3 Matching Annotations
- May 2019
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
mixture was concentrated and the residue was repeatedly lyophilized to yield 7S; ESMS (mlz): 263.1 (M-Hr. Guanosine 5'-diphospho-4,S-di-deoxy-4,S-difluoro-a-D-talose mono triethyl amine salt) 77. A mixture of 4-morpholine-N,N'-dicyclohexylcarboxaminidium guanosine 5'-monophosphomorpholidate (27 mg, 34.4 Ilmol) and 7S (10 mg, 21.5 Ilmol) was coevaporated with anhydrous pyridine (3 x 500 Ill). 1 H-tetrazole (5 mg, 68.7 Ilmol) and anhydrous pyridine (1 ml) were added and the mixture was stirred under argon atmosphere for 2 days. Water was added and the mixture was concentrated under reduced pressure to afford 77; ESMS (mlz): 608.3 (M-Hr.
-
6 Hz), 4.85 (1H, s); 13C NMR 853.28,65.12 (15 Hz, C3), 67.3 (24 Hz, C5), 69.72 (C2), 81.1 (JCF = 168 Hz, C4), 89.9 (JCF = 171 Hz, C4), 101.47 (C1). 1 ,2,3-Tri-O-acetyl-4,6-di-deoxy-4,6-difluoro-a-D-talopyranoside (73). To compound 72 (100 mg, 0.543 mmol) was added 2% sulfuric acid solution in acetic anhydride (1.2 ml). The mixture was stirred at rt for 90 minutes. The contents were diluted with saturated sodium bicarbonate solution. The mixture was extracted with ethyl acetate. The organic phase was thoroughly washed with water, dried over sodium sulfate and concentrated to afford 73. 2,3-Di-O-acetyl-4,6-di-deoxY-4,6-difluoro-a-D-talo-di-O-benzyl phosphate (75) : Compound 73 ( 70 mg, 0.225 mmol) was dissolved in anhydrous CH3CN saturated with dimethylamine (5 ml ) at -20°C and stirred for 3h after which TlC confirmed the disappearance of starting material. Excess of dimethylamine was removed under reduced pressure at 30°C and the reaction mixture was concentrated to afford 2,3, di-O-acetyl-4,6-di-deoxy-4,6-difloro-a-D-talopyranoside (74). To a stirred solution of compound 74 and 1 H-tetrazole (21 mg, 0.3 mmol) in anhydrous CH2CI2 (400 Ill) was added dibenzyl-N,N-diisopropylphosphoramidite (99.4 Ill, 104.3 mg, 0.3 mmol) and the mixture was stirred under argon atmosphere for 2 h at rt. Subsequently, the reaction mixture was cooled to -40°C and m-CPBA (87 mg, 0.504 mmol) was added and stirring was continued for another 30 minutes at rt. The reaction was quenched by the addition of a solution of saturated sodium bicarbonate. The mixture was extracted with CH2CI2. The organic phase was thoroughly washed with water, dried over Na2S04 and concentrated to afford 75, which was purified by running a silica coated preparative TlC plate; Rf = 0.24 (50% ethyl acetate in hexane); 1H NMR characterstic ¢ 5.67 (1 H, dd, J = 6.3 Hz and 1.8 Hz, H-1); 13C NMR: ~ 20.5-20.6 (OAc), 64.77, 64.99, 66.28, 66.43, 69.9 (24 Hz, C5), 79.96 (JCF = 169 Hz, JCH = 7.1 Hz, C6), 84.08 (JCF= 180, JCH = 5.4 Hz, C4), 95.68,126.85-128.7,169.50,169.77; 31p NMR 8 -3.03; ESMS (mlz): 551.2 (M+Nat. 4,6-Di-deoxy-4,6-difluoro-a-D-talosyl phosphate (76). To a solution of 75 (30 mg, 0.056 mmol) in CH30H (1 ml) was added palladium on charcoal (10%, 280 mg) and formic acid (100 Ill). The mixture was stirred at 50°C for 3h. The catalyst was filtered off and the solvent was evaporated. The residue was taken in a mixture of CH30H:water:triethylamine (5:3:2, 1.6 ml) and stirred for 2 days at rt. The reaction
-
Methyl-4,6-di-deoxy-4,6-difluoro-a-D-talopyranoside (72). DAST (750 j.!L, 5.6 mmol) was added with stirring at -40 °c, to a suspension of methyl-a-D-mannopyranoside 62 (200 mg, 1 mmol) in anhyd CH2CI2 (4 mL). The mixture was stirred at -40 °c for another 30 minutes and then at rt for 3 h. After cooling to -200C, the excess of reagent was destroyed by addition of CH30H (600 j.!L) and sodium bicarbonate (200 mg). The cooling bath was removed, and the mixture was filtered once effervescence ceased. The filtrate was concentrated, loaded onto a silica column and eluted out with CH2CI2 to yield 72; Rf= 0.7 in 12.5% CH30H in CH2CI2; 1H NMR (CDCI3) 83.40 (3H, s, OCH3), 4.19 (1 H, m), 4.52 (1 H, d, 6 Hz), 4.68 (1 H, d,
-