cannot well be justified. 

      In vitro plasma cell differentiation: Quantification is missing for plasma cell differentiation in vitro (Supp. Fig. 4). The stimulus used should also be specified in the figure legend. Given the use of anti-CD40, differentiation towards IgG1 plasma cells could provide additional insights.

      As suggested by reviewer, we have added the results of quantifying the in vitro plasma cell differentiation in Supplemental Fig 6B. Also, we edited the Methods and Supplemental Figure Legend to give detailed information of in vitro stimulation. 

      Proliferation and apoptosis analysis: The observed defects in the humoral response should be correlated with proliferation and apoptosis analyses, including Ki67 and Caspase markers.

      As suggested by the review, we have performed new experiment and analyzed the frequencies of cell death by annexin V staining, and elected to use intravital uptake of BrdU as a more direct measurement of S phase / cell cycling component of net proliferation. The new results are now displayed in Figure 5 and Supplemental Fig. 5. 

      Western blot confirmation: While the authors have demonstrated the absence of PexRAP protein in the huCD20-CreERT2 model, this has not been shown in GC B cells from the Dhrs7b f/f; S1pr2-CreERT2 model. This confirmation is necessary to validate the efficiency of Dhrs7b deletion.

      We were unable to do this for technical reasons expanded on below. For the revision, we have edited in a bit of text more explicitly to alert readers to the potential impact of counter-selection on interpretation of the findings with GC B cells. Before entering the GC, B cells have undergone many divisions, so if there were major pre-GC counterselection, in all likelihood the GC B cells would PexRAP-sufficient. To recap from the original manuscript and the new data we have added, IMS shows altered lipid profiles in the GC B cells and the literature indicates that the lipids are short-lived, requiring de novo resynthesis. The BrdU, ROS, and annexin V data show that GC B cells are abnormal. Accordingly, abnormal GC B cells represent the parsimonious or straightforward interpretation of the new results with GC-Tfh cell prevalence. 

      While we take these findings together to suggest that counterselection (i.e., a Western result showing normal levels of PexRAP in the GC B cells) seems unlikely, it is formally possible and would mean that the in situ defects of GC B cells arose due to environmental influences of the PexRAP-deficient B cells during the developmental history of the WT B cells observed in the GC. 

      Having noted all that, we understand that concerns about counter-selection are an issue if a reader accepts the data showing that mutant (PexRAP-deficient) B cells tend to proliferate less and die more readily. Indeed, one can speculate that were we also to perform competition experiments in which the Ighb, Cd45.2 B cells (WT or Dhrs7b D/D) are mixed with equal numbers of Igha, Cd45.1 competitors, the differences would become much greater. With this in mind, Western blotting of flow-purified GC B cells might give a sense of how much counter-selection has occurred. 

      That said, the Westerns need at least 2.5 x 10<sup>6</sup> B cells (those in the manuscript used five million, 5  x 10<sup>6</sup>) and would need replication. Taken together with the observation that ~200,000 GC B cells (on average) were measured in each B cell-specific knockout mouse after immunization (Fig. 1, Fig 5) and taking into account yields from sorting, each Western would require some 20-25 tamoxifen-injected ___-CreERT2, Dhrs7b f/f mice, and about half again that number as controls. The expiry of funds prohibited the time and costs of generating that many mice (>70) and flow-purified GC B cells. 

      Figure 8

      The authors claim that Dhrs7b contributes to the modulation of ROS, impacting B cell proliferation.

      Suggestions for Improvement:

      GC ROS Analysis: The in vitro ROS analysis should be complemented by characterizing ROS and lipid peroxidation in the GC response using the Dhrs7b f/f; S1pr2-CreERT2 model. Flow cytometry staining with H2DCFDA, MitoSOX, Caspase-3, and Annexin V would allow assessment of ROS levels and cell death in GC B cells. 

      While subject to some of the same practical limits noted above, we have performed new experiments in line with this helpful input of the reviewer, and added the helpful new data to the revised manuscript. Specifically, in addition to the BrdU and phenotyping analyses after immunization of huCD20-CreER<sup>T2</sup>, Dhrs7b<sup>f/f</sup> mice, DCFDA (ROS), MitoSox, and annexin V signals were measured for GC B cells. Although the mitoSox signals did not significantly differ for PexRAP-deficient GCB, the ROS and annexin V signals were substantially increased. We added the new data to Figure 5 and Supplemental Figure 5. Together with the decreased in vivo BrdU incorporation in GC B cells from Dhrs7b<sup>D/D-B</sup> mice, these results are consistent with and support our hypothesis that PexRAP regulates B cell population growth and GC physiology in part by regulating ROS detoxification, survival and proliferation of B cells.  

      Quantification is missing in Fig. 8E, and Fig. 8F should use clearer symbols for better readability. 

      We added quantification for Fig 8E in Supplemental Fig 6E, and edited the symbols in Fig 8F for better readability.

      Figure 9

      The authors claim that Dhrs7b in B cells affects oxidative metabolism and ER mass. The  results in this section are well-performed and convincing.

      Suggestion for Improvement:

      Based on the results, the discussion should elaborate on the potential role of lipids in antigen presentation, considering their impact on mitochondria and ER function.

      We very much appreciate the praise of the tantalizing findings about oxidative metabolism and ER mass, and will accept the encouragement that we add (prudently) to the Discussion section to make note of the points mentioned by the Reviewer, particularly now that (with their encouragement) we have the evidence that B cell-specific loss of PexRAP (with the huCD20-CreERT2 deletion prior to immunization) resulted in decreased (GC-)Tfh and somewhat lower GC B cell proliferation.  

      Reviewer #2 (Recommendations for the authors):

      The authors should investigate whether PexRAP-deficient GC B cells exhibit increased mitochondrial ROS and cell death ex vivo, as observed in in vitro cultured B cells.

      We very much appreciate the work of the referee and their input. We addressed this helpful recommendation, in essence aligned with points from Reviewer 1, via new experiments (until the money ran out) and addition of data to the manuscript. To recap briefly, we found increased ROS in GC B cells along with higher fractions of annexin V positive cells; intriguingly, increased mtROS (MitoSox signal) was not detected, which contrasts with the results in activated B cells in vitro in a small way. To keep the text focused and not stray too far outside the foundation supported by data, this point may align with papers that provide evidence of differences between pre-GC and GC B cells (for instance with lack of Tfam or LDHA in B cells).    

      It remains unclear whether the impaired proliferation of PexRAP-deficient B cells is primarily due to increased cell death. Although NAC treatment partially rescued the phenotype of reduced PexRAP-deficient B cell number, it did not restore them to control levels. Analysis of the proliferation capacity of PexRAP-deficient B cells following NAC treatment could provide more insight into the cause of impaired proliferation.

      To add to the data permitting an assessment of this issue, we performed new experiments in which B cells were activated (BCR and CD40 cross-linking), cultured, and both the change in population and the CTV partitioning were measured in the presence or absence of NAC. The results, added to the revision as Supplemental Fig 6FH, show that although NAC improved cell numbers for PexRAP-deficient cells relative to controls, this compound did not increase divisions at all. We infer that the more powerful effect of this lipid synthesis enzyme is to promote survival rather than division  capacity. 

      Primary antibody responses were assessed at only one time point (day 20). It would be valuable to examine the kinetics of antibody response at multiple time points (0, 1w, 2w, 3w, for example) to better understand the temporal impact of PexRAP on antibody production.

      We thank the reviewer for this suggestion. While it may be that the kinetic measurement of Ag-specific antibody level across multiple time points would provide an additional mechanistic clue into the of impact PexRAP on antibody production, the end of sponsored funding and imminent lab closure precluded performing such experiments.   

      CD138+ cell population includes both GC-experienced and GC-independent plasma cells (Fig. 7). Enumeration of plasmablasts, which likely consists of both PexRAP-deleted and undeleted cells (Fig. 7D and E), may mislead the readers such that PexRAP is dispensable for plasmablast generation. I would suggest removing these data and instead examining the number of plasmablasts in the experimental setting of Fig. 4A (huCD20-CreERT2-mediated deletion) to address whether PexRAP-deficiency affects plasmablast generation. 

      We have eliminated the figure panels in question, since it is accurate that in the absence of a time-stamping or marking approach we have a limited ability to distinguish plasma cells that arose prior to inactivation of the Dhrs7b gene in B cells. In addition, we performed new experiments that were used to analyze the "early plasmablast" phenotype and added those data to the revision (Supplemental Fig 5D).

    1. eLife Assessment

      The authors quantified intentions and knowledge gaps in scientists' use of sex as a biological variable in their work, and used a workshop intervention to show that while willingness was high, pressure points centered on statistical knowledge and perceived additional monetary costs to research. These important findings demonstrate the difficulty in changing understanding: while interventions can improve knowledge and decrease perceived barriers, the impact was small. The evidence for the findings is solid.

    2. Reviewer #1 (Public review):

      Summary:

      The authors use the theory of planned behavior to understand whether or not intentions to use sex as a biological variable (SABV), as well as attitude (value), subjective norm (social pressure), and behavioral control (ability to conduct behavior), across scientists at a pharmacological conference. They also used an intervention (workshop) to determine the value of this workshop in changing perceptions and misconceptions. Attempts to understand the knowledge gaps were made.

      Strengths:

      The use of SABV is limited in terms of researchers using sex in the analysis as a variable of interest in the models (and not a variable to control). To understand how we can improve on the number of researchers examining the data with sex in the analyses, it is vital we understand the pressure points that researchers consider in their work. The authors identify likely culprits in their analyses. The authors also test an intervention (workshop) to address the main bias or impediments for researchers' use of sex in their analyses.

    3. Reviewer #2 (Public review):

      Summary:

      The investigators tested a workshop intervention to improve knowledge and decrease misconceptions about sex inclusive research.

      Strengths:

      The investigators included control groups and replicated the study in a second population of scientists. The results appear to be well substantiated. Figures are easy to understand.

      Weaknesses: None noted

      Comments on revised version:

      The authors have responded appropriately to all of my concerns.

    4. Reviewer #3 (Public review):

      Summary:

      This manuscript aims to determine cultural biases and misconceptions in inclusive sex research and evaluate the efficacy of interventions to improve knowledge and shift perceptions to decrease perceived barriers for including both sexes in basic research.

      Overall, this study demonstrates that despite the intention to include both sexes and a general belief in the importance of doing so, relatively few people routinely include both sexes. Further, the perceptions of barriers to doing so are high, including misconceptions surrounding sample size, disaggregation, and variability of females. There was also a substantial number of individuals without the statistical knowledge to appropriately analyze data in studies inclusive of sex. Interventions increased knowledge and decreased perception of barriers.

      Strengths:

      (1) This manuscript provides evidence for the efficacy of interventions for changing attitudes and perceptions of research.

      (2) This manuscript also provides a training manual for expanding this intervention to broader groups of researchers.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary:

      The authors use the theory of planned behavior to understand whether or not intentions to use sex as a biological variable (SABV), as well as attitude (value), subjective norm (social pressure), and behavioral control (ability to conduct behavior), across scientists at a pharmacological conference. They also used an intervention (workshop) to determine the value of this workshop in changing perceptions and misconceptions. Attempts to understand the knowledge gaps were made.

      Strengths:

      The use of SABV is limited in terms of researchers using sex in the analysis as a variable of interest in the models (and not a variable to control). To understand how we can improve on the number of researchers examining the data with sex in the analyses, it is vital we understand the pressure points that researchers consider in their work. The authors identify likely culprits in their analyses. The authors also test an intervention (workshop) to address the main bias or impediments for researchers' use of sex in their analyses. 

      Weaknesses:

      There are a number of assumptions the authors make that could be revisited: 

      (1) that all studies should contain across sex analyses or investigations. It is important to acknowledge that part of the impetus for SABV is to gain more scientific knowledge on females. This will require within sex analyses and dedicated research to uncover how unique characteristics for females can influence physiology and health outcomes. This will only be achieved with the use of female-only studies. The overemphasis on investigations of sex influences limits the work done for women's health, for example, as within-sex analyses are equally important.

      The Sex and Gender Equity in Research (SAGER) guidelines (1) provide guidance that “Where the subjects of research comprise organisms capable of differentiation by sex, the research should be designed and conducted in a way that can reveal sex-related differences in the results, even if these were not initially expected.”.  This is a default position of inclusion where the sex can be determined and analysis assessing for sex related variability in response. This position underpins many of the funding bodies new policies on inclusion.   

      However, we need to place this in the context of the driver of inclusion. The most common reason for including male and female samples is for those studies that are exploring the effect of a treatment and then the goal of inclusion is to assess the generalisability of the treatment effect (exploratory sex inclusion)(2). The second scenario is where sex is included because sex is one of the variables of interest and this situation will arise because there is a hypothesized sex difference of interest (confirmatory sex inclusion).  

      We would argue that the SABV concept was introduced to address the systematic bias of only studying one sex when assessing treatment effect to improve the generalisability of the research.  Therefore, it isn’t directly to gain more scientific knowledge on females.  However, this strategy will highlight when the effect is very different between male and female subjects which will potentially generate sex specific hypotheses.  

      Where research has a hypothesis that is specific to a sex (e.g. it is related to oestrogen levels) it would be appropriate to study only the sex of interest, in this case females. The recently published Sex Inclusive Research Framework gives some guidance here and allows an exemption for such a scenario classifying such proposals “Single sex study justified” (3).

      We have added an additional paragraph to the introduction to clarify the objectives behind inclusion and how this assists the research process. 

      (2) It should be acknowledged that although the variability within each sex is not different on a number of characteristics (as indicated by meta-analyses in rats and mice), this was not done on all variables, and behavioral variables were not included. In addition, across-sex variability may very well be different, which, in turn, would result in statistical sex significance. In addition, on some measures, there are sex differences in variability, as human males have more variability in grey matter volume than females. PMID: 33044802. 

      The manuscript was highlighting the common argument used to exclude the use of females, which is that females are inherently more variable as an absolute truth. We agree there might be situations, where the variance is higher in one sex or another depending on the biology.  We have extended the discussion here to reflect this, and we also linked to the Sex Inclusive Research Framework (3) which highlights that in these situations researchers can utlise this argument provided it is supported with data for the biology of interest. 

      (3) The authors need to acknowledge that it can be important that the sample size is increased when examining more than one sex. If the sample size is too low for biological research, it will not be possible to determine whether or not a difference exists. Using statistical modelling, researchers have found that depending on the effect size, the sample size does need to increase. It is important to bare this in mind as exploratory analyses with small sample size will be extremely limiting and may also discourage further study in this area (or indeed as seen the literature - an exploratory first study with the use of males and females with limited sample size, only to show there is no "significance" and to justify this as an reason to only use males for the further studies in the work. 

      The reviewer raises a common problem: where researchers have frequently argued that if they find no sex differences in a pilot then they can proceed to study only one sex. The SAGER guidelines (1), and now funder guidelines (4, 5), challenge that position. Instead, the expectation is for inclusion as the default in all experiments (exploratory inclusion strategy) to allow generalisable results to be obtained. When the results are very different between the male and female samples, then this can be determined. This perspective shift (2) requires a change in mindset and understanding that the driver behind inclusion is of generalisability not exploration of sex differences. This has been added to the introduction as an additional paragraph exploring the drivers behind inclusion.  

      We agree with the reviewer that if the researcher is interested in sex differences in an effect (confirmatory inclusion strategy, aka sex as a primary variable) then the N will need to be higher.  However, in this situation, one, of course, must have male and female samples in the same experiment to allow the simultaneous exploration to assess the dependency on sex. 

      Reviewer #2 (Public review): 

      Summary:

      The investigators tested a workshop intervention to improve knowledge and decrease misconceptions about sex inclusive research. There were important findings that demonstrate the difficulty in changing opinions and knowledge about the importance of studying both males and females. While interventions can improve knowledge and decrease perceived barriers, the impact was small. 

      Strengths:

      The investigators included control groups and replicated the study in a second population of scientists. The results appear to be well substantiated. These are valuable findings that have practical implications for fields where sex is included as a biological variable to improve rigor and reproducibility. 

      Thank you for assessment and highlighting these strengths.  We appreciate your recognition of the value and practical implications of this work. 

      Weaknesses:

      I found the figures difficult to understand and would have appreciated more explanation of what is depicted, as well as greater space between the bars representing different categories. 

      We have improved the figures and figure legends to improve clarity. 

      Reviewer #3 (Public review):

      Summary:

      This manuscript aims to determine cultural biases and misconceptions in inclusive sex research and evaluate the efficacy of interventions to improve knowledge and shift perceptions to decrease perceived barriers for including both sexes in basic research. 

      Overall, this study demonstrates that despite the intention to include both sexes and a general belief in the importance of doing so, relatively few people routinely include both sexes. Further, the perceptions of barriers to doing so are high, including misconceptions surrounding sample size, disaggregation, and variability of females. There was also a substantial number of individuals without the statistical knowledge to appropriately analyze data in studies inclusive of sex. Interventions increased knowledge and decreased perception of barriers. 

      Strengths:

      (1) This manuscript provides evidence for the efficacy of interventions for changing attitudes and perceptions of research.

      (2) This manuscript also provides a training manual for expanding this intervention to broader groups of researchers.

      Thank you for highlighting these strengths. We appreciate your recognition that the intervention was effect in changing attitudes and perception. We deliberately chose to share the material to provide the resources to allow a wider engagement.  

      Weaknesses:

      The major weakness here is that the post-workshop assessment is a single time point, soon after the intervention. As this paper shows, intention for these individuals is already high, so does decreasing perception of barriers and increasing knowledge change behavior, and increase the number of studies that include both sexes? Similarly, does the intervention start to shift cultural factors? Do these contribute to a change in behavior? 

      Measuring change in behaviour following an intervention is challenging and hence we had implemented an intention score as a proxy for behaviour. We appreciate the benefit of a long-term analysis, but it was beyond the scope of this study and would need a larger dataset size to allow for attrition. We agree that the strategy implemented has weaknesses. We have extended the limitation section in the discussion to include these. 

      Reviewer #1 (Recommendations for the authors):  

      I would ask them to think about alternative explanations and ask for free-form responses, and to revise with the caveats written above - sample size does need to be increased depending on effect size, and that within sex studies are also important. Not all studies should focus on sex influences.  

      The inclusion of the additional paragraph in the introduction to clarify the objective of inclusion and the resulting impact on experimental design should address these recommendations.   

      We have also added the free-form responses as an additional supplementary file.  

      Reviewer #2 (Recommendations for the authors):  

      This is an important set of studies. My only recommendation to improve the data presentation so that it is clear what is depicted and how the analyses were conducted. I know it is in the methods, but reminding the reader would be helpful.  

      We have revisited the figures and included more information in the legends to explain the analysis and improve clarity.   

      Reviewer #3 (Recommendations for the authors):  

      There are parts in the introduction which read as contradictory and as such are confusing - for example, in the 3rd paragraph it states that little progress on sex inclusive research has been made, and in the following sentences it states that the proportion of published studies across sex has improved. The references in these two statements are from the same time range, so has this improved? Or not?  

      The introduction does include a summation statement on the position: “Whilst a positive step forward, this proportion still represents a minority of studies, and notably this inclusion was not associated with an increase in the proportion of studies that included data analysed by sex.” We have reworded the text to ensure it is internally consistent with this summary statement and this should increase clarity.

      In discussing the results, it is sometimes confusing what the percentages mean. For example, "the researchers reported only conducting sex inclusive research in <=55% of their studies over the past 5 years (55% in study 1 general population and 35% study 2 pre-assessment)." Does that mean 55% of people are conducting sex inclusive research, or does this mean only half of their studies? These two options have very different implications.

      We agree that the sentence is confusing and it has been reworded.  

      Addressing long-term assessments in attitude and action (ie, performing sex inclusive research) is a crucial addition, with data if possible, but at least substantive discussion.  

      We have add this to the limitation section in the discussion

      One minor but confusing point is the analogy comparing sex inclusive studies with attending the gym. The point is well taken - knowledge is not enough for behavior change. However, the argument here is that to increase sex inclusive research requires cultural change. To go to the gym, requires motivation.This seems like an oranges-to-lemons comparison (same family, different outcome when you bite into it).

      At the core, both scenarios involve the challenge of changing established habits and cultural norms in action based on knowledge (the right thing to do). The exercise scenario is a primary example provided by the original authors to describe how aspects of the theory of planned behaviour (perceived behavioural control, attitude, and social norms) may influence behavioural change. Understanding which of these aspects may drive or influence change is why we used this framework to understand our study population.  We disagree that is an oranges-to-lemons comparison.

      References

      (1) Heidari S, Babor TF, De Castro P, Tort S, Curno M. Sex and Gender Equity in Research: rationale for the SAGER guidelines and recommended use. Res Integr Peer Rev. 2016;1:2.

      (2) Karp NA. Navigating the paradigm shift of sex inclusive preclinical research and lessons learnt. Commun Biol. 2025;8(1):681.

      (3) Karp NA, Berdoy M, Gray K, Hunt L, Jennings M, Kerton A, et al. The Sex Inclusive Research Framework to address sex bias in preclinical research proposals. Nat Commun. 2025;16(1):3763.

      (4) MRC. Sex in experimental design - Guidance on new requirements https://www.ukri.org/councils/mrc/guidance-for-applicants/policies-and-guidance-forresearchers/sex-in-experimental-design/: UK Research and Innovation; 2022 [

      (5) Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature. 2014;509(7500):282-3.

    1. eLife Assessment

      This valuable study reports a critical role of the axonemal protein ANKRD5 in sperm motility and male fertility. Convincing data were presented to support the main conclusion. This work will be of interest to biomedical researchers who study ciliogenesis, sperm biology, and male fertility.

    2. Reviewer #1 (Public review):

      Summary:

      Asthenospermia, characterized by reduced sperm motility, is one of the major causes of male infertility. The "9 + 2" arranged MTs and over 200 associated proteins constitute the axoneme, the molecular machine for flagellar and ciliary motility. Understanding the physiological functions of axonemal proteins, particularly their links to male infertility, could help uncover the genetic causes of asthenospermia and improve its clinical diagnosis and management. In this study, the authors generated Ankrd5 null mice and found that ANKRD5-/- males exhibited reduced sperm motility and infertility. Using FLAG-tagged ANKRD5 mice, mass spectrometry, and immunoprecipitation (IP) analyses, they confirmed that ANKRD5 is localized within the N-DRC, a critical protein complex for normal flagellar motility. However, transmission electron microscopy (TEM) and cryo-electron tomography (cryo-ET) of sperm from Ankrd5 null mice did not reveal significant structural abnormalities.

      Strengths:

      The phenotypes observed in ANKRD5-/- mice, including reduced sperm motility and male infertility, are conversing. The authors demonstrated that ANKRD5 is an N-DRC protein that interacts with TCTE1 and DRC4. Most of the experiments are well-designed and executed.

      Comments on revised version:

      My concerns have been addressed.

    3. Reviewer #2 (Public review):

      Summary:

      The manuscript investigates the role of ANKRD5 (ANKEF1) as a component of the N-DRC complex in sperm motility and male fertility. Using Ankrd5 knockout mice, the study demonstrates that ANKRD5 is essential for sperm motility and identifies its interaction with N-DRC components through IP-mass spectrometry and cryo-ET. The results provide insights into ANKRD5's function, highlighting its potential involvement in axoneme stability and sperm energy metabolism.

      Strengths:

      The authors employ a wide range of techniques, including gene knockout models, proteomics, cryo-ET, and immunoprecipitation, to explore ANKRD5's role in sperm biology.

      Comments on revised version:

      The authors have already addressed the issues I am concerned about.

    4. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      Asthenospermia, characterized by reduced sperm motility, is one of the major causes of male infertility. The "9 + 2" arranged MTs and over 200 associated proteins constitute the axoneme, the molecular machine for flagellar and ciliary motility. Understanding the physiological functions of axonemal proteins, particularly their links to male infertility, could help uncover the genetic causes of asthenospermia and improve its clinical diagnosis and management. In this study, the authors generated Ankrd5 null mice and found that ANKRD5-/- males exhibited reduced sperm motility and infertility. Using FLAG-tagged ANKRD5 mice, mass spectrometry, and immunoprecipitation (IP) analyses, they confirmed that ANKRD5 is localized within the N-DRC, a critical protein complex for normal flagellar motility. However, transmission electron microscopy (TEM) and cryo-electron tomography (cryo-ET) of sperm from Ankrd5 null mice did not reveal significant structural abnormalities.

      Strengths:

      The phenotypes observed in ANKRD5-/- mice, including reduced sperm motility and male infertility, are conversing. The authors demonstrated that ANKRD5 is an N-DRC protein that interacts with TCTE1 and DRC4. Most of the experiments are well designed and executed.

      Weaknesses:

      The last section of cryo-ET analysis is not convincing. "ANKRD5 depletion may impair buffering effect between adjacent DMTs in the axoneme".

      "In WT sperm, DMTs typically appeared circular, whereas ANKRD5-KO DMTs seemed to be extruded as polygonal. (Fig. S9B,D). ANKRD5-KO DMTs seemed partially open at the junction between the A- and B-tubes (Fig. S9B,D)." In the TEM images of 4E, ANKRD5-KO DMTs look the same as WT. The distortion could result from suboptimal sample preparation, imaging or data processing. Thus, the subsequent analyses and conclusions are not reliable.

      Thank you for your valuable advice. To validate the results of cryo-ET, we carefully analyzed the TEM results (previously we only focused on the global "9+2" structure of the axial filament) and found that deletion of ANKRD5 resulted in both normal and deformed DMT morphologies, which was consistent with the results observed by cryo-ET. At the same time, we have added the corresponding text and picture descriptions in the article:

      The text description we added is: “Upon re-examining the TEM data in light of the Cryo-ET findings, similar abnormalities were observed in the TEM images (Fig.4E, Fig. S10B). Notably, both intact and deformed DMT structures were consistently observed in both TEM and STA analyses, with the deformation of the B-tube being more obvious (Fig.4E, Fig. S10). ”

      This paper still requires significant improvements in writing and language refinement. Here is an example: "While N-DRC is critical for sperm motility, but the existence of additional regulators that coordinate its function remains unclear" - ill-formed sentences.

      We appreciate the reviewer’s valuable comment regarding the clarity of our writing. The sentence cited (“While N-DRC is critical for sperm motility, but the existence of additional regulators that coordinate its function remains unclear”) was indeed ill-formed. We have revised it to improve readability and precision. The corrected version now reads:“Although the N-DRC is critical for sperm motility, whether additional regulatory components coordinate its function remains unclear.” We have carefully re-examined the manuscript and refined the language throughout to ensure clarity and conciseness.

      Reviewer #2 (Public review):

      Summary:

      The manuscript investigates the role of ANKRD5 (ANKEF1) as a component of the N-DRC complex in sperm motility and male fertility. Using Ankrd5 knockout mice, the study demonstrates that ANKRD5 is essential for sperm motility and identifies its interaction with N-DRC components through IP-mass spectrometry and cryo-ET. The results provide insights into ANKRD5's function, highlighting its potential involvement in axoneme stability and sperm energy metabolism.

      Strengths:

      The authors employ a wide range of techniques, including gene knockout models, proteomics, cryo-ET, and immunoprecipitation, to explore ANKRD5's role in sperm biology.

      Weaknesses:

      “Limited Citations in Introduction: Key references on the role of N-DRC components (e.g.,DRC2, DRC4) in male infertility are missing, which weakens the contextual background.”

      We appreciate the reviewer’s valuable suggestion. To address this concern, we have added the following sentence in the Introduction:

      “Recent mammalian knockout studies further confirmed that loss of DRC2 or DRC4 results in severe sperm flagellar assembly defects, multiple morphological abnormalities of the sperm flagella (MMAF), and complete male infertility, highlighting their indispensable roles in spermatogenesis and reproduction [31].”

      This addition introduces up-to-date evidence on DRC2 and DRC4 functions in male infertility and strengthens the contextual background as recommended.

      Reviewer #1 (Recommendations for the authors):

      "Male infertility impacts 8%-12% of the global male population, with sperm motility defects contributing to 40%-50% of these cases [2,3]. " Is reference 3 proper? I don't see "sperm motility defects contributing to 40%-50%" of male infertility.

      Thank you for identifying this issue. You are correct—reference 3 does not support the statement about sperm motility defects comprising 40–50% of male infertility cases; it actually states:

      “Male factor infertility is when an issue with the man’s biology makes him unable to impregnate a woman. It accounts for between 40 to 50 percent of infertility cases and affects around 7 percent of men.”

      This was a misunderstanding on my part, and I apologize for the oversight.

      To correct this, we have replaced the statement with more accurate references:

      PMID: 33968937 confirms:

      “Asthenozoospermia accounts for over 80% of primary male infertility cases.”

      PMID: 33191078 defines asthenozoospermia (AZS) as reduced or absent sperm motility and notes it as a major cause of male infertility.

      We have updated the manuscript accordingly:

      In the Significance Statement: “Male infertility affects approximately 8%-12% of men globally, with defects in sperm motility accounting for over 80% of these cases.”

      In the Introduction: “Male infertility affects approximately 8% to 12% of the global male population, with defects in sperm motility accounting for over 80% of these cases[2,3].”

      Thank you again for your careful review and for giving us the opportunity to improve the accuracy of our manuscript.

      "Rather than bypassing the issue with ICSI, infertility from poor sperm motility could potentially be treated or even cured through stimulation of specific signaling pathways or gene therapy." Need references.

      We appreciate the reviewer’s insightful comment. In response, we have added three supporting references to the relevant sentence.

      The first reference (PMID: 39932044) demonstrates that cBiMPs and the PDE-10A inhibitor TAK-063 significantly and sustainably improve motility in human sperm with low activity, including cryopreserved samples, without inducing premature acrosome reaction or DNA damage. The second reference (PMID: 29581387) shows that activation of the PKA/PI3K/Ca²⁺ signaling pathways can reverse reduced sperm motility. The third reference (PMID: 33533741) reports that CRISPR-Cas9-mediated correction of a point mutation in Tex11<sup>PM/Y</sup> spermatogonial stem cells (SSCs) restores spermatogenesis in mice and results in the production of fertile offspring.

      These references provide mechanistic support and demonstrate the feasibility of treating poor sperm motility through targeted pathway modulation or gene therapy, thus reinforcing the validity of our statement.

      "Our findings indicate that ANKRD5 (Ankyrin repeat domain 5; also known as ANK5 or ANKEF1) interacts with N-DRC structure". The full name should be provided the first time ANKRD5 appears. Is ANKRD5 a component of N-DRC or does it interact with N-DRC?

      We thank the reviewer for the valuable suggestion. In response, we have moved the full name “Ankyrin repeat domain 5; also known as ANK5 or ANKEF1” to the abstract where ANKRD5 first appears, and have removed the redundant mention from the main text.

      Based on our experimental data, we consider ANKRD5 to be a novel component of the N-DRC (nexin-dynein regulatory complex), rather than merely an interacting partner. Therefore, we have revised the sentence in the main text to read:

      “Here, we demonstrate that ANKRD5 is a novel N-DRC component essential for maintaining sperm motility.”

      Fig 5E, numbers of TEM images should be added.

      We thank the reviewer for the suggestion. We would like to clarify that Fig. 5E does not contain TEM images, and it is likely that the reviewer was referring to Fig. 4E instead.

      In Fig. 4E, we conducted three independent experiments. In each experiment, 60 TEM cross-sectional images of sperm tails were analyzed for both Ankrd5 knockout and control mice.

      The findings were consistent across all replicates.

      We have updated the figure legend accordingly, which now reads:

      “Transmission electron microscopy (TEM) of sperm tails from control and Ankrd5 KO mice. Cross-sections of the midpiece, principal piece, and end piece were examined. Red dashed boxes highlight regions of interest, and the magnified views of these boxed areas are shown in the upper right corner of each image. In three independent experiments, 20 sperm cross-sections per mouse were analyzed for each group, with consistent results observed.”

      There are random "222" in the references. Please check and correct.

      I sincerely apologize for the errors caused by the reference management software, which resulted in the insertion of random "222" and similar numbering issues in the reference list. I have carefully reviewed and corrected the following problems:

      References 9, 11, 13, 26, 34, 63, and 64 had the number "222" mistakenly placed before the title; these have now been removed. References 15 and 18 had "111" incorrectly inserted before the title; this has also been corrected. Reference 36 had an erroneous "2" before the title and was found to be a duplicate of Reference 32; these have now been merged into a single citation. Additionally, References 22 and 26 were identified as duplicates of the same article and have been consolidated accordingly. 

      All these issues have been resolved to ensure the reference list is accurate and properly formatted.

      Reviewer #2 (Recommendations for the authors):

      The authors have already addressed most of the issues I am concerned about.

      In addition, we have also corrected some errors in the revised manuscript:

      (1) In Figure 3G, the y-axis label was previously marked as “Sperm count in the oviduct (10⁶)”, which has now been corrected to “Sperm count in the oviduct”.

      (2) All p-values have been reformatted to italic lowercase letters to comply with the journal style guidelines.

      Figure 6 Legend: A typographical error in the figure legend has been corrected. The text previously read “(A) The differentially expressed proteins of Ankrd5<sup>+/–</sup> and Ankrd5<sup>+/-</sup> were identified...”. This has now been amended to “(A) The differentially expressed proteins of Ankrd5<sup>+/–</sup> and Ankrd5<sup>+/–</sup> were identified...” to correctly represent the comparison between heterozygous and homozygous knockout groups.

      In the original Figure 4E, we added a zoom-in panel to the image to show the deformed DMT.

    1. eLife Assessment

      This manuscript revisits the well-studied KdpFABC potassium transport system from bacteria with a convincing set of new higher resolution structures, a protein expression strategy that permits purification of the active wildtype protein, and insight obtained from mutagenesis and activity assays. The thorough and thoughtful mechanistic analyses make this a valuable contribution to the membrane transport field.

    2. Reviewer #3 (Public review):

      Summary:

      By expressing protein in a strain that is unable to phosphorylate KdpFABC, the authors achieve structures of the active wildtype protein, capturing a new intermediate state, in which the terminal phosphoryl group of ATP has been transferred to a nearby Asp, and ADP remains covalently bound. The manuscript examines the coupling of potassium transport and ATP hydrolysis by a comprehensive set of mutants. The most interesting proposal revolves around the proposed binding site for K+ as it exits the channel near T75. Nearby mutations to charged residues cause interesting phenotypes, such as constitutive uncoupled ATPase activity, leading to a model in which lysine residues can occupy/compete with K+ for binding sites along the transport pathway.

      Strengths:

      The high resolution (2.1 Å) of the current structure is impressive, and allows many new densities in the potassium transport pathway to be resolved. The authors are judicious about assigning these as potassium ions or water molecules, and explain their structural interpretations clearly. In addition to the nice structural work, the mechanistic work is thorough. A series of thoughtful experiments involving ATP hydrolysis/transport coupling under various pH and potassium concentrations bolsters the structural interpretations and lends convincing support to the mechanistic proposal. The SSME experiments are rigorous.

    3. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #2 (Public review): 

      Summary: 

      The paper describes the high-resolution structure of KdpFABC, a bacterial pump regulating intracellular potassium concentrations. The pump consists of a subunit with an overall structure similar to that of a canonical potassium channel and a subunit with a structure similar to a canonical ATP-driven ion pump. The ions enter through the channel subunit and then traverse the subunit interface via a long channel that lies parallel to the membrane to enter the pump, followed by their release into the cytoplasm. 

      The work builds on the previous structural and mechanistic studies from the authors' and other labs. While the overall architecture and mechanism have already been established, a detailed understanding was lacking. The study provides a 2.1 Å resolution structure of the E1-P state of the transport cycle, which precedes the transition to the E2 state, assumed to be the ratelimiting step. It clearly shows a single K+ ion in the selectivity filter of the channel and in the canonical ion binding site in the pump, resolving how ions bind to these key regions of the transporter. It also resolves the details of water molecules filling the tunnel that connects the subunits, suggesting that K+ ions move through the tunnel transiently without occupying welldefined binding sites. The authors further propose how the ions are released into the cytoplasm in the E2 state. The authors support the structural findings through mutagenesis and measurements of ATPase activity and ion transport by surface-supported membrane (SSM) electrophysiology. 

