5,947 Matching Annotations
  1. Mar 2025
    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study aims to uncover molecular and structural details underlying the broad substrate specificity of glycosaminoglycan lyases belonging to a specific family (PL35). They determined the crystal structures of two such enzymes, conducted in vitro enzyme activity assays, and a thorough structure-guided mutagenesis campaign to interrogate the role of specific residues. They made progress towards achieving their aims but I see significant holes in data that need to be determined and in the authors' analyses.

      Impact on the field:

      I expect this work will have a limited impact on the field, although, with additional experimental work and better analysis, this paper will be able to stand on its own as a solid piece of structure-function analysis.

      Strengths:

      The major strengths of the study were the combination of structure and enzyme activity assays, comprehensive structural analysis, as well as a thorough structure-guided mutagenesis campaign.

      Weaknesses:

      There were several weaknesses, particularly:

      (1) The authors claim to have done an ICP-MS experiment to show Mn2+ binds to their enzyme but did not present the data. The authors could have used the anomalous scattering properties of Mn2+ at the synchrotron to determine the presence and location of this cation (i.e. fluorescence spectra, and/or anomalous data collection at the Mn2+ absorption peak).

      Thank you for your kind comment and suggestion. Many studies utilized ICP-MS for the detection of metal ions within proteins (doi: 10.1016/j.jbc.2023.103047; doi: 10.1074/jbc.RA119.011790), so we utilized this method to determine the type of atoms within GAGases. In the revised manuscript, the data of ICP-MS experiment has been presented in “Supplemental Table S1”

      (2) The authors have an over-reliance on molecular docking for understanding the position of substrates bound to the enzyme. The docking analysis performed was cursory at best; Autodock Vina is a fine program but more rigorous software could have been chosen, as well we molecular dynamics simulations. As well the authors do not use any substrate/product-bound structures from the broader PL enzyme family to guide the placement of the substrates in the GAGases, and interpret the molecular docking models.

      Thank you for your kind comments. The interaction between the enzyme and ligand should be confirmed by resolving the structure of enzyme-ligand complex. Unfortunately, we tried to prepare the co-crystals of GAGases with various oligosaccharide substrates but ultimately failed. Thus, we tried to use docking to explain the catalytic mechanism of polysaccharide lyases using Autodock Vina although this method may be questionable. In the revised manuscript, we predicted the substrate binding site of GAGase II using Caver Web 1.2 and performed molecular docking near the substrate binding site simultaneously using Molecular Operating Environment (MOE) to verify the accuracy of the docking results (Figure 6, Supplemental Figure S4). In addition, a series of enzyme-substrate complex structures of identified PL family enzymes with structural similarities to the GAGases are showed in Supplemental Figure S2, and the positions of the catalytic cavities and the substrate binding modes are similar to those of the molecular docking results, which may also corroborate the referability of our molecular docking results in another aspect.

      (3) The conclusion that the structures of GAGase II and VII are most similar to the structures of alginate lyases (Table 2 data), and the authors' reliance on DALI, are both questioned. DALI uses a global alignment algorithm, which when used for multi-domain enzymes such as these tends to result in sub-optimal alignment of active site residues, particularly if the active site is formed between the two domains as is the case here. The authors should evaluate local alignment methods focused on the optimization of the superposition of a single domain; these methods may result in a more appropriate alignment of the active site residues and different alignment statistics. This may influence the overall conclusion of the evolutionary history of these PL35 enzymes.

      Thank you for your kind question. As your suggestion, multiple structural alignment assays were carried out for the (α/α)<sub>n</sub> toroid and the antiparallel β-sheet domain, respectively, based on the structures of GAGs/alginate lyases from PL5, PL8, PL12, PL15, PL17, PL21, PL23, PL36, PL38 and PL39 families. The results showed that the overall structure of GAGases is more similarity to that of PL15, PL17 and PL39 family alginate lyases, which have an (α/α)<sub>6</sub> toroid and an antiparallel β-sheet domain (Table 3). In terms of the toroid and antiparallel β-sheet domains, most of them have an (α/α)<sub>6</sub> toroid and an antiparallel β-sheet as shown in Table 3. We also noticed that GAGases possess such a (α/α)<sub>6</sub> toroid structure rather than a (α/α)<sub>7</sub> toroid structure, and revised the relevant statement in the manuscript.

      (4) The data on the GAGase III residue His188 is not well interpreted; substitution of this residue clearly impacts HA and HS hydrolysis as well. The data on the impact on alginate hydrolysis is weak, which could be due to the fact that the WT enzyme has poor activity against alginate to start with.

      Thank you very much for your helpful comments and questions. To verify your suggestion that the weak impact of alginate hydrolysis could be due to poor activity of wild type GAGase III, we degraded alginate using different enzyme concentrations (3 to 30 μg) and analyzed the degradation products. The results showed that the alginate-degrading activity of GAGase III-H188A and GAGase III-H188N was abolished, even at a quite high ratio of the mutated enzyme to substrate such as 30 μg enzyme to 30 μg substrate (Supplemental Figure S3A), while their GAG-degrading activity was only partially affected, indicating that this residue plays a more important role for the digestion of alginate than other substrates. Unfortunately, we were unable to confer the ability to GAGase III through the mutation of N191H in GAGase II. Therefore, we suggest that His<sup>188</sup> play a key role in the specificity of alginate degradation by GAGase III, but that other determinants also contribute to this process. We will try more methods to obtain the structure of enzyme-substrate co-crystals and explain its substrate-selective mechanism in future studies.

      (5) The authors did not use the words "homology", "homologous", or "homolog" correctly (these terms mean the subjects have a known evolutionary relationship, which may or may not be known in the contexts the authors used these targets); the words "similarity" and "similar" are recommended to be used instead.

      Thank you for your helpful suggestions. We have revised the relevant part of the description in the manuscript.

      (6) The authors discuss a "shorter" cavity in GAGases, which does not make sense and is not supported by any figure or analysis. I recommend a figure with a surface representation of the various enzymes of interest, with dimensions of the cavity labeled (as a supplemental figure). The authors also do not specifically define what subsites are in the context of this family of enzymes, nor do they specifically label or indicate the location of the subsites on the figures of the GAGase II and IV enzyme structures.

      Thank you for your helpful suggestions. Figures (Supplemental Figure S2) with surface representations of the GAGase II and some structurally similar GAGs/alginate lyases with the dimensions of the cavity labeled, were added to the supplementary data as you suggested. Considering the correlation between enzyme specificity and substrate binding sites, we speculated that a shorter substrate binding cavity might allow the enzyme to accommodate a wider variety of substrates, resulting in a smaller restriction of the catalytic cavity to substrate binding, although this speculation needs to be verified by the resolution of the crystal structure of the enzyme-substrate complexes.

      Reviewer #2 (Public review):

      Summary:

      Wei et al. present the X-ray crystallographic structures of two PL35 family glycosaminoglycan (GAG) lyases that display a broad substrate specificity. The structural data show that there is a high degree of structural homology between these enzymes and GAGases that have previously been structurally characterized. Central to this are the N-terminal (α/α)7 toroid domain and the C-terminal two-layered β-sheet domain. Structural alignment of these novel PL35 lyases with previously deposited structures shows a highly conserved triplet of residues at the heart of the active sites. Docking studies identified potentially important residues for substrate binding and turnover, and subsequent site-directed mutagenesis paired with enzymatic assays confirmed the importance of many of these residues. A third PL35 GAGase that is able to turn over alginate was not crystallized, but a predicted model showed a conserved active site Asn was mutated to a His, which could potentially explain its ability to act on alginate. Mutation of the His into either Ala or Asn abrogated its activity on alginate, providing supporting evidence for the importance of the His. Finally, a catalytic mechanism is proposed for the activity of the PL35 lyases. Overall, the authors used an appropriate set of methods to investigate their claims, and the data largely support their conclusions. These results will likely provide a platform for further studies into the broad substrate specificity of PL35 lyases, as well as for studies into the evolutionary origins of these unique enzymes

      Strengths:

      The crystallographic data are of very high quality, and the use of modern structural prediction tools to allow for comparison of GAGase III to GAGase II/GAGase VII was nice to see. The authors were comprehensive in their comparison of the PL35 lyases to those in other families. The use of molecular docking to identify key residues and the use of site-directed mutagenesis to investigate substrate specificity was good, especially going the extra distance to mutate the conserved Asn to His in GAGase II and GAGase VII.

      Weaknesses:

      The structural models simply are not complete. A cursory look at the electron density and the models show that there are many positive density peaks that have not had anything modelled into them. The electron density also does not support the placement of a Mn2+ in the model. The authors indicate that ICP-MS was done to identify the metal, but no ICP-MS data is presented in the main text or supplementary. I believe the authors put too much emphasis on the possibility of GAGase III representing an evolutionary intermediate between GAG lyases and alginate lyases based on a single Asn to His mutation in the active site, and I don't believe that enough time was spent discussing how this "more open and shorter" catalytic cavity would necessarily mean that the enzyme could accommodate a broader set of substrates. Finally, the proposed mechanism does not bring the enzyme back to its starting state.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Minor points:

      (1) The number of significant digits used in Table 1 and Figure 3 legend are not justified. The authors should use a maximum of 2 significant digits.

      Thank you for your kind suggestion. We have verified the relevant data and retained two significant digits.

      (2) The authors should use the words "mutant" or "mutation" only when discussing DNA, but when discussing protein, the words "variant" and "substitution" should be used instead as these are more appropriate.

      Thank you for your helpful suggestions. We have revised the relevant description in the manuscript as you suggested.

      (3) Lines 102-110 are a long, run-on sentence that should be split into shorter sentences. Similarly, lines 367-378 should be split into shorter sentences.

      Thank you for your suggestions. In the revised manuscript, the long sentences in lines 102-110 and 367-378 have been rewritten into shorter ones.

      (4) Lines 174-175: His, Tyr, Glu, and Trp are not positively charged residues and this wording should be changed.

      Thank you for your suggestions. We have revised the relevant description in the manuscript as you suggested.

      (5) Lines 423-426 require a reference.

      Thank you for your suggestion. We have provided the reference at the right position and revised the relevant description in the manuscript as you suggested.

      (6) Grammar/language:

      -line 90 - change "should emerge" to "likely emerged"

      -line 145 - delete "Finally"

      -line 264 - delete "their"

      -line 265 - delete "active sites"

      -line 265-266 - change to "To confirm this hypothesis, site-directed mutagenesis followed by enzyme activity assay was performed"

      -line 311 - change "residue in the catalytic cavity of GAGase III, which.." to "residue in its catalytic cavity, which..."

      -line 318 - change "affect" to "affected"

      -line 323 - change to "degrading activity of GAGase II remains to be determined outside of the His188 residue"

      -line 345 - delete "assays"

      -line 359 - change to "evidence"

      -line 397 - change "folds" to "3D fold"

      -line 420 - change to "share similar catalytic sites"

      -lines 411, 433 - change "conversed" to "conserved"

      -line 441 - change to "Mutational analysis showed that the His188.."

      -line 450 - delete "which"

      Thank you for your suggestions. Grammatical errors in the revised manuscript have been corrected in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      Major Concerns

      The electron density in your model clearly does not support the placement of a Mn ion. In the GAGase II structure, the placement of the Mn and the placement of waters around it still results in two density peaks of > 12 rmsd. The manuscript suggests that ICP-MS was done but the results of this are not shown anywhere. Please include your ICP-MS data. I see the structures have already been deposited, and if they have been deposited unchanged, please see if you can modify them to actually finish building the models. I don't find your data in Figure 2B particularly convincing that Mn is necessarily important for activity.

      Thank you for your kind comments. As we known, ICP-MS is a common method used for the detection of metal ions within proteins (doi: 10.1016/j.jbc.2023.103047; doi: 10.1074/jbc.RA119.011790), and thus we utilized it to determine the type of atoms within GAGases in this study. In the revised manuscript, the data of ICP-MS experiment has been presented in “Supplemental Table S1”, and the data clearly showed that the content of Mn<sup>2+</sup> rather than others in test sample is much higher than that in the negative control, suggesting the involvement of Mn<sup>2+</sup> in the protein. We agree that the addition of Mn<sup>2+</sup> does not show very strong promotion to the activity of GAGase II just like other tested metal ions, but the addition of EDTA significantly inhibited the enzyme activity (Figure 2), indicating that metal ion such as Mn<sup>2+</sup> is necessary for the function of GAGases. Regarding the role of metal ion, whether it participates in the catalytic reaction or only stabilize the structure of enzyme remains to be further explored in our further study.

      Minor Concerns

      (1) Please include CC1/2 in your Table 1.

      Thank you for your kind suggestions. CC1/2 parameters have been added in the revised manuscript (Table 1).

      (2) If possible please include SDS-PAGE gel images of your purified proteins. Particularly for the point mutations. Ideally, you would have done SEC on your mutants to show that the reduction in activity is not due to aggregation/misfolding, but at the very least I would to see that you have similar levels of purity.

      Thank you for your kind suggestions. As your suggestion, we have added SDS-PAGE gel images of purified GAGase II, GAGase III, GAGase VII, and their mutant enzymes to the supplementary data. As shown in Figure S5, site-directed mutagenesis did not affect the soluble expression levels of GAGase II, GAGase III or GAGase VII, indicating that the reduction in activity is not due to aggregation or misfolding. Due to the large number of variants, we used crude enzyme for the activity assay of substrate binding sites, while for some catalytic key residues, we purified the corresponding mutant enzymes and then verified their activities by HPLC.

      (3) When referring to your structural predictions, it is not appropriate to say that you used Robetta. Your reference is correct though - you should say that the structures were predicted using RoseTTAfold.

      Thank you for your helpful suggestions. We have revised the relevant description in the manuscript.

      (4) If possible expand on how the shorter/more open active site cavity would result in broader substrate specificity.

      Thank you for your kind comment. In the revised manuscript, figures (Supplemental Figure S2) with surface representations of the GAGase II and some representatively structurally similar GAGs/alginate lyases, with the dimensions of the cavity labeled, were added to the supplementary data. Considering the correlation between enzyme specificity and substrate binding sites, we speculated that a shorter substrate binding cavity might allow the enzyme to accommodate a wider variety of substrates, resulting in a smaller restriction of the catalytic cavity to substrate binding. However, unfortunately, we did not succeed in obtaining co-crystals of GAGases with any of the substrates. We will try to explain the mechanism of substrate selectivity in future studies by culturing and resolving crystals of its enzyme substrate complex or otherwise.

      (5) I would put less emphasis on His188 in GAGase III being a strong indicator that this protein represents an evolutionary intermediate between alginate lyases and GAGases.

      Thank you for your comment. The His<sup>188</sup> residue, which is unique compared to other GAGases, is essential for the alginate-degrading activity of GAGase III. Regarding why GAGases are thought to represent a possible evolutionary intermediate between alginate lyases and GAG lyases, phylogenetic analysis demonstrated that GAGases show considerable homology with some identified GAG lyases and alginate lyases (DOI: 10.1016/j.jbc.2024.107466). The similarity in primary structure between some GAG lyases, alginate lyases, and GAGases suggests structural similarities, which are further supported by this study. As structure determines function, structural similarity is often used as a key criterion when studying the evolution of proteins, the GAGase III, which shows significant GAGs and alginate-degrading activity, support for this speculation. Of course, in this study, our analysis of the evolutionary relationship between GAGases and identified GAG lyases and alginate lyases, based on structural comparison, is an attempt using existing methods. The conclusions we have drawn remain a hypothesis that still requires further evidence to support and validate.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      The manuscript under review investigates the role of periosteal stem cells (P-SSC) in bone marrow regeneration using a whole-bone subcutaneous transplantation model. While the model is somewhat artificial, the findings were interesting, suggesting the migration of periosteal stem cells into the bone marrow and their potential to become bone marrow stromal cells. This indicates a significant plasticity of P-SSC consistent with previous reports using fracture models (Cell Stem Cell 29:1547, Dev Cell 59:1192).

      Major Concerns

      (1) The authors assert that the periosteal layer was completely removed in their model, which is crucial for their conclusions. To substantiate this claim, it is recommended that the authors provide evidence of the successful removal of the entire periosteal stem cell (P-SSC) population. A colony-forming assay, with and without periosteal removal, could serve as a suitable method to demonstrate this.

      We are grateful to the reviewer for this valuable suggestion. The objective of this experiment was to demonstrate that periosteal ablation impairs bone marrow regeneration, a finding that is supported by our results. We expect that ablation of the periosteum would be associated with only a partial decrease in CFU-F activity, given the presence of MSCs in the bone and in the endosteal region of the bone marrow. Therefore, CFU-F assays would be difficult to interpret in this setting. In view of the phenotype obtained, providing proof of concept of the importance of the periosteum, we do not believe that further experiments would strengthen the level of proof of this experiment.

      (2) The observation that P-SSCs do not express Kitl or Cxcl12, while their bone marrow stromal cell (BM-MSC) derivatives do, is a key finding. To strengthen this conclusion, the authors are encouraged to repeat the experiment using Cxcl12 or Scf reporter alleles. Immunofluorescence staining that confirms the migration of periosteal cells and their transformation into Cxcl12- or Scf-reporter-positive cells would significantly enhance the paper's key conclusion.

      Transplantation of periosteum isolated from Cxcl12 or Scf into WT bones is an excellent suggestion. Indeed, this experiment would confirm (1) the migration of periosteal SSC and (2) the expression of Cxcl12 and Scf by BM-MSCs derived from the periosteum .However, it should be noted that the current limitations in terms of available resources preclude the execution of these experiments. Moreover, the use of the PostnCre<sup>ER</sup>;Tmt mice represent the optimal approach for tracking and specifically isolating BM-MSCs derived from the periosteum. The expression of Cxcl12 and Scf by BM-MSCs derived from the periosteum has been demonstrated in 2 distinct experimental models (Figures 5 and 6).

      (3) On page 8, line 20, the authors' statement regarding the detection of Periostin+ cells outside the periosteum layer could be misinterpreted due to the use of the periostin antibody. Given that periostin is an extracellular matrix protein, the staining may not accurately represent Periostin-expressing cells but rather the presence of periostin in the extracellular matrix. The authors should revise this section for greater precision.

      We acknowledge and appreciate the reviewer's attention to detail. This is, in fact, an error. Nestin-GFP positive periosteal SSC are seen within the periosteum marked by an anti-periostin antibody labeling the extracellular matrix of the periosteum. The manuscript has been revised to address this inaccuracy on page 9, lines 8-9.

      Reviewer #2 (Public review):

      Summary:

      The authors have established a femur graft model that allows the study of hematopoietic regeneration following transplantation. They have extensively characterized this model, demonstrating the loss of hematopoietic cells from the donor femur following transplantation, with recovery of hematopoiesis from recipient cells. They also show evidence that BM MSCs present in the graft following transplantation are graft-derived. They have utilized this model to show that following transplantation, periosteal cells respond by first expanding, then giving rise to more periosteal SSCs, and then migrating into the marrow to give rise to BM MSCs.

      Strengths:

      These studies are notable in several ways:

      (1) Establishment of a novel femur graft model for the study of hematopoiesis;

      (2) Use of lineage tracing and surgery models to demonstrate that periosteal cells can give rise to BM MSCs.

      We thank the reviewer for noting the novelty of our manuscript.

      Weaknesses:

      There are a few weaknesses. First, the authors do not definitively demonstrate the requirement of periosteal SSC movement into the BM cavity for hematopoietic recovery. Hematopoiesis recovers significantly before 5 months, even before significant P-SSC movement has been shown, and hematopoiesis recovers significantly even when periosteum has been stripped.

      This is an important point. Notably, we can see expansion of P-SSCs by day 8 after femur transplantation and evidence of periosteum-derived SSCs in the bone marrow by day 15, before we can detect any significant hematopoietic recovery (see Figure 3A-C).

      Second, it is not clear how the periosteum is changing in the grafts. Which cells are expanding is unclear, and it is not clear if these cells have already adopted a more MSC-like phenotype prior to entering the marrow space.

      This is an interesting question. To examine early changes in gene expression in periosteal SSCs in grafted femurs, we performed additional RNA sequencing on host periosteal SSCs vs periosteal SSCs from grafted femurs at an earlier time point - at 3 days after femur transplantation and on host bone marrow MSCs (see new Supplementary Figure S5 A-C). At this time point the three cell populations are already distinct on the PCA plot (Figure S5A), and there is downregulation of some periosteal genes in the graft P-SSCs (Figure S5B). However, we do not yet see upregulation of Kitl or Cxcl12 or most other BM MSC genes in graft P-SSCs at this time point (Figure S5B). Furthermore, gene set enrichment analysis (GSEA) revealed upregulation of cell cycle, DNA replication and mismatch repair gene signatures, and downregulation of multiple gene signatures compared to host P-SSCs (Figure S5C). Therefore, we conclude that P-SSCs already adopt some gene expression changes early after femur transplantation, but have not yet fully differentiated into BM MSCs at this early time point. This experiment is now discussed on p.10 of the revised manuscript.

      Indeed, given the presence of host-derived endothelial cells in the BM, these studies are reminiscent of prior studies from this group and others that re-endothelialization of the marrow may be much more important for determining hematopoietic regeneration, rather than the P-SSC migration.

      Indeed, as previously shown by our group and others, we agree that endothelial regeneration and re-endothelialization may also play an important role in this bone marrow regeneration model. It is noteworthy that this model has the potential to serve as a valuable tool for analyzing the origin of BM endothelial cells during regeneration processes. To further illustrate the endothelial regeneration, additional images of bone sections from VE-cadherin-cre;TdTomato grafted femurs at 15 days, one month, and five months post-transplantation have been included in the new Figure S3. These images reveal extensive vascularization of the graft and proximity of UBC-GFP+ donor-derived vessels to VE-cadherin+ host-derived blood vessels in the bone marrow within one month (see Figure S2C). This observation is consistent with the timing of both BM MSC recovery and HSC recovery in the grafts, thereby suggesting the importance of endothelial recovery (see Fig. 1B). A new discussion of these findings has been included on page 6 of the revised manuscript and on page 16 in the discussion section.

      Third, the studies exploring the preferential depletion of BM MSCs vs P-SSCs are difficult to interpret. The single metabolic stress condition chosen was not well-justified, and the use of purified cell populations to study response to stress ex vivo may have introduced artifacts into the system.

      We chose to focus on hypoxia as the main condition in which to analyze the stress response of P-SSCs vs BM MSCs because we reasoned that due to the location of P-SSCs on the outside of the bone, these cells would be exposed to a higher oxygen tension than BM-MSCs, which are located within the bone marrow. Therefore, we wanted to determine whether this exposure to a different oxygen tension would be sufficient to explain the different properties of P-SSCs and BM MSCs. We modified the text on p.11 of the manuscript to explain the rationale for this experiment better.

      Reviewer #3 (Public review):

      Summary:

      Marchand, Akinnola, et al. describe the use of the novel model to study BM regeneration. Here, they harvest intact femurs and subcutaneously graft them into recipient mice. Similar to standard BM regeneration models, there is a rapid decrease in cellularity followed by a gradual recovery over 5 months within the grafts. At 5 months, these grafts have robust HSC activity, similar to HSCs isolated from the host femur. They find that periosteum skeletal stem cells (p-SSCs) are the primary source of BM-MSCs within the grafted femur and that these cells are more resistant to the acute stress of grafting the femur.

      Strengths:

      This is an interesting manuscript that describes a novel model to study BM regeneration. The model has tremendous promise.

      We thank the reviewer for highlighting the novelty and potential of our work.

      Weaknesses:

      The authors claim that grafting intact femurs subcutaneously is a model of BM regeneration and can be used as a replacement for gold standard BM regeneration assays such as sublethal chemo/irradiation. However, there isn't enough explanation as to how this model is equivalent or superior to the traditional models. For instance, the authors claim that this model allows for the study of "BM regeneration in vivo in response to acute injury using genetic tools." This can and has been done numerous times with established, physiologically relevant BM regeneration models. The onus is on the authors to discuss or perform the necessary experiments to justify the use of this model. For example, standard BM regeneration models involve systemic damage that is akin to therapies that require BM regeneration. How is studying the current model that provides only an acute injury more relevant and useful than other models? As it stands, it seems as if the authors could have done all the experiments demonstrating the importance of these p-SSCs in the traditional myelosuppressive BM regeneration models to be more physiologically relevant. Along these lines, the use of a standard BM regeneration model (e.g., sublethal chemo/irradiation) as a critical control is missing and should be included. Even if the control doesn't demonstrate that p-SSCs can contribute to the BM-MSC during regeneration, it will still be important because it could be the justification for using the described model to specifically study p-SSCs' regulation of BM regeneration.

      We appreciate the reviewer raising this important point. We never intended this femur transplantation model of bone marrow injury to replace more established models, such as chemotherapy or irradiation. In fact, we compared the effects of femur transplantation to localized bone irradiation on P-SSCs using our Periostin-Cre;Td-Tomato lineage tracing model. We found that irradiation does not induce the same migration of Tomato+ P-SSCs from the periosteum to the bone marrow cavity the way that femur transplantation, and cannot be used to demonstrate the plasticity of P-SSCs in the same way (see new Supplementary Figure S7D-E). Therefore, this appears to be a more severe form of bone marrow injury, and is not similar to other more established assays of bone marrow injury. We also added this discussion to the revised manuscript on p.14 and in the discussion section on p.17.

      The authors perform some analysis that suggests that grafting a whole femur mimics BM regeneration, but there are many experiments missing from the manuscript that will be necessary to support the use of this model. To demonstrate that this new model mimics current BM regeneration models, the authors need to perform a careful examination of the early kinetics of hematopoietic recovery post-transplant. Complete blood counts should be performed on the grafts, focusing on white blood cells (particularly neutrophils), red blood cells, platelets, all critical indicators of BM regeneration. This analysis should be done at early time points that include weekly analysis for a minimum of 28 days following the graft. Additionally, understanding how and when the vasculature recovers is critical. This is particularly important because it is well-established that if there is a delay in vascular recovery, there is a delay in hematopoietic recovery. As mentioned above, a standard BM regeneration model should be used as a control.

      We concur with the reviewer that hematopoietic recovery is a pivotal aspect of this model. We conducted a time-course analysis of bone marrow and HSC cellularity from day 0 to month 5 post-transplantation (Figure 1B). Furthermore, we evaluated the HSC capacities through bone marrow transplantation from grafted or host femurs (Figures 1D and 1E) and quantified the various hematopoietic cells in the graft after five months (Supplemental Figure 1). Furthermore, hematopoiesis occurring in the transplanted bone was comprehensively evaluated in another article, currently in revision and available in BioRxiv (Takeishi, S., Marchand, T., Koba, W. R., Borger, D. K., Xu, C., Guha, C., Bergman, A., Frenette, P. S., Gritsman, K., & Steidl, U. (2023). Haematopoietic stem cell numbers are not solely determined by niche availability. bioRxiv: the preprint server for biology, 2023.10.28.564559. https://doi.org/10.1101/2023.10.28.564559). We did not use another assay of bone marrow regeneration as a “control”, since we do not expect to see similar plasticity of periosteal SSCs in these models, such as with the localized irradiation model described in the new Figure S7D-E.

      We agree with the reviewer that endothelial recovery is also likely to be very important for hematopoietic recovery in this model, but this was not the focus of this manuscript. The process of endothelial recovery  is likely to be more complex than that of MSC recovery, as our findings indicate that the graft endothelium can arise from both the host and the graft femur (see Fig.2D). Consequently, further investigation into the mechanisms of endothelial recovery and its contribution to hematopoiesis in this experimental system will be an interesting focus of future work. We believe that this bone transplantation model represents a valuable tool for addressing questions regarding the origin and regeneration mechanisms of bone marrow endothelial cells.

      The contribution of donor and host cells to the BM regeneration of the graft is interesting. Particularly, the chimerism of the vasculature. One can assume that for the graft to undergo BM regeneration, there needs to be the delivery of nutrients into the graft via the vasculature. The chimerism of the vascular network suggests that host endothelial cells anastomose with the graft. Host mice should have their vascular system labeled with a dye such as dextran to determine if anastomosis has occurred. If not, the authors need to explain how this graft survives up to 5 months. If anastomosis does occur, then it is very surprising that the hematopoietic system of the graft is not a chimera because this would essentially be a parabiosis model. This needs to be explained.

      We have included additional images of bone sections from VE-cadherin-cre;tdTomato grafted femurs at 15 days, one month, and five months post transplantation in the new Figure S3. These images show extensive vascularization of the graft and proximity of UBC-GFP+ donor-derived vessels to VE-cadherin+ host-derived blood vessels in the bone marrow within one month, suggesting a potential anastomosis (Figure S2C). However, it is not surprising that hematopoiesis arises exclusively from the host, as we observed complete death of the hematopoietic cells and BM MSCs in the graft femur within the first 3 days of femur transplantation (see Figure S1A), and we do not see any significant hematopoietic recovery in the grafts until at least 2 months (see Fig.1B). Therefore, this is not similar to a parabiosis model, as confirmed by our chimerism studies shown in Figure 2D. In addition, these data are consistent with the results reported with the use of ossicles (doi:10.1038/nature09262; DOI 10.1016/j.cell.2007.08.025; doi:10.1038/nature07547).

      Most of the data presented for the resistance of p-SSCs to stress suggests DNA damage response. Do p-SSCs demonstrate a higher ability to resolve DNA damage? Do they accumulate less DNA damage? Staining for DNA damage foci or performing comet assays could be done to further define the mechanism of stress resistance properties of p-SSCs.

      This is an interesting question. In our RNA sequencing analysis of graft P-SSCs compared with host P-SSCs we did observe an upregulation of mismatch repair gene signatures by gene set enrichment analysis (GSEA) (new Figure S5C). Therefore, it is possible that P-SSCs do have an altered DNA damage response. However, we are unable to investigate this further at this time.

      Given the importance of BM-MSCs in hematopoiesis and that the majority of the emerging BM-MSCs appear to be derived from p-SSCs, the authors should perform experiments to determine if p-SSC-derived BM-MSCs are critical regulators of BM regeneration. For example, the authors could test this by crossing the Postn-creER mice with iDTR mice to ablate these cells and see if recovery is inhibited or delayed. This should be done with the described periosteum-wrapped femur graft model as well as a control BM regeneration model. Demonstrating that the deletion of these cells affects BM regeneration in both models would further justify the physiological relevance and utility of the femur graft model.

      We thank the reviewer for this excellent suggestion, and we agree that this is an important experiment. However, our attempts to ablate Postn+ cells using the iDTA system were limited by technical difficulties, which we are unable to address at this time.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) In Figure 2C, the vascular network staining appears to be duplicated, suggesting a possible error in image capture. The authors should replace this image with a different field or an alternative picture to avoid confusion.

      We thank the reviewer for noting this accidental duplication due to an image stitching problem. Figure 2C was replaced by a different image from the same experiment.

      (2) For consistency and clarity, a scale bar should be included in Figure S3E to indicate that the magnification factors of the respective visual fields are identical.

      We thank the reviewer for highlighting this point. The magnification used has been added in the revised Figure.

      (3) In Figure S5B, the difference in normalized Opn mRNA expression relative to Gapdh between steady-state BM-MSCs and P-SSCs seems substantial, which contradicts the "ns" (not significant) label. The authors should verify the accuracy of this labeling.

      We agree with the reviewer that this difference in what is now Figure S6B looks substantial. However, we confirmed that this difference is not statistically significant, likely due to the high variability between replicates in Opn expression in the steady state BM MSCs.

      Reviewer #2 (Recommendations for the authors):

      In order to strengthen the argument that P-SSCs are necessary for hematopoietic recovery, the authors should consider providing the following data:

      (1) In the periosteal stripping experiments, the authors should show if periosteum-derived MSCs are present in the BM throughout the process of hematopoietic recovery (not just at the end of the experiment). If none are present at the end, that would mean that periosteum is not required for hematopoietic recovery, but would still suggest that it is required for optimal hematopoietic recovery. At early time points, it would also be very helpful to demonstrate the composition and amount of endothelium present in the marrow to determine if P-SSC migration and differentiation into MSCs depends on endothelial reconstitution.

      To further examine the vascularization of the transplanted femur at an earlier time point, we have added additional images of grafted femur from VE-cadherin-cre;tdTomato at 15 days and one month post transplantation in the new Figure S3A and S3B. These images already show extensive vascularization of the graft periosteum stained with an anti-periostin antibody. In addition, we observed anastomoses of host VE-cadherin;Tmt+ blood vessels with graft ubc-GFP+ blood vessels in the grafted periosteum within one month (Figure S3C).

      (2) Studies of the surgical periosteum grafts could benefit from histologic analysis of the BM and its MSC components at earlier time points following grafting since the data provided are only at 5 months. Such studies would allow a better appreciation of the relationship between P-SSC migration into the marrow and hematopoietic recovery.

      We have performed histologic analysis of grafted femurs at multiple early time points, which shows expansion of P-SSCs and their migration into the bone marrow cavity (Figure 3C).

      (3) Studies of stress responses preferably should be performed using intact bone and should characterize P-SSC and BM MSC apoptosis, cell cycle status, differentiation, etc, immediately following shifts to the stress conditions. These studies would be more compelling if performed using additional "stress" conditions likely to represent the graft environment.

      This is an interesting suggestion. However, these types of studies would not be possible in intact bones ex vivo, as P-SSCs are known to migrate out of the bone in culture.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Major comments:

      (1) In Figure 1 the authors could reference and use NSP8 (PMID: 38275298) and Nucleocapsid (PMID: 37185839) in their experiments as positive controls.

      Thank you for your suggestion! In Figure 1A, during our screening of SARS-CoV-2 nsp proteins regulated by MG132, we confirmed that nsp8 can also be restored by MG132. This finding indicates that nsp8 is degraded via the proteasome pathway and can therefore serve as a positive control for the experiment. It has been reported that nsp8 undergoes degradation via the ubiquitin-proteasome pathway following its ubiquitination mediated by TRIM22. We have added the description at line 115 in the manuscript.

      (2) The data indicating that NSP16 is ubiquitinated come from overexpression systems, and it is possible that NSP16 ubiquitination only occurs in expression contexts, not during coronavirus infection. If NSP16 ubiquitination can't be measured in the context of infection, it is unclear how we can make any conclusions. The authors need to demonstrate the ubiquitination of NSP16 in the context of viral infection.

      We greatly appreciate the reviewer's suggestion and have incorporated the corresponding experimental results. As shown in Figure 5A, co-IP experiments using an endogenous nsp16 antibody were conducted following infection with the SARS-CoV-2 Wuhan strain. These experiments confirmed that the nsp16 protein encoded by the virus undergoes ubiquitination in infected cells. This finding highlights the ubiquitination of nsp16 within a biological context, thereby supporting our conclusions in expression contexts.

      (3) In Figure 4, adding controls will strengthen the authors' conclusion.

      a) Is it possible to observe ubiquitination of NSP16 by transfecting in NSP16-FLAG tagged, immunoprecipitate NSP16, run a western blot, and probe for endogenous ubiquitin?

      b) Can the authors please include an empty vector control as well as WT ubiquitin in these panels for comparison?

      c) In addition, why are the Ubiquitination patterns different in the IP panels of D and E vs B?? Without an empty vector control, it is challenging to conclude what the background is.

      Thank you for your valuable suggestions! We have made the following changes and additions in response to your comments:

      a) We have conducted the experiments as per the reviewer's suggestion. Figure 3B shows the result. Co-IP experiments were performed, and endogenous ubiquitination of nsp16 was observed using the endogenous ubiquitin antibody.

      b) We apologize for previously focusing solely on presenting multiple ubiquitin mutants on a single panel of nsp16 IP without considering the inclusion of an empty vector control and WT ubiquitin. The experiment has been redesigned and conducted, and the results are now presented in Figures 3E and 3F.

      c) The differences in the ubiquitination patterns observed between the IP panels in Figures 3E and 3F compared to 3C may be due to varying plasmids, differences in antibody and depth of exposure. To address this, we have standardized the plasmids in the figure and included an empty vector control as a negative control to clarify the background signal.

      (4) Overexpression of the ubiquitin mutants may have an indirect effect on protein homeostasis. The authors can also utilize linkage-specific antibodies in their studies to elucidate the ubiquitin linkage associated with NSP16 ubiquitination. K63-linkage Specific Polyubiquitin (D7A11) Rabbit mAb, 5621S, and K48-linkage Specific Polyubiquitin (D9D5) Rabbit mAb, 8081S from Cell Signaling Technologies?

      We greatly appreciate the reviewer's excellent suggestion! Using linkage-specific antibodies to elucidate the ubiquitin linkage associated with nsp16 ubiquitination would indeed provide more direct evidence. However, due to the long lead time for obtaining these antibodies, we plan to conduct further verification in future experiments.

      (5) The authors discussed the subcellular localization of overexpressed NSP16- showing the localization of NSP16 in the context of viral infection would strengthen the study. If this is challenging, can the authors express NSP16 along with the co-factor NSP10 and examine its subcellular localization?

      Thank you for your suggestion! During viral infection, we observed the ubiquitination of the nsp16 protein through co-IP experiments, indicating that the presence of nsp10 does not influence the regulation of nsp16 ubiquitination by MARCHF7 or UBR5 (Figure 5A). Therefore, we believe that investigating the co-localization of nsp10 and nsp16 would not provide additional value to our results. Additionally, through a literature review, we found studies that have already examined the localization of nsp10 and nsp16 following viral infection. These studies revealed that nsp10 was located in the cytoplasm, while nsp16 can be detected in both the nucleus and cytoplasm (PMID: 33080218; PMID: 34452352). This observation is consistent with the localization of nsp16 that we observed in our overexpression experiments.

      (6) a) In Figure 3A, the authors should note that the interaction of NPS16 appears weak with UBR5. The authors should confirm that the interaction of NSP16 and the E3 ligases is relevant in the context of viral infection.

      b) In Figure 3B, the scale bars should be labeled in at least one panel, as well as in the legend.

      c) The authors discussed nuclear localization of MARCHF7, UBR5, and NSP16, therefore a control with a nuclear stain should be included in this figure to enhance the study.

      d) Some panels look overexposed while others are blurry which decreases the robustness of the interaction as the authors stated in line 191. To strengthen the results of Figure 3, consider GST purification and in vitro, cell-free binding assays to confirm a direct interaction between nsp16 and the E3 ligases

      Thank you for the reviewer’s thoughtful suggestions! We have made the following changes and adjustments based on your recommendations:

      a) On the interaction between nsp16 and UBR5:

      The interaction between nsp16 and UBR5 appears to be weak, possibly due to the large size of the UBR5 protein (300 kDa). As a result, there are challenges in presenting the experimental results, including difficulties in both expression and protein level detection. To further confirm the relevance of the interaction between nsp16 and the E3 ligases in the context of viral infection, we have performed experiments, and the results are presented in Figure 5A.

      b) On scale bars:

      The issue regarding the scale bars in Figure 4 has been addressed, and we have now included them in the figure legend for clarity (Line 885).

      c) On nuclear localization control:

      For the localization of MARCHF7, UBR5, and nsp16 in Figure 4C, given that both MARCHF7 and UBR5 are tagged with CFP, DAPI staining would result in spectral overlap. However, we conducted co-localization experiments for MARCHF7 or UBR5 with nsp16 in Figure 4—figure supplements 1E and 1F, where DAPI staining was included to illustrate the localization of these three proteins. Our experiments showed that while these proteins are present in both the nucleus and cytoplasm, they are predominantly localized in the cytoplasm.

      d) On validation of direct interaction:

      We attempted GST purification and in vitro cell-free binding assays to verify the direct interaction between nsp16 and the E3 ligases. However, UBR5 and MARCHF7 are both large proteins, with UBR5 being particularly large, which significantly increased the difficulty of purification. Additionally, we faced challenges in purifying nsp16, as the purified nsp16 protein tended to aggregate. We will continue to optimize purification techniques and conditions in future experiments.

      We appreciate your valuable comments, which have greatly contributed to improving our experiments and conclusions.

      .

      (7) To confirm the knockdown of the E3 ligases by siRNA, the authors should use western blotting to show the presence/absence/decrease of the protein levels in addition to mRNA levels by RT-PCR. The authors have the lysates, and they have shown that the antibodies for MARCHF7 and UBR5 work therefore including this throughout the manuscript to help substantiate the authors' conclusions.

      Thank you for the reviewer’s valuable suggestion! We have validated the knockdown efficiency at the protein level for the experiments involving siRNA knockdown. Corresponding Western blot images are now included in the relevant experiments to substantiate our conclusions, in addition to the RT-PCR data, including Figures 2, 4 and 5.

      (8) In the overexpression studies of the E3 ligases with viral infection in Figure 5, the authors should include the catalytic mutants for the E3 ligases with the nsp16 gradient experiment. This would strengthen the conclusion of the studies.

      Thank you for the reviewer’s suggestion! We have conducted the relevant experiments based on your recommendation, and the corresponding data are presented in the Figure 6—figure supplements 2A-H. These results strengthen the conclusions of our study.

      (9) Figure 5: For C and F, for a better comparison of the efficacy against the 2 strains, the authors should use the same scale. This could benefit from a kinetics experiment.

      Thank you for the reviewer’s suggestion! We have made revisions in Figures 5E and 5H in responses to your recommendation.

      (10) Is there a synergistic effect of double E3 knockdown on viral replication?

      Thank you for the reviewer’s question! In Figures 5—figure supplement 1A-B, we conducted experiments by individually and simultaneously knocking down MARCHF7 or UBR5, followed by infection with viral SARS-CoV-2 transmissible virus-like particles. The results revealed that simultaneous knockdown further enhances viral replication, demonstrating a synergistic effect.

      (11) In lines 98-100 the authors state "This dual targeting by MARCHF7 and UBR5 impairs the 2'-O-MTase activity of nsp16, blocking the conversion of cap-0 to cap-1 at the 5 'end of viral RNA, ultimately exhibiting potent antiviral activity against SARS-CoV-2". The authors did not examine the 2'-O-MTase activity of nsp16. The authors should rephrase this or provide the data if this experiment was done.

      Thank you for the reviewer’s valuable suggestion! Based on your comment, we have revised the ambiguous wording located in lines 100-104.

      (12) In the discussion, the authors reported that elucidating a specific lysine residue (s) that is ubiquitinated was challenging and stated that they generated multiple mutants including truncated mutants, and wrote "data not shown". The authors need to include this data as supplementary.

      Thank you for the reviewer’s suggestion! Based on your comment, we have included the data regarding the specific lysine residue(s) that is ubiquitinated, along with the truncated mutants, as supplementary data (Appendix-figure S2).

      (13) In Figure 7, the authors showed a copy number of SARS CoV-2 E in lung tissue. The authors should show viral titers using either the plaque assay or the TCID50 assay.

      Thank you for the reviewer’s suggestion! Based on your comment, we measured the TCID50 of the virus in the lung tissue homogenates, and the results are presented in Figure 7D.

      Minor comments:

      (1) Line 76: while many E3 ubiquitin ligases directly recognize and bind to their target substrates, cullin-RING ligases directly bind an adaptor, which binds a substrate receptor and/or the substrate directly, while the RING-box protein binds a different surface of the cullin and is also not directly interacting with substrate.

      Thank you for the reviewer’s valuable suggestion! Based on your comment, we have revised the ambiguous wording in line 76.

      (2) Line 161: having introduced the suggestion that NSP16 is ubiquitinated by these ligases, consider moving Figure 4 to the Figure 3 spot.

      Based on your comment, we have rearranged the order of the figures and moved Figure 4 to the Figure 3 spot.

      (3) Figure 2: Can the authors please do +/- MG132 for each siRNA? It is possible that the lanes where we don't see NSP16 were because there was no NSP16 expressed, OR it was degraded, MG132 would confirm one or the other.

      Thank you for the reviewer’s suggestion! Based on your comment, we have redesigned the experiment and included the MG132 treatment for each siRNA. The results are presented in Figure 2A.

      (4) Line 165: The authors write "As confirmed by MS, both Myc-tagged MARCHF7 and endogenous UBR5 interact with nsp16, as seen in the Co-IP experiment" should be the reverse, MS suggests NSP16-E3 interaction, the co-ip confirms this.

      Based on your comment, we have revised the wording in line 183 to ensure accuracy. MS suggests the interaction between nsp16 and the E3 ligases, while the Co-IP experiment confirms this interaction.

      (5) Line 178: the cited paper doesn't clearly show NSP16 nuclear localization, nor do the authors of said paper claim that they found it there. It is cytoplasmic. Additionally, said paper used overexpression, and it is unclear if NSP16 is nuclear in the context of viral infection.

      Thank you for the reviewer’s suggestion! The referenced paper states, "As can be seen in the Supplementary Fig. S2, the viral proteins are either cytoplasmic (NSP2, NSP3C, NSP4, NSP8, Spike, M, N, ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, and ORF10) or both nuclear and cytoplasmic (NSP1, NSP3N, NSP5, NSP6, NSP7, NSP9, NSP10, NSP12, NSP13, NSP14, NSP15, NSP16, E, and ORF9a)," indicating that nsp16 is localized in both the nucleus and cytoplasm. Upon reviewing the literature, we found that the paper (PMID: 33080218) reports the distribution of nsp16 protein following viral infection. The results indicate that nsp16 is present in both the nucleus and cytoplasm, although the authors of the referenced paper claim that ns16 was located in the nucleus.

      (6) Line 197: in addition to the 7 lysine residues, ubiquitin can also form linear N-terminal linkages.

      Thank you for the reviewer’s suggestion! Linear N-terminal ubiquitination, with its distinct linkage and substrate recognition mechanism, is typically mediated by a complex consisting of the E3 ubiquitin ligases HOIL-1 and HOIP, and differs from classical ubiquitination. Therefore, this type of ubiquitin chain was not investigated in our experiments.

      (7) Line 202: Authors state "Interestingly, all single-lysine Ub mutants promoted nsp16 ubiquitylation to varying degrees, indicating a complex polyubiquitin chain structure on nsp16 potentially regulated by multiple E3 ligases". However, not all the mutants. K33 isn't supported by the blot.

      Thank you for pointing that out! Indeed, we made an error in our description. The K33 mutant did not promote nsp16 ubiquitylation, and we have corrected this in the manuscript accordingly in line 173.

      (8) Line 204: consider including "E2-E3 ligase pairs" for RING ligases the E2 determines the linkage type see: Cell Research (2016) 26:423-440.

      Thank you for your suggestion! We have included the term "E2-E3 ligase pairs" in the article in line 176.

      (9) Line 235: The authors used the real virus, the inclusion of the BLS2 virus here is extraneous, it doesn't add anything. The authors can consider removing it.

      Thank you for your suggestion! In our experiments, we performed simultaneous knockdown of two E3 ligases, so we believe this data is relevant and should not be removed.

      (10) Line 238: Authors state: "led to a significant increase in SARS-CoV-2 levels compared to the control group". What is meant by "levels?"

      Thank you for your careful reading. We have updated "levels" to "replication" as suggested to clarify the meaning in line 237.

      (11) Line 245: increased titers. This could be improved for specificity by saying, 1-log increase for example.

      Thank you for the reviewer's valuable suggestions. We have made the necessary changes and specified "increased titers" as a "1-log increase" in lines 249 and 261.

      (12) Line 249: in Figure 5H again, the authors are showing relative mRNA levels. Ideally should show protein levels by western blot.

      Thank you for the reviewer's suggestion! We have performed protein-level detection of the knockdown efficiency for the samples, and the bands have been placed in the corresponding positions in Figure 5I.

