11 Matching Annotations
  1. Last 7 days
    1. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly

      [Paper-level Aggregated] PMCID: PMC3542862

      Evidence Type(s): Oncogenic, Functional, Predisposing

      Justification: Oncogenic: The mutations in PIK3CA, including R115P, E542K, and H1047L/R, are described as gain-of-function mutations that activate the PI3K/AKT signaling pathway, which is known to be involved in cancer development. Functional: The presence of mutations such as R115P and E542K in PIK3CA leads to increased AKT activation, indicating a functional consequence of these mutations in the signaling pathway. Predisposing: The identification of somatic mutations in PIK3CA associated with macrodactyly suggests a genetic predisposition to this condition, as these mutations are linked to the activation of pathways involved in growth and development.

      Gene→Variant (gene-first): UBXN11(91544):C392G PDK1(5163):R115P PIK3CA(5290):E542K PIK3CA(5290):H1047L PIK3CA(5290):H1047R PIK3CA(5290):p.Glu542 PIK3CA(5290):p.His1047 PIK3CA(5290):R115L PIK3CA(5290):p.Arg115

      Genes: UBXN11(91544) PDK1(5163) PIK3CA(5290)

      Variants: C392G R115P E542K H1047L H1047R p.Glu542 p.His1047 R115L p.Arg115

    2. PIK3CA encodes the p110alpha catalytic subunit of the phosphoinositide-3-kinase heterodimer. Upon activation, PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) at the third position, generating PIP3. PIP3

      [Paragraph-level] PMCID: PMC3542862 Section: RESULTS PassageIndex: 7

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how mutations at amino acids p.Glu542 and p.His1047 increase intracellular AKT phosphorylation, indicating an alteration in molecular function related to AKT activation. Oncogenic: The mention of increased AKT phosphorylation due to the H1047R mutation suggests that this somatic variant contributes to tumor development or progression by promoting cellular processes such as survival and proliferation.

      Gene→Variant (gene-first): 5290:H1047R 5290:p.Glu542 5290:p.His1047

      Genes: 5290

      Variants: H1047R p.Glu542 p.His1047

    3. To provide additional evidence for pathogenic PI3K somatic mutations in macrodactyly, exons 2, 10 and 21 were amplified from DNA extracted from the affected tissue of seven additional unrelated macrodactyly patients as w

      [Paragraph-level] PMCID: PMC3542862 Section: RESULTS PassageIndex: 6

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses somatic mutations in the PIK3CA gene, specifically mentioning that the E542K, H1047R, and H1047L mutations are known gain-of-function mutations frequently mutated in cancer, indicating their contribution to tumor development or progression. Functional: The passage notes that the mutations E542K and H1047 (both H1047R and H1047L) are located in the helical and kinase domains of the PI3K protein, which are known hotspots for somatic gain-of-function mutations, suggesting that these variants alter the molecular function of the protein.

      Gene→Variant (gene-first): 5290:E542K 5290:H1047L 5290:H1047R 5163:R115P 5290:p.Glu542 5290:p.His1047

      Genes: 5290 5163

      Variants: E542K H1047L H1047R R115P p.Glu542 p.His1047

    4. Additional evidence suggested that the R115P mutation in PIK3CA (PI3K) was a likely candidate for macrodactyly. First, somatic activation of AKT, a downstream target of PI3K, was recently described in patients with Prote

      [Paragraph-level] PMCID: PMC3542862 Section: RESULTS PassageIndex: 5

      Evidence Type(s): Diagnostic, Oncogenic

      Justification: Diagnostic: The R115P mutation in PIK3CA is suggested as a likely candidate for macrodactyly, indicating its association with a specific disease. Oncogenic: The R115L mutation is annotated in a database of somatic mutations in cancer, suggesting its contribution to tumor development or progression.

      Gene→Variant (gene-first): 5290:R115L 5163:R115P 5290:p.Arg115

      Genes: 5290 5163

      Variants: R115L R115P p.Arg115

    5. NS sequence variants were excluded as disease candidates by their (a) presence in 28 control samples sequenced by our group using a similar method, (b) presence in the exome sequence of the germline sample and (c) presen

      [Paragraph-level] PMCID: PMC3542862 Section: RESULTS PassageIndex: 4

      Evidence Type(s): Diagnostic, Oncogenic

      Justification: Diagnostic: The passage discusses the presence of the R115P mutation in PIK3CA in lesional tissue but not in blood, indicating its potential role in defining or confirming a disease state. Oncogenic: The R115P mutation in PIK3CA is described as potentially deleterious and is present in lesional tissue, suggesting it contributes to tumor development or progression.

