41 Matching Annotations
- May 2019
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Two hundred μL of alkaline-SDS solution was added to the above suspension, mixed by inverting the tubes up and down 3 times and incubated for 5 min at room temperature. To the above mixture, 250 μL of 3 M Na-acetate (pH 4.8) was added, mixed by inverting the tubes up and down 3 times, and centrifuged at 12,000 x g for 10 min. The supernatant was collected in another micro centrifuge tube (MCT), 200 μL of phenol:chloroform solution was added, inverted two times and centrifuged at 12, 000 x g for 8 min at room temperature. The aqueous phase was transferred to new tubes and 500 μL of chilled (-20 °C) ethanol (96 %) was added. The tubes were centrifuged at 13,000 x g for 25 min at 4 °C, supernatant discarded and pellet dried for 15 min at room temperature. The pellet was washed with 500 μL of chilled 70 % (v/v) ethanol and centrifuged at 13, 000 rpm for 4 min at 4 °C. The pellet was dried at room temperature and dissolved in 50 μL of 1X TE buffer (pH 8.0) containing RNase and stored at -20 °C till further use.
-
The cells of E. coli DH10B having p18GFP vector were cultivated for overnight at 37 °C in LB medium containing ampicillin (100 μg mL-1). The E. coli culture having p18 GFP vector (~1.5 mL) was taken in Eppendorf tubes and centrifuged at 10, 000 x g for 5 min. The pellet was homogenized by vortex mixing in 100 μL of homogenizing solution
-
Plasmid isolation from miniprep method
-
An attempt was made to study the effect of storage of DNA extracts on DNA yield and purity. The DNA extracts were centrifuged and the supernatants were dispensed into 2.0 mL Eppendorf tubes and stored at -20 oC for a month. DNA precipitation and its quantification were carried out at a week intervals.
-
Effect of storage on soil/sediment DNA extracts
-
as well as commercial methods (MN kit, Germany; Mo-Bio kit, CA, USA; Zymo soil DNA kit, CA, USA) according to the manufacturer’s protocols and compared in terms of DNA yield and purity.
-
The soil DNA from Pantnagar and Lonar soil samples were also extracted by various manual (Desai and Madamwar, 2007; Agarwal et al., 2001; Yamamoto et al., 1998
-
Comparison of yield and purity of crude DNA
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
solution was injected into the HPLC. A salt gradient of 0 to 0.2 M NaCl over a period of 120 minutes was run and fractions for each peak, as detected by measurement of UV absorbance at 220nm, were collected. An aliquot of each fraction was subjected to acetone precipitation and the obtained precipitate was analyzed on SDS-PAGE to ascertain which fraction corresponds to IgG. The IgG fractions from different runs were pooled and concentrated to -1 mg/ml which was then dialyzed against the digestion buffer (0.15 M NaCl, O.lM Tris-Cl, pH 7.1).
-
The collected ascitic fluid was centrifuged to remove cell debris and fat. Mouse monoclonal ascites, was filtered through glass wool to remove lipid like material left over after centrifugation. The supernatant was then subjected to (Nr4)zS04 fractionation. Saturated (Nlit)zS04 solution (SAS) at pH 7.0 was gradually added to the ascites in an ice bath with continuous stirring till a concentration of 40% (v/v) was achieved. The mixture thus, obtained was centrifuged to get the protein pellet and the pellet was re-suspended in buffer (0.01 M Tris-Cl, pH 8.5). The crude antibody solution obtained from ammonium sulfate fractionation was dialyzed against the wash buffer (0.0 1 \1 Tris-Cl, pH 8.5) and then subjected to ion-exchange chromatography using 5PW-DEAE (60x150 mm) column on a Waters3000 preparative HPLC (Waters, L:SA), to purify IgG. All solutions used during chromatography were filtered (0.451-lm) and then degassed. Following equilibration of the column with wash buffer, a 2 ml aliquot of the crude antibody
-
Antibody purification
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
650C in 0.2X SSC, 0.1 % SDS for I 0 min. The membrane was wrapped in Saran wrap and exposed to an X-ray film. The colonies that were positive by colony hybridization were inoculated in a 3 ml culture and used for preparing DNA for analysis by restriction digestion and Southern blotting. The digested DNA was resolved on a 0.8% agarose gel as described above. The gel was soaked in 4 volumes of denaturing solution (1.5 M NaCI and 0.5 M NaOH) for 1 h at RT with shaking followed by neutralization (1 M Tris HCI, pH 8 and 1.5 M NaCI) for 1 hat RT. The DNA was transferred to a Nylon membrane, UV crosslinked and hybridized with the full length 32p labeled· bZP3 probe as described above.