      Reviewer #3 (Public review): 

      Summary: 

      By expressing protein in a strain that is unable to phosphorylate KdpFABC, the authors achieve structures of the active wildtype protein, capturing a new intermediate state, in which the terminal phosphoryl group of ATP has been transferred to a nearby Asp, and ADP remains covalently bound. The manuscript examines the coupling of potassium transport and ATP hydrolysis by a comprehensive set of mutants. The most interesting proposal revolves around the proposed binding site for K+ as it exits the channel near T75. Nearby mutations to charged residues cause interesting phenotypes, such as constitutive uncoupled ATPase activity, leading to a model in which lysine residues can occupy/compete with K+ for binding sites along the transport pathway. 

      Strengths: 

      The high resolution (2.1 Å) of the current structure is impressive, and allows many new densities in the potassium transport pathway to be resolved. The authors are judicious about assigning these as potassium ions or water molecules, and explain their structural interpretations clearly. In addition to the nice structural work, the mechanistic work is thorough. A series of thoughtful experiments involving ATP hydrolysis/transport coupling under various pH and potassium concentrations bolsters the structural interpretations and lends convincing support to the mechanistic proposal. The SSME experiments are generally rigorous. 

      Weaknesses: 

      The present SSME experiments do not support quantitative comparisons of different mutants, as in Figures 4D and 5E. Only qualitative inferences can be drawn among different mutant constructs. 

      Thank you to both reviewers for your thorough review of our work. We acknowledge the limitations of SSME experiments in quantitative comparison of mutants and have revised the manuscript to address this point. In addition, we have included new ATPase data from reconstituted vesicles which we believe will help to strengthen our contention that both ATPase and transport are equally affected by Val496 mutations.

      Reviewer #2 (Recommendations for the authors): 

      I have a minor editorial comment: 

      Perhaps I am confused. However, in reference to the text in the Results: "Our WT complex displayed high levels of K+-dependent ATPase activity and generated robust transport currents (Fig. 1 - figure suppl. 1).", I do not see either K+-dependency of ATPase activity nor transport currents in Fig. 1 - figure suppl. 1. Perhaps the text needs to be edited for clarity. 

      Thank you for pointing this out. This confusion was caused by our removal of a panel from the revised manuscript, which depicted K+-dependent transport currents. Although this panel is somewhat redundant, given inclusion of raw SSME traces from all the mutants, it has been replaced as Fig. 1 - figure supplement 1F, thus providing a thorough characterization of the preparation used for cryo-EM analysis and supporting the statement quoted by this reviewer.

      Reviewer #3 (Recommendations for the authors): 

      The authors have provided a detailed description of the SSME data collection, and followed rigorous protocols to ensure that the currents measured on a particular sensor remained stable over time. 

      I still have reservations about the direct comparison of transport in the different mutants. Specifically, on page 6, the authors state that "The longer side chain of V496M reduces transport modestly with no effect on ATPase activity. V496R, which introduces positive charge, completely abolishes activity. V496W and V496H reduce both transport and ATPase activity by about half, perhaps due to steric hindrance for the former and partial protonation for the latter." And in figures 4D and 5B, by plotting all of the peak currents on the same graph, the authors are giving the data a quantitative veneer, when these different experiments really aren't directly comparable, especially in the absence of any controls for reconstitution efficiency. 

      In terms of overall conclusions, for the more drastic mutant phenotypes, I think it is completely reasonable to conclude that transport is not observed. But a 2-fold difference could easily result from differences in reconstitution or sensor preparation. My suggestion would be to show example traces rather than a numeric plot in 4D/5E, to convey the qualitative nature of the mutant-to-mutant comparisons, and to re-write the text to acknowledge the shortcomings of mutant-to-mutant comparisons with SSME, and avoid commenting on the more subtle phenotypes, such as modest decreases and reductions by about half. 

      Figure 4, supplement 1. What is S162D? I don't think it is mentioned in the main text. 

      We agree with the reviewer's point that quantitative comparison of different mutants by SSME is compromised by ambiguity in reconstitution. However, we do not think that display of raw SSME currents is an effective way to communicate qualitative effects to the general reader, given the complexity of these data (e.g., distinction between transient binding current seen in V496R and genuine, steady-state transport current seen in WT). So we have taken a compromise approach. To start, we have removed the transport data from the main figure (Fig. 4). Luckily, we had frozen and saved the batch of reconstituted proteoliposomes from Val496 mutants that had been used for transport assays. We therefore measured ATPase activities from these proteoliposomes - after adding a small amount of detergent to prevent buildup of electrochemical gradients (1 mg/ml decylmaltoside which is only slightly more than the critical micelle concentration of 0.87 mg/ml). Differences in ATPase activity from these proteoliposomes were very similar to those measured prior to reconstitution (i.e., data in Fig. 4d) indicating that reconstitution efficiencies were comparable for the various mutants. Furthermore, differences in SSME currents are very similar to these ATPase activities, suggesting that Val496 mutants did not affect energy coupling. These data are shown in the revised Fig. 4 - figure suppl. 1a, along with the SSME raw data and size-exclusion chromatography elution profiles (Fig. 4 - figure suppl. 1b-g). We also altered the text to point out the concern over comparing transport data from different mutants (see below). We hope that this revised presentation adequately supports the conclusion that Val496 mutations - and especially the V496R substitution - influence the passage of K+ through the tunnel without affecting mechanics of the ATP-dependent pump. 

      The paragraph in question now reads as follows (pg. 6-7, with additional changes to legends to Fig. 4 and Fig. 4 - figure suppl. 1):

      "In order to provide experimental evidence for K+ transport through the tunnel, we made a series of substitutions to Val496 in KdpA. This residue resides near the widest part of the tunnel and is fully exposed to its interior (Fig. 4a). We made substitutions to increase its bulk (V496M and V496W) and to introduce charge (V496E, V496R and V496H). We used the AlphaFold-3 artificial intelligence structure prediction program (Jumper et al., 2021) to generate structures of these mutants and to evaluate their potential impact on tunnel dimensions. This analysis predicts that V496W and V496R reduce the radius to well below the 1.4 Å threshold required for passage of K+ or water (Fig. 4c); V496E and V496M also constrict the tunnel, but to a lesser extent. Measurements of ATPase and transport activity (Fig. 4d) show that negative charge (V496E) has no effect. The or a longer side chain of (V496M) reduces transport modestly with have no apparent effect on ATPase activity. V496R, which introduces positive charge, almost completely abolishes activity. V496W and V496H reduce both transport and ATPase activity by about half, perhaps due to steric hindrance for the former and partial protonation for the latter. Transport activity of these mutants was also measured, but quantitative comparisons are hampered by potential inconsistency in reconstitution of proteoliposomes and in preparation of sensors for SSME. To account for differences in reconstitution, we compared ATPase activity and transport currents taken from the same batch of vesicles (Fig. 4 - figure suppl. 1a).  These data show that differences in ATPase activity of proteoliposomes was consistent with differences measured prior to reconstitution (Fig. 4d). Transport activity, which was derived from multiple sensors, mirrored ATPase activity, indicating that the Val496 mutants did not affect energy coupling, but simply modulated turnover rate of the pump."

      S162D was included as a negative control, together with D307A. However, given the inactive mutants discussed in Fig. 5 (Asp582 and Lys586 substitutions), these seem an unnecessary distraction and have been removed from Fig. 4 - figure suppl. 1.

    1. eLife Assessment

      In flies defective for axonal transport of mitochondria, the authors report the upregulation of one subunit, the beta subunit, of the heterotrimeric eIF2 complex via mass spectroscopy proteomics. Neuronal overexpression of eIF2β phenocopied aspects of neuronal dysfunction observed when axonal transport of mitochondria was compromised. Conversely, lowering eIF2β expression suppressed aspects of neuronal dysfunction. While these are intriguing and useful observations, technical weaknesses limit the interpretation. On balance, the evidence supporting the current claims is suggestive but incomplete, especially concerning the characterization of the eIF2 heterotrimer and the data regarding translational regulation.

    2. Reviewer #1 (Public review):

      The study presents significant findings on the role of mitochondrial depletion in axons and its impact on neuronal proteostasis. It effectively demonstrates how the loss of axonal mitochondria and elevated levels of eIF2β contribute to autophagy collapse and neuronal dysfunction. The use of Drosophila as a model organism and comprehensive proteome analysis adds robustness to the findings.

      In this revision, the authors have responded thoughtfully to previous concerns. In particular, they have addressed the need for a quantitative analysis of age-dependent changes in eIF2β and eIF2α. By adding western blot data from multiple time points (7 to 63 days), they show that eIF2β levels gradually increase until middle age, then decline. In milton knockdown flies, this pattern appears shifted, supporting the idea that mitochondrial defects may accelerate aging-related molecular changes. These additions clarify the temporal dynamics of eIF2β and improve the overall interpretation.

      Other updates include appropriate corrections to figures and quantification methods. The authors have also revised some of their earlier mechanistic claims, presenting a more cautious interpretation of their findings.

      Overall, this work provides new insights into how mitochondrial transport defects may influence aging-related proteostasis through eIF2β. The manuscript is now more convincing, and the revisions address the main points raised earlier. I find the updated version much improved.

    3. Reviewer #2 (Public review):

      In the manuscript, the authors aimed to elucidate the molecular mechanism that explains neurodegeneration caused by the depletion of axonal mitochondria. In Drosophila, starting with siRNA depletion of milton and Miro, the authors attempted to demonstrate that the depletion of axonal mitochondria induces the defect in autophagy. From proteome analyses, the authors hypothesized that autophagy is impacted by the abundance of eIF2β and the phosphorylation of eIF2α. The authors followed up the proteome analyses by testing the effects of eIF2β overexpression and depletion on autophagy. With the results from those experiments, the authors proposed a novel role of eIF2β in proteostasis that underlies neurodegeneration derived from the depletion of axonal mitochondria, which they suggest accelerates age-dependent changes rather than increasing their magnitude.

      Strong caution is necessary regarding the interpretation of translational regulation resulting from the milton KD. The effect of milton KD on translation appears subtle, if present at all, in the puromycin incorporation experiments in both the initial and revised versions. Additionally, the polysome profiling data in the revised manuscript lack the clear resolution for ribosomal subunits, monosomes, and polysomes that is typically expected in publications.

    4. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      The study presents significant findings on the role of mitochondrial depletion in axons and its impact on neuronal proteostasis. It effectively demonstrates how the loss of axonal mitochondria and elevated levels of eIF2β contribute to autophagy collapse and neuronal dysfunction. The use of Drosophila as a model organism and comprehensive proteome analysis adds robustness to the findings.

      In this revision, the authors have responded thoughtfully to previous concerns. In particular, they have addressed the need for a quantitative analysis of age-dependent changes in eIF2β and eIF2α. By adding western blot data from multiple time points (7 to 63 days), they show that eIF2β levels gradually increase until middle age, then decline. In milton knockdown flies, this pattern appears shifted, supporting the idea that mitochondrial defects may accelerate aging-related molecular changes. These additions clarify the temporal dynamics of eIF2β and improve the overall interpretation.

      Other updates include appropriate corrections to figures and quantification methods. The authors have also revised some of their earlier mechanistic claims, presenting a more cautious interpretation of their findings.

      Overall, this work provides new insights into how mitochondrial transport defects may influence aging-related proteostasis through eIF2β. The manuscript is now more convincing, and the revisions address the main points raised earlier. I find the updated version much improved.

      Thank you so much for the review, insightful comments and encouragement. We appreciate it.  

      Reviewer #2 (Public review):

      In the manuscript, the authors aimed to elucidate the molecular mechanism that explains neurodegeneration caused by the depletion of axonal mitochondria. In Drosophila, starting with siRNA depletion of milton and Miro, the authors attempted to demonstrate that the depletion of axonal mitochondria induces the defect in autophagy. From proteome analyses, the authors hypothesized that autophagy is impacted by the abundance of eIF2β and the phosphorylation of eIF2α. The authors followed up the proteome analyses by testing the effects of eIF2β overexpression and depletion on autophagy. With the results from those experiments, the authors proposed a novel role of eIF2β in proteostasis that underlies neurodegeneration derived from the depletion of axonal mitochondria, which they suggest accelerates age-dependent changes rather than increasing their magnitude.

      Strong caution is necessary regarding the interpretation of translational regulation resulting from the milton KD. The effect of milton KD on translation appears subtle, if present at all, in the puromycin incorporation experiments in both the initial and revised versions. Additionally, the polysome profiling data in the revised manuscript lack the clear resolution for ribosomal subunits, monosomes, and polysomes that is typically expected in publications.

      Thank you so much for the review and insightful comments. We appreciate it.  

      Reviewer #2 (Recommendations for the authors):

      The revised manuscript demonstrates many improvements. The authors have provided a more comprehensive data set and a more detailed description of their results. Furthermore, their explanation of the Integrated Stress Response (ISR) has been corrected, and this correction is reflected in the data interpretation.

      As in the public review, I maintained my emphasis on the weakness of the claim on suppressed global translation, since the data are the same in the initial and the revised versions.

      Thank you for your review. We understand that further studies will be needed to elucidate the roles on mitochondrial distribution in global translation profile. We will keep working on it. 

      A few suggestions for minor corrections.

      (1) The order of figures in the revised version is disorganized.

      Thank you for pointing it out. We corrected the order. 

      (2) In Figure 1A, mitochondria is bound by milton, and kinesin is bound by Miro. Their roles should be opposite.

      Thank you for pointing it out, and we are sorry for the oversight. We corrected it.

    1. eLife Assessment

      Xenacoelomorpha is an enigmatic phylum, displaying various presumably simple or ancestral bilaterian features. This valuable study characterises the reproductive life history of Hofstenia miamia, a member of class Acoela in this phylum. The authors describe the morphology and development of the reproductive system, its changes upon degrowth and regeneration, and the animals' egg-laying behaviour. The evidence is convincing, with fluorescent microscopy and quantitative measurements as a considerable improvement to historical reports based mostly on histology and qualitative observations.

    2. Reviewer #1 (Public review):

      The aim of this study was a better understanding of the reproductive life history of acoels. The acoel Hofstenia miamia, an emerging model organism, is investigated; the authors nevertheless acknowledge and address the high variability in reproductive morphology and strategies within Acoela.

      The morphology of male and female reproductive organs in these hermaphroditic worms is characterised through stereo microscopy, immunohistochemistry, histology, and fluorescent in situ hybridization. The findings confirm and better detail historical descriptions. A novelty in the field is the in situ hybridization experiments, which link already published single-cell sequencing data to the worms' morphology. An interesting finding, though not further discussed by the authors, is that the known germline markers cgnl1-2 and Piwi-1 are only localized in the ovaries and not in the testes.

      The work also clarifies the timing and order of appearance of reproductive organs during development and regeneration, as well as the changes upon de-growth. It shows an association of reproductive organ growth to whole body size, which will be surely taken into account and further explored in future acoel studies. This is also the first instance of non-anecdotal degrowth upon starvation in H. miamia (and to my knowledge in acoels, except recorded weight upon starvation in Convolutriloba retrogemma [1]).

      Egg laying through the mouth is described in H. miamia for the first time as well as the worms' behavior in egg laying, i.e. choosing the tanks' walls rather than its floor, laying eggs in clutches, and delaying egg-laying during food deprivation. Self-fertilization is also reported for the first time.

      The main strength of this study is that it expands previous knowledge on the reproductive life history traits in H. miamia and it lays the foundation for future studies on how these traits are affected by various factors, as well as for comparative studies within acoels. As highlighted above, many phenomena are addressed in a rigorous and/or quantitative way for the first time. This can be considered the start of a novel approach to reproductive studies in acoels, as the authors suggest in the conclusion. It can be also interpreted as a testimony of how an established model system can benefit the study of an understudied animal group.

      The main weakness of the work is the lack of convincing explanations on the dynamics of self-fertilization, sperm storage, and movement of oocytes from the ovaries to the central cavity and subsequently to the pharynx. These questions are also raised by the authors themselves in the discussion. Another weakness (or rather missing potential strength) is the limited focus on genes. Given the presence of the single-cell sequencing atlas and established methods for in situ hybridization and even transgenesis in H. miamia, this model provides a unique opportunity to investigate germline genes in acoels and their role in development, regeneration, and degrowth. It should also be noted that employing Transmission Electron Microscopy would have enabled a more detailed comparison with other acoels, since ultrastructural studies of reproductive organs have been published for other species (cfr e.g. [2],[3],[4]). This is especially true for a better understanding of the relation between sperm axoneme and flagellum (mentioned in the Results section), as well as of sexual conflict (mentioned in the Discussion).

      (1) Shannon, Thomas. 2007. 'Photosmoregulation: Evidence of Host Behavioral Photoregulation of an Algal Endosymbiont by the Acoel Convolutriloba Retrogemma as a Means of Non-Metabolic Osmoregulation'. Athens, Georgia: University of Georgia [Dissertation].

      (2) Zabotin, Ya. I., and A. I. Golubev. 2014. 'Ultrastructure of Oocytes and Female Copulatory Organs of Acoela'. Biology Bulletin 41 (9): 722-35.

      (3) Achatz, Johannes Georg, Matthew Hooge, Andreas Wallberg, Ulf Jondelius, and Seth Tyler. 2010. 'Systematic Revision of Acoels with 9+0 Sperm Ultrastructure (Convolutida) and the Influence of Sexual Conflict on Morphology'.

      (4) Petrov, Anatoly, Matthew Hooge, and Seth Tyler. 2006. 'Comparative Morphology of the Bursal Nozzles in Acoels (Acoela, Acoelomorpha)'. Journal of Morphology 267 (5): 634-48.

    3. Reviewer #2 (Public review):

      Summary:

      While the phylogenetic position of Acoels (and Xenacoelomorpha) remains still debated, investigations of various representative species are critical to understanding their overall biology.

      Hofstenia is an Acoels species that can be maintained in laboratory conditions and for which several critical techniques are available. The current manuscript provides a comprehensive and widely descriptive investigation of the productive system of Hofstenia miamia.

      Strengths:

      (1) Xenacoelomorpha is a wide group of animals comprising three major clades and several hundred species, yet they are widely understudied. A comprehensive state-of-the-art analysis on the reprodutive system of Hofstenia as representative is thus highly relevant.

      (2) The investigations are overall very thorough, well documented, and nicely visualised in an array of figures. In some way, I particularly enjoyed seeing data displayed in a visually appealing quantitative or semi-quantitative fashion.

      (3) The data provided is diverse and rich. For instance, the behavioral investigations open up new avenues for further in-depth projects.

      Weaknesses:

      While the analyses are extensive, they appear in some way a little uni-dimensional. For instance the two markers used were characterized in a recent scRNAseq data-set of the Srivastava lab. One might have expected slightly deeper molecular analyses. Along the same line, particularly the modes of spermatogenesis or oogenesis have not been further analysed, nor the proposed mode of sperm-storage.

      [Editors' note: In their response, the authors have suitably addressed these concerns or have satisfactorily explained the challenges in addressing them.]

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the authors): 

      I will address here just some minor changes that would improve understanding, reproducibility, or cohesion with the literature.

      (1) It would be good to mention that the prostatic vesicle of this study is named vesicula granulorum in (Steniböck, 1966) and granule vesicle in (Hooge et al, 2007).

      We have now included this (line 90 of our revised manuscript).  

      (2) A slightly more detailed discussion of the germline genes would be interesting. For example, a potential function of pa1b3-2 and cgnl1-2 based on the similarity to known genes or on the conserved domains.

      Pa1b3-2 appears to encode an acetylhydrolase; cgnl1-2 is likely a cingulin family protein involved in cell junctions. However, given the evolutionary distance between acoels and model organisms in whom these genes have been studied, we believe it is premature to speculate on their function without substantial additional work. We believe this work would be more appropriate in a future publication focused on the molecular genetic underpinnings of Hofstenia’s reproductive systems and their development.  

      (3) It is mentioned that the animals can store sperm while lacking a seminal bursa "given that H. miamia can lay eggs for months after a single mating" (line 635) - this could also be self-fertilization, according to the authors' other findings.

      We agree that it is possible this is self-fertilization, and we believe we have represented this uncertainty accurately in the text. However, we do not think this is likely, because self-fertilization manifests as a single burst of egg laying (Fig. 6D). We discuss this in the Results (line 540). 

      (4) A source should be given for the tree in Figure 7B. 

      We have now included this source (line 736), and we apologize for the oversight.  

      (5) Either in the Methods or in the Results section, it would be good to give more details on why actin and FMRFamide and tropomyosin are chosen for the immunohistochemistry studies.

      We have now included more detail in the Methods (line 823). Briefly, these are previously-validated antibodies that we knew would label relevant morphology.

      (6) In the Methods "a standard protocol hematoxylin eosin" is mentioned. Even if this is a fairly common technique, more details or a reference should be provided.

      We have now included more detail, and a reference (lines 766-774).  

      (7) Given the historical placement of Acoela within Platyhelminthes and the fact that the readers might not be very familiar with this group of animals, two passages can be confusing: line 499 and lines 674-678.

      We have edited these sentences to clarify when we mean platyhelminthes, which addresses this confusion.  

      (8) A small addition to Table S1: Amphiscolops langerhansi also presents asexual reproduction through fission ([1], cited in [2]]).

      Thanks. We have included this in Table S1.

      (a) Hanson, E. D. 1960. 'Asexual Reproduction in Acoelous Turbellaria'. The Yale Journal of Biology and Medicine 33 (2): 107-11.

      (b) Hendelberg, Jan, and Bertil Åkesson. 1991. 'Studies of the Budding Process in Convolutriloba Retrogemma (Acoela, Platyhelminthes)'. In Turbellarian Biology: Proceedings of the Sixth International Symposium on the Biology of the Turbellaria, Held at Hirosaki, Japan, 7-12 August 1990, 11-17. Springer. 

      Reviewer #2 (Recommendations for the authors): 

      I do not have any major comments on the manuscript. By default, I feel descriptive studies are a critical part of the advancement of science, particularly if the data are of great quality - as is the case here. The manuscript addresses various topics and describes these adequately. My minor point would be that in some sections, it feels like one could have gone a bit deeper. I highlighted three examples in the weakness section above (deeper analysis of markers for germline; modes of oogenesis/spermatogenesis; or proposed model for sperm storage). For instance, ultrastructural data might have been informative. But as said, I don't see this as a major problem, more a "would have been nice to see".

      We have responded to these points in detail above.

    1. eLife Assessment

      This is a valuable manuscript that reframes Gaucher's disease pathology through the analysis of renal health, using a Drosophila model mutant for glucocerebrosidase (GBA1). The authors provide physiological and cellular data showing that renal dysfunction may be a critical disease-modifying feature. This work broadens the field's focus beyond the nervous system to include systemic ionic regulation as a potential contributor to disease initiation and progression. The genetic and experimental approaches are solid and offer a rationale for investigating analogous dysfunction in human tissues; however, several claims extend beyond the presented evidence and would benefit from additional experimental support to fully support the conclusions.

    2. Reviewer #1 (Public review):

      This study investigates the contribution of renal dysfunction to systemic and neuronal decline in Drosophila models of Gaucher disease (Gba1b mutants) and Parkinson's disease (Parkin mutants). While lysosomal and mitochondrial pathways are known drivers in these disorders, the role of kidney-like tissues in disease progression has not been well explored.

      The authors use Drosophila melanogaster to model renal dysfunction, focusing on Malpighian tubules (analogous to renal tubules) and nephrocytes (analogous to podocytes). They employ genetic mutants, tissue-specific rescues, imaging of renal architecture, redox probes, functional assays, nephrocyte dextran uptake, and lifespan analyses. They also test genetic antioxidant interventions and pharmacological treatment.

      The main findings show that renal pathology is progressive in Gba1b mutants, marked by Malpighian tubule disorganization, stellate cell loss, lipid accumulation, impaired water and ion regulation, and reduced nephrocyte filtration. A central theme is redox dyshomeostasis, reflected in whole-fly GSH reduction, paradoxical mitochondrial versus cytosolic redox shifts, reduced ROS signals, increased lipid peroxidation, and peroxisomal impairment. Antioxidant manipulations (Nrf2, Sod1/2, CatA, and ascorbic acid) consistently worsen outcomes, suggesting a fragile redox balance rather than classical oxidative stress. Parkin mutants also develop renal degeneration, with impaired mitophagy and complete nephrocyte dysfunction by 28 days, but their mechanism diverges from that of Gba1b. Rapamycin treatment rescues several renal phenotypes in Gba1b but not in Parkin, highlighting distinct disease pathways.

      The authors propose that renal dysfunction is a central disease-modifying feature of Gaucher and Parkinson's disease models, driven by redox imbalance and differential engagement of lysosomal (Gba1b) vs. mitochondrial (Parkin) mechanisms. They suggest that maintaining renal health and redox balance may represent therapeutic opportunities and biomarkers in neurodegenerative disease. This is a significant manuscript that reframes GD/PD pathology through the lens of renal health. The data are extensive. However, several claims are ahead of the evidence and should be supported with additional experiments.

      Major Comments:

      (1) The abstract frames progressive renal dysfunction as a "central, disease-modifying feature" in both Gba1b and Parkin models, with systemic consequences including water retention, ionic hypersensitivity, and worsened neuro phenotypes. While the data demonstrates renal degeneration and associated physiological stress, the causal contribution of renal defects versus broader organismal frailty is not fully disentangled. Please consider adding causal experiments (e.g., temporally restricted renal rescue/knockdown) to directly establish kidney-specific contributions.

      (2) The manuscript shows multiple redox abnormalities in Gba1b mutants (reduced whole fly GSH, paradoxical mitochondrial reduction with cytosolic oxidation, decreased DHE, increased lipid peroxidation, and reduced peroxisome density/Sod1 mislocalization). These findings support a state of redox imbalance, but the driving mechanism remains broad in the current form. It is unclear if the dominant driver is impaired glutathione handling or peroxisomal antioxidant/β-oxidation deficits or lipid peroxidation-driven toxicity, or reduced metabolic flux/ETC activity. I suggest adding targeted readouts to narrow the mechanism.

      (3) The observation that broad antioxidant manipulations (Nrf2 overexpression in tubules, Sod1/Sod2/CatA overexpression, and ascorbic acid supplementation) consistently shorten lifespan or exacerbate phenotypes in Gba1b mutants is striking and supports the idea of redox fragility. However, these interventions are broad. Nrf2 influences proteostasis and metabolism beyond redox regulation, and Sod1/Sod2/CatA may affect multiple cellular compartments. In the absence of dose-response testing or controls for potential off-target effects, the interpretation that these outcomes specifically reflect redox dyshomeostasis feels ahead of the data. I suggest incorporating narrower interpretations (e.g., targeting lipid peroxidation directly) to clarify which redox axis is driving the vulnerability.

      (4) This manuscript concludes that nephrocyte dysfunction does not exacerbate brain pathology. This inference currently rests on a limited set of readouts: dextran uptake and hemolymph protein as renal markers, lifespan as a systemic measure, and two brain endpoints (LysoTracker staining and FK2 polyubiquitin accumulation). While these data suggest that nephrocyte loss alone does not amplify lysosomal or ubiquitin stress, they may not fully capture neuronal function and vulnerability. To strengthen this conclusion, the authors could consider adding functional or behavioral assays (e.g., locomotor performance)

      (5) The manuscript does a strong job of contrasting Parkin and Gba1b mutants, showing impaired mitophagy in Malpighian tubules, complete nephrocyte dysfunction by day 28, FRUMS clearance defects, and partial rescue with tubule-specific Parkin re-expression. These findings clearly separate mitochondrial quality control defects from the lysosomal axis of Gba1b. However, the mechanistic contrast remains incomplete. Many of the redox and peroxisomal assays are only presented for Gba1b. Including matched readouts across both models (e.g., lipid peroxidation, peroxisome density/function, Grx1-roGFP2 compartmental redox status) would make the comparison more balanced and strengthen the conclusion that these represent distinct pathogenic routes.

      (6) Rapamycin treatment is shown to rescue several renal phenotypes in Gba1b mutants (water retention, RSC proliferation, FRUMS clearance, lipid peroxidation) but not in Parkin, and mitophagy is not restored in Gba1b. This provides strong evidence that the two models engage distinct pathogenic pathways. However, the therapeutic interpretation feels somewhat overstated. Human relevance should be framed more cautiously, and the conclusions would be stronger with mechanistic markers of autophagy (e.g., Atg8a, Ref(2)p flux in Malpighian tubules) or with experiments varying dose, timing, and duration (short-course vs chronic rapamycin).

      (7) Several systemic readouts used to support renal dysfunction (FRUMS clearance, salt stress survival) could also be influenced by general organismal frailty. To ensure these phenotypes are kidney-intrinsic, it would be helpful to include controls such as tissue-specific genetic rescue in Malpighian tubules or nephrocytes, or timing rescue interventions before overt systemic decline. This would strengthen the causal link between renal impairment and the observed systemic phenotypes.

    3. Reviewer #2 (Public review):

      Summary:

      In the present study, the authors tested renal function in Gba1b-/- flies and its possible effect on neurodegeneration. They showed that these flies exhibit progressive degeneration of the renal system, loss of water homeostasis, and ionic hypersensitivity. They documented reduced glomerular filtration capacity in their pericardial nephrocytes, together with cellular degeneration in microtubules, redox imbalance, and lipid accumulation. They also compared the Gba1b mutant flies to Parkin mutants and evaluated the effect of treatment with the mTOR inhibitor rapamycin. Restoration of renal structure and function was observed only in the Gba1b mutant flies, leading the authors to conclude that the mutants present different phenotypes due to lysosomal stress in Gba1b mutants versus mitochondrial stress in Parkin mutant flies.

      Comments:

      (1) The authors claim that: "renal system dysfunction negatively impacts both organismal and neuronal health in Gba1b-/- flies, including autophagic-lysosomal status in the brain." This statement implies that renal impairments drive neurodegeneration. However, there is no direct evidence provided linking renal defects to neurodegeneration in this model. It is worth noting that Gba1b-/- flies are a model for neuronopathic Gaucher disease (GD): they accumulate lipids in their brains and present with neurodegeneration and decreased survival, as shown by Kinghorn et al. (The Journal of Neuroscience, 2016, 36, 11654-11670) and by others, which the authors failed to mention (Davis et al., PLoS Genet. 2016, 12: e1005944; Cabasso et al., J Clin Med. 2019, 8:1420; Kawasaki et al., Gene, 2017, 614:49-55).

      (2) The authors tested brain pathology in two experiments:

      (a) To determine the consequences of abnormal nephrocyte function on brain health, they measured lysosomal area in the brain of Gba1b-/-, Klf15LOF, or stained for polyubiquitin. Klf15 is expressed in nephrocytes and is required for their differentiation. There was no additive effect on the increased lysosomal volume (Figure 3D) or polyubiquitin accumulation (Figure 3E) seen in Gba1b-/- fly brains, implying that loss of nephrocyte viability itself does not exacerbate brain pathology.

      (b) The authors tested the consequences of overexpression of the antioxidant regulator Nrf2 in principal cells of the kidney on neuronal health in Gba1b-/- flies, using the c42-GAL4 driver. They claim that "This intervention led to a significant increase in lysosomal puncta number, as assessed by LysoTrackerTM staining (Figure 5D), and exacerbated protein dyshomeostasis, as indicated by polyubiquitin accumulation and increased levels of the ubiquitin-autophagosome trafficker Ref(2)p/p62 in Gba1b-/- fly brains (Figure 5E). Interestingly, Nrf2 overexpression had no significant effect on lysosomal area or ubiquitin puncta in control brains, demonstrating that the antioxidant response specifically in Gba1b-/- flies negatively impacts disease states in the brain and renal system."<br /> Notably, c42-GAL4 is a leaky driver, expressed in salivary glands, Malpighian tubules, and pericardial cells (Beyenbach et al., Am. J. Cell Physiol. 318: C1107-C1122, 2020). Expression in pericardial cells may affect heart function, which could explain deterioration in brain function.

      Taken together, the contribution of renal dysfunction to brain health remains debatable.

      Based on the above, I believe the title should be changed to: Redox Dyshomeostasis Links Renal and Neuronal Dysfunction in Drosophila Models of Gaucher disease. Such a title will reflect the results presented in the manuscript.

      (3) The authors mention that Gba1b is not expressed in the renal system, which means that no renal phenotype can be attributed directly to any known GD pathology. They suggest that systemic factors such as circulating glycosphingolipids or loss of extracellular vesicle-mediated delivery of GCase may mediate renal toxicity. This raises a question about the validity of this model to test pathology in the fly kidney. According to Flybase, there is expression of Gba1b in renal structures of the fly.

      (4) It is worth mentioning that renal defects are not commonly observed in patients with Gaucher disease. Relevant literature: Becker-Cohen et al., A Comprehensive Assessment of Renal Function in Patients With Gaucher Disease, J. Kidney Diseases, 2005, 46:837-844.

      (5) In the discussion, the authors state: "Together, these findings establish renal degeneration as a driver of systemic decline in Drosophila models of GD and PD..." and go on to discuss a brain-kidney axis in PD. However, since this study investigates a GD model rather than a PD model, I recommend omitting this paragraph, as the connection to PD is speculative and not supported by the presented data.

      (6) The claim: "If confirmed, our findings could inform new biomarker strategies and therapeutic targets for GBA1 mutation carriers and other at-risk groups. Maintaining renal health may represent a modifiable axis of intervention in neurodegenerative disease," extends beyond the scope of the experimental evidence. The authors should consider tempering this statement or providing supporting data.

      (7) The conclusion, "we uncover a critical and previously overlooked role for the renal system in GD and PD pathogenesis," is too strong given the data presented. As no mechanistic link between renal dysfunction and neurodegeneration has been established, this claim should be moderated.

      (8) The relevance of Parkin mutant flies is questionable, and this section could be removed from the manuscript.

    4. Reviewer #3 (Public review):

      Summary:

      Hull et al examine Drosophila mutants for the Gaucher's disease locus GBA1/Gba1b, a locus that, when heterozygous, is a risk factor for Parkinson's. Focusing on the Malpighian tubules and their function, they identify a breakdown of cell junctions, loss of haemolymph filtration, sensitivity to ionic imbalance, water retention, and loss of endocytic function in nephrocytes. There is also an imbalance in ROS levels between the cytoplasm and mitochondria, with reduced glutathione levels, rescue of which could not improve longevity. They observe some of the same phenotypes in mutants of Parkin, but treatment by upregulation of autophagy via rapamycin feeding could only rescue the Gba1b mutant and not the Parkin mutant.

      Strengths:

      The paper uses a range of cellular, genetic, and physiological analyses and manipulations to fully describe the renal dysfunction in the GBa1b animals. The picture developed has depth and detail; the data appears sound and thorough.

      Weaknesses:

      The paper relies mostly on the biallelic Gba1b mutant, which may reflect dysfunction in Gaucher's patients, though this has yet to be fully explored. The claims for the heterozygous allele and a role in Parkinson's is a little more tenuous, making assumptions that heterozygosity is a similar but milder phenotype than the full loss-of-function.

    5. Author response:

      Reviewer #1 (Public review):

      Major Comments:

      (1) The abstract frames progressive renal dysfunction as a "central, disease-modifying feature" in both Gba1b and Parkin models, with systemic consequences including water retention, ionic hypersensitivity, and worsened neuro phenotypes. While the data demonstrates renal degeneration and associated physiological stress, the causal contribution of renal defects versus broader organismal frailty is not fully disentangled. Please consider adding causal experiments (e.g., temporally restricted renal rescue/knockdown) to directly establish kidney-specific contributions.

      We concur that this would help strengthen our conclusions. However, manipulating Gba1b in a tissue-specific manner remains challenging due to its propensity for secretion via extracellular vesicles (ECVs). Leo Pallanck and Marie Davis have elegantly shown that ectopic Gba1b expression in neurons and muscles (tissues with low predicted endogenous expression) is sufficient to rescue major organismal phenotypes. Consistent with this, we have been unable to generate clear tissue-specific phenotypes using Gba1b RNAi.