      Gene→Variant (gene-first): 91544:C392G 5163:R115P

      Genes: 91544 5163

      Variants: C392G R115P

    6. Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a 'nerve territory'. The classic terminology for this condition is 'li

      [Paragraph-level] PMCID: PMC3542862 Section: ABSTRACT PassageIndex: 1

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses somatic mutations in PIK3CA (including R115P, E542K, H1047L, and H1047R) that contribute to the pathophysiology of macrodactyly, indicating their role in tumor development or progression through activation of the PI3K/AKT signaling pathway. Functional: The passage mentions that the identified mutations lead to AKT activation, which indicates that these variants alter molecular or biochemical function related to cell signaling pathways.

      Gene→Variant (gene-first): 5290:E542K 5290:H1047L 5290:H1047R 5163:R115P

      Genes: 5290 5163

      Variants: E542K H1047L H1047R R115P

    7. PIK3CA encodes the p110alpha catalytic subunit of the phosphoinositide-3-kinase heterodimer. Upon activation, PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) at the third position, generating PIP3. PIP3

      [Paragraph-level] PMCID: PMC3542862 Section: RESULTS PassageIndex: 7

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how mutations at amino acids p.Glu542 and p.His1047 increase intracellular AKT phosphorylation, indicating an alteration in molecular function related to AKT activation. Oncogenic: The mention of increased AKT phosphorylation due to the H1047R mutation suggests that this somatic variant contributes to tumor development or progression by promoting cellular processes such as survival and proliferation.

      Gene→Variant (gene-first): 5290:H1047R 5290:p.Glu542 5290:p.His1047

      Genes: 5290

      Variants: H1047R p.Glu542 p.His1047

    8. To provide additional evidence for pathogenic PI3K somatic mutations in macrodactyly, exons 2, 10 and 21 were amplified from DNA extracted from the affected tissue of seven additional unrelated macrodactyly patients as w

      [Paragraph-level] PMCID: PMC3542862 Section: RESULTS PassageIndex: 6

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses somatic mutations in the PIK3CA gene, specifically mentioning that the E542K, H1047R, and H1047L mutations are known gain-of-function mutations frequently mutated in cancer, indicating their contribution to tumor development or progression. Functional: The passage notes that the mutations E542K and H1047 (both H1047R and H1047L) are located in the helical and kinase domains of the PI3K protein, which are known hotspots for somatic gain-of-function mutations, suggesting that these variants alter the molecular function of the protein.

      Gene→Variant (gene-first): 5290:E542K 5290:H1047L 5290:H1047R 5163:R115P 5290:p.Glu542 5290:p.His1047

      Genes: 5290 5163

      Variants: E542K H1047L H1047R R115P p.Glu542 p.His1047

    9. Additional evidence suggested that the R115P mutation in PIK3CA (PI3K) was a likely candidate for macrodactyly. First, somatic activation of AKT, a downstream target of PI3K, was recently described in patients with Prote

      [Paragraph-level] PMCID: PMC3542862 Section: RESULTS PassageIndex: 5

      Evidence Type(s): Diagnostic, Oncogenic

      Justification: Diagnostic: The R115P mutation in PIK3CA is suggested as a likely candidate for macrodactyly, indicating its association with a specific disease. Oncogenic: The R115L mutation is annotated in a database of somatic mutations in cancer, suggesting its contribution to tumor development or progression.

      Gene→Variant (gene-first): 5290:R115L 5163:R115P 5290:p.Arg115

      Genes: 5290 5163

      Variants: R115L R115P p.Arg115

    10. NS sequence variants were excluded as disease candidates by their (a) presence in 28 control samples sequenced by our group using a similar method, (b) presence in the exome sequence of the germline sample and (c) presen

      [Paragraph-level] PMCID: PMC3542862 Section: RESULTS PassageIndex: 4

      Evidence Type(s): Diagnostic, Oncogenic

      Justification: Diagnostic: The passage discusses the presence of the R115P mutation in PIK3CA in lesional tissue but not in blood, indicating its potential role in defining or confirming a disease state. Oncogenic: The R115P mutation in PIK3CA is described as potentially deleterious and is present in lesional tissue, suggesting it contributes to tumor development or progression.

      Gene→Variant (gene-first): 91544:C392G 5163:R115P

      Genes: 91544 5163

      Variants: C392G R115P

    11. Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a 'nerve territory'. The classic terminology for this condition is 'li

      [Paragraph-level] PMCID: PMC3542862 Section: ABSTRACT PassageIndex: 1

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses somatic mutations in PIK3CA (including R115P, E542K, H1047L, and H1047R) that contribute to the pathophysiology of macrodactyly, indicating their role in tumor development or progression through activation of the PI3K/AKT signaling pathway. Functional: The passage mentions that the identified mutations lead to AKT activation, which indicates that these variants alter molecular or biochemical function related to cell signaling pathways.

      Gene→Variant (gene-first): 5290:E542K 5290:H1047L 5290:H1047R 5163:R115P

      Genes: 5290 5163

      Variants: E542K H1047L H1047R R115P