-
The ligation mixture was used for transformation of DH5a cells as described earlier. Transformed bacterial colonies growing on LB Amp plates were screened by colony hybridization. Briefly, colonies were grown for 6-8 h on a Nylon membrane placed on a LB Amp plate. The colonies were lysed by placing the membrane on a Whatman® 3MM paper soaked in I 0% SDS for 3 min, followed by treatment with denaturing solution (0.5 N NaOH, I.5 M Nael) for 5 min and neutralization solution (0.5 M Tris Hel pH 8, 1.5 . M Nael) for 5 min in the same manner. The membrane was dried, UV cross linked (Ultraviolet crosslinker, Amersham) and processed for prehybridization and hybridization. Stocks of 20X sse (174 giL NaCI, 88.2 giL sodium citrate, pH 7.0) and 50X Denhardt's (I% ficoll, I% PVP, I% BSA) were prepared. The membrane was prehybridized for 4-6 h in the prehybridization solution (5X SSe, 5X Denhardt's, 0.5% SDS, I 0 J..Lg/ml sheared and denatured salmon sperm DNA). The bZP3 DNA was labelled using the Multiprime DNA labeling system using 50 ng of purified bZP3 DNA. For hybridization with the probe, I o6 cpm/ml of the denatured 32p labeled bZP3 probe was added to the prehybridization solution and incubation was further carried out for I4-I6 h. For removing the non specifically bound probe, the membrane was washed successively at RT in 2X sse for 10 min, at 55°e in 0.2X sse, 0.1% SDS for 10 min and finally at
-
Screening of the Recombinant Transfer Vector
-
The cell pellet obtained from l ml culture was solubilized by boiling for 5 min in 100 J..Ll of 2X sample buffer (0.0625 M Tris, pH 6.8, 2% SDS, 10% glycerol, 5% BME and 0.001% bromophenol blue) and the proteins were resolved on a 0.1% SDS-10% PAGE (Laemmeli, 1970). The gel was stained with Coomassie brilliant blue for staining total cellular proteins. For immunoblotting, the proteins were electrophoretically transferred to 0.45 J..Lm nitrocellulose membrane overnight at a constant voltage of 15 V in Tris glycine buffer with 20% methanol (Towbin et al., 1979). Nonspecific sites on the membrane were blocked by incubation with 5% BSA in 50 mM phosphate buffered saline (PBS), pH 7 .4, for 1 h followed by 3 washes (15 min each) with PBS containing 0.1% Tween-20 (PBST). For detection of bZP3, a murine monoclonal antibody (MAb), MA-451, generated against the pZP3P and recognizing a cross reactive epitope (166-171 aa residues) within the bonnet sequence was used (Afzalpurkar and Gupta, 1997). The membrane was incubated for 1 h with a 1 :5 dilution of MA-451 culture supernatant, followed by 3 washes in PBST. Horseradish-peroxidase (HRPO) conjugated goat anti-mouse immunoglobulin (lg) was used to reveal bound Ab. Colour was developed with 0.6% (w/v) 4-chloronaphthol in 50 mM PBS, pH 7.4, containing 25% methanol and 0.06% H202. The reaction was stopped by washing the membrane with PBS.