      We will pursue more detailed time-course experiments of the progression of renal pathology, (water weight, renal stem cell proliferation, redox defects, etc.) with the goal of identifying earlier-onset phenotypes that potentially drive dysfunction.

      (2) The manuscript shows multiple redox abnormalities in Gba1b mutants (reduced whole fly GSH, paradoxical mitochondrial reduction with cytosolic oxidation, decreased DHE, increased lipid peroxidation, and reduced peroxisome density/Sod1 mislocalization). These findings support a state of redox imbalance, but the driving mechanism remains broad in the current form. It is unclear if the dominant driver is impaired glutathione handling or peroxisomal antioxidant/β-oxidation deficits or lipid peroxidation-driven toxicity, or reduced metabolic flux/ETC activity. I suggest adding targeted readouts to narrow the mechanism.

      We agree that we have not yet established a core driver of redox imbalance. Identifying one is likely to be challenging, especially as our RNA-sequencing data from aged Gba1b<sup>⁻/⁻</sup> fly heads (Atilano et al., 2023) indicate that several glutathione S-transferases (GstD2, GstD5, GstD8, and GstD9) are upregulated. We can attempt overexpression of GSTs, which has been elegantly shown by Leo Pallanck to ameliorate pathology in Pink1/Parkin mutant fly brains. However, mechanisms that specifically suppress lipid peroxidation or its associated toxicity, independently of other forms of redox damage, remain poorly understood in Drosophila. Our position is there probably will not be one dominant driver of redox imbalance. Notably, CytB5 overexpression has been shown to reduce lipid peroxidation (Chen et al., 2017), and GstS1 has been reported to conjugate glutathione to the toxic lipid peroxidation product 4-HNE (Singh et al., 2001). Additionally, work from the Bellen lab demonstrated that overexpression of lipases, bmm or lip4, suppresses lipid peroxidation-mediated neurodegeneration (Liu et al., 2015). We will therefore test the effects of over-expressing CytB5, bmm and lip4 in Gba1b<sup>⁻/⁻</sup> flies to help further define the mechanism.

      (3) The observation that broad antioxidant manipulations (Nrf2 overexpression in tubules, Sod1/Sod2/CatA overexpression, and ascorbic acid supplementation) consistently shorten lifespan or exacerbate phenotypes in Gba1b mutants is striking and supports the idea of redox fragility. However, these interventions are broad. Nrf2 influences proteostasis and metabolism beyond redox regulation, and Sod1/Sod2/CatA may affect multiple cellular compartments. In the absence of dose-response testing or controls for potential off-target effects, the interpretation that these outcomes specifically reflect redox dyshomeostasis feels ahead of the data. I suggest incorporating narrower interpretations (e.g., targeting lipid peroxidation directly) to clarify which redox axis is driving the vulnerability.

      We are in agreement that Drosophila Cnc exhibits functional conservation with both Nrf1 and Nrf2, which have well-established roles in proteostasis and lysosomal biology that may exacerbate pre-existing lysosomal defects in Gba1b mutants. In our manuscript, Nrf2 manipulation forms part of a broader framework of evidence, including dietary antioxidant ascorbic acid and established antioxidant effectors CatA, Sod1, and Sod2. Together, these data indicate that Gba1b mutant flies display a deleterious response to antioxidant treatments or manipulations. To further characterise the redox state, we will quantify lipid peroxidation using Bodipy 581/591 and assess superoxide levels via DHE staining under our redox-altering experimental conditions.

      As noted above, we will attempt to modulate lipid peroxidation directly through CytB5 and GstS1 overexpression, acknowledging the caveat that this approach may not fully dissociate lipid peroxidation from other aspects of redox stress. We have also observed detrimental effects of PGC1α on the lifespan of Gba1b<sup>⁻/⁻</sup> flies and will further investigate its impact on redox status in the renal tubules.

      (4) This manuscript concludes that nephrocyte dysfunction does not exacerbate brain pathology. This inference currently rests on a limited set of readouts: dextran uptake and hemolymph protein as renal markers, lifespan as a systemic measure, and two brain endpoints (LysoTracker staining and FK2 polyubiquitin accumulation). While these data suggest that nephrocyte loss alone does not amplify lysosomal or ubiquitin stress, they may not fully capture neuronal function and vulnerability. To strengthen this conclusion, the authors could consider adding functional or behavioral assays (e.g., locomotor performance)

      We will address this suggestion by performing DAM activity assays and climbing assays in the Klf15; Gba1b<sup>⁻/⁻</sup> double mutants.

      (5) The manuscript does a strong job of contrasting Parkin and Gba1b mutants, showing impaired mitophagy in Malpighian tubules, complete nephrocyte dysfunction by day 28, FRUMS clearance defects, and partial rescue with tubule-specific Parkin re-expression. These findings clearly separate mitochondrial quality control defects from the lysosomal axis of Gba1b. However, the mechanistic contrast remains incomplete. Many of the redox and peroxisomal assays are only presented for Gba1b. Including matched readouts across both models (e.g., lipid peroxidation, peroxisome density/function, Grx1-roGFP2 compartmental redox status) would make the comparison more balanced and strengthen the conclusion that these represent distinct pathogenic routes.

      We agree that park<sup>⁻/⁻</sup> mutants have been characterised in greater detail than park<sup>⁻/⁻</sup>. The primary aim of our study was not to provide an exhaustive characterisation of park¹/¹, but rather to compare key shared and distinct mechanisms underlying renal dysfunction. We have included several relevant readouts for park<sup>⁻/⁻</sup> tubules (e.g., Figure 7D and 8H: mito-Grx1-roGFP2; Figure 8J: lipid peroxidation using BODIPY 581/591). To expand our characterisation of park¹/¹ flies, we will express the cytosolic Grx1 reporter and the peroxisomal marker YFP::Pts.

      (6) Rapamycin treatment is shown to rescue several renal phenotypes in Gba1b mutants (water retention, RSC proliferation, FRUMS clearance, lipid peroxidation) but not in Parkin, and mitophagy is not restored in Gba1b. This provides strong evidence that the two models engage distinct pathogenic pathways. However, the therapeutic interpretation feels somewhat overstated. Human relevance should be framed more cautiously, and the conclusions would be stronger with mechanistic markers of autophagy (e.g., Atg8a, Ref(2)p flux in Malpighian tubules) or with experiments varying dose, timing, and duration (short-course vs chronic rapamycin).

      We will measure Atg8a, polyubiquitin, and Ref(2)P levels in Gba1b<sup>⁻/⁻</sup> and park<sup>¹/¹</sup> tubules following rapamycin treatment. In our previous study focusing on the gut (Atilano et al., 2023), we showed that rapamycin treatment increased lysosomal area, as assessed using LysoTracker<sup>TM</sup>. We will extend this analysis to the renal tubules following rapamycin exposure. Another reviewer requested that we adopt more cautious language regarding the clinical translatability of this work, and we will amend this in Version 2.

      (7) Several systemic readouts used to support renal dysfunction (FRUMS clearance, salt stress survival) could also be influenced by general organismal frailty. To ensure these phenotypes are kidney-intrinsic, it would be helpful to include controls such as tissue-specific genetic rescue in Malpighian tubules or nephrocytes, or timing rescue interventions before overt systemic decline. This would strengthen the causal link between renal impairment and the observed systemic phenotypes.

      As noted in our response to point 1, we currently lack reliable approaches to manipulate Gba1b in a tissue-specific manner. However, we agree that it is important to distinguish kidney-intrinsic dysfunction from generalised organismal frailty. In the park model, we have already performed renal cell-autonomous rescue: re-expression of Park specifically in Malpighian tubule principal cells (C42-Gal4) throughout adulthood partially normalises water retention, whereas brain-restricted Park expression has no effect on renal phenotypes. Because rescuing Park only in the renal tubules is sufficient to correct a systemic fluid-handling phenotype in otherwise mutant animals, these findings indicate that the systemic defects are driven, at least in part, by renal dysfunction rather than nonspecific organismal frailty.

      To strengthen this causal link, we will now extend this same tubule-specific Park rescue (C42-Gal4 and the high-fidelity Malpighian tubule driver CG31272-Gal4) to additional systemic readouts raised by the reviewer. Specifically, we will assay FRUMS clearance and salt stress survival in rescued versus non-rescued park mutants to determine whether renal rescue also mitigates these systemic phenotypes.

      Reviewer #2 (Public review):

      (1) The authors claim that: "renal system dysfunction negatively impacts both organismal and neuronal health in Gba1b-/- flies, including autophagic-lysosomal status in the brain." This statement implies that renal impairments drive neurodegeneration. However, there is no direct evidence provided linking renal defects to neurodegeneration in this model. It is worth noting that Gba1b-/- flies are a model for neuronopathic Gaucher disease (GD): they accumulate lipids in their brains and present with neurodegeneration and decreased survival, as shown by Kinghorn et al. (The Journal of Neuroscience, 2016, 36, 11654-11670) and by others, which the authors failed to mention (Davis et al., PLoS Genet. 2016, 12: e1005944; Cabasso et al., J Clin Med. 2019, 8:1420; Kawasaki et al., Gene, 2017, 614:49-55).

      With the caveats noted in the responses below, we show that driving Nrf2 expression using the renal tubular driver C42 results in decreased survival, more extensive renal defects, and increased brain pathology in Gba1b<sup>⁻/⁻</sup> flies, but not in healthy controls. This suggests that a healthy brain can tolerate renal dysfunction without severe pathological consequences. Our findings therefore indicate that in Gba1b<sup>⁻/⁻</sup> flies, there may be an interaction between renal defects and brain pathology. We do not explicitly claim that renal impairments drive neurodegeneration; rather, we propose that manipulations exacerbating renal dysfunction can have organism-wide effects, ultimately impacting the brain.

      The reviewer is correct that our Gba1b<sup>⁻/⁻</sup> fly model represents a neuronopathic GD model with age-related pathology. Indeed, we reproduce the autophagic-lysosomal defects previously reported (Kinghorn et al., 2016) in Figure 5. We agree that the papers cited by the reviewer merit inclusion, and in Version 2 we will incorporate them into the following pre-existing sentence in the Results:

      “The gut and brain of Gba1b<sup>⁻/⁻</sup> flies, similar to macrophages in GD patients, are characterised by enlarged lysosomes (Kinghorn et al., 2016; Atilano et al., 2023).”

      (2) The authors tested brain pathology in two experiments:

      (a) To determine the consequences of abnormal nephrocyte function on brain health, they measured lysosomal area in the brain of Gba1b-/-, Klf15LOF, or stained for polyubiquitin. Klf15 is expressed in nephrocytes and is required for their differentiation. There was no additive effect on the increased lysosomal volume (Figure 3D) or polyubiquitin accumulation (Figure 3E) seen in Gba1b-/- fly brains, implying that loss of nephrocyte viability itself does not exacerbate brain pathology.

      (b) The authors tested the consequences of overexpression of the antioxidant regulator Nrf2 in principal cells of the kidney on neuronal health in Gba1b-/- flies, using the c42-GAL4 driver. They claim that "This intervention led to a significant increase in lysosomal puncta number, as assessed by LysoTrackerTM staining (Figure 5D), and exacerbated protein dyshomeostasis, as indicated by polyubiquitin accumulation and increased levels of the ubiquitin-autophagosome trafficker Ref(2)p/p62 in Gba1b-/- fly brains (Figure 5E). Interestingly, Nrf2 overexpression had no significant effect on lysosomal area or ubiquitin puncta in control brains, demonstrating that the antioxidant response specifically in Gba1b-/- flies negatively impacts disease states in the brain and renal system."Notably, c42-GAL4 is a leaky driver, expressed in salivary glands, Malpighian tubules, and pericardial cells (Beyenbach et al., Am. J. Cell Physiol. 318: C1107-C1122, 2020). Expression in pericardial cells may affect heart function, which could explain deterioration in brain function.

      Taken together, the contribution of renal dysfunction to brain health remains debatable.

      Based on the above, I believe the title should be changed to: Redox Dyshomeostasis Links Renal and Neuronal Dysfunction in Drosophila Models of Gaucher disease. Such a title will reflect the results presented in the manuscript

      We agree that C42-Gal4 is a leaky driver; unfortunately, this was true for all commonly used Malpighian tubule drivers available when we began the study. A colleague has recommended CG31272-Gal4 from the Perrimon lab’s recent publication (Xu et al., 2024) as a high-fidelity Malpighian tubule driver. If it proves to maintain principal-cell specificity throughout ageing in our hands, we will repeat key experiments using this driver.

      (3) The authors mention that Gba1b is not expressed in the renal system, which means that no renal phenotype can be attributed directly to any known GD pathology. They suggest that systemic factors such as circulating glycosphingolipids or loss of extracellular vesicle-mediated delivery of GCase may mediate renal toxicity. This raises a question about the validity of this model to test pathology in the fly kidney. According to Flybase, there is expression of Gba1b in renal structures of the fly.

      Our evidence suggesting that Gba1b is not substantially expressed in renal tissue is based on use of the Gba1b-CRIMIC-Gal4 line, which fails to drive expression of fluorescently tagged proteins in the Malpighian tubules and we have previously shown there is no expression within the nephrocytes with this driver line (Atilano et al., 2023). This does not exclude the possibility that Gba1b functions within the tubules. Notably, Leo Pallanck has provided compelling evidence that Gba1b is present in extracellular vesicles (ECVs) and given the role of the Malpighian tubules in haemolymph filtration, these cells are likely exposed to circulating ECVs. The lysosomal defects observed in Gba1b<sup>⁻/⁻</sup> tubules therefore suggest a potential role for Gba1b in this tissue.  

      John Vaughan and Thomas Clandinin have developed mCherry- and Lamp1.V5-tagged Gba1b constructs. We intend to express these in tissues shown by the Pallanck lab to release ECVs (e.g., neurons and muscle) and examine whether the protein can be detected in the tubules.

      (4) It is worth mentioning that renal defects are not commonly observed in patients with Gaucher disease. Relevant literature: Becker-Cohen et al., A Comprehensive Assessment of Renal Function in Patients With Gaucher Disease, J. Kidney Diseases, 2005, 46:837-844.

      We have identified five references indicating that renal involvement, while rare, does occur in association with GD. We agree that this is a valid citation and will include it in the revised introductory sentence:

      “However, renal dysfunction remains a rare symptom in GD patients (Smith et al., 1978; Chander et al., 1979; Siegel et al., 1981; Halevi et al., 1993).”

      (5) In the discussion, the authors state: "Together, these findings establish renal degeneration as a driver of systemic decline in Drosophila models of GD and PD..." and go on to discuss a brain-kidney axis in PD. However, since this study investigates a GD model rather than a PD model, I recommend omitting this paragraph, as the connection to PD is speculative and not supported by the presented data.

      Our position is that Gba1b<sup>⁻/⁻</sup> represents a neuronopathic Gaucher disease model with mechanistic relevance to PD. The severity of GBA1 mutations correlates with the extent of GBA1/GCase loss of function and, consequently, with increased PD risk. Likewise, biallelic park<sup>⁻/⁻</sup> mutants cause a severe and heritable form of PD, and the Drosophila park<sup>⁻/⁻</sup> model is a well-established and widely recognised system that has been instrumental in elucidating how Parkin and Pink1 mutations drive PD pathogenesis.

      We therefore see no reason to omit this paragraph. While some aspects are inherently speculative, such discussion is appropriate and valuable when addressing mechanisms underlying a complex and incompletely understood disease, provided interpretations remain measured. At no point do we claim that our work demonstrates a direct brain-renal axis. Rather, our data indicate that renal dysfunction is a disease-modifying feature in these models, aligning with emerging epidemiological evidence linking PD and renal impairment.

      (6) The claim: "If confirmed, our findings could inform new biomarker strategies and therapeutic targets for GBA1 mutation carriers and other at-risk groups. Maintaining renal health may represent a modifiable axis of intervention in neurodegenerative disease," extends beyond the scope of the experimental evidence. The authors should consider tempering this statement or providing supporting data.

      (7) The conclusion, "we uncover a critical and previously overlooked role for the renal system in GD and PD pathogenesis," is too strong given the data presented. As no mechanistic link between renal dysfunction and neurodegeneration has been established, this claim should be moderated.

      We agree that these sections may currently overstate our findings. In Version 2, we will revise them to ensure our claims remain balanced, while retaining the key points that arise from our data and clearly indicating where conclusions require confirmation (“if confirmed”) or additional study (“warrants further investigation”).

      “If confirmed, our findings could inform new biomarker strategies and therapeutic targets for patients with GD and PD. Maintaining renal health may represent a modifiable axis of intervention in these diseases.”

      “We uncover a notable and previously underappreciated role for the renal system in GD and PD, which now warrants further investigation.”

      (8) The relevance of Parkin mutant flies is questionable, and this section could be removed from the manuscript.

      We intend to include the data for the Parkin loss-of-function mutants, as these provide essential support for the PD-related findings discussed in our manuscript. To our knowledge, this represents the first demonstration that Parkin mutants display defects in Malpighian tubule function and water homeostasis. We therefore see no reason to remove these findings. Furthermore, as Reviewer 1 specifically requested additional experiments using the Park fly model, we plan to incorporate these analyses in the revised manuscript.

      Minor comments:

      (1)  Figure 1G: The FRUMS assay is not shown for Gba1b-/- flies.

      The images in Figure 1G illustrate representative stages of dye clearance. We have quantified the clearance time course for both genotypes. During this process, the tubules of Gba1b<sup>⁻/⁻</sup> flies, similar to controls, sequentially resemble each of the three example images. As the Gba1b<sup>⁻/⁻</sup> tubules appear morphologically identical to controls, differing only in population-level clearance dynamics, we do not feel that including additional example images would provide further informative value.

      (2) In panels D and F of Figure 2, survival of control and Gba1b-/- flies in the presence of 4% NaCl is presented. However, longevity is different (up to 10 days in D and ~3 days in F for control). The authors should explain this.

      We agree. In our experience, feeding-based stress survival assays show considerable variability between experiments, and we therefore interpret results only within individual experimental replicates. We have observed similar variability in oxidative stress, starvation, and xenobiotic survival assays, which may reflect batch-specific or environmental effects.

      (3) In Figure 7F, the representative image does not correspond to the quantification; the percentage of endosome-negative nephrocytes seems to be higher for the control than for the park1/1 flies. Please check this.

      The example images are correctly oriented. Typically, an endosome-negative nephrocyte shows no dextran uptake, whereas an endosome-positive nephrocyte displays a ring of puncta around the cell periphery. In park¹/¹ mutants, dysfunctional nephrocytes exhibit diffuse dextran staining throughout the cell, accompanied by diffuse DAPI signal, indicating a complete loss of membrane integrity and likely cell death. We have 63× images from the preparations shown in Figure 7F demonstrating this. In Version 2, we will include apical and medial z-slices of the nephrocytes to illustrate these findings (to be added as supplementary   data).

      (4) In Figure 7H, the significance between control and park1/1 flies in the FRUMS assay is missing.

      We observe significant dye clearance from the haemolymph; however, the difference in complete clearance from the tubules does not reach statistical significance. This may speculatively reflect alterations in specific aspects of tubule function, where absorption and transcellular flux are affected, but subsequent clearance from the tubule lumen remains intact. We do not feel that our current data provide sufficient resolution to draw detailed conclusions about tubule physiology at this level.

      Reviewer #3 (Public review):

      Weaknesses:

      The paper relies mostly on the biallelic Gba1b mutant, which may reflect dysfunction in Gaucher's patients, though this has yet to be fully explored. The claims for the heterozygous allele and a role in Parkinson's is a little more tenuous, making assumptions that heterozygosity is a similar but milder phenotype than the full loss-of-function.

      We agree with the reviewer that studying heterozygotes may provide valuable insight into GBA1-associated PD. We will therefore assess whether subtle renal defects are detectable in Gba1b<sup>⁻/⁻</sup> heterozygotes. We clearly state that GBA1 mutations act as a risk factor for PD rather than a Mendelian inherited cause. Consistent with findings from Gba heterozygous mice, Gba1b<sup>⁻/⁻</sup> flies display minimal phenotypes (Kinghorn et al. 2016), and any observable effects are expected to be very mild and age dependent.

      (1) Figure 1c, the loss of stellate cells. What age are the MTs shown? Is this progressive or developmental?

      These experiments were conducted on flies that were three weeks of age, as were all manipulations unless otherwise stated. We will ensure that this information is clearly indicated in the figure legends in Version 2. We did not observe changes in stellate cell number at three days of age, and this result will be included in the supplementary material in Version 2. Our data therefore suggest that this is a progressive phenotype.

      (2) I might have missed this, but for Figure 3, do the mutant flies start with a similar average weight, or are they bloated?

      We will perform an age-related time course of water weight in response to Reviewer 1’s comments. For all experiments, fly eggs are age-matched and seeded below saturation density to ensure standardised conditions. Gba1b mutant flies do not exhibit any defects in body size or timing of eclosion.

      (3) On 2F, add to the graph that 4% NaCl (or if it is KCL) is present for all conditions, just to make the image self-sufficient to read.

      Many thanks for the suggestion. We agree that this will increase clarity and will make this amendment in Version 2 of the manuscript

      (4) P13 - rephrase, 'target to either the mitochondria or the cytosol' (as it is phrased, it sounds as though you are doing both at the same time).

      We agree and we plan to revise the sentence as follows:

      Original:

      “To further evaluate the glutathione redox potential (E<sub>GSH</sub>) in MTs, we utilised the redox-sensitive green, fluorescent biosensor Grx1-roGFP2, targeted to both the mitochondria and cytosol (Albrecht et al., 2011).”

      Revised:

      “To further evaluate the glutathione redox potential (E<sub>GSH</sub>) in MTs, we utilised the redox-sensitive fluorescent biosensor Grx1-roGFP2, targeted specifically to either the mitochondria or the cytosol using mito- or cyto-tags, respectively (Albrecht et al., 2011).”

      (5) In 6F - the staining appears more intense in the Park mutant - perhaps add asterisks or arrowheads to indicate the nephrocytes so that the reader can compare the correct parts of the image?

      Reviewer 2 reached the same interpretation. Typically, an endosome-negative nephrocyte shows no dextran uptake, whereas an endosome-positive nephrocyte displays a ring of puncta around the cell periphery. In park¹/¹ mutants, dysfunctional nephrocytes exhibit diffuse dextran staining throughout the cell, accompanied by diffuse DAPI signal, indicative of a complete loss of membrane integrity and likely cell death. We have 63× images from the preparations shown in Figure 7F demonstrating this, and in Version 2 we will include apical and medial z-slices of the nephrocytes to illustrate these findings (to be added as supplementary data).

      (6) In the main results text - need some description/explanation of the SOD1 v SOD2 distribution (as it is currently understood) in the cell - SOD2 being predominantly mitochondrial. This helps arguments later on.

      Thank you for this suggestion. We plan to amend the text as follows:

      “Given that Nrf2 overexpression shortens lifespan in Gba1b<sup>⁻/⁻</sup> flies, we investigated the effects of overexpressing its downstream antioxidant targets, Sod1, Sod2, and CatA, both ubiquitously using the tub-Gal4 driver and with c42-Gal4, which expresses in PCs.”

      to:

      “Given that Nrf2 overexpression shortens lifespan in Gba1b<sup>⁻/⁻</sup> flies, we investigated the effects of overexpressing its downstream antioxidant targets, Sod1, Sod2, and CatA, both ubiquitously using the tub-Gal4 driver and with c42-Gal4, which expresses in PCs. Sod1 and CatA function primarily in the cytosol and peroxisomes, whereas Sod2 is localised to the mitochondria. Sod1 and Sod2 catalyse the dismutation of superoxide radicals to hydrogen peroxide, while CatA subsequently degrades hydrogen peroxide to water and oxygen.”

      (7) Figure 1G, what age are the flies? Same for 3D and E, 4C,D,E, 5B - please check the ages of flies for all of the imaging figures; this information appears to have been missed out.

      As stated above, all experiments were conducted on three-week-old flies unless otherwise specified. In Version 2 of the manuscript, we will ensure this information is included consistently in the figure legends to prevent any potential confusion.

    1. eLife Assessment

      This work uses enhanced sampling molecular dynamics methods to generate potentially useful information about a conformational change (the DFG flip) that plays a key role in regulating kinase function and inhibitor binding. The focus of the work is on the mechanism of conformational change and how mutations affect the transition. The evidence supporting the conclusions is incomplete.

    2. Reviewer #1 (Public review):

      Summary:

      The authors used weighted ensemble enhanced sampling molecular dynamics (MD) to test the hypothesis that a double mutant of Abl favors the DFG-in state relative to the WT and therefore causes the drug resistance to imatinib.

      Strengths:

      The authors employed three novel progress coordinates to sample the DFG flip of ABl. The hypothesis regarding the double mutant's drug resistance is novel.

      Weaknesses:

      The study contains many uncertain aspects. As such, major conclusions do not appear to be supported.

      Comments on revisions:

      The authors have addressed some of my concerns, but these concerns remain to be addressed:

      (1) Definition of the DFG conformation (in vs out). The authors specified their definition in the revised manuscript, but it has not been validated for a large number of kinases to distinguish between the two states. Thus, I recommend that the authors calculate the FES using another definition (see Tsai et al, JACS 2019, 141, 15092−15101) to confirm their findings. This FES can be included in the SI.

      (2) There is no comparison to previous computational work. I would like to see a comparison between the authors' finding of the DFG-in to DFG-out transition and that described in Tsai et al, JACS 2019, 141, 15092−15101.

      (3) My previous comment: "The study is not very rigorous. The major conclusions do not appear to be supported. The claim that it is the first unbiased simulation to observe DFG flip is not true. For example, Hanson, Chodera et al (Cell Chem Biol 2019), Paul, Roux et al (JCTC 2020), and Tsai, Shen et al (JACS 2019) have also observed the DFG flip." has not been adequately addressed.

      The newly added paragraph clearly does not address my original comment.

      "Through our work, we have simulated an ensemble of DFG flip pathways in a wild-type kinase and its variants with atomistic resolution and without the use of biasing forces, also reporting the effects of inhibitor-resistant mutations in the broader context of kinase inactivation likelihood with such level of detail. "

      (4) My previous comment, "Setting the DFG-Asp to the protonated state is not justified, because in the DFG-in state, the DFG-Asp is clearly deprotonated." has not been addressed.

      In the authors's response stated:

      According to previous publications, DFG-Asp is frequently protonated in the DFG-in state of Abl1 kinase. For instance, as quoted from Hanson, Chodera, et al., Cell Chem Bio (2019), "Consistent with previous simulations on the DFG-Asp-out/in interconversion of Abl kinase we only observe the DFG flip with protonated Asp747 ( Shan et al., 2009 ). We showed previously that the pKa for the DFG-Asp in Abl is elevated at 6.5."

      Since the pKa of DFG-Asp is 6.5, it should be deprotonated at the physiological pH 7.5. Thus, the fact that the authors used protonated DFG-Asp contradicts this. I am not requesting the authors to redo the entire simulations, but they need to acknowledge this discrepancy and add a brief discussion. See a constant pH study that demonstrates the protonation state population shift for DFG-Asp as the DFG transitions from in to out state (see Tsai et al, JACS 2019, 141, 15092−15101).

    3. Reviewer #2 (Public review):

      Summary:

      This is a well-written manuscript on the mechanism of the DFG flip in kinases. This conformational change is important for the toggling of kinases between active (DFG-in) and inactive (DFG-out) states. The relative probabilities of these two states are also an important determinant of the affinity of inhibitors for a kinase. However, it is an extremely slow/rare conformational change, making it difficult to capture in simulations. The authors show that weighted ensemble simulations can capture the DFG flip and then delve into the mechanism of this conformational change and the effects of mutations.

      Strengths:

      The DFG flip is very hard to capture in simulations. Showing that this can be done with relatively little simulation by using enhanced sampling is a valuable contribution. The manuscript gives a nice description of the background for non-experts.

      Weaknesses:

      The anecdotal approach to presenting the results is disappointing. Molecular processes are stochastic and the authors have expertise in describing such processes. However, they chose to put most statistical analysis in the SI. The main text instead describes the order of events in single "representative" trajectories. The main text makes it sound like these were most selected as they were continuous trajectories from the weighted ensemble simulations. It is preferable to have a description of the highest probability pathway(s) with some quantification of how probable they are. That would give the reader a clear sense of how representative the events described are.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Specifically, the authors need to define the DFG conformation using criteria accepted in the field, for example, see https://klifs.net/index.php.

      We thank the reviewer for this suggestion. In the manuscript, we use pseudodihedral and bond angle-based DFG definitions that have been previously established by literature cited in the study (re-iterated below) to unambiguously define the side-chain conformational states of the DFG motif. As we are interested in the specific mechanics of DFG flips under different conditions, we’ve found that the descriptors defined below are sufficient to distinguish between DFG states and allow a more direct comparison with previously-reported results in the literature using different methods.

      We amended the text to be more clear as to those definitions and their choice:

      DFG angle definitions:

      Phe382/Cg, Asp381/OD2, Lys378/O

      Source: Structural Characterization of the Aurora Kinase B "DFG-flip" Using Metadynamics. Lakkaniga NR, Balasubramaniam M, Zhang S, Frett B, Li HY. AAPS J. 2019 Dec 18;22(1):14. doi: 10.1208/s12248-019-0399-6. PMID: 31853739; PMCID: PMC7905835.

      “Finally, we chose the angle formed by Phe382's gamma carbon, Asp381's protonated side chain oxygen (OD2), and Lys378's backbone oxygen as PC3 based on observations from a study that used a similar PC to sample the DFG flip in Aurora Kinase B using metadynamics \cite{Lakkaniga2019}. This angular PC3 should increase or decrease (based on the pathway) during the DFG flip, with peak differences at intermediate DFG configurations, and then revert to its initial state when the flip concludes.”

      DFG pseudodihedral definitions:

      Ala380/Cb, Ala380/Ca, Asp381/Ca, Asp381/Cg

      Ala380/Cb, Ala380/CA, Phe382/CA, Phe382Cg

      Source: Computational Study of the “DFG-Flip” Conformational Transition in c-Abl and c-Src Tyrosine Kinases. Yilin Meng, Yen-lin Lin, and Benoît Roux The Journal of Physical Chemistry B 2015 119 (4), 1443-1456 DOI: 10.1021/jp511792a

      “For downstream analysis, we used two pseudodihedrals previously defined in the existing Abl1 DFG flip simulation literature \cite{Meng2015} to identify and discriminate between DFG states. The first (dihedral 1) tracks the flip state of Asp381, and is formed by the beta carbon of Ala380, the alpha carbon of Ala380, the alpha carbon of Asp381, and the gamma carbon of Asp381. The second (dihedral 2) tracks the flip state of Phe382, and is formed by the beta carbon of Ala380, the alpha carbon of Ala380, the alpha carbon of Phe381, and the gamma carbon of Phe381. These pseudodihedrals, when plotted in relation to each other, clearly distinguish between the initial DFG-in state, the target DFG-out state, and potential intermediate states in which either Asp381 or Phe381 has flipped.”

      Convergence needs to be demonstrated for estimating the population difference between different conformational states.

      We agree that demonstrating convergence is important for accurate estimations of population differences between conformational states. However, as the DFG flip is a complex and concerted conformational change with an energy barrier of 30 kcal/mol [1], and considering the traditional limitations of methods like weighted ensemble molecular dynamics (WEMD), it would take an unrealistic amount of GPU time (months) to observe convergence in our simulations. As discussed in the text (see examples below), we caveat our energy estimations by explicitly mentioning that the state populations we report are not converged and are indicative of a much larger energy barrier in the mutant.

      “These relative probabilities qualitatively agree with the large expected free energy barrier for the DFG-in to DFG-out transition (~32 kcal/mol), and with our observation of a putative metastable DFG-inter state that is missed by NMR experiments due to its low occupancy.”

      “As an important caveat, it is unlikely that the DFG flip free energy barriers of over 70 kcal/mol estimated for the Abl1 drug-resistant variants quantitatively match the expected free energy barrier for their inactivation. Rather, our approximate free energy barriers are a symptom of the markedly increased simulation time required to sample the DFG flip in the variants relative to the wild-type, which is a strong indicator of the drastically reduced propensity of the variants to complete the DFG flip. Although longer WE simulations could allow us to access the timescales necessary for more accurately sampling the free energy barriers associated with the DFG flip in Abl1's drug-resistant compound mutants, the computational expense of running WE for 200 iterations is already large (three weeks with 8 NVIDIA RTX3900 GPUs for one replicate); this poses a logistical barrier to attempting to sample sufficient events to be able to fully characterize how the reaction path and free energy barrier change for the flip associated with the mutations. Regardless, the results of our WE simulations resoundingly show that the Glu255Lys/Val and Thr315Ile compound mutations drastically reduce the probability for DFG flip events in Abl1.”

      (1) Conformational states dynamically populated by a kinase determine its function. Tao Xie et al., Science 370, eabc2754 (2020). DOI:10.1126/science.abc2754

      The DFG flip needs to be sampled several times to establish free energy difference.

      Our simulations have captured thousands of correlated and dozens of uncorrelated DFG flip events. The per-replicate free energy differences are computed based on the correlated transitions. Please consult the WEMD literature (referenced below and in the manuscript, references 34 and 36) for more information on how WEMD allows the sampling of multiple such events and subsequent estimation of probabilities:

      Zuckermann et al (2017) 10.1146/annurev-biophys-070816-033834

      Chong et al (2021) 10.1021/acs.jctc.1c01154

      The free energy plots do not appear to show an intermediate state as claimed.

      Both the free energy plots and the representative/anecdotal trajectories analyzed in the study show a saddle point when Asp381 has flipped but Phe382 has not (which defines the DFG-inter state), we observe a distinct change in probability when going to the pseudodihedral values associated with DFG-inter to DFG-up or DFG-out. We removed references to the putative state S1 as we we agree with the reviewer that its presence is unlikely given the data we show.

      The trajectory length of 7 ns in both Figure 2 and Figure 4 needs to be verified, as it is extremely short for a DFG flip that has a high free energy barrier.

      We appreciate this point. To clarify, the 7 ns segments corresponds to a collated trajectory extracted from the tens of thousands of walkers that compose the WEMD ensemble, and represent just the specific moment at which the dihedral flips occur rather than the entire flip process. On average, our WEMD simulations sample over 3 us of aggregate simulation time before the first DFG flip event is observed, in line with a high energy barrier. This is made clear in the manuscript excerpt below: “Over an aggregate simulation time of over 20 $\mu$s, we have collected dozens of uncorrelated and unbiased inactivation events, starting from the lowest energy conformation of the Abl1 kinase core (PDB 6XR6) \cite{Xie2020}.”

      The free energy scale (100 kT) appears to be one order of magnitude too large.

      As discussed in the text and quoted in response to comment 2, the exponential splitting nature of WEMD simulations (where the probability of individual walkers are split upon crossing each bin threshold) often leads to unrealistically high energy barriers for rare events. This is not unexpected, and as discussed in the text, we consider that value to be a qualitative measurement of the decreased probability of a DFG flip in Abl1 mutants, and not a direct measurement of energy barriers.

      Setting the DFG-Asp to the protonated state is not justified, because in the DFG-in state, the DFG-Asp is clearly deprotonated.

      According to previous publications, DFG-Asp is frequently protonated in the DFG-in state of Abl1 kinase. For instance, as quoted from Hanson, Chodera, et al., Cell Chem Bio (2019), “C onsistent with previous simulations on the DFG-Asp-out/in interconversion of Abl kinase we only observe the DFG flip with protonated Asp747 ( Shan et al., 2009 ). We showed previously that the pKa for the DFG-Asp in Abl is elevated at 6.5.”

      Finally, the authors should discuss their work in the context of the enormous progress made in theoretical studies and mechanistic understanding of the conformational landscape of protein kinases in the last two decades, particularly with regard to the DFG flip. and The study is not very rigorous. The major conclusions do not appear to be supported. The claim that it is the first unbiased simulation to observe DFG flip is not true. For example, Hanson, Chodera et al (Cell Chem Biol 2019), Paul, Roux et al (JCTC 2020), and Tsai, Shen et al (JACS 2019) have also observed the DFG flip.

