16 Matching Annotations
  1. Last 7 days
    1. Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma

      [Paper-level Aggregated] PMCID: PMC4868698

      Evidence Type(s): Oncogenic, Functional, Prognostic

      Justification: Oncogenic: The S703I mutation is described as an activating mutation of the JAK1 gene, which drives cell proliferation and activates the JAK-STAT signaling pathway, indicating its role in tumorigenesis. Functional: The introduction of the S703I mutation into cell lines demonstrated its ability to activate the JAK-STAT signaling pathway and promote cell proliferation, showcasing its functional impact on cellular behavior. Prognostic: The sensitivity of the JAK1S703I mutant PDX model to ruxolitinib treatment suggests that this mutation may serve as a prognostic marker for response to targeted therapies in hepatocellular carcinoma.

      Gene→Variant (gene-first): JAK1(3716):A1086S JAK1(3716):E483D POTEF(728378):N451S JAK1(3716):S703I JAK1(3716):S729C

      Genes: JAK1(3716) POTEF(728378)

      Variants: A1086S E483D N451S S703I S729C

    2. Hepatocellular carcinoma (HCC) is the fifth most common type of cancers worldwide. However, current therapeutic approaches for this epidemic disease are limited, and its 5-year survival rate hasn't been improved in the p

      [Paragraph-level] PMCID: PMC4868698 Section: ABSTRACT PassageIndex: 1

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the sensitivity of the JAK1S703I mutant PDX model to the treatment of a JAK1/2 inhibitor, ruxolitinib, indicating a correlation with response to therapy. Oncogenic: The JAK1S703I mutation is described as activating the JAK-STAT signaling pathway and driving cell proliferation, which suggests its contribution to tumor development or progression.

      Gene→Variant (gene-first): 3716:S703I

      Genes: 3716

      Variants: S703I

    3. Firstly, the level of total STAT3 in two HCC patient samples appeared to be higher than that in corresponding adjacent normal tissues. Interestingly, treatment of ruxolitinib led to a significant reduction (50%) of the p

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 14

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the treatment of ruxolitinib and its effects on the phosphorylation level of STAT3 in tumors with the JAK1 S703I mutation, indicating a correlation with treatment response. Oncogenic: The mention of the JAK1 S703I mutation in the context of tumor models suggests that this somatic variant contributes to tumor development or progression.

      Gene→Variant (gene-first): 3716:S703I

      Genes: 3716

      Variants: S703I

    4. In vivo efficacy studies of JAK1/2 inhibitor, ruxolitinib, were conducted in these four JAK1-mutant models and a JAK1-WT PDX model as a control (Figure 3A). The results showed that, only in LI-03-0191 model bearing JAK1S

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 11

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the sensitivity of the JAK1S703I mutation to the JAK1/2 inhibitor ruxolitinib, indicating a correlation with treatment response. Oncogenic: The passage suggests that the JAK1S703I mutation may play a critical role in tumorigenesis, indicating its contribution to tumor development.

      Gene→Variant (gene-first): 3716:S703I

      Genes: 3716

      Variants: S703I

    5. Anti-tumor activity of ruxolitinib in JAK1S703I-mutant PDX model

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 10

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the anti-tumor activity of ruxolitinib in a model with the JAK1 S703I mutation, indicating a correlation with response to therapy. Oncogenic: The mention of the JAK1 S703I mutation in the context of a PDX model suggests that this somatic variant contributes to tumor development or progression.

      Gene→Variant (gene-first): 3716:S703I

      Genes: 3716

      Variants: S703I

    6. To further evaluate the transformation ability of these JAK1 mutations, Ba/F3 cells were stably infected with lentivirus expressing EGFP, wild-type JAK1, JAK1N451S, JAK1E483D, JAK1S703I, JAK1A1086S, and JAK1S729C, respec

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 9

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses the transformation ability of JAK1 mutations, specifically noting that JAK1S703I and JAK1S729C are capable of continual proliferation in the absence of IL-3, indicating their contribution to tumor development or progression. Functional: The passage mentions that JAK1S703I activates the JAK-STAT signaling pathway, which indicates an alteration in molecular function related to the variant.

      Gene→Variant (gene-first): 3716:E483D 3716:S703I 3716:S729C

      Genes: 3716

      Variants: E483D S703I S729C

    7. To explore the biological functions of JAK1 mutations in JAK-STAT signaling pathway, we introduced these mutations into pLVX-IRES-Neo-JAK1 plasmid. Plasmids containing EGFP, wild-type JAK1, JAK1N451S, JAK1E483D, JAK1S703

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 8

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the introduction of JAK1 mutations, including E483D, S703I, and S729C, alters the expression levels of phosphorylated JAK1 and STAT proteins, indicating a change in molecular function. Oncogenic: The passage mentions that JAK1S729C is a known and recurrent activating mutation, suggesting its role in tumor development or progression.

      Gene→Variant (gene-first): 3716:E483D 3716:S703I 3716:S729C

      Genes: 3716

      Variants: E483D S703I S729C

    8. Specifically, S703I mutation was found in the pseudo-kinase domain of JAK1 protein, and could potentially cause the disruption of auto-inhibition of JAK1 kinase. Notably, S703I was previously identified in tumors of two

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 4

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage indicates that the S703I mutation is an activating mutation of the JAK1 gene and was found in tumors, suggesting it contributes to tumor development or progression. Functional: The S703I mutation is described as potentially causing disruption of auto-inhibition of the JAK1 kinase, indicating an alteration in molecular or biochemical function.