-
SDS-PAGE and Immunoblot
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Digestions involving more than one restriction endonuclease were carried out with 2 - 4 ug DNA in a final reaction volume of up to 50 or 100 ul. In these cases, if the two enzymes had radically different optimal assay conditions, the DNA was digested first with the enzyme requiring a lower salt concentration. After incubating for one hour, a 5 ul aliquot from the digestion reaction was electrophoresed on a mini gel to monitor the extent of digestion. Once the digestion was complete, appropriate amount of salt and the
-
second enzyme were added and the incubation continued in an increased final reaction volume, to offset any increase in the glycerol concentration in the new reaction. Alternatively, the DNA was extracted once with phenol/chloroform, once with chloroform, and then precipitated with one half volume of 7.5 M ammonium acetate and two volumes of ethanol. The precipitation was done for 30 minutes at room temperature, and the DNA spun down for 30 minutes at room temperature. The supernate was discarded, pellet washed with 70% ethanol, recentrifuged, dried briefly under vacuum and finally resuspended in 18 ul distilled water. The DNA purified in this manner could then be used for setting up digestion with a second enzyme or for setting up a ligation. For those double digestions where one of the enzymes was known to be active over a broad range of ionic strength conditions, including those required for the optimal activity of the second enzyme, both the enzymes were added simultaneously in the digestion reaction, which was carried out using the optimal conditions of the second enzyme having more stringent assay requirements.
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
Cultured promastigotes were harvested by centrifugation of suspension culture (500 ml) in falcon tubes at 3000 g for 10 min at 20°C in a cooling centrifuge (Rota 4R; Plastocraft). The clear spun media was carefully decanted and the pellet was resuspended in ice-cold phosphate buffered saline (PBS, 20mM, pH = 7.2). Centrifugation was done again as earlier and washings were collected in a separate falcon. The washing step with PBS was repeated twice. The promastigotes in PBS were then counted using a Neubauer chamber. For this an aliquot was taken and diluted with PBS (normally 10 J..ll original suspension was mixed with 60 J..ll PBS) and then formaldehyde was added to this (30 J..ll to give a final dilution of 1:10). After 10 minutes of fixing in formaldehyde, 10 J..ll of this diluted suspension was put under the coverslip on Neubauer chamber and counted. Total cell count was determined using the standard formula. For breaking cells to get membrane preparation,93 the cell pellet (6.5 x 109 cells) was suspended in 5 ml of hypotonic buffer (0.1 mM TlCK and 1 J..lg/ml leupeptin) and sonicated in ice (6 x 10 s pulses with 3 s intervals). Breaking of cells were assessed by a light microscope. The membrane protein was further processed as per the requirement of the experiment.
-
Preparation of Cell-free system of L.donovani
-
N-Butyl-4-~-galactopyranosyl-a-D-glucopyranosyl ~-amino lactam (61). To a solution of 5 (12 mg) in CH30H (1 ml) was added palladium on carbon (10%, 35 mg) and formic acid (100 Ill). The mixture was stirred at 50°C overnight. The catalyst was filtered off and solvent was evaporated to afford 61; 1H NMR: 80.72-0.77 (t, 3H, CH2-CH3), 1.14-1.22 (m, 4H, CHz-CHz-CH3),1.40-1.45 (t, 2H, N-CH2), 4.31 (d, J = 7.8 Hz, 1H, H-1'), 5.38 (d, J = 4.2 Hz, 1H, H-1); 13C NMR: 8 12.72,19.69,28.77,40.65, 52.84, 61.09, 67.48, 68.50, 70.88, 72.56, 75.17, 77.66, 79.12, 103.19, 169.83; ESMS (mlz): 430.37 (M+Nat.
