1 Matching Annotations
- Nov 2022
-
pubs.acs.org pubs.acs.org
-
The rapid increase in both the quantity and complexity of data that are being generated daily in the field of environmental science and engineering (ESE) demands accompanied advancement in data analytics. Advanced data analysis approaches, such as machine learning (ML), have become indispensable tools for revealing hidden patterns or deducing correlations for which conventional analytical methods face limitations or challenges. However, ML concepts and practices have not been widely utilized by researchers in ESE. This feature explores the potential of ML to revolutionize data analysis and modeling in the ESE field, and covers the essential knowledge needed for such applications. First, we use five examples to illustrate how ML addresses complex ESE problems. We then summarize four major types of applications of ML in ESE: making predictions; extracting feature importance; detecting anomalies; and discovering new materials or chemicals. Next, we introduce the essential knowledge required and current shortcomings in ML applications in ESE, with a focus on three important but often overlooked components when applying ML: correct model development, proper model interpretation, and sound applicability analysis. Finally, we discuss challenges and future opportunities in the application of ML tools in ESE to highlight the potential of ML in this field.
环境科学与工程(ESE)领域日益增长的数据量和复杂性,伴随着数据分析技术的进步而不断提高。先进的数据分析方法,如机器学习(ML) ,已经成为揭示隐藏模式或推断相关性的不可或缺的工具,而传统的分析方法面临着局限性或挑战。然而,机器学习的概念和实践并没有得到广泛的应用。该特性探索了机器学习在 ESE 领域革新数据分析和建模的潜力,并涵盖了此类应用所需的基本知识。首先,我们使用五个示例来说明 ML 如何处理复杂的 ESE 问题。然后,我们总结了机器学习在 ESE 中的四种主要应用类型: 预测、提取特征重要性、检测异常和发现新材料或化学品。接下来,我们介绍了 ESE 中机器学习应用所需的基本知识和目前存在的缺陷,重点介绍了应用机器学习时三个重要但经常被忽视的组成部分: 正确的模型开发、适当的模型解释和良好的适用性分析。最后,我们讨论了机器学习工具在 ESE 中的应用所面临的挑战和未来的机遇,以突出机器学习在这一领域的潜力。
Tags
Annotators
URL
-