      (13) Line 259: "strongly linked to their ability to modulate..." This appears to be an overextension of the data. The data show nsp16 levels can compensate for E3 overexpression, but not that the E3 ligases are modulating this activity. We can infer this from previous experiments. Perhaps increasing the NSP12 levels would also have the same effect as they don't show that this is specific to NSP16. What about a catalytically dead E3?

      Thank you for the reviewer's thoughtful suggestion. We have revised the wording accordingly and designed the viral-related experiments with E3 enzyme activity mutants in Figure 6 supplement 2.

      (14) Figure 6: In panel H the MW for UBR5 is incorrect, should be around 300kDa.

      Thank you for the reviewer's detailed suggestions. We have made the necessary revisions in Figure 6H.

      (15) Line 267: "suggesting a more conserved sequence". What are the authors referring to? More conserved than what? This section would benefit from a discussion of which residues are mutated. Are they potential Ub sites, which could point to differential degradation by the E3s as due to more ubiquitination? Or rather to more efficient interaction with the E3? Is this conserved in related CoVs: original SARS and MERS, for instance?

      Thank you for the reviewer’s detailed suggestions. In this context, by “conservation,” we refer to the relative conservation of nsp16 proteins across different subtypes of the Omicron variant. We found that most of the mutation sites contained only 1 to 2 mutations. Additionally, we have constructed and validated multiple-mutant nsp16 proteins, which are still degraded by MARCHF7 or UBR5. Given the ongoing prevalence of the Omicron variant, we aim to explore the broad-spectrum degradation and antiviral effects of these two E3 ligases. While it would be ideal if these experiments could aid in identifying the ubiquitination sites, we have not yet identified any mutant forms that escape degradation. We also compared the nsp16 proteins of several other coronaviruses (such as human coronaviruses 229E, HKU1, MERS-CoV, NL63, OC43, and SARS-CoV-1), and found that these viruses' nsp16 proteins are not highly conserved. As a result, we have not further investigated whether MARCHF7 or UBR5 regulate the nsp16 proteins of these viruses.

      (16) Line 347: 2C of what virus?

      Thank you for the reviewer’s careful reading. We have made the necessary additions to address this point in line 357.

      (17) Line 890: "Scale bars, 25 mm". Should it be 25nm?

      Thank you for your feedback! I realized there was an error in the unit labeling, and I have corrected the relevant sections in line 904. I appreciate your careful reading.

      Reviewer #2 (Recommendations for the authors):

      (1) In Figure 6, the authors found that increasing amounts of nsp16 restored the replication of SARS-CoV-2 in the presence of MARCHF7 or UBR5. The authors better discuss the possibility that nsp16 may stimulate viral replication regardless of these E3 ligases, or provide evidence to further clarify this.

      Thank you for your thoughtful suggestion! Given the strong functionality of nsp16 itself, your consideration is very comprehensive. In Figure 6—figure supplement 2A–H, we conducted transfection experiments with E3 activity-deficient proteins and reintroduced nsp16. The results showed that, in the absence of active MARCHF7 or UBR5 antiviral function, overexpression of nsp16 did not promote viral replication, although the RNA levels of the M protein slightly increased. Therefore, in our experiments, excess nsp16 did not significantly stimulate viral replication.

      (2) In Figure 7, the in vivo data supports the function of both E3 ligases to reduce viral infectivity. Is it possible that tail vein injection of naked plasmid DNA may stimulate the innate immune system, e.g., induce IFN as a DNA vaccine, which may contribute to the inhibitory effect? The authors are suggested to discuss or address it.

      Upon reviewing the relevant literature, we found that the hydrodynamic gene delivery (HGD) method using naked DNA is both highly efficient and associated with a low risk of triggering immune responses or oncogenesis. Studies have shown that HGD only weakly activates host immunity (reference: 37111597), which is less of a concern compared to other gene delivery methods. Although some studies have reported strong immune responses following the injection of naked DNA (e.g., Otc cDNA) in human trials, it is noteworthy that no such responses were observed in 17 other participants. This suggests that the immune reactions observed in some cases may be due to individual variability or limitations in animal models, which may not fully translate to human trials.

      Based on these findings, we believe that the antiviral effects observed in our study are primarily attributable to the intrinsic properties and functions of the E3 ligases.  Furthermore, it has been reported that mice and non-human primates exhibit significantly greater resistance to innate immune activation compared to humans. This highlights the challenges in translating these findings into effective antiviral therapeutics and underscores the need for further research in this area. We have incorporated the requested discussion into the manuscript in lines 393-410.

      (3) The authors shall include some of the key data in supplementary figures in the main text, such as the study on UBR5 and MARCHF7 mediate broad-spectrum degradation of nsp16 variants and SARS-CoV-2 infection decreases UBR5 and MARCHF7 expression, which make it easier for readers to follow.

      Thank you for your valuable suggestion regarding the organization of our manuscript. In response to your feedback, we have moved the study on nsp16 variants to the Figure 6—figure supplement 3. Additionally, the data showing changes in UBR5 and MARCHF7 levels following viral infection have been added as supplementary data in Figure 6—figure supplement 4.

      (4) The diagrammatic sketches in Figures 1E, S1A and B, 7A, and 8 had low resolutions. Please change them to higher resolutions. Moreover, please state the licensing rights of these diagrammatic sketches.

      Thank you for your detailed review! In response to your comment, we have improved the resolution of Figures 1E, S1A and B, 7A, and 8. Additionally, we have specified the drawing tools and source websites in the figure legends (lines 794, 813, 999, and 1013). And we have obtained the necessary licenses for each diagram.

      Figure 1E: Created in BioRender. Li, Z. (2025) https://BioRender.com/h43f612

      Figure S1B: Created in BioRender. Li, Z. (2025) https://BioRender.com/b98t559

      Figure 7A: Created in BioRender. Li, Z. (2025) https://BioRender.com/e76g512

      Figure 8: Created in BioRender. Li, Z. (2025) https://BioRender.com/o84p897

      (5) The authors suggested that both UBR5 and MARCHF7 had a function in triggering the degradation of NSP16, however, the expression of UBR5 but not MARCHF7 was shown to be associated with the severity of clinical symptoms. Further, why did the host evolve 2 kinds of E3 ligases to adjust only 1 viral target? Please discuss them.

      Thank you for your insightful comments. We acknowledge that the limited number of patients with varying degrees of illness in our study could potentially mask some of the observed phenomena. Additionally, individual variability may also play a significant role, which highlights the challenges in translating findings from animal models to human trials.

      Regarding the presence of two E3 ligases targeting the same substrate, we view this as part of an evolutionary arms race between the host and the virus. Viruses evolve mechanisms to counteract the host’s antiviral responses, while the host, in turn, develops multiple pathways and strategies to combat viral infection. This dynamic may explain why multiple E3 ligases regulate the levels of the same factor, reflecting the host’s complex and redundant antiviral defense mechanisms. We have incorporated the requested discussion into the manuscript in lines 359-362.

      (6) Please standardize the symbol size of the bar charts in the same figure, just like in Figures 1D and 5.

      Thank you for your constructive suggestion. We have standardized the symbol sizes of the bar charts in the figure as per your recommendation, ensuring consistency across all panels.

      (7) The use of English could be improved.

      Thank you for your feedback regarding the language. We have carefully reviewed the manuscript and made revisions to improve the clarity and fluency of the English.

      Reviewer #3 (Recommendations for the authors):

      Major points:

      (1) In Figure 1: The expression level of NSP6, 10, 11, and 12 is weak. Include a higher exposure blot (right next to these blots marking as higher exposure) to show the expression of these plasmids. Here, the NSP12 plasmid has no expression, so it is difficult to conclude the effect of MG132 from this blot. It will be appropriate to show the molecular weight of each gene fragment since some of the plasmids have multiple bands. Verify the densitometric analysis, the NSP4 (+/- MG132) blot, and the densitometric analysis do not correlate. Figure 1B: It is recommended to include appropriate control (media only) for NH4Cl. The DMSO control serves well for the drugs, not for Ammonium Chloride. In Figure 1C, how did the authors arrive at the 15-hour time point? The correlation does not appear as the authors claim. Where is the 15-hour sampling time point for MG132 or CHX chase? The experimental approach to screen the E2/E3 Ub ligase is appreciated.

      Thank you for your valuable feedback! Regarding your questions, we have made the following revisions:

      On the expression of nsp6, nsp10, nsp11, and nsp12 in Figure 1:

      We have replaced the blots for nsp10, nsp11, and nsp12 with higher exposure blots. However, due to the strong expression of NSP14, we were unable to generate a higher exposure blot for nsp6. Based on the current exposure, it is clear that nsp6 is not regulated by the proteasome. Additionally, in the high-exposure blot for nsp12, we were able to observe its expression and found that this protein is weakly regulated by MG132. Following your suggestion, we have labeled the molecular weights of the proteins in the figure.

      On the densitometric analysis of nsp4 protein:

      We recalculated the densitometric analysis for nsp4 and found no issues. Although the band intensities do not show large changes, the relative fold changes appear more pronounced because we normalized the data using GAPDH as an internal control. We have added detailed description in the figure legend.

      On the NH4Cl control:

      In this experiment, ammonium chloride was dissolved in DMSO. We reviewed the solubility data and found that ammonium chloride has a solubility of 50 mg/ml in DMSO, which is sufficient to reach the concentrations used in our experiment. While the solubility is higher in water, we believe that DMSO is an appropriate solvent for this compound in our context.

      On the 15-hour time point in Figure 1C:

      Regarding the 15-hour time point mentioned in Figure 1C, we did not collect samples at that time. We performed semi-quantitative analysis of protein levels at different time points using ImageJ and estimated the half-life time point based on the half-life calculation formula. Thank you for your suggestion; we will clarify this in the figure legend.

      Once again, thank you for your thoughtful review and constructive suggestions. We have made the necessary revisions and improvements to the figures based on your feedback.

      (2) In Figure 2: I do not find a reason to include DMSO control in the siRNAs for E2/E3 Ub. Please justify why it is necessary. It is requested to include WB for the siRNA-treated samples. It is strongly recommended to show the WB data for siRNA-treated samples because you are showing siRNA treatment of MARCHF7 in shUBR5 cells and vice versa. However, if antibodies for corresponding targets are not available, qPCR can be shown in graphical representation in supplementary data indicating the siRNA target region and qPCR target. Show a graphical representation of domains/ deleted regions of MARCHF7 and UBR5.

      Thank you for your valuable feedback! We have addressed your concerns as follows:

      On the inclusion of the DMSO control group:

      The DMSO group was initially included as a control for the MG132-treated group. By comparing with the MG132 group, we aimed to observe whether nsp16 levels were restored by MG132 treatment. Additionally, in siRNA knockdown experiments, the DMSO group was included to compare nsp16 protein levels after knockdown with those in the NC group, as well as to assess differences in nsp16 restoration between MG132 treatment and factor knockdown. However, we acknowledge some issues in the control design. To address this, we have redesigned and conducted the experiments with improved controls (Figure 2A).

      On validating knockdown efficiency:

      We have included Western blot data for UBR5 and MARCHF7 knockdown efficiencies. For other factors where specific antibodies were unavailable, we followed your suggestion and provided graphical representations in the Appendix-figure S1, illustrating the siRNA target regions and qPCR target sites to confirm knockdown specificity and efficiency.

      (3) In Figure 4 A: Write details on how this IP was done. What was the transfection time of this plasmid? Is the transfection time different from that of NSP16 in Figure 1A which shows a significant degradation of NSP16? Please discuss this in detail. It is recommended that this IP be done in +/- MG132. Since you have used siRNA and performed an IP, It is recommended to repeat the IP (with +/- MG132) using the MARCHF7 and UBR5 plasmids

      Thank you for your detailed review and suggestions! We have addressed your concerns as follows:

      On the specific protocol for the co-IP in Figure 3A:

      The detailed protocol for the immunoprecipitation (IP) experiment is as follows: on day 1, cells were plated, and on day 2, we co-transfected nsp16 and Ub expression plasmids. After 32 hours of transfection, we treated the cells with MG132 for 16 hours, then harvested the cells for IP. We included MG132 treatment in all ubiquitination IP experiments because, without MG132, nsp16 would be degraded, preventing us from observing changes in ubiquitination levels. We apologize for not clearly labeling this in the figure, and we have made the necessary modifications.

      On the use of MG132 and NSP16 degradation:

      Following your suggestion, we have clarified the use of MG132 in the IP experiments, which differs from the degradation of nsp16 shown in Figure 1A. In Figure 1A, we show the degradation of nsp16 in the absence of MG132 treatment.

      On the overexpression of UBR5 and MARCHF7:

      The effect of overexpressing UBR5 or MARCHF7 on ubiquitination has been validated in Figure 4 supplement 2. In these experiments, we explored the effect of UBR5 activity domain inactivation on nsp16 ubiquitination, as well as the effect of MARCHF7 truncation on nsp16 ubiquitination modification. In these experiments, overexpression of the wild-type E3 ligases was also included, and the results yielded the same conclusions as those from the E3 knockdown experiments, thereby validating the robustness of our findings.

      (4) In Figure 4C: Appropriate controls are missing. The authors claim NSP16 is ubiquitinated and degraded by UBR5 and MARCHF7 via K27 and K48 chains. There is no NSP16 Only control. We cannot compare the NSP16 without an NSP16 transfection. I will suggest the authors repeat these individual controls in both the presence and absence of MG132.

      Thank you for your careful review and valuable suggestion! In response to your comment, we have redesigned the experiment and added a control group without nsp16 transfection. We have repeated the validation in the presence of MG132. Without MG132 treatment, nsp16 is degraded, leading to very low protein levels, making it difficult to observe the phenomenon. We have updated the figure accordingly and made the necessary adjustments based on your suggestion (Figure 3E-F).

      (5) In my opinion, the Figure 8 needs modification. It is requested to show the levels of strand-specific viral mRNA under UBR5 and MARCHF7 knock-down in +/- of MG312. This figure should also be supported by WB indicating the level of NSP16 (capping activity) and any of the viral proteins. This may validate that if the capping activity is lost, viral translation is affected and hence there is a reduction in virus titre. Alternatively, the figure can be modified by putting a sub-heading box over 7mGppA-RNA section and marking it as a future direction/ hypothesis.

      Thank you for your thorough and thoughtful review! Regarding the modification of Figure 8, we completely agree with your suggestion. Currently, examining the impact of viral RNA cap modification is technically challenging for us. Therefore, we have followed your advice and marked the investigation of how nsp16 degradation affects viral RNA cap structures as a future direction/hypothesis in the schematic of Figure 8. This revision helps provide direction for future experiments and enhances the clarity of the figure. Thank you for your thoughtful consideration and valuable suggestion!

      Minor points:

      (1) Figure 2A: Align NSP16 Blot to actin.

      Thank you for your constructive feedback! We have redesigned the experiment and included an MG132 treatment group in Figure 2A. Consequently, the figure has been revised comprehensively, and the nsp16 blot has been aligned with tubulin.

      (2) Figure 2C: It is recommended to properly align the lanes where the pLKO and shRNA labelling are overlapping.

      Thank you for your thoughtful suggestion! We have revised Figure 2C based on your recommendation to ensure that the pLKO and shRNA labeling no longer overlap. We sincerely apologize for any confusion this may have caused and appreciate your understanding and support.

      (3) Just a curious question, what happens if we silence both UBR5 and MARCHF7 and check for virus titre? This is an additional work, but if the authors do not agree, it is ok.

      Thank you for your valuable suggestion! Regarding your question about silencing both UBR5 and MARCHF7, we indeed attempted to generate knockout cell lines, but unfortunately, we were not successful at this stage. We plan to explore alternative methods to establish stable knockout cell lines in our future experiments. Meanwhile, as shown in Figure 5 supplement 1, we have performed experiments where both UBR5 and MARCHF7 were knocked down simultaneously, followed by infection with virus-like particles. The results indicate that dual knockdown further enhances viral replication. These findings may partially address your question. Thank you again for your insightful suggestion!

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary: 

      The authors investigated causal inference in the visual domain through a set of carefully designed experiments, and sound statistical analysis. They suggest the early visual system has a crucial contribution to computations supporting causal inference. 

      Strengths: 

      I believe the authors target an important problem (causal inference) with carefully chosen tools and methods. Their analysis rightly implies the specialization of visual routines for causal inference and the crucial contribution of early visual systems to perform this computation. I believe this is a novel contribution and their data and analysis are in the right direction. 

      Weaknesses: 

      In my humble opinion, a few aspects deserve more attention: 

      (1) Causal inference (or causal detection) in the brain should be quite fundamental and quite important for human cognition/perception. Thus, the underlying computation and neural substrate might not be limited to the visual system (I don't mean the authors did claim that). In fact, to the best of my knowledge, multisensory integration is one of the best-studied perceptual phenomena that has been conceptualized as a causal inference problem.

      Assuming the causal inference in those studies (Shams 2012; Shams and Beierholm 2022;

      Kording et al. 2007; Aller and Noppeney 2018; Cao et al. 2019) (and many more e.g., by Shams and colleagues), and the current study might share some attributes, one expects some findings in those domains are transferable (at least to some degree) here as well. Most importantly, underlying neural correlates that have been suggested based on animal studies and invasive recording that has been already studied, might be relevant here as well.

      Perhaps the most relevant one is the recent work from the Harris group on mice (Coen et al. 2021). I should emphasize, that I don't claim they are necessarily relevant, but they can be relevant given their common roots in the problem of causal inference in the brain. This is a critical topic that the authors may want to discuss in their manuscript. 

      We thank the reviewer. We addressed this point of the public review in our reply to the reviewer’s suggestions (and add it here again for convenience). The literature on the role of occipital, parietal and frontal brain areas in causal inference is also addressed in the response to point 3 of the public review.

      “We used visual adaptation to carve out a bottom-up visual routine for detecting causal interactions in form of launching events. However, we know that more complex behaviors of perceiving causal relations can result from integrating information across space (e.g., in causal capture; Scholl & Nakayama, 2002), across time (postdictive influence; Choi & Scholl, 2006), and across sensory modalities (Sekuler, Sekuler, & Lau, 1997). Bayesian causal inference has been particularly successful as a normative framework to account for multisensory integration (Körding et al., 2007; Shams & Beierholm, 2022). In that framework, the evidence for a common-cause hypothesis is competing with the evidence for an independent-causes hypothesis (Shams & Beierholm, 2022). The task in our experiments could be similarly formulated as two competing hypotheses for the second disc’s movement (i.e., the movement was caused by the first disc vs. the movement occurred autonomously). This framework also emphasizes the distributed nature of the neural implementation for solving such inferences, showing the contributions of parietal and frontal areas in addition to sensory processing (for review see Shams & Beierholm, 2022). Moreover, even visual adaptation to contrast in mouse primary visual cortex is influenced by top-down factors such as behavioral relevance— suggesting a complex implementation of the observed adaptation results (Keller et al. 2017). The present experiments, however, presented purely visual events that do not require an integration across processing domains. Thus, the outcome of our suggested visual routine can provide initial evidence from within the visual system for a causal relation in the environment that may then be integrated with signals from other domains (e.g., auditory signals). Determining exactly how the perception of causality relates to mechanisms of causal inference and the neural implementation thereof is an exciting avenue for future research. Note, however, that perceived causality can be distinguished from judged causality: Even when participants are aware that a third variable (e.g., a color change) is the best predictor of the movement of the second disc in launching events, they still perceive the first disc as causing the movement of the second disc (Schlottmann & Shanks, 1992).”

      (2) If I understood correctly, the authors are arguing pro a mere bottom-up contribution of early sensory areas for causal inference (for instance, when they wrote "the specialization of visual routines for the perception of causality at the level of individual motion directions raises the possibility that this function is located surprisingly early in the visual system *as opposed to a higher-level visual computation*."). Certainly, as the authors suggested, early sensory areas have a crucial contribution, however, it may not be limited to that. Recent studies progressively suggest perception as an active process that also weighs in strongly, the topdown cognitive contributions. For instance, the most simple cases of perception have been conceptualized along this line (Martin, Solms, and Sterzer 2021) and even some visual illusion (Safavi and Dayan 2022), and other extensions (Kay et al. 2023). Thus, I believe it would be helpful to extend the discussion on the top-down and cognitive contributions of causal inference (of course that can also be hinted at, based on recent developments). Even adaptation, which is central in this study can be influenced by top-down factors (Keller et al. 2017). I believe, based on other work of Rolfs and colleagues, this is also aligned with their overall perspective on vision.  

      Indeed, we assessed bottom-up contributions to the perception of a causal relation. We agree with the reviewer that in more complex situations, for instance, in the presence of contextual influences or additional auditory signals, the perception of a causal relation may not be limited to bottom-up vision. While we had acknowledged this in the original manuscript (see excerpts below), we now make it even more explicit:

      “[…] we know that more complex behaviors of perceiving causal relations can result from integrating information across space (e.g., in causal capture; Scholl & Nakayama, 2002), across time (postdictive influence; Choi & Scholl, 2006), and across sensory modalities (Sekuler, Sekuler, & Lau, 1997).”

      “[…] Neurophysiological studies support the view of distributed neural processing underlying sensory causal interactions with the visual system playing a major role.”

      “[…] Interestingly, single cell recordings in area F5 of the primate brain revealed that motor areas are contributing to the perception of causality (Caggiano et al., 2016; Rolfs, 2016), emphasizing the distributed nature of the computations underlying causal interactions. This finding also stresses that the detection, and the prediction, of causality is essential for processes outside sensory systems (e.g., for understanding other’s actions, for navigating, and for avoiding collisions). The neurophysiology subserving causal inference further extend the candidate cortical areas that might contibute to the detection of causal relations, emphasizing the role of the frontal cortex for the flexible integration of multisensory representations (Cao et al., 2019; Coen et al., 2023).”

      However, there is also ample evidence that the perception of a simple causal relation—as we studied it in our experiments—escapes top-down cognitive influences. The perception of causality in launching events is described as automatic and irresistible, meaning that participants have the spontaneous impression of a causal relation, and participants typically do not voluntarily switch between a causal and a noncausal percept. This irresistibility has led several authors to discuss a modular organization underlying the detection of such events (Michotte, 1963; Scholl & Tremoulet, 2000). This view is further supported by a study that experimentally manipulated the contingencies between the movement of the two discs (Schlottmann & Shanks, 1992). In one condition the authors created a launching event where the second disc’s movement was perfectly correlated with a color change, but only sometimes coincided with the first disc’s movement offset. Nevertheless, participants reported seeing that the first disc caused the movement of second disc (regardless of the stronger statistical relationship with the color change). However, when asked to make conscious causal judgments, participants were aware of the color change as the true cause of the second disc’s motion—therefore recognizing its more reliable correlation. This study strongly suggests that perceived and judged causality (i.e., cognitive causal inference) can be dissociated (Schlottmann & Shanks, 1992). We have added this reference in the revised manuscript. Overall, we argue that our study focused on a visual routine that could be implemented in a simple bottom-up fashion, but we acknowledge throughout the manuscript, that in a more complex situation (e.g., integrating information from other sensory domains) the implementation could be realized in a more distributed fashion including top-down influences as in multisensory integration. However, it is important to stress that these potential top-down influences would be automatic and should not be confused with voluntary cognitive influences.

      “Note, however, that perceived causality can be distinguished from judged causality (Schlottmann & Shanks, 1992). Even when participants are aware that a third variable (e.g., a color change) is the best predictor of the movement of the second disc in launching events, they still perceive the first disc as causing the movement of the second disc (Schlottmann & Shanks, 1992).”

      (3) The authors rightly implicate the neural substrate of causal inference in the early sensory system. Given their study is pure psychophysics, a more elaborate discussion based on other studies that used brain measurements is needed (in my opinion) to put into perspective this conclusion. In particular, as I mentioned in the first point, the authors mainly discuss the potential neural substrate of early vision, however much has been done about the role of higher-tier cortical areas in causal inference e.g., see (Cao et al. 2019; Coen et al. 2021). 

      In the revised manuscript, we addressed the limitations of a purely psychophysical approach and acknowledged alternative implementations in the Discussion section.

      “Note that, while the present findings demonstrate direction-selectivity, it remains unclear where exactly that visual routine is located. As pointed out, it is also possible that the visual routine is located higher up in the visual system (or distributed across multiple levels) and is only using a directional-selective population response as input.”

      Moreover, we cite also the two suggested papers when referring to the role of cortical areas in causal inference (Cao et al, 2019; Coen et al., 2023):

      “Neurophysiological studies support the view of distributed neural processing underlying sensory causal interactions with the visual system playing a major role. Imaging studies in particular revealed a network for the perception of causality that is also involved in action observation (Blakemore et al., 2003; Fonlupt, 2003; Fugelsang et al., 2005; Roser et al., 2005). The fact that visual adaptation of causality occurs in a retinotopic reference frame emphazises the role of retinotopically organized areas within that network (e.g., V5 and the superior temporal sulcus). Interestingly, single cell recordings in area F5 of the primate brain revealed that motor areas are contributing to the perception of causality (Caggiano et al., 2016; Rolfs, 2016), emphasizing the distributed nature of the computations underlying causal interactions, and also stressing that the detection, and the prediction, of causality is essential for processes outside purely sensory systems (e.g., for understanding other’s actions, for navigating, and for avoiding collisions). The neurophysiological underpinnings in causal inference further extend the candidate cortical areas that might contibute to the detection of causal relations, emphasizing the role of the frontal cortex for the flexible integration of multisensory representations (Cao et al., 2019; Coen et al., 2023).”

      There were many areas in this manuscript that I liked: clever questions, experimental design, and statistical analysis.

      Thank you so much.

      Reviewer #1 (Recommendations for the authors):

      I congratulate the authors again on their manuscript and hope they will find my review helpful. Most of my notes are suggestions to the authors, and I hope will help them to improve the manuscript. None are intended to devalue their (interesting) work. 

      We would like to thank the reviewer for their thoughtful and encouraging comments.

      In the following, I use pX-lY template to refer to a particular page number, say page number X (pX), and line number, say line number Y (lY). 

      Major concerns and suggestions 

      - I would suggest simplifying the abstract and significance statement or putting more background in it. It's hard (at least for me) to understand if one is not familiar with the task used in this study. 

      We followed the reviewer’s suggestion and added more background in the beginning of the abstract. 

      We made the following changes:

      “Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e., feature-invariant) or specialized (i.e., feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e., the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e., a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature-similarity of the adaptor and the test event. We show that negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speed. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.”

      - The authors highlight the importance of studying causal inference and understanding the underlying mechanisms by probing adaptation, however, their introduction justifying that is, in my humble opinion, quite short. Perhaps in the cited paper, this is discussed extensively, but I'd suggest providing some elaboration in the manuscript. Otherwise, the study would be very specific to certain visual phenomena, rather than general mechanisms.  

      We have carefully considered the reviewer’s set of comments and concerns (e.g., the role of top-down influences, the contributions of the frontal cortex, and illustration of the computational level). They all appear to share the theme that the reviewer looks at our study from the perspective of Bayesian inference. We conducted the current study in the tradition of classical phenomena in the field of the perception of causality (in the tradition of Michotte, 1963 and as reviewed in Scholl & Tremoulet, 2000) which aims to uncover the relevant visual parameters and rules for detecting causal relations in the visual domain. Indeed, we think that a causal inference perspective promises a lot of new insights into the mechanisms underlying the classical phenomena described for the perception of causality. In the revised manuscript, we discuss therefore causal inference and how it relates to the current study. We now emphasize that in our study, a) we used visual adaptation to reveal the bottom-up processes that allow for the detection of a causal interaction in the visual domain, b) that the perception of causality also integrates signals from other domains (which we do not study here), and c) that the neural substrates underlying the perception of causality might be best described by a distributed network. By discussing Bayesian causal inference, we point out promising avenues for future research that may bridge the fields of the perception of causality and Bayesian causal inference. However, we also emphasize that perceived causality and judged causality can be dissociated (Schlottmann & Shanks, 1992).

      We added the following discussion:

      “We used visual adaptation to carve out a bottom-up visual routine for detecting causal interactions in form of launching events. However, we know that more complex behaviors of perceiving causal relations can result from integrating information across space (e.g., in causal capture; Scholl & Nakayama, 2002), across time (postdictive influence; Choi & Scholl, 2006), and across sensory modalities (Sekuler, Sekuler, & Lau, 1997). Bayesian causal inference has been particularly successful as a normative framework to account for multisensory integration (Körding et al., 2007; Shams & Beierholm, 2022). In that framework, the evidence for a common-cause hypothesis is competing with the evidence for an independent-causes hypothesis (Shams & Beierholm, 2022). The task in our experiments could be similarly formulated as two competing hypotheses for the second disc’s movement (i.e., the movement was caused by the first disc vs. the second disc did not move). This framework also emphasizes the distributed nature of the neural implementation for solving such inferences, showing the contributions of parietal and frontal areas in addition to sensory processing (for review see Shams & Beierholm, 2022). Moreover, even visual adaptation to contrast in mouse primary visual cortex is influenced by top-down factors such as behavioral relevance— suggesting a complex implementation of the observed adaptation results (Keller et al. 2017). The present experiments, however, presented purely visual events that do not require an integration across processing domains. Thus, the outcome of our suggested visual routine can provide initial evidence from within the visual system for a causal relation in the environment that may then be integrated with signals from other domains (e.g., auditory signals). Determining exactly how the perception of causality relates to mechanisms of causal inference and the neural implementation thereof is an exciting avenue for future research. Note, however, that perceived causality can be distinguished from judged causality: Even when participants are aware that a third variable (e.g., a color change) is the best predictor of the movement of the second disc in launching events, they still perceive the first disc as causing the movement of the second disc (Schlottmann & Shanks, 1992).”

      - I'd suggest, at the outset, already set the context, that your study of causal inference in the brain is specifically targeting the visual domain, if you like, in the discussion connect it  better to general ideas about causal inference in the brain (like the works by Ladan Shams and colleagues). 

      We would like to thank the reviewer for this comment. We followed the reviewer’s suggestion and made clear from the beginning that this paper is about the detection of causal relations in the visual domain. In the revised manuscript we write:

      “Here, we will study the mechanisms underlying the computations of causal interactions in the visual domain by capitalizing on visual adaptation of causality (Kominsky & Scholl, 2020; Rolfs et al., 2013). Adaptation is a powerful behavioral tool for discovering and dissecting a visual mechanism (Kohn, 2007; Webster, 2015) that provides an intriguing testing ground for the perceptual roots of causality.”

      As described in our reply to the previous comment, we now also discussed the ideas about causal inference.

      - To better illustrate the implication of your study on the computational level, I'd suggest putting it in the context of recent approaches to perception (point 2 of my public review). I think this is also aligned with the comment of Reviewer#3 on your line 32 (recommendation for authors).  

      In the revised manuscript, we now discuss the role of top-down influences in causal inference when addressing point 2 of the reviewer’s public review.

      Minor concerns and suggestions 

      - On p2-l3, I'd suggest providing a few examples for generalized and or specialized visual routines (given the importance of the abstract). I only got it halfway through the introduction. 

      We thank the reviewer for highlighting the need to better introduce the concept of a visual routine. We have chosen the term visual routine to emphasize that we locate the part of the mechanism that is affected by the adaptation in our experiments in the visual system. At the same time, the concept leaves space with respect to the extent to which the mechanism further involves mid- and higher-level processes. In the revised manuscript, we now refer to Ullman (1987) who introduced the concept of a visual routine—the idea of a modular operation that sequentially processes spatial and feature information. Moreover, we refer to the concept of attentional sprites (Cavanagh, Labianca, & Thornton, 2001)—attention-based visual routines that allow the visual system to semi-independently handle complex visual tasks (e.g., identifying biological motion).

      We add the following footnote to the introduction:

      “We use the term visual routine here to highlight that our adaptation experiments can reveal a causality detection mechanism that resides in the visual system. At the same time, calling it a routine emphasizes similarities with a local, semi-independent operation (e.g., the recognition of familiar motion patterns; see also Ullman, 1987; Cavanagh, Labianca, & Thornton, 2001) that can engage mid- and higher-level processes (e.g., during causal capture, Scholl & Nakayama, 2002; or multisensory integration, Körding et al., 2007).”

      In the abstract we now write:

      “Here, we determined for visual interactions whether generalized (i.e., feature-invariant) or specialized (i.e., feature-selective) visual routines underlie the perception of causality.”

      - On p4-l31, I'd suggest mentioning the Matlab version. I have experienced differences across different versions of Matlab (minor but still ...). 

      We added the Matlab Version.

      - On p6-l46 OSF-link is missing (that contains data and code). 

      Thank you. We made the OSF repository public and added the link to the revised manuscript.

      We added the following information to the revised manuscript.

      “The data analysis code has been deposited at the Open Science Framework and is publicly available https://osf.io/x947m/.”

      Reviewer #2 (Public Review):

      This paper seeks to determine whether the human visual system's sensitivity to causal interactions is tuned to specific parameters of a causal launching event, using visual adaptation methods. The three parameters the authors investigate in this paper are the direction of motion in the event, the speed of the objects in the event, and the surface features or identity of the objects in the event (in particular, having two objects of different colors). The key method, visual adaptation to causal launching, has now been demonstrated by at least three separate groups and seems to be a robust phenomenon. Adaptation is a strong indicator of a visual process that is tuned to a specific feature of the environment, in this case launching interactions. Whereas other studies have focused on retinotopically specific adaptation (i.e., whether the adaptation effect is restricted to the same test location on the retina as the adaptation stream was presented to), this one focuses on feature specificity. 

      The first experiment replicates the adaptation effect for launching events as well as the lack of adaptation event for a minimally different non-causal 'slip' event. However, it also finds that the adaptation effect does not work for launching events that do not have a direction of motion more than 30 degrees from the direction of the test event. The interpretation is that the system that is being adapted is sensitive to the direction of this event, which is an interesting and somewhat puzzling result given the methods used in previous studies, which have used random directions of motion for both adaptation and test events. 

      The obvious interpretation would be that past studies have simply adapted to launching in every direction, but that in itself says something about the nature of this direction-specificity: it is not working through opposed detectors. For example, in something like the waterfall illusion adaptation effect, where extended exposure to downward motion leads to illusory upward motion on neutral-motion stimuli, the effect simply doesn't work if motion in two opposed directions is shown (i.e., you don't see illusory motion in both directions, you just see nothing). The fact that adaptation to launching in multiple directions doesn't seem to cancel out the adaptation effect in past work raises interesting questions about how directionality is being coded in the underlying process. 

      We would like to thank the reviewer for that thoughtful comment. We added the described implication to the manuscript:

      “While the present study demonstrates direction-selectivity for the detection of launches, previous adaptation protocols demonstrated successful adaptation using adaptors with random motion direction (Rolfs et al., 2013; Kominsky & Scholl, 2020). These results therefore suggest independent direction-specific routines, in which adaptation to launches in one direction does not counteract an adaptation to launches in the opposite direction (as for example in opponent color coding).”

      In addition, one limitation of the current method is that it's not clear whether the motion direction-specificity is also itself retinotopically-specific, that is, if one retinotopic location were adapted to launching in one direction and a different retinotopic location adapted to launching in the opposite direction, would each test location show the adaptation effect only for events in the direction presented at that location? 

      This is an interesting idea! Because previous adaptation studies consistently showed retinotopic adaptation of causality, we would not expect to find transfer of directional tuning for launches to other locations. We agree that the suggested experiment on testing the reference frame of directional specificity constitutes an interesting future test of our findings.

      The second experiment tests whether the adaptation effect is similarly sensitive to differences in speed. The short answer is no; adaptation events at one speed affect test events at another. Furthermore, this is not surprising given that Kominsky & Scholl (2020) showed adaptation transfer between events with differences in speeds of the individual objects in the event (whereas all events in this experiment used symmetrical speeds). This experiment is still novel and it establishes that the speed-insensitivity of these adaptation effects is fairly general, but I would certainly have been surprised if it had turned out any other way. 

      We thank the reviewer for highlighting the link to an experiment reported in Kominsky & Scholl (2020). We report the finding of that experiment now in the revised manuscript.

      We added the following paragraph in the discussion:

      “For instance, we demonstrated a transfer of adaptation across speed for symmetrical speed ratios. This result complements a previous finding that reported that the adaptation to triggering events (with an asymmetric speed ratio of 1:3) resulted in significant retinotopic adaptation of ambiguous (launching) test events of different speed ratios (i.e., test events with a speed ratio of 1:1 and of 1:3; Kominsky & Scholl, 2020).”

      The third experiment tests color (as a marker of object identity), and pits it against motion direction. The results demonstrate that adaptation to red-launching-green generates an adaptation effect for green-launching-red, provided they are moving in roughly the same direction, which provides a nice internal replication of Experiment 1 in addition to showing that the adaptation effect is not sensitive to object identity. This result forms an interesting contrast with the infant causal perception literature. Multiple papers (starting with Leslie & Keeble, 1987) have found that 6-8-month-old infants are sensitive to reversals in causal roles exactly like the ones used in this experiment. The success of adaptation transfer suggests, very clearly, that this sensitivity is not based only on perceptual processing, or at least not on the same processing that we access with this adaptation procedure. It implies that infants may be going beyond the underlying perceptual processes and inferring genuine causal content. This is also not the first time the adaptation paradigm has diverged from infant findings: Kominsky & Scholl (2020) found a divergence with the object speed differences as well, as infants categorize these events based on whether the speed ratio (agent:patient) is physically plausible (Kominsky et al., 2017), while the adaptation effect transfers from physically implausible events to physically plausible ones. This only goes to show that these adaptation effects don't exhaustively capture the mechanisms of early-emerging causal event representation. 

      We would like to thank the reviewer for highlighting the similarities (and differences) to the seminal study by Leslie and Keeble (1987). We included a discussion with respect to that paper in the revised manuscript. Indeed, that study showed a recovery from habituation to launches after reversal of the launching events. In their study, the reversal condition resulted in a change of two aspects, 1) motion direction and 2) a change of what color is linked to either cause (i.e., agent) or effect (i.e, patient). Our study, based on visual adaptation in adults, suggests that switching the two colors is not necessary for a recovery from the habituation, provided the motion direction is reversed. Importantly, the reversal of the motion direction only affected the perception of causality after adapting to launches (but not to slip events), which is consistent with Leslie and Keeble’s (1987) finding that the effect of a reversal is contingent on habituation/adaptation to a causal relationship (and is not observed for non-causal delayed launches). Based on our findings, we predict that switching colors without changing the event’s motion direction would not result in a recovery from habituation. Obviously, for infants, color may play a more important role for establishing an object identity than it does for adults, which could explain potential differences. We also agree with the reviewer’s point that the adaptation protocol might tap into different mechanisms than revealed by habituation studies in infants (e.g, Kominsky et al., 2017 vs. Kominsky & Scholl, 2020). 

      We revised the manuscript accordingly when discussing the role of direction selectivity in our study:

      “Habituation studies in six-months-old infants also demonstrated that the reversal of a launch resulted in a recovery from habituation to launches (while a non-causal control condition of delayed-launches did not; Leslie & Keeble, 1987). In their study, the reversal of motion direction was accompanied by a reversal of the color assignment to the cause-effectrelationship. In contrast, our findings suggest, that in adults color does not play a major role in the detection of a launch. Future studies should further delineate similarities and differences obtained from adaptation studies in adults and habituation studies in children (e.g., Kominsky et al., 2017; Kominsky & Scholl, 2020).”

      One overarching point about the analyses to take into consideration: The authors use a Bayesian psychometric curve-fitting approach to estimate a point of subjective equality (PSE) in different blocks for each individual participant based on a model with strong priors about the shape of the function and its asymptotic endpoints, and this PSE is the primary DV across all of the studies. As discussed in Kominsky & Scholl (2020), this approach has certain limitations, notably that it can generate nonsensical PSEs when confronted with relatively extreme response patterns. The authors mentioned that this happened once in Experiment 3 and that a participant had to be replaced. An alternate approach is simply to measure the proportion of 'pass' reports overall to determine if there is an adaptation effect. I don't think this alternate analysis strategy would greatly change the results of this particular experiment, but it is robust against this kind of self-selection for effects that fit in the bounds specified by the model, and may therefore be worth including in a supplemental section or as part of the repository to better capture the individual variability in this effect. 

      We largely agree with these points. Indeed, we adopted the non-parametric analysis for a recent series of experiments in which the psychometric curves were more variable (Ohl & Rolfs, Vision Sciences Society Meeting 2024). In the present study, however, the model fits were very convincing. In Figures S1, S2 and S3 we show the model fits for each individual observer and condition on top of the mean proportion of launch reports. The inferential statistics based on the points of subjective equality, therefore, allowed us to report our findings very concisely.

      In general, this paper adds further evidence for something like a 'launching' detector in the visual system, but beyond that, it specifies some interesting questions for future work about how exactly such a detector might function. 

      We thank the reviewer for this positive overall assessment.

      Reviewer #2 (Recommendations for the authors):

      Generally, the paper is great. The questions I raised in the public review don't need to be answered at this time, but they're exciting directions for future work. 

      We would like to thank the reviewer for the encouraging comments and thoughtful ideas on how to improve the manuscript.

      I would have liked to see a little more description of the model parameters in the text of the paper itself just so readers know what assumptions are going into the PSE estimation. 

      We followed the reviewer’s suggestion and added more information regarding the parameter space (i.e., ranges of possible parameters of the logistic model) that we used for obtaining the model fits. 

      Specifically, we added the following information in the manuscript:

      “For model fitting, we constrained the range of possible estimates for each parameter of the logistic model. The lower asymptote for the proportion of reported launches was constrained to be in the range 0–0.75, and the upper asymptote in the range 0.25–1. The intercept of the logistic model was constrained to be in the range 1–15, and the slope was constrained to be in the range –20 to –1.”

      The models provided very good fits as can be appreciated by the fits per individual and experimental condition which we provide in response to the public comments. Please note, that all data and analysis scripts are available at the Open Science Framework (https://osf.io/x947m/).

      I also have a recommendation about Figure 1b: Color-code "Feature A", "Feature B", and "Feature C" and match those colors with the object identity/speed/direction text. I get what the figure is trying to convey but to a naive reader there's a lot going on and it's hard to interpret. 

      We followed the reviewer’s suggestion and revised the visualization accordingly.

      If you have space, figures showing the adaptation and corresponding test events for each experimental manipulation would also be great, particularly since the naming scheme of the conditions is (necessarily) not entirely consistent across experiments. It would be a lot of little figures, I know, but to people who haven't spent as long staring at these displays as we have, they're hard to envision based on description alone. 

      We followed the reviewer’s recommendation and added a visualization of the adaptor and the test events for the different experiments in Figure 2.

      Reviewer #3 (Public Review):

      We thank the reviewer for their thoughtful comments, which we carefully addressed to improve the revised manuscript. 

      Summary: 

      This paper presents evidence from three behavioral experiments that causal impressions of "launching events", in which one object is perceived to cause another object to move, depending on motion direction-selective processing. Specifically, the work uses an adaptation paradigm (Rolfs et al., 2013), presenting repetitive patterns of events matching certain features to a single retinal location, then measuring subsequent perceptual reports of a test display in which the degree of overlap between two discs was varied, and participants could respond "launch" or "pass". The three experiments report results of adapting to motion direction, motion speed, and "object identity", and examine how the psychometric curves for causal reports shift in these conditions depending on the similarity of the adapter and test. While causality reports in the test display were selective for motion direction (Experiment 1), they were not selective for adapter-test speed differences (Experiment 2) nor for changes in object identity induced via color swap (Experiment 3). These results support the notion that causal perception is computed (in part) at relatively early stages of sensory processing, possibly even independently of or prior to computations of object identity. 

      Strengths: 

      The setup of the research question and hypotheses is exceptional. The experiments are carefully performed (appropriate equipment, and careful control of eye movements). The slip adaptor is a really nice control condition and effectively mitigates the need to control motion direction with a drifting grating or similar. Participants were measured with sufficient precision, and a power curve analysis was conducted to determine the sample size. Data analysis and statistical quantification are appropriate. Data and analysis code are shared on publication, in keeping with open science principles. The paper is concise and well-written. 

      Weaknesses: 

      The biggest uncertainty I have in interpreting the results is the relationship between the task and the assumption that the results tell us about causality impressions. The experimental logic assumes that "pass" reports are always non-causal impressions and "launch" reports are always causal impressions. This logic is inherited from Rolfs et al (2013) and Kominsky & Scholl (2020), who assert rather than measure this. However, other evidence suggests that this assumption might not be solid (Bechlivanidis et al., 2019). Specifically, "[our experiments] reveal strong causal impressions upon first encounter with collision-like sequences that the literature typically labels "non-causal"" (Bechlivanidis et al., 2019) -- including a condition that is similar to the current "pass". It is therefore possible that participants' "pass" reports could also involve causal experiences. 

      We agree with the reviewer that our study assumes that the launch-pass dichotomy can be mapped onto a dimension of causal to non-causal impressions. Please note that the choice for this launch-pass task format was intentional. We consider it an advantage that subjects do not have to report causal vs non-causal impressions directly, as it allows us to avoid the oftencriticized decision biases that come with asking participants about their causal impression (Joynson, 1971; for a discussion see Choi & Scholl, 2006). This comes obviously at the cost that participants did not directly report their causal impression in our experiments. There is however evidence that increasing overlap between the discs monotonically decreases the causal impression when directly asking participants to report their causal impression (Scholl & Nakayama, 2004). We believe, therefore, that the assumption of mapping between launchesto-passes and causal-to-noncausal is well-justified. At the same time, the expressed concern emphasizes the need to develop further, possibly implicit measure for causal impressions (see Völter & Huber, 2021).

      However, as pointed out by the reviewer, a recent paper demonstrated that on first encounter participants can have impressions in response to a pass event that are different from clearly non-causal impressions (Bechlivanidis et al., 2019). As demonstrated in the same paper, displaying a canonical launch decreased the impression of causality when seeing pass events in subsequent trials. In our study, participants completed an entire training session before running the main experiments. It is therefore reasonable to expect that participants observed passes as non-causal events given the presence of clear causal references. Nevertheless, we now acknowledge this concern directly in the revised manuscript.

      We added the following paragraph to the discussion:

      “In our study, we assessed causal perception by asking observers to report whether they observed a launch or a pass in events of varying ambiguity. This method assumes that launches and passes can be mapped onto a dimension that ranges from causal to non-causal impressions. It has been questioned whether pass events are a natural representative of noncausal events: Observers often report high impressions of causality upon first exposure to pass events, which then decreased after seeing a canonical launch (Bechlivanidis, Schlottmann, & Lagnado, 2019). In our study, therefore, participants completed a separate session that included canonical launches before starting the main experiment.”

      Furthermore, since the only report options are "launch" or "pass", it is also possible that "launch" reports are not indications of "I experienced a causal event" but rather "I did not experience a pass event". It seems possible to me that different adaptation transfer effects (e.g. selectivity to motion direction, speed, or color-swapping) change the way that participants interpret the task, or the uncertainty of their impression. For example, it could be that adaptation increases the likelihood of experiencing a "pass" event in a direction-selective manner, without changing causal impressions. Increases of "pass" impressions (or at least, uncertainty around what was experienced) would produce a leftward shift in the PSE as reported in Experiment 1, but this does not necessarily mean that experiences of causal events changed. Thus, changes in the PSEs between the conditions in the different experiments may not directly reflect changes in causal impressions. I would like the authors to clarify the extent to which these concerns call their conclusions into question. 