-
3,6··Di-O-benzyl-4-(2,3,4,6-tetra-O-benzyl-~-galactopyranosyl)-a-D-glucopyrano syl ~ amino lactam (58). To a solution of hexa-O-benzyl lactal (32, 300 mg, 0.36 mrnol) in CHCI3 (0.36 ml) was added trichloroacetyl isocyanate (90 Ill, 0.74 mmol). The mixture was stirred at rt for 18 h to afford the intermediate 57. This intermediate was characterized by 1 H NMR: 06.04 (1 H, d, J = 5.4 Hz, H-1, gluco isomer), 5.96 (1 H, d, J = 3.3 Hz, man no isomer). The reaction mixture was then cooled to -20°C and treated with benzylamine (0.13 ml, 1.17 mmol) and the flask was gradually brought to rt. The organic phase was thoroughly washed with water, dried over Na2S04 and concentrated. The residue was purified by silica column chromatography 1,30% ethyl acetate in hexane) to afford 58 (275 mg, 87%); Rt = 0.33 in 50% ethyl acetate in hexane; 1H NMR: & 3.37-3.46 (m, 5H, H-2,6,6'), 3.58-3.7 (m, 3H, H-3,4,5), 3.77-3.89 (m, 3H, H-2',3',5'), 4.34 (d, J = 4.2 Hz, 1 H, H-1 '),4.44 (d, 1 H, H-4'), 5.4 (d, J = 4.5 Hz, H-1), 6.24 (s, 1 H, NH), 7.22-7.36 (m, 30H, Ph); 13C NMR: & 54.27,68.43, 69.39, 71.48, 72.65, 73.06, 73.12, 73.37, 74.56, 75.05, 75.35, 75.95, 79.47, 82.31, 102.98,127.42-128.33,138.07-138.83,166.90; ESMS (mlz): 914.5 (M+Nat. 4-~-Galactopyranosyl-a-D-glucopyranosyl ~ amino lactam (59). To a solution of 58 (30 mg, 0.035 mmol) in CH30H (3 ml) was added palladium on carbon (10%, 170 mg) and formic acid (
-
Synthesis of anomeric ~-Iactam analogues of eMPT substrate91•92 (Scheme 14 of Results and Discussion)
-
mg, 0.03 mmol) in 95% aqueous pyridine (1 ml) was added. After 30 min CH2Cb was added and the solution was washed successively with cold 1 M Na2S203 (2 x 5 ml) and cold 1 M TEA hydrogen carbonate (2 x 5 ml), dried over Na2S04 and concentrated. The residue was purified by silica column chromatography (1.5% CH30H in CH2Cb with 0.1 % Et3N); Rf = 0.54 in 20% CH30H in CH2CI2; 1 H NMR: 8 -0.01 (s, 6H, Me~iCMe3), 0.84 (s, 9H, Me2SiCMe3), 1.95-2.11 (m, 18H, OAc), 3.62 (m), 3.88 (m), 4.2 (m), 4.5 (m), 4.9 (m, 2H, H-2', 3'), 5.28 (m, 3H, H-1, 2, 3), 5.44 (m, 1 H, CH=CH2); 31 P NMR .8-2.68; ESMS (mlz) : 925.3 (M-Et3N-H)". Dec-9-enyl-6-dihydroxyl-4-~-D-galactopyranosyl-a-D-mannopyranosyl phospha te triethylammonium salt (55). A solution of aqueous HF (48%) in CH3CN (5:95, 400 Ill) was added to compound 54 (10 mg, 0.009 mmol) at 0 aC. The solution was stirred at 0 aC for 2 h. The reaction was quenched by the addition of the aqueous NaHC03 solution until effervescence ceased and diluted with CH2CI2. The organic layer was extracted with water and TEAS solution thoroughly, dried over Na2S04 and concentrated to give dec-9-enyl-2,3,4-tri-O-acetyl-4-~-D-galactopyranosyl-a-Dmannopyranosyl phosphate triethylammonium salt; ESMS (m/z): 811.4 (M-EtsN-H)". A solution of oxalyl chloride (0.38 mg, 1.5 Ill, 0.003 mmol) in anhydrous CH2CI2 (50 Ill) was cooled to -78 aC and DMSO (0.47 mg, 1.7 Ill, 0.006 mmol) was added, followed by the addition of a solution of dec-9-enyl-2,3,4-tri-O-acetyl-4-~-Dgalactopyranosyl-a-D-mannopyranosyl phosphate (7 mg, 0.007 mmol) in CH2CI2 (100 Ill). The mixture was stirred for another 30 minutes and then triethylamine (10 Ill) was added. The solution was brought to rt, water was added and the mixture was extracted with CH2Cb. The organic layer was dried over Na2S04 to give the aldehyde 55. Dec-9-enyl-6-dihydroxyl-4-~-D-galactopyranosyl-a-D-mannopyranosyl phosphate triethylammonium salt (56). The residue was taken in a mixture of CH30H:water:triethylamine (5:3:2, 1.6 ml) and stirred for 2 days at rt. The reaction mixture was concentrated and the residue was repeatedly lyophilized to yield 56.