      We thank the reviewer for pointing out these issues. We have revised the manuscript to better contextualize our claims within the limitations of the method and to acknowledge previous work by Hanson, Chodera et al., Paul, Roux et al., and Tsai, Shen et al.

      The updated excerpt is described below

      “Through our work, we have simulated an ensemble of DFG flip pathways in a wild-type kinase and its variants with atomistic resolution and without the use of biasing forces, also reporting the effects of inhibitor-resistant mutations in the broader context of kinase inactivation likelihood with such level of detail. “

      Reviewer #2:

      I appreciated the discussion of the strengths/weaknesses of weighted ensemble simulations. Am I correct that this method doesn't do anything to explicitly enhance sampling along orthogonal degrees of freedom? Maybe a point worth mentioning if so.

      Yes, this is correct. We added a sentence to WEMD summary section of Results and Discussion discussing it.

      “As a supervised enhanced sampling method, WE employs progress coordinates (PCs) to track the time-dependent evolution of a system from one or more basis states towards a target state. Although weighted ensemble simulations are unbiased in the sense that no biasing forces are added over the course of the simulations, the selection of progress coordinates and the bin definitions can potentially bias the results towards specific pathways \cite{Zuckerman2017}. Additionally, traditional WEMD simulations do not explicitly enhance sampling along orthogonal degrees of freedom (those not captured by the progress coordinates). In practice, this means that insufficient PC definitions can lead to poor sampling.”

      I don't understand Figure 3C. Could the authors instead show structures corresponding to each of the states in 3B, and maybe also a representative structure for pathways 1 and 2?

      We have remade Figure 3. We removed 3B and accompanying discussion as upon review we were not confident on the significance of the LPATH results where it pertains to the probability of intermediate states. We replaced 3B with a summary of the pathways 1 and 2 in regards to the Phe382 flip (which is the most contrasting difference).

      Why introduce S1 and DFG-inter? And why suppose that DFG-inter is what corresponds to the excited state seen by NMR?

      As a consequence of dropping the LPATH analysis, we also removed mentions to S1 as it further analysis made it hard to distinguish from DFG-in, For DFG-inter, we mention that conformation because (a) it is shared by both flipping mechanisms that we have found, and (b) it seems relevant for pharmacology, as it has been observed in other kinases such as Aurora B (PDB 2WTV), as Asp381 flipping before Phe382 creates space in the orthosteric kinase pocket which could be potentially targeted by an inhibitor.

      It would be nice to have error bars on the populations reported in Figure 3.

      Agreed, upon review we decided do drop the populations as we were not confident on the significance of the LPATH results where it pertains to the probability of intermediate states.

      I'm confused by the attempt to relate the relative probabilities of states to the 32 kca/mol barrier previously reported between the states. The barrier height should be related to the probability of a transition. The DFG-out state could be equiprobable with the DFG-in state and still have a 32 kcal/mol barrier separating them.

      Thanks for the correction, we agree with the reviewer and have amended the discussion to reflect this. Since we are starting our simulations in the DFG-in state, the probability of walkers arriving in DFG-out in our steady state WEMD simulations should (assuming proper sampling) represent the probability of the transition. We incorrectly associated the probability of the DFG-out state itself with the probability of the transition.

      How do the relative probabilities of the DFG-in/out states compare to experiments, like NMR?

      Previous NMR work has found the population of apo DFG in (PDB 6XR6) in solution to be around 88% for wild-type ABL1, and 6% for DFG out (PDB 6XR7). The remaining 6% represents post-DFG-out state (PDB 6XRG) where the activation loop has folded in near the hinge, which we did not simulate due to the computational cost associated with it. The same study reports the barrier height from DFG-in to DFG-out to be estimated at around 30 kcal/mol.

      (1) Conformational states dynamically populated by a kinase determine its function. Tao Xie et al., Science 370, eabc2754 (2020). DOI:10.1126/science.abc2754

      (we already have that in the text, just need to quote here)

      “Do the staggered and concerted DFG flip pathways mentioned correspond to pathways 1 and 2 in Figure 3B, or is that a concept from previous literature?”

      Yes, we have amended Figure 3B to be clearer. In previous literature both pathways have been observed [1], although not specifically defined.

      Source: Computational Study of the “DFG-Flip” Conformational Transition in c-Abl and c-Src Tyrosine Kinases. Yilin Meng, Yen-lin Lin, and Benoît Roux The Journal of Physical Chemistry B 2015 119 (4), 1443-1456 DOI: 10.1021/jp511792a

    5. eLife Assessment

      This work uses enhanced sampling molecular dynamics methods to generate potentially useful information about a conformational change (the DFG flip) that plays a key role in regulating kinase function and inhibitor binding. The focus of the work is on the mechanism of conformational change and how mutations affect the transition. The evidence supporting the conclusions is incomplete.

    6. Reviewer #1 (Public review):

      Summary:

      The authors used weighted ensemble enhanced sampling molecular dynamics (MD) to test the hypothesis that a double mutant of Abl favors the DFG-in state relative to the WT and therefore causes the drug resistance to imatinib.

      Strengths:

      The authors employed the state-of-the-art weighted ensemble MD simulations with three novel progress coordinates to explore the conformational changes the DFG motif of Abl kinase. The hypothesis regarding the double mutant's drug resistance is novel.

      Weaknesses:

      The study contains many uncertain aspects. A major revision is needed to strengthen the support for the conclusions.

      (1) Specifically, the authors need to define the DFG conformation using criteria accepted in the field, for example, see https://klifs.net/index.php.

      (2) Convergence needs to be demonstrated for estimating the population difference between different conformational states.

      (3) The DFG flip needs to be sampled several times to establish free energy difference.

      (4) The free energy plots do not appear to show an intermediate state as claimed.

      (5) The trajectory length of 7 ns in both Figure 2 and Figure 4 needs to be verified, as it is extremely short for a DFG flip that has a high free energy barrier.

      (6) The free energy scale (100 kT) appears to be one order of magnitude too large.

      (7) Setting the DFG-Asp to the protonated state is not justified, because in the DFG-in state, the DFG-Asp is clearly deprotonated.

      (8) Finally, the authors should discuss their work in the context of the enormous progress made in theoretical studies and mechanistic understanding of the conformational landscape of protein kinases in the last two decades, particularly with regard to the DFG flip.

    7. Reviewer #2 (Public review):

      Summary:

      This is a well-written manuscript on the mechanism of the DFG flip in kinases. This conformational change is important for the toggling of kinases between active (DFG-in) and inactive (DFG-out) states. The relative probabilities of these two states are also an important determinant of the affinity of inhibitors for a kinase. However, it is an extremely slow/rare conformational change, making it difficult to capture in simulations. The authors show that weighted ensemble simulations can capture the DFG flip and then delve into the mechanism of this conformational change and the effects of mutations.

      Strengths:

      The DFG flip is very hard to capture in simulations. Showing that this can be done with relatively little simulation by using enhanced sampling is a valuable contribution. The manuscript gives a nice description of the background for non-experts.

      Weaknesses:

      I was disappointed by the anecdotal approach to presenting the results. Molecular processes are stochastic and the authors have expertise in describing such processes. However, they chose to put most statistical analysis in the SI. The main text instead describes the order of events in single "representative" trajectories. The main text makes it sound like these were most selected as they were continuous trajectories from the weighted ensemble simulations. I would much rather hear a description of the highest probability pathway(s) with some quantification of how probable they are. That would give the reader a clear sense of how representative the events described are.

      I appreciated the discussion of the strengths/weaknesses of weighted ensemble simulations. Am I correct that this method doesn't do anything to explicitly enhance sampling along orthogonal degrees of freedom? Maybe a point worth mentioning if so.

      I don't understand Figure 3C. Could the authors instead show structures corresponding to each of the states in 3B, and maybe also a representative structure for pathways 1 and 2?

      Why introduce S1 and DFG-inter? And why suppose that DFG-inter is what corresponds to the excited state seen by NMR?

      It would be nice to have error bars on the populations reported in Figure 3.

      I'm confused by the attempt to relate the relative probabilities of states to the 32 kca/mol barrier previously reported between the states. The barrier height should be related to the probability of a transition. The DFG-out state could be equiprobable with the DFG-in state and still have a 32 kcal/mol barrier separating them.

      How do the relative probabilities of the DFG-in/out states compare to experiments, like NMR?

      Do the staggered and concerted DFG flip pathways mentioned correspond to pathways 1 and 2 in Figure 3B, or is that a concept from previous literature?

    1. eLife Assessment

      In this valuable study, the authors present traces of bone modification on ~1.8 million-year-old proboscidean remains from Tanzania, which they infer to be the earliest evidence for stone-tool-assisted megafaunal consumption by hominins. Challenging published claims, the authors argue that persistent megafaunal exploitation roughly coincided with the earliest Achulean tools. Notwithstanding the rich descriptive and spatial data, the behavioral inferences about hominin agency rely on traces (such as bone fracture patterns and spatial overlap) that are not unequivocal; the evidence presented to support the inferences thus remains incomplete. Given the implications of the timing and extent of hominin consumption of nutritious and energy-dense food resources, as well as of bone toolmaking, the findings of this study will be of interest to paleoanthropologists and other evolutionary biologists.

    2. Reviewer #1 (Public review):

      Domínguez-Rodrigo and colleagues make a moderately convincing case for habitual elephant butchery by Early Pleistocene hominins at Olduvai Gorge (Tanzania), ca. 1.8-1.7 million years ago. They present this at the site scale (the EAK locality, which they excavated), as well as across the penecontemporaneous landscape, analyzing a series of findspots that contain stone tools and large-mammal bones. The latter are primarily elephants, but giraffids and bovids were also butchered in a few localities. The authors claim that this is the earliest well-documented evidence for elephant butchery; doing so requires debunking other purported cases of elephant butchery in the literature, or in one case, reinterpreting elephant bone manipulation as being nutritional (fracturing to obtain marrow) rather than technological (to make bone tools). The authors' critical discussion of these cases may not be consensual, but it surely advances the scientific discourse. The authors conclude by suggesting that an evolutionary threshold was achieved at ca. 1.8 ma, whereby regular elephant consumption rich in fats and perhaps food surplus, more advanced extractive technology (the Acheulian toolkit), and larger human group size had coincided.

      The fieldwork and spatial statistics methods are presented in detail and are solid and helpful, especially the excellent description (all too rare in zooarchaeology papers) of bone conservation and preservation procedures. However, the methods of the zooarchaeological and taphonomic analysis - the core of the study - are peculiarly missing. Some of these are explained along the manuscript, but not in a standard Methods paragraph with suitable references and an explicit account of how the authors recorded bone-surface modifications and the mode of bone fragmentation. This seems more of a technical omission that can be easily fixed than a true shortcoming of the study. The results are detailed and clearly presented.

      By and large, the authors achieved their aims, showcasing recurring elephant butchery in 1.8-1.7 million-year-old archaeological contexts. Nevertheless, some ambiguity surrounds the evolutionary significance part. The authors emphasize the temporal and spatial correlation of (1) elephant butchery, (2) Acheulian toolkits, and (3) larger sites, but do not actually discuss how these elements may be causally related. Is it not possible that larger group size or the adoption of Acheulian technology have nothing to do with megafaunal exploitation? Alternative hypotheses exist, and at least, the authors should try to defend the causation, not just put forward the correlation. The only exception is briefly mentioning food surplus as a "significant advantage", but how exactly, in the absence of food-preservation technologies? Moreover, in a landscape full of aggressive scavengers, such excess carcass parts may become a death trap for hominins, not an advantage. I do think that demonstrating habitual butchery bears very significant implications for human evolution, but more effort should be invested in explaining how this might have worked.

      Overall, this is an interesting manuscript of broad interest that presents original data and interpretations from the Early Pleistocene archaeology of Olduvai Gorge. These observations and the authors' critical review of previously published evidence are an important contribution that will form the basis for building models of Early Pleistocene hominin adaptation.

    3. Reviewer #2 (Public review):

      The authors argue that the Emiliano Aguirre Korongo (EAK) assemblage from the base of Bed II at Olduvai Gorge shows systematic exploitation of elephants by hominins about 1.78 million years ago. They describe it as the earliest clear case of proboscidean butchery at Olduvai and link it to a larger behavioral shift from the Oldowan to the Acheulean.

      The paper includes detailed faunal and spatial data. The excavation and mapping methods appear to be careful, and the figures and tables effectively document the assemblage. The data presentation is strong, but the behavioral interpretation is not supported by the evidence.

      The claim for butchery is based mainly on the presence of green-bone fractures and the proximity of bones and stone artifacts. These observations do not prove human activity. Fractures of this kind can form naturally when bones break while still fresh, and spatial overlap can result from post-depositional processes. The studies cited to support these points, including work by Haynes and colleagues, explain that such traces alone are not diagnostic of butchery, but this paper presents them as if they were.

      The spatial analyses are technically correct, but their interpretation extends beyond what they can demonstrate. Clustering indicates proximity, not behavior. The claim that statistical results demonstrate a functional link between bones and artifacts is not justified. Other studies that use these methods combine them with direct modification evidence, which is lacking in this case.

      The discussion treats different bodies of evidence unevenly. Well-documented cut-marked specimens from Nyayanga and other sites are described as uncertain, while less direct evidence at EAK is treated as decisive. This selective approach weakens the argument and creates inconsistency in how evidence is judged.

      The broader evolutionary conclusions are not supported by the data. The paper presents EAK as marking the start of systematic megafaunal exploitation, but the evidence does not show this. The assemblage is described well, but the behavioral and evolutionary interpretations extend far beyond what can be demonstrated.

    1. eLife Assessment

      This study presents a valuable finding on mutations in ZNF217, ZNF703, and ZNF750 through 23 breast cancer samples alongside matched normal tissues in Kenyan breast cancer patients. The evidence supporting the claims of the authors is solid, yet the analysis of the manuscript lacks methodological transparency, statistical detail, and sufficient comparison with existing large-scale datasets. The work will be of interest to medical biologists and scientists working in the field of breast cancer.

    2. Reviewer #1 (Public review):

      Summary:

      This manuscript investigates mutations and expression patterns of zinc finger proteins in Kenyan breast cancer patients.

      Strengths:

      Whole-exome sequencing and RNA-seq were performed on 23 breast cancer samples alongside matched normal tissues in Kenyan breast cancer patients. The authors identified mutations in ZNF217, ZNF703, and ZNF750.

      Weaknesses:

      (1) Research scope:

      The results primarily focus on mutations in ZNF217, ZNF703, and ZNF750, with limited correlation analyses between mutations and gene expression. The rationale for focusing only on these genes is unclear. Given the availability of large breast cancer cohorts such as TCGA and METABRIC, the authors should compare their mutation profiles with these datasets. Beyond European and U.S. cohorts, sequencing data from multiple countries, including a recent Nigerian breast cancer study (doi: 10.1038/s41467-021-27079-w), should also be considered. Since whole-exome sequencing was performed, it is unclear why only four genes were highlighted and why comparisons to previous literature were not included.

      (2) Language and Style Issues:

      Several statements read somewhat 'unnaturally', and I strongly recommend proofreading.

      (3) Methods and Data Analysis Details:

      The methods section is vague, with general descriptions rather than specific details of data processing and analysis. The authors should provide:

      (a) Parameters used for trimming, mapping, and variant calling (rather than referencing another paper such as Tang et al. 2023).

      (b) Statistical methods for somatic mutation/SNP detection.

      (c) Details of RNA purification and RNA-seq library preparation.

      Without these details, the reproducibility of the study is limited.

      (4) Data Reporting:

      This study has the potential to provide a valuable resource for the field. However, data-sharing plans are unclear. The authors should:

      (a) deposit sequencing data in a public repository.

      (b) provide supplementary tables listing all detected mutations and all differentially expressed genes (DEGs).

      (c) clarify whether raw or adjusted p-values were used for DEG analysis.

      (d) perform DEG analyses stratified by breast cancer subtypes, since differential expression was observed by HER2 status, and some zinc finger proteins are known to be enriched in luminal subtypes.

      (5) Mutation Analysis:

      Visualizations of mutation distribution across protein domains would greatly strengthen interpretation. Comparing mutation distribution and frequency with published datasets would also contextualize the findings.

    3. Reviewer #2 (Public review):

      Summary:

      This work integrated the mutational landscape and expression profile of ZNF molecules in 23 Kenyan women with breast cancer.

      Strengths:

      The mutation landscape of ZNF217, ZNF703, and ZNF750 was comprehensively studied and correlated with tumor stage and HER2 status to highlight the clinical significance.

      Weaknesses:

      The current study design is relatively simple, and there is a limited cohort size, which is relatively small to reach significant findings. Thus, sample size enrichment, along with more analytic work, is needed.

      Targeted exploration of the ZNF family without emphasizing the reason or clinical significance hinders the overall significance of the entire work.

    4. Reviewer #3 (Public review):

      Summary:

      The authors aimed to define the somatic mutational landscape and transcriptomic expression of the ZNF217, ZNF703, and ZNF750 genes in breast cancers from Kenyan women and to investigate associations with clinicopathological features like HER2 status and cancer stage. They employed whole-exome and RNA-sequencing on 23 paired tumor-normal samples to achieve this.

      Strengths:

      (1) A major strength is the focus on a Kenyan cohort, addressing a critical gap in genomic studies of breast cancer, which are predominantly based on European or Asian populations.

      (2) The integration of DNA- and RNA-level data from the same patients provides a comprehensive view, linking genetic alterations to expression changes.

      Weaknesses:

      (1) The small cohort size (n=23) significantly limits the statistical power to detect associations between genetic features and clinical subgroups (e.g., HER2 status, stage), rendering the negative findings inconclusive.

      (2) The study is primarily descriptive. While it effectively catalogs mutations and expression changes, it does not include functional experiments to validate the biological impact of the identified alterations.

    1. eLife Assessment

      Clonal hematopoiesis of indeterminate potential (CHIP) is a known risk factor for coronary artery disease, though its precise role in disease progression continues to emerge. This study leverages valuable single-cell RNA data from patients with CHIP mutations and controls to predict key interactions between endothelial cells and monocytes. Using an AI prediction model, the authors identify druggable targets that mediate immune cell interactions in CHIP and provide solid evidence to support their findings.

    2. Reviewer #1 (Public review):

      Summary:

      Using single-cell RNA sequencing and bioinformatics approaches, the authors aimed to discover if and how cells carrying mutations common to clonal haematopoiesis were more adherent to endothelial cells.

      Strengths:

      (1) The authors used matched blood and adipose tissue samples from the same patients (with the exception of the control people) to conduct their analysis.

      (2) The use of bioinformatics and in-silico approaches helped to fast-track their aims to test specific inhibitors in their model cell adhesion system.

      Weaknesses:

      (1) The analysis was done on pooled cells; it would have been interesting to know if the same adhesion gene signatures were observed across the donors.

      (2) The adhesion assays were conducted under static conditions; shear flow adhesion experiments would have been better. Mixed cultures using cell trackers would have been even better.

      (3) In the intervention studies, the authors should have directly targeted the monocytes (not the endothelial cells) and should have also included DNMT3A mutant/KO cells to show specificity to TET2 CHIP.

    3. Reviewer #2 (Public review):

      Summary:

      The authors describe potential mechanisms underlying the changes in endothelial-monocyte interactions in patients with clonal hematopoiesis of indeterminate potential (CHIP), including reduced velocity and increased ligand interactions of CHIP-mutated monocytes. They use a combination of transcriptomics (some for the first time in these tissues in patients with CHIP), in silico analyses, and ex vivo approaches to outline the changes that occur in blood monocytes derived from patients with CHIP. These findings advance the current field, which has previously mostly used mice and/or has been focused on cancer outcomes. The authors identify distinct alterations in signaling downstream of DNTM3A or TET2 mutations, which further distinguish two major mutations that contribute to CHIP.

      Strengths:

      (1) Combinatorial transcriptomics was used to identify potential therapeutic targets, which is an important proof-of-concept for multiple fields.

      (2) The authors identify distinct ligand interactions downstream of TET2 and DNMT3A mutations.

      Weaknesses:

      (1) The authors extrapolate findings in adipose tissue in diabetic patients to vascular disease (ostensibly in the carotid or cardiac arteries), citing the difficulty of using tissue-matched samples. Broad-reaching conclusions need to be backed up in the relevant systems, considering how different endothelial cells in various vascular beds react. Considering these data were obtained with n=3 patients being sufficient to identify these changes, it seems that this can be performed (perhaps in silico) in the correct tissue.

      (2) The selection/exclusion criteria for the diabetes samples are not noted, and therefore, the relevant conclusions cannot be fully evaluated, nor is the source of adipose tissue stated.

      Appraisal:

      While authors describe how to as well as the technical feasibility of integrating a number of transcriptomic techniques, they do not seem to do so to produce highly compelling data or targets within this manuscript. The potential is there to drill down to mechanisms; however, the data gathered herein do not highlight novel targets. For example, CXCL2 and 3 are already shown to be differentially expressed in TET2 loss combined with LDL treatment in the macrophages of mice. Furthermore, these authors then show that in humans, the prototypical CXC chemokine, IL8 (which mice lack), is significantly higher in TET2-mutated patients (DOI: 10.1056/NEJMoa1701719). The authors should demonstrate the utility of their transcriptomics by identifying and testing novel targets and focusing on the proper disease states. This could easily be a deep dive into CHIP in adipose tissue in diabetic patients.

    1. eLife Assessment

      This important study presents a thoughtful design and characterization of chimeric influenza hemagglutinin (HA) head domains combining elements of distinct receptor-binding sites. The results provide convincing evidence that polyclonal cross-group responses to influenza A virus can be elicited by a single immunization. While the mechanistic basis of heterotrimer formation and immunodominance differences remains unclear, the authors provide new insights for protein design, vaccinology, and computational vaccine design.

    2. Reviewer #1 (Public review):

      Summary:

      The study by Castro et al. presents an interesting blueprint for designing influenza immunogens that can induce cross-group influenza-specific antibodies. The authors used a structure-based design to transplant receptor binding site (RBS) residues from H5 and H3 into an H1 scaffold. In addition, they assembled the transplanted structures as heterotrimers. They characterized the constructs structurally and used them to immunize mice to define ELISA binding and neutralizing antibodies (Abs) to different influenza strains.

      Strengths and Weaknesses:

      The authors succeeded in generating the different, correctly folded immunogens. The heterotrimers would benefit from more characterization: it remains unclear whether they are even formed or whether the sample is a mix of homotrimers and whether some combinations are more likely than others. While some of these questions are complex to answer, authors should at least confirm the presence of heterotrimers.

      While all constructs were able to elicit H1-specific Abs, different immunogens displayed differential ability to induce a response to the transplanted epitope. While H3-transplant resulted in H3-specific Abs, this was not the case for H5 or the heterotrimers. The importance of the finding is that authors are able to elicit polyclonal Abs neutralizing group 1 and group 2 influenza viruses with a single immunogen. A more in-depth discussion on why the H3-transplant but not the H5-transplant resulted in those specific Abs could be beneficial.

      Overall, the work is a proof of concept that H1-H3 chimeric proteins can be produced and an important first step towards computational vaccines, inducing Abs to multiple groups.

    3. Reviewer #2 (Public review):

      Summary:

      The manuscript from Castro et al describes the engineering of influenza hemagglutinin H1-based head domains that display receptor-binding-site residues from H5 and H3 HAs. The initial head-only chimeras were able to bind to FluA20, which recognizes the trimer interface, but did not bind well to H5 or H3-specific antibodies. Furthermore, these constructs were not particularly stable in solution as assessed by low melting temperatures. Crystal structures of each chimeric head in complex with FluA20 were obtained, demonstrating that the constructs could adopt the intended conformation upon stabilization with FluA20. The authors next placed the chimeric heads onto an H1 stalk to create homotrimeric HA ectodomains, as well as a heterotrimeric HA ectodomain. The homotrimeric chimeric HAs were better behaved in solution, and H3- and H5-specific antibodies bound to these trimers with affinities that were only about 10-fold weaker compared to their respective wildtype HAs. The heterotrimeric chimeric HA showed transient stability in solution and could bind more weakly to the H3- and H5-specific antibodies. Mice immunized with these trimers elicited cross-reactive binding antibodies, although the cross-neutralizing titers were less robust. The most positive result was that the H1H3 trimer was able to elicit sera that neutralized both H1 and H3 viruses.

      Strengths:

      The manuscript is very well-written with clear figures. The biophysical and structural characterizations of the antigen were performed to a high standard. The engineering approach is novel, and the results should provide a basis for further iteration and improvement of RBS transplantation.

      Weaknesses:

      The main limitation of the study is that there are no statistical tests performed for the immunogenicity results shown in Figures 4 and 5. It is therefore unknown whether the differences observed are statistically significant. Additionally, fits of the BLI data in Figure 3 to the binding model used to determine the binding constants should be shown.

    1. eLife Assessment

      This fundamental work reveals that the accessibility of the unstructured C-terminal tails of α- and β-tubulins differs with the state of the microtubule lattice. Their accessibility increases with the expansion of the lattice induced by GTP and certain MAPs, which can then dictate the subsequent interactions between MAPs and microtubules, and post-translational modifications of tubulin tails. The evidence supporting the conclusion is compelling, although the characterisation of the probes does not answer whether they directly affect the lattice or expose the C-terminal tails of tubulin. This work will be of great interest to the cytoskeleton field.

    2. Reviewer #1 (Public review):

      Summary:

      This is a careful and comprehensive study demonstrating that effector-dependent conformational switching of the MT lattice from compacted to expanded deploys the alpha tubulin C-terminal tails so as to enhance their ability to bind interactors.

      Strengths:

      The authors use 3 different sensors for the exposure of the alpha CTTs. They show that all 3 sensors report exposure of the alpha CTTs when the lattice is expanded by GMPCPP, or KIF1C, or a hydrolysis-deficient tubulin. They demonstrate that expansion-dependent exposure of the alpha CTTs works in tissue culture cells as well as in vitro.

      Weaknesses:

      There is no information on the status of the beta tubulin CTTs. The study is done with mixed isotype microtubules, both in cells and in vitro. It remains unclear whether all the alpha tubulins in a mixed isotype microtubule lattice behave equivalently, or whether the effect is tubulin isotype-dependent. It remains unclear whether local binding of effectors can locally expand the lattice and locally expose the alpha CTTs.

      Appraisal:

      The authors have gone to considerable lengths to test their hypothesis that microtubule expansion favours deployment of the alpha tubulin C-terminal tail, allowing its interactors, including detyrosinase enzymes, to bind. There is a real prospect that this will change thinking in the field. One very interesting possibility, touched on by the authors, is that the requirement for MAP7 to engage kinesin with the MT might include a direct effect of MAP7 on lattice expansion.

      Impact:

      The possibility that the interactions of MAPS and motors with a particular MT or region feed forward to determine its future interaction patterns is made much more real. Genuinely exciting.

    3. Reviewer #2 (Public review):

      The unstructured α- and β-tubulin C-terminal tails (CTTs), which differ between tubulin isoforms, extend from the surface of the microtubule, are post-translationally modified, and help regulate the function of MAPs and motors. Their dynamics and extent of interactions with the microtubule lattice are not well understood. Hotta et al. explore this using a set of three distinct probes that bind to the CTTs of tyrosinated (native) α-tubulin. Under normal cellular conditions, these probes associate with microtubules only to a limited extent, but this binding can be enhanced by various manipulations thought to alter the tubulin lattice conformation (expanded or compact). These include small-molecule treatment (Taxol), changes in nucleotide state, and the binding of microtubule-associated proteins and motors. Overall, the authors conclude that microtubule lattice "expanders" promote probe binding, suggesting that the CTT is generally more accessible under these conditions. Consistent with this, detyrosination is enhanced. Mechanistically, molecular dynamics simulations indicate that the CTT may interact with the microtubule lattice at several sites, and that these interactions are affected by the tubulin nucleotide state.

      Strengths:

      Key strengths of the work include the use of three distinct probes that yield broadly consistent findings, and a wide variety of experimental manipulations (drugs, motors, MAPs) that collectively support the authors' conclusions, alongside a careful quantitative approach.

      Weaknesses:

      The challenges of studying the dynamics of a short, intrinsically disordered protein region within the complex environment of the cellular microtubule lattice, amid numerous other binders and regulators, should not be understated. While it is very plausible that the probes report on CTT accessibility as proposed, the possibility of confounding factors (e.g., effects on MAP or motor binding) cannot be ruled out. Sensitivity to the expression level clearly introduces additional complications. Likewise, for each individual "expander" or "compactor" manipulation, one must consider indirect consequences (e.g., masking of binding sites) in addition to direct effects on the lattice; however, this risk is mitigated by the collective observations all pointing in the same direction.

      The discussion does a good job of placing the findings in context and acknowledging relevant caveats and limitations. Overall, this study introduces an interesting and provocative concept, well supported by experimental data, and provides a strong foundation for future work. This will be a valuable contribution to the field.

    4. Reviewer #3 (Public review):

      Summary:

      In this study, the authors investigate how the structural state of the microtubule lattice influences the accessibility of the α-tubulin C-terminal tail (CTT). By developing and applying new biosensors, they reveal that the tyrosinated CTT is largely inaccessible under normal conditions but becomes more accessible upon changes to the tubulin conformational state induced by taxol treatment, MAP expression, or GTP-hydrolysis-deficient tubulin. The combination of live imaging, biochemical assays, and simulations suggests that the lattice conformation regulates the exposure of the CTT, providing a potential mechanism for modulating interactions with microtubule-associated proteins. The work addresses a highly topical question in the microtubule field and proposes a new conceptual link between lattice spacing and tail accessibility for tubulin post-translational modification.

      Strengths:

      (1) The study targets a highly relevant and emerging topic-the structural plasticity of the microtubule lattice and its regulatory implications.

      (2) The biosensor design represents a methodological advance, enabling direct visualization of CTT accessibility in living cells.

      (3) Integration of imaging, biochemical assays, and simulations provides a multi-scale perspective on lattice regulation.

      (4) The conceptual framework proposed lattice conformation as a determinant of post-translational modification accessibility is novel and potentially impactful for understanding microtubule regulation.

      Weaknesses:

      There are a number of weaknesses in the paper, many of which can be addressed textually. Some of the supporting evidence is preliminary and would benefit from additional experimental validation and clearer presentation before the conclusions can be considered fully supported.

      In particular, the authors should directly test in vitro whether Taxol addition can induce lattice exchange (see comments below).

    1. eLife Assessment

      This valuable study presents EM structures of new conformational states of the LONP1 AAA+ protease in conjunction with the mitochondrial protein substrates (StAR, TFAM), along with biochemical functional assays. The EM structures revealed new conformational states in a closed configuration. The structures and associated functional results are solid. However, a notable weakness is the absence of substrates found threaded through the ATPase pores.

    2. Reviewer #1 (Public review):

      The remodeling of macromolecular substrates by AAA+ proteins is an essential aspect of life at the molecular scale, and understanding conserved and divergent features of substrate recognition across the AAA+ protein family remains an ongoing area of research. AAA+ proteins are highly modular and typically combine N-terminal recognition domain(s) with ATPase domain(s) to recognize and unfold some macromolecular target, such as dsDNA or protein substrates. This can be coupled to activity by additional C-terminal domains that further modify the substrate, such as a protease domain that hydrolyzes the extended, unstructured protein chain that emerges from the ATPase domain during substrate processing.

      This work focuses on one such AAA+ protease, LONP1. LONP1 is an essential AAA+ protein involved in mitochondrial proteostasis, and disruption of its function in vivo has serious developmental consequences. This work explores the processing of two new mitochondrial protein substrates (StAR, TFAM) by LONP1 and presents new conformational states of LONP1 with closed configurations and no substrate threaded through the ATPase pores. The quality of the reconstructions and models is very good. Critically, one of these states (LONP1C3) has a completely occluded ATPase pore from the N-terminal side of the ATPase ring, where three of the six NTDs/CCDs interact tightly to form a C3-symmetric substructure preventing substrate ingress. The authors note several key interactions between amino acids forming these substructures, and perform ATPase assays on mutant LONP1 proteins to determine hydrolysis rates in the absence or presence of substrate. These patterns are recapitulated in casein disassembly assays as well. Based on these results, the authors note that the mutants have differential effects depending on the "foldedness" of the substrate, and surmise that disruption of the C3-symmetric substructure from the EM experiments is responsible for these effects - an intriguing idea. In addition to the C3 state, the authors observe additional intermediates which they place on the same conformational coordinate. One such structure is the LONP1C2 state with two splits, hinting at a conformational transition from LONP1C3 to the closed/active state.

      Taken together, these results form the basis of an interesting story. However, I feel that more experimentation and analysis are needed to address several key points, or that the conclusions should be toned down. First and foremost, I note that while the hypothesis that the LONP1C3 state is a critical step in recognizing substrate "foldedness" is an interesting one, the claim is made solely on the basis of biochemical experiments with mutant LONP1, and that there is no substrate density associated with LONP1C3. In the absence of substrate density and/or structural data for the mutants, this seems like a very strong claim. More generally, the manuscript invokes the conformational landscape of LONP1C3 in multiple instances, but no such landscape is presented to show how LONP1C3 and the other states are quantitatively linked. Finally, I note the prevalence of ADP-only active sites in these intermediates, and am concerned that this might be related to the depletion of ATP under the on-grid reaction conditions. The inclusion of an ATP regeneration system may be a useful way to ensure that ATP/ADP concentrations are more physiological and that excessive ADP will not bias the conformations of the ring systems.

      In summary, I believe this manuscript is exciting but would benefit from a paring back of claims, or the inclusion of some additional data to fill in some of the conceptual gaps outlined above.

    3. Reviewer #2 (Public review):

      This paper by Mindrebo et al. reveals multiple novel conformations of the human LONP1 protease. AAA+ proteases, like LONP1, are needed for maintaining proteostasis in cells and organelles. While structures of fully active (closed) and fully inactive (open) conformations of LONP1 are now established, the dynamics between these states and how changes in conformations may contribute to or be triggered by substrates and nucleotides are unclear. In this work, the authors characterize a novel C3-symmetric state of LONP1 bound to TFAM (a native substrate), suggesting that this C3-state is an intermediate in the open to closed cycle, and make mutations to test this model biochemically. Deeper inspection of their TFAM-bound LONP1 dataset reveals additional conformations, including a C2-symmetric and two asymmetric intermediates. All these conformations are synthesized by the authors to propose a model for how LONP1 transitions from an inactive OFF state to an active ENZ state. There are clear, interesting structural aspects to this work, revealing alternate conformations to shed light on the dynamics of LONP1. However, some of the conclusions interpret well beyond the scope of the experiments shown, and this is discussed below.

      Overall, there are two major comments with the work as written that, if addressed, would make the results more compelling. First, the order of events and existence of intermediate states is primarily from static structural snapshots and fitting these structures to a possible mechanism. It would be ideal to have some biochemical or kinetic data supporting these steps and the existence of these intermediates. For example, the model is that the C3-state is an ADP-bound intermediate that blocks access and acts as a checkpoint for progression to the ENZ state of LONP1. The major evidence for this comes from a mutation (D449A) that fails to degrade TFAM as well as StAR or casein, which is taken as evidence that failure to form the C3 state reduces the ability to degrade more 'folded' substrates. A prediction of this model would be that destabilizing TFAM through mutation should improve D449A degradation. Ideally, other measures of conformational changes, such as FRET or HDX-MS, could be used to visualize this C3-state in unmutated LONP1 during the process of substrate engagement and degradation. At a minimum, using ATP hydrolysis as a proxy for forming the ENZ state and the assumption that different substrates will differentially promote formation of the C3-state means that measuring ATP hydrolysis of wt LONP1 with different substrates will be informative.

      The second major comment is that the primary evidence for the importance of the C3 state is a mutation (D449A) that, based on the cryoEM structure, is incompatible with this conformation but should not affect any other state. A concern that arises is whether this mutation is doing more than simply destabilizing the C3 state and affecting substrate recognition/enzymatic activity in some other manner. To address this point, the authors could perform cryoEM characterization of the D449A mutant, which should show reduced or no presence of the C3-state, but still an intact ability to form the closed ENZ state.