      Indeed, PSE shifts are subject to cognitive influences and can even be voluntarily shifted (Morgan et al., 2012). We believe that decision biases (e.g., reporting the presence of launch before adaptation vs. reporting the absence of a pass after the adaptation) are unlikely to explain the high specificity of aftereffects observed in the current study. While such aftereffects are very typical of visual processing (Webster, 2015), it is unclear how a mechanism that increase the likelihood of perceiving a pass could account for the retinotopy of adaptation to launches (Rolfs et al., 2013) or the recently reported selective transfer of adaptation for only some causal categories (Kominsky et al., 2020). The latter authors revealed a transfer of adaptation from triggering to launching, but not from entraining events to launching. Based on these arguments, we decided to not include this point in the revised manuscript.

      Leaving these concerns aside, I am also left wondering about the functional significance of these specialised mechanisms. Why would direction matter but speed and object identity not? Surely object identity, in particular, should be relevant to real-world interpretations and inputs of these visual routines? Is color simply too weak an identity? 

      We agree that it would be beneficial to have mechanisms in place that are specific for certain object identities. Overall, our results fit very well to established claims that only spatiotemporal parameters mediate the perception of causality (Michotte, 1963; Leslie, 1984; Scholl & Tremoulet, 2000). We have now explicitly listed these references again in the revised manuscript. It is important to note, that an understanding of a causal relation could suffice to track identity information based purely on spatiotemporal contingencies, neglecting distinguishing surface features.

      We revised the manuscript and state:

      “Our findings therefore provide additional support for the claim that an event’s spatiotemporal parameters mediate the perception of causality (Michotte, 1963; Leslie, 1984; Scholl & Tremoulet, 2000).”

      Moreover, we think our findings of directional selectivity have functional relevance. First, direction-selective detection of collisions allows for an adaptation that occurs separately for each direction. That means that the visual system can calibrate these visual routines for detecting causal interactions in response to real-world statistics that reflect differences in directions. For instance, due to gravity, objects will simply fall to the ground. Causal relation such as launches are likely to be more frequent in horizontal directions, along a stable ground. Second, we think that causal visual events are action-relevant, that is, acting on (potentially) causal events promises an advantage (e.g., avoiding a collision, or quickly catching an object that has been pushed away). The faster we can detect such causal interactions, the faster we can react to them. Direction-selective motion signals are available in the first stages of visual processing. Visual routines that are based on these direction-selective motion signals promise to enable such fast computations. Please note, however, that while our present findings demonstrate direction-selectivity, they do not pinpoint where exactly that visual routine is located. It is quite possible that the visual routine is located higher up in the visual system, relying on a direction-selective population response as input.

      We added these points to the discussion of the functional relevance: 

      “We suggest that at least two functional benefits result from a specialized visual routine for detecting causality. First, a direction-selective detection of launches allows adaptation to occur separately for each direction. That means that the visual system can automatically calibrate the sensitivity of these visual routines in response to real-world statistics. For instance, while falling objects drop vertically towards the ground, causal relations such as launches are common in horizontal directions moving along a stable ground. Second, we think that causal visual events are action-relevant, and the faster we can detect such causal interactions, the faster we can react to them. Direction-selective motion signals are available very early on in the visual system. Visual routines that are based on these direction-selective motion signals may enable faster detection. While our present findings demonstrate direction-selectivity, they do not pinpoint where exactly that visual routine is located. It is possible that the visual routine is located higher up in the visual system (or distributed across multiple levels), relying on a direction-selective population response as input.”

      Reviewer #3 (Recommendations for the authors):

      - The concept of "visual routines" is used without introduction; for a general-interest audience it might be good to include a definition and reference(s) (e.g. Ullman.). 

      Thank you very much for highlighting that point. We have chosen the term visual routine to emphasize that we locate the part of the mechanism that is affected by the adaptation in our experiments in the visual system, but at the same time it leaves space regarding the extent to which the mechanism further involves mid- and higher-level processes. The term thus has a clear reference to a visual routine by Ullman (1987). We have now addressed what we mean by visual routine, and we also included the reference in the revised manuscript.

      We add the following footnote to the introduction:

      “We use the term visual routine here to highlight that our adaptation experiments can reveal a causality detection mechanism that resides in the visual system. At the same time, calling it a routine emphasizes similarities with a local, semi-independent operation (e.g., the recognition of familiar motion patterns; see also Ullman, 1987; Cavanagh, Labianca, & Thornton, 2001) that can engage mid- and higher-level processes (e.g., during causal capture, Scholl & Nakayama, 2002; or multisensory integration, Körding et al., 2007).”

      - I would appreciate slightly more description of the phenomenology of the WW adaptors: is this Michotte's "entraining" event? Does it look like one disc shunts the other?  

      The stimulus differs from Michotte's entrainment event in both spatiotemporal parameters and phenomenology. We added videos for the launch, pass and slip events as Supplementary Material.

      Moreover, we described the slip event in the methods section:

      “In two additional sessions, we presented slip events as adaptors to control that the adaptation was specific for the impression of causality in the launching events. Slip events are designed to match the launching events in as many physical properties as possible while producing a very different, non-causal phenomenology. In slip events, the first peripheral disc also moves towards a stationary disc. In contrast to launching events, however, the first disc passes the stationary disc and stops only when it is adjacent to the opposite edge of the stationary disc. While slip events do not elicit a causal impression, they have the same number of objects and motion onsets, the same motion direction and speed, as well as the same spatial area of the event as launches.”

      In the revised manuscript, we added also more information on the slip event in the beginning of the results section. Importantly, the stimulus typically produces the impression of two independent movements and thus serves as a non-causal control condition in our study. Only anecdotally, some observers (not involved in this study) who saw the stimulus spontaneously described their phenomenology of seeing a slip event as a double step or a discus throw.

      We added the following description to the results section:

      “Moreover, we compared the visual adaptation to launches to a (non-causal) control condition in which we presented slip events as adaptor. In a slip event, the initially moving disc passes completely over the stationary disc, stops immediately on the other side, and then the initially stationary disc begins to move in the same direction without delay. Thus, the two movements are presented consecutively without a temporal gap. This stimulus typically produces the impression of two independent (non-causal) movements.”

      - In general more illustrations of the different conditions (similar to Figure 1c but for the different experimental conditions and adaptors) might be helpful for skim readers.  

      We followed the reviewer’s recommendation and added a visualization of the adaptor and the test events for the different experiments in Figure 2.

      - Were the luminances of the red and green balls in experiment 3 matched? Were participants checked for color anomalous vision?  

      Yes, we checked for color anomalous vision using the color test Tafeln zur Prüfung des Farbensinnes/Farbensehens (Kuchenbecker & Broschmann, 2016). We added that information to the manuscript. The red and green discs were not matched for luminance. We measured the luminance after the experiment (21 cd/m<sup>2</sup> for the green disc and 6 cd/m<sup>2</sup> for the red disc). Please note, that the differences in luminance should not pose a problem for the interpretation of the results, as we see a transfer of the adaptation across the two different colors.

      We added the following information to the manuscript:

      “The red and green discs were not matched for luminance. Measurements obtained after the experiments yielded a luminance of 21 cd/m<sup>2</sup> for the green disc and 6 cd/m<sup>2</sup> for the red disc.”

      “All observers had normal or corrected-to-normal vision and color vision as assessed using the color test Tafeln zur Prüfung des Farbensinnes/Farbensehens (Kuchenbecker & Broschmann, 2016).”

      - Relationship of this work to the paper by Arnold et al., (2015). That paper suggested that some effects of adaptation of launching events could be explained by an adaptation of object shape, not by causality per se. It is superficially difficult to see how one could explain the present results from the perspective of object "squishiness" -- why would this be direction selective? In other words, the present results taken at face value call the "squishiness" explanation into question. The authors could consider an explanation to reconcile these findings in their discussion. 

      Indeed, the paper by Arnold and colleagues (2014) suggested that a contact-launch adaptor could lead to a squishiness aftereffect—arguing that the object elasticity changed in response to the adaptation.  Importantly, the same study found an object-centered adaptation effect rather than a retinotopic adaptation effect. However, the retinotopic nature of the negative aftereffect as used in our study has been repeatedly replicated (for instance Kominsky & Scholl, 2020). Thus, the divergent results of Arnold and colleagues may have resulted from differences in the task (i.e., observers had to judge whether they perceived a soft vs. hard bounce), or the stimuli (i.e., bounces of a disc and a wedge, and the discs moving on a circular trajectory). It would be important to replicate these results first and then determine whether their squishiness effect would be direction-selective as well. We now acknowledge the study by Arnold and colleagues in the discussion:

      “The adaptation of causality is spatially specific to the retinotopic coordinates of the adapting stimulus (Kominsky & Scholl, 2020; Rolfs et al., 2013; for an object-centered elasiticity aftereffect using a related stimulus on a circular motion path, see Arnold et al., 2015), suggesting that the detection of causal interactions is implemented locally in visual space.”

      - Line 32: "showing that a specialized visual routine for launching events exists even within separate motion direction channels". This doesn't necessarily mean the routine is within each separate direction channel, only that the output of the mechanism depends on the population response over motion direction. The critical motion computation could be quite high level -- e.g. global pattern motion in MST. Please clarify the claim. 

      We agree with the reviewer, that it is also possible that critical parts of the visual routine could simply use the aggregated population response over motion direction at higher-levels of processing. We acknowledge this possibility in the discussion of the functional relevance of the proposed mechanism and when suggesting that a distributed brain network may contribute to the perception of causality.

      We would like to highlight the following two revised paragraphs.

      “[…] Second, we think that causal visual events are action-relevant, and the faster we can detect such causal interactions, the faster we can react to them. Direction-selective motion signals are available very early on in the visual system. Visual routines that are based on these direction-selective motion signals may enable faster detection. While our present findings demonstrate direction-selectivity, they do not pinpoint where exactly that visual routine is located. It is possible that the visual routine is located higher up in the visual system (or distributed across multiple levels), relying on a direction-selective population response as input.”

      Moreover, when discussing the neurophysiological literature we write:

      “Interestingly, single cell recordings in area F5 of the primate brain revealed that motor areas are contributing to the perception of causality (Caggiano et al., 2016; Rolfs, 2016), emphasizing the distributed nature of the computations underlying causal interactions. This finding also stresses that the detection, and the prediction, of causality is essential for processes outside purely sensory systems (e.g., for understanding other’s actions, for navigating, and for avoiding collisions).”

      -  p. 10 line 30: typo "particual".  

      Done.

      -  p. 10 line 37: "This findings rules out (...)" should be singular "This finding rules out (...)". 

      Done.

      -  Spelling error throughout: "underly" should be "underlie". 

      Done.

      -  p.11 line 29: "emerges fast and automatic" should be "automatically". 

      Done.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript focuses on the olfactory system of Pieris brassicae larvae and the importance of olfactory information in their interactions with the host plant Brassica oleracea and the major parasitic wasp Cotesia glomerata. The authors used CRISPR/Cas9 to knockout odorant receptor co-receptors (Orco), and conducted a comparative study on the behavior and olfactory system of the mutant and wild-type larvae. The study found that Orco-expressing olfactory sensory neurons in antennae and maxillary palps of Orco knockout (KO) larvae disappeared, and the number of glomeruli in the brain decreased, which impairs the olfactory detection and primary processing in the brain. Orco KO caterpillars show weight loss and loss of preference for optimal food plants; KO larvae also lost weight when attacked by parasitoids with the ovipositor removed, and mortality increased when attacked by untreated parasitoids. On this basis, the authors further studied the responses of caterpillars to volatiles from plants attacked by the larvae of the same species and volatiles from plants on which the caterpillars were themselves attacked by parasitic wasps. Lack of OR-mediated olfactory inputs prevents caterpillars from finding suitable food sources and from choosing spaces free of enemies.

      Strengths:

      The findings help to understand the important role of olfaction in caterpillar feeding and predator avoidance, highlighting the importance of odorant receptor genes in shaping ecological interactions.

      Weaknesses:

      There are the following major concerns:

      (1) Possible non-targeted effects of Orco knockout using CRISPR/Cas9 should be analyzed and evaluated in Materials and Methods and Results.

      Thank you for your suggestion. In the Materials and Methods, we mention how we selected the target region and evaluated potential off-target sites by Exonerate and CHOPCHOP. Neither of these methods found potential off-target sites with a more-than-17-nt alignment identity. Therefore, we assumed no off-target effect in our Orco KO. Furthermore, we did not find any developmental differences between WT and KO caterpillars when these were reared on leaf discs in Petri dishes (Fig S4). We will further highlight this information on the off-target evaluation in the Results section of our revised manuscript.

      (2) Figure 1E: Only one olfactory receptor neuron was marked in WT. There are at least three olfactory sensilla at the top of the maxillary palp. Therefore, to explain the loss of Orco-expressing neurons in the mutant (Figure 1F), a more rigorous explanation of the photo is required.

      Thank you for pointing this out. The figure shows only a qualitative comparison between WT and KO and we did not aim to determine the total number of Orco positive neurons in the maxillary palps or antennae of WT and KO caterpillars, but please see our previous work for the neuron numbers in the caterpillar antennae (Wang et al., 2023). We did indeed find more than one neuron in the maxillary palps, but as these were in very different image planes it was not possible to visualize them together. However, we will add a few sentences in the Results and Discussion section to explain the results of the maxillary palp Orco staining.

      (3) In Figure 1G, H, the four glomeruli are circled by dotted lines: their corresponding relationship between the two figures needs to be further clarified.

      Thank you for pointing this out. The four glomeruli in Figure 1G and 1H are not strictly corresponding. We circled these glomeruli to highlight them, as they are the best visualized and clearly shown in this view. In this study, we only counted the number of glomeruli in both WT and KO, however, we did not clarify which glomeruli are missing in the KO caterpillar brain. We will further explain this in the figure legend.

      (4) Line 130: Since the main topic in this study is the olfactory system of larvae, the experimental results of this part are all about antennal electrophysiological responses, mating frequency, and egg production of female and male adults of wild type and Orco KO mutant, it may be considered to include this part in the supplementary files. It is better to include some data about the olfactory responses of larvae.

      Thank you for your suggestion. We do agree with your suggestion, and we will consider moving this part to the supplementary information. Regarding larval olfactory response, we unfortunately failed to record any spikes using single sensillum recordings due to the difficult nature of the preparation; however, we do believe that this would be an interesting avenue for further research.

      (5) Line 166: The sentences in the text are about the choice test between " healthy plant vs. infested plant", while in Fig 3C, it is "infested plant vs. no plant". The content in the text does not match the figure.

      Thank you for pointing this out. The sentence is “We compared the behaviors of both WT and Orco KO caterpillars in response to clean air, a healthy plant and a caterpillar-infested plant”. We tested these three stimuli in two comparisons: healthy plant vs no plant, infested plant vs no plant. The two comparisons are shown in Figure 3C separately. We will aim to describe this more clearly in the revised version of the manuscript.

      (6) Lines 174-178: Figure 3A showed that the body weight of Orco KO larvae in the absence of parasitic wasps also decreased compared with that of WT. Therefore, in the experiments of Figure 3A and E, the difference in the body weight of Orco KO larvae in the presence or absence of parasitic wasps without ovipositors should also be compared. The current data cannot determine the reduced weight of KO mutant is due to the Orco knockout or the presence of parasitic wasps.

      Thank you for pointing this out. We did not make a comparison between the data of Figures 3A and 3E since the two experiments were not conducted at the same time due to the limited space in our BioSafety Ⅲ greenhouse. We do agree that the weight decrease in Figure 3E is partly due to the reduced caterpillar growth shown in Figure 3A. However, we are confident that the additional decrease in caterpillar weight shown in Figure 3E is mainly driven by the presence of disarmed parasitoids. To be specific, the average weight in Figure 3A is 0.4544 g for WT and 0.4230 g for KO, KO weight is 93.1% of WT caterpillars. While in Figure 3E, the average weight is 0.4273 g for WT and 0.3637 g for KO, KO weight is 85.1% of WT caterpillars. We will discuss this interaction between caterpillar growth and the effect of the parasitoid attacks more extensively in the revised version of the manuscript.

      (7) Lines 179-181: Figure 3F shows that the survival rate of larvae of Orco KO mutant decreased in the presence of parasitic wasps, and the difference in survival rate of larvae of WT and Orco KO mutant in the absence of parasitic wasps should also be compared. The current data cannot determine whether the reduced survival of the KO mutant is due to the Orco knockout or the presence of parasitic wasps.

      We are happy that you highlight this point. When conducting these experiments, we selected groups of caterpillars and carefully placed them on a leaf with minimal disturbance of the caterpillars, which minimized hurting and mortality. We did test the survival of caterpillars in the absence of parasitoid wasps from the experiment presented in Figure 3A, although this was missing from the manuscript. There is no significant difference in the survival rate of caterpillars between the two genotypes in the absence of wasps (average mortality WT = 8.8 %, average mortality KO = 2.9 %; P = 0.088, Wilcoxon test), so the decreased survival rate is most likely due to the attack of the wasps. We will add this information to the revised version of the manuscript.

      (8) In Figure 4B, why do the compounds tested have no volatiles derived from plants? Cruciferous plants have the well-known mustard bomb. In the behavioral experiments, the larvae responses to ITC compounds were not included, which is suggested to be explained in the discussion section.

      Thank you for the suggestion. We assume you mean Figure 4D/4E instead of Figure 4B. In Figure 4B, many of the identified chemical compounds are essentially plant volatiles, especially those from caterpillar frass and caterpillar spit. In Figure 4D/4E, most of the tested chemicals are derived from plants. We did include several ITCs in the butterfly EAG tests shown in figure 2A/B, however because the butterfly antennae did not respond strongly to ITCs, we did not include ITCs in the subsequent larval behavioural tests. Instead, the tested chemicals in Figure 4D/4E either elicit high EAG responses of butterflies or have been identified as significant by VIP scores in the chemical analyses. We will add this explanation to the revised version of our manuscript.

      (9) The custom-made setup and the relevant behavioral experiments in Figure 4C need to be described in detail (Line 545).

      We will add more detailed descriptions for the setup and method in the Materials and Methods.

      (10) Materials and Methods Line 448: 10 μL paraffin oil should be used for negative control.

      Thank you for pointing this out. We used both clean filter paper and clean filter paper with 10 μL paraffin oil as negative controls, but we did not find a significant difference between the two controls. Therefore, in the EAG results of Figure 2A/2B, we presented paraffin oil as one of the tested chemicals. We will re-run our statistical tests with paraffin oil as negative control, although we do not expect any major differences to the previous tests.

      Reviewer #2 (Public review):

      Summary:

      This manuscript investigated the effect of olfactory cues on caterpillar performance and parasitoid avoidance in Pieris brassicae. The authors knocked out Orco to produce caterpillars with significantly reduced olfactory perception. These caterpillars showed reduced performance and increased susceptibility to a parasitoid wasp.

      Strengths:

      This is an impressive piece of work and a well-written manuscript. The authors have used multiple techniques to investigate not only the effect of the loss of olfactory cues on host-parasitoid interactions, but also the mechanisms underlying this.

      Weaknesses:

      (1) I do have one major query regarding this manuscript - I agree that the results of the caterpillar choice tests in a y-maze give weight to the idea that olfactory cues may help them avoid areas with higher numbers of parasitoids. However, the experiments with parasitoids were carried out on a single plant. Given that caterpillars in these experiments were very limited in their potential movement and source of food - how likely is it that avoidance played a role in the results seen from these experiments, as opposed to simply the slower growth of the KO caterpillars extending their period of susceptibility? While the two mechanisms may well both take place in nature - only one suggests a direct role of olfaction in enemy avoidance at this life stage, while the other is an indirect effect, hence the distinction is important.

      We do agree with your comment that both mechanisms may be at work in nature, and we do address this in the Discussion section. In our study, we did find that wildtype caterpillars were more efficient in locating their food source and did grow faster on full plants than knockout caterpillars. This faster growth will enable wildtype caterpillars to more quickly outgrow the life-stages most vulnerable to the parasitoids (L1 and L2). The olfactory system therefore supports the escape from parasitoids indirectly by enhancing feeding efficiency directly.

      In addition, we show in our Y-tube experiments that WT caterpillars were able to avoid plant where conspecifics are under the attack by parasitiods (Figure 3D). Therefore, we speculate that WT caterpillars make use of volatiles from the plant or from conspecifics via their spit or faeces to avoid plants or leaves potentially attracting natural enemies. Knockout caterpillars are unable to use these volatile danger cues and therefore do not avoid plants or leaves that are most attractive to their natural enemies, making KO caterpillars more susceptible and leading to more natural enemy harassment. Through this, olfaction also directly impacts the ability of a caterpillar to find an enemy-free feeding site.

      We think that olfaction supports the enemy avoidance of caterpillars via both these mechanisms, although at different time scales. Unfortunately, our analysis was not detailed enough to discern the relative importance of the two mechanisms we found. However, we feel that this would be an interesting avenue for further research. Moreover, we will sharpen our discussion on the potential importance of the two different mechanisms in the revised version of this manuscript.

      (2) My other issue was determining sample sizes used from the text was sometimes a bit confusing. (This was much clearer from the figures).

      We will revise the sample size in the text to make it clearer.

      (3) I also couldn't find the test statistics for any of the statistical methods in the main text, or in the supplementary materials.

      Thank you for pointing this out. We will provide more detailed test statistics in the main text and in the supplementary materials of the revised version of the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      Summary:

      This paper describes molecular dynamics simulations (MDS) of the dynamics of two T-cell receptors (TCRs) bound to the same major histocompatibility complex molecule loaded with the same peptide (pMHC). The two TCRs (A6 and B7) bind to the pMHC with similar affinity and kinetics, but employ different residue contacts. The main purpose of the study is to quantify via MDS the differences in the inter- and intra-molecular motions of these complexes, with a specific focus on what the authors describe as catch-bond behavior between the TCRs and pMHC, which could explain how T-cells can discriminate between different peptides in the presence of weak separating force.

      Strengths:

      The authors present extensive simulation data that indicates that, in both complexes, the number of high-occupancy interdomain contacts initially increases with applied load, which is generally consistent with the authors’ conclusion that both complexes exhibit catch-bond behavior, although to different extents. In this way, the paper somewhat expands our understanding of peptide discrimination by T-cells.

      a. The reviewer makes thoughtful assessment of our manuscript. While our manuscript is meant to be a “short” contribution, our significant new finding is that even for TCRs targeting the same pMHC, having similar structures, and leading to similar functional outcomes in conventional assays, their response to applied load can be different. This supports out recent experimental work where TCRs targeting the same pMHC differed in their catch bond characteristics, and importantly, in their response to limiting copy numbers of pMHCs on the antigen-presenting cell (Akitsu et al., Sci. Adv., 2024).

      Weaknesses:

      While generally well supported by data, the conclusions would nevertheless benefit from a more concise presentation of information in the figures, as well as from suggesting experimentally testable predictions.

      b. We have updated all figures for clear and streamlined presentation. We have also created four figure supplements to cover more details.

      Regarding testable predictions, an important prediction is that B7 TCR would exhibit a weaker catch bond behavior than A6 (line 297–298). This is a nontrivial prediction because the two TCRs targeting the same pMHC have similar structures and are functionally similar in conventional assays. This prediction can be tested by singlemolecule optical tweezers experiments. Based on our recent experiments Akitsu et al., Sci. Adv. (2024), we also predict that A6 and B7 TCRs will differ in their ability to respond to cases when the number of pMHC molecules presented are limited. Details of how they would differ require further investigation, which is beyond the scope of the present work (line 314-319).

      Another testable prediction for the conservation of the basic allostery mechanism is to test the Cβ FG-loop deletion mutant located at the hinge region of the β chain, where the deletion severely impairs the catch bond formation (line 261–264).

      Reviewer 2:

      In this work, Chang-Gonzalez and coworkers follow up on an earlier study on the force-dependence of peptide recognition by a T-cell receptor using all-atom molecular dynamics simulations. In this study, they compare the results of pulling on a TCR-pMHC complex between two different TCRs with the same peptide. A goal of the paper is to determine whether the newly studied B7 TCR has the same load-dependent behavior mechanism shown in the earlier study for A6 TCR. The primary result is that while the unloaded interaction strength is similar, A6 exhibits more force stabilization.

      This is a detailed study, and establishing the difference between these two systems with and without applied force may establish them as a good reference setup for others who want to study mechanobiological processes if the data were made available, and could give additional molecular details for T-Cell-specialists. As written, the paper contains an overwhelming amount of details and it is difficult (for me) to ascertain which parts to focus on and which results point to the overall take-away messages they wish to convey.

      R2-a. As mentioned above and as the reviewer correctly pointed out, the condensed appearance of this manuscript arose largely because we intended it to be a Research Advances article as a short follow up study of our previous paper on A6 TCR published in eLife. Most of the analysis scripts for the A6 TCR study are already available on Github. For the present manuscript, we have created a separate Github repository containing sample simulation systems and scripts for the B7 TCR.

      Regarding the focus issue, it is in part due to the complex nature of the problem, which required simulations under different conditions and multi-faceted analyses. We believe the extensive updates to the figures and texts make clearer and improved presentation. But we note that even in the earlier version, the reviewer pointed out the main take-away message well: “The primary result is that while the unloaded interaction strength is similar, A6 exhibits more force stabilization.

      Detailed comments:

      (1) In Table 1 - are the values of the extension column the deviation from the average length at zero force (that is what I would term extension) or is it the distance between anchor points (which is what I would assume based on the large values. If the latter, I suggest changing the heading, and then also reporting the average extension with an asterisk indicating no extensional restraints were applied for B7-0, or just listing 0 load in the load column. Standard deviation in this value can also be reported. If it is an extension as I would define it, then I think B7-0 should indicate extension = 0+/- something. The distance between anchor points could also be labeled in Figure 1A.

      R2-b. “Extension” is the distance between anchor points that the reviewer is referring to (blue spheres at the ends of the added strands in Figure 1A). While its meaning should be clear in the section “Laddered extensions” in “MD simulation protocol” (line 357–390), in a strict sense, we agree that using it for the end-to-end distance can be confusing. However, since we have already used it in our previous two papers (Hwang et al., PNAS 2020 and Chang-Gonzalez et al., eLife, 2024), we prefer to keep it for consistency. Instead, in the caption of Table 1, we explained its meaning, and also explicitly labeled it in Figure 1A, as the reviewer suggested.

      Please also note that the no-load case B7<sup>0</sup> was performed by separately building a TCR-pMHC complex without added linkers (line 352), and holding the distal part of pMHC (the α3 domain) with weak harmonic restraints (line 406–408). Thus, no extension can be assigned to B7<sup>0</sup>. We added a brief explanation about holding the MHC α3 domain for B7<sup>0</sup> in line 83–85.

      (2) As in the previous paper, the authors apply ”constant force” by scanning to find a particular bond distance at which a desired force is selected, rather than simply applying a constant force. I find this approach less desirable unless there is experimental evidence suggesting the pMHC and TCR were forced to be a particular distance apart when forces are applied. It is relatively trivial to apply constant forces, so in general, I would suggest this would have been a reasonable comparison. Line 243-245 speculates that there is a difference in catch bonding behavior that could be inferred because lower force occurs at larger extensions, but I do not believe this hypothesis can be fully justified and could be due to other differences in the complex.

      R2-c. There is indeed experimental evidence that the TCR-pMHC complex operates under constant separation. The spacing between a T-cell and an antigen-presenting cell is maintained by adhesion molecules such as the CD2CD58 pair, as explained in our paper on the A6 TCR Chang-Gonzalez et al., eLife, 2024 and also in our previous review paper Reinherz et al., PNAS, 2023. In in vitro single-molecule experiments, pulling to a fixed separation and holding is also commonly done. We added an explanation about this in line 79–83 of the manuscript. On the other hand, force between a T cell and and antigen-presenting cell is also controlled by the actin cytoskeleton, which make the applied load not a simple function of the separation between the two cells. An explanation about this was added in line 300–303. Detailed comparison between constant extension vs. constant force simulations is definitely a subject of our future study.

      Regarding line 243–245 of the original submission (line 297–298 of the revised manuscript), we agree with the reviewer that without further tests, lower forces at larger extensions per se cannot be an indicator that B7 forms a weaker catch bond. But with additional information, one can see it does have relevance to the catch bond strength. In addition to fewer TCR-pMHC contacts (Figure 1C of our manuscript), the intra-TCR contacts are also reduced compared to those of A6 (bottom panel of Figure 1D vs. Chang-Gonzalez et al., eLife, 2024, Figure 8A,B, first column). Based on these data, we calculated the average total intra-TCR contact occupancies in the 500–1000-ns interval, which was 30.4±0.49 (average±std) for B7 and 38.7±0.87 for A6. This result shows that the B7 TCR forms a looser complex with pMHC compared to A6. Also, B7<sup>low</sup> and B7<sup>high</sup> differ in extension by 16.3 ˚A while A6<sup>low</sup> and A6<sup>high</sup> differ by 5.1 ˚A, for similar ∼5-pN difference between low- and high-load cases. With the higher compliance of B7, it would be more difficult to achieve load-induced stabilization of the TCR-pMHC interface, hence a weaker catch bond. We explained this in line 129–132 and line 292–297.

      (3) On a related note, the authors do not refer to or consider other works using MD to study force-stabilized interactions (e.g. for catch bonding systems), e.g. these cases where constant force is applied and enhanced sampling techniques are used to assess the impact of that applied force: https://www.cell.com/biophysj/fulltext/S0006-3495(23)00341-7, https://www.biorxiv.org/content/10.1101/2024.10.10.617580v1. I was also surprised not to see this paper on catch bonding in pMHC-TCR referred to, which also includes some MD simulations: https://www.nature.com/articles/s41467-023-38267-1

      R2-d. We thank the reviewer for bringing the three papers to our attention, which are:

      (1) Languin-Catto¨en, Sterpone, and Stirnemann, Biophys. J. 122:2744 (2023): About bacterial adhesion protein FimH.

      (2) Pen˜a Ccoa, et al., bioRxiv (2024): About actin binding protein vinculin.

      (3) Choi et al., Nat. Comm. 14:2616 (2023): About a mathematical model of the TCR catch bond.

      Catch bond mechanisms of FimH and vinculin are different from that of TCR in that FimH and vinculin have relatively well-defined weak- and strong-binding states where there are corresponding crystal structures. Availability of the end-state structures permits simulation approaches such as enhanced sampling of individual states and studying the transition between the two states. In contrast, TCR does not have any structurally well-defined weak- or strong-binding states, which requires a different approach. As demonstrated in our current manuscript as well as in our previous two papers (Hwang et al., PNAS 2020 and Chang-Gonzalez et al., eLife, 2024), our microsecond-long simulations of the complex under realistic pN-level loads and a combination of analysis methods are effective for elucidating the catch bond mechanism of TCR. These are explained in line 227–238 of the manuscript.

      The third paper (Choi, et al., 2023) proposes a mathematical model to analyze extensive sets of data, and also perform new experiments and additional simulations. Of note, their model assumptions are based mainly on the steered MD (SMD) simulation in their previous paper (Wu, et al., Mol. Cell. 73:1015, 2019). In their model, formation of a catch bond (called catch-slip bond in Choi’s paper) requires partial unfolding of MHC and tilting of the TCR-pMHC interface. Our mechanism does not conflict with their assumptions since the complex in the fully folded state should first bear load in a ligand-dependent manner in order to allow any larger-scale changes. This is explained in line 239–243.

      For the revised text mentioned above (line 227–243), in addition to the 3 papers that the reviewer pointed out, we cited the following papers:

      • Thomas, et al., Annu. Rev. Biophys. 2008: Catch bond mechanisms in general.

      • Bakolitsa et al., Cell 1999, Le Trong et al., Cell 2010, Sauer et al., Nat. Comm. 2016, Mei et al., eLife 2020:

      Crystal structures of FimH and vinculin in different states.

      • Wu, et al., Mol. Cell. 73:1015, 2019: The SMD simulation paper mentioned above.

      (4) The authors should make at least the input files for their system available in a public place (github, zenodo) so that the systems are a more useful reference system as mentioned above. The authors do not have a data availability statement, which I believe is required.

      R2-d. As mentioned in R2-a above, we have added a Github repository containing sample simulation systems and scripts for the B7 TCR.

      Reviewer 3:

      Summary:

      The paper by Chang-Gonzalez et al. is a molecular dynamics (MD) simulation study of the dynamic recognition (load-induced catch bond) by the T cell receptor (TCR) of the complex of peptide antigen (p) and the major histocompatibility complex (pMHC) protein. The methods and simulation protocols are essentially identical to those employed in a previous study by the same group (Chang-Gonzalez et al., eLife 2024). In the current manuscript, the authors compare the binding of the same pMHC to two different TCRs, B7 and A6 which was investigated in the previous paper. While the binding is more stable for both TCRs under load (of about 10-15 pN) than in the absence of load, the main difference is that, with the current MD sampling, B7 shows a smaller amount of stable contacts with the pMHC than A6.

      Strengths:

      The topic is interesting because of the (potential) relevance of mechanosensing in biological processes including cellular immunology.

      Weaknesses:

      The study is incomplete because the claims are based on a single 1000-ns simulation at each value of the load and thus some of the results might be marred by insufficient sampling, i.e., statistical error. After the first 600 ns, the higher load of B7<sup>high</sup> than B7<sup>low</sup> is due mainly to the simulation segment from about 900 ns to 1000 ns (Figure 1D). Thus, the difference in the average value of the load is within their standard deviation (9 +/- 4 pN for B7<sup>low</sup> and 14.5 +/- 7.2 for B7<sup>high</sup>, Table 1). Even more strikingly, Figure 3E shows a lack of convergence in the time series of the distance between the V-module and pMHC, particularly for B7<sup>0</sup> (left panel, yellow) and B7<sup>low</sup> (right panel, orange). More and longer simulations are required to obtain a statistically relevant sampling of the relative position and orientation of the V-module and pMHC.

      R3-a. The reviewer uses data points during the last 100 ns to raise an issue with sampling. But since we are using realistic pN range forces, force fluctuates more slowly. In fact, in our simulation of B7<sup>high</sup>, while the force peaks near 35 pN at 500 ns (Figure 1D of our manuscript), the interfacial contacts show no noticeable changes around 500 ns (Figure 2B and Figure 2–figure supplement 1C of our manuscript). Similarly slow fluctuation of force was also observed for A6 TCR (Figure 8 of Chang-Gonzalez et al., eLife (2024)). Thus, a wider time window must be considered rather than focusing on forces in the last 100-ns interval.

      To compare fluctuation in forces, we added Figure 1–figure supplement 2, which is based on Appendix 3–Figure 1 of our A6 paper. It shows the standard deviation in force versus the average force during 500–1000 ns interval for various simulations in both A6 (open black circles) and B7 (red squares) systems. Except for Y8A<sup>low</sup> and dFG<sup>low</sup> of A6 (explained below), the data points lie on nearly a straight line.

      Thermodynamically, the force and position of the restraint (blue spheres in Figure 1A of our manuscript) form a pair of generalized force and the corresponding spatial variable in equilibrium at temperature 300 K, which is akin to the pressure P and volume V of an ideal gas. If V is fixed, P fluctuates. Denoting the average and std of pressure as ⟨P⟩ and ∆P, respectively, Burgess showed that ∆P/P⟩ is a constant (Eq. 5 of Burgess, Phys. Lett. A, 44:37; 1973). In the case of the TCRαβ-pMHC system, although individual atoms are not ideal gases, since their motion leads to the fluctuation in force on the restraints, the situation is analogous to the case where pressure arises from individual ideal gas molecules hitting the confining wall as the restraint. Thus, the near-linear behavior in the figure above is a consequence of the system being many-bodied and at constant temperature. The linearity is also an indicator that sampling of force was reasonable in the 500–1000-ns interval. The fact that A6 and B7 data show a common linear profile further demonstrates the consistency in our force measurement. About the two outliers of A6, Y8A<sup>low</sup> is for an antagonist peptide and dFG<sup>low</sup> is the Cβ FG-loop deletion mutant. Both cases had reduced numbers of contacts with pMHC, which likely caused a wider conformational motion, hence greater fluctuation in force.

      Upon suggestion by the reviewer, we extended the simulations of B7<sup>0</sup>, B7<sup>low</sup> and B7<sup>high</sup> to about 1500 ns (Table 1). While B7<sup>0</sup> and B7<sup>low</sup> behaved similarly, B7<sup>high</sup> started to lose contacts at around 1300 ns (top panel of Figure 1D and Figure 2B). A closer inspection revealed that destabilization occurred when the complex reached low-force states. Even before 1300 ns, at about 750 ns, the force on B7<sup>high</sup> drops below 5 pN, and another drop in force occurred at around 1250 ns, though to a lesser extent (Figure 1D). These changes are followed by increase in the Hamming distance (Figure 2B). Thus, in B7<sup>high</sup>, destabilization is caused not by a high force, but by a lack of force, which is consistent with the overarching theme of our work, the load-induced stabilization of the TCRαβ-pMHC complex.

      The destabilization of B7<sup>high</sup> during our simulation is a combined effect of its overall weaker interface compared to A6 (despite having comparable number of contacts in crystal structures; line 265–269), and its high compliance (explained in the second paragraph of our response R2-c above). Under a fixed extension, the higher compliance of the complex can reach a low-force state where breakage of contacts can happen. In reality, with an approximately constant spacing between a T cell and an antigen-presenting cell, force is also regulated by the actin cytoskeleton (explained in the first paragraph of R2-c above). While detailed comparison between constant-extension and constant-force simulation is the subject of a future study, for this manuscript, we used the 500–1000-ns interval for calculating time-averaged quantities, for consistency across different simulations. For time-dependent behaviors, we showed the full simulation trajectories, which are Figure 1D, Figure 2B, Figure 2–figure supplement 1 (except for panel E), and Figure 4–figure supplement 1B.

      Thus, rather than performing replicate simulations, we perform multiple simulations under different conditions and analyze them from different angles to obtain a consistent picture. If one were interested in quantitative details under a given condition, e.g., dynamics of contacts for a given extension or the time when destabilization occurs at a given force, replicate simulations would be necessary. However, our main conclusions such as load-induced stabilization of the interface through the asymmetric motion, and B7 forming a weaker complex compared to A6, can be drawn from our extensive analysis across multiple simulations. Please also note that reviewer 1 mentioned that our conclusions are “generally well supported by data.”

      A similar argument applies to Figure 2–figure supplement 1F (old Figure 3B that the reviewer pointed out). If precise values of the V-module to pMHC distance were needed, replicate simulations would be necessary, however, the figure demonstrates that B7<sup>high</sup> maintains more stable interface before the disruption at 1300 ns compared to B7<sup>low</sup>, which is consistent with all other measures of interfacial stability we used. The above points are explained throughout our updated manuscript, including

      • Line 106–110, 125–132, 156–158, 298–303.

      • Figures showing time-dependent behaviors have been updated and Figure 1–figure supplement 2 has been added, as explained above.

      It is not clear why ”a 10 A distance restraint between alphaT218 and betaA259 was applied” (section MD simulation protocol, page 9).

      R3-b. αT218 and β_A259 are the residues attached to a leucine-zipper handle in _in vitro optical trap experiments (Das, et al., PNAS 2015). In T cells, those residues also connect to transmembrane helices. Our newly added Figure 1–figure supplement 1 shows a model of N15 TCR used in experiments in Das’ paper, constructed based on PDB 1NFD. Blue spheres represent C<sub>α</sub> atoms corresponding to αT218 and βA259 of B7 TCR. Their distance is 6.7 ˚A. The 10-˚A distance restraint in simulation was applied to mimic the presence of the leucine zipper that prevents excessive separation of the added strands. The distance restraint is a flatbottom harmonic potential which is activated only when the distance between the two atoms exceeds 10 ˚A, which we did not clarify in our original manuscript. It is now explained in line 371–373. The same restraint was used in our previous studies on JM22 and A6 TCRs.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Clarify the reason for including arguably non-physiological simulations, in which the C domain is missing. Is the overall point that it is essential for proper peptide discrimination?

      R1-c. This is somewhat a philosophical question. Rather than recapitulating experiment, we believe the goal of simulation is to gain insight. Hence, a model should be justified by its utility rather than its direct physiological relevance. The system lacking the C-module is useful since it informs about the allosteric role of the C-module by comparing its behavior with that of the full TCRαβ-pMHC complex. The increased interfacial stability of Vαβ-pMHC is also consistent with our discovery that the C-module likely undergoes a partial unfolding to an extended state, where the bond lifetime increases (Das, et al., PNAS 2015; Akitsu et al., Sci. Adv., 2024). In this sense, Vαβ-pMHC has a more direct physiological relevance. Furthermore, considering single-chain versions of an antibody lacking the C-module (scFv) are in widespread use (Ahmad et al., J. Immunol. Res., 2012) including CAR T cells, a better understanding of a TCR lacking the C-module may help with developing a novel TCR-based immunotherapy. These explanations have been added in line 253–261.

      (2) Suggest changing Vαβ-pMHC to B7<sup>0</sup>∆C to emphasize that the constant domain is deleted.

      R1-d. While we appreciate the reviewer’s suggestion, the notation Vαβ-pMHC was used in our previous two papers (Hwang, PNAS 2020, Chang-Gonzalez, eLife 2024). We thus prefer to keep the existing notation.

      (3) Suggest adding A6 data to table 1 for comparison, making it clear if it is from a previous paper.

      R1-e. Table 1 of the present manuscript and Table 1 of the A6 paper differ in items displayed. Instead of merging, we added the extension and force for A6 corresponding to B7<sup>low</sup> and B7<sup>high</sup> in the caption of Table 1.

      (4) Suggest discussing the catch-bond behavior in terms of departure from equilibrium, e.g. is it possible to distinguish between different (catch vs slip) bond behaviors on the basis of work of separation histograms? If the difference does not show up in equilibrium work, the exponential work averages would be similar, but work histograms could be very different.

      R1-f. Although energetics of the catch versus slip bond will provide additional insight, it is beyond the scope of the present simulations that do not involve dissociation events nor simulations of slip-bond receptors. We instead briefly mention the energetic aspect in terms of T-cell activation in line 316–319.

      (5) Have the simulations in Figure 1 reached steady state? The force and occupancy increase almost linearly up until 500ns, then seem to decrease rather dramatically by 750ns. It might be worthwhile to extend one simulation to check.

      R1-g. We did extend the simulation to about 1500 ns. The large and slow fluctuation in force is an inherent property of the system, as explained in R3-a above.

      (6) Is the loss of contacts for B7<sup>0</sup> due to thermalization and relaxation away from the X-ray structure?

      R1-h. The initial thermalization at 300 K is not responsible for the loss of contacts for B7<sup>0</sup> since we applied distance restraints to the initial contacts to keep them from breaking during the preparatory runs (line 358–370). While ‘relaxation away from the X-ray structure’ gives an impression that the complex approaches an equilibrium conformation in the absence of the crystallographic confinement, our simulation indicates that the stability of the complex depends on the applied load. We made the distinction between relaxation and the load-dependent stability clearer in line 233–238.

      (7) Figure 4 contains a very large amount of data. Could it be simplified and partly moved to SI? For example, panel G is somewhat hard to read at this scale, and seems non-essential to the general reader.

      R1-i. Upon the reviewer’s suggestion, we simplified Figure 4 by moving some of the panels to Figure 4–figure supplement 1. Panels have also been made larger for better readability.

      (8) If the coupling between C and V domains is necessary for catch-bond behavior, can one propose mutations that would disrupt the interface to test by experiment? This would be interesting in light of the authors’ own comment on p. 8 that ’a logical evolutionary pressure would be for the C domains to maximize discriminatory power by adding instability to the TCR chassis,’ which might lead to a verifiable hypothesis.

      R1-j. This has already been computationally and experimentally tested for other TCRs by the Cβ FG-loop deletion mutants that diminish the catch bond (Das, et al., PNAS 2015; Hwang et al., PNAS 2020; ChangGonzalez et al., eLife, 2024). Furthermore, the Vγδ-Cαβ chimera where the C-module of TCRγδ is replaced by that of TCR_αβ_ that strengthens the V-C coupling achieved a gain-of-function catch bond character while the wild-type TCRγδ is a slip-bond receptor (Mallis, et al., PNAS 2021; Bettencourt et al., Biophys. J. 2024). We added our prediction that the FG-loop deletion mutants of B7 TCR will behave similarly in line 261–264.

      (9) Regarding extending TCR and MHC termini using native sequences, as described in the methods, what would be the disadvantage of using the same sequence, which could be made much more rigid, e.g. a poly-Pro sequence? After all, the point seems to be applying a roughly constant force, but flexible/disordered linkers seem likely to increase force fluctuation.

      R1-k. The purpose of adding linkers was to allow a certain degree of longitudinal and transverse motion as would occur in vivo. While it will be worthwhile to explore the effects of linker flexibility on the conformational dynamics of the complex, for the present study, we used the actual sequence for the linkers for those proteins (line 341–344).

      Reviewer #2 (Recommendations for the authors):

      (1) Figure 2 is almost illegible, especially Figure 2A-D. I do not think that these contacts vs time would be useful to anyone except for someone interested in this particular pMHC interaction, so I would suggest moving it to a supporting figure and making it much larger.

      R2-e. Thanks for the suggestion. We created Figure 2–figure supplement 1 and made panels larger for clearer presentation.

      (2) Figure 4 is overwhelming, and does not convey any particular message.

      R2-f. This is the same comment as reviewer 1’s comment (7) above. Please see our response R1-i.

      Reviewer #3 (Recommendations for the authors):

      (1) The label ”beta2m” in Figure 1A should be moved closer to the beta2 microglobulin domain. A label TCR should be added to Figure 1A.

      R3-c. Thanks for pointing out about β2m. We have corrected it. About putting the label ‘TCR,’ to avoid cluttering, we explained that Vα, Vβ, Cα, and Cβ are the 4 subdomains of TCR in the caption of Figure 1A.

      (2) Hydrogen atoms should be removed from the peptide in Figure 1B.

      R3-d. We have removed the hydrogen atoms.

      (3) The authors should consider moving Figures 1 A-D to the SI and show a simpler description of the contact occupancy than the heat maps. The legend of Figure 2A-D is too small.

      R3-e. By ‘Figures 1 A-D’ we believe the reviewer meant Figure 2A–D. This is the same comment as reviewer 2’s comment (1). Please see our response R2-e above.

      (4) Vertical (dashed) lines should be added to Figure 3E at 500 ns to emphasize the segment of the time series used for the histograms.

      R3-f. We added vertical lines in figures showing time-dependent behaviors, which are Figure 1D, Figure 2B, Figure 2–figure supplement 1F, and Figure 4–figure supplement 1B.

    1. Author response:

      Reviewer #1 (Public Review):

      We are grateful to this reviewer for her/his constructive comments, which have greatly improved our work. Individual responses are provided below.

      The authors recorded from multiple mossy cells (MCs) of the dentate gyrus in slices or in vivo using anesthesia. They recorded MC spontaneous activity during spontaneous sharp waves (SWs) detected in area CA3 (in vitro) or in CA1 ( in vivo). They find variability of the depolarization of MCs in response to a SW. They then used deep learning to parse out more information. They conclude that CA3 sends different "information" to different MCs. However, this is not surprising because different CA3 neurons project to different MCs and it was not determined if every SW reflected the same or different subsets of CA3 activity.

      Thank you for your valuable comments. We agree that our finding that different MCs receive different information is unsurprising. These data are, in fact, to be expected from the anatomical knowledge of the circuit structure. However, as a physiological finding, there is a certain value in proving this fact; please note that it was not clear whether the neural activity of individual MCs received heterogeneous/variable information at the physiological level. It was therefore necessary to investigate this by recording neural activity. We believe this study is important because it quantitatively demonstrates this fact.

