7 Matching Annotations
  1. May 2019
    1. The isolated DNA was diluted (1:100) with MQ. The concentration (mg mL-1) of the DNA [N] was determined spectrophotometrically by recording absorbance at 260 nm (A260) as: A260 = ε 260[N]where ε 260 is the extinction coefficient of DNA (50 for ds DNA) [N] = concentration (mg mL-1) of DNA The concentration of ds DNA [N] was calculated as [DNA] (mg mL-1) = A260/ε 260 [DNA] (μg mL-1) = A260 × 50 × dilution factor Purity of DNA was checked by measuring absorbance at 260 and 280 nm and calculating the A260/A280 ratio (Sambrook et al., 1989). A DNA sample was considered pure when A260/A280 ranged between 1.8-1.9. An A260/A280 < 1.7 indicated contamination of the DNA preparation with protein or aromatic substances such as phenol, while an A260/A230 < 2.0 indicated possible contamination of high molecular weight polyphenolic compounds like humic substances.
    2. as well as commercial methods (MN kit, Germany; Mo-Bio kit, CA, USA; Zymo soil DNA kit, CA, USA) according to the manufacturer’s protocols and compared in terms of DNA yield and purity.
    3. The soil DNA from Pantnagar and Lonar soil samples were also extracted by various manual (Desai and Madamwar, 2007; Agarwal et al., 2001; Yamamoto et al., 1998
    4. Alternatively metagenomic DNA was extracted from the alkaline soil samples by using different commercial kits (UltraClean™, PowerSoil™ [Mo Bio Laboratories Inc., Carlsbad, CA, USA], Nucleospin kit [Macherey-Nagal, Germany] and Zymo soil DNA isolation kit [CA, USA]). The DNA was finally suspended in 100 μL of sterile Milli Q water for further analysis.
    5. Soil (1 gm) was suspended with 0.4 gm (w/w) polyactivated charcoal (Datta and Madamwar, 2006) and 20 μL proteinase K (10 mg mL-1) in 2 mL of modified extraction buffer [N,N,N,N cetyltrimethylammonium bromide (CTAB) 1% w/v, polyvinylpolypyrrolidone (PVPP) 2% w/v, 1.5 M NaCl, 100mM EDTA, 0.1 M TE buffer (pH 8.0), 0.1M sodium phosphate buffer (pH 8.0) and 100 μL RNaseA] [Zhou et al., 1996] in 20 mL centrifuge tubes to homogenize the sample and incubated at 37 °C for 15 min in an incubator shaker at 200 rpm. Subsequently, 200 μL of 10% SDS was added to the homogenate and kept at 60 °C for 2 h with intermittent shaking. DNA was precipitated by adding 0.5 V PEG 8000 (30 % in 1.6 M NaCl) and left at room temperature for an hour (Yeates et al., 1998). The precipitated DNA was collected by centrifugation at 8000 x g at 4 °C. The supernatant was discarded and pellet was dissolved in 1 mL of TE buffer (pH 8.0) and then100 μL of 5 M potassium acetate (pH 4.5) was added and incubated at 4 °C for 15 min. The supernatant was collected after centrifugation at 8000 x g and treated with equal volumes of phenol: chloroform (1:1) followed by chloroform: isoamylalcohol (24:1) at 8000 x g for 15 min
    6. Various strains of Escherchia coli (DH5α, XL1Blue, DH10B) were used as hosts for the propagation of recombinant vectors. In addition, Bacillus subtilis was used as a host for the expression of xylanase gene from the recombinant vector pWHMxyl. Different vectors used in this investigation are listed in
    7. Soil, sediment, effluent, and water samples have been collected from various hot and alkaline regions of India and Japan in sterile polyethylene bags/bottles. The samples were transported to the laboratory and preserved at 4 °C. Temperature and pH of the samples was recorded.