    4. Reviewer #3 (Public review):

      Summary:

      The AAA+ protease LON1P is a central component of mitochondrial protein quality control and has crucial functions in diverse processes. Cryo-EM structures of LON1P defined inactive and substrate-processing active states. Here, the authors determined multiple new LON1P structural states by cryo-EM in the presence of diverse substrates. The structures are defined as on-pathway intermediates to LON1P activation. A C3-symmetry state is suggested to function as a checkpoint to scan for LON1P substrates and link correct substrate selection to LON1P activation.

      Strengths:

      The determination of multiple structures provides relevant information on substrate-triggered activation of LON1P. The authors support structural data by biochemical analysis of structure-based mutants.

      Weaknesses:

      How substrate selection is achieved remains elusive, also because substrates are not detectable in the diverse structures. It also remains in parts unclear whether mutant phenotypes can be specifically linked to a single structural state (C3). Some mutant phenotypes appear complex and do not seem to be in line with the model proposed.

    1. eLife Assessment

      The manuscript concerns a fundamental and controversial question in Trypanosoma brucei biology and the parasite life cycle, providing further evidence that slender bloodstream forms can indeed infect Tsetse flies. The study is solid in design and execution, and addresses several criticisms made of the authors' earlier work. Nevertheless, some of the main conclusions are only partially supported: one issue is how, precisely, a "slender" bloodstream form is defined, and discrepancies with some results from other laboratories remain unexplained.

    2. Reviewer #1 (Public review):

      Summary:

      This work provides evidence that slender T. brucei can initiate and complete cyclical development in Glossina morsitans without GlcNAc supplementation, in both sexes, and importantly in non-teneral flies, including salivary-gland infections.

      Comparative transcriptomics show early divergence between slender- and stumpy-initiated differentiation (distinct GO enrichments), with convergence by ~72 h, supporting an alternative pathway into the procyclic differentiation program.

      The work addresses key methodological criticisms of earlier studies and supports the hypothesis that slender forms may contribute to transmission at low parasitaemia.

      Strengths:

      (1) Directly tackles prior concerns (no GlcNAc, both sexes, non-teneral flies) with positive infections through to the salivary glands.

      (2) Transcriptomic time course adds some mechanistic depth.

      (3) Clear relevance to the "transmission paradox"; advances an important debate in the field.

      Weaknesses:

      (1) Discrepancy with Ngoune et al. (2025) remains unresolved; no head-to-head control for colony/blood source or microbiome differences that could influence vector competence.

      (2) Lacks in vivo feeding validation (e.g., infecting flies directly on parasitaemic mice) to strengthen ecological relevance.

      (3) Mechanistic inferences are largely correlative (although not requested, there is no functional validation of genes or pathways emerging from the transcriptomics).

      (4) Reliance on a single parasite clone (AnTat 1.1) and one vector species limits external validity.

    3. Reviewer #2 (Public review):

      Summary:

      This paper is an exciting follow-up to two recent publications in eLife: one from the same lab, reporting that slender forms can successfully infect tsetse flies (Schuster, S et al., 2021), and another independent study claiming the opposite (Ngoune, TMJ et al., 2025). Here, the authors address four criticisms raised against their original work: the influence of N-acetyl-glucosamine (NAG), the use of teneral and male flies, and whether slender forms bypass the stumpy stage before becoming procyclic forms.

      Strengths:

      We applaud the authors' efforts in undertaking these experiments and contributing to a better understanding of the T. brucei life cycle. The paper is well-written and the figures are clear.

      Weaknesses:

      We identified several major points that deserve attention.

      (1) What is a slender form? Slender-to-stumpy differentiation is a multi-step process, and most of these steps unfortunately lack molecular markers (Larcombe et al, 2023). In this paper, it is essential that the authors explicitly define slender forms. Which parameters were used? It is implicit that slender forms are replicative and GFP::PAD1-negative. Isn't it possible that some GFP::PAD1-negative cells were already transitioning toward stumpy forms, but not yet expressing the reporter? Transcriptomically, these would be early transitional cells that, upon exposure to "tsetse conditions" (in vitro or in vivo), could differentiate into PCF through an alternative pathway, potentially bypassing the stumpy stage (as suggested in Figure 4). Given the limited knowledge of early molecular signatures of differentiation, we cannot exclude the possibility that the slender forms used here included early differentiating cells. We suggest:

      1.1 Testing the commitment of slender forms (e.g., using the plating assay in Larcombe et al., 2023), assessing cell-cycle profile, and other parameters that define slender forms.

      1.2 In the Discussion, acknowledging the uncertainty of "what is a slender?" and being explicit about the parameters and assumptions.

      1.3 Clarifying in the Materials and Methods how cultures were maintained in the 3-4 days prior to tsetse infections, including daily cell densities. Ideally, provide information on GFP expression, cell cycle, and morphology. While this will not fully resolve the concern, it will allow future reinterpretation of the data when early molecular events are better understood.

      (2) Figure 1: This analysis lacks a positive control to confirm that NAG is working as expected. It would strengthen the paper if the authors showed that NAG improves stumpy infection. Once confirmed, the authors could discuss possible differences in the tsetse immune response to slender vs. stumpy forms to explain the absence of an effect on slender infections.

      (3) Figure 2. To conclude that teneral flies are less infected than non-teneral flies, data from Figures 1 and 2 must be directly comparable. Were these experiments performed simultaneously? Please clarify in the figure legends. Moreover, the non-teneral flies here are still relatively young (6-7 days old), limiting comparisons with Ngoune, TMJ et al. 2025, where flies were 2-3 weeks old.

      (4) Figure 3. The PCA plot (A) appears to suggest the opposite of the authors' interpretation: slender differentiation seems to proceed through a transcriptome closer to stumpy profiles. Plotting DEG numbers (panel C) is informative, but how were paired conditions selected? Besides, plotting of the number of DEGs between consecutive time points within and between parasite types is also necessary. There may also be better computational tools to assess temporal relationships. Finally, how does PAD1 transcript abundance change over time in both populations? It would also be important to depict the upregulation of procyclic-specific genes.

      (5) Could methylcellulose in the medium sensitize parasites to QS-signal, leading to more frequent and/or earlier differentiation, despite low densities? If so, cultures with vs. without methylcellulose might yield different proportions of early-differentiating (yet GFP-negative) parasites. This could explain discrepancies between the Engstler and Rotureau labs despite using the same strain. The field would benefit from reciprocal testing of culture conditions. Alternatively, the authors could compare infectivity and transcriptomes of their slender forms under three conditions: (i) in vitro with methylcellulose, (ii) in vitro without methylcellulose, and (iii) directly from mouse blood.

    1. eLife Assessment

      The authors present a set of wrappers around previously developed software and machine-learning toolkits, and demonstrate their use in identifying endogenous sterols binding to a GPCR. The resulting pipeline is potentially useful for molecular pharmacology researchers due to its accessibility and ease of use. However, the evidence supporting the GPCR-related findings remains incomplete, as the machine-learning model shows indications of overfitting, and no direct ligand-binding assays are provided for validation.

    2. Reviewer #1 (Public review):

      This is a re-review following an author revision. I will go point-by-point in response to my original critiques and the authors' responses. I appreciate the authors taking the time to thoughtfully respond to the reviewer critiques.

      Query 1. Based on the authors' description of their contribution to the algorithm design, it sounds like a hyperparameter search wrapped around existing software tools. I think that the use of their own language to describe these modules is confusing to potential users as well as unintentionally hides the contributions of the original LigBuilder developers. The authors should just explain the protocol plainly using language that refers specifically to the established software tools. Whether they use LigBuilder or something else, at the end of the day the description is a protocol for a specific use of an existing software rather than the creation of a new toolkit.

      Query 2. I see. Correct me if I am mistaken, but it seems as though the authors are proposing using the Authenticator to identify the best distributions of compounds based on an in silico oracle (in this case, Vina score), and train to discriminate them. This is similar to training QSAR models to predict docking scores, such as in the manuscript I shared during the first round of review. In principle, one could perform this in successive rounds to create molecules that are increasingly composed of features that yield higher docking scores. This is an established idea that the authors demonstrate in a narrow context, but it also raises concern that one is just enriching for compounds with e.g., an abundance of hydrogen bond donors and acceptors. Regarding points (4) and (5), it is unclear to me how the authors perform train/test splits on unlabeled data with supervised machine learning approaches in this setting. This seems akin to a Y-scramble sanity check. Finally, regarding the discussion on the use of experimental data or FEP calculations for the determination of HABs and LABs, I appreciate the authors' point; however, the concern here is that in the absence of any true oracle the models will just learn to identify and/or generate compounds that exploit limitations of docking scores. Again, please correct me if I am mistaken. It is unclear to me how this advances previous literature in CADD outside of the specific context of incorporating some ideas into a GPCR-Gprotein framework.

      Query 3. The authors mention that the hyperparameters for the ML models are just the package defaults in the absence of specification by the user. I would be helpful to know specifically what the the hyperparameters were for the benchmarks in this study; however, I think a deeper concern is still that these models are almost certainly far overparameterized given the limited training data used for the models. It is unclear why the authors did not just build a random forest classifier to discriminate their HABs and LABs using ligand- or protein-ligand interaction fingerprints or related ideas.

      Query 4. It is good, and expected, that increasing the fraction of the training set size in a random split validation all the way to 100% would allow the model to perfectly discriminate HABs and LABs. This does not demonstrate that the model has significant enrichment in prospective screening, particularly compared to simpler methods. The concern remains that these models are overparameterized and insufficiently validated. The authors did not perform any scaffold splits or other out-of-distribution analysis.

      Query 5. The authors contend that Gcoupler uniquely enables training models when data is scarce and ultra-large screening libraries are unavailable. Today, it is rather straightforward to dock a minimum of thousands of compounds. Using tools such as QuickVina2-GPU (https://pubs.acs.org/doi/10.1021/acs.jcim.2c01504), it is possible to quite readily dock millions in a day with a single GPU and obtain the AutoDock Vina score. GPU-acclerated Vina has been combined with cavity detection tools likely multiple times, including here (https://arxiv.org/abs/2506.20043). There are multiple cavity detection tools, including the ones the authors use in their protocol.

      Query 6. The authors contend that the simulations are converged, but they elected not to demonstrate stability in the predicting MM/GBSA binding energies with block averaging across the trajectory. This could have been done through the existing trajectories without additional simulation.

    3. Reviewer #1 (Public review):

      This is a re-review following an author revision. I will go point-by-point in response to my original critiques and the authors' responses. I appreciate the authors taking the time to thoughtfully respond to the reviewer critiques.

      Query 1. Based on the authors' description of their contribution to the algorithm design, it sounds like a hyperparameter search wrapped around existing software tools. I think that the use of their own language to describe these modules is confusing to potential users as well as unintentionally hides the contributions of the original LigBuilder developers. The authors should just explain the protocol plainly using language that refers specifically to the established software tools. Whether they use LigBuilder or something else, at the end of the day the description is a protocol for a specific use of an existing software rather than the creation of a new toolkit.

      Query 2. I see. Correct me if I am mistaken, but it seems as though the authors are proposing using the Authenticator to identify the best distributions of compounds based on an in silico oracle (in this case, Vina score), and train to discriminate them. This is similar to training QSAR models to predict docking scores, such as in the manuscript I shared during the first round of review. In principle, one could perform this in successive rounds to create molecules that are increasingly composed of features that yield higher docking scores. This is an established idea that the authors demonstrate in a narrow context, but it also raises concern that one is just enriching for compounds with e.g., an abundance of hydrogen bond donors and acceptors. Regarding points (4) and (5), it is unclear to me how the authors perform train/test splits on unlabeled data with supervised machine learning approaches in this setting. This seems akin to a Y-scramble sanity check. Finally, regarding the discussion on the use of experimental data or FEP calculations for the determination of HABs and LABs, I appreciate the authors' point; however, the concern here is that in the absence of any true oracle the models will just learn to identify and/or generate compounds that exploit limitations of docking scores. Again, please correct me if I am mistaken. It is unclear to me how this advances previous literature in CADD outside of the specific context of incorporating some ideas into a GPCR-Gprotein framework.

      Query 3. The authors mention that the hyperparameters for the ML models are just the package defaults in the absence of specification by the user. I would be helpful to know specifically what the the hyperparameters were for the benchmarks in this study; however, I think a deeper concern is still that these models are almost certainly far overparameterized given the limited training data used for the models. It is unclear why the authors did not just build a random forest classifier to discriminate their HABs and LABs using ligand- or protein-ligand interaction fingerprints or related ideas.

      Query 4. It is good, and expected, that increasing the fraction of the training set size in a random split validation all the way to 100% would allow the model to perfectly discriminate HABs and LABs. This does not demonstrate that the model has significant enrichment in prospective screening, particularly compared to simpler methods. The concern remains that these models are overparameterized and insufficiently validated. The authors did not perform any scaffold splits or other out-of-distribution analysis.

      Query 5. The authors contend that Gcoupler uniquely enables training models when data is scarce and ultra-large screening libraries are unavailable. Today, it is rather straightforward to dock a minimum of thousands of compounds. Using tools such as QuickVina2-GPU (https://pubs.acs.org/doi/10.1021/acs.jcim.2c01504), it is possible to quite readily dock millions in a day with a single GPU and obtain the AutoDock Vina score. GPU-acclerated Vina has been combined with cavity detection tools likely multiple times, including here (https://arxiv.org/abs/2506.20043). There are multiple cavity detection tools, including the ones the authors use in their protocol.

      Query 6. The authors contend that the simulations are converged, but they elected not to demonstrate stability in the predicting MM/GBSA binding energies with block averaging across the trajectory. This could have been done through the existing trajectories without additional simulation.

    4. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary

      Query: In this manuscript, the authors introduce Gcoupler, a Python-based computational pipeline designed to identify endogenous intracellular metabolites that function as allosteric modulators at the G protein-coupled receptor (GPCR) - Gα protein interface. Gcoupler is comprised of four modules:

      I. Synthesizer - identifies protein cavities and generates synthetic ligands using LigBuilder3

      II. Authenticator - classifies ligands into high-affinity binders (HABs) and low-affinity binders (LABs) based on AutoDock Vina binding energies

      III. Generator - trains graph neural network (GNN) models (GCM, GCN, AFP, GAT) to predict binding affinity using synthetic ligands

      IV. BioRanker - prioritizes ligands based on statistical and bioactivity data

      The authors apply Gcoupler to study the Ste2p-Gpa1p interface in yeast, identifying sterols such as zymosterol (ZST) and lanosterol (LST) as modulators of GPCR signaling. Our review will focus on the computational aspects of the work. Overall, we found the Gcoupler approach interesting and potentially valuable, but we have several concerns with the methods and validation that need to be addressed prior to publication/dissemination.

      We express our gratitude to Reviewer #1 for their concise summary and commendation of our work. We sincerely apologize for the lack of sufficient detail in summarizing the underlying methods employed in Gcoupler, as well as its subsequent experimental validations using yeast, human cell lines, and primary rat cardiomyocyte-based assays.

      We wish to state that substantial improvements have been made in the revised manuscript, every section has been elaborated upon to enhance clarity. Please refer to the point-by-point response below and the revised manuscript.

      Query: (1) The exact algorithmic advancement of the Synthesizer beyond being some type of application wrapper around LigBuilder is unclear. Is the grow-link approach mentioned in the methods already a component of LigBuilder, or is it custom? If it is custom, what does it do? Is the API for custom optimization routines new with the Synthesizer, or is this a component of LigBuilder? Is the genetic algorithm novel or already an existing software implementation? Is the cavity detection tool a component of LigBuilder or novel in some way? Is the fragment library utilized in the Synthesizer the default fragment library in LigBuilder, or has it been customized? Are there rules that dictate how molecule growth can occur? The scientific contribution of the Synthesizer is unclear. If there has not been any new methodological development, then it may be more appropriate to just refer to this part of the algorithm as an application layer for LigBuilder.

      We appreciate Reviewer #1's constructive suggestion. We wish to emphasize that

      (1) The LigBuilder software comprises various modules designed for distinct functions. The Synthesizer in Gcoupler strategically utilizes two of these modules: "CAVITY" for binding site detection and "BUILD" for de novo ligand design.

      (2) While both modules are integral to LigBuilder, the Synthesizer plays a crucial role in enabling their targeted, automated, and context-aware application for GPCR drug discovery.

      (3) The CAVITY module is a structure-based protein binding site detection program, which the Synthesizer employs for identifying ligand binding sites on the protein surface.

      (4) The Synthesizer also leverages the BUILD module for constructing molecules tailored to the target protein, implementing a fragment-based design strategy using its integrated fragment library.

      (5) The GROW and LINK methods represent two independent approaches encompassed within the aforementioned BUILD module.

      Author response image 1.

      Schematic representation of the key strategy used in the Synthesizer module of Gcoupler.

      Our manuscript details the "grow-link" hybrid approach, which was implemented using a genetic algorithm through the following stages:

      (1) Initial population generation based on a seed structure via the GROW method.

      (2) Selection of "parent" molecules from the current population for inclusion in the mating pool using the LINK method.

      (3) Transfer of "elite" molecules from the current population to the new population.

      (4) Population expansion through structural manipulations (mutation, deletion, and crossover) applied to molecules within the mating pool.

      Please note, the outcome of this process is not fixed, as it is highly dependent on the target cavity topology and the constraint parameters employed for population evaluation. Synthesizer customizes generational cycles and optimization parameters based on cavity-specific constraints, with the objective of either generating a specified number of compounds or comprehensively exploring chemical diversity against a given cavity topology.

      While these components are integral to LigBuilder, Synthesizer's innovation lies

      (1) in its programmatic integration and dynamic adjustment of these modules.

      (2) Synthesizer distinguishes itself not by reinventing these algorithms, but by their automated coordination, fine-tuning, and integration within a cavity-specific framework.

      (3) It dynamically modifies generation parameters according to cavity topology and druggability constraints, a capability not inherently supported by LigBuilder.

      (4) This renders Synthesizer particularly valuable in practical scenarios where manual optimization is either inefficient or impractical.

      In summary, Synthesizer offers researchers a streamlined interface, abstracting the technical complexities of LigBuilder and thereby enabling more accessible and reproducible ligand generation pipelines, especially for individuals with limited experience in structural or cheminformatics tools.

      Query: (2) The use of AutoDock Vina binding energy scores to classify ligands into HABs and LABs is problematic. AutoDock Vina's energy function is primarily tuned for pose prediction and displays highly system-dependent affinity ranking capabilities. Moreover, the HAB/LAB thresholds of -7 kcal/mol or -8 kcal/mol lack justification. Were these arbitrarily selected cutoffs, or was benchmarking performed to identify appropriate cutoffs? It seems like these thresholds should be determined by calibrating the docking scores with experimental binding data (e.g., known binders with measured affinities) or through re-scoring molecules with a rigorous alchemical free energy approach.

      We again express our gratitude to Reviewer #1 for these inquiries. We sincerely apologize for the lack of sufficient detail in the original version of the manuscript. In the revised manuscript, we have ensured the inclusion of a detailed rationale for every threshold utilized to prioritize high-affinity binders. Please refer to the comprehensive explanation below, as well as the revised manuscript, for further details.

      We would like to clarify that:

      (1) The Authenticator module is not solely reliant on absolute binding energy values for classification. Instead, it calculates binding energies for all generated compounds and applies a statistical decision-making layer to define HAB and LAB classes.

      (2) Rather than using fixed thresholds, the module employs distribution-based methods, such as the Empirical Cumulative Distribution Function (ECDF), to assess the overall energy landscape of the compound set. We then applied multiple statistical tests to evaluate the HAB and LAB distributions and determine an optimal, data-specific cutoff that balances class sizes and minimizes overlap.

      (3) This adaptive approach avoids rigid thresholds and instead ensures context-sensitive classification, with safeguards in place to maintain adequate representation of both classes for downstream model training, and in this way, the framework prioritizes robust statistical reasoning over arbitrary energy cutoffs and aims to reduce the risks associated with direct reliance on Vina scores alone.

      (4) To assess the necessity and effectiveness of the Authenticator module, we conducted a benchmarking analysis where we deliberately omitted the HAB and LAB class labels, treating the compound pool as a heterogeneous, unlabeled dataset. We then performed random train-test splits using the Synthesizer-generated compounds and trained independent models.

      (5) The results from this approach demonstrated notably poorer model performance, indicating that arbitrary or unstructured data partitioning does not effectively capture the underlying affinity patterns. These experiments highlight the importance of using the statistical framework within the Authenticator module to establish meaningful, data-driven thresholds for distinguishing High- and Low-Affinity Binders. The cutoff values are thus not arbitrary but emerge from a systematic benchmarking and validation process tailored to each dataset.

      Please note: While calibrating docking scores with experimental binding affinities or using rigorous methods like alchemical free energy calculations can improve precision, these approaches are often computationally intensive and reliant on the availability of high-quality experimental data, a major limitation in many real-world screening scenarios.

      In summary, the primary goal of Gcoupler is to enable fast, scalable, and broadly accessible screening, particularly for cases where experimental data is sparse or unavailable. Incorporating such resource-heavy methods would not only significantly increase computational overhead but also undermine the framework’s intended usability and efficiency for large-scale applications. Instead, our workflow relies on statistically robust, data-driven classification methods that balance speed, generalizability, and practical feasibility.

      Query: (3) Neither the Results nor Methods sections provide information on how the GNNs were trained in this study. Details such as node features, edge attributes, standardization, pooling, activation functions, layers, dropout, etc., should all be described in detail. The training protocol should also be described, including loss functions, independent monitoring and early stopping criteria, learning rate adjustments, etc.

      We again thank Reviewer #1 for this suggestion. We would like to mention that in the revised manuscript, we have added all the requested details. Please refer to the points below for more information.

      (1) The Generator module of Gcoupler is designed as a flexible and automated framework that leverages multiple Graph Neural Network architectures, including Graph Convolutional Model (GCM), Graph Convolutional Network (GCN), Attentive FP, and Graph Attention Network (GAT), to build classification models based on the synthetic ligand datasets produced earlier in the pipeline.

      (2) By default, Generator tests all four models using standard hyperparameters provided by the DeepChem framework (https://deepchem.io/), offering a baseline performance comparison across architectures. This includes pre-defined choices for node features, edge attributes, message-passing layers, pooling strategies, activation functions, and dropout values, ensuring reproducibility and consistency. All models are trained with binary cross-entropy loss and support default settings for early stopping, learning rate, and batch standardization where applicable.

      (3) In addition, Generator supports model refinement through hyperparameter tuning and k-fold cross-validation (default: 3 folds). Users can either customize the hyperparameter grid or rely on Generator’s recommended parameter ranges to optimize model performance. This allows for robust model selection and stability assessment of tuned parameters.

      (4) Finally, the trained models can be used to predict binding probabilities for user-supplied compounds, making it a comprehensive and user-adaptive tool for ligand screening.

      Based on the reviewer #1 suggestion, we have now added a detailed description about the Generator module of Gcoupler, and also provided relevant citations regarding the DeepChem workflow.

      Query: (4) GNN model training seems to occur on at most 500 molecules per training run? This is unclear from the manuscript. That is a very small number of training samples if true. Please clarify. How was upsampling performed? What were the HAB/LAB class distributions? In addition, it seems as though only synthetically generated molecules are used for training, and the task is to discriminate synthetic molecules based on their docking scores. Synthetic ligands generated by LigBuilder may occupy distinct chemical space, making classification trivial, particularly in the setting of a random split k-folds validation approach. In the absence of a leave-class-out validation, it is unclear if the model learns generalizable features or exploits clear chemical differences. Historically, it was inappropriate to evaluate ligand-based QSAR models on synthetic decoys such as the DUD-E sets - synthetic ligands can be much more easily distinguished by heavily parameterized ligand-based machine learning models than by physically constrained single-point docking score functions.

      We thank reviewer #1 for these detailed technical queries. We would like to clarify that:

      (1) The recommended minimum for the training set is 500 molecules, but users can add as many synthesized compounds as needed to thoroughly explore the chemical space related to the target cavity.

      (2) Our systematic evaluation demonstrated that expanding the training set size consistently enhanced model performance, especially when compared to AutoDock docking scores. This observation underscores the framework's scalability and its ability to improve predictive accuracy with more training compounds.

      (3) The Authenticator module initially categorizes all synthesized molecules into HAB and LAB classes. These labeled molecules are then utilized for training the Generator module. To tackle class imbalance, the class with fewer data points undergoes upsampling. This process aims to achieve an approximate 1:1 ratio between the two classes, thereby ensuring balanced learning during GNN model training.

      (4) The Authenticator module's affinity scores are the primary determinant of the HAB/LAB class distribution, with a higher cutoff for HABs ensuring statistically significant class separation. This distribution is also indirectly shaped by the target cavity's topology and druggability, as the Synthesizer tends to produce more potent candidates for cavities with favorable binding characteristics.

      (5) While it's true that synthetic ligands may occupy distinct chemical space, our benchmarking exploration for different sites on the same receptor still showed inter-cavity specificity along with intra-cavity diversity of the synthesized molecules.

      (6) The utility of random k-fold validation shouldn't be dismissed outright; it provides a reasonable estimate of performance under practical settings where class boundaries are often unknown. Nonetheless, we agree that complementary validation strategies like leave-class-out could further strengthen the robustness assessment.

      (7) We agree that using synthetic decoys like those from the DUD-E dataset can introduce bias in ligand-based QSAR model evaluations if not handled carefully. In our workflow, the inclusion of DUD-E compounds is entirely optional and only considered as a fallback, specifically in scenarios where the number of low-affinity binders (LABs) synthesized by the Synthesizer module is insufficient to proceed with model training.

      (8) The primary approach relies on classifying generated compounds based on their derived affinity scores via the Authenticator module. However, in rare cases where this results in a heavily imbalanced dataset, DUD-E compounds are introduced not as part of the core benchmarking, but solely to maintain minimal class balance for initial model training. Even then, care is taken to interpret results with this limitation in mind. Ultimately, our framework is designed to prioritize data-driven generation of both HABs and LABs, minimizing reliance on synthetic decoys wherever possible.

      Author response image 2.

      Scatter plots depicting the segregation of High/Low-Affinity Metabolites (HAM/LAM) (indicated in green and red) identified using Gcoupler workflow with 100% training data. Notably, models trained on lesser training data size (25%, 50%, and 75% of HAB/LAB) severely failed to segregate HAM and LAM (along Y-axis). X-axis represents the binding affinity calculated using IC4-specific docking using AutoDock.

      Based on the reviewer #1’s suggestion, we have now added all these technical details in the revised version of the manuscript.

      Query: (5) Training QSAR models on docking scores to accelerate virtual screening is not in itself novel (see here for a nice recent example: https://www.nature.com/articles/s43588-025-00777-x), but can be highly useful to focus structure-based analysis on the most promising areas of ligand chemical space; however, we are perplexed by the motivation here. If only a few hundred or a few thousand molecules are being sampled, why not just use AutoDock Vina? The models are trained to try to discriminate molecules by AutoDock Vina score rather than experimental affinity, so it seems like we would ideally just run Vina? Perhaps we are misunderstanding the scale of the screening that was done here. Please clarify the manuscript methods to help justify the approach.

      We acknowledge the effectiveness of training QSAR models on docking scores for prioritizing chemical space, as demonstrated by the referenced study (https://www.nature.com/articles/s43588-025-00777-x) on machine-learning-guided docking screen frameworks.

      We would like to mention that:

      (1) While such protocols often rely on extensive pre-docked datasets across numerous protein targets or utilize a highly skewed input distribution, training on as little as 1-10% of ligand-protein complexes and testing on the remainder in iterative cycles.

      (2) While powerful for ultra-large libraries, this approach can introduce bias towards the limited training set and incur significant overhead in data curation, pre-computation, and infrastructure.

      (3) In contrast, Gcoupler prioritizes flexibility and accessibility, especially when experimental data is scarce and large pre-docked libraries are unavailable. Instead of depending on fixed docking scores from external pipelines, Gcoupler integrates target-specific cavity detection, de novo compound generation, and model training into a self-contained, end-to-end framework. Its QSAR models are trained directly on contextually relevant compounds synthesized for a given binding site, employing a statistical classification strategy that avoids arbitrary thresholds or precomputed biases.

      (4) Furthermore, Gcoupler is open-source, lightweight, and user-friendly, making it easily deployable without the need for extensive infrastructure or prior docking expertise. While not a complete replacement for full-scale docking in all use cases, Gcoupler aims to provide a streamlined and interpretable screening framework that supports both focused chemical design and broader chemical space exploration, without the computational burden associated with deep learning docking workflows.

      (5) Practically, even with computational resources, manually running AutoDock Vina on millions of compounds presents challenges such as format conversion, binding site annotation, grid parameter tuning, and execution logistics, all typically requiring advanced structural bioinformatics expertise.

      (6) Gcoupler's Authenticator module, however, streamlines this process. Users only need to input a list of SMILES and a receptor PDB structure, and the module automatically handles compound preparation, cavity mapping, parameter optimization, and high-throughput scoring. This automation reduces time and effort while democratizing access to structure-based screening workflows for users without specialized expertise.

      Ultimately, Gcoupler's motivation is to make large-scale, structure-informed virtual screening both efficient and accessible. The model serves as a surrogate to filter and prioritize compounds before deeper docking or experimental validation, thereby accelerating targeted drug discovery.

      Query: (6) The brevity of the MD simulations raises some concerns that the results may be over-interpreted. RMSD plots do not reliably compare the affinity behavior in this context because of the short timescales coupled with the dramatic topological differences between the ligands being compared; CoQ6 is long and highly flexible compared to ZST and LST. Convergence metrics, such as block averaging and time-dependent MM/GBSA energies, should be included over much longer timescales. For CoQ6, the authors may need to run multiple simulations of several microseconds, identify the longest-lived metastable states of CoQ6, and perform MM/GBSA energies for each state weighted by each state's probability.

      We appreciate Reviewer #1's suggestion regarding simulation length, as it is indeed crucial for interpreting molecular dynamics (MD) outcomes. We would like to mention that:

      (1) Our simulation strategy varied based on the analysis objective, ranging from short (~5 ns) runs for preliminary or receptor-only evaluations to intermediate (~100 ns) and extended (~550 ns) runs for receptor-ligand complex validation and stability assessment.

      (2) Specifically, we conducted three independent 100 ns MD simulations for each receptor-metabolite complex in distinct cavities of interest. This allowed us to assess the reproducibility and persistence of binding interactions. To further support these observations, a longer 550 ns simulation was performed for the IC4 cavity, which reinforced the 100 ns findings by demonstrating sustained interaction stability over extended timescales.

      (3) While we acknowledge that even longer simulations (e.g., in the microsecond range) could provide deeper insights into metastable state transitions, especially for highly flexible molecules like CoQ6, our current design balances computational feasibility with the goal of screening multiple cavities and ligands.

      (4) In our current workflow, MM/GBSA binding free energies were calculated by extracting 1000 representative snapshots from the final 10 ns of each MD trajectory. These configurations were used to compute time-averaged binding energies, incorporating contributions from van der Waals, electrostatic, polar, and non-polar solvation terms. This approach offers a more reliable estimate of ligand binding affinity compared to single-point molecular docking, as it accounts for conformational flexibility and dynamic interactions within the binding cavity.

      (5) Although we did not explicitly perform state-specific MM/GBSA calculations weighted by metastable state probabilities, our use of ensemble-averaged energy estimates from a thermally equilibrated segment of the trajectory captures many of the same benefits. We acknowledge, however, that a more rigorous decomposition based on metastable state analysis could offer finer resolution of binding behavior, particularly for highly flexible ligands like CoQ6, and we consider this a valuable direction for future refinement of the framework.

      Reviewer #2 (Public review):

      Summary:

      Query: Mohanty et al. present a new deep learning method to identify intracellular allosteric modulators of GPCRs. This is an interesting field for e.g. the design of novel small molecule inhibitors of GPCR signalling. A key limitation, as mentioned by the authors, is the limited availability of data. The method presented, Gcoupler, aims to overcome these limitations, as shown by experimental validation of sterols in the inhibition of Ste2p, which has been shown to be relevant molecules in human and rat cardiac hypertrophy models. They have made their code available for download and installation, which can easily be followed to set up software on a local machine.

      Strengths:

      Clear GitHub repository

      Extensive data on yeast systems

      We sincerely thank Reviewer #2 for their thorough review, summary, and appreciation of our work. We highly value their comments and suggestions.

      Weaknesses:

      Query: No assay to directly determine the affinity of the compounds to the protein of interest.

      We thank Reviewer #2 for raising these insightful questions. During the experimental design phase, we carefully accounted for validating the impact of metabolites in the rescue response by pheromone.

      We would like to mention that we performed an array of methods to validate our hypothesis and observed similar rescue effects. These assays include:

      a. Cell viability assay (FDA/PI Flourometry-based)

      b. Cell growth assay

      c. FUN1<sup>TM</sup>-based microscopy assessment

      d. Shmoo formation assays

      e. Mating assays

      f. Site-directed mutagenesis-based loss of function

      g. ransgenic reporter-based assay

      h. MAPK signaling assessment using Western blot.

      i. And via computational techniques.

      Concerning the in vitro interaction studies of Ste2p and metabolites, we made significant efforts to purify Ste2p by incorporating a His tag at the N-terminal. Despite dedicated attempts over the past year, we were unsuccessful in purifying the protein, primarily due to our limited expertise in protein purification for this specific system. As a result, we opted for genetic-based interventions (e.g., point mutants), which provide a more physiological and comprehensive approach to demonstrating the interaction between Ste2p and the metabolites.

      Author response image 3.

      (a) Affinity purification of Ste2p from Saccharomyces cerevisiae. Western blot analysis using anti-His antibody showing the distribution of Ste2p in various fractions during the affinity purification process. The fractions include pellet, supernatant, wash buffer, and sequential elution fractions (1–4). Wild-type and ste2Δ strains served as positive and negative controls, respectively. (b) Optimization of Ste2p extraction protocol. Ponceau staining (left) and Western blot analysis using anti-His antibody (right) showing Ste2p extraction efficiency. The conditions tested include lysis buffers containing different concentrations of CHAPS detergent (0.5%, 1%) and glycerol (10%, 20%).

      Furthermore, in addition to the clarification above, we have added the following statement in the discussion section to tone down our claims: “A critical limitation of our study is the absence of direct binding assays to validate the interaction between the metabolites and Ste2p. While our results from genetic interventions, molecular dynamics simulations, and docking studies strongly suggest that the metabolites interact with the Ste2p-Gpa1 interface, these findings remain indirect. Direct binding confirmation through techniques such as surface plasmon resonance, isothermal titration calorimetry, or co-crystallization would provide definitive evidence of this interaction. Addressing this limitation in future work would significantly strengthen our conclusions and provide deeper insights into the precise molecular mechanisms underlying the observed phenotypic effects.”

      We request Reviewer #2 to kindly refer to the assays conducted on the point mutants created in this study, as these experiments offer robust evidence supporting our claims.

      Query: In conclusion, the authors present an interesting new method to identify allosteric inhibitors of GPCRs, which can easily be employed by research labs. Whilst their efforts to characterize the compounds in yeast cells, in order to confirm their findings, it would be beneficial if the authors show their compounds are active in a simple binding assay.

      We express our gratitude and sincere appreciation for the time and effort dedicated by Reviewer #2 in reviewing our manuscript. We are confident that our clarifications address the reviewer's concerns.

      Reviewer #3 (Public review):

      Summary:

      Query: In this paper, the authors introduce the Gcoupler software, an open-source deep learning-based platform for structure-guided discovery of ligands targeting GPCR interfaces. Overall, this manuscript represents a field-advancing contribution at the intersection of AI-based ligand discovery and GPCR signaling regulation.