      Gene→Variant (gene-first): 3716:A1086S 3716:E483D 728378:N451S 3716:S703I

      Genes: 3716 728378

      Variants: A1086S E483D N451S S703I

    9. More than 160 HCC PDX models were established at WuXi AppTec in the past three years, of which over 60 models were characterized by WES. Among them, four models (LI-03-0012, LI-03-0155, LI-03-0191, and LI-03-0257) were i

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 3

      Evidence Type(s): None

      Justification: Not enough information in this passage.

      Gene→Variant (gene-first): 3716:A1086S 3716:E483D 728378:N451S 3716:S703I

      Genes: 3716 728378

      Variants: A1086S E483D N451S S703I

    10. Firstly, the level of total STAT3 in two HCC patient samples appeared to be higher than that in corresponding adjacent normal tissues. Interestingly, treatment of ruxolitinib led to a significant reduction (50%) of the p

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 14

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the treatment of ruxolitinib and its effects on the phosphorylation level of STAT3 in tumors with the JAK1 S703I mutation, indicating a correlation with treatment response. Oncogenic: The mention of the JAK1 S703I mutation in the context of tumor models suggests that this somatic variant contributes to tumor development or progression.

      Gene→Variant (gene-first): 3716:S703I

      Genes: 3716

      Variants: S703I

    11. In vivo efficacy studies of JAK1/2 inhibitor, ruxolitinib, were conducted in these four JAK1-mutant models and a JAK1-WT PDX model as a control (Figure 3A). The results showed that, only in LI-03-0191 model bearing JAK1S

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 11

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the sensitivity of the JAK1S703I mutation to the JAK1/2 inhibitor ruxolitinib, indicating a correlation with treatment response. Oncogenic: The passage suggests that the JAK1S703I mutation may play a critical role in tumorigenesis, indicating its contribution to tumor development.

      Gene→Variant (gene-first): 3716:S703I

      Genes: 3716

      Variants: S703I

    12. Anti-tumor activity of ruxolitinib in JAK1S703I-mutant PDX model

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 10

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the anti-tumor activity of ruxolitinib in a model with the JAK1 S703I mutation, indicating a correlation with response to therapy. Oncogenic: The mention of the JAK1 S703I mutation in the context of a PDX model suggests that this somatic variant contributes to tumor development or progression.

      Gene→Variant (gene-first): 3716:S703I

      Genes: 3716

      Variants: S703I

    13. To further evaluate the transformation ability of these JAK1 mutations, Ba/F3 cells were stably infected with lentivirus expressing EGFP, wild-type JAK1, JAK1N451S, JAK1E483D, JAK1S703I, JAK1A1086S, and JAK1S729C, respec

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 9

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses the transformation ability of JAK1 mutations, specifically noting that JAK1S703I and JAK1S729C are capable of continual proliferation in the absence of IL-3, indicating their contribution to tumor development or progression. Functional: The passage mentions that JAK1S703I activates the JAK-STAT signaling pathway, which indicates an alteration in molecular function related to the variant.

      Gene→Variant (gene-first): 3716:E483D 3716:S703I 3716:S729C

      Genes: 3716

      Variants: E483D S703I S729C

    14. To explore the biological functions of JAK1 mutations in JAK-STAT signaling pathway, we introduced these mutations into pLVX-IRES-Neo-JAK1 plasmid. Plasmids containing EGFP, wild-type JAK1, JAK1N451S, JAK1E483D, JAK1S703

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 8

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the introduction of JAK1 mutations, including E483D, S703I, and S729C, alters the expression levels of phosphorylated JAK1 and STAT proteins, indicating a change in molecular function. Oncogenic: The passage mentions that JAK1S729C is a known and recurrent activating mutation, suggesting its role in tumor development or progression.

      Gene→Variant (gene-first): 3716:E483D 3716:S703I 3716:S729C

      Genes: 3716

      Variants: E483D S703I S729C

    15. Specifically, S703I mutation was found in the pseudo-kinase domain of JAK1 protein, and could potentially cause the disruption of auto-inhibition of JAK1 kinase. Notably, S703I was previously identified in tumors of two

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 4

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage indicates that the S703I mutation is an activating mutation of the JAK1 gene and was found in tumors, suggesting it contributes to tumor development or progression. Functional: The S703I mutation is described as potentially causing disruption of auto-inhibition of the JAK1 kinase, indicating an alteration in molecular or biochemical function.

      Gene→Variant (gene-first): 3716:A1086S 3716:E483D 728378:N451S 3716:S703I

      Genes: 3716 728378

      Variants: A1086S E483D N451S S703I

    16. More than 160 HCC PDX models were established at WuXi AppTec in the past three years, of which over 60 models were characterized by WES. Among them, four models (LI-03-0012, LI-03-0155, LI-03-0191, and LI-03-0257) were i

      [Paragraph-level] PMCID: PMC4868698 Section: RESULTS PassageIndex: 3

      Evidence Type(s): None

      Justification: Not enough information in this passage.

      Gene→Variant (gene-first): 3716:A1086S 3716:E483D 728378:N451S 3716:S703I

      Genes: 3716 728378

      Variants: A1086S E483D N451S S703I