      The strengths include recording up to 5 MCs at a time. The major concerns are in the finding that there is variability. This seems logical, not surprising. Also it is not clear how deep learning could lead to the conclusion that CA3 sends different "information" to different MCs. It seems already known from the anatomy because CA3 neurons have diverse axons so they do not converge on only one or a few MCs. Instead they project to different MCs. Even if they would, there are different numbers of boutons and different placement of boutons on the MC dendrites, leading to different effects on MCs. There also is a complex circuitry that is not taken into account in the discussion or in the model used for deep learning. CA3 does not only project to MCs. It also projects to hilar and other dentate gyrus GABAergic neurons which have complex connections to each other, MCs, and CA3. Furthermore, MCs project to MCs, the GABAergic neurons, and CA3. Therefore at any one time that a SW occurs, a very complex circuitry is affected and this could have very different effects on MCs so they would vary in response to the SW. This is further complicated by use of slices where different parts of the circuit are transected from slice to slice.

      The first half of this paragraph is closely related to the previous paragraph. We propose that the variation in membrane potential of the simultaneously recorded MCs allows for the expression of diverse information. We also believe that this is highly novel in that no previous work has described the extent to which SWR is encoded in MCs. Our study proposes a new quantitative method that relates two variables (LFP and membrane potential) that are inherently incomparable. Specifically, we used machine learning (please note that it is a neural network, but not "deep learning") to achieve this quantification, and we believe this innovation is noteworthy.

      In the latter part of this article, you raise another important point. First, we would like to point out that this comment contains a slight misunderstanding. Our goal is not to reproduce the circuit structure of the hippocampus in silico but to propose a "function (or mapping/transformation)" that connects the two different modalities, i.e., LFP and Vm. This function should be as simple as possible, which is desirable from an explanatory point of view. In this respect, our machine learning model is a 'perceptron'-like 3-layer neural network. One of the simplest classical neural network models can predict the LFP waveform from Vm, which is quite surprising and an achievement we did not even imagine before. The fact that our model does not consider dendrites or inhibitory neurons is not a drawback but an important advantage. On the other hand, the fact that the data we used for our predictions were primarily obtained using slice experiments may be a drawback of this study, and we agree with your comments. However, we can argue that the new quantitative method we propose here is versatile since we showed that the same machine learning can be used to predict in vivo single-cell data.

      It is also not discussed if SWs have a uniform frequency during the recording session. If they cluster, or if MC action potentials occur just before a SW, or other neurons discharge before, it will affect the response of the MC to the SW. If MC membrane potential varies, this will also effect the depolarization in response to the SW.

      Thank you for raising an important point. We have done some additional analyses in response to your comment. First, we plotted how the SWR parameter fluctuated during our recording time (especially for data recorded for long periods of more than 5 minutes). As shown in the new Figure 1 - figure supplement 4, we can see that the frequency of SWRs was kept uniform during the recording time. These data ensure the rationale for pooling data over time.

      We also calculated the average membrane potentials of MCs before and after SWRs and found that MCs did not show depolarization or hyperpolarization before SWs, unlike Vm of CA1 neurons. These data indicate that the surrounding circuitry was not particularly active before SW, eliminating any concern that such unexpected preceding activity might affect our analysis. These data are shown in Figure 1 - figure supplement 2.

      In vivo, the SWs may be quite different than in vivo but this is not discussed. The circuitry is quite different from in vitro. The effects of urethane could have many confounding influences. Furthermore, how much the in vitro and in vivo SWs tell us about SWs in awake behaving mice is unclear.

      We agree with this point. Ideally, recording in vitro and in vivo under conditions as similar as possible would be optimal. However, as you know, patch-clamp recording from mossy cells in vivo is technically challenging, and currently, there is no alternative to conducting experiments under anesthesia. We believe that science advances not merely through theoretical discourse, but by contributing empirical data collected under existing conditions. However, as we mentioned in the paper, we believe that in vivo and in vitro SWR share some properties and a common principle of occurrence. We also observed that there are similar characteristics in the membrane potential response of MC to SWR. However, as you have pointed out, data derived from these limitations require careful interpretation, and we have explicitly stated in the paper that not only are there such problems, but that there are also common properties in the data obtained in vivo and in vitro (Page 12, Line 357).

      Also, methods and figures are hard to understand as described below.

      Thank you for all your comments. We have carefully considered the reviewers' comments and improved the text and legend. We hope you will take the time to review them.

      Reviewer #2 (Public Review):

      Thank you for the positive evaluations, which have encouraged us to resubmit this manuscript. We have revised our manuscript in accordance with your comments. Our point-by-point responses are as follows:

      • A summary of what the authors were trying to achieve

      Drawing from theoretical insights on the pivotal role of mossy cells (MCs) in pattern separation - a key process in distinguishing between similar memories or inputs - the authors investigated how MCs in the dentate gyrus of the hippocampus encode and process complex neural information. By recording from up to five MCs simultaneously, they focused on membrane potential dynamics linked to sharp wave-ripple complexes (SWRs) originating from the CA3 area. Indeed, using a machine learning approach, they were able to demonstrate that even a single MC's synaptic input can predict a significant portion (approximately 9%) of SWRs, and extrapolation suggested that synaptic input obtained from 27 MCs could account for 90% of the SWR patterns observed. The study further illuminates how individual MCs contribute to a distributed but highly specific encoding system. It demonstrates that SWR clusters associated with one MC seldom overlap with those of another, illustrating a precise and distributed encoding strategy across the MC network.

      We appreciate that this reviewer found scientific value in our manuscript. Thanks to the comments, we were pleased to be able to revise and improve the manuscript. Individual responses are listed below:

      • An account of the major strengths and weaknesses of the methods and results

      Strengths:

      (1) This study is remarkable because it establishes a critical link between the subthreshold activities of individual neurons and the collective dynamics of neuronal populations.

      (2) The authors utilize machine learning to bridge these levels of neuronal activity. They skillfully demonstrate the predictive power of membrane potential fluctuations for neuronal events at the population level and offer new insights into neuronal information processing.

      (3) To investigate sharp wave/ripple-related synaptic activity in mossy cells (MCs), the authors performed challenging experiments using whole-cell current-clamp recordings. These recordings were obtained from up to five neurons in vitro and from single mossy cells in live mice. The latter recordings are particularly valuable as they add to the limited published data on synaptic input to MCs during in vivo ripples.

      We appreciate the reviewer’s critical evaluations, which have encouraged us to revise and resubmit this manuscript. We have revised our manuscript in line with the reviewer’s comments. Our point-by-point responses are provided below:

      Weaknesses:

      (1) The model description could significantly benefit from additional details regarding its architecture, training, and evaluation processes. Providing these details would enhance the paper's transparency, facilitate replication, and strengthen the overall scientific contribution. For further details, please see below.

      Thank you for the suggestions. We have responded with model details based on the following comments.

      (2) The study recognizes the concept of pattern separation, a central process in hippocampal physiology for discriminating between similar inputs to form distinct memories. The authors refer to a theoretical paper by Myers and Scharfman (2011) that links pattern separation with activity backpropagating from CA3 to mossy cells. Despite this initial citation, the concept is not discussed again in the context of the new findings. Given the significant role of MCs in the dentate gyrus, where pattern separation is thought to occur, it would be valuable to understand the authors' perspective on how their findings might relate to or contribute to existing theories of pattern separation. Could the observed functions of MCs elucidated in this study provide new insights into their contribution to processes underlying pattern separation?

      Thank you for your valuable comment. The role of MCs in pattern separation is described in the discussion as follows:

      “It has been shown through theoretical models that MCs are a contributor to pattern separation (Myers and Scharfman, 2011). In general, the pathway of neural information is diverged from the entorhinal cortex through the larger granule cell layer and then compressed into the smaller CA3 cell layer. In this case, there is a high possibility of information loss during the transmission process. Thus, a backprojection mechanism via MCs has been proposed as a device to prevent information loss. Indeed, in theoretical models, such backprojection improves pattern separation and memory capacity, and the results are closer to experimental data than models without built-in backprojection. However, it was unclear what information individual MCs receive during backprojection. Our results show that CA3 SWR is distributed and encoded in the MC population, and that even though the number of MCs is smaller than in other regions, it is possible to reproduce about 30% of the SWR in CA3 from the membrane potential of only five MCs. Based on these results, it is believed that MCs not only play a role in preventing information loss, but also play a role in receiving some kind of newly encoded memory information in the CA3 region, and it is highly likely that the information contained in the backprojections is different from the neural information transmitted through conventional transmission pathways. Indeed, the fact that the information replayed in CA3 is reflected as SWR and propagated to each brain region suggests that the newly encoded memory information in CA3 is propagated to MC. If  backprojection simply returned the information transmitted from DG to CA3, and to MC, this would be unrealistic and extremely inefficient. However, it is still unclear what kind of memory information is actually backprojected and distributed to the MC, and how it differs from the memory information transmitted in the forward direction. These are open questions that need to be addressed in future experiments in awake animals.” (Page 11, Line 333)

      (3) Previous work concluded that sharp waves are associated with mossy cell inhibition, as evidenced by a consistent ripple function-related hyperpolarization of the membrane potential in these neurons when recorded at resting membrane potential (Henze & Buzsáki, 2007). In contrast, the present study reveals an SWR-induced depolarization of the membrane potential. Can the authors explain the observed modulation of the membrane potential during CA1 ripples in more detail? What was the proportion of cases of depolarization or hyperpolarization? What were the respective amplitude distributions? Were there cases of activation of the MCs, i.e., spiking associated with the ripple? This more comprehensive information would add significance to the study as it is not currently available in the literature.

      Sorry for confusing the conclusion. First, we did not mention in the paper that in vivo MC depolarized during SWR. The following sentences have added to result:

      “Previous research has shown that the hyperpolarization of MC membrane potential associated with SWR indicates that SWR is related to the inhibition of mossy cells (Henze and Buzsáki, 2007). However, our data showed that the proportion of cases of depolarization or hyperpolarization was about the same, with a slight excess of depolarization. However, it should be noted that MCs are highly active and fluctuating cells, and the determination of whether they are depolarized or hyperpolarized is highly dependent on the method of analysis. Moreover, the firing rate of MCs that we recorded was 1.07 ± 0.93 Hz (mean ± SD from 6 cells, 6 mice), and 6.68 ± 4.79% (mean ± SD from 6 cells, 6 mice, n = 757 SWR events) of all SWRs recruited MC firing (calculated as firing within 50 ms after the SWR peak). ” (Page 5, Line 143)

      (4) In the study, the observation that mossy cells (MCs) in the lower (infrapyramidal) blade of the dentate gyrus (DG) show higher predictability in SWR patterns is both intriguing and notable. This finding, however, appears to be mentioned without subsequent in-depth exploration or discussion. One wonders if this observed predictability might be influenced by potential disruptions or severed connections inherent to the brain slice preparation method used. Furthermore, it prompts the question of whether similar observations or trends have been noted in MCs recorded in vivo, which could either corroborate or challenge this intriguing in vitro finding.

      As you pointed out, one cannot rule out the possibility that this predictability may be influenced by potential disruptions or disconnections inherent in the methods used to prepare the acute slices. And the number of cells is limited to six with respect to the anatomical location of the MC recorded in vivo, making SWR and MC patch clamp recording very difficult even under anesthesia. Therefore, it is difficult to find statistical significance in the current data. We have added following text in Discussion:

      “In addition, the finding that SWR is more predictive when the recorded location of the MC is near the lower blade of the DG is unexpected, so the possibility that this result is influenced by potential disruptions or severed connections during the preparation of the acute slice cannot be ruled out.” (Page 14, Line 405)

      (5) The study's comparison of SWR predictability by mossy cells (MCs) is complicated by using different recording sites: CA3 for in vitro and CA1 for in vivo experiments, as shown in Fig. 2. Since CA1-SWRs can also arise from regions other than CA3 (see e.g. Oliva et al., 2016, Yamamoto and Tonegawa, 2017), it is difficult to reconcile in vitro and in vivo results. Addressing this difference and its implications for MC predictability in the results discussion would strengthen the study.

      Thank you for your comment. We have added the following discussion to your comment:

      “In this study, we performed MC patch-clamp recording both in vivo and in vitro, and clarified that SWR can be predicted from V_m of MC in both cases. However, there are three caveats to the interpretation of these data. First, the _in vivo SWR cannot be said to be exactly the same as the in vitro SWR: note that in vitro SWR has some similarities to in vivo SWR, such as spatial and spectral profiles and neural activity patterns (Maier et al., 2009; Hájos et al., 2013; Pangalos et al., 2013). The same concern applies to MC synaptic inputs. The in vivo V_m data may contain more information compared to the _in vitro single MC data, because the entire projections that target MCs are intact, resulting in a complete set of synaptic inputs related to SWR activity, as opposed to slices where connections are severed. While we recognize these differences, it is also very likely that there are common ways of expressing information. Second, since the in vivo LFP recordings were obtained from the CA1 region, it is possible that the CA1-SWR receives input from the CA2 region (Oliva et al., 2016) and the entorhinal cortex (Yamamoto and Tonegawa, 2017). In addition, urethane anesthesia has been observed to reduce subthreshold activity, spike synchronization, and SWR (Yagishita et al., 2020), making it difficult to achieve complete agreement with in vitro SWR recorded from the CA3 region. Finally, although we were able to record MC V_m during _in vivo SWR in this study, the in vivo data set consisted of recordings from a single MC, in contrast to the in vitro dataset. To perform the same analysis as in the in vitro experiment, it would be desirable to record LFPs from the CA3 region and collect data from multiple MCs simultaneously, but this is technically very difficult. In this study, it was difficult to directly clarify the consistency between CA3 network activity and in vivo MC synaptic input, but the fact that the SWR waveform can be predicted from in vivo MC V_m in CA1-SWR may be the result of some CA3 network activity being reflected in CA1-SWR. It is undeniable that more accurate predictions would have been possible if it had been possible to record LFP from the CA3 regions _in vivo. ” (Page 12, Line 357)

      • An appraisal of whether the authors achieved their aims, and whether the results support their conclusions

      As outlined in the abstract and introduction, the primary aim is to investigate the role of MCs in encoding neuronal information during sharp wave ripple complexes, a crucial neuronal process involved in memory consolidation and information transmission in the hippocampus. It is clear from the comprehensive details in this study that the authors have meticulously pursued their goals by providing extensive experimental evidence and utilizing innovative machine learning techniques to investigate the encoding of information in the hippocampus by mossy cells (MCs). Together, this study provides a compelling account supported by rigorous experimental and analytical methods. Linking subthreshold membrane potentials and population activity by machine learning provides a comprehensive new analytic approach and sheds new light on the role of MCs in information processing in the hippocampus. The study not only achieves the stated goals, but also provides novel methodology, and valuable insights into the dynamics of neural coding and information flow in the hippocampus.

      We appreciate the reviewer’s critical evaluations, which have encouraged us to revise and resubmit this manuscript. We have revised our manuscript in line with the reviewer’s comments.

      • A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community

      Impact: Both the novel methodology and the provided biological insights will be of great interest to the community.

      Utility of methods/data: The applied deep learning approach will be of particular interest if the authors provide more details to improve its reproducibility (see related suggestions below).

      We appreciate that this reviewer found scientific value in our manuscript. Thanks to the comments.

      Reviewer #3 (Public Review):

      We appreciate that this reviewer raised several important issues. We are pleased to have been able to revise the paper into a better manuscript based on these comments. Individual responses are listed below:

      Compared to the pyramidal cells of the CA1 and CA3 regions of the hippocampus, and the granule cells of the dentate gyrus (DG), the computational role(s) of mossy cells of the DG have received much less attention over the years and are consequently not well understood. Mossy cells receive feedforward input from granule cells and feedback from CA3 cells. One significant factor is the compression of the large number of CA3 cells that input onto a much smaller population of mossy cells, which then send feedback connections to the granule cell layer. The present paper seeks to understand this compression in terms of neural coding, and asks whether the subthreshold activity of a small number of mossy cells can predict above chance levels the shapes of individual SWs produced by the CA3 cells. Using elegant multielectrode intracellular recordings of mossy cells, the authors use deep learning networks to show that they can train the network to "predict" the shape of a SW that preceded the intracellular activity of the mossy cells. Putatively, a single mossy cell can predict the shape of SWs above chance. These results are interesting, but there are some conceptual issues and questions about the statistical tests that must be addressed before the results can be considered convincing.

      We appreciate that this reviewer found scientific value in our manuscript. Thanks to the comments, we were pleased to be able to revise and improve the manuscript. Individual responses are listed below:

      Strengths

      (1) The paper uses technically challenging techniques to record from multiple mossy cells at the same time, while also recording SWs from the LFP of the CA3 layer. The data appear to be collected carefully and analyzed thoughtfully.

      (2) The question of how mossy cells process feedback input from CA3 is important to understand the role of this feedback pathway in hippocampal processing.

      3) Given the concerns expressed below about proper statistical testing are resolved, the data appear supportive of the main conclusions of the authors and suggest that, to some degree, the much smaller population of mossy cells can conserve the information present in the larger population of CA3 cells, presumably by using a more compressed, dense population code.

      We appreciate the reviewer’s critical evaluations, which have encouraged us to revise and resubmit this manuscript. We have revised our manuscript in line with the reviewer’s comments. Our point-by-point responses are provided below:

      Weaknesses

      4) Some of the statistical tests appear inappropriate because they treat each CA3 SW and associated Vm from a mossy cell as independent samples. This violates the assumptions of statistical tests such as the Kolmogorov-Smirnov tests of Figure 3C and Fig 3E. Although there is large variability among the SWs recorded and among the Vm's, they cannot be considered independent measurements if they derive from the same cell and same recording site of an individual animal. This becomes especially problematic when the number of dependent samples adds up to the tens of thousands, providing highly inflated numbers of samples that artificially reduce the p values. Techniques such as mixed-effects models are being increasingly used to factor out the effects of within cell and within animal correlations in the data. The authors need to do something similar to factor out these contributions in order to perform statistical tests, throughout the manuscript when this problem occurs.

      Thank you for the insightful comment. As for the correlation between the animals, since they were brought in at the same age and kept in the same environment, we do not think it is necessary to account for the differences due to environmental factors. As the reviewer pointed out, we cannot completely rule out the possibility that within cell or within animal correlation might influence the results, so we plotted the differences in prediction accuracy between cells, slices, and animals (Figure 3 - figure supplement 7). The results showed that prediction accuracy of the real data was better than that of the shuffled data in 66 of the 87 MCs (75.9%). In response to the comment that measurements from the same animal do not constitute independent samples, we have indicated that the average ΔRMSE for each mouse were calculated and these values were significantly different from 0 (n = 14, *p = 0.0041, Student’s t-test). In other words, even if each animal is considered an independent sample, it is possible to obtain statistically significant differences.

      5) A separate statistical problem occurs when comparing real data against a shuffled, surrogate data set. From the methods, I gather that Figure 3C combined data from 100 surrogate shuffles to compare to the real data. It is inappropriate to do a classic statistical test of data against such shuffles, because the number of points in the pooled surrogate data sets are not true samples from a population. It is a mathematical certainty that one can eventually drive a p value to < 0.05 just by increasing the number of shuffles sufficiently. Thus, the p value is determined by the number of computer shuffles allowed by the time and processing power of a computer, rather than by sampling real data from the population. Figures such as 4C and 5A are examples that test data against shuffle appropriately, as a single value is determined to be within or outside the 95% confidence interval of the shuffle, and this determination is not directly affected by the number of shuffles performed.

      Thank you for raising a very good point. We understand the reviewer's comments, but we cannot fully agree with the part that says "It is mathematical certainty that one can eventually drive a p value to < 0.05 just by increasing the number of shuffles sufficiently". This is because when comparing data with no difference at all, no amount of shuffling will produce a significant difference. In this regard, we agree that increasing the number of shuffles will lower the p-value when comparing data with even a small difference. Based on the reviewer's comments, we used a paired t-test to test whether the difference between RMSEreal and RMSEsurrogate was significantly different from 0, and showed it was significantly different (Figure 3 - figure supplement 5). Even when a paired t-test was used for the test, as in Figure 3E, a significant difference in the prediction error of the real and shuffled data was observed for all MC number inputs and also for the in vivo data.

      6) The last line of the Discussion states that this study provides "important insights into the information processing of neural circuits at the bottleneck layer," but it is not clear what these insights are. If the statistical problems are addressed appropriately, then the results do demonstrate that the information that is reflected in SWs can be reconstructed by cells in the MC bottleneck, but it is not certain what conceptual insights the authors have in mind. They should discuss more how these results further our understanding of the function of the feedback connection from CA3 to the mossy cells, discuss any limitations on their interpretation from recording LFPs rather than the single-unit ensemble activity (where the information is really encoded).

      Thank you for your insightful comment. We have added the following text to the discussion:

      “Given that different SWRs may encode information that correlates with different experiences, it is also possible that the activity of individual MCs may play a role in encoding different experiences via SWRs. Indeed, several in vivo studies have confirmed that MC activity is involved in the space encoding (Bui et al., 2018; Huang et al., 2024). However, the relationship with SWRs has not been investigated. The significance of the fact that the SWR recorded from CA3 is reflected in the MC as synaptic input is that it not only shows the transmission pathway from CA3 to MC, but also reveals the information below the threshold that leads to firing, and in a broad sense, it approaches the mechanism by which information processing by neuronal firing. And the expression of synaptic input to the MC is not uniform, but varies in a variety of ways according to the pattern of SWR. Based on previous research showing that diversity is important for information representation (Padmanabhan and Urban, 2010; Tripathy et al., 2013), it is possible that this heterogeneity in membrane potential levels, rather than the all-or-none output of neuronal firing activity, is the key to encoding more precise information. In this respect, our research, which focuses on information encoding at the subthreshold level, may be able to extract even more information than information encoded by firing activity. ” (Page 14, Line 419)

      7) In Figure 1C, the maximum of the MC response on the first inset precedes the SW, and the onset of the Vm response may be simultaneous with SW. This would suggest that the SW did not drive the mossy cell, but this was a coincident event. How many SW-mossy cell recordings are like this? Do the authors have a technical reason to believe that these are events in which the mossy cell is driven by the CA3 cells active during the SW?

      Thank you for your insightful comment. Based on your comment, we have aligned all the MC EPSPs for each SWR onset and found that the EPSPs rise after the SWR onset (Figure 1 - figure supplement 2). This leads us to believe that the EPSP of the MC is most likely driven by the SWR.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This manuscript described a structure-guided approach to graft important antigenic loops of the neuraminidase to a homotypic but heterologous NA. This approach allows the generation of well-expressed and thermostable recombinant proteins with antigenic epitopes of choice to some extent. The loop-grafted NA was designated hybrid.

      Strengths:

      The hybrid NA appeared to be more structurally stable than the loop-donor protein while acquiring its antigenicity. This approach is of value when developing a subunit NA vaccine which is difficult to express. So that antigenic loops could be potentially grafted to a stable NA scaffold to transfer strain-specific antigenicity.

      Weaknesses:

      However, major revisions to better organize the text, and figure and make clarifications on a number of points, are needed. There are a few cases in which a later figure was described first, data in the figures were not sufficiently described, or where there were mismatched references to figures.

      More importantly, the hybrid proteins did not show any of the advantages over the loop-donor protein in the format of VLP vaccine in mouse studies, so it's not clear why such an approach is needed to begin with if the original protein is doing fine.

      We thank the reviewer for their helpful comments. We have incorporated feedback from the authors to improve the manuscript. Please see our point-by-point response.

      The purpose of loop-grafting between H5N1/2021 (a high-expressor) and the PR8 virus was not to improve the expression of PR8, which is already a good expressing NA. Instead, the loop-grafting and the in vivo experiments were done to show the loop-specific protection following a lethal PR8 virus challenge.

      Reviewer #2 (Public review):

      In their manuscript, Rijal and colleagues describe a 'loop grafting' strategy to enhance expression levels and stability of recombinant neuraminidase. The work is interesting and important, but there are several points that need the author's attention.

      Major points

      (1) The authors overstress the importance of the epitopes covered by the loops they use and play down the importance of antibodies binding to the side, the edges, or the underside of the NA. A number of papers describing those mAbs are also not included.

      We have discussed the distribution of epitopes on NA molecule in the Discussion section "The distribution of epitopes in neuraminidase" (new line number 350). In Supplementary Figures 1 and 2, we have compiled the epitopes reported by polyclonal sera and mAbs via escape virus selection or crystal structural studies. There are 45 residues examples of escape virus selection, and we found that approximately 90% of the epitopes are located within the top loops (Loops 01 and Loops 23, which include the lateral sides and edges of NA). We have also included the epitopes of underside mAbs NDS.1 and NDS.3 in Supplementary Figure 2. Some of the interactions formed by these mAbs are also within the L01 and L23 loops. All relevant references are cited in Supplementary Figures 1 and 2.

      A new figure has been added [Figure 1b (ii)] to illustrate the surface mapping of epitopes on NA.

      (2) The rationale regarding the PR8 hybrid is not well described and should be described better.

      We described the rationale for the PR8 hybrid (new lines 247-250). For clarity, we have added the following sentence within the section "Loop transfer between two distant N1 NAs:...."

      (new lines 255-258):

      "mSN1 showed sufficient cross-reactivity to N1/09 to protect mice against virus challenge. Therefore, we performed loop transfer between mSN1 and PR8N1, which differ by 18 residues within the L01 and L23 loops and show no or minimal cross-reactivity, to assess the loop-specific protection."

      (3) Figure 3B and 6C: This should be given as numbers (quantified), not as '+'.

      We have included the numerical data in Supplementary Figure 6. The data is presented in semi-quantitative manner for simplification. To improve clarity, we have now added the following sentence to the Figure 3c legend: "Refer to Supplementary Figure 6 for binding titration data".

      (4) Figure 5A and 7A: Negative controls are missing.

      A pool of Empty VLP sera was included as a negative control, showing no inhibition at 1:40 dilution. In the figure legends, we have stated "Pooled sera to unconjugated mi3 VLP was negative control and showed no inhibition at 1:40 dilution (not included in the graphs)"

      (5) The authors claim that they generate stable tetramers. Judging from SDS-PAGE provided in Supplementary Figure 3B (BS3-crosslinked), many different species are present including monomers, dimers, tetramers, and degradation products of tetramers. In line 7 for example there are at least 5 bands.

      Tetrameric conformation of soluble proteins is evidenced by the size-exclusion chromatographs shown in Figures 3a and 6b. The BS3 crosslinked SDS-PAGE are only suggestive data, indicating that the protein is a tetramer if a band appears at ~250 kDa. However, depending on the reaction conditions, lower molecular weight bands may also be observed if crosslinking is incomplete.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Wu et al. introduce a novel approach to reactivate the Muller glia cell cycle in the mouse retina by simultaneously reducing p27Kip1 and increasing cyclin D1 using a single AAV vector. The approach effectively promotes Muller glia proliferation and reprograming without disrupting retinal structure or function. Interestingly, reactivation of the Muller glia cell cycle downregulates IFN pathway, which may contribute to the induced retinal regeneration. The results presented in this manuscript may offer a promising approach for developing Müller glia cell-mediated regenerative therapies for retinal diseases.

      Strengths:

      The data are convincing and supported by appropriate, validated methodology. These results are both technically and scientifically exciting and are likely to appeal to retinal specialists and neuroscientists in general.

      Weaknesses:

      There are some data gaps that need to be addressed.

      (1) Please label the time points of AAV injection, EdU labeling, and harvest in Figure 1B.

      We thank the reviewer for highlighting the lack of clarity in our experimental design. We have labeled all experiment timelines in the figures where appropriate in the revised version.

      (2) What fraction of Müller cells were transduced by AAV under the experimental conditions?

      We apologize for not clearly explaining the AAV transduction effeciency. AAV transduction efficiency was not uniform across the retinas. The retinal region adjacent to the optic nerve exhibits a transduction efficiency of nearly 100%. In contrast, the peripheral retina shows a lower transduction efficiency compared to the central region. The representative retinal sections with typical infection pattern are shown in Supplementary figure 4. The quantification of Edu+ MG or other markers was conducted in a 250 µm region with the highest efficiency. For scRNA-seq experiment, retinal regions with high AAV transduction efficiency were dissected with the aid of a control GFP virus.   

      (3) It seems unusually rapid for MG proliferation to begin as early as the third day after CCA injection. Can the authors provide evidence for cyclin D1 overexpression and p27 Kip1 knockdown three days after CCA injection?

      We included the data that GFP expression is evident at 3 days post AAV-GFP-GFP injection (Supplementary Fig. 1B). Additionally, we performed immunostaining and confirmed cyclin D1 overexpression at 3 days post CCA injection (Fig. 2E) as well as qPCR analysis to confirm cyclin D1 overexpression and p27kip1 knockdown at the same time point (Supplementary Fig. 5).

      (4) The authors reported that MG proliferation largely ceased two weeks after CCA treatment. While this is an interesting finding, the explanation that it might be due to the dilution of AAV episomal genome copies in the dividing cells seems far-fetched.

      We agree with the reviewer that dilution of AAV episomal genomes is unlikely to be the sole reason for the stop of MG proliferation. By staining cyclin D1 at various days post CCA injection, we found that cyclin D1 is immediately downregulated in the mitotic MG undergoing interkinetic nuclear migration to the outer nuclear layer (Fig. 2G-I). In contrast, the effect of p27<sup>kip1</sup> knockdown by CCA lasted longer (Supplementary Figure 9-10). It is possible that other anti-proliferative genes are involved in the immediate downregulation of Cyclin D1.

      Reviewer #2 (Public Review):

      This manuscript by Wu, Liao et al. reports that simultaneous knockdown of P27Kip1 with overexpression of Cyclin D can stimulate Muller glia to re-enter the cell cycle in the mouse retina. There is intense interest in reprogramming mammalian muller glia into a source for neurogenic progenitors, in the hopes that these cells could be a source for neuronal replacement in neurodegenerative diseases. Previous work in the field has shown ways in which mouse Muller glia can be neurogenically reprogrammed and these studies have shown cell cycle re-entry prior to neurogenesis. In other works, typically, the extent of glial proliferation is limited, and the authors of this study highlight the importance of stimulating large numbers of Muller glia to re-enter the cell cycle with the hopes they will differentiate into neurons. While the evidence for stimulating proliferation in this study is convincing, the evidence for neurogenesis in this study is not convincing or robust, suggesting that stimulating cell cycle-reentry may not be associated with increasing regeneration without another proneural stimulus.

      Below are concerns and suggestions.

      Intro:

      (1) The authors cite past studies showing "direct conversion" of MG into neurons. However, these studies (PMID: 34686336; 36417510) show EdU+ MG-derived neurons suggesting cell cycle re-entry does occur in these strategies of proneural TF overexpression.

      We thank the reviewer for pointing this out. We have revised the statement to "MG reprogramming".

      (2) Multiple citations are incorrectly listed, using the authors first name only (i.e. Yumi, et al; Levi, et al;). Studies are also incompletely referenced in the references.

      We apologize for the mistakes in reference. We have corrected the reference mistakes in the revised version.

      Figure 1:

      (3) When are these experiments ending? On Figure 1B it says "analysis" on the end of the paradigm without an actual day associated with this. This is the case for many later figures too. The authors should update the paradigms to accurately reflect experimental end points.

      We thank the reviewer for highlighting the lack of clarity in our experimental design. We have labeled all experiment timelines in the figures where appropriate in the revised version.

      (4) Are there better representative pictures between P27kd and CyclinD OE, the EdU+ counts say there is a 3 fold increase between Figure 1D&E, however the pictures do not reflect this. In fact, most of the Edu+ cells in Figure 1E don't seem to be Sox9+ MG but rather horizontally oriented nuclei in the OPL that are likely microglia.

      Thanks to the reviewer for pointing this out. We have replaced the image of cyclin D1 OE retina which a more representative image.

      (5) Is the infection efficacy of these viruses different between different combinations (i.e. CyclinD OE vs. P27kd vs. control vs. CCA combo)? As the counts are shown in Figure 1G only Sox9+/Edu+ cells are shown not divided by virus efficacy. If these are absolute counts blind to where the virus is and how many cells the virus hits, if the virus efficacy varies in efficiency this could drive absolute differences that aren't actually biological.

      Rule out the possibility that the differences in MG proliferation across groups are due to variations in viral efficacy, we have examined the p27<sup>kip1</sup> knockdown and cyclin D1 overexpression efficiencies for all four groups by qPCR analysis. The result showed that cyclin D1 overexpression efficiency by AAV-GFAP-Cyclin D1 virus alone or P27 knockdown efficiency by AAV-GFAP-mCherry-p27kip1 shRNA1 is comparable to, if not even higher than, those by CCA virus (Supplementary Fig 5). Therefore, the virus efficacy cannot explain the drastic increase in MG proliferation by CCA. 

      As the central retina usually had 100% infection efficacy (Supplementary Fig. 4), we quantified the Edu+Sox9+ cell number in the 250µm regions next to the optic nerve.

      (6) According to the Jax laboratories, mice aren't considered aged until they are over 18months old. While it is interesting that CCA treatment does not seem to lose efficacy over maturation I would rephrase the findings as the experiment does not test this virus in aged retinas.

      Thank you to the reviewer for bringing this to our attention. We have changed to “older adult mice” in our revised manuscript.

      (7) Supplemental Figure 2c-d. These viruses do not hit 100% of MG, however 100% of the P27Kip staining is gone in the P27sh1 treatment, even the P27+ cell in the GCL that is likely an astrocyte has no staining in the shRNA 1 picture. Why is this?

      We have replaced the images in Supplementary Fig. 2B-D.

      Figure 2

      (8) Would you expect cells to go through two rounds of cell cycle in such a short time? The treatment of giving Edu then BrdU 24 hours later would have to catch a cell going through two rounds of division in a very short amount of time. Again the end point should be added graphically to this figure.

      We thank the reviewer for the comment. We repeated the Edu/BrdU colabelling experiment with extended periods of Edu/BrdU injections. Based on the result of the MG proliferation time course study (Fig. 2A), we injected 5 times of Edu from D1 to D5 and 5 times of BrdU from D6 to D10 post-CCA injection, which covered the major phase of MG proliferation (Fig. 2B-C). Consistent with the previous findings, we did not observe any BrdU&EdU double positive MG cells.

      Additionally, we showed that cyclin D1 overexpression immediately ceased in migrating mitotic MG (Fig. 2G-I), which may explain why CCA-treated MG do not progress to the second round of cell division.

      Figure 3

      (9) I am confused by the mixing of ratios of viruses to indicate infection success. I know mixtures of viruses containing CCA or control GFP or a control LacZ was injected. Was the idea to probe for GFP or LacZ in the single cell data to see which cells were infected but not treated? This is not shown anywhere?

      The virus infection was not uniform across the entire retina (Supplementary Fig. 4). To mark the infection hotspots, we added 10% GFP virus to the mixture. Regions of the retina with low infection efficiency were removed by dissection and excluded from the scRNA-seq analysis. Therefore, we assumed that the vast majority of MG were infected by CCA. We apologize for not clearly explaining this methodological detail in the original text. We have added the experimental design to Fig. 3A and revised the result part (line 191-196) accordingly.

      (10) The majority of glia sorted from TdTomato are probably not infected with virus. Can you subset cells that were infected only for analysis? Otherwise it makes it very hard to make population judgements like Figure 3E-H if a large portion are basically WT glia.

      This question is related to the last one. Since the regions with high virus infection efficiency were selectively dissected and isolated for analysis, the CCA-infected MG should constitute the vast majority of MG in the scRNA-seq data.

      (11) Figure 3C you can see Rho is expressed everywhere which is common in studies like this because the ambient RNA is so high. This makes it very hard to talk about "Rod-like" MG as this is probably an artifact from the technique. Most all scRNA-seq studies from MG-reprogramming have shown clusters of "rods" with MG hybrid gene expression and these had in the past just been considered an artifact.

      We agree with the reviewer that the high rod gene expression in the rod-MG cluster is an artifact. We have performed multiple rounds of RNA in situ hybridization on isolated MG nuclei. The counts of Gnat1 and Rho mRNA signal are largely overlapped between the two samples with and without CCA treatment (Supplementary Fig 14). Some MG in the control retinas without CCA treatment had up to 7 or 8 dots per cell, suggesting contamination of attached rod cell debris during retina dissociation (Supplementary Fig 14). Therefore, the result did not support that rod-MG is a reprogrammed MG population with rod gene upregulation.

      (12) It is mentioned the "glial" signature is downregulated in response to CCA treatment. Where is this shown convincingly? Figure H has a feature plot of Glul, which is not clear it is changed between treatments. Otherwise MG genes are shown as a function of cluster not treatment.

      We have added box plots of several MG-specific genes to illustrate the downregulation of the glial signature in the relevant cell cluster in the revised manuscript (Supplementary Fig. 15).

      Figure 4

      (13) The authors should be commended for being very careful in their interpretations. They employ the proper controls (Er-Cre lineage tracing/EdU-pulse chasing/scRNA-seq omics) and were very careful to attempt to see MG-derived rods. This makes the conclusion from the FISH perplexing. The few puncta dots of Rho and GNAT in MG are not convincing to this reviewer, Rho and GNAT dots are dense everywhere throughout the ONL and if you drew any random circle in the ONL it would be full of dots. The rigor of these counts also comes into question because some dots are picked up in MG in the INL even in the control case. This is confusing because baseline healthy MG do not express RNA-transcripts of these Rod genes so what is this picking up? Taken together, the conclusion that there are Rod-like MG are based off scRNA-seq data (which is likely ambient contamination) and these FISH images. I don't think this data warrants the conclusion that MG upregulate Rod genes in response to CCA.

      Given the results of RNA in situ hybridization on isolated MG, we revisited the result of the RNA in situ hybridization on retinal sections as well. We performed RNA in situ in the retinal section at 1 week post CCA treatment, expecting to see lower Gnat1 and Rho signals in the ONL-localizing MG compared to 3 weeks and 4 months post CCA treatment. However, we observed similar levels across all three time points (data not shown). The lack of dynamic changes in rod gene expression levels also suggests contamination from tightly surrounding neighboring rods. Consequently, we have reinterpreted the scRNA-seq and RNA FISH data and withdrawn the conclusion that MG upregulated rod genes after CCA treatment. We thank the reviewer for pointing out this potential issue and helping us avoid an incorrect conclusion.

      Figure 5

      (14) Similar point to above but this Glul probe seems odd, why is it throughout the ONL but completely dark through the IPL, this should also be in astrocytes can you see it in the GCL? These retinas look cropped at the INL where below is completely black. The whole retinal section should be shown. Antibodies exist to GS that work in mouse along with many other MG genes, IHC or western blots could be done to better serve this point.

      We have replaced the images in Figure 4 in the revised manuscript. Additionally, we have performed the Sox9 antibody staining to demonstrate partial MG dedifferentiation following CCA treatment (Figure 5).

      Figure 6

      (15) Figure 6D is not a co-labeled OTX2+/ TdTomato+ cell, Otx2 will fill out the whole nucleus as can be seen with examples from other MG-reprogramming papers in the field (Hoang, et al. 2020; Todd, et al. 2020; Palazzo, et al. 2022). You can clearly see in the example in Figure 6D the nucleus extending way beyond Otx2 expression as it is probably overlapping in space. Other examples should be shown, however, considering less than 1% of cells were putatively Otx2+, the safer interpretation is that these cells are not differentiating into neurons. At least 99.5% are not.

      We have replaced the image of Otx2+ Tdt+ Edu+ cell, which shows the whole nucleus filled with strong Otx2 staining.  

      (16) Same as above Figure 6I is not convincingly co-labeled HuC/D is an RNA-binding protein and unfortunately is not always the clearest stain but this looks like background haze in the INL overlapping. Other amacrine markers could be tested, but again due to the very low numbers, I think no neurogenesis is occurring.

      Since we didn’t find HuC/D+Tdt+EdU+ cells at 3 weeks post CCA treatment, we believe that the weak HuC/D+ staining in the MG daughter cells at 4 months is not background, but rather reflects an incomplete neurogenic switch. This suggests that the process of neurogenesis may be ongoing but not fully realized within the observed timeframe without additional stimuli.

      (17) In the text the authors are accidently referring to Figure 6 as Figure 7.

      We thank the reviewer for pointing out the mistake. We will correct the mistake in the revised manuscript.

      Figure 7

      (18) I like this figure and the concept that you can have additional MG proliferating without destroying the retina or compromising vision. This is reminiscent of the chick MG reprogramming studies in which MG proliferate in large numbers and often do not differentiate into neurons yet still persist de-laminated for long time points.

      General:

      (19) The title should be changed, as I don't believe there is any convincing evidence of regeneration of neurons. Understanding the barriers to MG cell-cycle re-entry are important and I believe the authors did a good job in that respect, however it is an oversell to report regeneration of neurons from this data.

      We thank the reviewer for the suggestion. We have changed the title to “Simultaneous cyclin D1 overexpression and p27kip1 knockdown enable robust Müller glia cell cycle reactivation in uninjured mouse retina” in the revised manuscript.

      (20) This paper uses multiple mouse lines and it is often confusing when the text and figures switch between models. I think it would be helpful to readers if the mouse strain was added to graphical paradigms in each figure when a different mouse line is employed.

      We have labeled the mouse lines used in each experiment in the figures where appropriate.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Mehmet Mahsum Kaplan et al. demonstrate that Meis2 expression in neural crest-derived mesenchymal cells is crucial for whisker follicle (WF) development, as WF fails to develop in wnt1-Cre;Meis2 cKO mice. Advanced imaging techniques effectively support the idea that Meis2 is essential for proper WF development and that nerves, while affected in Meis2 cKO, are dispensable for WF development and not the primary cause of WF developmental failure. The study also reveals that although Meis2 significantly downregulates Foxd1 in the mesenchyme, this is not the main reason for WF development failure. The paper presents valuable data on the role of mesenchymal Meis2 in WF development. However, further quantification and analysis of the WF developmental phenotype would be beneficial in strengthening the claim that Meis2 controls early WF development rather than causing a delay or arrest in development. A deeper sequencing data analysis could also help link Meis2 to its downstream targets that directly impact the epithelial compartment.

      Strengths:

      (1) The authors describe a novel molecular mechanism involving Mesenchymal Meis2 expression, which plays a crucial role in early WF development.

      (2) They employ multiple advanced imaging techniques to illustrate their findings beautifully.

      (3) The study clearly shows that nerves are not essential for WF development.

      We thank the reviewer for valuable comments that will help improve our study.

      Weaknesses:

      (1) The authors claim that Meis2 acts very early during development, as evidenced by a significant reduction in EDAR expression, one of the earliest markers of placode development. While EDAR is indeed absent from the lower panel in Figure 3C of the Meis2 cKO, multiple placodes still express EDAR in the upper two panels of the Meis2 cKO. The authors also present subsequent analysis at E13.3, showing one escaped follicle positive for SHH and Sox9 in Figures 1 and 3. Does this suggest that follicles are specified but fail to develop? Alternatively, could there be a delay in follicle formation? The increase in Foxd1 expression between E12.5 and E13.5 might also indicate delayed follicle development, or as the authors suggest, follicles that have escaped the phenotype. The paper would significantly benefit from robust quantification to accompany their visual data, specifically quantifying EDAR, Sox9, and Foxd1 at different developmental stages. Additionally, analyzing later developmental stages could help distinguish between a delay or arrest in WF development and a complete failure to specify placodes.

      The earliest DC (FOXD1) and placodal (EDAR, LEF1) markers tested in this study were observed only in the escaped WFs whereas these markers were missing in expected WF sites in mutants. This was also reflected in the loss of typical placodal morphology in the mutant’s epithelium. On the other hand, escaped WFs developed normally as shown by the analysis in Supp Fig 1A-B showing their normal size. These data suggest that development of escaped WFs is not delayed because they would appear smaller in size. To strengthen this conclusion, we assessed whisker development at E18.5 in Meis2 cKO mice by EDAR staining and results are shown in newly added Supplementary Figure 2. This experiment revealed that whisker phenotype persisted until E18.5 therefore this phenotype cannot be explained by a developmental delay.

      As far as quantification is concerned, we have already quantified the number of whiskers in controls and mutants at E12.5 and E13.5 in all whole mount experiments we did, i.e. Shh ISH and SOX9 or EDAR whole mount IFC. We pooled all these numbers together and calculated the whisker number reduction to 5.7+/-2.0% at E12.5 and 17.1+/-5.9 at E13.5. Line:132-134.

      (2) The authors show that single-cell sequencing reveals a reduction in the pre-DC population, reduced proliferation, and changes in cell adhesion and ECM. However, these changes appear to affect most mesenchymal cells, not just pre-DCs. Moreover, since E12.5 already contains WFs at different stages of development, as well as pre-DCs and DCs, it becomes challenging to connect these mesenchymal changes directly to WF development. Did the authors attempt to re-cluster only Cluster 2 to determine if a specific subpopulation is missing in Meis2 cKO? Alternatively, focusing on additional secreted molecules whose expression is disrupted across different clusters in Meis2 cKO could provide insights, especially since mesenchymal-epithelial communication is often mediated through secreted molecules. Did the authors include epithelial cells in the single-cell sequencing, can they look for changes in mesenchyme-epithelial cell interactions (Cell Chat) to indicate a possible mechanism?

      We agree with the reviewer that the effect of Meis2 on cell proliferation and expression of cell adhesion and ECM markers are more general because they take place in the whole underlying mesenchyme. Our genetic tools did not allow specific targeting of DC or pre-DCs. Nonetheless, we trust that our data show that mesenchymal Meis2 is required for the initial steps of WF development including Pc formation. As far as bioinformatics data are concerned, this data set was taken from the large dataset GSE262468 covering the whole craniofacial region which led to very limited cell numbers in the cluster 2 (DC): WT_E12_5 --> 28, WT_E13_5 --> 131, MUT_E12_5 --> 19, MUT_E13_5 --> 28. Unfortunately, such small cell numbers did not allow further sub-clustering, efficient normalization, integration and conclusions from their transcriptional profiles. Although a number of interesting differentially expressed genes were identified (see supplementary datasets), none of them convincingly pointed at reasonable secreted molecule candidate. 

      We agree with the reviewer that cellchat analysis could provide robust indication of the mesenchymal-epithelial communication, however our datasets included only mesenchymal cell population (Wnt1-Cre2progeny) and epithelial cells were excluded by FACS prior to sc RNA-seq. (Hudacova et al. https://doi.org/10.1016/j.bone.2024.117297)

      (3) The authors aim to link Meis2 expression in the mesenchyme with epithelial Wnt signaling by analyzing Lef1, bat-gal, Axin1, and Wnt10b expression. However, the changes described in the figures are unclear, and the phenotype appears highly variable, making it difficult to establish a connection between Meis2 and Wnt signaling. For instance, some follicles and pre-condensates are Lef1 positive in Meis2 cKO. Including quantification or providing a clearer explanation could help clarify the relationship between mesenchymal Meis2 and Wnt signaling in both epidermal and mesenchymal cells. Did the authors include epithelial cells in the sequencing? Could they use single-cell analysis to demonstrate changes in Wnt signaling?