      Strengths:

      The paper presents a comprehensive and well-structured workflow combining cavity identification, de novo ligand generation, statistical validation, and graph neural network-based classification. Notably, the authors use Gcoupler to identify endogenous intracellular sterols as allosteric modulators of the GPCR-Gα interface in yeast, with experimental validations extending to mammalian systems. The ability to systematically explore intracellular metabolite modulation of GPCR signaling represents a novel and impactful contribution. This study significantly advances the field of GPCR biology and computational ligand discovery.

      We thank and appreciate Reviewer #3 for vesting time and efforts in reviewing our manuscript and for appreciating our efforts.

      Recommendations for the authors:

      Reviewing Editor Comments:

      We encourage the authors to address the points raised during revision to elevate the assessment from "incomplete" to "solid" or ideally "convincing." In particular, we ask the authors to improve the justification for their methodological choices and to provide greater detail and clarity regarding each computational layer of the pipeline.

      We are grateful for the editors' suggestions. We have incorporated significant revisions into the manuscript, providing comprehensive technical details to prevent any misunderstandings. Furthermore, we meticulously explained every aspect of the computational workflow.

      Reviewer #2 (Recommendations for the authors):

      Query: Would it be possible to make the package itself pip installable?

      Yes, it already exists under the testpip repository and we have now migrated it to the main pip. Please access the link from here: https://pypi.org/project/gcoupler/

      Query: I am confused by the binding free energies reported in Supplementary Figure 8. Is the total DG reported that of the protein-ligand complex? If that is the case, the affinities of the ligands would be extremely high. They are also very far off from the reported -7 kcal/mol active/inactive cut-off.

      We thank Reviewer #2 for this query. We would like to mention that we have provided a detailed explanation in the point-by-point response to Reviewer #2's original comment. Briefly, to clarify, the -7 kcal/mol active/inactive cutoff mentioned in the manuscript refers specifically to the docking-based binding free energies (ΔG) calculated using AutoDock or AutoDock Vina, which are used for compound classification or validation against the Gcoupler framework.

      In contrast, the binding free energies reported in Supplementary Figure 8 are obtained through the MM-GBSA method, which provides a more detailed and physics-based estimate of binding affinity by incorporating solvation and enthalpic contributions. It is well-documented in the literature that MM-GBSA tends to systematically underestimate absolute binding free energies when compared to experimental values (10.2174/1568026616666161117112604; Table 1).

      Author response image 4.

      Scatter plot comparing the predicted binding affinity calculated by Docking and MM/GBSA methods, against experimental ΔG (10.1007/s10822-023-00499-0)

      Our use of MM-GBSA is not to match experimental ΔG directly, but rather to assess relative binding preferences among ligands. Despite its limitations in predicting absolute affinities, MM-GBSA is known to perform better than docking for ranking compounds by their binding potential. In this context, an MM-GBSA energy value still reliably indicates stronger predicted binding, even if the numerical values appear extremely higher than typical experimental or docking-derived cutoffs.

      Thus, the two energy values, docking-based and MM-GBSA, serve different purposes in our workflow. Docking scores are used for classification and thresholding, while MM-GBSA energies provide post hoc validation and a higher-resolution comparison of binding strength across compounds.

      To corroborate their findings, can the authors include direct binding affinity assays for yeast and human Ste2p? This will help in establishing whether the observed phenotypic effects are indeed driven by binding of the metabolites.

      We thank Reviewer #2 for raising these insightful questions. During the experimental design phase, we carefully accounted for validating the impact of metabolites in the rescue response by pheromone.

      We would like to mention that we performed an array of methods to validate our hypothesis and observed similar rescue effects. These assays include:

      a. Cell viability assay (FDA/PI Flourometry- based)

      b. Cell growth assay

      c. FUN1<sup>TM</sup>-based microscopy assessment

      d. Shmoo formation assays

      e. Mating assays

      f. Site-directed mutagenesis-based loss of function

      g. Transgenic reporter-based assay

      h. MAPK signaling assessment using Western blot.

      i. And via computational techniques.

      Concerning the in vitro interaction studies of Ste2p and metabolites, we made significant efforts to purify Ste2p by incorporating a His tag at the N-terminal. Despite dedicated attempts over the past year, we were unsuccessful in purifying the protein, primarily due to our limited expertise in protein purification for this specific system. As a result, we opted for genetic-based interventions (e.g., point mutants), which provide a more physiological and comprehensive approach to demonstrating the interaction between Ste2p and the metabolites.

      Furthermore, in addition to the clarification above, we have added the following statement in the discussion section to tone down our claims: “A critical limitation of our study is the absence of direct binding assays to validate the interaction between the metabolites and Ste2p. While our results from genetic interventions, molecular dynamics simulations, and docking studies strongly suggest that the metabolites interact with the Ste2p-Gpa1 interface, these findings remain indirect. Direct binding confirmation through techniques such as surface plasmon resonance, isothermal titration calorimetry, or co-crystallization would provide definitive evidence of this interaction. Addressing this limitation in future work would significantly strengthen our conclusions and provide deeper insights into the precise molecular mechanisms underlying the observed phenotypic effects.”

      We request Reviewer #2 to kindly refer to the assays conducted on the point mutants created in this study, as these experiments offer robust evidence supporting our claims.

      Did the authors perform expression assays to make sure the mutant proteins were similarly expressed to wt?

      We thank reviewer #2 for this comment. We would like to mention that:

      (1) In our mutants (S75A, T155D, L289K)-based assays, all mutants were generated using integration at the same chromosomal TRP1 locus under the GAL1 promoter and share the same C-terminal CYC1 terminator sequence used for the reconstituted wild-type (rtWT) construct, thus reducing the likelihood of strain-specific expression differences.

      (2) Furthermore, all strains were grown under identical conditions using the same media, temperature, and shaking parameters. Each construct underwent the same GAL1 induction protocol in YPGR medium for identical durations, ensuring uniform transcriptional activation across all strains and minimizing culture-dependent variability in protein expression.

      (3) Importantly, both the rtWT and two of the mutants (T155D, L289K) retained α-factor-induced cell death (PI and FUN1-based fluorometry and microscopy; Figure 4c-d) and MAPK activation (western blot; Figure 4e), demonstrating that the mutant proteins are expressed at levels sufficient to support signalling.

      Reviewer #3 (Recommendations for the authors):

      My comments that would enhance the impact of this method are:

      (1) While the authors have compared the accuracy and efficiency of Gcoupler to AutoDock Vina, one of the main points of Gcoupler is the neural network module. It would be beneficial to have it evaluated against other available deep learning ligand generative modules, such as the following: 10.1186/s13321-024-00829-w, 10.1039/D1SC04444C.

      Thank you for the observation. To clarify, our benchmarking of Gcoupler’s accuracy and efficiency was performed against AutoDock, not AutoDock Vina. This choice was intentional, as AutoDock is one of the most widely used classical techniques in computer-aided drug design (CADD) for obtaining high-resolution predictions of ligand binding energy, binding poses, and detailed atomic-level interactions with receptor residues. In contrast, AutoDock Vina is primarily optimized for large-scale virtual screening, offering faster results but typically with lower resolution and limited configurational detail.

      Since Gcoupler is designed to balance accuracy with computational efficiency in structure-based screening, AutoDock served as a more appropriate reference point for evaluating its predictions.

      We agree that benchmarking against other deep learning-based ligand generative tools is important for contextualizing Gcoupler’s capabilities. However, it's worth noting that only a few existing methods focus specifically on cavity- or pocket-driven de novo drug design using generative AI, and among them, most are either partially closed-source or limited in functionality.

      While PocketCrafter (10.1186/s13321-024-00829-w) offers a structure-based generative framework, it differs from Gcoupler in several key respects. PocketCrafter requires proprietary preprocessing tools, such as the MOE QuickPrep module, to prepare protein pocket structures, limiting its accessibility and reproducibility. In addition, PocketCrafter’s pipeline stops at the generation of cavity-linked compounds and does not support any further learning from the generated data.

      Similarly, DeepLigBuilder (10.1039/D1SC04444C) provides de novo ligand generation using deep learning, but the source code is not publicly available, preventing direct benchmarking or customization. Like PocketCrafter, it also lacks integrated learning modules, which limits its utility for screening large, user-defined libraries or compounds of interest.

      Additionally, tools like AutoDesigner from Schrödinger, while powerful, are not publicly accessible and hence fall outside the scope of open benchmarking.

      Author response table 1.

      Comparison of de novo drug design tools. SBDD refers to Structure-Based Drug Design, and LBDD refers to Ligand-Based Drug Design.

      In contrast, Gcoupler is a fully open-source, end-to-end platform that integrates both Ligand-Based and Structure-Based Drug Design. It spans from cavity detection and molecule generation to automated model training using GNNs, allowing users to evaluate and prioritize candidate ligands across large chemical spaces without the need for commercial software or advanced coding expertise.

      (2) In Figure 2, the authors mention that IC4 and IC5 potential binding sites are on the direct G protein coupling interface ("This led to the identification of 17 potential surface cavities on Ste2p, with two intracellular regions, IC4 and IC5, accounting for over 95% of the Ste2p-Gpa1p interface (Figure 2a-b, Supplementary Figure 4j-n)..."). Later, however, in Figure 4, when discussing which residues affect the binding of the metabolites the most, the authors didn't perform MD simulations of mutant STE2 and just Gpa1p (without metabolites present). It would be beneficial to compare the binding of G protein with and without metabolites present, as these interface mutations might be affecting the binding of G protein by itself.

      Thank you for this insightful suggestion. While we did not perform in silico MD simulations of the mutant Ste2-Gpa1 complex in the absence of metabolites, we conducted experimental validation to functionally assess the impact of interface mutations. Specifically, we generated site-directed mutants (S75A, L289K, T155D) and expressed them in a ste2Δ background to isolate their effects.

      As shown in the Supplementary Figure, these mutants failed to rescue cells from α-factor-induced programmed cell death (PCD) upon metabolite pre-treatment. This was confirmed through fluorometry-based viability assays, FUN1<sup>TM</sup> staining, and p-Fus3 signaling analysis, which collectively monitor MAPK pathway activation (Figure 4c–e).

      Importantly, the induction of PCD in response to α-factor in these mutants demonstrates that G protein coupling is still functionally intact, indicating that the mutations do not interfere with Gpa1 binding itself. However, the absence of rescue by metabolites strongly suggests that the mutated residues play a direct role in metabolite binding at the Ste2p–Gpa1p interface, thus modulating downstream signaling.

      While further MD simulations could provide structural insight into the isolated mutant receptor–G protein interaction, our experimental data supports the functional relevance of metabolite binding at the identified interface.

      (3) While the experiments, performed by the authors, do support the hypothesis that metabolites regulate GPCR signaling, there are no experiments evaluating direct biophysical measurements (e.g., dissociation constants are measured only in silicon).

      We thank Reviewer #3 for raising these insightful comments. We would like to mention that we performed an array of methods to validate our hypothesis and observed similar rescue effects. These assays include:

      a. Cell viability assay (FDA/PI Flourometry- based)

      b. Cell growth assay

      c. FUN1<sup>TM</sup>-based microscopy assessment

      d. Shmoo formation assays

      e. Mating assays

      f. Site-directed mutagenesis-based loss of function

      g. Transgenic reporter-based assay

      h. MAPK signaling assessment using Western blot.

      i. And via computational techniques.

      Concerning the direct biophysical measurements of Ste2p and metabolites, we made significant efforts to purify Ste2p by incorporating a His tag at the N-terminal, with the goal of performing Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC) measurements. Despite dedicated attempts over the past year, we were unsuccessful in purifying the protein, primarily due to our limited expertise in protein purification for this specific system. As a result, we opted for genetic-based interventions (e.g., point mutants), which provide a more physiological and comprehensive approach to demonstrating the interaction between Ste2p and the metabolites.

      Furthermore, in addition to the clarification above, we have added the following statement in the discussion section to tone down our claims: “A critical limitation of our study is the absence of direct binding assays to validate the interaction between the metabolites and Ste2p. While our results from genetic interventions, molecular dynamics simulations, and docking studies strongly suggest that the metabolites interact with the Ste2p-Gpa1 interface, these findings remain indirect. Direct binding confirmation through techniques such as surface plasmon resonance, isothermal titration calorimetry, or co-crystallization would provide definitive evidence of this interaction. Addressing this limitation in future work would significantly strengthen our conclusions and provide deeper insights into the precise molecular mechanisms underlying the observed phenotypic effects.”

      (4) The authors do not discuss the effects of the metabolites at their physiological concentrations. Overall, this manuscript represents a field-advancing contribution at the intersection of AI-based ligand discovery and GPCR signaling regulation.

      We thank reviewer #3 for this comment and for recognising the value of our work. Although direct quantification of intracellular free metabolite levels is challenging, several lines of evidence support the physiological relevance of our test concentrations.

      - Genetic validation supports endogenous relevance: Our genetic screen of 53 metabolic knockout mutants showed that deletions in biosynthetic pathways for these metabolites consistently disrupted the α-factor-induced cell death, with the vast majority of strains (94.4%) resisting the α-factor-induced cell death, and notably, a subset even displayed accelerated growth in the presence of α‑factor. This suggests that endogenous levels of these metabolites normally provide some degree of protection, supporting their physiological role in GPCR regulation.

      - Metabolomics confirms in vivo accumulation: Our untargeted metabolomics analysis revealed that α-factor-treated survivors consistently showed enrichment of CoQ6 and zymosterol compared to sensitive cells. This demonstrates that these metabolites naturally accumulate to protective levels during stress responses, validating their biological relevance.

    1. eLife Assessment

      This study provides valuable insights into the evolutionary conservation of sex determination mechanisms in ants by identifying a candidate sex-determining region in a parthenogenetic species. It uses solid, well-executed genomic analyses based on differences in heterozygosity between females and diploid males. While the candidate locus awaits functional validation in this species, the study provides convincing support for the ancient origin of a non-coding locus implicated in sex determination.

    2. Reviewer #1 (Public review):

      The authors have implemented several clarifications in the text and improved the connection between their findings and previous work. As stated in my initial review, I had no major criticisms of the previous version of the manuscript, and I continue to consider this a solid and well-written study. However, the revised manuscript still largely reiterates existing findings and does not offer novel conceptual or experimental advances. It supports previous conclusions suggesting a likely conserved sex determination locus in aculeate hymenopterans, but does so without functional validation (i.e., via experimental manipulation) of the candidate locus in O. biroi. I also wish to clarify that I did not intend to imply that functional assessments in the Pan et al. study were conducted in more than one focal species; my previous review explicitly states that the locus's functional role was validated in the Argentine ant.

    3. Reviewer #3 (Public review):

      The authors have made considerable efforts to conduct functional analyses to the fullest extent possible in this study; however, it is understandable that meaningful results have not yet been obtained. In the revised version, they have appropriately framed their claims within the limits of the current data and have adjusted their statements as needed in response to the reviewers' comments.

    4. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      This study investigates the sex determination mechanism in the clonal ant Ooceraea biroi, focusing on a candidate complementary sex determination (CSD) locus-one of the key mechanisms supporting haplodiploid sex determination in hymenopteran insects. Using whole genome sequencing, the authors analyze diploid females and the rarely occurring diploid males of O. biroi, identifying a 46 kb candidate region that is consistently heterozygous in females and predominantly homozygous in diploid males. This region shows elevated genetic diversity, as expected under balancing selection. The study also reports the presence of an lncRNA near this heterozygous region, which, though only distantly related in sequence, resembles the ANTSR lncRNA involved in female development in the Argentine ant, Linepithema humile (Pan et al. 2024). Together, these findings suggest a potentially conserved sex determination mechanism across ant species. However, while the analyses are well conducted and the paper is clearly written, the insights are largely incremental. The central conclusion - that the sex determination locus is conserved in ants - was already proposed and experimentally supported by Pan et al. (2024), who included O. biroi among the studied species and validated the locus's functional role in the Argentine ant. The present study thus largely reiterates existing findings without providing novel conceptual or experimental advances.

      Although it is true that Pan et al., 2024 demonstrated (in Figure 4 of their paper) that the synteny of the region flanking ANTSR is conserved across aculeate Hymenoptera (including O. biroi), Reviewer 1’s claim that that paper provides experimental support for the hypothesis that the sex determination locus is conserved in ants is inaccurate. Pan et al., 2024 only performed experimental work in a single ant species (Linepithema humile) and merely compared reference genomes of multiple species to show synteny of the region, rather than functionally mapping or characterizing these regions.

      Other comments:

      The mapping is based on a very small sample size: 19 females and 16 diploid males, and these all derive from a single clonal line. This implies a rather high probability for false-positive inference. In combination with the fact that only 11 out of the 16 genotyped males are actually homozygous at the candidate locus, I think a more careful interpretation regarding the role of the mapped region in sex determination would be appropriate. The main argument supporting the role of the candidate region in sex determination is based on the putative homology with the lncRNA involved in sex determination in the Argentine ant, but this argument was made in a previous study (as mentioned above).

      Our main argument supporting the role of the candidate region in sex determination is not based on putative homology with the lncRNA in L. humile. Instead, our main argument comes from our genetic mapping (in Fig. 2), and the elevated nucleotide diversity within the identified region (Fig. 4). Additionally, we highlight that multiple genes within our mapped region are homologous to those in mapped sex determining regions in both L. humile and Vollenhovia emeryi, possibly including the lncRNA.

      In response to the Reviewer’s assertion that the mapping is based on a small sample size from a single clonal line, we want to highlight that we used all diploid males available to us. Although the primary shortcoming of a small sample size is to increase the probability of a false negative, small sample sizes can also produce false positives. We used two approaches to explore the statistical robustness of our conclusions. First, we generated a null distribution by randomly shuffling sex labels within colonies and calculating the probability of observing our CSD index values by chance (shown in Fig. 2). Second, we directly tested the association between homozygosity and sex using Fisher’s Exact Test (shown in Supplementary Fig. S2). In both cases, the association of the candidate locus with sex was statistically significant after multiple-testing correction using the Benjamini-Hochberg False Discovery Rate. These approaches are clearly described in the “CSD Index Mapping” section of the Methods.

      We also note that, because complementary sex determination loci are expected to evolve under balancing selection, our finding that the mapped region exhibits a peak of nucleotide diversity lends orthogonal support to the notion that the mapped locus is indeed a complementary sex determination locus.

      The fourth paragraph of the results and the sixth paragraph of the discussion are devoted to explaining the possible reasons why only 11/16 genotyped males are homozygous in the mapped region. The revised manuscript will include an additional sentence (in what will be lines 384-388) in this paragraph that includes the possible explanation that this locus is, in fact, a false positive, while also emphasizing that we find this possibility to be unlikely given our multiple lines of evidence.

      In response to Reviewer 1’s suggestion that we carefully interpret the role of the mapped region in sex determination, we highlight our careful wording choices, nearly always referring to the mapped locus as a “candidate sex determination locus” in the title and throughout the manuscript. For consistency, the revised manuscript version will change the second results subheading from “The O. biroi CSD locus is homologous to another ant sex determination locus but not to honeybee csd” to “O. biroi’s candidate CSD locus is homologous to another ant sex determination locus but not to honeybee csd,” and will add the word “candidate” in what will be line 320 at the beginning of the Discussion, and will change “putative” to “candidate” in what will be line 426 at the end of the Discussion.

      In the abstract, it is stated that CSD loci have been mapped in honeybees and two ant species, but we know little about their evolutionary history. But CSD candidate loci were also mapped in a wasp with multi-locus CSD (study cited in the introduction). This wasp is also parthenogenetic via central fusion automixis and produces diploid males. This is a very similar situation to the present study and should be referenced and discussed accordingly, particularly since the authors make the interesting suggestion that their ant also has multi-locus CSD and neither the wasp nor the ant has tra homologs in the CSD candidate regions. Also, is there any homology to the CSD candidate regions in the wasp species and the studied ant?

      In response to Reviewer 1’s suggestion that we reference the (Matthey-Doret et al. 2019) study in the context of diploid males being produced via losses of heterozygosity during asexual reproduction, the revised manuscript will include (in what will be lines 123-126) the highlighted portion of the following sentence: “Therefore, if O. biroi uses CSD, diploid males might result from losses of heterozygosity at sex determination loci (Fig. 1C), similar to what is thought to occur in other asexual Hymenoptera that produce diploid males (Rabeling and Kronauer 2012; Matthey-Doret et al. 2019).”

      We note, however, that in their 2019 study, Matthey-Doret et al. did not directly test the hypothesis that diploid males result from losses of heterozygosity at CSD loci during asexual reproduction, because the diploid males they used for their mapping study came from inbred crosses in a sexual population of that species.

      We address this further below, but we want to emphasize that we do not intend to argue that O. biroi has multiple CSD loci. Instead, we suggest that additional, undetected CSD loci is one possible explanation for the absence of diploid males from any clonal line other than clonal line A. In response to Reviewer 1’s suggestion that we reference the (Matthey-Doret et al. 2019) study in the context of multilocus CSD, the revised manuscript version will include the following additional sentence in the fifth paragraph of the discussion (in what will be lines 372-374): “Multi-locus CSD has been suggested to limit the extent of diploid male production in asexual species under some circumstances (Vorburger 2013; Matthey-Doret et al. 2019).”

      Regarding Reviewer 2’s question about homology between the putative CSD loci from the (Matthey-Doret et al. 2019) study and O. biroi, we note that there is no homology. The revised manuscript version will have an additional Supplementary Table (which will be the new Supplementary Table S3) that will report the results of this homology search. The revised manuscript will also include the following additional sentence in the Results, in what will be lines 172-174: “We found no homology between the genes within the O. biroi CSD index peak and any of the genes within the putative L. fabarum CSD loci (Supplementary Table S3).”

      The authors used different clonal lines of O. biroi to investigate whether heterozygosity at the mapped CSD locus is required for female development in all clonal lines of O. biroi (L187-196). However, given the described parthenogenesis mechanism in this species conserves heterozygosity, additional females that are heterozygous are not very informative here. Indeed, one would need diploid males in these other clonal lines as well (but such males have not yet been found) to make any inference regarding this locus in other lines.

      We agree that a full mapping study including diploid males from all clonal lines would be preferable, but as stated earlier in that same paragraph, we have only found diploid males from clonal line A. We stand behind our modest claim that “Females from all six clonal lines were heterozygous at the CSD index peak, consistent with its putative role as a CSD locus in all O. biroi.” In the revised manuscript version, this sentence (in what will be lines 199-201) will be changed slightly in response to a reviewer comment below: “All females from all six clonal lines (including 26 diploid females from clonal line B) were heterozygous at the CSD index peak, consistent with its putative role as a CSD locus in all O. biroi.”

      Reviewer #2 (Public review):

      The manuscript by Lacy et al. is well written, with a clear and compelling introduction that effectively conveys the significance of the study. The methods are appropriate and well-executed, and the results, both in the main text and supplementary materials, are presented in a clear and detailed manner. The authors interpret their findings with appropriate caution.

      This work makes a valuable contribution to our understanding of the evolution of complementary sex determination (CSD) in ants. In particular, it provides important evidence for the ancient origin of a non-coding locus implicated in sex determination, and shows that, remarkably, this sex locus is conserved even in an ant species with a non-canonical reproductive system that typically does not produce males. I found this to be an excellent and well-rounded study, carefully analyzed and well contextualized.

      That said, I do have a few minor comments, primarily concerning the discussion of the potential 'ghost' CSD locus. While the authors acknowledge (line 367) that they currently have no data to distinguish among the alternative hypotheses, I found the evidence for an additional CSD locus presented in the results (lines 261-302) somewhat limited and at times a bit difficult to follow. I wonder whether further clarification or supporting evidence could already be extracted from the existing data. Specifically:

      We agree with Reviewer 2 that the evidence for a second CSD locus is limited. In fact, we do not intend to advocate for there being a second locus, but we suggest that a second CSD locus is one possible explanation for the absence of diploid males outside of clonal line A. In our initial version, we intentionally conveyed this ambiguity by titling this section “O. biroi may have one or multiple sex determination loci.” However, we now see that this leads to undue emphasis on the possibility of a second locus. In the revised manuscript, we will split this into two separate sections: “Diploid male production differs across O. biroi clonal lines” and “O. biroi lacks a tra-containing CSD locus.”

      (1) Line 268: I doubt the relevance of comparing the proportion of diploid males among all males between lines A and B to infer the presence of additional CSD loci. Since the mechanisms producing these two types of males differ, it might be more appropriate to compare the proportion of diploid males among all diploid offspring. This ratio has been used in previous studies on CSD in Hymenoptera to estimate the number of sex loci (see, for example, Cook 1993, de Boer et al. 2008, 2012, Ma et al. 2013, and Chen et al., 2021). The exact method might not be applicable to clonal raider ants, but I think comparing the percentage of diploid males among the total number of (diploid) offspring produced between the two lineages might be a better argument for a difference in CSD loci number.

      We want to re-emphasize here that we do not wish to advocate for there being two CSD loci in O. biroi. Rather, we want to explain that this is one possible explanation for the apparent absence of diploid males outside of clonal line A. We hope that the modifications to the manuscript described in the previous response help to clarify this.

      Reviewer 2 is correct that comparing the number of diploid males to diploid females does not apply to clonal raider ants. This is because males are vanishingly rare among the vast numbers of females produced. We do not count how many females are produced in laboratory stock colonies, and males are sampled opportunistically. Therefore, we cannot report exact numbers. However, we will add the highlighted portion of the following sentence (in what will be lines 268-270) to the revised manuscript: “Despite the fact that we maintain more colonies of clonal line B than of clonal line A in the lab, all the diploid males we detected came from clonal line A.”

      (2) If line B indeed carries an additional CSD locus, one would expect that some females could be homozygous at the ANTSR locus but still viable, being heterozygous only at the other locus. Do the authors detect any females in line B that are homozygous at the ANTSR locus? If so, this would support the existence of an additional, functionally independent CSD locus.

      We thank the reviewer for this suggestion, and again we emphasize that we do not want to argue in favor of multiple CSD loci. We just want to introduce it as one possible explanation for the absence of diploid males outside of clonal line A.

      The 26 sequenced diploid females from clonal line B are all heterozygous at the mapped locus, and the revised manuscript will clarify this in what will be lines 199-201. Previously, only six of those diploid females were included in Supplementary Table S2, and that will be modified accordingly.

      (3) Line 281: The description of the two tra-containing CSD loci as "conserved" between Vollenhovia and the honey bee may be misleading. It suggests shared ancestry, whereas the honey bee csd gene is known to have arisen via a relatively recent gene duplication from fem/tra (10.1038/nature07052). It would be more accurate to refer to this similarity as a case of convergent evolution rather than conservation.

      In the sentence that Reviewer 2 refers to, we are representing the assertion made in the (Miyakawa and Mikheyev 2015) paper in which, regarding their mapping of a candidate CSD locus that contains two linked tra homologs, they write in the abstract: “these data support the prediction that the same CSD mechanism has indeed been conserved for over 100 million years.” In that same paper, Miyakawa and Mikheyev write in the discussion section: “As ants and bees diverged more than 100 million years ago, sex determination in honey bees and V. emeryi is probably homologous and has been conserved for at least this long.”

      As noted by Reviewer 2, this appears to conflict with a previously advanced hypothesis: that because fem and csd were found in Apis mellifera, Apis cerana, and Apis dorsata, but only fem was found in Mellipona compressipes, Bombus terrestris, and Nasonia vitripennis, that the csd gene evolved after the honeybee (Apis) lineage diverged from other bees (Hasselmann et al. 2008). However, it remains possible that the csd gene evolved after ants and bees diverged from N. vitripennis, but before the divergence of ants and bees, and then was subsequently lost in B. terrestris and M. compressipes. This view was previously put forward based on bioinformatic identification of putative orthologs of csd and fem in bumblebees and in ants [(Schmieder et al. 2012), see also (Privman et al. 2013)]. However, subsequent work disagreed and argued that the duplications of tra found in ants and in bumblebees represented convergent evolution rather than homology (Koch et al. 2014). Distinguishing between these possibilities will be aided by additional sex determination locus mapping studies and functional dissection of the underlying molecular mechanisms in diverse Aculeata.

      Distinguishing between these competing hypotheses is beyond the scope of our paper, but the revised manuscript will include additional text to incorporate some of this nuance. We will include these modified lines below (in what will be lines 287-295), with the additions highlighted:

      “A second QTL region identified in V. emeryi (V.emeryiCsdQTL1) contains two closely linked tra homologs, similar to the closely linked honeybee tra homologs, csd and fem (Miyakawa and Mikheyev 2015). This, along with the discovery of duplicated tra homologs that undergo concerted evolution in bumblebees and ants (Schmieder et al. 2012; Privman et al. 2013) has led to the hypothesis that the function of tra homologs as CSD loci is conserved with the csd-containing region of honeybees (Schmieder et al. 2012; Miyakawa and Mikheyev 2015). However, other work has suggested that tra duplications occurred independently in honeybees, bumblebees, and ants (Hasselmann et al. 2008; Koch et al. 2014), and it remains to be demonstrated that either of these tra homologs acts as a primary CSD signal in V. emeryi.”

      (4) Finally, since the authors successfully identified multiple alleles of the first CSD locus using previously sequenced haploid males, I wonder whether they also observed comparable allelic diversity at the candidate second CSD locus. This would provide useful supporting evidence for its functional relevance.

      As is already addressed in the final paragraph of the results and in Supplementary Fig. S4, there is no peak of nucleotide diversity in any of the regions homologous to V.emeryiQTL1, which is the tra-containing candidate sex determination locus (Miyakawa and Mikheyev 2015). In the revised manuscript, the relevant lines will be 307-310. We want to restate that we do not propose that there is a second candidate CSD locus in O. biroi, but we simply raise the possibility that multi-locus CSD *might* explain the absence of diploid males from clonal lines other than clonal line A (as one of several alternative possibilities).

      Overall, these are relatively minor points in the context of a strong manuscript, but I believe addressing them would improve the clarity and robustness of the authors' conclusions.

      Reviewer #3 (Public review):

      Summary:

      The sex determination mechanism governed by the complementary sex determination (CSD) locus is one of the mechanisms that support the haplodiploid sex determination system evolved in hymenopteran insects. While many ant species are believed to possess a CSD locus, it has only been specifically identified in two species. The authors analyzed diploid females and the rarely occurring diploid males of the clonal ant Ooceraea biroi and identified a 46 kb CSD candidate region that is consistently heterozygous in females and predominantly homozygous in males. This region was found to be homologous to the CSD locus reported in distantly related ants. In the Argentine ant, Linepithema humile, the CSD locus overlaps with an lncRNA (ANTSR) that is essential for female development and is associated with the heterozygous region (Pan et al. 2024). Similarly, an lncRNA is encoded near the heterozygous region within the CSD candidate region of O. biroi. Although this lncRNA shares low sequence similarity with ANTSR, its potential functional involvement in sex determination is suggested. Based on these findings, the authors propose that the heterozygous region and the adjacent lncRNA in O. biroi may trigger female development via a mechanism similar to that of L. humile. They further suggest that the molecular mechanisms of sex determination involving the CSD locus in ants have been highly conserved for approximately 112 million years. This study is one of the few to identify a CSD candidate region in ants and is particularly noteworthy as the first to do so in a parthenogenetic species.

      Strengths:

      (1) The CSD candidate region was found to be homologous to the CSD locus reported in distantly related ant species, enhancing the significance of the findings.

      (2) Identifying the CSD candidate region in a parthenogenetic species like O. biroi is a notable achievement and adds novelty to the research.

      Weaknesses

      (1) Functional validation of the lncRNA's role is lacking, and further investigation through knockout or knockdown experiments is necessary to confirm its involvement in sex determination.

      See response below.

      (2) The claim that the lncRNA is essential for female development appears to reiterate findings already proposed by Pan et al. (2024), which may reduce the novelty of the study.

      We do not claim that the lncRNA is essential for female development in O. biroi, but simply mention the possibility that, as in L. humile, it is somehow involved in sex determination. We do not have any functional evidence for this, so this is purely based on its genomic position immediately adjacent to our mapped candidate region. We agree with the reviewer that the study by Pan et al. (2024) decreases the novelty of our findings. Another way of looking at this is that our study supports and bolsters previous findings by partially replicating the results in a different species.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      L307-308 should state homozygous for either allele in THE MAJORITY of diploid males.

      This will be fixed in the revised manuscript, in what will be line 321.

      Reviewer #3 (Recommendations for the authors):

      The association between heterozygosity in the CSD candidate region and female development in O. biroi, along with the high sequence homology of this region to CSD loci identified in two distantly related ant species, is not sufficient to fully address the evolution of the CSD locus and the mechanisms of sex determination.

      Given that functional genetic tools, such as genome editing, have already been established in O. biroi, I strongly recommend that the authors investigate the role of the lncRNA through knockout or knockdown experiments and assess its impact on the sex-specific splicing pattern of the downstream tra gene.

      Although knockout experiments of the lncRNA would be illuminating, the primary signal of complementary sex determination is heterozygosity. As is clearly stated in our manuscript and that of (Pan et al. 2024), it does not appear to be heterozygosity within the lncRNA that induces female development, but rather heterozygosity in non-transcribed regions linked to the lncRNA. Therefore, future mechanistic studies of sex determination in O. biroi, L. humile, and other ants should explore how homozygosity or heterozygosity of this region impacts the sex determination cascade, rather than focusing (exclusively) on the lncRNA.

      With this in mind, we developed three sets of guide RNAs that cut only one allele within the mapped CSD locus, with the goal of producing deletions within the highly variable region within the mapped locus. This would lead to functional hemizygosity or homozygosity within this region, depending on how the cuts were repaired. We also developed several sets of PCR primers to assess the heterozygosity of the resultant animals. After injecting 1,162 eggs over several weeks and genotyping the hundreds of resultant animals with PCR, we confirmed that we could induce hemizygosity or homozygosity within this region, at least in ~1/20 of the injected embryos. Although it is possible to assess the sex-specificity of the splice isoform of tra as a proxy for sex determination phenotypes (as done by (Pan et al. 2024)), the ideal experiment would assess male phenotypic development at the pupal stage. Therefore, over several more weeks, we injected hundreds more eggs with these reagents and reared the injected embryos to the pupal stage. However, substantial mortality was observed, with only 12 injected eggs developing to the pupal stage. All of these were female, and none of them had been successfully mutated.

      In conclusion, we agree with the reviewer that functional experiments would be useful, and we made extensive attempts to conduct such experiments. However, these experiments turned out to be extremely challenging with the currently available protocols. Ultimately, we therefore decided to abandon these attempts.  

      We opted not to include these experiments in the paper itself because we cannot meaningfully interpret their results. However, we are pleased that, in this response letter, we can include a brief description for readers interested in attempting similar experiments.

      Since O. biroi reproduces parthenogenetically and most offspring develop into females, observing a shift from female- to male-specific splicing of tra upon early embryonic knockout of the lncRNA would provide much stronger evidence that this lncRNA is essential for female development. Without such functional validation, the authors' claim (lines 36-38) seems to reiterate findings already proposed by Pan et al. (2024) and, as such, lacks sufficient novelty.

      We have responded to the issue of “lack of novelty” above. But again, the actual CSD locus in both O. biroi and L. humile appears to be distinct from (but genetically linked to) the lncRNA, and we have no experimental evidence that the putative lncRNA in O. biroi is involved in sex determination at all. Because of this, and given the experimental challenges described above, we do not currently intend to pursue functional studies of the lncRNA.

      References

      Hasselmann M, Gempe T, Schiøtt M, Nunes-Silva CG, Otte M, Beye M. 2008. Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. Nature 454:519–522.

      Koch V, Nissen I, Schmitt BD, Beye M. 2014. Independent Evolutionary Origin of fem Paralogous Genes and Complementary Sex Determination in Hymenopteran Insects. PLOS ONE 9:e91883.

      Matthey-Doret C, van der Kooi CJ, Jeffries DL, Bast J, Dennis AB, Vorburger C, Schwander T. 2019. Mapping of multiple complementary sex determination loci in a parasitoid wasp. Genome Biology and Evolution 11:2954–2962.

      Miyakawa MO, Mikheyev AS. 2015. QTL mapping of sex determination loci supports an ancient pathway in ants and honey bees. PLOS Genetics 11:e1005656.

