the reverse conditional probability is tractable when conditioned on x0:
已知 \(x_0\) 的情况下,反向条件概率可导?为什么
the reverse conditional probability is tractable when conditioned on x0:
已知 \(x_0\) 的情况下,反向条件概率可导?为什么
Unfortunately, we cannot easily estimate q(xt−1|xt) because it needs to use the entire dataset and therefore we need to learn a model pθ to approximate these conditional probabilities in order to run the reverse diffusion process
因为无法获得全部 dataset,因此需要一个模型来估计真实样本的概率分布,从 \(x_t\) 通过模型预测 \(x_{t-1}\)
Note that if βt is small enough, q(xt−1|xt) will also be Gaussian
why?
在 backward pass 需要的 FLOPs 数大致是 forward pass 的 2 倍
批注功能支持 Markdown 语法、LaTeX 公式
测试 Markdown 语法: $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$$.