      We have now analyzed changes in LEF1 staining intensity in the epithelium and in the upper dermis. According to these quantifications, we observed a considerable decline in the number of LEF1+ placodes in the epithelium which corresponds to the lower number of placodes. On the other hand, LEF1 intensity in the ‘escaped’ placodes were similar between controls and mutants. LEF1 signal in the upper dermis is very strong overall and its quantification did not reveal any changes in the DC and non-DC region of the upper dermis. These data corroborate with our conclusion that Meis2 in the mesenchyme is not crucial for the dermal WNT signaling but is required for induction of LEF1 expression in the epithelium. However, once ‘escaper’ placodes appear, they display normal wnt signaling in Pc, DC and subsequent development. These quantitative data have been added to the revised manuscript. Line247-260.

      (4) Existing literature, including studies on Neurog KO and NGF KO, as well as the references cited by the authors, suggest that nerves are unlikely to mediate WF development. While the authors conduct a thorough analysis of WF development in Neurog KO, further supporting this notion, this point may not be central to the current work. Additionally, the claim that Meis2 influences trigeminal nerve patterning requires further analysis and quantification for validation.

      We agree with the reviewer that analysis of the Neurogenin1 knockout mice should not be central to this report. Nonetheless, a thorough analysis of WF development in Neurog1 KO was needed to distinguish between two possible mechanisms: whisker phenotype in Meis2 cKO results from 1. impaired nerve branching 2. Function of Meis2 in the mesenchyme. We will modify the text accordingly to make this clearer to readers. We also agree that nerve branching was not extensively analyzed in the current study but two samples from mutant mice were provided (Fig1 and Supp Videos), reflecting the consistency of the phenotype (see also Machon et al. 2015). This section was not central to this report either but led us to focus fully on the mesenchyme. We think that Meis2 function in cranial nerve development is very interesting and deserves a separate study.

      We have edited the introduction to reflect the literature better. Line70-79.

      (5) Meis2 expression seems reduced but has not entirely disappeared from the mesenchyme. Can the authors provide quantification?

      We have attempted to quantify MEIS2 staining in the snout dermis. However, the background fluorescence made it challenging to reliable quantify. Additionally, since at the point, dermal region where MEIS2 expression is relevant to induce WF formation is not known, we were unable to determine the regions to analyze. Instead, we now added three additional images from multiple regions of the snout sections stained with MEIS2 antibody in Supplementary Figure 1C. We believe newly added images will make our conclusion that MEIS2 is efficiently deleted in the mutants more convincing.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Kaplan et al. study mesenchymal Meis2 in whisker formation and the links between whisker formation and sensory innervation. To this end, they used conditional deletion of Meis2 using the Wnt1 driver. Whisker development was arrested at the placode induction stage in Meis2 conditional knockouts leading to the absence of expression of placodal genes such as Edar, Lef1, and Shh. The authors also show that branching of trigeminal nerves innervating whisker follicles was severely affected but that whiskers did form in the complete absence of trigeminal nerves.

      Strengths:

      The analysis of Meis2 conditional knockouts convincingly shows a lack of whisker formation and all epithelial whisker/hair placode markers were analyzed. Using Neurog1 knockout mice, the authors show equally convincingly that whiskers and teeth develop in the complete absence of trigeminal nerves.

      We thank the reviewer for valuable comments that will help improve our study.

      Weaknesses:

      The manuscript does not provide much mechanistic insight as to why mesenchymal Meis2 leads to the absence of whisker placodes. Using a previously generated scRNA-seq dataset they show that two early markers of dermal condensates, Foxd1 and Sox2, are downregulated in Meis2 mutants. However, given that placodes and dermal condensates do not form in the mutants, this is not surprising and their absence in the mutants does not provide any direct link between Meis2 and Foxd1 or Sox2. (The absence of a structure evidently leads to the absence of its markers.)

      We apologize for unclear explanation of our data. We meant that Meis2 is functionally upstream of Foxd1 because Foxd1 is reduced upon Meis2 deletion. This means that during WF formation, Meis2 operates before Foxd1 induction and does not mean necessarily that Meis2 directly controls expression of Foxd1. Yes, we agree with reviewer’s note that Foxd1 and Sox2, as known DC markers, decline because the number of WF declines. We wanted to convince readers that Meis2 operates very early in the GRN hierarchy during WF development. We also admit that we provide poor mechanistic insights into Meis2 function as a transcription factor. We think that this weak point does not lower the value of the report showing indispensable role of Meis2 in WFs.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The text could benefit from editing.

      We have proofread the text.

      Some information is missing from the materials and methods section - a description of sequenced cells, the ISH protocol used, etc.

      Methodological section has been updated and single-cell experiments were performed and described in detail by Hudacova et al. 2025  (https://doi.org/10.1016/j.bone.2024.117297). We have utilized these datasets for scRNA analysis which has been described sufficiently in the referred paper. Reference for standard in site protocol has been added.

      Reviewer #2 (Recommendations for the authors):

      In the Introduction of the paper, the authors raise the question on the role of innervation in whisker follicle induction "It has been speculated that early innervation plays a role in initiating WF formation (ref. 1)"...and..."this revives the previous speculations that axonal network may be involved in WF positioning". However, the authors forget to mention that Wrenn & Wessless, 1984 (reference 1 in the manuscript) made exactly the opposite conclusion and stated e.g. "Nerve trunks and branches are present in the maxillary process well before any sign of vibrissa formation. Because innervation is so widespread there appears to be no immediate temporal correlation between the outgrowth of a nerve branch to a site and the generation of a vibrissa there. Furthermore, at the time just prior to the formation of the first follicle rudiment, there is little or no nerve branching to the presumptive site of that first follicle while branches are found more dorsally where vibrissae will not form until later." Therefore, I find that referring to the paper by Wrenn & Wessells is somewhat misleading. Given that the whisker follicles develop in ex vivo cultured whisker pads further hints that innervation is unlikely to play a role in whisker follicle induction.

      The Introduction also hints at the role of innervation in tooth induction but forgets to refer to the literature that shows exactly the opposite. Based on the evidence it rather appears that the developing tooth regulates the establishment of its own nerve supply, not that the nerves would regulate induction of tooth development.

      in my opinion, the Introduction should be partially rewritten to better reflect the literature.

      The introduction has been revised to better reflect the literature on the role of innervation on WF and tooth development. Line70-87.

      The authors conclude that Meis2 is upstream of Foxd1, but the evidence is based on the lack of Foxd1 expression in Meis2 mutants. However, as whiskers do not form, evidently all markers are also absent. More direct evidence of Meis2 being upstream of Foxd1 (or Sox2) should be presented to consolidate the conclusions.

      We have already reacted to this point above in the section Weaknesses. The text is now modified so that the interpretation is correct. Line: 407-409.

      Other comments:

      Author contributions state that XX performed experiments but the author list does not include anyone with such initials.

      This error has been corrected in revision.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the editor and reviewers for their supportive comments about our modeling approach and conclusions, and for raising several valid concerns; we address them briefly below. In addition, a detailed, point-by-point response to the reviewers’ comments are below, along with additions and edits we have made to the revised manuscript. 

      Concerns about model’s biological realism and impact on interpretations

      The goal of this paper was to use an interpretable and modular model to investigate the impact of varying sensorimotor delays. Aspects of the model (e.g. layered architecture, modularity) are inspired by biology; at the same time, necessary abstractions and simplifications (e.g. using an optimal controller) are made for interpretability and generalizability, and they reflect common approaches from past work. The hypothesized effects of certain simplifying assumptions are discussed in detail in Section 3.5. Furthermore, the modularity of our model allows us to readily incorporate additional biological realism (e.g. biomechanics, connectomics, and neural dynamics) in future work. In the revision, we have added citations and edits to the text to clarify these points.

      Concerns that the model is overly complex

      To investigate the impact of sensorimotor delays on locomotion, we built a closed-loop model that recapitulates the complex joint trajectories of fly walking. We agree that locomotion models face a tradeoff between simplicity/interpretability and realism — therefore, we developed a model that was as simple and interpretable as possible, while still reasonably recapitulating joint trajectories and generalizing to novel simulation scenarios. Along these lines, we also did not select a model that primarily recreates empirical data, as this would hinder generalizability and add unnecessary complexity to the model. We do not think these design choices are significant weaknesses of this model; in fact, few comparable models account for all joints involved in locomotion, and fewer explicitly compare model kinematics with kinematics from data. We have add citations and edits to the text to clarify these points in the revision. 

      Concerns about the validity of the Kinematic Similarity (KS) metric to evaluate walking

      We chose to incorporate only the first two PCA modes dimensions in the KS metric because the kernel density estimator performs poorly for high dimensional data. Our primary use of this metric was to indicate whether the simulated fly continues walking in the presence of perturbations. For technical reasons, it is not feasible to perform equivalent experiments on real walking flies, which is one of the reasons we explore this phenomenon with the model. We note the dramatic shift from walking to nonwalking as delay increases (Figure 5). To be thorough, in the revision, we have investigated the effect of incorporating additional PCA modes, and whether this affects the interpretation of our results. We have additionally added to the discussion and presentation of the KS metric to clarify its purpose in this study. We agree with the reviewers that the KS metric is too coarse to reflect fine details of joint kinematics; indeed, in the unperturbed case, we evaluate our model’s performance using other metrics based on comparisons with empirical data (Figures 2, 7, 8). 

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this work, the authors present a novel, multi-layer computational model of motor control to produce realistic walking behaviour of a Drosophila model in the presence of external perturbations and under sensory and motor delays. The novelty of their model of motor control is that it is modular, with divisions inspired by the fly nervous system, with one component based on deep learning while the rest are based on control theory. They show that their model can produce realistic walking trajectories. Given the mostly reasonable assumptions of their model, they convincingly show that the sensory and motor delays present in the fly nervous system are the maximum allowable for robustness to unexpected perturbations.

      Their fly model outputs torque at each joint in the leg, and their dynamics model translates these into movements, resulting in time-series trajectories of joint angles. Inspired by the anatomy of the fly nervous system, their fly model is a modular architecture that separates motor control at three levels of abstraction:

      (1) oscillator-based model of coupling of phase angles between legs,

      (2) generation of future joint-angle trajectories based on the current state and inputs for each leg (the trajectory generator), and

      (3) closed-loop control of the joint-angles using torques applied at every joint in the model (control and dynamics).

      These three levels of abstraction ensure coordination between the legs, future predictions of desired joint angles, and corrections to deviations from desired joint-angle trajectories. The parameters of the model are tuned in the absence of external perturbations using experimental data of joint angles of a tethered fly. A notable disconnect from reality is that the dynamics model used does not model the movement of the body and ground contacts as is the case in natural walking, nor the movement of a ball for a tethered fly, but instead something like legs moving in the air for a tethered fly.

      n order to validate the realism of the generated simulated walking trajectories, the authors compare various attributes of simulated to real tethered fly trajectories and show qualitative and quantitative similarities, including using a novel metric coined as Kinematic Similarity (KS). The KS score of a trajectory is a measure of the likelihood that the trajectory belongs to the distribution of real trajectories estimated from the experimental data. While such a metric is a useful tool to validate the quality of simulated data, there is some room for improvement in the actual computation of this score. For instance, the KS score is computed for any given time-window of walking simulation using a fraction of information from the joint-angle trajectories. It is unclear if the remaining information in joint-angle trajectories that are not used in the computation of the KS score can be ignored in the context of validating the realism of simulated walking trajectories.

      The authors validate simulated walking trajectories generated by the trained model under a range of sensorimotor delays and external perturbations. The trained model is shown to generate realistic jointangle trajectories in the presence of external perturbations as long as the sensorimotor delays are constrained within a certain range. This range of sensorimotor delays is shown to be comparable to experimental measurements of sensorimotor delays, leading to the conclusion that the fly nervous system is just fast enough to be robust to perturbations.

      Strengths:

      This work presents a novel framework to simulate Drosophila walking in the presence of external perturbations and sensorimotor delay. Although the model makes some simplifying assumptions, it has sufficient complexity to generate new, testable hypotheses regarding motor control in Drosophila. The authors provide evidence for realistic simulated walking trajectories by comparing simulated trajectories generated by their trained model with experimental data using a novel metric proposed by the authors. The model proposes a crucial role in future predictions to ensure robust walking trajectories against external perturbations and motor delay. Realistic simulations under a range of prediction intervals, perturbations, and motor delays generating realistic walking trajectories support this claim. The modular architecture of the framework provides opportunities to make testable predictions regarding motor control in Drosophila. The work can be of interest to the Drosophila community interested in digitally simulating realistic models of Drosophila locomotion behaviors, as well as to experimentalists in generating testable hypotheses for novel discoveries regarding neural control of locomotion in Drosophila. Moreover, the work can be of broad interest to neuroethologists, serving as a benchmark in modelling animal locomotion in general.

      We thank the reviewer for their positive comments.

      Weaknesses:

      As the authors acknowledge in their work, the control and dynamics model makes some simplifying assumptions about Drosophila physics/physiology in the context of walking. For instance, the model does not incorporate ground contact forces and inertial effects of the fly's body. It is not clear how these simplifying assumptions would affect some of the quantitative results derived by the authors. The range of tolerable values of sensorimotor delays that generate realistic walking trajectories is shown to be comparable with sensorimotor delays inferred from physiological measurements. It is unclear if this comparison is meaningful in the context of the model's simplifying assumptions.

      We now discuss how some of these assumptions affect the quantitative results in the section “Towards biomechanical and neural realism”. We reproduce the relevant sentences below:

      “The inclusion of explicit leg-ground contact interactions would also make it harder for the model to recover when perturbed, because perturbations during walking often occur upon contact with the ground (e.g. the ground is slippery or bumpy).”

      “We anticipate that the increased sensory resolution from more detailed proprioceptor models and the stability from mechanical compliance of limbs in a more detailed biomechanical model would make the system easier to control and increase the allowable range of delay parameters. Conversely, we expect that modeling the nonlinearity and noise inherent to biological sensors and actuators may decrease the allowable range of delay parameters.”

      The authors propose a novel metric coined as Kinematic Similarity (KS) to distinguish realistic walking trajectories from unrealistic walking trajectories. Defining such an objective metric to evaluate the model's predictions is a useful exercise, and could potentially be applied to benchmark other computational animal models that are proposed in the future. However, the KS score proposed in this work is calculated using only the first two PCA modes that cumulatively account for less than 50% of the variance in the joint angles. It is not obvious that the information in the remaining PCA modes may not change the log-likelihood that occurs in the real walking data.

      The primary reason we designed the KS metric was to determine whether the simulated fly continues walking in the presence of perturbations. We initially limited the analysis of the KS to the first 2 principal components. For completeness, we now investigate the additional principal components in Appendix 9 and the effect of evaluating KS with different numbers of components in Appendix 10. 

      Overall, the results look similar when including additional components for impulse perturbations. For stochastic perturbations, the range of similar walking decreases as we increase the number of components used to evaluate walking kinematics. Comparing this with Appendix 9, which shows that higher components represent higher frequencies of the walking cycle, we conclude that at the edge of stability for delays (where sum of sensory and actuation delays are about 40ms), flies can continue walking but with impaired higher frequencies (relative to no perturbations) during and after perturbation. 

      We added the following text in the methods:

      “We chose 2 dimensions for PCA for two key reasons. First, these 2 dimensions alone accounted for a large portion of the variance in the data (52.7% total, with 42.1% for first component and 10.6% for second component). There was a big drop in variance explained from the first to the second component, but no sudden drop in the next 10 components (see Appendix 9). Second, the KDE procedure only works effectively in low-dimensional spaces, and the minimal number of dimensions needed to obtain circular dynamics for walking is 2. We investigate the effect of varying the number of dimensions of PCA in Appendix 10.”

      (Note that we have corrected the percentage of variance accounted for by the principal components, as these numbers were from an older analysis prior to the first draft.)

      We also reference Appendix 10 in the results:

      “We observed that robust walking was not contingent on the specific values of motor and sensory delay, but rather the sum of these two values (Fig. 5E). Furthermore, as delay increases, higher frequencies of walking are impacted first before walking collapses entirely (Appendix 10).”

      Reviewer #2 (Public Review):

      Summary:

      In this study, Karashchuk et al. develop a hierarchical control system to control the legs of a dynamic model of the fly. They intend to demonstrate that temporal delays in sensorimotor processing can destabilize walking and that the fly's nervous system may be operating with as long of delays as could possibly be corrected for.

      Strengths:

      Overall, the approach the authors take is impressive. Their model is trained using a huge dataset of animal data, which is a strength. Their model was not trained to reproduce animal responses to perturbations, but it successfully rejects small perturbations and continues to operate stably. Their results are consistent with the literature, that sensorimotor delays destabilize movements.

      Weaknesses:

      The model is sophisticated and interesting, but the reviewer has great concerns regarding this manuscript's contributions, as laid out in the abstract:

      (1) Much simpler models can be used to show that delays in sensorimotor systems destabilize behavior (e.g., Bingham, Choi, and Ting 2011; Ashtiani, Sarvestani, and Badri-Sproewitz 2021), so why create this extremely complex system to test this idea? The complexity of the system obscures the results and leaves the reviewer wondering if the instability is due to the many, many moving parts within the model. The reviewer understands (and appreciates) that the authors tested the impact of the delay in a controlled way, which supports their conclusion. However, the reviewer thinks the authors did not use the most parsimonious model possible, and as such, leave many possible sources for other causes of instability.

      We thank the reviewer for this observation — we agree that we did not make the goal of the work quite clear. The goal of this paper was to build an interpretable and generalizable model of fly walking, which was then used to investigate varying sensorimotor delays in the context of locomotion. To this end, we used a modular model to recreate walking kinematics, and then investigated the effect of delays on locomotion. Locomotion in itself is a complex phenomenon — thus, we have chosen a model that is complex enough to reasonably recapitulate joint trajectories, while remaining interpretable.

      We have clarified this in the text near the end of the introduction:

      “Here, we develop a new, interpretable, and generalizable model of fly walking, which we use to investigate the impact of varying sensorimotor delays in Drosophila locomotion.”

      We also emphasize the investigation of sensorimotor delays in the context of locomotion in the beginning of the “Effect of sensory and motor delays on walking” section:

      “... we used our model to investigate how changing sensory and motor delays affects locomotor robustness.”

      We also remark that while they are very relevant papers for our work, neither of the prior papers focus on locomotion: the first involves a 2D balance model of a biped, and the second involves drop landings of quadrupeds.

      Lastly, we note that the investigation of delay is not the only use for this model —  in the future, this model can also be used to study other aspects of locomotion such as the role of proprioceptive feedback (see “Role of proprioceptive feedback in fly walking” section). The layered framework of the model can also be extended to other animals and locomotor strategies (see “Layered model produces robust walking and facilitates local control” section”).

      (2) In a related way, the reviewer is not sure that the elements the authors introduced reflect the structure or function of the fly's nervous system. For example, optimal control is an active field of research and is behind the success of many-legged robots, but the reviewer is not sure what evidence exists that suggests the fly ventral nerve cord functions as an optimal controller. If this were bolstered with additional references, the reviewer would be less concerned.

      We thank the reviewer for the comment — we have now further clarified how our model elements reflect the fly’s nervous system. The elements we introduce are plausible but only loosely analogous to the fly’s nervous system. While we draw parallels from these elements to anatomy (e.g. in Fig 1A-B, and in the first paragraph of the Results section), we do not mean to suggest that these functional elements directly correspond to specific structures in the fly’s nervous system. A substantial portion of the suggested future work (see “Towards biomechanical and neural realism”) aims to bridge the gap between these functional elements and fly physiology, which is beyond the scope of this work. 

      We have added clarifying text to the Results section:

      “While the model is inspired by neuroanatomy, its components do not strictly correspond to components of the nervous system --- the construction of a neuroanatomically accurate model is deferred to future work (see Discussion).”

      In the specific case of optimal control — optimal control is a theoretical model that predicts various aspects of motor control in humans, there is evidence that optimal control is implemented by the human nervous system (Todorov and Jordan, 2002; Scott, 2004; Berret et al., 2011). Based on this, we make the assumption that optimal control is a reasonable model for motor control in flies implemented by the fly nervous system as well. Fly movement makes use of proprioceptive feedback signals (Mendes et al., 2013; Pratt et al., 2024; Berendes et al., 2016), and optimal control is a plausible mechanism that incorporates feedback signals into movement.

      We have added the following clarifying text in the Results section: 

      “The optimal controller layer maintains walking kinematics in the presence of sensori motor delays and helps compensate for external perturbations. This design was inspired by optimal control-based models of movements in humans (Todorov and Jordan, 2002; Scott, 2004; Berret et al., 2011)”

      (3) "The model generates realistic simulated walking that matches real fly walking kinematics...". The reviewer appreciates the difficulty in conducting this type of work, but the reviewer cannot conclude that the kinematics "match real fly walking kinematics". The range of motion of several joints is 30% too small compared to the animal (Figure 2B) and the reviewer finds the video comparisons unpersuasive. The reviewer would understand if there were additional constraints, e.g., the authors had designed a robot that physically could not complete the prescribed motions. However the reviewer cannot think of a reason why this simulation could not replicate the animal kinematics with arbitrary precision, if that is the goal.

      We agree with the reviewer that the model-generated kinematics are not perfectly indistinguishable from real walking kinematics, and now clarify this in the text. We also agree with the reviewer that one could build a model that precisely replicates real kinematics, but as they intuit, that was not our goal. Our goal was to build a model that both replicates animal kinematics, and is interpretable and generalizable (which allows us to investigate what happens when perturbations and varying sensorimotor delays are introduced). There is a trade-off between realism and generalizability — a simulation that fully recreates empirical data would require a model that is completely fit to data, which is likely to be more complex (in terms of parameters required) and less generalizable to novel scenarios. We have made design choices that result in a model that balances these trade-offs. We do not consider this to be a weakness of the model; in fact, few comparable models account for all joints involved in locomotion, and fewer explicitly compare model kinematics with kinematics from data.

      We have tempered the language in the abstract:

      “The model generates realistic simulated walking that resembles real fly walking kinematics”

      The tempered statement, we believe, is a fair characterization of the walking — it resembles but does not perfectly match real kinematics.

      We have also introduced clarifying text in the introduction:

      “Overall, existing walking models focus on either kinematic or physiological accuracy, but few achieve both, and none consider the effect of varying sensorimotor delays. Here, we develop a new, interpretable, and generalizable model of fly walking, which we use to investigate the impact of varying sensorimotor delays in Drosophila locomotion.”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Potential typo on page 5:

      2.1.2 Joint kinematics trajectory generator

      Paragraph 4, last line: Original text - ".....it also estimates the current phase". Suggested correction - "...it also estimates the current phase velocity"

      Done

      Potential typo on page 8:

      2.3 Model maintains walking under unpredictable external perturbations.

      Paragraph 3, line 2: Original text - "...brief, unexpected force (e.g. legs slipping on an unstable surface)".

      Consider replacing force with motion, or providing an example of a force as opposed to displacement (slipping).

      Done

      Potential typo on page 8:

      2.3 Model maintains walking under unpredictable external perturbations.

      Paragraph 3, line 4: Original text - "The magnitude of this velocity is drawn from a normal distribution...".

      Is this really magnitude? If so, please discuss how the sign (+/-) is assigned to velocity, and how the normal distribution is centred so as to sample only positive values representing magnitude.

      Indeed the magnitude of the velocity is drawn from a normal distribution. A positive or negative sign is then assigned with equal odds. We have added text to clarify this:

      “The sign of the velocity was drawn separately so that there is equal likelihood for negative or positive perturbation velocities.”

      Page 8:

      2.3 Model maintains walking under unpredictable external perturbations.

      In Paragraph 5: Why is the data reduced to only 2 dimensions? Could higher order PCA modes (cumulatively accounting for more than 50% variance in the data) not have distinguishing information between realistic and unrealistic walking trajectories?

      We provide a longer response for this in the public review above.

      Page 11:

      Why wouldn't a system trained in the presence of external perturbations perform better? What is the motivation to remove external perturbations during training?

      We agree that a system trained in the presence of external perturbations would probably perform better — however, we do not have data that contains walking with external perturbations. Nothing was removed — all the data used in this study involve a fly walking without perturbations.

      We have added a clarification:

      “our model maintains realistic walking in the presence of external dynamic perturbations, despite being trained only on data of walking without perturbations (no perturbation data was available).”

      Page 16:

      4.1 Tracking joint angles of D. melanogaster walking in 3D.

      Paragraph 1: Readers who wish to collect similar data might benefit from specifying the exposure time, animal size in pixels (or camera sensor format and field of view), in addition to the frame rate. Alternatively, consider mentioning the camera and lens part numbers provided by the manufacturer.

      This is a good point. We have updated the text to include these specifications:

      “We obtained fruit fly D. melanogaster walking kinematics data following the procedure previously described in (Karashchuk et al, 2021). Briefly, a fly was tethered to a tungsten wire and positioned on a frictionless spherical treadmill ball suspended on compressed air. Six cameras (Basler acA800-510um with Computar zoom lens MLM3X-MP) captured the movement of all of the fly's legs at 300 Hz. The fly size in pixels ranges from about 300x300 up to 700x500 pixels across the 6 cameras. Using Anipose, we tracked 30 keypoints on the fly, which are the following 5 points on each of the 6 legs: body-coxa, coxa-femur, femur-tibia, and tibia-tarsus joints, as well as the tip of the tarsus.”

      Potential typos on page 18:

      4.3.3 Training procedure

      Paragraph 2, line 1: Original text - "..(, p)"

      Do the authors mean "...(, )"

      Paragraph 2, line 2: Original text - "... (,, v, p)" Do the authors mean "... (,, v, )"?

      Paragraph 3, line 3: Original text - "... (,, v, p)" Do the authors mean "... (,, v, )"?

      Thank you for pointing out this issue. We have now fixed the phase p to be \phi to be consistent with the rest of the text.

      Paragraph 3, line 3: Original text - "...()"

      Do the authors mean "(d)"? If not, please discuss the difference between and d.

      Thank you for pointing this out. \hat \theta and \theta_d were used interchangeably which is confusing. We have standardized our reference to the desired trajectory as \theta_d throughout the text.

      Page 19:

      Typo after eqn. (6):

      Original text: "where x := q - q, ... A and B are Jacobians with respect to...."

      Correction: "where x := q - q, ... Ac and Bc are Jacobians with respect to...."

      Similar corrections in eqn. 7 and eqn. 8: A and B should be replaced with Ac and Bc. Done

      Page 19, eqn. (10b):

      Should the last term be qd(t+T) as opposed to qd(t+1)?

      No: in fact (10a) contains the typo: it should be y(t+1) as opposed to y(t+T). This has been fixed.

      Page 19

      The authors' detailed description of the initial steps leading up to the dynamics model, involving the construction of the ODE, linearizing the system about the fixed point makes the text broadly accessible to the general reader. Similarly, adding some more description of the predictive model (eqn. 11 - 15) could improve the text's accessibility and the reader's appreciation for the model. This is especially relevant since the effects of sensorimotor delay and external perturbations, which are incorporated in the control and dynamics model, form a major contribution to this work. What do the matrices F, G, L, H, and K look like for the Drosophila model? Are there any differences between the model in Stenberg et al. (referenced in the paper) and the authors' model for predictive control? Are there any differences in the assumptions made in Stenberg et al. compared to the model presented in this work? The readers would likely also benefit from a figure showing the information flow in the model, and describing all the variables used in the predictive control model in eqn. 11 through eqn. 15 (analogous to Figure 1 in Stenberg et al. (2022)). Such a detailed description of the control and dynamics model would help the reader easily appreciate the assumptions made in modelling the effects of sensorimotor delay and external perturbations.

      Done

      Page 20:

      Eqn. 12: Should z(t+1) be z(t+T) instead?

      Similar comment for eqn. 14

      No: we made a mistake in (10a); there should be no (t+T) terms; all terms should be (t+1) terms to reflect a standard discrete-time difference equation.

      Eqn. 13: r(t) can be defined explicitly

      Done

      4.5 Generate joint trajectories of the complete model with perturbations Paragraph 2, line 2: Please read the previous comment

      \hat \theta and \theta_d were previously used interchangeably which is confusing. We have standardized our reference to the desired trajectory as \theta_d throughout the text.

      Original text - "Every 8 timesteps, we set :=...."

      Does this mean dis set to? If so, the motivation for this is not clear.

      We mean that \theta_d is set to be equal to \theta. We have replaced “:=” with “=” for clarity.

      General comments for the authors:

      Could the authors discuss the assumptions regarding Drosophila physiology implied in the control model?

      The control model is primarily included as a plausible functional element of the fly’s nervous system, and as such implies minimal assumptions on physiology itself. The main assumption, which is evident from the description of the model components, is that the fly uses proprioceptive feedback information to inform future movements.

      We have added clarifying text to the Results section:

      “While the model is inspired by neuroanatomy, its components do not strictly correspond to components of the nervous system --- the construction of a neuroanatomically accurate model is deferred to future work (see Discussion).”

      The authors acknowledge the absence of ground contact forces in the model. It is probably worth discussing how this simplification may affect inferences regarding the acceptable range of sensorimotor delay in generating realistic walking trajectories.

      We agree, and discuss how some of these assumptions affect the quantitative results in the section “Towards biomechanical and neural realism”. We replicate the relevant sentences below:

      “The inclusion of explicit leg-ground contact interactions would also make it harder for the model to recover when perturbed, because perturbations during walking often occur upon contact with the ground (e.g. the ground is slippery or bumpy).”

      The effects of other simplifications are also mentioned in the same section.

      Can the authors provide an insight into why the use of a second derivative of joint angles as the output of the trajectory generator () leads to more realistic trajectories (4.3.1 Model formulation, paragraph 1)?

      Does the use of a second-order derivative of joint angles lead to drift error because of integration?

      Could the distribution of θd produced be out of the domain due to drift errors? Could this affect the performance of the neural network model approximating the trajectory generator?

      We are not sure why the second derivative works better than the first derivative. It is possible that modeling the system as a second order differential equation gives the network more ability to produce complex dynamics. 

      As can be seen in the example time series in Figures 2 and 3 and supplemental videos, there is no drift error from integration, so it is unlikely to affect the performance of the neural network.

      What does the model's failure (quantified by a low KS score) look like in the context of fly dynamics? What do the joint angles look like for low values of KS score? Does the fly fall down, for example?

      Since the model primarily considers kinematics, a low KS score means that kinematics are unrealistic, e.g. the legs attain unnatural angles or configurations. Examples of this can be seen in videos 4-7 (linked from Appendix 1 of the paper), as well as in the bottom row of Fig. 5, panel A. Here, at 40ms of motor delay, L2 femur rotation is seen to attain values that far exceed the normal ranges. 

      We have added a small clarification in the caption of Fig.5 panel A:

      “low KS indicates that the perturbed walking deviates from data and results in unnatural angles

      (as seen at 40ms motor delay)” 

      We remark that since our simulations do not incorporate contact forces (as the reviewer remarks above, we simulate something like legs moving in the air for a tethered fly), the fly cannot “fall down” per se. However, if forces were incorporated then yes, these unrealistic kinematics would correspond to a fly that falls down or is no longer walking.

      Reviewer #2 (Recommendations For The Authors):

      L49: "Computational models of locomotion do not typically include delay as a tunable parameter, and most existing models of walking cannot sustain locomotion in the presence of delays and external perturbations". This remark confuses the reviewer.

      (1) If models do not "typically" include delay as a tunable parameter, this suggests that atypical models do. Which models do? Please provide references.

      Our initial phrasing was confusing. We meant to say that most models do not include delay, and some models do include delay as a fixed value (rather than a tunable value). We clarify in the updated text, which is replicated below:

      “Computational models of locomotion typically have not included delays as a tunable parameter, although some models have included them as fixed values (Geyer and Herr, 2010; Geijtenbeek et al., 2013).”

      (2) Has the statement that most existing models cannot sustain locomotion with delays been tested? If so, provide references. If not, please remove this statement or temper the language.

      Since most models don’t include delays, they cannot be run in scenarios with delays. We clarify in the updated text, which is replicated below:

      “Computational models of locomotion have not typically included delays. Some have included delay as a fixed value rather than a tunable parameter (Geyer and Herr, 2010; Geijtenbeek et al., 2013). However, in general, the impact of sensorimotor delays on locomotor control and robustness remains an underexplored topic in computational neuroscience.”

      L57: "two of six legs lift off the ground at a time" - Two legs are off the ground at any time, but they do not "lift off" simultaneously in the fruit fly. To lift off simultaneously, contralateral leg pairs would need to be 33% out of phase with one another, but they are almost always 50% out of phase.

      Thank you for pointing out this oversight. We have updated the text accordingly:

      “Flies walk rhythmically with a continuum of stepping patterns that range from tetrapod (where two of six legs are off the ground at a time) to tripod (where three of six legs are off the ground at a time)"

      L88: "a new model of fly walking" - The intention of the authors is to produce a model from which to learn about walking in the fly, is that correct? The reviewer has read the paper several times now and wants to be sure that this is the authors' goal, not to engineer a control system for an animation or a robot.

      Indeed, this is our goal. We were previously unclear about this, and have made text edits to clarify this — we provide a longer response for this in the public review above (see (1)).

      L126: "These desired phases are synchronized across pairs of legs to maintain a tripod coordination pattern, even when subject to unpredictable perturbations." - Does the animal maintain tripod coordination even when perturbed? In the reviewer's experience, flies vary their interleg coordination all the time. The reviewer would also expect that if perturbed strongly (as the supplemental videos show), the animal would adapt its interleg coordination in response. The author finds this assumption to be a weak point in the paper for the use of this disturbance exploring animal locomotion.

      We do not know exactly how flies may react to our mechanical perturbations. However, we may hypothesize based on past papers. 

      Couzin-Fuchs et al (2015) apply a mechanical perturbation to walking cockroaches. They find that that tripod is temporarily broken immediately after the perturbation but the cockroach recovers to a full tripod within one step cycle. 

      DeAngelis et al (2019) apply optogenetic perturbations to fly moonwalker neurons that drive backward walking. Flies slow down following perturbation, but then recover after 200ms (about 2-3 steps) to their original speed (on average). 

      Thus, we think it is reasonable to model a fly’s internal phase coupling to maintain tripod and for its intended speed to remain the same even after a perturbation. 

      We do agree with the reviewer that it is plausible a fly might also slow down or even stop after a perturbation and we do not model such cases. We have added some text to the discussion on future work:

      “Future work may also model how higher-level planning of fly behavior interacts with the lowerlevel coordination of joint angles and legs. Walking flies continuously change their direction and speed as they navigate the environment (Katsov et al, 2017; Iwasaki et al 2024). Past work shows that flies tend to recover and walk at similar speeds following perturbations (DeAngelis et al, 2019), but individual flies might still change walking speed, phase coupling, or even transition to other behaviors, such as grooming. Modeling these higher-level changes in behavior would involve combining our sensorimotor model with models for navigation (Fisher 2022) or behavioral transitions (Berman et al, 2016).”

      L136: "...to output joint torques to the physical model of each leg" - Is this the ultimate output of the nervous system? Muscles are certainly not idealized torque generators. There are dynamics related to activation and mechanics. The reviewer is skeptical that this is a model of neural control in the animal, because the computation of the nervous system would be tuned to account for all these additional dynamics.

      We agree with the reviewer that joint torques are not the ultimate output of the nervous system. We use a torque controller because it is parsimonious, and serves our purpose of creating an interpretable and modular locomotion model.

      We also agree that muscles are an important consideration — we make mention of them later on in the paper under the section “Toward biomechanical and neural realism”, where we state “Another step toward biological realism is the incorporation of explicit dynamical models of proprioceptors, muscles, tendons, and other biomechanical aspects of the exoskeleton.”

      Our goal is not to directly model neural control of the animal. We have introduced text clarifications to emphasize this — we provide a longer response for this in the public review above (see (2)).

      L143: "To train the network from data, we used joint kinematics of flies walking on a spherical treadmill..." This is an impressive approach, but then the reviewer is confused about why the kinematics of the model are so different from those of the animal. The animal takes longer strides at a lower frequency than the model. If the model were trained with data, why aren't they identical? This kind of mismatch makes the reviewer think the approach in this paper is too complicated to address the main problem.

      The design of our trajectory generator model is one of the simplest for reproducing the output of a dynamical system. It consists of a multilayer perceptron model that models the phase velocity and joint angle accelerations at each timestep. All of its inputs are observable and interpretable: the current joint angles, joint angle derivatives, desired walking speed, and phase angle. 

      We chose this model for ease of interpretability, integration with the optimal controller, and to allow for generalization across perturbations. Given all of these constraints, this is the best model of desired kinematics we could obtain. We note that the simulated kinematics do match real fly kinematics qualitatively (Figure 2A and supplemental videos) and are close quantitatively (Figure 2B and C). We speculate that matching the animals’ strides at all walking frequencies may require explicitly modeling differences across individual flies. We leave the design and training of more accurate (but more complex) walking models for future work.

      We add some further discussion about fitting kinematics in the discussion:

      “Although we believe our model matches the fly walking sufficiently for this investigation, we do note that our model still underfits the joint angle oscillations in the walking cycle of the fly (see Figure 2 and Appendix 3). More precise fitting of the joint angle kinematics may come from increasing the complexity of the neural network architecture, improving the training procedure based on advances in imitation learning (Hussein et al., 2018), or explicitly accounting for individual differences in kinematics across flies (Deangelis et al., 2019; Pratt et al., 2024).”

      Figure 2: The reviewer thinks the violin plots in Figure 2C are misleading. Joint angles could be greater or less than 0, correct? If so, why not keep the sign (pos/neg) in the data? Taking the absolute value of the errors and "folding over" the distribution results in some strange statistics. Furthermore, the absolute value would shroud any systematic bias in the model, e.g., joint angles are always too small. The reviewer suggests the authors plot the un-rectified data and simply include 2 dashed lines, one at 5.56 degrees and one at -5.56 degrees.

      These violin plots are averages of errors over all phases within each speed. We chose to do this to summarize the errors across all phase angle plots, which are shown in detail in Appendix 3 and 4.

      For the reviewer, we have added a plot of the raw errors across all phase angle plots in Appendix 5, E.

      L156: Should "\phi\dot" be "\phi"?

      We originally had a typo: we said “phase” when we meant “phase velocity”. This has been fixed. \phi\dot is correct.

      L160: "This control is possible because the controller operates at a higher temporal frequency than the trajectory generator...". This statement concerns the reviewer. To the reviewer, this sounds like the higher-level control system communicates with the "muscles" at a higher frequency than the low-level control system, which conflicts with the hierarchical timescales at which the nervous system operates. Or do the authors mean that the optimal controller can perform many iterations in between updates from the trajectory generator level? If so, please clarify.

      We mean that the optimal controller can perform many iterations in between updates from the trajectory generator level. The text has been clarified:

      “This control is possible because the controller operates at a higher temporal frequency than the trajectory generator in the model. The controller can perform many iterations (and reject disturbances) in between updates to and from the trajectory generator.”

      L225: "We considered two types of perturbations: impulse and persistent stochastic". Are these realistic perturbations? Realistic perturbations such as a single leg slipping, or the body movement being altered would produce highly correlated joint velocities.

      These perturbations are not quite realistic — nonetheless, we illustrate their analogousness to real perturbations in the subsequent text in the paper, and restrict our simulations to ranges that would be biologically plausible (see Appendix 7). We agree that realistic perturbations would produce highly correlated joint accelerations and velocities, whereas our perturbations produce random joint accelerations. 

      L265: "...but they are difficult to manipulate experimentally..." This is true, but it can and has been done. The authors should cite:

      Bässler, U. (1993). The femur-tibia control system of stick insects-A model system for the study of the neural basis of joint control. Brain Research Reviews, 18(2), 207-226. 

      Thank you for the suggestion, we have incorporated it into the text at the end of the referenced sentence.

      L274: "...since the controller can effectively compensate for large delays by using predictions of joint angles in the future". But can the nervous system do this? Or, is there a reason to think that the nervous system can? The reviewer thinks the authors need stronger justification from the literature for their optimal control layer.

      To clarify, this sentence describes a feature of the model’s behavior when no external perturbations are present. This is not directly relevant to the nervous system, since organisms do not typically exist in an environment free of perturbations — we are not suggesting that the nervous system does this.

      In response to the question of whether the nervous system can compensate for delays using predictions: we know that delays are present in the nervous system, perturbations exist in the environment, and that flies manage to walk in spite of them. Thus, some type of compensation must exist to offset the effects of delays (the reviewer themself has provided some excellent citations that study the effects of delays). In our model, we use prediction as the compensation mechanism — this is one of our central hypotheses. We further discuss this in the section “Predictive control is critical for responding to perturbations due to motor delay”.

      L319: "The formulation of a modular, multi-layered model for locomotor control makes new experimentally-testable hypotheses about fly motor control...". What testable hypotheses are these? The authors should explicitly state them. They are not clear to the reviewer, especially given the nonphysiological nature of the control system and the mechanics.

      A number of testable hypotheses are mentioned throughout the Discussion section:

      “Our model predicts that at the same perturbation magnitude, walking robustness decreases as delays increase. This could be experimentally tested by altering conduction velocities in the fly, for example by increasing or decreasing the ambient temperature (Banerjee et al, 2021).  If a warmer ambient temperature decreases delays in the fly, but fly walking robustness remains the same in response to a fixed perturbation, this would indicate a stronger role for central control in walking than our modeling results suggest.”

      “In our model, robust locomotion was constrained by the cumulative sensorimotor delay. This result could be experimentally validated by comparing how animals with different ratios of sensory to motor delays respond to perturbations. Alternatively, it may be possible to manipulate sensory vs. motor delays in a single animal, perhaps by altering the development of specific neurons or ensheathing glia (Kottmeier et al., 2020). If sensory and motor delays have significantly different effects on walking quality, then additional compensatory mechanisms for delays could play a larger role than we expect, such as prediction through sensory integration, mechanical feedback, or compensation through central control.”

      “we hypothesize that removing proprioceptive feedback would impair an insect's ability to sustain locomotion following external perturbations.”

      “We propose that fly motor circuits may encode predictions of future joint positions, so the fly may generate motor commands that account for motor neuron and muscle delays.”

      L323: "...and biomechanical interactions between the limb and the environment". In the reviewer's experience, the primary determinant of delay tolerance is the mechanical parameters of the limb: inertia, damping, and parallel elasticity. For example, in Ashtiani et al. 2021, equation 5 shows exactly how this comes about: the delay changes the roots and poles of the control system. This is why the reviewer is confused by the complexity of the model in this submission; a simpler model would explain why delays cannot be tolerated in certain circumstances.

      We were previously unclear about the goal of the model, and have made text edits to clarify this — we provide a longer response for this in the public review above (see (1)).

      L362: Another highly relevant reference here would be Sutton et al. 2023.

      Done

      L366: Szczecinski et al. 2018 is hardly a "model"; it is mostly a description of experimental data. How about Goldsmith, Szczecinski, and Quinn 2020 in B&B? Their model of fly walking has patterngenerating elements that are coordinated through sensory feedback. In their model, motor activation is also altered by sensory feedback. The reviewer thinks the statement "Models of fly walking have ignored the role of feedback" is inaccurate and their description of these references should be refined.

      Thank you for the suggestion; we have tempered the language and revised this section to include more references, including the suggested one — text is replicated below. 

      “Many models of fly walking ignore the role of feedback, relying instead on central pattern generators (Lobato-Rios et al., 2022; Szczecinski et al., 2018; Aminzare et al., 2018) or metachondral waves (Deangelis et al., 2019) to model kinematics. Some models incorporate proprioceptive feedback, primarily as a mechanism that alters timing of movements in inter-leg coordination (Goldsmith et al., 2020; Wang-Chen et al., 2023).”

      We remark that Szczecinski et al does include a model that replicates data without using sensory feedback, so we think it is fair to include.  

      L371: "...highly dependent on proprioceptive feedback for leg coordination during walking." What about Berendes et al. 2016, which showed that eliminating CS feedback from one leg greatly diminished its ability to coordinate with the other legs? This suggests that even flies depend on sensory feedback for proper coordination, at least in some sense.

      Interesting suggestion – we have integrated it into the text a little further down, where it better fits:

      “Silencing mechanosensory chordotonal neurons alters step kinematics in walking Drosophila (Mendes et al., 2013; Pratt et al., 2024). Additionally, removing proprioceptive signals via amputation interferes with inter-leg coordination in flies at low walking speeds (Berendes et al., 2016)”

      L426: "The layered model approach also has potential applications for bio-mimetic robotic locomotion.". How fast can this model be computed? Can it run faster than real-time? This would be an important prerequisite for use as a robot control system.

      The model should be able to be run quite fast, as it involves only

      (1) Addition, subtraction, matrix multiplication, and sinusoidal computation on scalars (for the phase coordinator and optimal controller)

      (2) Neural network inference with a relatively small network (for the trajectory generator) Whether this can run in real-time depends on the hardware capabilities of the specific robot and the frequency requirements — it is possible to run this on a desktop or smaller embedded device.

      We do note that the model needs to first be set up and trained before it can be run, which takes some time (see panel D of Figure 1).

      L432: "...which is a popular technique in robotics.". Please cite references supporting this statement.

      We have added citations: the text and relevant citations are reproduced below:

      “... which is a popular technique in robotics (Hua et al., 2021; Johns, 2021)

      Hua J, Zeng L, Li G, Ju Z. Learning for a robot: Deep reinforcement learning, imitation learning, transfer learning. Sensors. 2021; 21(4):1278

      Johns E. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration. In:

      2021 IEEE international conference on robotics and automation (ICRA) IEEE; 2021. p. 4613–4619

      L509: "We find that the phase offset across legs is not modulated across walking speeds in our dataset". This is a surprising result to the reviewer. Looking at Figure 6C, the reviewer understands that there are no drastic changes in coordinate with speed, but there are certainly some changes, e.g., L1-R3, L3-R1. In the reviewer's experience, even very small changes in interleg phasing can change the visual classification of walking from "tripod" to "tetrapod" or "metachronal". Furthermore, several leg pairs do not reside exactly at 0 or \pi radians apart, e.g., L1-L3, L2-L3, R1-R3, R2-R3. In conclusion, the reviewer thinks that setting the interleg coordination to tripod in all cases is a large assumption that requires stronger justification (or, should be eliminated altogether).

      We made a simplifying assumption of a tripod coordination across all speeds. The change in relative phase coordination across speeds is indeed relatively small and additionally we see little change in our results across forward speeds (see Figures 4B, 5C and 5D). 

      We have added text to clarify this assumption and what could be changed for future studies in the methods:

      “We estimate $\bar \phi_{ij}$ from the walking data by taking the circular mean over phase differences of pairs the legs during walking bouts. We find that the phase offset across legs is not strongly modulated across walking speeds in our dataset (see Appendix 2) so we model $\bar \phi_{ij}$ as a single constant independent of speed. In future studies, this could be a function of forward and rotation speeds to account for fine phase modulation differences.”

      L581: "of dimension...". Should the asterisk be replaced by \times? The asterisk makes the reviewer think of convolution. This change should be made throughout this paragraph.

      Good point, done.

      Figure 6: Rotational velocities in all 3 sections are reported in mm/s, but these units do not make sense. Rotational velocities must be reported in rad/s or deg/s.

      The rotation velocity of mm/s corresponded to the tangential velocity of the ball the fly walked on. We agree that this does not easily generalize across setups, so we have updated the figure rotation velocities in rad/s. 

      L619: The reviewer is unconvinced by using only 2 principal components of the data to compare the model and animal kinematics. The authors state on line 626 that the 2 principal components do not capture 56.9% of the variation in the data, which seems like a lot to the reviewer. This is even more extreme considering that the model has 20 joints, and the authors are reducing this to 2 variables; the reviewer can't see how any of the original waveforms, aside from the most fundamental frequencies, could possibly be represented in the PCA dataset. If the walking fly models looked similar to each other, the reviewer could accept that this method works. But the fact that this method says the kinematics are similar, but the motion is clearly different, leads the reviewer to suspect this method was used so the authors could state that the data was a good match.