      Pan Q, Darras H, Keller L. 2024. LncRNA gene ANTSR coordinates complementary sex determination in the Argentine ant. Science Advances 10:eadp1532.

      Privman E, Wurm Y, Keller L. 2013. Duplication and concerted evolution in a master sex determiner under balancing selection. Proceedings of the Royal Society B: Biological Sciences 280:20122968.

      Rabeling C, Kronauer DJC. 2012. Thelytokous parthenogenesis in eusocial Hymenoptera. Annual Review of Entomology 58:273–292.

      Schmieder S, Colinet D, Poirié M. 2012. Tracing back the nascence of a new sex-determination pathway to the ancestor of bees and ants. Nature Communications 3:1–7.

      Vorburger C. 2013. Thelytoky and Sex Determination in the Hymenoptera: Mutual Constraints. Sexual Development 8:50–58.

    1. eLife Assessment

      The manuscript presents important findings that advance our understanding of how microglia adapt their surveillance strategies during chronic neurodegeneration. The evidence presented is convincing, with appropriate and validated methodology broadly supporting the claims given by the authors.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Subhramanian et al. carefully examined how microglia adapt their surveillance strategies during chronic neurodegeneration, specifically in prion-infected mice. The authors used ex vivo time-lapse imaging and in vitro strategies, finding that reactive microglia exhibit a highly mobile, "kiss-and-ride" behavior, which contrasts with the more static surveillance typically observed in homeostatic microglia. The manuscript provides fundamental mechanistic insights into the dynamics of microglia-neuron interactions, implicates P2Y6 signaling in regulating mobility, and suggests that intrinsic reprogramming of microglia might underlie this behavior. The conclusions are therefore compelling.

      Strengths:

      (1) The novelty of the study is high, in particular, the demonstration that microglia lose territorial confinement and dynamically migrate from neuron to neuron under chronic neurodegeneration.

      (2) The possible implications of a stimulus-independent high mobility in reactive microglia are particularly striking. Although this is not fully explored (see comments below).

      (3) The use of time-lapse imaging in organotypic slices rather than overexpression models provided a more physiological approach.

      (4) Microglia-neuron interactions in neurodegeneration have broad implications for understanding the progression of other diseases that are associated with chronic inflammation, such as Alzheimer's and Parkinson's.

      Weaknesses:

      (1) The Cx3cr1/EGFP line labels all myeloid cells, which makes it difficult to conclude that all observed behaviors are attributable to microglia rather than infiltrating macrophages. The authors refer to this and include it as a limitation. Nonetheless, complementary confirmation by additional microglia markers would strengthen their claims.

      (2) Although the authors elegantly describe dynamic surveillance and envelopment hypothesis, it is unclear what the role of this phenotype is for disease progression, i.e., functional consequences. For example, are the neurons that undergo sustained envelopment more likely to degenerate?

      (3) Moreover, although the increase in mobility is a relevant finding, it would be interesting for the authors to further comment on what the molecular trigger(s) is/are that might promote this increase. These adaptations, which are at least long-lasting, confer apparent mobility in the absence of external stimuli.

      (4) The authors performed, as far as I could understand, the experiments in cortical brain regions. There is no clear rationale for this in the manuscript, nor is it clear whether the mobility is specific to a particular brain region. This is particularly important, as microglia reactivity varies greatly depending on the brain region.

      (5) It would be relevant information to have an analysis of the percentage of cells in normal, sub-clinical, early clinical, and advanced stages that became mobile. Without this information, the speed/distance alone can have different interpretations.

    3. Reviewer #2 (Public review):

      This is a nice paper focused on the response of microglia to different clinical stages of prion infection in acute brain slices. The key here is the use of time-lapse imaging, which captures the dynamics of microglial surveillance, including morphology, migration, and intracellular neuron-microglial contacts. The authors use a myeloid GFP-labeled transgenic mouse to track microglia in SSLOW-infected brain slices, quantifying differences in motility and microglial-neuron interactions via live fluorescence imaging. Interesting findings include the elaborate patterns of motility among microglia, the distinct types and duration of intracellular contacts, the potential role of calcium signaling in facilitating hypermobility, and the fact that this motion-promoting status is intrinsic to microglia, persisting even after the cells have been isolated from infected brains. Although largely a descriptive paper, there are mechanistic insights, including the role of calcium in supporting movement of microglia, where bursts of signaling are identified even within the time-lapse format, and inhibition studies that implicate the purinergic receptor and calcium transient regulator P2Y6 in migratory capacity.

      Strengths:

      (1) The focus on microglia activation and activity in the context of prion disease is interesting.

      (2) Two different prions produce largely the same response.

      (3) Use of time-lapse provides insight into the dynamics of microglia, distinguishing between types of contact - mobility vs motility - and providing insight into the duration/transience and reversibility of extensive somatic contacts that include brief and focused connections in addition to soma envelopment.

      (4) Imaging window selection (3 hours) guided by prior publications documenting preserved morphology, activity, and gene expression regulation up to 4 hours.

      (5) The distinction between high mobility and low mobility microglia is interesting, especially given that hyper mobility seems to be an innate property of the cells.

      (6) The live-imaging approach is validated by fixed tissue confocal imaging.

      (7) The variance in duration of neuron/microglia contacts is interesting, although there is no insight into what might dictate which status of interaction predominates.

      (8) The reversibility of the enveloping action, that is not apparently a commitment to engulfment, is interesting, as is the fact that only neurons are selected for this activity.

      (9) The calcium studies use the fluorescent dye calbryte-590 to pick up neuronal and microglial bursts - prolonged bursts are detected in enveloped neurons and in the hyper-mobile microglia - the microglial lead is followed up using MRS-2578 P2Y6 inhibitor that blunts the mobility of the microglia.

      Weaknesses:

      (1) The number of individual cells tracked has been provided, but not the number of individual mice. The sex of the mice is not provided.

      (2) The statistical approach is not clear; was each cell treated as a single observation?

      (3) The potential for heterogeneity among animals has not been addressed.

      (4) Validation of prion accumulation at each clinical stage of the disease is not provided.

      (5) How were the numerous captures of cells handled to derive morphological quantitative values? Based on the videos, there is a lot of movement and shape-shifting.

      (6) While it is recognized that there are limits to what can be measured simultaneously with live imaging, the authors appear to have fixed tissues from each time point too - it would be very interesting to know if the extent or prion accumulation influences the microglial surveillance - i.e., do the enveloped ones have greater pathology>

    1. eLife Assessment

      This study introduces a valuable new metric-phenological lag-to help partition the drivers of observed versus expected shifts in spring phenology under climate warming. The conceptual framework is clearly presented and supported by an extensive dataset, and the revisions have improved the manuscript, though some concerns-particularly regarding uncertainty quantification, spatial analysis, and modeling assumptions-remain only partially addressed. The strength of evidence is generally solid, but further analysis would help to validate the study's conclusions.

    2. Reviewer #3 (Public review):

      Summary:

      The authors developed a new phenological lag metric and applied this analytical framework to a global dataset to synthesize shifts in spring phenology and assess how abiotic constraints influence spring phenology.

      Strengths:

      The dataset developed in this study is extensive, and the phenological lag metric is valuable.

      Weaknesses:

      The stability of the method used to calculate forcing requirements needs improvement, for example by including different base temperature thresholds. In addition, the visualization of the results should be improved.

    3. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review): 

      Jiang et al. present a measure of phenological lag by quantifying the effects of abiotic constraints on the differences between observed and expected phenological changes, using a combination of previously published phenology change data for 980 species, and associated climate data for study sites. They found that, across all samples, observed phenological responses to climate warming were smaller than expected responses for both leafing and flowering spring events. They also show that data from experimental studies included in their analysis exhibited increased phenological lag compared to observational studies, possibly as a result of reduced sensitivity to climatic changes. Furthermore, the authors present evidence that spatial trends in phenological responses to warming may differ than what would be expected from phenological sensitivity, due to the seasonal timing of when warming occurs. Thus, climate change may not result in geographic convergences of phenological responses. This study presents an interesting way to separate the individual effects of climate change and other abiotic changes on the phenological responses across sites and species. 

      Strengths: 

      A straightforward mathematical definition of phenological lag allows for this method to potentially be applied in different geographic contexts. Where data exists, other researchers can partition the effects of various abiotic forcings on phenological responses that differ from those expected from warming sensitivity alone. 

      Identifying phenological lag, and associated contributing factors, provides a method by which more nuanced predictions of phenological responses to climate change can be made. Thus, this study could improve ecological forecasting models. 

      Weaknesses: 

      The analysis here could be more robust. A more thorough examination of phenological lag would provide stronger evidence that the framework presented has utility. The differences in phenologica lag by study approach, species origin, region, and growth form are interesting, and could be expanded. For example, the authors have the data to explore the relationships between phenological lag and the quantitative variables included in the final model (altitude, latitude, mean annual temperature) and other spatial or temporal variables. This would also provide stronger evidence for the author's claims about potential mechanisms that contribute to phenological lag. 

      We did examine the relationships of phenological lag with geographic or climatic variables in our analyses. Other than the weak correlations with latitude and altitude cited in the discussion section (lines 292-293), phenological lag was not related to mean annual temperature or long-term precipitation for both leafing and flowering.  

      The authors include very little data visualizations, and instead report results and model statistics in tables. This is difficult to interpret and may obscure underlying patterns in the data. Including visual representations of variable distributions and between-variable relationships, in addition to model statistics, provides stronger evidence than model statistics alone. 

      Table 2 shows the influences of geographic or climatic variables, particularly those related to drivers of spring phenology, i.e., budburst temperature, forcing change, and phenological lag, on phenological changes. As quantitative contributions of these drivers have been extracted, the influences of remaining variables are either minor or insignificant. Thus, examination of variable distributions, which has been done in previous syntheses, is probably not necessary.         

      Some of independent variables were apparently correlated (r <0.6), e.g., MAT with altitude and latitude, budburst temperature with forcing change and spring warming, and forcing change with spring warming.

      Reviewer #3 (Public review): 

      Summary: 

      The authors developed a new phenological lag metric and applied this analytical framework to a global dataset to synthesize shifts in spring phenology and assess how abiotic constraints influence spring phenology. 

      Strengths: 

      The dataset developed in this study is extensive, and the phenological lag metric is valuable. 

      Weaknesses: 

      The stability of the method used in this study needs improvement, particularly in the calculation of forcing requirements. In addition, the visualization of the results (such as Table 1) should be enhanced. 

      Not clear how to improve the calculation of forcing accumulation.    

      Recommendations for the authors: 

      Editor (Recommendations for the authors): 

      To improve the robustness of the metric and the conclusions drawn, we recommend that the authors: 

      Test the sensitivity of their results to different base temperature thresholds and to nonlinear forcing response models, even for a subset of species. The proposed framework relies on an accurate understanding of species-specific thermal responses, which remain poorly resolved.

      Different above-zero base temperatures have been used previously, although justifications are mostly following previous work. As we indicated in our first responses, the use of above-zero base temperatures underestimates forcing from low temperatures, which has more impacts on species with early spring phenology or in areas of cold climate due to greater proportions of forcing accumulations from low temperatures. The use of high base temperatures can lead to an interpretation that early season species require little or no forcing to break buds, which is biologically incorrect. Thus, the use of above-zero base temperatures would be more appropriate for particular locations or species than for meta-analysis across different spring phenology and climatic conditions. 

      The research on multiple warming is limited in terms of levels of warming used (mostly one and occasionally two) for assessing non-linear forcing responses. This can be the focus of future work.  

      Our framework is based on drivers of spring phenology and not dependent on “accurate understanding of species-specific thermal responses”. However, a good understanding of species- and site-specific responses to phenological constraints (e.g., insufficient winter chilling, photoperiod, and environmental stresses) does help determine the nature of phenological lag. All these are explained in our paper.     

      Analyze relationships between phenological lag and additional geographic or climatic gradients already available in the dataset (e.g., latitude, mean annual temperature, interannual variability). 

      We did examine the relationships of phenological lag with geographic or climatic variables in our analyses. Other than the weak correlations with latitude and altitude cited in the discussion section (lines 292-293), phenological lag was not related to mean annual temperature or long-term precipitation for both leafing and flowering.  

      Our objective is to understand changes in spring phenology and differences in plant phenological responses across different functional groups or climatic regions, although our approach can be used to study interannual variability of spring phenology. Our metadata are compiled for comparing warmer vs control treatments (often multiyear averages), not for assessing interannual variability.      

      Improve data visualization to better convey how phenological lag varies across environmental and biological contexts. 

      See responses above.

      Consider incorporating explicit uncertainty estimates around phenological lag calculations.  These steps would improve the interpretability and generalizability of the framework, helping it move from a useful heuristic to a more robust and empirically grounded analytical tool. 

      The calculation of phenological lag is based on drivers of spring phenology with uncertainty depending primarily on uncertainty in phenological observations. Previous uncertainty assessments can be used here (see a few selected studies below).   

      Alles, G.R., Comba, J.L., Vincent, J.M., Nagai, S. and Schnorr, L.M., 2020. Measuring phenology uncertainty with large scale image processing. Ecological Informatics, 59, p.101109.

      Liu G, Chuine I, Denéchère R, Jean F, Dufrêne E, Vincent G, Berveiller D, Delpierre N. Higher sample sizes and observer intercalibration are needed for reliable scoring of leaf phenology in trees. Journal of Ecology. 2021 Jun;109(6):2461-74.

      Tang, J., Körner, C., Muraoka, H., Piao, S., Shen, M., Thackeray, S.J. and Yang, X., 2016.Emerging opportunities and challenges in phenology: a review. Ecosphere, 7(8), p.e01436. 

      Nagai, S., Inoue, T., Ohtsuka, T., Yoshitake, S., Nasahara, K.N. and Saitoh, T.M., 2015. Uncertainties involved in leaf fall phenology detected by digital camera. Ecological Informatics, 30, pp.124-132.

    1. eLife Assessment

      This study provides novel and convincing evidence that both dopamine D1 and D2 expressing neurons in the nucleus accumbens shell are crucial for the expression of cue-guided action selection, a core component of decision-making. The research is systematic and rigorous in using optogenetic inhibition of either D1- or D2-expressing medium spiny neurons in the NAc shell to reveal attenuation of sensory-specific Pavlovian-Instrumental transfer, while largely sparing value-based decision on an instrumental task. The important findings in this report build on prior research and resolve some conflicts in the literature regarding decision-making.

    2. Reviewer #1 (Public review):

      In the current article, Octavia Soegyono and colleagues study "The influence of nucleus accumbens shell D1 and D2 neurons on outcome-specific Pavlovian instrumental transfer", building on extensive findings from the same lab. While there is a consensus about the specific involvement of the Shell part of the Nucleus Accumbens (NAc) in specific stimulus-based actions in choice settings (and not in General Pavlovian instrumental transfer - gPIT, as opposed to the Core part of the NAc), mechanisms at the cellular and circuitry levels remain to be explored. In the present work, using sophisticated methods (rat Cre-transgenic lines from both sexes, optogenetics and the well-established behavioral paradigm outcome-specific PIT - sPIT), Octavia Soegyono and colleagues decipher the differential contribution of dopamine receptors D1 and D2 expressing-spiny projection neurons (SPNs).

      After validating the viral strategy and the specificity of the targeting (immunochemistry and electrophysiology), the authors demonstrate that while both NAc Shell D1- and D2-SPNs participate in mediating sPIT, NAc Shell D1-SPNs projections to the Ventral Pallidum (VP, previously demonstrated as crucial for sPIT), but not D2-SPNs, mediates sPIT. They also show that these effects were specific to stimulus-based actions, as value-based choices were left intact in all manipulations.

      This is a well-designed study and the results are well supported by the experimental evidence. The paper is extremely pleasant to read and add to the current literature.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript by Soegyono et a. describes a series of experiments designed to probe the involvement of dopamine D1 and D2 neurons within the nucleus accumbens shell in outcome-specific Pavlovian-instrumental transfer (osPIT), a well-controlled assay of cue-guided action selection based on congruent outcome associations. They used an optogenetic approach to phasically silence NAc shell D1 (D1-Cre mice) or D2 (A2a-Cre mice) neurons during a subset of osPIT trials. Both manipulations disrupted cue-guided action selection but had no effects on negative control measures/tasks (concomitant approach behavior, separate valued guided choice task), nor were any osPIT impairments found in reporter only control groups. Separate experiments revealed that selective inhibition of NAc shell D1 but not D2 inputs to ventral pallidum were required for osPIT expression, thereby advancing understanding of the basal ganglia circuitry underpinning this important aspect of decision making.

      Strengths:

      The combinatorial viral and optogenetic approaches used here were convincingly validated through anatomical tract-tracing and ex vivo electrophysiology. The behavioral assays are sophisticated and well-controlled to parse cue and value guided action selection. The inclusion of reporter only control groups is rigorous and rules out nonspecific effects of the light manipulation. The findings are novel and address a critical question in the literature. Prior work using less decisive methods had implicated NAc shell D1 neurons in osPIT but suggested that D2 neurons may not be involved. The optogenetic manipulations used in the current study provides a more direct test of their involvement and convincingly demonstrate that both populations play an important role. Prior work had also implicated NAc shell connections to ventral pallidum in osPIT, but the current study reveals the selective involvement of D1 but not D2 neurons in this circuit. The authors do a good job of discussing their findings, including their nuanced interpretation that NAc shell D2 neurons may contribute to osPIT through their local regulation of NAc shell microcircuitry.

      Weaknesses:

      The current study exclusively used an optogenetic approach to probe the function of D1 and D2 NAc shell neurons. Providing a complementary assessment with chemogenetics or other appropriate methods would strengthen conclusions, particularly the novel demonstration for D2 NAc shell involvement. Likewise, the null result of optically inhibiting D2 inputs to ventral pallidum leaves open the possibility that a more complete or sustained disruption of this pathway may have impaired osPIT.

      Conclusions:

      The research described here was successful in providing critical new insights into the contributions of NAc D1 and D2 neurons in cue-guided action selection. The authors' data interpretation and conclusions are well reasoned and appropriate. They also provide a thoughtful discussion of study limitations and implications for future research. This research is therefore likely to have a significant impact on the field.

      Comments on the previous version:

      I have reviewed the rebuttal and revised manuscript and have no remaining concerns.

    4. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer#1 (Public Review):

      In the current article, Octavia Soegyono and colleagues study "The influence of nucleus accumbens shell D1 and D2 neurons on outcome-specific Pavlovian instrumental transfer", building on extensive findings from the same lab. While there is a consensus about the specific involvement of the Shell part of the Nucleus Accumbens (NAc) in specific stimulus-based actions in choice settings (and not in General Pavlovian instrumental transfer - gPIT, as opposed to the Core part of the NAc), mechanisms at the cellular and circuitry levels remain to be explored. In the present work, using sophisticated methods (rat Cre-transgenic lines from both sexes, optogenetics and the well-established behavioral paradigm outcome-specific PIT - sPIT), Octavia Soegyono and colleagues decipher the diOerential contribution of dopamine receptors D1 and D2 expressing-spiny projection neurons (SPNs).

      After validating the viral strategy and the specificity of the targeting (immunochemistry and electrophysiology), the authors demonstrate that while both NAc Shell D1- and D2SPNs participate in mediating sPIT, NAc Shell D1-SPNs projections to the Ventral Pallidum (VP, previously demonstrated as crucial for sPIT), but not D2-SPNs, mediates sPIT. They also show that these eOects were specific to stimulus-based actions, as valuebased choices were left intact in all manipulations.

      This is a well-designed study and the results are well supported by the experimental evidence. The paper is extremely pleasant to read and add to the current literature.

      We thank the Reviewer for their positive assessment.

      Comments on revisions:  

      We thank the authors for their detailed responses and for addressing our comments and concerns.

      To further improve consistency and transparency, we kindly request that the authors provide, for Supplemental Figures S1-S4, panels E (raw data for lever presses during the PIT test), the individual data points together with the corresponding statistical analyses in the figure legends.

      Panel E of Figures S1-S4 now includes the individual data points. The outcome-specific data have already been analysed, and we report these analyses in the main manuscript. These analyses are more informative than those requested by the Reviewer since they report the net eFects of the stimuli on choice between actions while controlling for potential individual baseline instrumental performance. All data remain fully transparent and are publicly available on an online repository in accordance with eLife policies (see relevant section in Materials and Methods).  

      In addition, regarding Supplemental Figure S3, panel E, we note the absence of a PIT eOect in the eYFP group under the ON condition, which appears to diOer from the net response reported in the main Figure 5, panel B. Could the authors clarify this apparent discrepancy?

      We apologize for the error, which has now been corrected. 

      We also note a discrepancy between the authors' statement in their response ("40 rats excluded based on post-mortem analyses") and the number of excluded animals reported in the Materials and Methods section, which adds up to 47. We kindly ask the authors to clarify this point for consistency.

      We thank the Reviewer for identifying the error reported in our initial response. The total number of animals excluded was 47, as reported in the manuscript. 

      Finally, as a minor point, we suggest indicating the total number of animals used in the study in the Materials and Methods section.

      The total number of animals has been included in the Materials and Methods section.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript by Soegyono et a. describes a series of experiments designed to probe the involvement of dopamine D1 and D2 neurons within the nucleus accumbens shell in outcome-specific Pavlovian-instrumental transfer (osPIT), a well-controlled assay of cueguided action selection based on congruent outcome associations. They used an optogenetic approach to phasically silence NAc shell D1 (D1-Cre mice) or D2 (A2a-Cre mice) neurons during a subset of osPIT trials. Both manipulations disrupted cue-guided action selection but had no eOects on negative control measures/tasks (concomitant approach behavior, separate valued guided choice task), nor were any osPIT impairments found in reporter only control groups. Separate experiments revealed that selective inhibition of NAc shell D1 but not D2 inputs to ventral pallidum were required for osPIT expression, thereby advancing understanding of the basal ganglia circuitry underpinning this important aspect of decision making.

      Strengths:

      The combinatorial viral and optogenetic approaches used here were convincingly validated through anatomical tract-tracing and ex vivo electrophysiology. The behavioral assays are sophisticated and well-controlled to parse cue and value guided action selection. The inclusion of reporter only control groups is rigorous and rules out nonspecific eOects of the light manipulation. The findings are novel and address a critical question in the literature. Prior work using less decisive methods had implicated NAc shell D1 neurons in osPIT but suggested that D2 neurons may not be involved. The optogenetic manipulations used in the current study provides a more direct test of their involvement and convincingly demonstrate that both populations play an important role. Prior work had also implicated NAc shell connections to ventral pallidum in osPIT, but the current study reveals the selective involvement of D1 but not D2 neurons in this circuit. The authors do a good job of discussing their findings, including their nuanced interpretation that NAc shell D2 neurons may contribute to osPIT through their local regulation of NAc shell microcircuitry.

      We thank the Reviewer for their positive assessment.

      Weaknesses:

      The current study exclusively used an optogenetic approach to probe the function of D1 and D2 NAc shell neurons. Providing a complementary assessment with chemogenetics or other appropriate methods would strengthen conclusions, particularly the novel demonstration for D2 NAc shell involvement. Likewise, the null result of optically inhibiting D2 inputs to ventral pallidum leaves open the possibility that a more complete or sustained disruption of this pathway may have impaired osPIT.

      We acknowledge the reviewer's valuable suggestion that demonstrating NAc-S D1- and D2-SPNs engagement in outcome-specific PIT through another technique would strengthen our optogenetic findings. Several approaches could provide this validation. Chemogenetic manipulation, as the reviewer suggested, represents one compelling option. Alternatively, immunohistochemical assessment of phosphorylated histone H3 at serine 10 (P-H3) oFers another promising avenue, given its established utility in reporting striatal SPNs plasticity in the dorsal striatum (Matamales et al., 2020). We hope to complete such an assessment in future work since it would address the limitations of previous work that relied solely on ERK1/2 phosphorylation measures in NAc-S SPNs (Laurent et al., 2014). The manuscript was modified to report these future avenues of research (page 12). 

      Regarding the null result from optical silencing of D2 terminals in the ventral pallidum, we agree with the reviewer's assessment. While we acknowledge this limitation in the current manuscript (page 13), we aim to address this gap in future studies to provide a more complete mechanistic understanding of the circuit.

      Conclusions:

      The research described here was successful in providing critical new insights into the contributions of NAc D1 and D2 neurons in cue-guided action selection. The authors' data interpretation and conclusions are well reasoned and appropriate. They also provide a thoughtful discussion of study limitations and implications for future research. This research is therefore likely to have a significant impact on the field.

      We thank the Reviewer for their positive assessment.

      Comments on revisions:

      I have reviewed the rebuttal and revised manuscript and have no remaining concerns.

      We are pleased to have addressed the Reviewer’s query.

      References

      Laurent, V., Bertran-Gonzalez, J., Chieng, B. C., & Balleine, B. W. (2014). δ-Opioid and Dopaminergic Processes in Accumbens Shell Modulate the Cholinergic Control of Predictive Learning and Choice. J Neurosci, 34(4), 1358-1369. https://doi.org/10.1523/JNEUROSCI.4592-13.2014

      Matamales, M., McGovern, A. E., Mi, J. D., Mazzone, S. B., Balleine, B. W., & BertranGonzalez, J. (2020). Local D2- to D1-neuron transmodulation updates goal-directed learning in the striatum. Science, 367(6477), 549-555. https://doi.org/10.1126/science.aaz5751

    1. eLife Assessment

      This paper addresses the significant question of quantifying epistasis patterns, which affect the predictability of evolution, by reanalyzing a recently published combinatorial deep mutational scan experiment. The findings are useful, showing that epistasis is fluid, i.e. strongly background dependent, but that fitness effects of mutations are statistically predictable based on the background fitness. While the general approach appears solid, some claims remain incompletely supported by the analysis, as arbitrary cutoffs are used and the description of methods lacks specifics. This analysis should be of interest to the community working on fitness landscapes.

    2. Reviewer #1 (Public review):

      The paper reports some interesting patterns in epistasis in a recently published large fitness landscape dataset. The results may have implications for our understanding of fitness landscapes and protein evolution. However, this version of the paper remains fairly descriptive and has significant deficiencies in clarity and rigor.

      The authors have addressed some of my criticisms (e.g., I appreciate the additional analysis of synonymous mutations, and a more rigorous approach to calling fitness peaks), but many of the issues raised in my first round of review remain in the current version. Frankly, I am quite disappointed that the authors did not address my comments point by point, which is the norm. The remaining (and some new) issues are below.

      (1a) (Modified from first round) I previously suggested to dissect what appears to be three different patterns of epistasis: "strong" and "weak" global epistasis and what one can could "purely idiosyncratic", i.e., not dependent on background fitness. The authors attempted to address this, but I don't think what they have done is sufficient. They make a statement "The lethal mutations have a slope smaller than -0.7 and average slope of -0.98. The remaining mutations all have a slope greater than -0.56" (LL 274-276)", but there is no evidence provided to support this claim. This is a strong and I think interesting statement (btw, how is "lethal" defined?) and warrants a dedicated figure. This statement suggests that the mixed patterns shown in Figure 5 can actually be meaningfully separated. Why don't the authors show this? Instead, they still claim "overall, global epistasis is not very strong on the folA landscape" (LL. 273-274). I maintain that this claim does not quite capture the observations.

      Later in the text there is a whole section called "Only a small fraction of mutations exhibit strong global epistasis", which also seems related to this issue. First, I don't follow the logic here. Why is this section separate from this initial discussion? Second, here the authors claim "only a small subset of mutations exhibits strong global epistasis (R^2 > 0.5)" and then "This sharp contrast suggests a binary behavior of mutations: they either exhibit strong global epistasis (R2 > 0.5), or not (R2 < 0.5)." But this R^2 threshold seems arbitrary, and I don't see any statistical support for this binary nature.

      (1b) (Verbatim from first round) Another rather remarkable feature of this plot is that the slopes of the strong global epistasis patterns sem to be very similar across mutations. Is this the case? Is there anything special about this slope? For example, does this slope simply reflect the fact that a given mutation becomes essentially lethal (i.e., produces the same minimal fitness) in a certain set of background genotypes?

      (1c) (Verbatim from first round) Finally, how consistent are these patterns with some null expectations? Specifically, would one expect the same distribution of global epistasis slopes on an uncorrelated landscape? Are the pivot points unusually clustered relative to an expectation on an uncorrelated landscape?

      (1d) (Verbatim from first round) The shapes of the DFE shown in Figure 7 are also quite interesting, particularly the bimodal nature of the DFE in high-fitness (HF) backgrounds. I think this bimodalilty must be a reflection of clustering of mutation-background combinations mentioned above. I think the authors ought to draw this connection explicitly. Do all HF backgrounds have a bimodal DFE? What mutations occupy the "moving" peak?

      (1e) (Modified from first round). I still don't understand why there are qualitative differences in the shape of the DFE between functional and non-functional backgrounds (Figure 8B,C). Why is the transition between bimodal DFE in Figure 8B and unimodal DFE in Figure 8C is so abrupt? Perhaps the authors can plot the DFEs for all backgrounds on the same plot and just draw a line that separates functional and non-functional backgrounds so that the reader can better see whether DFE shape changes gradually or abruptly.

      (1f) (Modified from first round) I am now more convinced that synonymous mutations alter epistasis and behave differently than non-synonymous mutations, but I still have some questions. (i) I would have liked a side-by-side comparison of synonymous and non-synonymous mutations, both in terms of their effects on fitness and on epistasis.<br /> (ii) The authors claim (LL 278-286) that "synonymous substitutions tend to follow two recurring behaviors" but this is not shown. To demonstrate this, the authors ought to plot (for example) the distribution of slopes of regression lines. Is this distribution actually bimodal? (iii) Later in the same paragraph the authors say "synonymous changes do not exhibit very strong background fitness-dependence". I don't see how this follows from the previous discussion.

      (2) The authors claim to have improved statistical rigor of their analysis, but the Methods section is really thin and inadequate for understanding how the statistical analyses were done.

      (3) In general, I notice a regrettable lack of attention to detail in the text, which makes me worried about a similar problem in the actual data analysis. Here are a few examples. (i) Throughout the text, the authors now refer to functional and non-functional genotypes, but several figures and captions retained the old HF and LF designations. (ii) Figure 7 is called Figure 8. (iii) Figure 3B is not discussed, though it logically precedes Figure 3A and 3C. (iv) Many of my comments, especially minor, were not addressed at all.

    3. Reviewer #3 (Public review):

      Summary:

      The authors have studied a previously published large dataset on the fitness landscape of a 9 base-pair region of the folA gene. The objective of the paper is to understand various aspects of epistasis in this system, which the authors have achieved through detailed and computationally expensive exploration of the landscape. The authors describe epistasis in this system as "fluid", meaning that it depends sensitively on the genetic background, thereby reducing the predictability of evolution at the genetic level. However, the study also finds some robust patterns. The first is the existence of a "pivot point" for a majority of mutations, which is a fixed growth rate at which the effect of mutations switches from beneficial to deleterious (consistent with a previous study on the topic). The second is the observation that the distribution of fitness effects (DFE) of mutations is predicted quite well by the fitness of the genotype, especially for high-fitness genotypes. While the work does not offer a synthesis of the multitude of reported results, the information provided here raises interesting questions for future studies in this field.

      Strengths:

      A major strength of the study is its multifaceted approach, which has helped the authors tease out a number of interesting epistatic properties. The study makes a timely contribution by focusing on topical issues like global epistasis, the existence of pivot points, and the dependence of DFE on the background genotype and its fitness.

      The authors have classified pairwise epistasis into six types, and found that the type of epistasis changes depending on background mutations. Switches happen more frequently for mutations at functionally important sites. Interestingly, the authors find that even synonymous mutations can alter the epistatic interaction between mutations in other codons, and this effect is uncorrelated with the direct fitness effects of the synonymous mutations. Alongside the observations of "fluidity", the study reports limited instances of global epistasis (which predicts a simple linear relationship between the size of a mutational effect and the fitness of the genetic background in which it occurs). Overall, the work presents strong evidence for the genetic context-dependent nature of epistasis in this system.

      Weaknesses:

      Despite the wealth of information provided by the study, there are a few points of concern.

      The authors find that in non-functional genotypic backgrounds, most pairs of mutations display no epistasis. However, we do not know if this simply because a significant epistatic signal is hard to detect since all the fitness values involved in calculating epistasis are small (and therefore noise-prone). A control can be done by determining whether statistically significant differences exist among the fitness values themselves. In the absence of such information, it is hard to understand whether the classification of epistasis for non-functional backgrounds into discrete categories, such as in Fig 1C, is meaningful.

      The authors have looked for global epistasis (i.e. a negative dependence of mutational fitness effect on background fitness) in all 108 (9x12) mutations in the landscape. They report that the majority of the mutations (77/108 or about 71 per cent) display weak correlation between fitness effect and background fitness (R^2<0.2), and a relatively small proportion show particularly strong correlation (R^2>0.5). They therefore conclude that global epistasis in this system is 'binary'-meaning that strong global epistasis is restricted to a few sites, whereas weak global epistasis occurs in the rest (Figure 5). Precise definitions of 'strong' and 'weak' are not given in the text, but the authors do mention that they are interested here primarily in detecting whether a correlation with background fitness exists or not. This again raises the question of the extent to which the low (and possibly noisy) fitness values of non-functional backgrounds can confound the results. For example, would the results be much the same if the analysis was repeated with only high-fitness backgrounds or only those sets of genotypes where the fitness differences between backgrounds and mutants were significant?<br /> Apart from this, I am also a bit conceptually perplexed by the term 'binary behavior', which suggests that the R^2 values should belong to two distinct classes; but, even assuming that the reported results are robust, Figure S12 shows that most values are 0.2 or less whereas higher values are more or less evenly distributed in the range 0.2-1.0, rather than showing an overall bimodal pattern. An especially confusing remark by the authors in this regard is the following; "This sharp contrast suggests a binary behavior of mutations: they either exhibit strong global epistasis (R^2 > 0.5), or not (R^2 < 0.5)'.

      Conclusions: As large datasets on empirical fitness landscapes become increasingly available, more computational studies are needed to extract as much information from them as possible. The authors have made a timely effort in this direction. It is particularly instructive to learn from the work that higher-order epistasis is pervasive in the studied intragenic landscape, at least in functional genotypic backgrounds. Some of the analysis and interpretations in the paper require careful scrutiny, and the lack of a synthesis of the multitude of reported results leaves something to be desired. But the paper contains intriguing observations that can fuel further research into the factors shaping the topography of complex landscapes.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      This paper describes a number of patterns of epistasis in a large fitness landscape dataset recently published by Papkou et al. The paper is motivated by an important goal in the field of evolutionary biology to understand the statistical structure of epistasis in protein fitness landscapes, and it capitalizes on the unique opportunities presented by this new dataset to address this problem. 

      The paper reports some interesting previously unobserved patterns that may have implications for our understanding of fitness landscapes and protein evolution. In particular, Figure 5 is very intriguing. However, I have two major concerns detailed below. First, I found the paper rather descriptive (it makes little attempt to gain deeper insights into the origins of the observed patterns) and unfocused (it reports what appears to be a disjointed collection of various statistics without a clear narrative. Second, I have concerns with the statistical rigor of the work. 

      (1) I think Figures 5 and 7 are the main, most interesting, and novel results of the paper. However, I don't think that the statement "Only a small fraction of mutations exhibit global epistasis" accurately describes what we see in Figure 5. To me, the most striking feature of this figure is that the effects of most mutations at all sites appear to be a mixture of three patterns. The most interesting pattern noted by the authors is of course the "strong" global epistasis, i.e., when the effect of a mutation is highly negatively correlated with the fitness of the background genotype. The second pattern is a "weak" global epistasis, where the correlation with background fitness is much weaker or non-existent. The third pattern is the vertically spread-out cluster at low-fitness backgrounds, i.e., a mutation has a wide range of mostly positive effects that are clearly not correlated with fitness. What is very interesting to me is that all background genotypes fall into these three groups with respect to almost every mutation, but the proportions of the three groups are different for different mutations. In contrast to the authors' statement, it seems to me that almost all mutations display strong global epistasis in at least a subset of backgrounds. A clear example is C>A mutation at site 3. 