-
Dec-9-enyl-2,3,4-tri-O-acetYI-[6-0-(t-butYldimethYlsilyl)-4-~-D-galactopyranosyl] -a-D-mannopyranosyl phosphate tri ethylammonium salt (54). A mixture of H-phosphonate 6 (from scheme 1, 50 mg, 0.057 mmol) and dec-9-en-1-01 (30 Ill, 0.172 mmol) was dried by evaporation of pyridine (2 x 0.5 ml). The residue was dissolved in anhydrous pyridine (1 ml), pivaloyl chloride (22 Ill, 0.172 mmol) was added, and the mixture was stirred at rt for 1 h whereafter a freshly prepared solution of iodine (6
-
(Scheme 13 of Results and Discussion)
-
Synthesis of S'-hemiacetal analogue90 of Gal 1,4~-Man-aphosphate acceptor
-
Design and Synthesis of mechanism based inhibitors of elongating MPT enzyme of LPG biosynthesis
-
was diluted with water and the aqueous layer was thoroughly extracted with ethyl acetate (15 ml x 2). The organic layer was dried over Na2S04, concentrated and dried to yield C4C] labelled stearyl alcohol 51. [14C]-Stearyl-2,3,6-tetra-O-acetyl-4-0-(2,3,4 ,6-tretra-O-acetyl-~-D-gal actopyrano syl)-a-D-mannopyranosyl phosphate triethylammonium salt (52). A mixture of H-phosphonate 47 (296 mg, 0.37 mmol) and [14C] stearyl alcohol (51,100 mg, 0.37 mmol) was dried by evaporation of pyridine (2 x 3 ml). The residue was dissolved in anhydrous pyridine (5 ml), adamantane carbonyl chloride (160 mg, 0.8 mmol) was added, and the mixture was stirred at rt for 1 h whereafter a freshly prepared solution of iodine (160 mg, 0.63 mmol) in 95% aqueous pyridine (5 ml) was added. After 30 min CH2Cb was added and the solution was washed successively with cold 1 M Na2S203 (2 x 10 ml) and cold 1 M TEA hydrogen carbonate (2 x 10 ml), dried over Na2S04 and concentrated. The residue was purified by silica column chromatography (2.5% CH30H in CH2CI2 with 1 % Et3N) to afford 52. [14C]-Stearyl-4-~-D-galactopyranosyl-a-D-mannopyranosyI phosphate triethyl ammonium salt (53). To a solution of compound 4 (75 mg, 0.07 mmol) in anhydrous CH30H (12.5 ml) was added anhydrous sodium carbonate (80 mg, 0.75 mmol). The mixture was stirred at rt for 2 h, whereafter sodium carbonate was removed by filtration. The solvent was evaporated and residue concentrated to yield 53; R,= 0.55 in 10: 1 0:3 CH30H:CH2CI2:O.25% KC!.
