9 Matching Annotations
  1. Apr 2017
    1. Algorithmically, these models are similar, except that CBOW predicts target words (e.g. 'mat') from source context words ('the cat sits on the'), while the skip-gram does the inverse and predicts source context-words from the target words. This inversion might seem like an arbitrary choice, but statistically it has the effect that CBOW smoothes over a lot of the distributional information (by treating an entire context as one observation)
    2. Word2vec is a particularly computationally-efficient predictive model for learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model (Section 3.1 and 3.2 in Mikolov et al.).
    1. word embeddings, which are vectors whose relative similarities correlate with semantic similarity. Such vectors are used both as an end in itself (for computing similarities between terms), and as a representational basis for downstream NLP tasks like text classification, document clustering, part of speech tagging, named entity recognition, sentiment analysis, and so on.

      Word embeddings

  2. Nov 2016