      Our primary use of the KS metric was to indicate whether the simulated fly continues walking in the presence of perturbations, hence we limited the analysis of the KS to the first 2 principal components. 

      For completeness, we investigate the principal components in Appendix 9 and the effect of evaluating KS with different numbers of components in Appendix 10. 

      The results look similar across components for impulse perturbations. For stochastic perturbations, the range of similar walking decreases as we increase the number of components used to evaluate walking kinematics. Comparing this with Appendix 9 showing that higher components represent higher frequencies of the walking cycle, we conclude that at the edge of stability for delays (where sum of sensory and actuation delays are about 40ms), flies can continue walking but with impaired higher frequencies (relative to no perturbations) during and after perturbation. 

      We add text in the methods:

      “We chose 2 dimensions for PCA for two key reasons. First, these 2 dimensions alone accounted for a large portion of the variance in the data (52.7% total, with 42.1% for first component and 10.6% for second component)). There was a big drop in variance explained from the first to the second component, but no sudden drop in the next 10 components (see Appendix 9). Second, the KDE procedure only works effectively in low-dimensional spaces, and the minimal number of dimensions needed to obtain circular dynamics for walking is 2. We investigate the effect of varying the number of dimensions of PCA in Appendix 10.”

      (Note that we have corrected the percentage of variance accounted for by the principal components, as these numbers were from an older analysis prior to the first draft.)

      We also reference Appendix 10 in the results:

      “We observed that robust walking was not contingent on the specific values of motor and sensory delay, but rather the sum of these two values (Fig. 5E). Furthermore, as delay increases, higher frequencies of walking are impacted first before walking collapses entirely (Appendix 10).”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The authors introduce DIPx, a deep learning framework for predicting synergistic drug combinations for cancer treatment using the AstraZeneca-Sanger (AZS) DREAM Challenge dataset. While the approach is innovative, I have the following concerns and comments which hopefully will improve the study's rigor and applicability, making it a more powerful tool in the real clinical world.

      We thank to the reviewer for recognizing the innovative aspects of DIPx and for sharing their valuable comments to further refine and strengthen our study. Those comments are carefully addressed in the following point-by-point response.

      (1) Test Set 1 comprises combinations already present in the training set, likely leading overfitting issue. The model might show inflated performance metrics on this test set due to prior exposure to these combinations, not accurately reflecting its true predictive power on unknown data, which is crucial for discovering new drug synergies. The testing approach reduces the generalizability of the model's findings to new, untested scenarios.

      From a clinical perspective, it is useful to test whether a known (previously tested) combination can work for a new patient, which is the purpose of Test Set 1. There is no danger overfitting here, because the test set is completely independent of the discovery set, so had we only discovered a false positive the test set would not have more than power than expected under the null. Predicting the effectiveness of unknown drug combinations (Test Set 2) is indeed an important and more challenging goal of synergy prediction, but it is statistically a distinct problem. The two test sets were previously designed by the AZS DREAM Challenge [PMID: 31209238].

      We have performed cross-validation on the dataset and demonstrated that the result of DIPx for Test Set 1 is not overfitting. Indeed, Figure 2—figure supplement 1 shows the 10-fold cross validation results for the training set. The median Spearman correlation between the predicted and observed Loewe scores across the 10 folds of cross-validation is 0.48, which is close to the correlation of 0.50 in Test Set 1 (red star).  We have added the cross-validation results to the “Validation and Comparisons in the AZS Dataset” section (page 4). 

      (2) The model struggles with predicting synergies for drug combinations not included in its training data (showing only a Spearman correlation of 0.26 in Test Set 2). This limits its potential for discovering new therapeutic strategies. Utilizing techniques such as transfer learning or expanding the training dataset to encompass a wider range of drug pairs could help to address this issue.

      We agree that this is an important limitation for the discovery of new therapeutic strategies. While transfer learning or expanding the training dataset could indeed help address this issue, implementing these approaches would require access to more comprehensive data, which is currently limited due to the scarcity of drug combination datasets. As more drug combination data become available in future, we plan to expand the training set to better cover a wider range of drug combinations and apply the transfer learning method to improve prediction accuracy. We have added a discussion on this in the Discussion Section.

      (3) The use of pan-cancer datasets, while offering broad applicability, may not be optimal for specific cancer subtypes with distinct biological mechanisms. Developing subtype-specific models or adjusting the current model to account for these differences could improve prediction accuracy for individual cancer types.

      We agree with the reviewer that the current settings of DIPx might not be optimal for specific cancers due to the cancer heterogeneity. However, building subtype-specific models is currently constrained by limitation of data availability, which in turn restricts their predictive power. In the Discussion section, we mention this as one of DIPx's limitations and suggest future improvements in cancer-specific models.

      (4) Line 127, "Since DIPx uses only molecular data, to make a fair comparison, we trained TAJI using only molecular features and referred to it as TAJI-M.". TAJI was designed to use both monotherapy drug-response and molecular data, and likely won't be able to reach maximum potential if removing monotherapy drug-response from the training model. It would be critical to use the same training datasets and then compare the performances. From Figure 6 of TAJI's paper (Li et al., 2018, PMID: 30054332) , i.e., the mean Pearson correlation for breast cancer and lung cancer is around 0.5 - 0.6.

      It is true that using monotherapy drug responses can enhance the performance of TAIJI as described in its original paper. In fact, TAIJI builds separate prediction modules for molecular data and monotherapy drug-response data, then combine their results to obtain the final prediction. In our paper we prioritize the exploration of molecular mechanisms in drug combinations while achieving performance comparable to the molecular model of TAIJI. DIPx can be expected to achieve similarly improved performance if we integrate the monotherapy drug response data using the same approach.

      My major concerns were listed in the public review. Here are some writing issues:

      (5) Some content in the Results section looks like a discussion: i.e, L129, "The extra information from the use of monotherapy data in TAJI is rather small, approximately 10% increase in the overall Spearman correlation, and, of course, we could also use such data in DIPx, so it is more convenient and informative to focus the comparisons on prediction based on molecular data alone."; L257, "As we discuss above, to get synergy, the two drugs in a combination theoretically should not have the same target. However, there is of course no guarantee that two drugs that do not share target genes can produce synergy. ".

      We have revised the texts and moved them to the Discussion section.  

      Reviewer #2 (Public Review):

      Trac, Huang, et al used the AZ Drug Combination Prediction DREAM challenge data to make a new random forest-based model for drug synergy. They make comparisons to the winning method and also show that their model has some predictive capacity for a completely different dataset. They highlight the ability of the model to be interpretable in terms of pathway and target interactions for synergistic effects. While the authors address an important question, more rigor is required to understand the full behavior of the model.

      We thank the reviewer for his/her time and effort in carefully reading the manuscript and acknowledging the significance of the study.

      Major Points

      (1) The authors compare DIPx to the winning method of the DREAm challenge, TAJI to show that from molecular features alone they retrain TAJI to create TAJI-M without the monotherapy data inputs. They mention that "of course, we could also use such data in DIPx...", but they never show the behaviour of DIPx with these data. The authors need to demonstrate that this statement holds true or else compare it to the full TAJI.

      This is similar to point 4 raised by Reviewer 1 regarding the exclusive use of molecular data in DIPx. In fact, TAIJI uses separate prediction modules for molecular data and drugresponse data which are then combined to obtain the final results. While integrating monotherapy drug data could enhance DIPx’s overall performance, for example, simply replacing TAIJI’s molecular model with DIPx in the full TAIJI to achieve comparable results, this is not the primary goal of DIPx. Our focus is on exploring the potential molecular mechanisms of drug action. Using only molecular data allows for more convenient and intuitive inference of pathway importance compared to integrating multiple data types.

      We have revised the related text with the discussion in section “Validation and comparisons in the AZS dataset” of the main text.

      (2) It would be neat to see how the DIPx feature importance changes with monotherapy input. For most realistic scenarios in which these models are used robust monotherapy data do exist.

      Indeed, some existing models incorporate monotherapy data into their predictions; for example, a recent study [PMID: 33203866] uses only monotherapy data to predict drug combinations. TAIJI, as discussed in Point 1, uses separate models for monotherapy and molecular data. In general, both data types can be integrated into a single prediction model, allowing for the consideration of feature importance from both. While such an approach can highlight features contributing to predictive performance, the significance of a monotherapy feature does not necessarily indicate the activated pathways of a synergistic drug combination, which is the primary focus of our study. For this reason, we have excluded monotherapy data from DIPx.

      (3) In Figure 2, the authors compare DIPx and TAJI-M on various test sets. If I understood correctly, they also bootstrapped the training set with n=100 and reported all the model variants in many of the comparisons. While this is a nice way of showing model robustness, calculating p-values with bootstrapped data does not make sense in my opinion as by increasing the value of n, one can make the p-value arbitrarily small.

      The p-value should only be reported for the original models.

      The reviewer is correct that we cannot compute the p-value by using an independent twosample test, because the bootstrap correlation values are based on the same data. However, p-values can still be computed to compare the two prediction models using the bootstrap. Theoretically, the bootstrap can be used to compute a confidence interval for the differential correlation in the test set. However, there is a close relationship between p-values and confidence intervals (see Pawitan, 2001, chapter 5; particularly p.134). Specifically, in this case, we compute the p-value as follows: (1) For each bootstrap, (i) compute the Spearman correlation between the predicted and observed scores in the test set for DIPx and TAIJI-M.

      Denote this by r1 and r2. (ii) compute the difference in the Spearman correlations d= (r1-r2). (2). Repeat the bootstrap n=100 times. (3). Compute the minimum of these two proportions:

      proportion of d<0 or proportion of d>0. (4). The two-sided p-value = 2x the minimum proportion in (3). To overcome the limited bootstrap sample size, we use the normal approximation in computing the proportions in (3). Note that in this method of computing the p-value, larger numbers of bootstrap replicates do not produce more significant results.

      We have re-computed the p-values using this method and added this text to the ‘Methods and Materials’ Section. 

      (4) From Figures 2 and 3, it appears DIPx is overfit on the training set with large gaps in Spearman correlations between Test Set 2/ONeil set and Test Set 1. It also features much better in cases where it has seen both compounds. Could the authors also compare TAJI on the ONeil dataset to show if it is as much overfit?

      The poor performance in ONeil dataset is not due to overfitting as such, but more likely due structural differences between the training and ONeil datasets.  (To investigate the overfitting issue, we have conducted a 10-fold cross validation in the AZS training set. The median correlation between the predicted and observed Loewe score across ten folds is 0.48, which is comparable to the median of 0.50 in the Test Set 1. Therefore, the model does not suffer from overfitting issue.  We have added this cross-validation result in the Section “Validation and Comparisons in the AZS Dataset” (page 4)).

      We have now obtained TAIJI’s results on the ONeil dataset. TAIJI-M relies on a gene-gene interaction network to integrate the indirect drug targeting effects. This approach limits its applicability to new datasets, as it can only predict synergy scores for drug combinations present in the training dataset. Among the set of drug combinations present in the training set (n = 1102), both DIPx and TAIJI-M perform poorly, with Spearman correlations between predicted and observed synergy scores of 0.09 and 0.05, respectively.

      (Additional note: The original version of TAIJI-M uses gene expression, CNV, mutation, and methylation data. However, there is no methylation data in the ONeil dataset, so we retrained TAIJI-M without the methylation features. According to the final report of TAIJI in the challenge (https://www.synapse.org/Synapse:syn5614689/wiki/396206), Guan et al. reported that methylation features do not contribute to prediction performance in the postchallenge analysis. This means that retraining TAIJI-M without the methylation data will not materially affect the comparison between DIPx and TAIJI-M on the ONeil dataset.)

      Minor Points:

      (5) Pg 4, line 130: Citation needed for 10% contribution of monotherapy.

      (6) The general language of this paper is informal at times. I request the authors to refine it a bit.

      We thank the reviewer for pointing this out. We have added the appropriate citation for the statement and carefully revised the text to make it more formal.

      Reviewer #3 (Public Review):

      Summary:

      Predicting how two different drugs act together by looking at their specific gene targets and pathways is crucial for understanding the biological significance of drug combinations. Such combinations of drugs can lead to synergistic effects that enhance drug efficacy and decrease resistance. This study incorporates drug-specific pathway activation scores (PASs) to estimate synergy scores as one of the key advancements for synergy prediction. The new algorithm, Drug synergy Interaction Prediction (DIPx), developed in this study, uses gene expression, mutation profiles, and drug synergy data to train the model and predict synergy between two drugs and suggests the best combinations based on their functional relevance on the mechanism of action. Comprehensive validations using two different datasets and comparing them with another best-performing algorithm highlight the potential of its capabilities and broader applications. However, the study would benefit from including experimental validation of some predicted drug combinations to enhance its reliability.

      Strengths:

      The DIPx algorithm demonstrates the strengths listed below in its approach for personalized drug synergy prediction. One of its strengths lies in its utilization of biologically motivated cancer-specific (driver genes-based) and drug-specific (target genes-based) pathway activation scores (PASs) to predict drug synergy. This approach integrates gene expression, mutation profiles, and drug synergy data to capture information about the functional interactions between drug targets, thereby providing a potential biological explanation for the synergistic effects of combined drugs. Additionally, DIPx's performance was tested using the AstraZeneca-Sanger (AZS) DREAM Challenge dataset, especially in Test Set 1, where the Spearman correlation coefficient between predicted and observed drug synergy was 0.50 (95% CI: 0.470.53). This demonstrates the algorithm's effectiveness in handling combinations already in the training set. Furthermore, DIPx's ability to handle novel combinations, as evidenced by its performance in Test Set 2, indicates its potential for extrapolating predictions to new and untested drug combinations. This suggests that the algorithm can adapt to and make accurate predictions for previously unencountered combinations, which is crucial for its practical application in personalized medicine. Overall, DIPx's integration of pathway activation scores and its performance in predicting drug synergy for known and novel combinations underscore its potential as a valuable tool for personalized prediction of drug synergy and exploration of activated pathways related to the effects of combined drugs.

      Weaknesses:

      While the DIPx algorithm shows promise in predicting drug synergy based on pathway activation scores, it's essential to consider its limitations. One limitation is that the algorithm's performance was less accurate when predicting drug synergy for combinations absent from the training set. This suggests that its predictive capability may be influenced by the availability of training data for specific drug combinations. Additionally, further testing and validation across different datasets (more than the current two datasets) would be necessary to assess the algorithm's generalizability and robustness fully. It's also important to consider potential biases in the training data and ensure that DIPx predictions are validated through empirical studies including experimental testing of predicted combinations. Despite these limitations, DIPx represents a valuable step towards personalized prediction of drug synergy and warrants continued investigation and improvement. It would benefit if the algorithm's limitations are described with some examples and suggest future advancement steps.

      We are grateful to the reviewer for the thoughtful and encouraging comments, and for the time and effort to read our manuscript. We have carefully addressed them in our revision.

      Reviewer #3 (Recommendations For The Authors):

      The authors could consider some of the recommendations below to further improve the DIPx algorithm and its application in personalized drug synergy prediction. Firstly, expanding the training dataset to include a broader range of drug combinations could improve the algorithm's predictive capabilities, especially for novel combinations. This would help address the observed decrease in performance when predicting drug synergy for combinations absent from the training set. This could help assess the robustness of the algorithm and provide a more comprehensive evaluation of its performance for untrained combinations to strengthen its application.

      We agree that expanding the training dataset with a broader range of drug combinations would likely improve performance. However, the vast number of possible combinations, along with the associated cost of the experiment, limits the availability of drug combination data. To increase the size of the training data, we could combine different studies, but data from different studies are often generated using different protocols and experimental settings, introducing biases that complicate the integration. As technology continues to advance, we anticipate that more standardized and comprehensive data will become available in the future, which will help address this issue.

      Furthermore, the authors may consider incorporating additional features or data sources, such as drug-specific characteristics, i.e., availability of the drug, to enrich the information utilized by the algorithm. This could potentially improve the accuracy of the predictions and provide a more holistic understanding of the factors contributing to drug synergy.

      Indeed, incorporating additional information such as monotherapy data and drug-specific characteristics, as in TAIJI’s approach, could enhance overall prediction performance. As discussed in Point 5 below, the current study is focused on exploring the potential molecular mechanisms of drug combinations, rather than optimizing overall prediction accuracy. However, in its application, it is natural to add the monotherapy or drug-specific information into the algorithm, as done in TAIJI.

      Finally, conducting experimental studies to validate the predictions generated by DIPx in laboratory-based cell lines would be essential to confirm its accuracy and reliability. This could involve a few drug IC50 experimental validations of predicted synergistic drug combinations and their associated pathway activations to strengthen the algorithm's clinical relevance. By considering these recommendations, the authors can further refine and advance the DIPx algorithm.

      We agree that laboratory-based validation, such as IC50 experiments for predicted synergistic drug combinations and pathway activations, would indeed strengthen the clinical relevance of the algorithm. We hope future studies can build on this work by incorporating this experimental validation.

      Below are my specific comments:

      Major comments:

      (1) The description of all the outputs of the DIPX algorithm is not clearly explained. It is unclear whether it provides only the Loewe score, the confidence score, the PAS score, or all of them. It is necessary to clarify the output of the proposed algorithm to guide the reader on what to expect while using it. The steps from PASs to synergy scores are not well explained.

      We apologize for the lack of clarity. Regarding the outputs of DIPx, for any triplet (drug A + drug B, cell line C), DIPx provides both the predicted Loewe score and the corresponding confidence score as the output. PASs are used as the input data for the random forest algorithm, which processes PASs into the synergy score. We do not provide the details in the manuscript, but refer to the article by Ishwaran H et al., (2021). We have revised the first paragraph of the 'A Pathway-Based Drug Synergy Prediction Model' section (page 3) and Figure 1 to improve the presentation of the method.

      (2) In Figure 1, the predicted Loewe score for the Capivasertib + Sapitinib combination is not provided. However, Figures 1e and 4a show the pathways with the highest contribution for this combination. What is the predicted Loewe score for the Capivasertib + Sapitinib combination?

      Figures 1e and 4a presents the pathways with the highest contribution for the combination which are identified based on the drug-combination data from 12 cell lines, not a single data point.

      We have added the median Loewe score (=7.6) across 12 cell lines in the test sets (Test 1 + Test 2) for the Capivasertib + Sapitinib combination in Figure 1e and reported related information for this combination in Supplementary Table S1. Additionally, we revised the 'Inference of the Mechanism of Action Based on PAS' section (page 7) to clarify the pathway importance inference.

      (3) In Figure 1d, the combination of doxorubicin + AZ12623380 is predicted to exhibit high Loewe synergy, with a confidence score of 0.33. It is important to provide details of this prediction, including the pathway predictions, and to explain why the model suggested high synergy. Although Figure 4f contains information, it seems to be listed for the observed Loewe score rather than the predicted score provided in Figure 1d. DIPx predicts the doxorubicin + AZ12623380 combination to be synergistic, while in Figure 4, it is labeled as a non-synergistic combination. It is necessary for the authors to clearly indicate which illustration represents the predicted outcome and which hypothesis is based on the observed Loewe score.

      In Figure 1d, we reported both predicted and observed Loewe score for the experiment (combination = doxorubicin + AZ12623380, cell line = SW900). Although the predicted score is high, a confidence score of 0.33 indicates that there is a low chance of the prediction is synergistic. And this is indeed confirmed by the non-synergistic observed score of -6, so it does not merit further investigation. This example highlights the value of the confidence score to supplement the predicted values. 

      (4) Figure 3 - The external validation using ONeil requires more rigorous analysis to understand the biological significance of the predictions. It is important to provide pathway activation scores and their potential mechanism of action predicted by the DIPx algorithm when working with a new dataset. Additionally, including the predictions of TAIJI-M on the ONeil dataset would be beneficial for comparing the performance of both algorithms on a new dataset.

      We have included an example of potential pathways related to the MK2206 + Erlotinib combination in the ONeil cohort, as inferred by DIPx, in the last paragraph of the 'Inference of the Mechanism of Action Based on PAS' section (page 9). In this example, we identify 'Metabolism by CYP Enzymes' as the most significant pathway associated with this combination, which aligns with previous studies that both MK2206 and Erlotinib are metabolized by the CYP enzyme families [PMID: 24387695].

      Regarding the prediction of TAIJI-M on the ONeil dataset, we have a similar request in question 4 from Reviewer 2, which we have carefully addressed above. Briefly, due to differences between two datasets, we retrained TAIJI-M without methylation data to enable prediction on the ONeil dataset. (As previously reported, methylation data did not significantly contribute to the results of TAIJI, and TAIJI-M can only predict synergy scores for drug combinations present in the training set.) Focusing on this subset of drug combinations, both TAIJI-M and DIPx perform poorly, with Spearman correlations of r=0.05 and r=0.09, respectively. The poor performance could be attributed to the limited overlap of drugs between the ONeil dataset and the AZS DREAM Challenge dataset.

      (5) TAIJI by Li et al., 2018 reported a high prediction correlation (0.53) in their study, while the modified version of TAIJI, TAJI-M, shows a lower prediction correlation in this study. The authors should clarify why the performance decreased when using the same dataset. Is it because only molecular data was used, excluding the monotherapy drug-response data? There is a spelling error in calling the algorithm - it is reported as TAIJI by Li et al., 2018, whereas this study calls it TAJI - an "I" is missing in TAIJI throughout the manuscript.

      Indeed, TAIJI-M has a lower prediction correlation (0.38) compared to the full TAIJI model (0.53), which includes the monotherapy data. Some studies such as [PMID: 33203866] even use only monotherapy data in prediction of drug combinations, suggesting the importance of monotherapy data in the drug-combination prediction. However, DIPx focuses on exploration of potential molecular mechanisms of drug combinations rather than overall prediction results, therefore, we exclude the monotherapy data from analysis. We have discussed on this in the 'Validation and Comparisons in the AZS Dataset' section (page 4).

      We thank the reviewer for pointing the spelling error for TAIJI; this has been corrected throughout the manuscript.

      (6) The authors should provide the predicted versus observed Loewe scores for all the combinations as a supplementary file. This would benefit the readers who want to replicate the results in the future. In the same way, including a sample output for the toy dataset on GitHub is required to assess the performance of the DIPx algorithm by a new user.

      All predicted and observed drug synergy scores are given in Supplementary Table S2. We also have already uploaded a simple example on our GitHub page, along with detailed instructions for users on how to run the method, including generating PAS and training the prediction model. Since we do not have permission to host data from the AZS DREAM Challenge and the ONeil datasets on our GitHub page, users can download these datasets separately and directly apply the provided code.

      (7) GitHub can include all the input and output data to reproduce the correlation plots in the manuscript. GitHub could also include the modified version of TAIJI-M and its corresponding input for comparison. The methods section should include how TAIJI was performed.

      We have uploaded all the codes and related data to the GitHub page to allow replication of all correlation plots in the manuscript. TAIJI-M represents the molecular model of the full TAIJI model. Both TAIJI-M and TAIJI are documented on the GitHub page of the original study. We have also included a link to the source code for TAIJI-M and TAIJI in the 'Data Availability' section.

      (8) Figure 5 - the data associated with this figure needs to be provided as supplementary listing the predicted values of Loewe scores for all the combinations.

      We report the associated data including the median of predicted and observed Loewe scores related to Figure 5c in Supplementary Table S2.

      Minor comments:

      (9) Abbreviations for the pathways are not included.

      We have included a list of abbreviations for all relevant pathways in Supplementary Table S5.

      (10) Line: 369. What is considered as bias correction? This needs to be explained.

      Bias correction refers to adjusting the original estimate of the Spearman correlation between the predicted and observed Loewe scores when there is a systematic difference between the estimates obtained from the bootstrap samples and the original correlation estimate. We revised the related text in page 13 to improve the explanation.

      (11) Line 364. Formulae or details for calculating actual predicted synergy (Ps) are missing.

      The predicted Loewe score, Ps, is the output of the regression random forest model. For simplicity, we do not describe the details in the manuscript, but refer to the description of the method article (Ishwaran H et al., 2021). We have revised the text accordingly.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We appreciate that both reviewers found our findings significant and recognized the strength of the presented data in demonstrating the potential value of ASO-mediated Emc10 expression modulation for treating 22q11.2DS. We are grateful for the reviewers' valuable input and constructive suggestions, which we believe have significantly strengthened our manuscript. Below, we address the main points and concerns, followed by our point-by-point responses:

      Evaluation of ASO-Mediated Emc10 Reduction: We appreciate the feedback and the opportunity to clarify this point. While we agree that ASO-mediated reduction of Emc10 should ideally be evaluated at both the mRNA and protein levels, we would like to emphasize that this was indeed performed in our study. Specifically, we conducted both qRT-PCR and Western Blot (WB) assays on the same animal cohort, focusing on the left and right hippocampus (rather than the PFC) following ASO injection (see Figure S11C and D). We prioritized the hippocampus for the WB assay because our primary behavioral assays and observed phenotypes in this study are strongly hippocampus-centric. This approach reflects our aim to investigate Emc10's role in the brain regions most relevant to the observed phenotypes. We hope this clarification addresses the reviewer’s concerns. While protein-level analysis would ideally complement RNA measurements, the Emc10 antibodies available were suboptimal in specificity and sensitivity, requiring substantial optimization. Additionally, challenges in obtaining sufficient high-quality protein from small regions like the hippocampus limited the use of protein detection as a standalone method. We plan to refine antibody protocols or explore alternative methods in future work. Notably, in all instances where we performed parallel protein and RNA measurements in both, mouse brain tissue and human cell lines, there was excellent concordance between the datasets, strongly suggesting that mRNA levels are a reliable indicator of Emc10 protein levels in our model.

      ASO Neuronal Uptake: While ASO uptake by neurons in the brain can vary considerably depending on factors such as ASO chemistry, delivery method, target brain region, and cell type, our targeted delivery approach, ASO design optimization, and ASO screening strategy were specifically tailored to achieve uniform and efficient uptake across hippocampal and cortical regions, in both neurons and glia. The figures included in our manuscript at both low and high magnification (see Figure S14A) clearly display the extensive (over 97%) overlap of ASO-positive cells (green signal) with cells expressing the neuronal marker NeuN (red signal). While quantifying ASO-positive cells in different brain regions could add value, the robust diffusion of ASO into neurons and glia is effectively demonstrated in the current figures and indirectly supported by the robust downregulation of Emc10 in ASO-treated animals as shown by qRT-PCR assays of hippocampal and cortical brain regions.

      Transcriptomic Data in Mutant EMC10 NGN2-iNs: Reduction in EMC10 levels is not expected to directly affect transcription or to broadly reorganize the differential gene expression profile of the Q6/Q5 patient/control NGN2-iN lines. Accordingly, our transcriptional profiling was not designed to assess the direct impact of EMC10 deficiency on gene expression but rather to serve as an indirect measure of cellular pathways affected by the reduction in EMC10 levels in the patient Q6 line. We aimed to identify genes and related functional pathways differentially expressed between the Q6/Q5 patient/control lines, where these expression differences are either abolished or significantly attenuated in Q6/EMC10<sup>HET</sup> or Q6/EMC10<sup>HOM</sup> NGN2-iNs.

      Statistical Analysis: We have meticulously reviewed all statistical analyses in the manuscript to ensure their appropriateness and adherence to established practices. For Figure S2, we acknowledge that the statistical details were not fully specified in the figure legend, though they are provided for each miRNA in Supplemental Table S2. In the revised manuscript, we ensured that the statistical methods and corresponding values are clearly indicated for each comparison.

      We are confident that the revisions outlined above, along with the point-by-point responses provided below, will significantly strengthen our manuscript and address all the concerns raised by the reviewers. We would like to express our sincere thanks to the reviewers for their valuable feedback and constructive suggestions.

      Reviewer #1 (Recommendations For The Authors):

      My comments here are generally limited to minor comments that reflect possible small additions or edits to the manuscript:

      (1) Panel 1A is very small. Please consider making that bigger as space permits.

      We have increased the panel size of Figure 1A in the revised manuscript to improve its visibility and clarity.

      (2) Are you able to identify the dot that represents EMC10 in panel 1C? I understand that EMC10 is represented in Supplementary Figure 4A.

      We appreciate the reviewer's observation. In Figure 1C, the volcano plot depicts differentially expressed miRNAs in the Q5/Q6 neuronal samples, as identified through miRNA-sequencing. Since EMC10, as a protein-coding gene and a downstream target of miRNA dysregulation, is not included in this analysis. However, as the reviewer correctly notes, EMC10 gene expression is represented in the volcano plot in Supplementary Figure 4A, which displays differentially expressed genes identified through bulk RNA-seq analysis of the same neuronal samples. To avoid any confusion, we have clarified the title of Figure 1C to emphasize that it represents miRNA expression changes.

      (3) With regard to studies using iPSC. Some of the studies are executed across multiple distinct pairs and some are only done in a single pair. Overall, while results are coherent and often complimentary, would it be valuable for the authors to comment on experiments where studies in multiple pairs seemed particularly important, or others wherein it was less important?

      We thank the reviewer for this insightful question regarding our use of multiple versus single hiPSC pairs. Our investigation began with the Q5/Q6 sibling (dizygotic twin) pair, which shares the most similar genetic background. This minimized the impact of confounding genetic factors and provided a robust foundation for testing our hypothesis that EMC10 upregulation, driven by miRNA dysregulation, is a key consequence of the 22q11.2 deletion in human neurons, thus validating our previous findings from the Df(16)A<sup>+/-</sup> mouse model (Stark et al., 2008; Xu et al., 2013). To ensure the generalizability of our findings, we incorporated additional hiPSC lines from another sibling pair as well as a case/control pair, demonstrating that EMC10 upregulation is a consistent feature of 22q11.2DS. Subsequently, we focused on the well-matched Q5/Q6 pair for detailed morphological, functional, and genetic rescue experiments. This approach allowed us to perform in-depth studies while controlling for potential genetic confounders. By using both multiple and single hiPSC pairs, we balanced the need for generalizable findings with the practical considerations of conducting technically complex and resource-intensive experiments. This strategy enabled us to provide both broad and detailed insights into the mechanisms underlying 22q11.2DS. We have modified the introductory paragraph of the Results section to better highlight this issue.

      (4) While the majority of the experiments seem sufficiently powered to test the hypothesis in question in the iPSC studies, Figure 2B raises the question if the study replicates here were underpowered, and perhaps the authors might consider mentioning this, although this is a very minor comment.

      We thank the reviewer for raising this point. We acknowledge that the statistical power to detect a significant difference in pre-miR-485 levels in Figure 2B may be limited due to the relatively small sample size and the inherent variability in hiPSC-derived neuronal cultures. However, it is important to emphasize that the functional impact of miRNAs is primarily mediated by their mature transcript forms. Our miRNA-seq data (Supplementary Table 2 and Figure S2) did not show significant alterations in the levels of mature miR-485-5p or miR-485-3p. This finding aligns with the reported expression pattern of miR-485 in hiPSC-derived neurons, where relatively low levels are observed in early neuronal development, with increased expression occurring in older, more mature neurons (Soutschek et al. 2023; https://ethz-ins.org/igNeuronsTimeCourse/ database from the Institute of Neurogenomics, ETH Zurich). This database provides a valuable resource for examining gene expression dynamics during human neuronal differentiation. Given that our hiPSC-derived neurons were analyzed at a relatively early developmental stage (DIV8 for these experiments), it is likely that miR-485 expression had not yet reached levels sufficient to reveal significant differences. While we acknowledge the potential limitation in statistical power for detecting subtle changes in pre-miR-485 levels, the combined evidence suggests that miR-485 may not be a significant contributor to the observed phenotypes at this developmental stage.

      A paragraph has been added in the corresponding Results section to address this issue.

      (5) There are a few situations where the authors could help out the reader a little bit by providing more labels on the figures directly. For example: in Figure 2, there are expression levels, over-expression, and inhibition of miRNA but the X-axis is named with similar labels for the miRNAs in question for each of these distinct experiments. If the authors want to help the reader, they may consider labeling these panels with a descriptive title to reflect the experiment being done or use more descriptive terms in the X-axis panels. Again, this is minor. Similarly, in Figure 5, it might be helpful for the authors to help out the reader again with more labels on the panels, such as in Figures 5B, 5C, and 5D. Would they consider labeling these panels, HPC, PFC, SSC with the brain location as they did in Figure 4?

      We thank the reviewer for these helpful suggestions to improve the clarity of our figures. We have implemented the proposed changes. In Figure 2C-E, we have added specific titles to the panels to clearly distinguish between the different experimental conditions such as miRNA overexpression and inhibition. Similarly, in Figure 5, we labeled panels 5B, 5C, and 5D with the brain regions analyzed (HPC, PFC, SSC) to match the labeling used in Figure 4. We believe these revisions enhance the readability and overall interpretability of the figures, making it easier for readers to follow the experiments and results.

      (6) Figure 3: There is some overshoot of the data in EMC10 homozygous null, in panel 3E, and also, overshoot of the het in panel 3H. Would there be value in the authors commenting on the potential basis for this in the discussion? Some issues are minor, such as the lack of electrophysiological analysis of circuits in vivo or in ex vivo slices that may further support the proposed rescue.

      The reviewer correctly highlights the observation in Figures 3E and 3H, where the number of branch points in the Q6/EMC10<sup>HOM</sup> line exceeds wildtype levels and the calcium response in the Q6/EMC10<sup>HET</sup> and Q6/EMC10<sup>HOM</sup> lines surpasses that of the control. This overshoot is indeed intriguing and warrants discussion. EMC10 is part of the ER Membrane Complex (EMC), which plays a critical role in the proper folding and localization of various membrane proteins, including neurotransmitter receptors and ion channels such as voltage-gated calcium channels (Chitwood et al., 2018; Shurtleff et al., 2018; Chitwood and Hegde, 2019). In the context of the 22q11.2 deletion, EMC10 dysregulation may disrupt the proper localization of these proteins at the synapse, affecting both dendritic morphology and calcium signaling. The precise basis of this overshoot remains unclear. The overshoot may result from a dosage-sensitive inhibitory effect of Emc10, where both reduced and increased expression alter normal neuronal processes, with excessive responses potentially triggered upon gene restoration by the mutant system’s adaptation to dysfunction, leading to altered receptor sensitivity or signaling dynamics. This underscores the critical importance of precise Emc10 expression for proper neuronal development and function, in line with previous findings suggesting that EMC10 plays an auxiliary or modulatory role in EMC function. A short comment on the potential basis for this overshoot has been added in the corresponding Results section of the manuscript. Regardless of the underlying mechanisms, these findings emphasize the importance of precise titration of ASO constructs, rigorous gene dosage controls, and thorough analysis of context-specific responses to ensure both efficacy and safety in clinical applications.

      We also agree with the reviewer that electrophysiological studies, particularly in the 22q11.2 deletion mouse model, would provide valuable insights into the impact of EMC10 modulation by ASOs on neuronal activity and circuit function at the in vivo and ex vivo levels. Incorporating such experiments into future studies will allow us to assess synaptic transmission and plasticity, contributing to a more comprehensive understanding of the therapeutic potential of ASO-mediated EMC10 modulation in 22q11.2DS.

      (7) Did the authors take out the behavior studies further than 9 weeks? Would the authors consider commenting on what they speculate might be the duration of the treatment effect? For both mice and definitely humans.

      We thank the reviewer for raising the important question regarding the duration of the ASO treatment effect, which is crucial for translating our findings into clinically relevant therapies. While behavioral studies beyond 9 weeks were not conducted in this study, our in vivo experiments and findings from prior publications (detailed below) enable an informed speculative assessment.

      We utilized 2'-O-methoxyethyl (2'-MOE) modified ASOs, known for their enhanced binding affinity, nuclease resistance, and increased metabolic stability. In our in vivo post-injection screening of ASOs (Figure S13C), we predicted that Emc10 expression levels return to normal WT levels (~T100%) approximately 26 weeks post-treatment in Emc10<sup>ASO</sup> (#1466182) treated mice. This prediction is supported by our Emc10 expression profiles across various brain regions, which demonstrate robust repression of Emc10 lasting up to 10 weeks post-administration (Figure 6D-F). While these findings suggest that the treatment effect in our model could extend significantly beyond 10 weeks following a single ASO injection, further empirical validation is required through extended follow-up studies. Encouragingly, long-term effects of 2'-MOE ASOs have been observed in other neurological disorders (Kordasiewicz et al., 2012; Scoles et al., 2017; Finkel et al., 2017; Darras et al., 2019). However, factors such as ASO distribution, target cell turnover, and disease-specific pathophysiology could influence the duration of the effect. To address these uncertainties, we have added a paragraph in the Discussion section emphasizing the need for additional studies, including extended follow-up periods and eventual clinical trials, to determine the specific duration of effect for our Emc10<sup>ASO</sup> constructs in treating 22q11.2DS.

      Reviewer #2 (Recommendations For The Authors):

      (1) It is acknowledged that the iPSC-derived cells in Figure 1 are no longer progenitors, but differentiation markers for astrocytes and glia are also needed in Figure 1b to establish that equal rates of differentiation have occurred across genotypes.

      We thank the reviewer for raising this important point about ensuring equal rates of differentiation across genotypes. As the reviewer notes, we employed a well-established protocol for directed differentiation of hiPSCs into cortical neurons using a combination of small molecule inhibitors, as previously described by Qi et al. (2017). This protocol has been extensively validated and is known to robustly generate cortical neurons while actively suppressing glial differentiation, as evidenced by the lack of upregulation of glial markers such as GFAP, AQP4, or OLIG2 in the original study. Given the established neuronal specificity of this protocol and our focus on neuronal phenotypes, we prioritized the confirmation of successful neuronal differentiation using the established neuronal markers TUJ1 and TBR1. Therefore, additional markers for astrocytes and glia are not included in this figure, as we did not expect significant glial differentiation under these conditions. A sentence has been added in the corresponding Results section to address this issue.

      (2) For the RNA-seq experiments outlined in Figures 3J and K, a more comprehensive analysis is needed of the genes disrupted in the parental Q6 line relative to the het and homo lines. What percent are rescued, unaffected, vs uniquely disrupted?

      Reduction in EMC10 levels is not expected to directly affect transcription or broadly reorganize the gene expression profile of the Q6/Q5 NGN2-iN lines. Our transcriptional profiling was not designed to assess the direct impact of EMC10 deficiency on gene expression but rather to measure the cellular pathways affected by reduced EMC10 in the patient Q6 line. We identified genes differentially expressed between the Q6 (patient) and Q5 (control) lines, whose expression differences were either abolished or significantly attenuated ("rescued") in the Q6/EMC10<sup>HET</sup> or Q6/EMC10<sup>HOM</sup> lines. In the Q6/EMC10<sup>HET</sup> line, 237 DEGs (6%) were rescued, while in the Q6/EMC10<sup>HOM</sup> line, 382 DEGs (11%) were rescued. Importantly, further analysis revealed 103 shared rescued DEGs in these lines, which was statistically significant (enrichment factor = 1.7; p < 0.0001, based on a hypergeometric test). We added a new figure panel (Figure 3L) to visualize the significant overlap of rescued DEGs from the Q6/EMC10<sup>HET</sup> and Q6/EMC10<sup>HOM</sup> lines. This overlap suggests these genes play a critical role in biological pathways impacted by EMC10 levels, particularly in nervous system development, as indicated by our functional annotation analysis. We also performed protein-protein interaction (PPI) network analysis to explore the functional relationships among these 103 shared DEGs (Figure S8). Future studies will further investigate these gene sets to gain deeper insights into the molecular mechanisms underlying 22q11.2DS and the role of EMC10.

      (3) The authors claim that 50% EMC10 loss in adult mice is safe and should be toned down. EMC10 knockout mice have motor, anxiety, and social phenotypes. It would be unique amongst highly dosage-sensitive genes (MeCP2, CDKL5, TCF4, FMR1, etc.) for there to only be a neurodevelopmental component. In all those cases, and others, the effects of over and under-expression are reversible into adulthood. Establishing the range in adults is critical to establishing therapeutic utility. Absent a detailed examination of non-cognitive phenotypes, this claim cannot be made.

      The reviewer raises an important point about the potential effects of EMC10 reduction in adult mice and the need to establish a safe therapeutic window by evaluating both cognitive and non-cognitive phenotypes. We agree that such a comprehensive evaluation is critical for assessing the safety and translational potential of Emc10-targeting therapies. While the International Mouse Genotyping Consortium reported motor and anxiety phenotypes in homozygous Emc10 knockout mice, these data are unpublished and based on a relatively small number of animals. Furthermore, in our previous work (Diamantopoulou et al., 2017), we demonstrated that complete Emc10 loss does not impair cognition or social behavior, as assessed by prepulse inhibition (PPI), working memory (WM), and social memory (SM) assays (see Figure 3A-D; Diamantopoulou et al., 2017). Additionally, heterozygous Emc10 mice, which exhibit a ~50% reduction in Emc10 expression similar to that achieved with our ASO treatment, showed no evidence of motor deficits or anxiety-like behavior. Specifically, Emc10<sup>+/-</sup> mice displayed locomotor activity comparable to WT mice in the open field (OF) test (Figure S4A, Diamantopoulou et al., 2017). Moreover, genetic normalization of Emc10 expression in Df(16)A<sup>+/-</sup> mice demonstrated no signs of anxiety-like behavior, as assessed by the OF test (Figure S4A) and elevated plus maze (EPM) (Figure S4B; Diamantopoulou et al., 2017). To further support these findings, we have added new data to the current manuscript (see Figure S10J) showing that TAM treatment-mediated restoration of Emc10 levels in the brain of adult Df(16)A<sup>+/-</sup> mice did not affect the time that mutant mice spent in the center area of the OF (Fig. S10J), suggesting that Emc10 reduction does not influence anxiety-related behavior. These results suggest that a 50% reduction in EMC10 expression is unlikely to result in motor or anxiety-like phenotypes in adult mice. Finally, as noted in the manuscript, in addition to prior findings from animal models, a substantial number of relatively rare LoF variants or potentially damaging missense variants have been identified in the human EMC10 gene among likely healthy individuals in gnomAD, a database largely devoid of individuals known to be affected by severe neurodevelopmental disorders (NDDs).

      Nevertheless, the Discussion has been revised to underscore the importance of establishing a more detailed safety profile, including non-cognitive phenotypes, to fully validate the therapeutic potential of Emc10-targeting approaches. It also highlights the need for future studies to expand on these evaluations, addressing this critical aspect and laying a stronger foundation for advancing these findings into clinical drug development

      (4) Supplemental Figure 10: The protein validation of Emc10 knockout following tamoxifen injection needs to be validated in all brain regions, not just the PFC. This is particularly important as the rest of the paper focuses on HPC-mediated phenotypes.

      First, we want to emphasize that we conducted both qRT-PCR and WB assays on the same animal cohort, specifically examining the left and right hippocampus following ASO injection (see Figure S11C and D). This approach is crucial, given the central role of hippocampus in the phenotypes investigated in our ASO-mediated Emc10 knockdown experiments.

      The reviewer raises an important point regarding the validation of EMC10 reduction at the protein level across all relevant brain regions using the Emc10 conditional knockout strain. We agree that such validation would ideally confirm the efficacy of our tamoxifen-induced knockout model comprehensively. However, we hope the reviewer appreciates that obtaining sufficient high-quality protein for WB analysis from smaller brain regions like the hippocampus poses a significant technical challenge. This difficulty is further compounded by the need to reserve the same samples for qRT-PCR to ensure consistency between mRNA and protein measurements. Importantly, our data from ASO-mediated Emc10 knockdown experiments (Figures S11C-D) demonstrate a clear and consistent correlation between reductions in Emc10 mRNA and protein levels in both the left and right hippocampus. Furthermore, in our constitutive Emc10-knockout mouse model (Diamantopoulou et al., 2017; see Figure S1A-B), we observed a strong agreement between mRNA and protein levels, supporting the reliability of mRNA data as a proxy for EMC10 protein levels in our experiments. Importantly, in all instances where we performed parallel protein and RNA measurements in human cell lines, there was excellent concordance between the datasets. Thus, while we acknowledge the limitations of relying primarily on mRNA data, we are confident that the Emc10 mRNA expression data in Figure S10 accurately reflect protein-level changes across brain regions in our conditional knockout model. To address this concern more fully in the future, we are working to refine antibody detection and optimize our protein extraction protocols to enable more routine and precise protein-level validation across smaller brain regions. We appreciate the reviewer’s feedback and will continue to refine our methodologies to strengthen the robustness of our findings.

      (5) Figure 3: 1 way ANOVA would be more appropriate to analyze the data in B-G than t-tests.

      We appreciate the suggestion of the reviewer. As mentioned above, we carefully selected statistical tests appropriate for each analysis. For Figure 3B-G, we chose to use pairwise t-tests to address specific hypotheses regarding the disease phenotype and rescue effects. This approach is consistent with prior experimental studies in the field, including our own (e.g., Xu et al., 2013; Figure 7H-I). Importantly, most of our t-tests yielded highly significant results (p < 0.001 or p < 0.01), reinforcing the robustness of our findings.

      (6) Figure 5-6: Protein data is needed to complement the mRNA knockdown data.

      We agree with the reviewer on the importance of protein-level validation to complement the mRNA knockdown data. As mentioned in our response to Reviewer’s Comment (4), in all instances where we performed parallel protein and RNA measurements, either in mouse brain or human cell lines, we observed excellent concordance between the datasets. This supports the reliability of our mRNA data as a proxy for protein changes. Nevertheless, we acknowledge the value of including protein validation in future experiments and will consider incorporating it to further strengthen our findings.

      (7) The use of additional phenotypic measures is applauded in Figure 6, however, to appropriately interpret the data more is needed. Shao et al 2021 (Figure S9) show data from the International Mouse Genotyping Consortium claiming EMC10 KO mice have gait, activity, and anxiety phenotypes. All of these parameters could impact the SM assay and the y-maze assay. Changes in SM interaction time could be linked to anxiety or motor impairments, but interpreted as cognitive deficits because these symptoms were not assessed. At a minimum, discussion is needed about this limitation, as well as the inclusion of distance explored in the SM and Y-maze assays.

      We thank the reviewer for their insightful comment regarding the potential influence of locomotor, gait, or anxiety phenotypes on the observed deficits in the SM and Y-maze assays. The behavioral phenotypes reported for Emc10 knockout mice by the International Mouse Genotyping Consortium (https://www.mousephenotype.org/data/genes/MGI:1916933) were limited to homozygous female mice and based on a small sample size (4–6 females) compared to a larger WT control group. Moreover, these data are unpublished and thus challenging to evaluate fully. Importantly, no abnormal behaviors were reported for Emc10 heterozygous knockout mice in these datasets. Additionally, the claim by Shao et al. (2021) regarding cognitive impairments in Emc10 knockout mice based on our previous work (Diamantopoulou et al., 2017) is inaccurate.