-
[14C]-Stearyl alcohol (51). Stearic acid (50,100 mg) in anhydrous THF (1 mL) was diluted with C4C] stearic acid (1.2 mL, 120 !lCi). To this was added THF-borane complex (4 mL). The mixture was refluxed at 90°C for 36 h. The contents were then poured onto CH3COOH:H20 (8 mL, 1:1), taken in a separating funnel. The mixture
-
Synthesis of [14C] labeled Stearyl linked Gal 1,4 f3 Man phosphate (Scheme 12 of Results and Discussion)
-
Polycondensation. Compound 26 (25 mg, 0.033 mmol) was dried by evaporation of pyridine (500 III x 3) therefrom. The residue was dissolved in 10:1 pyridine:triethylamine (40 Ill), and pivaloyl chloride (9 Ill, 0.073 mmol) was added. Another lot of pivaloyl chloride (6 Ill, 0.04B mmol) was added in 45 min. After 3 h, the mixture became viscous, and a freshly prepared solution of iodine (220 Ill, 35 mg, 0.137 mmol in pyridine-water, 95:5) was added. After 2 h, CHCI3 was added and the organic layer was successively washed with cold 1 M aqueous Na2S203 solution and 1 Mice-cold TEAB buffer, dried over Na2S04 and concentrated to dryness to afford 27. For final deprotection, above residue was dissolved in 0.1 M NaOMe solution in CH30H (440 Ill), 1,4-dioxane (BOO Ill), and CHCI3 (BOO Ill). The mixture was stirred at rt for 7 h and left at 4 °C for 16 h, then diluted with CH30H, deionized with Dowex 50W-X4 (H+) resin, filtered and immediately neutralized with drops of triethylamine. The mixture was concentrated to dryness to afford fully deprotected phosphoglycans (28). 31 P (D~O): 8 -1.73, O.BB. Preliminary CD analysis of Phosphoglycans. The above polycondensation product (28) was lyophilized repeatedly and then redissolved in H20 (400 Jll). This solution was taken in a glass cuvette (300 Ill, 1 mm pathlength). It's CD spectra was recorded on a spectropolarimeter (JASCO, J-710) between 175-250 nm at 25°C. For reference, the CD spectra of agarose (15% W/V)87 was also recorded under the same conditions as mentioned above.
-
Triethylammonium 2,3,6-tri-o.acetyl-4-o.(2,3,4-tri-o.acetyl-~-D-galactopyrana syl)-a-D-manno pyranosyl hydrogen phosphonate (26). Compound 6 (30 mg, 0.034 mmol) was dissolved in a mixture of acetic acid-water-THF (3:1:1,2.5 ml). The mixture was stirred at 40°C for 9 h, after which the solvent was evaporated off under vacuo at rt. To remove excess of acid, water (1 ml) was added and evaporated off twice to afford 26 in quantitative yield; 1H NMR (CDCI3, 300 MHz) 0 1.95-2.09 (m, 21 H), 3.49-3.68 (m, 4H), 3.88 (m, 1 H), 4.14 (m, 1 H), 4.36 (d, J = 4.5 Hz, 1 H), 4.47 (d, J = 7.8 Hz, 1 H), 4.95 (dd, J = 3_3 and 7_8 Hz, 1 H), 5.05 (dd, J = 2_1 and 7.8 Hz, 1 H), 5.21 (dd, J = 2.1 and 3.6 Hz, 1 H), 5.41 (d, J = 3.3 Hz, 1 H), 5.48 (dd, J = 2.1 and 7.8 Hz, 1 H), 7.99 ( d, JH,p = 637_0 Hz, 1 H); 13C NMR (CDCI3, 75 MHz) 0 20.48-20.76, 60.10, 62.42, 66.57, 69.36, 69.53, 69.69, 71.20, 73.30, 73.86, 91.59, 92.54, 101_09, 169.13-170.49; 31p (CDCI3): 00.22; ESMS mlz657.3 (M-EhN-Hr.