      (1a) I think the authors ought to try to dissect these patterns and investigate them separately rather than lumping them all together and declaring that global epistasis is rare. For example, I would like to know whether those backgrounds in which mutations exhibit strong global epistasis are the same for all mutations or whether they are mutation- or perhaps positionspecific. Both answers could be potentially very interesting, either pointing to some specific site-site interactions or, alternatively, suggesting that the statistical patterns are conserved despite variation in the underlying interactions. 

      (1b) Another rather remarkable feature of this plot is that the slopes of the strong global epistasis patterns seem to be very similar across mutations. Is this the case? Is there anything special about this slope? For example, does this slope simply reflect the fact that a given mutation becomes essentially lethal (i.e., produces the same minimal fitness) in a certain set of background genotypes? 

      (1c) Finally, how consistent are these patterns with some null expectations? Specifically, would one expect the same distribution of global epistasis slopes on an uncorrelated landscape? Are the pivot points unusually clustered relative to an expectation on an uncorrelated landscape? 

      (1d) The shapes of the DFE shown in Figure 7 are also quite interesting, particularly the bimodal nature of the DFE in high-fitness (HF) backgrounds. I think this bimodality must be a reflection of the clustering of mutation-background combinations mentioned above. I think the authors ought to draw this connection explicitly. Do all HF backgrounds have a bimodal DFE? What mutations occupy the "moving" peak? 

      (1e) In several figures, the authors compare the patterns for HF and low-fitness (LF) genotypes. In some cases, there are some stark differences between these two groups, most notably in the shape of the DFE (Figure 7B, C). But there is no discussion about what could underlie these differences. Why are the statistics of epistasis different for HF and LF genotypes? Can the authors at least speculate about possible reasons? Why do HF and LF genotypes have qualitatively different DFEs? I actually don't quite understand why the transition between bimodal DFE in Figure 7B and unimodal DFE in Figure 7C is so abrupt. Is there something biologically special about the threshold that separates LF and HF genotypes? My understanding was that this was just a statistical cutoff. Perhaps the authors can plot the DFEs for all backgrounds on the same plot and just draw a line that separates HF and LF backgrounds so that the reader can better see whether the DFE shape changes gradually or abruptly.

      (1f) The analysis of the synonymous mutations is also interesting. However I think a few additional analyses are necessary to clarify what is happening here. I would like to know the extent to which synonymous mutations are more often neutral compared to non-synonymous ones. Then, synonymous pairs interact in the same way as non-synonymous pair (i.e., plot Figure 1 for synonymous pairs)? Do synonymous or non-synonymous mutations that are neutral exhibit less epistasis than non-neutral ones? Finally, do non-synonymous mutations alter epistasis among other mutations more often than synonymous mutations do? What about synonymous-neutral versus synonymous-non-neutral. Basically, I'd like to understand the extent to which a mutation that is neutral in a given background is more or less likely to alter epistasis between other mutations than a non-neutral mutation in the same background. 

      (2) I have two related methodological concerns. First, in several analyses, the authors employ thresholds that appear to be arbitrary. And second, I did not see any account of measurement errors. For example, the authors chose the 0.05 threshold to distinguish between epistasis and no epistasis, but why this particular threshold was chosen is not justified. Another example: is whether the product s12 × (s1 + s2) is greater or smaller than zero for any given mutation is uncertain due to measurement errors. Presumably, how to classify each pair of mutations should depend on the precision with which the fitness of mutants is measured. These thresholds could well be different across mutants. We know, for example, that low-fitness mutants typically have noisier fitness estimates than high-fitness mutants. I think the authors should use a statistically rigorous procedure to categorize mutations and their epistatic interactions. I think it is very important to address this issue. I got very concerned about it when I saw on LL 383-388 that synonymous stop codon mutations appear to modulate epistasis among other mutations. This seems very strange to me and makes me quite worried that this is a result of noise in LF genotypes. 

      Thank you for your review of the manuscript. In the revised version, we have addressed both major criticisms, as detailed below.

      When carefully examining the plots in Figure 5 independently, we indeed observe that the fitness effect of a mutation on different genetic backgrounds can be classified into three characteristic patterns. Our reasoning for these patterns is as follows:

      Strong correlation: Typically observed when the mutation is lethal across backgrounds. Linear regression of mutations exhibiting strong global epistasis shows slopes close to −1 and pivot points near −0.7 (Table S4). Since the reported fitness threshold is −0.508, these mutations push otherwise functional backgrounds into the non-functional range, consistent with lethal effects.

      Weak correlation: Observed when a mutation has no significant effect on fitness across backgrounds, consistent with neutrality.

      No correlation: Out of the 261,333 reported variants, 243,303 (93%) lie below the fitness threshold of −0.508, indicating that the low-fitness region is densely populated by nonfunctional variants. The “strong correlation” and “weak correlation” lines intersect in this zone. Most mutations in this region have little effect (neutral), but occasional abrupt fitness increases correspond to “resurrecting” mutations, the converse of lethal changes. For example, mutations such as X→G at locus 4 or X→A at locus 5 restore function, while the reverse changes (e.g. C→A at locus 3) are lethal.

      Thus, the “no-correlation” pattern is largely explained by mutations that reverse the effect of lethal changes, effectively resurrecting non-functional variants. In the revised manuscript, we highlight these nuances within the broader classification of fitness effect versus background fitness (pp. 10–13).

      Additional analyses included in the revision:

      Synonymous vs. non-synonymous pairs: We repeated the Figure 1 analysis for synonymous–synonymous pairs. As expected, synonymous pairs exhibit lower overall frequencies of epistasis, consistent with their greater neutrality. However, the qualitative spectrum remains similar: positive and negative epistasis dominate, while sign epistasis is rare (Supplementary Figs. S6–S7, S9–S10).

      Fitness effect vs. epistasis change: We tested whether the mean fitness effect of a mutation correlates with the percent of cases in which it changes the nature of epistasis. No correlation was found (R² ≈ 0.11), and this analysis is now included in the revised manuscript.

      Epistasis-modulating ability: Non-synonymous mutations more frequently alter the interactions between other mutations than synonymous substitutions. Within synonymous substitutions, the subset with measurable fitness effects disproportionately contributes to epistasis modulation. Thus, the ability of synonymous substitutions to modulate epistasis arises primarily from the non-neutral subset.

      These analyses clarify the role of synonymous mutations in reshaping epistasis on the folA landscape.

      Revision of statistical treatment of epistasis:

      In our original submission, we used an arbitrary threshold of 0.05 to classify the presence or absence of epistasis, following Papkou et al., who based conclusions on a single experimental replicate. However, as the reviewer correctly noted, this does not adequately account for measurement variability across different genotypes.

      In the revised manuscript, we adopt a statistically rigorous framework that incorporates replicate-based error directly. Specifically, we now use the mean fitness across six independent replicates, together with the corresponding standard deviation, to classify fitness peaks and epistasis. This eliminates arbitrary thresholds and ensures that epistatic classifications reflect the precision of measurements for each genotype.

      This revision led to both quantitative and qualitative changes:

      For high-fitness genotypes, the core patterns of higher-order (“fluid”) epistasis remain robust (Figures 2–3).

      For low-fitness genotypes, incorporating replicate-based error removed spurious fluidity effects, yielding a more accurate characterization of epistasis (Figures 2–3; Supplementary Figs. S6–S7, S9–S10).

      We describe these methodological changes in detail in the revised Methods section and provide updated code.

      Together, these revisions directly address the reviewer’s concerns. They improve the statistical rigor of our analysis, strengthen the robustness of our conclusions, and underscore the importance of accounting for measurement error in large-scale fitness landscape studies—a point we now emphasize in the manuscript.

      Reviewer #2 (Public review): 

      Significance: 

      This paper reanalyzes an experimental fitness landscape generated by Papkou et al., who assayed the fitness of all possible combinations of 4 nucleotide states at 9 sites in the E. coli DHFR gene, which confers antibiotic resistance. The 9 nucleotide sites make up 3 amino acid sites in the protein, of which one was shown to be the primary determinant of fitness by Papkou et al. This paper sought to assess whether pairwise epistatic interactions differ among genetic backgrounds at other sites and whether there are major patterns in any such differences. They use a "double mutant cycle" approach to quantify pairwise epistasis, where the epistatic interaction between two mutations is the difference between the measured fitness of the double-mutant and its predicted fitness in the absence of epistasis (which equals the sum of individual effects of each mutation observed in the single mutants relative to the reference genotype). The paper claims that epistasis is "fluid," because pairwise epistatic effects often differs depending on the genetic state at the other site. It also claims that this fluidity is "binary," because pairwise effects depend strongly on the state at nucleotide positions 5 and 6 but weakly on those at other sites. Finally, they compare the distribution of fitness effects (DFE) of single mutations for starting genotypes with similar fitness and find that despite the apparent "fluidity" of interactions this distribution is well-predicted by the fitness of the starting genotype. 

      The paper addresses an important question for genetics and evolution: how complex and unpredictable are the effects and interactions among mutations in a protein? Epistasis can make the phenotype hard to predict from the genotype and also affect the evolutionary navigability of a genotype landscape. Whether pairwise epistatic interactions depend on genetic background - that is, whether there are important high-order interactions -- is important because interactions of order greater than pairwise would make phenotypes especially idiosyncratic and difficult to predict from the genotype (or by extrapolating from experimentally measured phenotypes of genotypes randomly sampled from the huge space of possible genotypes). Another interesting question is the sparsity of such high-order interactions: if they exist but mostly depend on a small number of identifiable sequence sites in the background, then this would drastically reduce the complexity and idiosyncrasy relative to a landscape on which "fluidity" involves interactions among groups of all sites in the protein. A number of papers in the recent literature have addressed the topics of high-order epistasis and sparsity and have come to conflicting conclusions. This paper contributes to that body of literature with a case study of one published experimental dataset of high quality. The findings are therefore potentially significant if convincingly supported. 

      Validity: 

      In my judgment, the major conclusions of this paper are not well supported by the data. There are three major problems with the analysis. 

      (1) Lack of statistical tests. The authors conclude that pairwise interactions differ among backgrounds, but no statistical analysis is provided to establish that the observed differences are statistically significant, rather than being attributable to error and noise in the assay measurements. It has been established previously that the methods the authors use to estimate high-order interactions can result in inflated inferences of epistasis because of the propagation of measurement noise (see PMID 31527666 and 39261454). Error propagation can be extreme because first-order mutation effects are calculated as the difference between the measured phenotype of a single-mutant variant and the reference genotype; pairwise effects are then calculated as the difference between the measured phenotype of a double mutant and the sum of the differences described above for the single mutants. This paper claims fluidity when this latter difference itself differs when assessed in two different backgrounds. At each step of these calculations, measurement noise propagates. Because no statistical analysis is provided to evaluate whether these observed differences are greater than expected because of propagated error, the paper has not convincingly established or quantified "fluidity" in epistatic effects. 

      (2) Arbitrary cutoffs. Many of the analyses involve assigning pairwise interactions into discrete categories, based on the magnitude and direction of the difference between the predicted and observed phenotypes for a pairwise mutant. For example, the authors categorize as a positive pairwise interaction if the apparent deviation of phenotype from prediction is >0.05, negative if the deviation is <-0.05, and no interaction if the deviation is between these cutoffs. Fluidity is diagnosed when the category for a pairwise interaction differs among backgrounds. These cutoffs are essentially arbitrary, and the effects are assigned to categories without assessing statistical significance. For example, an interaction of 0.06 in one background and 0.04 in another would be classified as fluid, but it is very plausible that such a difference would arise due to error alone. The frequency of epistatic interactions in each category as claimed in the paper, as well as the extent of fluidity across backgrounds, could therefore be systematically overestimated or underestimated, affecting the major conclusions of the study. 

      (3) Global nonlinearities. The analyses do not consider the fact that apparent fluidity could be attributable to the fact that fitness measurements are bounded by a minimum (the fitness of cells carrying proteins in which DHFR is essentially nonfunctional) and a maximum (the fitness of cells in which some biological factor other than DHFR function is limiting for fitness). The data are clearly bounded; the original Papkou et al. paper states that 93% of genotypes are at the low-fitness limit at which deleterious effects no longer influence fitness. Because of this bounding, mutations that are strongly deleterious to DHFR function will therefore have an apparently smaller effect when introduced in combination with other deleterious mutations, leading to apparent epistatic interactions; moreover, these apparent interactions will have different magnitudes if they are introduced into backgrounds that themselves differ in DHFR function/fitness, leading to apparent "fluidity" of these interactions. This is a well-established issue in the literature (see PMIDs 30037990, 28100592, 39261454). It is therefore important to adjust for these global nonlinearities before assessing interactions, but the authors have not done this. 

      This global nonlinearity could explain much of the fluidity claimed in this paper. It could explain the observation that epistasis does not seem to depend as much on genetic background for low-fitness backgrounds, and the latter is constant (Figure 2B and 2C): these patterns would arise simply because the effects of deleterious mutations are all epistatically masked in backgrounds that are already near the fitness minimum. It would also explain the observations in Figure 7. For background genotypes with relatively high fitness, there are two distinct peaks of fitness effects, which likely correspond to neutral mutations and deleterious mutations that bring fitness to the lower bound of measurement; as the fitness of the background declines, the deleterious mutations have a smaller effect, so the two peaks draw closer to each other, and in the lowest-fitness backgrounds, they collapse into a single unimodal distribution in which all mutations are approximately neutral (with the distribution reflecting only noise). Global nonlinearity could also explain the apparent "binary" nature of epistasis. Sites 4 and 5 change the second amino acid, and the Papkou paper shows that only 3 amino acid states (C, D, and E) are compatible with function; all others abolish function and yield lower-bound fitness, while mutations at other sites have much weaker effects. The apparent binary nature of epistasis in Figure 5 corresponds to these effects given the nonlinearity of the fitness assay. Most mutations are close to neutral irrespective of the fitness of the background into which they are introduced: these are the "non-epistatic" mutations in the binary scheme. For the mutations at sites 4 and 5 that abolish one of the beneficial mutations, however, these have a strong background-dependence: they are very deleterious when introduced into a high-fitness background but their impact shrinks as they are introduced into backgrounds with progressively lower fitness. The apparent "binary" nature of global epistasis is likely to be a simple artifact of bounding and the bimodal distribution of functional effects: neutral mutations are insensitive to background, while the magnitude of the fitness effect of deleterious mutations declines with background fitness because they are masked by the lower bound. The authors' statement is that "global epistasis often does not hold." This is not established. A more plausible conclusion is that global epistasis imposed by the phenotype limits affects all mutations, but it does so in a nonlinear fashion. 

      In conclusion, most of the major claims in the paper could be artifactual. Much of the claimed pairwise epistasis could be caused by measurement noise, the use of arbitrary cutoffs, and the lack of adjustment for global nonlinearity. Much of the fluidity or higher-order epistasis could be attributable to the same issues. And the apparently binary nature of global epistasis is also the expected result of this nonlinearity. 

      We thank the reviewer for raising this important concern. We fully agree that the use of arbitrary thresholds in the earlier version of the manuscript, together with the lack of an explicit treatment of measurement error, could compromise the rigor of our conclusions. To address this, we have undertaken a thorough re-analysis of the folA landscape.

      (1)  Incorporating measurement error and avoiding noise-driven artifacts

      In the original version, we followed Papkou et al. in using a single experimental replicate and applying fixed thresholds to classify epistasis. As the reviewer correctly notes, this approach allows noise to propagate from single-mutant measurements to double-mutant effects, and ultimately to higher-order epistasis.

      In the revised analysis, we now:

      Use the mean fitness across all six independent replicates for each genotype.

      Incorporate the corresponding standard deviation as a measure of experimental error.

      Classify epistatic interactions only when differences between a genotype and its neighbors exceed combined error margins, rather than using a fixed cutoff.

      This ensures that observed changes in epistasis are statistically distinguishable from noise. Details are provided in the revised Methods section and updated code.

      (2) Replacing arbitrary thresholds with error-based criteria

      Previously, we used an arbitrary ±0.05 cutoff to define the presence/absence of epistasis. As the reviewer notes, this could misclassify interactions (e.g. labeling an effect as “fluid” when the difference lies within error). In the revised framework, these thresholds have been eliminated. Instead, interactions are classified based on whether their distributions overlap within replicate variance.

      This approach scales naturally with measurement precision, which differs between high-fitness and low-fitness genotypes, and removes the need for a universal cutoff.

      (3) Consequences of re-analysis

      Implementing this revised framework produced several important updates:

      High-fitness backgrounds: The qualitative picture of higher-order (“fluid”) epistasis remains robust. The patterns reported originally are preserved.

      Low-fitness backgrounds: Accounting for replicate variance revealed that part of the previously inferred “fluidity” arose from noise. These spurious effects are now removed, giving a more conservative but more accurate view of epistasis in non-functional regions.

      Fitness peaks: Our replicate-aware analysis identifies 127 peaks, compared to 514 in Papkou et al. Importantly, all 127 peaks occur in functional regions of the landscape. This difference highlights the importance of replicate-based error treatment: relying on a single run without demonstrating repeatability can yield artifacts.

      (4) Addressing bounding effects and terminology

      We also agree with the reviewer that bounding effects, arising from the biological limits of fitness, can create apparent nonlinearities in the genotype–phenotype map. To clarify this, we made the following changes:

      Terminology: We now use the term higher-order epistasis instead of fluid epistasis, emphasizing that the observed background-dependence involves more than two mutations and cannot be explained by global nonlinearities alone.

      We also clarify the definitions of sign-epistasis used in this work.

      By replacing arbitrary cutoffs with replicate-based error estimates and by explicitly considering bounding effects, we have substantially increased the rigor of our analysis. While this reanalysis led to both quantitative and qualitative changes in some regions, the central conclusion remains unchanged: higher-order epistasis is pervasive in the folA landscape, especially in functional backgrounds.

      All analysis scripts and codes are provided as Supplementary Material.

      Reviewer #3 (Public review): 

      Summary: 

      The authors have studied a previously published large dataset on the fitness landscape of a 9 base-pair region of the folA gene. The objective of the paper is to understand various aspects of epistasis in this system, which the authors have achieved through detailed and computationally expensive exploration of the landscape. The authors describe epistasis in this system as "fluid", meaning that it depends sensitively on the genetic background, thereby reducing the predictability of evolution at the genetic level. However, the study also finds two robust patterns. The first is the existence of a "pivot point" for a majority of mutations, which is a fixed growth rate at which the effect of mutations switches from beneficial to deleterious (consistent with a previous study on the topic). The second is the observation that the distribution of fitness effects (DFE) of mutations is predicted quite well by the fitness of the genotype, especially for high-fitness genotypes. While the work does not offer a synthesis of the multitude of reported results, the information provided here raises interesting questions for future studies in this field. 

      Strengths: 

      A major strength of the study is its detailed and multifaceted approach, which has helped the authors tease out a number of interesting epistatic properties. The study makes a timely contribution by focusing on topical issues like the prevalence of global epistasis, the existence of pivot points, and the dependence of DFE on the background genotype and its fitness. The methodology is presented in a largely transparent manner, which makes it easy to interpret and evaluate the results. 

      The authors have classified pairwise epistasis into six types and found that the type of epistasis changes depending on background mutations. Switches happen more frequently for mutations at functionally important sites. Interestingly, the authors find that even synonymous mutations in stop codons can alter the epistatic interaction between mutations in other codons. Consistent with these observations of "fluidity", the study reports limited instances of global epistasis (which predicts a simple linear relationship between the size of a mutational effect and the fitness of the genetic background in which it occurs). Overall, the work presents some evidence for the genetic context-dependent nature of epistasis in this system. 

      Weaknesses: 

      Despite the wealth of information provided by the study, there are some shortcomings of the paper which must be mentioned. 

      (1) In the Significance Statement, the authors say that the "fluid" nature of epistasis is a previously unknown property. This is not accurate. What the authors describe as "fluidity" is essentially the prevalence of certain forms of higher-order epistasis (i.e., epistasis beyond pairwise mutational interactions). The existence of higher-order epistasis is a well-known feature of many landscapes. For example, in an early work, (Szendro et. al., J. Stat. Mech., 2013), the presence of a significant degree of higher-order epistasis was reported for a number of empirical fitness landscapes. Likewise, (Weinreich et. al., Curr. Opin. Genet. Dev., 2013) analysed several fitness landscapes and found that higher-order epistatic terms were on average larger than the pairwise term in nearly all cases. They further showed that ignoring higher-order epistasis leads to a significant overestimate of accessible evolutionary paths. The literature on higher-order epistasis has grown substantially since these early works. Any future versions of the present preprint will benefit from a more thorough contextual discussion of the literature on higher-order epistasis.

      (2) In the paper, the term 'sign epistasis' is used in a way that is different from its wellestablished meaning. (Pairwise) sign epistasis, in its standard usage, is said to occur when the effect of a mutation switches from beneficial to deleterious (or vice versa) when a mutation occurs at a different locus. The authors require a stronger condition, namely that the sum of the individual effects of two mutations should have the opposite sign from their joint effect. This is a sufficient condition for sign epistasis, but not a necessary one. The property studied by the authors is important in its own right, but it is not equivalent to sign epistasis. 

      (3) The authors have looked for global epistasis in all 108 (9x12) mutations, out of which only 16 showed a correlation of R^2 > 0.4. 14 out of these 16 mutations were in the functionally important nucleotide positions. Based on this, the authors conclude that global epistasis is rare in this landscape, and further, that mutations in this landscape can be classified into one of two binary states - those that exhibit global epistasis (a small minority) and those that do not (the majority). I suspect, however, that a biologically significant binary classification based on these data may be premature. Unsurprisingly, mutational effects are stronger at the functional sites as seen in Figure 5 and Figure 2, which means that even if global epistasis is present for all mutations, a statistical signal will be more easily detected for the functionally important sites. Indeed, the authors show that the means of DFEs decrease linearly with background fitness, which hints at the possibility that a weak global epistatic effect may be present (though hard to detect) in the individual mutations. Given the high importance of the phenomenon of global epistasis, it pays to be cautious in interpreting these results. 

      (4) The study reports that synonymous mutations frequently change the nature of epistasis between mutations in other codons. However, it is unclear whether this should be surprising, because, as the authors have already noted, synonymous mutations can have an impact on cellular functions. The reader may wonder if the synonymous mutations that cause changes in epistatic interactions in a certain background also tend to be non-neutral in that background. Unfortunately, the fitness effect of synonymous mutations has not been reported in the paper. 

      (5) The authors find that DFEs of high-fitness genotypes tend to depend only on fitness and not on genetic composition. This is an intriguing observation, but unfortunately, the authors do not provide any possible explanation or connect it to theoretical literature. I am reminded of work by (Agarwala and Fisher, Theor. Popul. Biol., 2019) as well as (Reddy and Desai, eLife, 2023) where conditions under which the DFE depends only on the fitness have been derived. Any discussion of possible connections to these works could be a useful addition.  

      We thank the reviewer for the summary of our work and for highlighting both its strengths and areas for improvement. We have carefully considered the points raised and revised the manuscript accordingly. The revised version:

      (1) Clarifies the conceptual framework. We emphasize the distinction between background-dependent, higher-order epistasis and global nonlinearities. To avoid ambiguity, we have replaced the term “fluid” epistasis with higher-order epistasis throughout, in line with prior literature (e.g. Szendro et al., 2013; Weinreich et al., 2013). We now explicitly situate our results in the context of these studies and clarify our definitions of epistasis, correcting the earlier error where “strong sign epistasis” was used in place of “sign epistasis.”

      (2) Improves statistical rigor. We now incorporate replicate variance and statistical error criteria in place of arbitrary thresholds. This ensures that classification of epistasis reflects experimental precision rather than fixed, arbitrary cutoffs.

      (3) Expands treatment of synonymous mutations. We now explicitly analyze synonymous mutations, separating those that are neutral from those that are non-neutral. Our results show that non-neutral synonymous mutations are disproportionately responsible for altering epistatic interactions, while neutral synonymous mutations rarely do so. We also report the fitness effects of synonymous mutations directly and include new analyses showing that there is no correlation between the mean fitness effect of a synonymous mutation and the frequency with which it alters epistasis (Supplementary Fig. S11).

      These revisions strengthen both the rigor and the clarity of the manuscript. We hope they address the reviewer’s concerns and make the significance of our findings, particularly the siteresolved quantification of higher-order epistasis in the folA landscape, including in synonymous mutations, more apparent.

      Reviewing Editor Comments: 

      Key revision suggestions: 

      (1) Please quantify the impact of measurement noise on your conclusions, and perform statistical analysis to determine whether the observed differences of epistasis due to different backgrounds are statistically significant. 

      (2) Please investigate how your conclusions depend on the cutoffs, and consider choosing them based on statistical criteria. 

      (3) Please reconsider the possible role of global epistasis. In particular, the effect of bounds on fitness values. All reviewers are concerned that all claims, including about global epistasis, may be consistent with a simple null model where most low fitness genotypes are non-functional and variation in their fitness is simply driven by measurement noise. Please provide a convincing argument rejecting this model. 

      More generally, we recommend that you consider all suggestions by reviewers, including those about results, but also those about terminology and citing relevant works. 

      Thank you for your guidance. We have substantially revised the manuscript to incorporate the reviewers’ suggestions. In addition to addressing the three central issues raised, we have refined terminology, expanded the discussion of prior work, and clarified the presentation of our main results. We believe these changes significantly strengthen both the rigor and the impact of the study. We are grateful to the Reviewing Editor and reviewers for their constructive feedback.

      In the revised manuscript, we address the three major points as follows:

      (1) Quantifying measurement noise and statistical significance. We now use the average of six independent experimental runs for each genotype, together with the corresponding standard deviations, to explicitly quantify measurement uncertainty. Pairwise and higher-order epistasis are assessed relative to these error estimates, rather than against fixed thresholds. This ensures that differences across genetic backgrounds are statistically distinguishable from noise.

      (2) Replacing arbitrary cutoffs with statistical criteria. We have eliminated the use of arbitrary thresholds. Instead, classification of interactions (positive, negative, or neutral epistasis) is based on whether fitness differences exceed replicate variance. This approach scales naturally with measurement precision. While some results change quantitatively for high-fitness backgrounds and qualitatively for low-fitness backgrounds, our central conclusions remain robust.

      (3) Analysis of synonymous mutations. We now separately analyze synonymous mutations to test their role in altering epistasis. Our results show that there is no correlation between the average fitness effect of a synonymous mutation and the frequency with which it changes epistatic interactions.

      We have revised terminology for clarity (replacing “fluid” with higher-order epistasis) and updated the Discussion to place our work in the broader context of the literature on higher-order epistasis.

      Finally, we have rewritten the entire manuscript to improve clarity, refine the narrative flow, and ensure that the presentation more crisply reflects the subject of the study

      Reviewer #1 (Recommendations for the authors): 

      MINOR COMMENTS 

      (1) Lines 102-107. Papkou's definition of non-functional genotypes makes sense since it is based on the fact that some genotypes are statistically indistinguishable in terms of fitness from mutants with premature stop codons in folA. It doesn't really matter whether to call them low fitness or non-functional, but it would be helpful to explain the basis for this distinction. 

      Thank you for raising this point. To maintain consistency with the original dataset and analysis, we retain Papkou et al.’s nomenclature and refer to these genotypes as “functional” or “non-functional.” 

      (2) Lines 111-112. I think the authors need to briefly explain here how they define the absence of epistasis. They do so in the Methods, but this information is essential and needs to be conveyed to the reader in the Results as well. 

      Thank you for the suggestion. We agree that this definition is essential for readers to follow the Results. In the revised manuscript, we have added a brief explanation at the start of the Results section clarifying how we define the absence of epistasis. Specifically, we now state that two mutations are considered non-epistatic when the observed fitness of the double mutant is statistically indistinguishable (within error of six replicates) from the additive expectation based on the single mutants. This ensures that the Results section is selfcontained, while full details remain in the Methods.

      (3) Lines 142 and elsewhere. The authors introduce the qualifier "fluid" to describe the fact that the value or sign of pairwise epistasis changes across genetic backgrounds. I don't see a need for this new terminology, since it is already captured adequately by the term "higher-order epistasis". The epistasis field is already rife with jargon, and I would prefer if new terms were introduced only when absolutely necessary. 

      Thank you for this helpful suggestion. We agree that introducing new terminology is unnecessary here. In the revised manuscript, we have replaced the term “fluid” epistasis with “higher-order epistasis” throughout, to align with established usage and avoid adding jargon.

      (4) Figure 6. I don't think this is the best way of showing that the pivot points are clustered. A histogram would be more appropriate and would take less space. However it would allow the authors to display a null distribution to demonstrate that this clustering is indeed surprising. 

      (5) Lines 320-321. Mann-Whitney U tests whether one distribution is systematically shifted up or down relative to the other. Please change the language here. It looks like the authors also performed the Kolmogorov-Smirnoff test, which is appropriate, but it doesn't look like the results are reported anywhere. Please report. 

      (6) Lines 330-334. The fact that HF genotypes seem to have more similar DFEs than LF genotypes is somewhat counterintuitive. Could this be an artifact of the fact that any two random HF genotypes are more similar to each other than any two randomly sampled LF genotypes? 

      (7) Lines 427. The sentence "The set of these selected variants are assigned their one hamming distance neighbours to construct a new 𝑛-base sequence space" is confusing. I think it is pretty clear how to construct a n-base sequence space, and this sentence adds more confusion than it removes. 

      Thank you for raising this point. To maintain consistency with the original dataset and analysis, we retain Papkou et al.’s nomenclature and refer to these genotypes as “functional” or “non-functional.” 

      We now start the results section of the manuscript with a brief description of how each type of epistasis is defined. Specifically, we now state that two mutations are considered non-epistatic when the observed fitness of the double mutant is statistically indistinguishable (within the error of six replicates) from the additive expectation based on the single mutants. This ensures that the Results section is self-contained, while full details remain in the Methods.

      We also agree that introducing new terminology is unnecessary. In the revised manuscript, we have replaced the term “fluid” epistasis with “higher-order epistasis” throughout, to align with established usage and avoid adding jargon. Finally, we concur that the identified sentence was unnecessary and potentially confusing; it has been removed from the revised manuscript to improve clarity. In fact, we have rewritten the entire manuscript for better flow and readability. 

      Reviewer #2 (Recommendations for the authors): 

      (1) Supplementary Figure S2A and S3 seem to be the same. 

      (3) The classification scheme for reciprocal sign/single sign/other sign epistasis differs from convention and should be made more explicit or renamed. 

      (4) Re the claim that high and low fitness backgrounds have different frequencies of the various types of epistasis: 

      Are the frequency distributions of the different types of epistasis statistically different between high and low fitness backgrounds statistically significant? It seems that they follow similar general patterns, and the sample size is much smaller for high fitness backgrounds so more variance in their distributions is expected. 

      Do bounding of fitness measurements play a role in generating the differences in types of epistasis seen in high vs. low-fitness backgrounds? If many variants are at the lower bound of the fitness assay, then positive epistasis might simply be less detectable for these backgrounds (which seems to be the biggest difference between high/low fitness backgrounds). 

      (5) In Figure 4B, points are not independent, because the mutation effects are calculated for all mutations in all backgrounds, rather than with reference to a single background or fluorescence value. The same mutations are therefore counted many times. 

      (6) It is not clear how the "pivot growth rate" was calculated or what the importance of this metric is. 

      (7) In the introduction, the justification for reanalyzing the Papkou et al dataset in particular is not clear. 

      (8) Epistasis at the nucleotide level is expected because of the genetic code: fitness and function are primarily affected by amino acid changes, and nucleotide mutations will affect amino acids depending on the state at other nucleotide sites in the same codon. For the most part, this is not explicitly taken account of in the paper. I recommend separating apparent epistasis due to the genetic code from that attributable to dependence among codons. 

      Thank you for noting this. Figure S2A shows results for high-fitness peaks only, whereas Figure S3 shows results for all peaks across the landscape. We have now made this distinction explicit in the figure legends and main text of the revised manuscript. 

      In the revised analysis, peaks are defined using the average fitness across six experimental replicates along with the corresponding standard deviation. Each genotype is compared with all single-step neighbors, and it is classified as a peak only if its mean fitness is significantly higher than all neighbors (p < 0.05). This procedure explicitly accounts for measurement error and replaces the arbitrary thresholding used previously. Full details are now described in the Methods.

      To avoid confusion, we now state our definitions explicitly at the start of the analysis. We have now corrected our definition in the text. We define sign epistasis as a one where at least one mutation switches from being beneficial to deleterious. 

      We have clarified our motivation in the Introduction. The Papkou et al. dataset is the most comprehensive experimental map of a complete 9-bp region of folA and provides six independent replicates, making it uniquely suited for testing hypotheses about backgrounddependent epistasis. Importantly, Papkou et al. based their conclusions on a single run, whereas our reanalysis incorporates replicate means and variances, leading to substantive differences—for example, a reduction in reported peaks from 514 to 127. By recalibrating the analysis, we provide a more rigorous account of this landscape and highlight how methodological choices affect conclusions.

      We also agree that some nucleotide-level epistasis reflects the structure of the genetic code (i.e., codon degeneracy and context-dependence of amino acid substitutions). In the revised manuscript, we explicitly separate epistasis attributable to codon structure from epistasis arising among codons. For example, synonymous mutations that alter epistasis within codons are treated separately from those affecting interactions across codons, and this distinction is now clearly indicated in the Results.

      Reviewer #3 (Recommendations for the authors): 

      (1) The analysis of peak density and accessibility in the paragraph starting on line 96 seems a bit out of context. Its connection with the various forms of epistasis treated in the rest of the paper is unclear. 

      (2) As mentioned in the Public Review, the term 'sign epistasis' has been used in a non-standard way. My suggestion would be to use a different term. Even a slightly modified term, such as "strong sign epistasis", should help to avoid any confusion. 

      (3)  mentioned in the public review that it is not clear whether the synonymous mutations that change the type of epistasis also tend to be non-neutral. This issue could be addressed by computing, for example, the fitness effects of all synonymous mutations for backgrounds and mutation pairs where a switch in epistasis occurs, and comparing it with fitness effects where no such switch occurs. 

      (4) Do the authors have any proposal for why synonymous mutations seem to cause more frequent changes in epistasis in low-fitness backgrounds? Related to this, is there any systematic difference between the types of switch caused by synonymous mutations in the low- versus high-fitness backgrounds? 

      (5) It is unclear exactly how the pivot points were determined, especially since the data for many mutations is noisy. The protocol should be provided in the Methods section. 

      (6) Line 303: possible typo, "accurate" --> "inaccurate". 

      (7) The value of Delta used for the "phenotypic DFE" has not been mentioned in the main text (including Methods).

      We agree that the connection needed to be clearer. In the revised manuscript, we (i) relocate and retitle this material as a brief “Landscape overview” preceding the epistasis analyses, (ii) explicitly link multi-peakedness and path accessibility to epistasis (e.g., multi-peak structure implies the presence of sign/reciprocal-sign epistasis; accessibility is shaped by background-dependent effects), and (iii) move derivations to the Supplement. We also recomputed peak density and accessibility using replicate-averaged fitness with replicate SDs, so the overview and downstream epistasis sections now use a single, error-aware landscape (updated in Figs. 1–3, with cross-references in the text).

      We have aligned our terminology and now state definitions upfront. 

      After replacing fixed cutoffs with replicate-based error criteria, switches are more frequent in high-fitness backgrounds (Fig. 3). Mechanistically, near the lower fitness bound, deleterious effects are masked (global nonlinearity), reducing apparent switching. Functional/high-fitness backgrounds allow both beneficial and deleterious outcomes, so background-dependent (higher-order) interactions manifest more readily. Switch types also vary by background fitness: high-fitness backgrounds show more sign/strong-sign switches, whereas low-fitness backgrounds show mostly magnitude reclassifications (Fig. 3C; Supplement Fig. Sx).

      Finally, we corrected a typo by replacing “accurate” with “inaccurate” and now define Δ (equal to 0.05) in the main text (in Results and Figure 8 caption).