      Our analysis of both the constitutive Emc10 knockout model (Diamantopoulou et al., 2017) and the current conditional Emc10 heterozygous knockout model consistently demonstrates that Emc10 reduction does not affect locomotor activity or anxiety-like behavior. In our earlier characterization of constitutive heterozygous Emc10 knockout mice (Emc10<sup>+/-</sup>), we observed no signs of anxiety-like behavior or motor impairments in OF assays (see Figure 2A-B and Figure S4A, Diamantopoulou et al., 2017). Similarly, results from Df(16)A<sup>+/-</sup> mice with genetically normalized Emc10 expression [Df(16)A<sup>+/-</sup>; Emc10<sup>+/-</sup>] also showed no indications of anxiety-like behavior or locomotor changes in the OF and EPM assays (see Figure S4A-B, Diamantopoulou et al., 2017). Consistent with these findings, our current data from Df(16)A<sup>+/-</sup> mice with conditional Emc10 reduction in the brain show no significant differences in locomotor activity and anxiety-related measures as assessed by OF assays (Figure S10J). Furthermore, total arm entries in Y-maze assays conducted in Df(16)A<sup>+/-</sup> mice treated with Emc10 ASOs were comparable to controls (Figures S14C and G-H), providing additional support for the conclusion that locomotor activity remains unaffected in these models.

      We further appreciate the reviewer’s suggestion that changes in social interaction time during the SM assay could be influenced by anxiety or motor impairments. However, we consider this scenario unlikely in our model. Interaction times during the first trial of the SM assay, which measures general social interest, are comparable between Df(16)A<sup>+/-</sup> mice with reduced Emc10 expression (either genetically or through ASO treatment) and WT controls (see Figures 4E, 5E, and S10G). These findings indicate that our mouse models do not exhibit inherent difficulties in initiating social interaction, as might be expected if motor impairments or heightened anxiety were present. Reduced social interaction is commonly used as a behavioral marker for anxiety in rodent studies (reviewed by Bailey and Crawley, Anxiety-Related Behaviors in Mice, 2009). “Anxious” mice typically exhibit decreased social interaction, spending less time engaging with other mice compared to non-anxious counterparts. However, the specific deficit we observe in the second trial of the SM assay—when mice are reintroduced to a familiar juvenile—is indicative of impaired social recognition memory, as previously documented for Df(16)A<sup>+/-</sup> mice (Piskorowski et al., 2016; Donegan et al., 2020). This deficit is distinct from the general social avoidance typically associated with heightened anxiety.

      Based on our comprehensive assessment of locomotor activity, anxiety-related behaviors, and social interaction, we conclude that the observed rescue of social memory and spatial memory deficits in mice with reduced Emc10 expression is most likely due to improved cognitive function rather than alterations in motor or anxiety-related domains.

      (8) For ASO optimization experiments, it is not sufficient to claim robust uptake. A quantitative measure is needed using the PO antibody showing what percentage of cells were positive for the ASO. Since the contention is that only Emc10 in excitatory neurons is important, it would be helpful if this also included a breakdown of ASO uptake in excitatory and inhibitory neurons and astrocytes.

      We thank the reviewer for highlighting the importance of quantifying ASO uptake and assessing cell-type specificity. To address this, we have added new data to the panel, as shown in the high-magnification images in Figure S14A. These images provide evidence that a large majority of NeuN-positive neurons exhibit a strong ASO signal. Specifically, we observed widespread ASO uptake (green) that extensively colocalized with the neuronal marker NeuN (red) in both the hippocampus and prefrontal cortex. Quantitative analysis of this overlap indicates that over 97% of NeuN-positive neurons were ASO-positive, demonstrating efficient neuronal uptake. This robust neuronal uptake aligns with the significant normalization of Emc10 levels and the behavioral improvements observed in ASO-treated Df(16)A<sup>+/-</sup> mice, further supporting the functional efficacy of our approach in modulating Emc10 expression within the relevant neuronal populations. Overall, the observed ASO uptake in neurons, as demonstrated by IHC, combined with RNA assays and the behavioral improvements in treated mice, strongly supports the efficacy of our approach in targeting Emc10 expression in the intended neuronal populations.

      (9) An interpretation is needed in Figure S3 as to why ~50% of the pathways increased are also present on the decreased list. Ie. G1/transition, viral reproductive process, pos regulator of cell stress, etc. 4/10 GO terms are present in both increased and decreased groups in A and 7/10 in B.

      We thank the reviewer for pointing out the overlap between pathways enriched in both the upregulated and downregulated miRNA groups in Figure S3. This overlap likely reflects the complex nature of miRNA regulation, where individual miRNAs can target multiple genes within a pathway, and single genes can be regulated by multiple miRNAs, sometimes with opposing effects (reviewed in Bartel, 2009; Bartel, 2018). For example, in the “G1/S transition” pathway, upregulated miRNAs such as miR-92a-3p, miR-92b-3p, and miR-34a-5p may promote the transition by targeting cell cycle regulators like FBXW7, CDKN1C, and CDK6 (Zhou et al., 2015; Zhao et al., 2021; Oda et al., 2024). Conversely, downregulated miRNAs such as miR-143-3p and miR-200b are known to suppress the transition by targeting genes such as HK2 and GATA-4 (Zhou et al., 2015; Yao et al., 2013). Our analysis identified overlapping predicted target genes for both upregulated and downregulated miRNAs, supporting the notion that many genes are subject to complex regulation by multiple miRNAs with potentially synergistic or antagonistic effects. Thus, the enrichment of certain GO terms in both groups likely reflects this intricate interplay of miRNA-mediated gene regulation. Future investigations focusing on specific miRNA-target interactions within these pathways will be critical to fully elucidate the underlying mechanisms and better understand the functional consequences of these opposing regulatory effects.

      Minor Concerns:

      (1) Define SM before using it.

      We have defined the SM assay in the main text upon its first mention, where we describe the assay and its relevance to cognitive function (see page 11 of the revised manuscript).

      (2) Statistics have been run in Figure S2, but not presented. The text only states that the differences between groups are significant. Please add in.

      We have revised the legend of Figure S2 to include the specific statistical test used (students t-tests) and the corresponding p-values.

      (3) The switch from ASO1 to ASO2 between Figures 5 and 6 needs more discussion. Why were new ASOs generated when ASO1 worked?

      We thank the reviewer for their question regarding the transition from Emc10<sup>ASO1</sup> to Emc10<sup>ASO2</sup> between Figure 4 and Figures 5-6. Emc10<sup>ASO1</sup> served as our initial proof-of-concept ASO construct, successfully demonstrating the feasibility of inhibiting Emc10 mRNA expression and providing evidence for behavioral rescue in our mouse model. As outlined in the manuscript, Emc10<sup>ASO2</sup> targets a different region of the Emc10 transcript (intron 1, Figure 5A) compared to Emc10<sup>ASO1</sup> (intron 2, Figure 4A). This distinction provides an additional layer of validation for our targeting strategy and ensures specificity in modulating Emc10 expression. In addition, Emc10<sup>ASO1</sup> exhibited limited distribution in the brain, primarily targeting the hippocampus with weaker inhibition of Emc10 in other regions such as the cortex (Figure 4C, right panel). Emc10<sup>ASO2</sup> overcame this limitation and achieve broader brain distribution, as demonstrated by the qRT-PCR data in Figure 5C. Given that 22q11.2DS can affect multiple brain regions and cognitive domains beyond the hippocampus, achieving broader distribution of the ASO is critical for a more comprehensive assessment of therapeutic potential.

      (4) Page 3: Define "LoF"

      We have defined Loss-of-Function (LoF) in the main text where it is first mentioned in the Introduction, where we discuss the potential of using LoF mutations to devise therapeutic interventions (see page 3 of the revised manuscript).

      References

      Bailey and Crawley, Anxiety-Related Behaviors in Mice, In: Methods of Behavior Analysis in Neuroscience. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; Chapter 5, (2009).

      Bartel, MicroRNAs: target recognition and regulatory functions, Cell 136(2):215-33, (2009).

      Bartel, Metazoan MicroRNAs, Cell, 173(1):20-51, (2018).

      Chitwood et al., EMC Is Required to Initiate Accurate Membrane Protein Topogenesis, Cell 175, 1507-1519 e1516, (2018).

      Chitwood and Hegde, The Role of EMC during Membrane Protein Biogenesis, Trends Cell Biol. (5):371-384, (2019).

      Darras et al., Nusinersen in later-onset spinal muscular atrophy: Long-term results from the phase 1/2 studies, Neurology 92(21), (2019).

      Diamantopoulou et al., Loss-of-function mutation in Mirta22/Emc10 rescues specific schizophrenia-related phenotypes in a mouse model of the 22q11.2 deletion, Proc Natl Acad Sci U S A 114, E6127-E6136, (2017).

      Donegan et al., Coding of social novelty in the hippocampal CA2 region and its disruption and rescue in a 22q11.2 microdeletion mouse model, Nat Neurosci 23, 1365-1375, (2020).

      Finkel et al., Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy, N Engl J Med 377(18):1723-1732, (2017).

      Kordasiewicz et al., Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis, Neuron 74(6):1031-44, (2012).

      Oda et al., MicroRNA-34a-5p: A pivotal therapeutic target in gallbladder cancer, Mol Ther Oncol, 32(1):200765, (2024).

      Piskorowski et al., Age-Dependent Specific Changes in Area CA2 of the Hippocampus and Social Memory Deficit in a Mouse Model of the 22q11.2 Deletion Syndrome. Neuron 89, 163-176, (2016).

      Qi et al., Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol 35, 154-163, (2017).

      Scoles et al., Antisense oligonucleotide therapy for spinocerebellar ataxia type 2, Nature 44(7650):362-366, (2017).

      Shao et al., A recurrent, homozygous EMC10 frameshift variant is associated with a syndrome of developmental delay with variable seizures and dysmorphic features, Genet Med 23, 1158-1162, (2021).

      Shurtleff et al., The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins, Elife 7, (2018).

      Soutschek et al., A human-specific microRNA controls the timing of excitatory synaptogenesis, bioRxiv, (2023).

      Stark et al., Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 40, 751-760, (2008).

      Xu et al., Derepression of a neuronal inhibitor due to miRNA dysregulation in a schizophrenia-related microdeletion, Cell 152, 262-275, (2013).

      Yao et al., miR-200b targets GATA-4 during cell growth and differentiation, RNA Biol.10(4):465-8, (2013).

      Zhao et al., miR-92b-3p Regulates Cell Cycle and Apoptosis by Targeting CDKN1C, Thereby Affecting the Sensitivity of Colorectal Cancer Cells to Chemotherapeutic Drugs, Cancers 2;13(13):3323, (2021).

      Zhou et al., miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7, Biochem Biophys Res Commun 458(1):63-9, (2015).

      Zhou et al., MicroRNA-143 acts as a tumor suppressor by targeting hexokinase 2 in human prostate cancer, Am J Cancer Res. 5(6):2056-6 (2015).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript, the authors study the effects of synaptic activity on the process of eye-specific segregation, focusing on the role of caspase 3, classically associated with apoptosis. The method for synaptic silencing is elegant and requires intrauterine injection of a tetanus toxin light chain into the eye. The authors report that this silencing leads to increased caspase 3 in the contralateral eye (Figure 1) and demonstrate evidence of punctate caspase 3 that does not overlap neuronal markers like map2. However, the quantifications showing increased caspase 3 in the silenced eye (done at P5) are complicated by overlap with the signal from entire dying cells in the thalamus. The authors also show that global caspase 3 deficiency impairs the process of eye-specific segregation and circuit refinement (Figures 3-4).

      The reviewer states: “this silencing leads to increased caspase 3 in the contralateral eye”. We observed increased caspase-3 activity, not protein levels, in the contralateral dLGN, not eye.

      The reviewer states: “and demonstrate evidence of punctate caspase 3 that does not overlap neuronal markers like map2”. We do not believe that this statement is accurate, as we show that the punctate active caspase-3 signals overlap with the dendritic marker MAP2 (Figure S4A).

      The reviewer also states: “, the quantifications showing increased caspase 3 [activity] in the silenced [dLGN] (done at P5) are complicated by overlap with the signal from entire dying cells in the thalamus”. We do not believe that this statement is accurate. The apoptotic neurons we observed are relay neurons (confirmed by their morphology and positive staining of NeuN – Figure S4B-C) located in the dLGN (the dLGN is clearly labeled by expression of fluorescent proteins in RGCs, and only caspase-3 activity in the dLGN area is analyzed), not “cells” of unknown lineage (as suggested by the reviewer) in the general “thalamus” area (as suggested by the reviewer). If the dying cells were non-neuronal cells, that would indeed confound our quantification and conclusions, but that is not the case.

      We argue that whole-cell caspase-3 activation in dLGN relay neurons is a bona fide response to synaptic silencing by TeTxLC and therefore should be included in the quantification. We have two sets of controls: one is between the strongly inactivated dLGN and the weakly inactivated dLGN in the same TeTxLC-injected animal; and the second is between the dLGN of TeTxLC-injected animals and mock-injected animals. In both controls, only the dLGNs receiving strong synapse inactivation have more apoptotic dLGN relay neurons, demonstrating that these cells occur because of synapse inactivation. It is also unlikely that our perturbation is causing cell death through a non-synaptic mechanism. Since mock injections do not cause apoptosis in dLGN neurons, this phenomenon is not related to surgical damage. TeTxLC is injected into the eyes and only expressed in presynaptic RGCs, not in postsynaptic relay neurons, so this phenomenon is also unlikely to be caused by TeTxLC-related toxicity. Furthermore, if apoptosis of dLGN relay neurons is not related to synapse inactivation, then when TeTxLC is injected into both eyes, one would expect to see either the same amount or more apoptotic relay neurons, but we instead observed a reduction in dLGN neuron apoptosis, suggesting that synapse-related mechanisms are responsible. Considering the above, occasional whole-cell caspase-3 activation in relay neurons in TeTxLC-inactivated dLGN is causally linked to synapse inactivation and should be included in the quantification.

      We also revised the manuscript to better explain the possible mechanistic connection between localized caspase-3 activity and whole-cell caspase-3 activity. We propose that whole-cell caspase-3 activation occurs because of uncontrolled accumulation of localized caspase-3 activation. Please see line 127-140 and line 403-413 for details.

      Additionally, we would like to clarify that we are not claiming that synapse inactivation leads to only localized caspase-3 activation or only whole-cell caspase-3 activation, as is suggested by the editors and reviewers in the eLife assessment. We have clearly stated in the manuscript that both types of signals were observed. However, we reasoned that, because whole-cell caspase-3 activation in unperturbed dLGNs – which undergo normal synapse elimination – is infrequently observed, whole-cell caspase-3 activation may not be a significant driver of synapse elimination during normal development. In this revision, we included a new experiment to corroborate this hypothesis. If whole-cell caspase-3 activation in dLGN relay neurons is a prevalent phenomenon during normal development, such caspase-3 activity would lead to significant death of dLGN relay neurons during normal development. Consequently, if we block caspase-3 activation by deleting caspase-3, the number of relay neurons in the dLGN should increase. However, in support of our hypothesis, we observed comparable numbers of relay neurons in Casp3<sup>+/+</sup> and Casp3<sup>-/-</sup> mice. Please see Figure S7 for details.

      The authors also report that "synapse weakening-induced caspase-3 activation determines the specificity of synapse elimination mediated by microglia but not astrocytes" (abstract). They report that microglia engulf fewer RGC axon terminals in caspase 3 deficient animals (Figure 5), and that this preferentially occurs in silenced terminals, but this preferential effect is lost in caspase 3 knockouts. Based on this, the authors conclude that caspase 3 directs microglia to eliminate weaker synapses. However, a much simpler and critical experiment that the authors did not perform is to eliminate microglia and show that the caspase 3 dependent effects go away. Without this experiment, there is no reason to assume that microglia are directing synaptic elimination.

      The reviewer states: “microglia engulf fewer RGC axon terminals in caspase 3 deficient animals (Figure 5), and that this preferentially occurs in silenced terminals, but this preferential effect is lost in caspase 3 knockouts”. We are not sure what the reviewer means by “this preferentially occurs in silenced terminals”. Our results show that microglia preferentially engulf silenced terminals, and such preference is lost in caspase-3 deficient mice (Figure 6).

      We do not understand the experiment where the reviewer suggested to: “eliminate microglia and show that the caspase 3 dependent effects go away”. To quantify caspase-3 dependent engulfment of synaptic material by microglia or preferential engulfment of silenced terminals by microglia, microglia must be present in the tissue sample. If we eliminate microglia, neither of these measurements can be made. What could be measured if microglia are eliminated is the refinement of retinogeniculate pathway. This experiment would test whether microglia are required for caspase-3 dependent phenotypes. This is not a claim made in the manuscript. Instead, we claimed caspase-3 is required for microglia to engulf weak synapses, as supported by the evidence presented in Figure 6.

      We did not claim that “microglia are directing synaptic elimination”. Our claim is that synapse inactivation induces caspase-3 activity, and caspase-3 activation in turn leads to engulfment of weak synapses by microglia. Based on this model, it is the neuronal activity that fundamentally directs synapse elimination. Synapse engulfment by microglia is only a readout we used to measure the outcome of activity-dependent synapse elimination. We have revised all sections in the manuscript that are related to synapse engulfment by microglia to emphasize the logic of this model.

      We have also revised the abstract and title of the paper to better align it with our main claims, removed the reference to astrocytes, and clarified that microglia engulfment measurements are used as readouts of synapse elimination.

      Finally, the authors also report that caspase 3 deficiency alters synapse loss in 6-month-old female APP/PS1 mice, but this is not really related to the rest of the paper.

      We respectfully disagree that Figure 7 is not related to the rest of the paper. Many genes involved in postnatal synapse elimination, such as C1q and C3, have been implicated in neurodegeneration. It is therefore natural and important to ask whether the function of caspase-3 in regulating synaptic homeostasis extends to neurodegenerative diseases in adult animals. The answer to this question may have broad therapeutic impacts.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript by Yu et al. demonstrates that activation of caspase-3 is essential for synapse elimination by microglia, but not by astrocytes. This study also reveals that caspase 3 activation-mediated synapse elimination is required for retinogeniculate circuit refinement and eye-specific territories segregation in dLGN in an activity-dependent manner. Inhibition of synaptic activity increases caspase-3 activation and microglial phagocytosis, while caspase-3 deficiency blocks microglia-mediated synapse elimination and circuit refinement in the dLGN. The authors further demonstrate that caspase-3 activation mediates synapse loss in AD, loss of caspase-3 prevented synapse loss in AD mice. Overall, this study reveals that caspase-3 activation is an important mechanism underlying the selectivity of microglia-mediated synapse elimination during brain development and in neurodegenerative diseases.

      Strengths:

      A previous study (Gyorffy B. et al., PNSA 2018) has shown that caspase-3 signal correlates with C1q tagging of synapses (mostly using in vitro approaches), which suggests that caspase-3 would be an underlying mechanism of microglial selection of synapses for removal. The current study provides direct in vivo evidence demonstrating that caspase-3 activation is essential for microglial elimination of synapses in both brain development and neurodegeneration.

      The paper is well-organized and easy to read. The schematic drawings are helpful for understanding the experimental designs and purposes.

      Weaknesses:

      It seems that astrocytes contain large amounts of engulfed materials from ipsilateral and contralateral axon terminals (Figure S11B) and that caspase-3 deficiency also decreased the volume of engulfed materials by astrocytes (Figures S11C, D). So the possibility that astrocyte-mediated synapse elimination contributes to circuit refinement in dLGN cannot be excluded.

      We would like to clarify that we do not claim that astrocytes are unimportant for synapse elimination or circuit refinement. We acknowledge that the claim made in the original submitted manuscript that caspase-3 does not regulate synapse elimination by astrocytes lacks strong supporting evidence. We have removed this claim and revised the section related to synapse engulfment by astrocytes to provide a more rigorous interpretation of our data. We also removed the section in discussion regarding distinct substrate preferences of microglia and astrocytes.

      Does blocking single or dual inactivation of synapse activity (using TeTxLC) increase microglial or astrocytic engulfment of synaptic materials (of one or both sides) in dLGN?

      We assume that by “blocking single or dual inactivation of synapse activity”, the reviewer refers to inactivating retinogeniculate synapses from one or both eyes.

      We showed that inactivating retinogeniculate synapses from one eye (single inactivation) increases engulfment of inactive synapses by microglia (Figure 6). We did not measure synapse engulfment by microglia while inactivating retinogeniculate synapses from both eyes (dual inactivation). However, based on the total active caspase-3 signal (Figure 2) in the dual inactivation scenario, we do not expect to see an increase in engulfment of synaptic material by microglia.

      We did not measure astrocyte-mediated engulfment with single or dual inactivation, as we did not see a robust caspase-3 dependent phenotype in synapse engulfment by astrocytes.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the Authors):

      (1) Figure 1 - It is not clear from this figure whether the authors are measuring caspase 3 in dendritic compartments or in dying relay neurons in the thalamus. The authors state that "either" whole cell death (1B) or smaller punctate signals (1F) were observed. When quantifying "photons" in Figure 1E, it appears most of the signal captured will be of dying relay neurons. What determined which signal was observed, and what is being quantified in Figure 1E? This also applies to the quantifications being reported in Figure 2.

      The quantification includes both types of signals – it is sum of all active caspase-3 signal within the dLGN boundary. We note that there is a significant amount of punctate signal in the TeTxLC-inactivated dLGN. Unfortunately, due to file compression, these signals are not clearly visible in the submitted manuscript file. We have provided high resolution figures in this revision.

      As argued above in the response to the public review, apoptotic relay neurons in TeTxLC-inactivated dLGN (not the general thalamus area) occur as a direct consequence of synapse inactivation. Therefore, active caspase-3 signals in these relay neurons should be included in the quantification.

      We believe it is the extent of synapse inactivation (i.e., the number of synapses that are inactivated) that determines whether dLGN relay neuron apoptosis occurs or not. Such apoptosis is expected considering the nature of the apoptosis signaling cascade. In the intrinsic apoptosis pathway, release of cytochrome-c from mitochondria induces cleavage of the initiator caspase, caspase-9, and caspase-9 in turn cleaves the executioner caspases, caspase-3/7, which causes apoptosis. Caspase-3 can cleave upstream factors in the apoptosis pathway, leading to explosive amplification of caspase-3 activity (McComb et al., DOI: 10.1126/sciadv.aau9433). When a relay neuron receives a few inactivated synapses, caspase-3 activation in the postsynaptic dendrite can remain local (as we observed in Figure 1), constrained by mechanisms such as proteasomal degradation of cleaved caspase-3 (Erturk et al., DOI: 10.1523/JNEUROSCI.3121-13.2014). However, when a relay neuron receives many inactivated synapses, the cumulative caspase-3 activity induced in the dendrite can overwhelm negative regulation and lead to significantly higher levels of caspase-3 activity in entire dendrites (Figure S4B) through positive feedback amplification, eventually leading to caspase-3 activation in entire relay neurons. Please see line 127-140 and line 403-413 for our discussion in the main text.

      (2) Figure 5 - Figures 5c-d and Fig 6 are confounded by pseudoreplication, whereby performing statistics on 50-60 microglia inflates statistical significance. Could the authors show all these data per mouse?

      If we understand the reviewer correctly, the reviewer is suggesting that reporting measurements from multiple microglia in one animal constitutes pseudo-replication. This is correct in a strict sense, as microglia in the same animal are more likely to be similar than microglia from different animals. In the revised version, we have plotted the data by animal in Figure S11 and S13. The observations remain valid. However, we would like to point out that averaging measurements from all microglia in each animal and report by mouse is very conservative, as measurements from microglia in the same animal still vary greatly due to cell-to-cell differences.

      (3) Although the authors are not the only ones to use this strategy, it is worth noting that performing all microglial experiments in Cx3cr1 heterozygotes could lead to alterations in microglial function that may not be reflective of their homeostatic roles.

      We acknowledge that Cx3cr1 heterozygosity could cause alterations in microglial physiology.

      While Cx3cr1 heterozygosity may impact microglia physiology, we note that the engulfment assay in Figure 5 is comparing microglia in Cx3cr1<sup>+/-</sup>; Casp3<sup>+/-</sup> and Cx3cr1<sup>+/-</sup>; Casp3<sup>-/-</sup> animals. Therefore, the impact of Cx3cr1 heterozygosity is controlled for in our experiment, and the observed difference in engulfed synaptic material in microglia is an effect specific to caspase-3 deficiency. However, we acknowledge that this difference could be quantitatively affected by Cx3cr1 heterozygosity.

      It is important to note that we did not perform all microglia engulfment analyses using Cx3cr1<sup>+/-</sup> mice. We have edited the manuscript to make this more clear. In the activity-dependent microglia engulfment analysis performed in Figure 6, we used Casp3<sup>+/+</sup> and Casp3<sup>-/-</sup> animals and detected microglia with anti-Iba1 immunostaining. Therefore, the impact of Cx3cr1 heterozygosity is not a problem for this experiment.

      Minor:

      (1) Figures are presented out of order, which makes the manuscript difficult to follow.

      We have revised text regarding the segregation analysis to align with the order of figures.

      (2) Figure S3 is very confusing- the terms "left" and "right" are used in three or four partly overlapping contexts (which eye, which injection, which panel or subpanel of the figure is being referred to). Would this not be more appropriately analyzed with a repeated measures ANOVA (multiple comparisons not necessary) rather than multiple separate T-tests?

      We have revised Figure S3 and S5 with better annotation and legends.

      Yes, it is possible to use repeated measure two-way ANOVA. The analysis reports significant effect from genotypes, with a dF of 1, SoS and MoS of 0.0001081, F(1,13) = 7.595, and p = 0.0164. We used multiple separate t-tests because we wanted to show how genotype effects change with increasing thresholds, whereas two-way ANOVA only provides one overall p-value.

      (3) Could the authors clarify why the percentage overlap (in the controls) is so different between Figure 3C and Figure S3C, and why different thresholds are applied?

      This difference is primary due to difference in age. Figure 3 and Figure S5 are acquired at age of P10, while Figure S3 is acquired at P8. While the segregation process is largely complete by P8, the segregation continues from P8 to P10. Therefore, overlap measured at P10 will be lower than that measured at P8. If we compare overlap at the same threshold (e.g., 10%) and at the same age in Figure 3 and S5, the overlap is very similar.

      The choice of threshold is related to the methods of labeling. In Figure 3, RGC terminals are labeled with AlexaFlour conjugated cholera toxin subunit-beta (CTB). In Figure S3 and S5, RGC axons are labeled by expression of fluorescent proteins. Labeling with CTB only labels membrane surfaces but yields stronger and slightly different signals at fine scales than labeling with fluorescent protein which are cell fillers. For Figure S3 and S5 (which use fluorescent protein labeling), higher thresholds such as those used in Figure 3 (which use CTB labeling) can be applied and the same trend still holds, but the data will be noisier. Regardless of the small difference in thresholds used, the important observation is that the defects in TeTxLC-injected or caspase-3 deficient animals are clear across multiple thresholds.

      (4) Many describe the eye-specific segregation process as being complete "between P8-10". Other studies have quantified ESS at P10 (Stevens 2007). The authors state they did all quantifications at P8 (l. 82) and refer to Figure 3, but Figure 3 shows images from P10, whereas Figure S3 shows data from P8.

      We did not say we performed all quantification at P8. In line 85, we said “To validate the efficacy of our synapse inactivation method, we injected AAV-hSyn-TeTxLC into the right eye of wildtype E15 embryos and analyzed the segregation of eye-specific territories at postnatal day 8 (P8), when the segregation process is largely complete”. The age of postnatal day 8 in this context is specifically referring to the experiment shown in Figure S3. For the segregation analysis in Figure 3, we specifically stated that the experiment was conducted at P10 (line 277).

      Although the experiment in Figure S3 is conducted at P8, and Figure S5 and Figure 3 show results at P10, each dataset always included appropriate age-matched controls.  P8 is generally considered an age where segregation is mostly complete and sufficient for us to assess the potency of TeTxLC-delivered AAV on eye segregation.  We don’t think performing the experiment shown in Figure S3 at P8 impacts the interpretation of the data.

      (5) Is Figure 6 also using Cx3cr1 GFP to label microglia? This is not clarified.

      We apologize for this oversight. In Figure 6 microglia are labeled by anti-Iba1 immunostaining. We have clarified this in figure legends and text.

      Reviewer #2 (Recommendations for the Authors):

      (1) The authors quantified the caspase-3 activity using immunostaining and confocal microscopy (Figures 1B-E). They may need to verify the result (increased level of activated caspase-3 upon synapse inactivation) using alternative methods, such as western blotting.

      Both western blot and immunostaining are based on antibody-antigen interaction. These two methods are not likely sufficiently independent. Additionally, to perform a western blot, we would need to surgically collect the TeTxLC-inactivated dLGN to avoid sample contamination from other brain regions. Such collection at the age we are interested in (P5) is very challenging. We have tested the anti-cleaved caspase-3 antibody using caspase-3 deficient mice and we can confirm it is a highly specific antibody that doesn’t generate signal in the caspase-3 deficient tissue samples.

      (2) Does caspase-3 deficiency alter the density of microglia or astrocytes in dLGN?

      No. Neither the density of microglia nor astrocytes changed with caspase-3 deficiency. In the case of microglia, we find that the mean density of microglia per unit area of dLGN is virtually the same in wild type and caspase-3 deficient mice (two-tailed t test P = 0.8556, 6 wild type and 5 Casp3<sup>-/-</sup> mice). Some overviews showing microglia in dLGNs of wildtype and caspase-3 deficient mice can be found in Figure S10.  Similarly for astrocytes, we did not observe overt changes in astrocytes dLGN density linked to caspase-3 deficiency.

      (3) During dLGN eye-specific segregation in normal developing animals, did the authors observe different levels of activated caspase-3 in different regions (territories)?

      For normal developing animals, the activated caspase-3 signal is generally sparse, and it is difficult to distinguish whether the signal is related to synapse elimination. For animals receiving TeTxLC-injection, we did notice that in the dLGN contralateral to the injection, where most inactivated synapses are located, the punctate caspase-3 signal tends to concentrate on the ventral-medial side of the dLGN (Figure 1B), which is the region preferentially innervated by the contralateral eye.

      (4) Recording of NMDAR-mediated synaptic currents may not be necessary for demonstrating that caspase 3 is essential for dLGN circuit refinement. In addition, the PPR may not necessarily reflect the number of innervations that a dLGN neuron receives. Instead, showing the changes in the frequency of mEPSCs (or synapse/spine density) may be more supportive.

      Thank you for the comment. We have performed the suggested mEPSC measurements and reported the results in revised Figure 4D-F.

      (5) Why is caspase 3 activation enhanced (compared to control) only at 4 months of age, when A-beta deposition has not formed yet, but not at later time points in AD mice (Figure S17)?

      A prevailing hypothesis in the field is that the form of A-beta that is most neurotoxic is the soluble oligomeric form, not the fibril form that leads to plaque deposition. As the oligomeric form appears before plaque deposition, the enhanced caspase-3 activation we observed at 4-month may reflect an increase in oligomeric A-beta, which occurs before any visible A-beta plaque formation.

      (6) The manuscript can be made more concise, and the figures more organized.

      We removed superfluous details and corrected text-figure mismatches in the revised manuscript to improve readability.

    1. Author response:

      We would like to express our gratitude to all three reviewers for their time and valuable feedback on the manuscript. Below, we provide our point-by-point responses to their comments. Additionally, we summarize here the experiments we plan to conduct in accordance with the reviewers' suggestions:

      Revision plan 1. To include live imaging of Dl/Notch trafficking in normal and GlcT mutant ISCs.

      We agree that the effect of GlcT mutation on Dl trafficking was not convincingly demonstrated in our previous work. Although we attempted live imaging of the intestine using GFP tagged at the C-terminal of Dl, the fluorescent signal was regrettably too weak for reliable capture. In this revision, we will optimize the imaging conditions to determine if this issue can be resolved. Alternatively, we will transiently express GFP/RFP-tagged Dl in both normal and mutant ISCs to investigate the trafficking dynamics through live imaging.

      Revision plan 2. To update and improve the presentation of the data regarding the features of early/late/recycling endosomes in GlcT mutant ISCs.

      Our analysis of Rab5 and Rab7 endosomes in both normal and GlcT mutant ISCs revealed that Dl tends to accumulate in Rab5 endosomes in GlcT mutant ISCs. To strengthen our findings, we will include additional quantitative data and conduct further analysis on recycling endosomes labeled with Rab11-GFP. We acknowledge that this portion of the data is not entirely convincing, and in accordance with the reviewers' suggestions, we will revise our conclusions to present a more tempered interpretation.

      Revision plan 3. To include western blot analysis of Dl in normal and GlcT mutant ISCs.

      While we propose that MacCer may function as a component of lipid rafts, facilitating the anchorage of Dl on the membrane and its proper endocytosis, it is also possible that it acts as a substrate for the modification of Dl, which is essential for its functionality. To investigate this further, we will conduct Western blot analysis to determine whether the depletion of GlcT alters the protein size of Dl.

      Please find our detailed point-by-point responses below.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      From a forward genetic mosaic mutant screen using EMS, the authors identify mutations in glucosylceramide synthase (GlcT), a rate-limiting enzyme for glycosphingolipid (GSL) production, that result in EE tumors. Multiple genetic experiments strongly support the model that the mutant phenotype caused by GlcT loss is due to by failure of conversion of ceramide into glucosylceramide. Further genetic evidence suggests that Notch signaling is comprised in the ISC lineage and may affect the endocytosis of Delta. Loss of GlcT does not affect wing development or oogenesis, suggesting tissue-specific roles for GlcT. Finally, an increase in goblet cells in UGCG knockout mice, not previously reported, suggests a conserved role for GlcT in Notch signaling in intestinal cell lineage specification.

      Strengths:

      Overall, this is a well-written paper with multiple well-designed and executed genetic experiments that support a role for GlcT in Notch signaling in the fly and mammalian intestine. I do, however, have a few comments below.

      Weaknesses:

      (1) The authors bring up the intriguing idea that GlcT could be a way to link diet to cell fate choice. Unfortunately, there are no experiments to test this hypothesis.

      We indeed attempted to establish an assay to investigate the impact of various diets (such as high-fat, high-sugar, or high-protein diets) on the fate choice of ISCs. Subsequently, we intended to examine the potential involvement of GlcT in this process. However, we observed that the number or percentage of EEs varies significantly among individuals, even among flies with identical phenotypes subjected to the same nutritional regimen. We suspect that the proliferative status of ISCs and the turnover rate of EEs may significantly influence the number of EEs present in the intestinal epithelium, complicating the interpretation of our results. Consequently, we are unable to conduct this experiment at this time. The hypothesis suggesting that GlcT may link diet to cell fate choice remains an avenue for future experimental exploration.

      (2) Why do the authors think that UCCG knockout results in goblet cell excess and not in the other secretory cell types?

      This is indeed an interesting point. In the mouse intestine, it is well-documented that the knockout of Notch receptors or Delta-like ligands results in a classic phenotype characterized by goblet cell hyperplasia, with little impact on the other secretory cell types. This finding aligns very well with our experimental results, as we noted that the numbers of Paneth cells and enteroendocrine cells appear to be largely normal in UGCG knockout mice. By contrast, increases in other secretory cell types are typically observed under conditions of pharmacological inhibition of the Notch pathway.

      (3) The authors should cite other EMS mutagenesis screens done in the fly intestine.

      To our knowledge, the EMS screen on 2L chromosome conducted in Allison Bardin’s lab is the only one prior to this work, which leads to two publications (Perdigoto et al., 2011; Gervais, et al., 2019). We will include citations for both papers in the revised manuscript.

      (4) The absence of a phenotype using NRE-Gal4 is not convincing. This is because the delay in its expression could be after the requirement for the affected gene in the process being studied. In other words, sufficient knockdown of GlcT by RNA would not be achieved until after the relevant signaling between the EB and the ISC occurred. Dl-Gal4 is problematic as an ISC driver because Dl is expressed in the EEP.

      We agree that the lack of an observable phenotype using NRE-Gal4 might be attributed to a delay in its expression, which could result in missing the critical window necessary for effective GlcT knockdown. Consequently, we cannot rule out the possibility that GlcT may also play a role in early EBs or EEPs. We will revise our manuscript to present a more cautious conclusion on this issue.

      (5) The difference in Rab5 between control and GlcT-IR was not that significant. Furthermore, any changes could be secondary to increases in proliferation.

      We agree that it is possible that the observed increase in proliferation could influence the number of Rab5+ endosomes, and we will temper our conclusions on this aspect accordingly. However, it is important to note that, although the difference in Rab5+ endosomes between the control and GlcT-IR conditions appeared mild, it was statistically significant and reproducible. As we have indicated earlier, we plan to further analyze Rab11+ endosomes, as this additional analysis may provide further support for our previous conclusions.

      Reviewer #2 (Public review):

      Summary:

      This study genetically identifies two key enzymes involved in the biosynthesis of glycosphingolipids, GlcT and Egh, which act as tumor suppressors in the adult fly gut. Detailed genetic analysis indicates that a deficiency in Mactosyl-ceramide (Mac-Cer) is causing tumor formation. Analysis of a Notch transcriptional reporter further indicates that the lack of Mac-Ser is associated with reduced Notch activity in the gut, but not in other tissues.

      Addressing how a change in the lipid composition of the membranes might lead to defective Notch receptor activation, the authors studied the endocytic trafficking of Delta and claimed that internalized Delta appeared to accumulate faster into endosomes in the absence of Mac-Cer. Further analysis of Delta steady-state accumulation in fixed samples suggested a delay in the endosomal trafficking of Delta from Rab5+ to Rab7+ endosomes, which was interpreted to suggest that the inefficient, or delayed, recycling of Delta might cause a loss in Notch receptor activation.

      Finally, the histological analysis of mouse guts following the conditional knock-out of the GlcT gene suggested that Mac-Cer might also be important for proper Notch signaling activity in that context.

      Strengths:

      The genetic analysis is of high quality. The finding that a Mac-Cer deficiency results in reduced Notch activity in the fly gut is important and fully convincing.

      The mouse data, although preliminary, raised the possibility that the role of this specific lipid may be conserved across species.

      Weaknesses:

      This study is not, however, without caveats and several specific conclusions are not fully convincing.

      First, the conclusion that GlcT is specifically required in Intestinal Stem Cells (ISCs) is not fully convincing for technical reasons: NRE-Gal4 may be less active in GlcT mutant cells, and the knock-down of GlcT using Dl-Gal4ts may not be restricted to ISCs given the perdurance of Gal4 and of its downstream RNAi.

      As previously mentioned, we acknowledge that a role for GlcT in early EBs or EEPs cannot be completely ruled out. We will revise our manuscript to present a more cautious conclusion and explicitly describe this possibility in the updated version.

      Second, the results from the antibody uptake assays are not clear.: i) the levels of internalized Delta were not quantified in these experiments; ii) additionally, live guts were incubated with anti-Delta for 3hr. This long period of incubation indicated that the observed results may not necessarily reflect the dynamics of endocytosis of antibody-bound Delta, but might also inform about the distribution of intracellular Delta following the internalization of unbound anti-Delta. It would thus be interesting to examine the level of internalized Delta in experiments with shorter incubation time.

      We thank the reviewer for these excellent questions. In our antibody uptake experiments, we noted that Dl reached its peak accumulation after a 3-hour incubation period. We recognize that quantifying internalized Dl would enhance our analysis, and we will include the corresponding statistical graphs in the revised version of the manuscript. In addition, we agree that during the 3-hour incubation, the potential internalization of unbound anti-Dl cannot be ruled out, as it may influence the observed distribution of intracellular Dl. To address this concern, we plan to supplement our findings with live imaging experiments to capture the dynamics of Dl endocytosis in GlcT mutant ISCs.

      Overall, the proposed working model needs to be solidified as important questions remain open, including: is the endo-lysosomal system, i.e. steady-state distribution of endo-lysosomal markers, affected by the Mac-Cer deficiency? Is the trafficking of Notch also affected by the Mac-Cer deficiency? is the rate of Delta endocytosis also affected by the Mac-Cer deficiency? are the levels of cell-surface Delta reduced upon the loss of Mac-Cer?

      Regarding the impact on the endo-lysosomal system, this is indeed an important aspect to explore. While we did not conduct experiments specifically designed to evaluate the steady-state distribution of endo-lysosomal markers, our analyses utilizing Rab5-GFP overexpression and Rab7 staining did not indicate any significant differences in endosome distribution in MacCer deficient conditions. Moreover, we still observed high expression of the NRE-LacZ reporter specifically at the boundaries of clones in GlcT mutant cells (Fig. 4A), indicating that GlcT mutant EBs remain responsive to Dl produced by normal ISCs located right at the clone boundary. Therefore, we propose that MacCer deficiency may specifically affect Dl trafficking without impacting Notch trafficking.

      In our 3-hour antibody uptake experiments, we observed a notable decrease in cell-surface Dl, which was accompanied by an increase in intracellular accumulation. These findings collectively suggest that Dl may be unstable on the cell surface, leading to its accumulation in early endosomes.

      Third, while the mouse results are potentially interesting, they seem to be relatively preliminary, and future studies are needed to test whether the level of Notch receptor activation is reduced in this model.

      In the mouse small intestine, olfm4 is a well-established target gene of the Notch signaling pathway, and its staining provides a reliable indication of Notch pathway activation. While we attempted to evaluate Notch activation using additional markers, such as Hes1 and NICD, we encountered difficulties, as the corresponding antibody reagents did not perform well in our hands. Despite these challenges, we believe that our findings with Olfm4 provide an important start point for further investigation in the future.

      Reviewer #3 (Public review):

      Summary:

      In this paper, Tang et al report the discovery of a Glycoslyceramide synthase gene, GlcT, which they found in a genetic screen for mutations that generate tumorous growth of stem cells in the gut of Drosophila. The screen was expertly done using a classic mutagenesis/mosaic method. Their initial characterization of the GlcT alleles, which generate endocrine tumors much like mutations in the Notch signaling pathway, is also very nice. Tang et al checked other enzymes in the glycosylceramide pathway and found that the loss of one gene just downstream of GlcT (Egh) gives similar phenotypes to GlcT, whereas three genes further downstream do not replicate the phenotype. Remarkably, dietary supplementation with a predicted GlcT/Egh product, Lactosyl-ceramide, was able to substantially rescue the GlcT mutant phenotype. Based on the phenotypic similarity of the GlcT and Notch phenotypes, the authors show that activated Notch is epistatic to GlcT mutations, suppressing the endocrine tumor phenotype and that GlcT mutant clones have reduced Notch signaling activity. Up to this point, the results are all clear, interesting, and significant. Tang et al then go on to investigate how GlcT mutations might affect Notch signaling, and present results suggesting that GlcT mutation might impair the normal endocytic trafficking of Delta, the Notch ligand. These results (Fig X-XX), unfortunately, are less than convincing; either more conclusive data should be brought to support the Delta trafficking model, or the authors should limit their conclusions regarding how GlcT loss impairs Notch signaling. Given the results shown, it's clear that GlcT affects EE cell differentiation, but whether this is via directly altering Dl/N signaling is not so clear, and other mechanisms could be involved. Overall the paper is an interesting, novel study, but it lacks somewhat in providing mechanistic insight. With conscientious revisions, this could be addressed. We list below specific points that Tang et al should consider as they revise their paper.

      Strengths:

      The genetic screen is excellent.

      The basic characterization of GlcT phenotypes is excellent, as is the downstream pathway analysis.

      Weaknesses:

      (1) Lines 147-149, Figure 2E: here, the study would benefit from quantitations of the effects of loss of brn, B4GalNAcTA, and a4GT1, even though they appear negative.

      We will incorporate the quantifications for the effects of the loss of brn, B4GalNAcTA, and a4GT1 in the updated Figure 2.

      (2) In Figure 3, it would be useful to quantify the effects of LacCer on proliferation. The suppression result is very nice, but only effects on Pros+ cell numbers are shown.

      We will add quantifications of the number of EEs per clone to the updated Figure 3.

      (3) In Figure 4A/B we see less NRE-LacZ in GlcT mutant clones. Are the data points in Figure 4B per cell or per clone? Please note. Also, there are clearly a few NRE-LacZ+ cells in the mutant clone. How does this happen if GlcT is required for Dl/N signaling?

      In Figure 4B, the data points represent the fluorescence intensity per single cell within each clone. It is true that a few NRE-LacZ+ cells can still be observed within the mutant clone; however, this does not contradict our conclusion. As noted, high expression of the NRE-LacZ reporter was specifically observed around the clone boundaries in MacCer deficient cells (Fig. 4A), indicating that the mutant EBs can normally receive Dl signal from the normal ISCs located at the clone boundary and activate the Notch signaling pathway. Therefore, we believe that, although affecting Dl trafficking, MacCer deficiency does not significantly affect Notch trafficking.

      (4) Lines 222-225, Figure 5AB: The authors use the NRE-Gal4ts driver to show that GlcT depletion in EBs has no effect. However, this driver is not activated until well into the process of EB commitment, and RNAi's take several days to work, and so the author's conclusion is "specifically required in ISCs" and not at all in EBs may be erroneous.

      As previously mentioned, we acknowledge that a role for GlcT in early EBs or EEPs cannot be completely ruled out. We will revise our manuscript to present a more cautious conclusion and describe this possibility in the updated version.

      (5) Figure 5C-F: These results relating to Delta endocytosis are not convincing. The data in Fig 5C are not clear and not quantitated, and the data in Figure 5F are so widely scattered that it seems these co-localizations are difficult to measure. The authors should either remove these data, improve them, or soften the conclusions taken from them. Moreover, it is unclear how the experiments tracing Delta internalization (Fig 5C) could actually work. This is because for this method to work, the anti-Dl antibody would have to pass through the visceral muscle before binding Dl on the ISC cell surface. To my knowledge, antibody transcytosis is not a common phenomenon.

      We thank the reviewer for these insightful comments and suggestions. In our in vivo experiments, we observed increased co-localization of Rab5 and Dl in GlcT mutant ISCs, indicating that Dl trafficking is delayed at the transition to Rab7⁺ late endosomes, a finding that is further supported by our antibody uptake experiments. We acknowledge that the data presented in Fig. 5C are not fully quantified and that the co-localization data in Fig. 5F may appear somewhat scattered; therefore, we will include additional quantification and enhance the data presentation in the revised manuscript.

      Regarding the concern about antibody internalization, we appreciate this point. We currently do not know if the antibody reaches the cell surface of ISCs by passing through the visceral muscle or via other routes. Given that the experiment was conducted with fragmented gut, it is possible that the antibody may penetrate into the tissue through mechanisms independent of transcytosis.

      As mentioned earlier, we plan to supplement our findings with live imaging experiments to investigate the dynamics of Dl/Notch endocytosis in both normal and GlcT mutant ISCs. Anyway, due to technical challenges and potential pitfalls associated with the assays, we agree that this part of data is not fully convincing and we will provide a more cautious conclusion in the revised manuscript.

      (6) It is unclear whether MacCer regulates Dl-Notch signaling by modifying Dl directly or by influencing the general endocytic recycling pathway. The authors say they observe increased Dl accumulation in Rab5+ early endosomes but not in Rab7+ late endosomes upon GlcT depletion, suggesting that the recycling endosome pathway, which retrieves Dl back to the cell surface, may be impaired by GlcT loss. To test this, the authors could examine whether recycling endosomes (marked by Rab4 and Rab11) are disrupted in GlcT mutants. Rab11 has been shown to be essential for recycling endosome function in fly ISCs.

      We agree that assessing the state of recycling endosomes, especially by using markers such as Rab11, would be valuable in determining whether MacCer regulates Dl-Notch signaling by directly modifying Dl or by influencing the broader endocytic recycling pathway. We will incorporate these experiments into our future experimental plans to further characterize Dl trafficking in GlcT mutant ISCs.