-
Synthesis of phosphoglycans by polycondensation
Tags
- Method-3-Method-2-Method-2
- Method-3-Method-2
- Method-3-Method-1-Method-2-detail
- Method-3-Method-2-Method-1
- Method-3-Method-3-Method-2
- Method-2-Method-1-Method-3
- Method-3-Method-3-Method-2-detail
- Method-3-Method-2-Method-1-detail
- Method-3-Method-1-Method-2
- Method-2-Method-1-Method-3-detail
- Method-3-Method-2-Method-2-detail
Annotators
URL
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
d) Particle delivery using the Helios gene gun A day prior to immunization, hair were removed from the abdominal region of mice using a commercial depilatory agent (Anne French cream). Two cartridges/mouse ( ~ 2 Jlg DNA) were shot under pressurized helium gas ( 400 psi) intradermally at the shaven area of the abdomen of mice using the Helios gene gun. Two boosters comprising of two cartridges each were given on days 21 and 35. On day 45, mice in each group received i.m. injection of E. coli expressed recombinant protein (20 Jlglmouse in saline). Mice were bled retro-orbitally on days 0, 45 and 52 for analysis of antibody response.
-
tubing, which was cut into 0.5 inch pieces (cartridges). These cartridges were used to deliver DNA into epidermis of male/female mice. a) Preparation of DNA-gold microcarrier suspension Twenty five mg of gold microcarriers were weighed in a 1.5 ml eppendorf tube to which 100 J..Ll of 0.05 M spermidine was added and vortexed for 10 sec. To the above mixture 100 J..Ll of DNA (0.5 mg/ml) was added and vortexed for another 10 sec. While vortexing, 100 J..Ll of 1 M CaCh was added dropwise to the mixture and left at RT for 10 min to allow precipitation of DNA onto gold microcarriers. The DNA-gold pellet was collected by centrifuging at 12,000 X g for 1 min at RT. The pellet was washed thrice with 100% ethanol (freshly opened bottle), resuspended in 3 ml of 0.1mg/ml polyvinylpyrollidone (PVP) in ethanol and stored at -20°C till further use. b) Loading the DNA/microcarrier suspension into gold-coat tubing using the tubing prep station A 25 inch length of tubing was cut and fixed on tubing prep station, air dried by passing nitrogen gas through it for 15 min. The DNA/microcarrier suspension was vortexed and injected into the tubing using a 5 ml syringe and the microcarriers allowed to settle in the tubing for 3 min. Ethanol from the tubing was removed by slowly sucking into the syringe. The tubing was rotated, while passing the nitrogen gas, using the tubing prep station, for 20-30 sec to allow the microcarriers to evenly coat the inside of the tubing. c) Preparation of cartridges using the tubing cutter The tubing was cut into 0.5 inch long pieces (cartridges) by using the tubing cutter and cartridges stored at 4°C in vials containing desiccant pellets till further use.
-
Suspension of DNA adsorbed onto gold microcarriers at 0.5 Microcarrier Loading Quantity (MLQ; 50 J.lg DNA/25 mg gold microcarriers) was prepared and coated inside Tefzel
-
Plasmid DNA adsorbed onto gold microcarriers
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Total RNA extraction from E. colicells was doneusing Qiagen RNeasy minikit. Cells were grown to an A600of 0.6 and harvested(amaximumof107cells)at 6000rpm for 5min at room temperature to prevent cells for encountering any stress in cold. Rest of the steps were followed exactly as mentioned in the manufacturer’s protocol. The quality of RNA preparations was assessed following electrophoresison 1.4% agarose-formaldehyde-MOPS gels.Ingeneral,forawild-typestrainRNAyieldwouldbe~0.5-1μg
-
Isolation of total cellular RNA
-
Restriction enzyme digestion and analysis
-