      (7) It remains unclear whether Dl undergoes post-translational modification by MacCer in the fly gut. At a minimum, the authors should provide biochemical evidence (e.g., Western blot) to determine whether GlcT depletion alters the protein size of Dl.

      While we propose that MacCer may function as a component of lipid rafts, facilitating Dl membrane anchorage and endocytosis, we also acknowledge the possibility that MacCer could serve as a substrate for protein modifications of Dl necessary for its proper function. Conducting biochemical analyses to investigate potential post-translational modifications of Dl by MacCer would indeed provide valuable insights. To address this, we will incorporate Western blot analysis into our experimental plan to determine whether GlcT depletion affects the protein size of Dl.

      (8) It is unfortunate that GlcT doesn't affect Notch signaling in other organs on the fly. This brings into question the Delta trafficking model and the authors should note this. Also, the clonal marker in Figure 6C is not clear.

      In the revised working model, we will explicitly specify that the events occur in intestinal stem cells. Regarding Figure 6C, we will delineate the clone with a white dashed line to enhance its clarity and visual comprehension.

      (9) The authors state that loss of UGCG in the mouse small intestine results in a reduced ISC count. However, in Supplementary Figure C3, Ki67, a marker of ISC proliferation, is significantly increased in UGCG-CKO mice. This contradiction should be clarified. The authors might repeat this experiment using an alternative ISC marker, such as Lgr5.

      Previous studies have indicated that dysregulation of the Notch signaling pathway can result in a reduction in the number of ISCs. While we did not perform a direct quantification of ISC numbers in our experiments, our olfm4 staining—which serves as a reliable marker for ISCs—demonstrates a clear reduction in the number of positive cells in UGCG-CKO mice.

      The increased Ki67 signal we observed reflects enhanced proliferation in the transit-amplifying region, and it does not directly indicate an increase in ISC number. Therefore, in UGCG-CKO mice, we observe a decrease in the number of ISCs, while there is an increase in transit-amplifying (TA) cells (progenitor cells). This increase in TA cells is probably a secondary consequence of the loss of barrier function associated with the UGCG knockout.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The authors propose a transformer-based model for the prediction of condition - or tissue-specific alternative splicing and demonstrate its utility in the design of RNAs with desired splicing outcomes, which is a novel application. The model is compared to relevant existing approaches (Pangolin and SpliceAI) and the authors clearly demonstrate its advantage. Overall, a compelling method that is well thought out and evaluated.

      Strengths:

      (1) The model is well thought out: rather than modeling a cassette exon using a single generic deep learning model as has been done e.g. in SpliceAI and related work, the authors propose a modular architecture that focuses on different regions around a potential exon skipping event, which enables the model to learn representations that are specific to those regions. Because each component in the model focuses on a fixed length short sequence segment, the model can learn position-specific features. Another difference compared to Pangolin and SpliceAI which are focused on modeling individual splice junctions is the focus on modeling a complete alternative splicing event.

      (2) The model is evaluated in a rigorous way - it is compared to the most relevant state-of-the-art models, uses machine learning best practices, and an ablation study demonstrates the contribution of each component of the architecture.

      (3) Experimental work supports the computational predictions.    

      (4) The authors use their model for sequence design to optimize splicing outcomes, which is a novel application.

      We wholeheartedly thank Reviewer #1 for these positive comments regarding the modeling approach we took to this task and the evaluations we performed. We have put a lot of work and thought into this and it is gratifying to see the results of that work acknowledged like this.

      Weaknesses:

      No weaknesses were identified by this reviewer, but I have the following comments:

      (1) I would be curious to see evidence that the model is learning position-specific representations.

      This is an excellent suggestion to further assess what the model is learning. We have several ideas on how to test this which we will plan to report in the revised version. 

      (2) The transformer encoders in TrASPr model sequences with a rather limited sequence size of 200 bp; therefore, for long introns, the model will not have good coverage of the intronic sequence. This is not expected to be an issue for exons.

      Yes we can divide predictions by intron length, that’s a good suggestion. We will report on that in the revision.

      (3) In the context of sequence design, creating a desired tissue- or condition-specific effect would likely require disrupting or creating motifs for splicing regulatory proteins. In your experiments for neuronal-specific Daam1 exon 16, have you seen evidence for that? Most of the edits are close to splice junctions, but a few are further away.

      That is another good question and suggestion. In the original paper describing the mutation locations some motif similarities were noted to PTB (CU) and CUG/Mbnl-like elements (Barash et al Nature 2010). We could revisit this now with an RBP motif D.B. such as http://rbpdb.ccbr.utoronto.ca/. We note the ENCODE uses human cell lines and cannot be used for this but we will also look for mouse CLIP and KD data supporting such regulatory findings. 

      (4) For sequence design, of tissue- or condition-specific effect in neuronal-specific Daam1 exon 16 the upstream exonic splice junction had the most sequence edits. Is that a general observation? How about the relative importance of the four transformer regions in TrASPr prediction performance?

      This is another excellent question that we plan to follow up with matching analysis in the revision.

      (5) The idea of lightweight transformer models is compelling, and is widely applicable. It has been used elsewhere. One paper that came to mind in the protein realm:

      Singh, Rohit, et al. "Learning the language of antibody hypervariability." Proceedings of the National Academy of Sciences 122.1 (2025): e2418918121.

      Yes, we are for sure not the only/first to advocate for such an approach. We will be sure to make that point clear in the revision and thank the reviewer for the example from a different domain.  

      Reviewer #2 (Public review):

      Summary:

      The authors present a transformer-based model, TrASPr, for the task of tissue-specific splicing prediction (with experiments primarily focused on the case of cassette exon inclusion) as well as an optimization framework (BOS) for the task of designing RNA sequences for desired splicing outcomes.

      For the first task, the main methodological contribution is to train four transformer-based models on the 400bp regions surrounding each splice site, the rationale being that this is where most splicing regulatory information is. In contrast, previous work trained one model on a long genomic region. This new design should help the model capture more easily interactions between splice sites. It should also help in cases of very long introns, which are relatively common in the human genome.

      TrASPr's performance is evaluated in comparison to previous models (SpliceAI, Pangolin, and SpliceTransformer) on numerous tasks including splicing predictions on GTEx tissues, ENCODE cell lines, RBP KD data, and mutagenesis data. The scope of these evaluations is ambitious; however, significant details on most of the analyses are missing, making it difficult to evaluate the strength of the evidence. Additionally, state-of-the-art models (SpliceAI and Pangolin) are reported to perform extremely poorly in some tasks, which is surprising in light of previous reports of their overall good prediction accuracy; the reasoning for this lack of performance compared to TrASPr is not explored.

      In the second task, the authors combine Latent Space Bayesian Optimization (LSBO) with a Transformer-based variational autoencoder to optimize RNA sequences for a given splicing-related objective function. This method (BOS) appears to be a novel application of LSBO, with promising results on several computational evaluations and the potential to be impactful on sequence design for both splicing-related objectives and other tasks.

      We thank Reviewer #2 for this detailed summary and positive view of our work. It seems the main issue raised in this summary regards the evaluations: The reviewer finds details of the evaluations missing and the fact that SpliceAI and Pangolin perform poorly on some of the tasks to be surprising. In general, we made a concise effort to include the required details, including code and data tables, but will be sure to include more details based on the specific questions/comments listed below. As for the perceived performance issues for Pangolin/SpliceAI we believe this may be the result of not making it clear what tasks they perform well on vs those in which they do not work well. We give more details below. 

      Strengths:

      (1) A novel machine learning model for an important problem in RNA biology with excellent prediction accuracy.

      (2) Instead of being based on a generic design as in previous work, the proposed model incorporates biological domain knowledge (that regulatory information is concentrated around splice sites). This way of using inductive bias can be important to future work on other sequence-based prediction tasks.

      Weaknesses:

      (1) Most of the analyses presented in the manuscript are described in broad strokes and are often confusing. As a result, it is difficult to assess the significance of the contribution.

      We made an effort to make the tasks be specific and detailed,  including making the code and data of those available. Still, it is evident from the above comment Reviewer #2 found this to be lacking. We will review the description and make an effort to improve that given the clarifications we include below. 

      (2) As more and more models are being proposed for splicing prediction (SpliceAI, Pangolin, SpliceTransformer, TrASPr), there is a need for establishing standard benchmarks, similar to those in computer vision (ImageNet). Without such benchmarks, it is exceedingly difficult to compare models. For instance, Pangolin was apparently trained on a different dataset (Cardoso-Moreira et al. 2019), and using a different processing pipeline (based on SpliSER) than the ones used in this submission. As a result, the inferior performance of Pangolin reported here could potentially be due to subtle distribution shifts. The authors should add a discussion of the differences in the training set, and whether they affect your comparisons (e.g., in Figure 2). They should also consider adding a table summarizing the various datasets used in their previous work for training and testing. Publishing their training and testing datasets in an easy-to-use format would be a fantastic contribution to the community, establishing a common benchmark to be used by others.

      There are several good points to unpack here. First, we agree that a standard benchmark will be useful to include. We will work to create and include one for the revision. That said, we note that unlike the example given by Reviewer #2 (ImageNet) there are no standards for the splicing prediction tasks. There are actually different task definitions with different input/outputs as we tried to cover briefly in the introduction section. 

      Second, regarding the usage of different data and distribution shifts as potential reasons for Pangolin performance differences. We originally evaluated Pangolin after retraining it with MAJIQ based quantifications and found no significant changes. We will include a more detailed analysis of Pangolin retrained like this in the revision. We also note that Pangolin original training involved significantly more data as it was trained on four species with four tissues each, and we only evaluated it on three of those tissues (for human), in exons the authors deemed as test data. That said, we very much agree that retraining Pangolin as mentioned above is warranted, as well as clearly listing what data was used for training as suggested by the reviewer.

      (3) Related to the previous point, as discussed in the manuscript, SpliceAI, and Pangolin are not designed to predict PSI of cassette exons. Instead, they assign a "splice site probability" to each nucleotide. Converting this to a PSI prediction is not obvious, and the method chosen by the authors (averaging the two probabilities (?)) is likely not optimal. It would interesting to see what happens if an MLP is used on top of the four predictions (or the outputs of the top layers) from SpliceAI/Pangolin. This could also indicate where the improvement in TrASPr comes from: is it because TrASPr combines information from all four splice sites? Also, consider fine-tuning Pangolin on cassette exons only (as you do for your model).

      As mentioned above, we originally did try to retrain Pangolin with MAJIQ PSI values without observing much differences, but we will repeat this and include the results in the revision. Trying to combine 4 different SpliceAI models as proposed by the Reviewer seems to be a different kind of a new model, one that takes 4 large ResNets and combines those with annotation. Related to that, we did try to replace the transformers in our ablation study. The reviewer’s suggestion seems like another interesting architecture to try but since this is a non existing model that would likely require some adjustments. Given that, we view adding such a new model architecture as beyond the scope of this work.

      (4) L141, "TrASPr can handle cassette exons spanning a wide range of window sizes from 181 to 329,227 bases - thanks to its multi-transformer architecture." This is reported to be one of the primary advantages compared to existing models. Additional analysis should be included on how TrASPr performs across varying exon and intron sizes, with comparison to SpliceAI, etc.

      Yes, that is a good suggestion, similar to one made by Reviewer #1 as well. We plan to include such analysis in the revision. 

      (5) L171, "training it on cassette exons". This seems like an important point: previous models were trained mostly on constitutive exons, whereas here the model is trained specifically on cassette exons. This should be discussed in more detail.

      Previous models were not trained exclusively on constitutive exons and Pangolin specifically was trained with their version of junction usage across tissues. That said, the reviewer’s point is valid (and similar to ones made above) about a need to have a matched training/testing. As noted above we plan to include Pangolin training on our PSI values for comparison.

      (6) L214, ablations of individual features are missing.

      OK

      (7) L230, "ENCODE cell lines", it is not clear why other tissues from GTEx were not included.

      The task here was to assess predictions in very different conditions, hence we tested on completely different data of human cell lines rather than similar tissue samples. Yes, we can also assess on unseen GTEX tissues as well.

      (8) L239, it is surprising that SpliceAI performs so badly, and might suggest a mistake in the analysis. Additional analysis and possible explanations should be provided to support these claims. Similarly, the complete failure of SpliceAI and Pangolin is shown in Figure 4d.

      Line 239 refers to predicting relative inclusion levels between competing 3’ and 5’ splice sites. We admit we too expected this to be better for SpliceAI and Pangolin and will be sure to recheck for bugs, but to be fair we are not aware of a similar assessment being done for either of those algorithms (i.e. relative inclusion for 3’ and 5’ alternative splice site events).

      One issue we ran into, reflected in Reviewer #2 comments, is the mix between tasks that SpliceAI and Pangolin excel at and other tasks where they should not necessarily be expected to excel. Both algorithms focus on cryptic splice site creation/disruption. This has been the focus of those papers and subsequent applications.  While Pangolin added tissue specificity to SpliceAI training, the authors themselves admit “...predicting differential splicing across tissues from sequence alone is possible but remains a considerable challenge and requires further investigation”. The actual performance on this task is not included in Pangolin’s main text, but we refer Reviewer #2 to supplementary figure S4 in that manuscript to get a sense of Pangolin’s reported performance on this task. Similar to that, Figure 4d is for predicting *tissue specific* regulators. We do not think it is surprising that SpliceAI (tissue agnostic) and Pangolin (slight improvement compared to SpliceAI in tissue specific predictions) do not perform well on this task.  Similarly, we do not find the results in Figure 4C surprising either. These are for mutations that slightly alter inclusion level of an exon, not something SpliceAI was trained on, as it was simply trained on splice sites yes/no predictions. As noted and we will stress in the revision as well, training Pangolin on this dataset like TrASPr gives similar performance. That is to be expected as well - Pangolin is constructed to capture changes in PSI, those changes are not even tissue specific for CD19 data and the model has no problem/lack of capacity to generalize from the training set just like TrASPr does. In fact, if you only use combination of known mutations seen during training a simple regression model gives correlation of ~92-95% (Cortés-López et al 2022). In summary, we believe that better understanding of what one can realistically expect from models such as SpliceAI, Pangolin, and TrASPr will go a long way to have them better understood and used effectively. We will try to improve on that in the revision.

      (9) BOS seems like a separate contribution that belongs in a separate publication. Instead, consider providing more details on TrASPr.

      We thank the reviewer for the suggestion. We agree those are two distinct contributions and we indeed considered having them as two separate papers. However, there is strong coupling between the design algorithm (BOS) and the predictor that enables it (TrASPr). This coupling is both conceptual (TrASPr as a “teacher”) and practical in terms of evaluations. While we use experimental data (experiments done involving Daam1 exon 16, CD19 exon 2) we still rely heavily on evaluations by TrASPr itself. A completely independent evaluation would have required a high-throughput experimental system to assess designs, which is beyond the scope of the current paper. For those reasons we eventually decided to make it into what we hope is a more compelling combined story about generative models for prediction and design of RNA splicing. 

      (10) The authors should consider evaluating BOS using Pangolin or SpliceTransformer as the oracle, in order to measure the contribution to the sequence generation task provided by BOS vs TrASPr.

      We can definitely see the logic behind trying BOS with different predictors. That said, as we note above most of BOS evaluations are based on the “teacher”. As such, it is unclear what value replacing the teacher would bring. We also note that given this limitation we focus mostly on evaluations in comparison to existing approaches (genetic algorithm or random mutations as a strawman).

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary

      Fleming et al. present the first, proteomics-based attempt to identify the possible mechanism of action of ALS-linked DNAJC7 molecular chaperone in pathology. Impressively, it is the first report of DNAJC7 interactome studies, using a suitable iPSC-derived lower motor neuron model. Using a co-immunoprecipitation approach the authors identified that the interactome of DNAJC7 is predominantly composed of proteins engaged in response to stress, but also that this interactome is enriched in RNA-binding proteins. The authors also created a DNAJC7 haploinsufficiency cellular model and show the resulting increased insolubility of HNRNPU protein which causes disruptions in its functionality as shown by analysis of its transcriptional targets. Finally, this study uses pharmacological agents to test the effect of decreased DNAJC7 expression on cell response to proteotoxic stress and finds evidence that DNAJC7 regulates the activation of Heat shock factor 1 (HSF1) protein upon stress conditions.

      Strengths

      (1) This study uses the best so far model to study the interactome and possible mechanism of action of DNAJC7 molecular chaperone in an iPSC-derived cellular model of motor neurons. Furthermore, the authors also looked into available transcriptome databases of ALS patient samples to further test whether their findings may yield relevance to pathology.

      (2) The extent to which the authors are explicit about the sample sizes, protocols, and statistical tests used throughout this manuscript, should be applauded. This will help the whole field in their efforts to reliably replicate the results in this study.

      We thank the reviewer for highlighting the strengths of our study.

      Weaknesses

      (1) The most significant caveat of interactome experiments inherently comes from the method of choice. It is possible that by using the co-purification approach of DNAJC7 IP the resulting pool of binding partners is depleted in proteins that interact with DNAJC7 weakly or transiently. An alternative approach presumably more sensitive towards weaker binders could use the TurboID-based proximity-labeling method.

      The reviewer raises a valid point that TurboID-based proximity biotinylation could be a more sensitive approach for identifying DNAJC7 protein-protein interactions compared to IP-MS. We agree that this strategy could be better suited to detect weak or transient interactions, and we have previously used it to characterize protein nanoenvironments and interactomes in vitro and in vivo (Wang et al. Mol Psychiatry 2024, Quan et al. mBio 2024). However, proximity biotinylation also has significant limitations, such as potential artifacts due to overexpression and high background levels. We selected the IP-MS approach to identify DNAJC7 binding partners in neurons without the need of genetically modifying or over-expressing DNAJC7.

      (2) The authors mention in Results (and Figure 2D) that HNRNPA1 was identified as DNAJC7-interacting protein in their co-IP experiments, however, an identifier for this protein cannot be found in Figure 1C and Table S1 listing the proteomics results. Could the authors appropriately update Figure 1C and Table S1, or if HNRNPA1 wasn't really a hit then remove it from listed HNRNPs?

      We apologize for the confusion. HNRNPA1 was pulled down exclusively with DNAJC7 in 2/3 independent experiments and was initially included in our list of targets. However, in our final and most stringent analysis we only considered proteins that appeared in 3/3 experiments and thus HNRNPA1 was filtered out of Figure 1C and Table S1. We will therefore remove it from Figure 2D in the revised manuscript.

      (3) No further validation of DNAJC7-interacting proteins from the heat-shock protein (HSP) family. Current validation of mass spectrometry-identified proteins comes from IP-western blots with antibodies against HSPs. It would be interesting to further inspect possible interactions of these proteins by inspecting co-localization with immunocytochemistry.

      As the reviewer points out we did in fact validate the interaction of DNAJC7 with HSP90 and HSP70 (HSP90AB1 and HSPA1A) by IP-WB as shown in Fig 1F. We agree that examining co-localization of these proteins by immunocytochemistry (ICC) would be important to investigate. However, we have been unable to do this due to technical limitations. Specifically, we have tried to perform ICC using 6 commercially available DNAJC7 antibodies and have so far been unsuccessful. In our hands the DNAJC7 ICC signal appears to be non-specific as it is not reduced when using DNAJC7 knockout and knockdown cells as controls.

      (4) Similarly, the observation of DNAJC7 haploinsufficiency causing an increase in HNRNPU insolubility could be also easily further confirmed by checking for the emergence of "puncta" under a fluorescence microscope, in addition to provided WB experiments from MN lysates.

      This is a good suggestion, and we can assess the emergence of HNRNPU "puncta" by ICC in DNAJC7 mutant iPSC-derived neurons and/or postmortem sporadic ALS patient tissue.

      (5) I would like to recommend the authors to also provide with this manuscript a complete dataset (possibly in the form of a table, presented similarly as Table S1) resulting from experiments presented in Figures 2F and S2D. The information on upregulated and downregulated targets in their DNAJC7 haploinsufficiency model would be a valuable resource for the field and enable further investigations.

      This is a good suggestion and in the revised version we will provide in Table S2 the dataset presented in Figs. 2F and S2D.

      Reviewer #2 (Public review):

      Summary:

      The manuscript titled "The ALS-associated co-chaperone DNAJC7 mediates neuroprotection against proteotoxic stress by modulating HSF1 activity" describes experiments carried out in iPS cells re-differentiated into motor neurons (iNeuons, MNs) seeking to assess the functions of the J protein DnaJC7 in proteostasis. This study also investigates how an ALS-associated mutant variant (R156X) alters DnaJC7 function. The proteomic studies identify proteins interacting with DnaJC7. Using mRNA profiling in haplo-insufficient cells (+/R156X) compared to wild-type cells, the study seeks to identify pathways modulated by partial loss of DnaJC7 function. Studies in the DnaJC7 haplo-insufficient cells also indicate changes in the properties of ALS-associated proteins, such as HNRNPU and Matrin3 both of which are involved in the regulation of gene expression. The study also shows data indicating that DnaJC7 haploinsufficiency sensitizes cells to proteostatic stress induced by proteosome inhibition by MG132 and Hsp90 inhibition by Ganetespib. Lastly, the study investigates how DnaJC7 modulates the activity of the heat shock transcription factor (Hsf1) and thus the heat shock response.

      Strengths<br /> (1) The manuscript is well presented and most of the data is of high quality and convincing. The figures and supplementary figures are clear and easy to follow.

      (2) This study overall provides important new insights into a mostly underexplored molecular co-chaperone and its role in proteostasis. The proteomic and transcriptomic experiments certainly advance our understanding of DnaJC7. The MN model is well-suited for these studies addressing the role of DnaJC7, particularly regarding ALS. The haplo-insufficient MNs are also a suitable model to study a potential loss of function mechanism caused by (some) fALS-associated mutants in ALS, such as the R156X mutation used here.

      (3) Since so little is known about DnaJC7 function, the exploratory approaches applied here are particularly useful.

      We thank the reviewer for highlighting the strengths of our study.

      Weaknesses

      (1) Without follow-up studies, however, e.g., with select interacting proteins, the study provides merely a descriptive list of possible interactions without mechanistic insights. Also, most interactions have not been extensively (only a few examples) validated by other methods or individual experiments.

      We appreciate the reviewers concern and agree that there are several intriguing DNAJC7 interactors worth studying further, that is why we wanted to share this resource with the broader community as quickly as possible. As the first study focused on DNAJC7 and its link to ALS we could not possibly investigate multiple potential interactors and focused on two: HNRNPU and HSP70/HSP90, associated with RNA metabolism and stress response respectively, as these are two pathways have previously been implicated in ALS pathogenesis. We do provide validation of these interactions and some mechanistic insight into how DNAJC7 haploinsufficiency impairs their function.

      A major limitation of the study in its current form is that none of the experimental approaches allow for assessing the specific functions of JC7. In the absence of specificity controls, e.g., other J proteins or HOP, which, like DnaJC7, contains TPR domains and can interact with Hsp70 and Hsp90, it remains unclear if the proposed functions of DnaJC7 are specific/unique or shared by other J proteins or molecular chaperones. Accordingly, it would be highly informative to add experiments to assess if some of the reported DnaJC7 protein-protein interactions and the transcriptional alterations in haplo-insufficient cells are DnaJC7specific or also occur with other J proteins or molecular chaperones. This seems particularly important to discern specific DnaJC7 functions from general effects caused by impaired proteostasis.

      We agree with the reviewer that is a very interesting question, as for example mutations in DNAJC6 can cause rare forms of Parkinson’s Disease1. However, addressing the functional overlap of DNAJC7 with other J proteins such as DNAJC6 would require substantial time and resources and is out of scope of the current manuscript. 

      It would be informative to explore how cellular stress (e.g., MG132 treatment) alters DnaJC7 interactions with other proteins (J proteins, HOP), ideally in additional/comparative proteomic studies. The mechanism underlying the proposed regulation of Hsf1 by DnaJC7 is not quite clear to me (Figures 4 A-I). There is no evidence of a direct physical interaction between DnJC7 and Hsf1 in the proteomic data or elsewhere. It seems plausible that Hsf1/HSR dysregulation in the haplo-insufficient cells might be due to rather indirect effects, e.g., increased protein misfolding. Also, additional data showing differential activation of Hsf1 in +/+ versus +/- cells would strengthen this part, e.g. showing differences in Hsf1 trimerization, Hsp70 interactions, nuclear localization, etc.

      The reviewer makes two good points here. Firstly, we do agree we should provide additional data to better understand the differential activation of HSF1 in DNACJ7 heterozygous neurons and we will focus on this question during the revision. We also agree that the mechanism underlying the regulation of HSF1 by DNAJC7 is not well defined and we acknowledge it could be indirect. Of note, HSF1 activation is regulated by HSP70, of which DNAJC7 is a co-chaperone. We will attempt to define this mechanism better during the revision.

      The manuscript might also benefit from considering the literature showing an unusually inactive HSR and Hsf1 activity in motor neurons (e.g. published by the Durham lab).

      Yes—we did in fact note this in our discussion: “At the same time, mouse MNs have previously been shown to maintain a high threshold of induction of the HSF1-mediated stress response relative to other cell types including glial cells, with the suggestion that this contributes to their vulnerability to stress signals such as insoluble proteins.” We will further consider how our findings are in line with those of Durham et al., in the revised discussion.

      The correlation with transcriptomic data from ALS patients compared to neurotypical controls (Figures 4 L, M) suggesting a direct role of Hsf1/HSR seems unlikely at this point. In my view, the transcriptional dysregulation in ALS patients could be unrelated to Hsf1 dysregulation and caused by rather non-specific effects of neuronal decay in ALS.

      This is a very reasonable concern.  We acknowledge that the HSF1 effects in patients could be driven by multiple other factors including C9-DPRs etc. However, the point of this analysis is not to claim that DNAJC7 is the cause; but rather to highlight the importance of the HSF1 pathway, which we identified as being mis-regulated in DNAJC7 mutant neurons, as broadly relevant in sporadic and other forms of genetic ALS. 

      Reviewer #3 (Public review):

      Summary:

      Fleming et al sought to better understand DNAJC7's function in motor neurons as mutations in this gene have been associated with amyotrophic lateral sclerosis (ALS). The research question is relevant and important. The authors use an induced pluripotent stem cell (iPSC) line to derive motor neurons (iMNs) finding that DNAJC7 interacts with RNA-binding proteins (RBP) in wild-type cells and a truncated mutant DNAJC7[R156*] disrupts the RBP, hnRNPU, by promoting its accumulation into insoluble fractions. Given that DNAJC7 is predicted to regulate stress responses, the authors then find that DNAJC7[R156*] expression sensitizes the iMNs to proteosomal stress by disrupting the expression of the key heat stress response regulator, HSF1. These findings support that loss-of-function mutations in DNAJC7 will indeed sensitize motor neurons to proteotoxic stress, potentially driving ALS. The association with RBPs, which routinely are found to be disrupted in ALS, is of interest and warrants further study.

      Strengths

      (1) The research question is relevant and important. The authors provide interesting data that DNAJC7 mutations impact two important features in ALS, the dysregulation of RNA binding proteins and the sensitivity of motor neurons to proteotoxic stress.

      (2) The authors provide solid data to support their findings and the assays are appropriate.

      We thank the reviewer for highlighting the strengths of our study.

      Weaknesses

      (1) The authors rely on a single iPSC line throughout the text, using the same line to make the mutation-carrying cells. iPSCs are highly variable and at minimum 3 lines, typically 5 lines, should be used to define consistent findings. This work would be greatly strengthened if 3 or more lines were used to confirm consistent effects. This is particularly concerning given that iPSCs were differentiated using growth factors versus genetic induction. Growth-factor-based differentiations are more variable.

      We will substantiate the major findings by the use of additional models and genetic backgrounds during the revision. However, our experiments utilize isogenic controls and extensive quality control assays (on-target, off target analysis, whole genome sequencing, karyotype etc.) to ensure that our isogenic lines are genomically identical --other than the DNAJC7 mutation-- and thus any phenotypes are likely caused by mutant DNAJC7 itself.   

      (2) The authors argue that HSF1 and its targets are downregulated in sporadic ALS and mutant C9orf72 ALS. The first concern is that these transcriptomics data were derived from cortical tissue which does not contain motor neurons (Pineda et al. 2024 Cell 187: 1971-1989.e1916). The second concern is that the inclusion of C9orf72 mutant tissue is not well justified as (1) this mutation is associated with an upregulation of HSF1 and its targets in patients (Mordes et al, Acta Neuropathol Commun 2018 6(1):55; Lee et al Neuron 2023 111(9):1381-1390) and (2) the C9orf72 mutation is associated with a ALS/FTD spectrum disorder defined by TDP-43 pathology. Disease mechanisms associated with this spectrum disorder may not overlap with traditional ALS which is typically defined by SOD1 pathology.

      SOD1 pathology represents only a small fraction (<2%) of all ALS patients and is therefore not traditional ALS. The majority (<97%) of sporadic and familial ALS cases (including C9orf72 but excluding SOD1 and FUS cases) are uniformly characterized by TDP-43 pathology. Nevertheless, we do agree that it would be better to assess spinal cord data but unfortunately such single cell datasets form ALS patients do not currently exist. We acknowledge that the HSF1 effects in patients could be driven by multiple other factors including C9-DPRs etc. However, the point of this analysis is not to claim that DNAJC7 is the cause; but rather to highlight the importance of the HSF1 pathway, which we identified as being mis-regulated in DNAJC7 mutant neuron, as being broadly relevant in sporadic and other forms of genetic ALS. 

      (3) As a whole, the findings are mechanistically disjointed, and additional experiments or discussion would help to connect the dots a bit more.

      We will revise the manuscript with additional experiments and discussion to better connect the dots.

      Citations

      (1) Kurian, M. A. & Abela, L. in GeneReviews(®)   (eds M. P. Adam et al.)  (University of Washington, Seattle Copyright © 1993-2025, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved., 1993).

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      (1) While the study demonstrates that ZSS has protective effects across a wide range of animal models, including AD, FTD, DLB, PD, and both young and aged mice, it is broad and lacks a detailed investigation into the underlying mechanisms. This is the most significant concern.

      We appreciate this comment. We recognize that elucidating the mechanism is an important research topic, and we are currently working on it. The purpose of publishing this paper at this time is to inform the public as soon as possible about natural materials and methods that may be effective in preventing dementia and neurodegenerative diseases, and to encourage similar research.

      (2) The authors highlight that the non-extracted simple crush powder of ZSS shows more substantial effects than its hot water extract and extraction residue. However, the manuscript provides very limited data comparing the effects of these three extracts.

      Certainly, it would be better to compare them in several different models, but we believe that important results have already been obtained in tau Tg mice, and comparative data in other models are just additive and confirmatory.

      (3) The authors have not provided a rationale for the dosing concentrations used, nor have they tested the effects of the treatment in normal mice to verify its impact under physiological conditions.

      As described in the Materials and Methods section, the dosage was determined based on the results of preliminary experiments. The beneficial effects in normal mice are shown in Figure 5.

      (4) Regarding the assessment of cognitive function in mice, the authors only utilized the Morris Water Maze (MWM) test, which includes a five-day spatial learning training phase followed by a probe trial. The authors focused solely on the learning phase. However, it is relevant to note that data from the learning phase primarily reflects the learning ability of the mice, while the probe trial is more indicative of memory. Therefore, it is essential that probe trial data be included for a more comprehensive analysis. A justification should be included to explain why the latency of 1st is about 50s not 60s.

      We agree that it is better to include the results of the probe test. We did not include them this time, but we would like to include them in the future. In the memory acquisition training, five trials were performed per day. Since the mice learned the location of the platform during the first five trials, the latency on the first day became around 50 seconds.

      (5) The BDNF immunohistochemical staining in the manuscript appears to be non-specific.

      We cannot understand the basis for saying it is non-specific.

      (6) The central pathological regions in PD are the substantia nigra and striatum. Please replace the staining results from the cortex and hippocampus with those from these regions in the PD model.

      We examined the substantia nigra and found that synuclein pathology appeared in Tg mice and was suppressed by ZSS administration. However, because we did not investigate the striatum, we decided not to show the results for the nigrostriatal system this time. Instead, we thought that we could demonstrate the inhibitory effect of ZSS on synuclein pathology by showing the results for the cortex and hippocampus, which showed early functional decline in these mice (Fig. 4E).

      Reviewer #2 (Public review):

      The authors' study lacked an in-depth exploration of mechanisms, including changes in intracellular signal transduction, drug targets, and drug toxicity detection.

      We appreciate this comment. We understand that the mechanism, targets, and toxicity are important issues to be considered in the future.

      Reviewer #3 (Public review):

      However, this work did not include a mechanistic study or target data on ZSS were included, and PK data were also not involved. Mechanisms or targets and PK study are suggested. A human PK study is preferred over mice or rats. E.g. which main active ingredients and the concentration in plasma, in this context, to study the pharmacological mechanisms of ZSS.

      We appreciate this comment. We understand that the mechanism and target are important issues to consider in the future. As the reviewer pointed out, to conduct PK studies, we must first identify the active ingredients. Unfortunately, we have not been able to identify them yet.

      Reviewer #2 (Recommendations for the authors):

      The authors have proved that ZSS has neuroprotective effects through rigorous animal experiments. However, ZSS contains other active substances besides jujuboside A, jujuboside B, and spinosin, which is more concerning. More critical data may be obtained if experiments have been designed to search for active substances.

      We appreciate this suggestion. We recognize that identifying the true active ingredients is a very important issue. Future studies will be designed to identify them and elucidate their mechanism of action.

    1. Author response:

      The following is the authors’ response to the original reviews.

      General responses:

      The authors sincerely thank all the reviewers for their valuable and constructive comments. We also apologize for the long delay in providing this rebuttal due to logistical and funding challenges. In this revision, we modified the bipolar gradients from one single direction to all three directions. Additionally, in response to the concerns regarding data reliability, we conducted a thorough examination of each step in our data processing pipeline. In the original processing workflow, the projection-onto-convex-set (POCS) method was used for partial Fourier reconstruction. Upon examination, we found that applying the POCS method after parallel image reconstruction significantly altered the signal and resulted in considerable loss of functional feature. Futhermore, the original scan protocol employed a TE of 46 ms, which is notably longer than the typical TE of 33 ms. A prolonged TE can increase the ratio of extravascular to intravascular contributions. Importantly, the impact of TE on the efficacy of phase regression remains unclear, introducing potential confounding effects. To address these issues, we revised the protocol by shortening the TE from 46 ms to 39 ms. This adjustment was achieved by modifying the SMS factor to 3 and the in-plane acceleration rate to 3, thereby minimizing the confounding effects associated with an extended TE.

      Following these changes, we recollected task-based fMRI data (N=4) and resting-state fMRI data (N=14) under the updated protocol. Using the revised dataset, we validated layer-specific functional connectivity (FC) through seed-based analyses. These analyses revealed distinct connectivity patterns in the superficial and deep layers of the primary motor cortex (M1), with statistically significant inter-layer differences. Furthermore, additional analyses with a seed in the primary sensory cortex (S1) corroborated the robustness and reliability of the revised methodology. We also changed the ‘directed’ functional connectivity in the title to ‘layer-specific’ functional connectivity, as drawing conclusions about directionality requires auxiliary evidence beyond the scope of this study.

      We provide detailed responses to the reviewers’ comments below.

      Reviewer #1 (Public Review):

      Summary:

      (1)   This study aims to provide imaging methods for users of the field of human layer-fMRI. This is an emerging field with 240 papers published so far. Different than implied in the manuscript, 3T is well represented among those papers. E.g. see the papers below that are not cited in the manuscript. Thus, the claim on the impact of developing 3T methodology for wider dissemination is not justified. Specifically, because some of the previous papers perform whole brain layer-fMRI (also at 3T) in more efficient, and more established procedures.

      3T layer-fMRI papers that are not cited:

      Taso, M., Munsch, F., Zhao, L., Alsop, D.C., 2021. Regional and depth-dependence of cortical blood-flow assessed with high-resolution Arterial Spin Labeling (ASL). Journal of Cerebral Blood Flow and Metabolism. https://doi.org/10.1177/0271678X20982382

      Wu, P.Y., Chu, Y.H., Lin, J.F.L., Kuo, W.J., Lin, F.H., 2018. Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex. Scientific Reports 8, 1-14. https://doi.org/10.1038/s41598-018-31292-x

      Lifshits, S., Tomer, O., Shamir, I., Barazany, D., Tsarfaty, G., Rosset, S., Assaf, Y., 2018. Resolution considerations in imaging of the cortical layers. NeuroImage 164, 112-120. https://doi.org/10.1016/j.neuroimage.2017.02.086

      Puckett, A.M., Aquino, K.M., Robinson, P.A., Breakspear, M., Schira, M.M., 2016. The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex. NeuroImage 139, 240-248. https://doi.org/10.1016/j.neuroimage.2016.06.019

      Olman, C.A., Inati, S., Heeger, D.J., 2007. The effect of large veins on spatial localization with GE BOLD at 3 T: Displacement, not blurring. NeuroImage 34, 1126-1135. https://doi.org/10.1016/j.neuroimage.2006.08.045

      Ress, D., Glover, G.H., Liu, J., Wandell, B., 2007. Laminar profiles of functional activity in the human brain. NeuroImage 34, 74-84. https://doi.org/10.1016/j.neuroimage.2006.08.020

      Huber, L., Kronbichler, L., Stirnberg, R., Ehses, P., Stocker, T., Fernández-Cabello, S., Poser, B.A., Kronbichler, M., 2023. Evaluating the capabilities and challenges of layer-fMRI VASO at 3T. Aperture Neuro 3. https://doi.org/10.52294/001c.85117

      Scheeringa, R., Bonnefond, M., van Mourik, T., Jensen, O., Norris, D.G., Koopmans, P.J., 2022. Relating neural oscillations to laminar fMRI connectivity in visual cortex. Cerebral Cortex. https://doi.org/10.1093/cercor/bhac154

      We thank the reviewer for listing out 8 papers related to 3T layer-fMRI papers. The primary goal of our work is to develop a methodology for brain-wide, layer-dependent resting-state functional connectivity at 3T. Upon review of the cited papers, we found that:

      (1) One study (Lifshits et al.) was not an fMRI study.

      (2) One study (Olman et al.) was conducted at 7T, not 3T.

      (3) Two studies (Taso et al. and Wu et al.) employed relatively large voxel sizes (1.6 × 2.3 × 5 mm³ and 1.5 mm isotropic, respectively), which limits layer specificity.

      (4) Only one of the listed studies (Huber et al., Aperture Neuro 2023) provides coverage of more than half of the brain.

      While each of these studies offers valuable insights, the VASO study by Huber et al. is the most relevant to our work, given its brain-wide coverage. However, the VASO method employs a relatively long TR (14.137 s), which may not be optimal for resting-state functional connectivity analyses.

      To address these limitations, our proposed method achieves submillimeter resolution, layer specificity, brain-wide coverage, and a significantly shorter TR (<5 s) altogether. We believe this advancement provides a meaningful contribution to the field, enabling broader applicability of layer-fMRI at 3T.

      (2) The authors implemented a sequence with lots of nice features. Including their own SMS EPI, diffusion bipolar pulses, eye-saturation bands, and they built their own reconstruction around it. This is not trivial. Only a few labs around the world have this level of engineering expertise. I applaud this technical achievement. However, I doubt that any of this is the right tool for layer-fMRI, nor does it represent an advancement for the field. In the thermal noise dominated regime of sub-millimeter fMRI (especially at 3T), it is established to use 3D readouts over 2D (SMS) readouts. While it is not trivial to implement SMS, the vendor implementations (as well as the CMRR and MGH implementations) are most widely applied across the majority of current fMRI studies already. The author's work on this does not serve any previous shortcomings in the field.

      We would like to thank the reviewer for their comments and the recognition of the technical efforts in implementing our sequence. We would like to address the points raised:

      (1) We completely agree that in-house implementation of existing techniques does not constitute an advancement for the field. We did not claim otherwise in the manuscript. Our focus was on the development of a method for brain-wide, layer-dependent resting-state functional connectivity at 3T, as mentioned in the response above.

      (2) The reviewer stated that "it is established to use 3D readouts over 2D (SMS) readouts". This is a strong claim, and we believe it requires robust evidence to support it. While it is true that 3D readouts can achieve higher tSNR in certain regions, such as the central brain, as shown in the study by Vizioli et al. (ISMRM 2020 abstract; https://cds.ismrm.org/protected/20MProceedings/PDFfiles/3825.html?utm_source=chatgpt.com ), higher tSNR does not necessarily equate to improved detection power in fMRI studies. For instance, Le Ster et al. (PLOS ONE, 2019; https://doi.org/10.1371/journal.pone.0225286 ). demonstrated that while 3D EPI had higher tSNR in the central brain, SMS EPI produced higher t-scores in activation maps.

      (3) When choosing between SMS EPI and 3D EPI, multiple factors should be taken into account, not just tSNR. For example, SMS EPI and 3D EPI differ in their sensitivity to motion and the complexity of motion correction. The choice between them depends on the specific research goals and practical constraints.

      (4) We are open to different readout strategies, provided they can be demonstrated suitable to the research goals. In this study, we opted for 2D SMS primarily due to logistical considerations. This choice does not preclude the potential use of 3D readouts in the future if they are deemed more appropriate for the project objectives.

      The mechanism to use bi-polar gradients to increase the localization specificity is doubtful to me. In my understanding, killing the intra-vascular BOLD should make it less specific. Also, the empirical data do not suggest a higher localization specificity to me.

      We will elaborate the mechanism and reasoning in the later responses.

      Embedding this work in the literature of previous methods is incomplete. Recent trends of vessel signal manipulation with ABC or VAPER are not mentioned. Comparisons with VASO are outdated and incorrect.

      The reproducibility of the methods and the result is doubtful (see below).

      In this revision, we updated the scan protocol and recollected the imaging data. Detailed explanations and revised results are provided in the later responses.

      I don't think that this manuscript is in the top 50% of the 240 layer-fmri papers out there.

      We respect the reviewer’s personal opinion. However, we can only address scientific comments or critiques.

      Strengths:

      See above. The authors developed their own SMS sequence with many features. This is important to the field. And does not leave sequence development work to view isolated monopoly labs. This work democratises SMS.

      The questions addressed here are of high relevance to the field: getting tools with good sensitivity, user-friendly applicability, and locally specific brain activity mapping is an important topic in the field of layer-fMRI.

      Weaknesses:

      (1) I feel the authors need to justify why flow-crushing helps localization specificity. There is an entire family of recent papers that aim to achieve higher localization specificity by doing the exact opposite. Namely, MT or ABC fRMRI aims to increase the localization specificity by highlighting the intravascular BOLD by means of suppressing non-flowing tissue. To name a few:

      Priovoulos, N., de Oliveira, I.A.F., Poser, B.A., Norris, D.G., van der Zwaag, W., 2023. Combining arterial blood contrast with BOLD increases fMRI intracortical contrast. Human Brain Mapping hbm.26227. https://doi.org/10.1002/hbm.26227.

      Pfaffenrot, V., Koopmans, P.J., 2022. Magnetization Transfer weighted laminar fMRI with multi-echo FLASH. NeuroImage 119725. https://doi.org/10.1016/j.neuroimage.2022.119725

      Schulz, J., Fazal, Z., Metere, R., Marques, J.P., Norris, D.G., 2020. Arterial blood contrast ( ABC ) enabled by magnetization transfer ( MT ): a novel MRI technique for enhancing the measurement of brain activation changes. bioRxiv. https://doi.org/10.1101/2020.05.20.106666

      Based on this literature, it seems that the proposed method will make the vein problem worse, not better. The authors could make it clearer how they reason that making GE-BOLD signals more extra-vascular weighted should help to reduce large vein effects.

      The proposed VN fMRI method employs VN gradients to selectively suppress signals from fast-flowing blood in large vessels. Although this approach may initially appear to diverge from the principles of CBV-based techniques (Chai et al., 2020; Huber et al., 2017a; Pfaffenrot and Koopmans, 2022; Priovoulos et al., 2023), which enhance sensitivity to vascular changes in arterioles, capillaries, and venules while attenuating signals from static tissue and large veins, it aligns with the fundamental objective of all layer-specific fMRI methods. Specifically, these approaches aim to maximize spatial specificity by preserving signals proximal to neural activation sites and minimizing contributions from distal sources, irrespective of whether the signals are intra- or extra-vascular in origin. In the context of intravascular signals, CBV-based methods preferentially enhance sensitivity to functional changes in small vessels (proximal components) while demonstrating reduced sensitivity to functional changes in large vessels (distal components). For extravascular signals, functional changes are a mixture of proximal and distal influences. While tissue oxygenation near neural activation sites represents a proximal contribution, extravascular signal contamination from large pial veins reflects distal effects that are spatially remote from the site of neuronal activity. CBV-based techniques mitigate this challenge by unselectively suppressing signals from static tissues, thereby highlighting contributions from small vessels. In contrast, the VN fMRI method employs a targeted suppression strategy, selectively attenuating signals from large vessels (distal components) while preserving those from small vessels (proximal components). Furthermore, the use of a 3T scanner and the inclusion of phase regression in the VN approach mitigates contamination from large pial veins (distal components) while preserving signals reflecting local tissue oxygenation (proximal components). By integrating these mechanisms, VN fMRI improves spatial specificity, minimizing both intravascular and extravascular contributions that are distal to neuronal activation sites. We have incorporated the responses into Discussion section.

      The empirical evidence for the claim that flow crushing helps with the localization specificity should be made clearer. The response magnitude with and without flow crushing looks pretty much identical to me (see Fig, 6d).

      In the new results in Figure 4, the application of VN gradients attenuated the bias towards pial surface. Consistent with the results in Figure 4, Figure 5 also demonstrated the suppression of macrovascular signal by VN gradients.

      It's unclear to me what to look for in Fig. 5. I cannot discern any layer patterns in these maps. It's too noisy. The two maps of TE=43ms look like identical copies from each other. Maybe an editorial error?

      In this revision, the original Figure 5 has been removed. However, we would like to clarify that the two maps with TE = 43 ms in the original Figure 5 were not identical. This can be observed in the difference map provided in the right panel of the figure.

      The authors discuss bipolar crushing with respect to SE-BOLD where it has been previously applied. For SE-BOLD at UHF, a substantial portion of the vein signal comes from the intravascular compartment. So I agree that for SE-BOLD, it makes sense to crush the intravascular signal. For GE-BOLD however, this reasoning does not hold. For GE-BOLD (even at 3T), most of the vein signal comes from extravascular dephasing around large unspecific veins, and the bipolar crushing is not expected to help with this.

      The reviewer’s statement that "most of the vein signal comes from extravascular dephasing around large unspecific veins" may hold true for 7T. However, at 3T, the susceptibility-induced Larmor frequency shift is reduced by 57%, and the extravascular contribution decreases by more than 35%, as shown by Uludağ et al. 2009 ( DOI: 10.1016/j.neuroimage.2009.05.051 ).

      Additionally, according to the biophysical models (Ogawa et al., 1993; doi: 10.1016/S0006-3495(93)81441-3 ), the extravascular contamination from the pial surface is inversely proportional to the square of the distance from vessel. For a vessel diameter of 0.3 mm and an isotropic voxel size of 0.9 mm, the induced frequency shift is reduced by at least 36-fold at the next voxel. Notably, a vessel diameter of 0.3 mm is larger than most pial vessels. Theoretically, the extravascular effect contributes minimally to inter-layer dependency, particularly at 3T compared to 7T due to weaker susceptibility-related effects at lower field strengths. Empirically, as shown in Figure 7c, the results at M1 demonstrated that layer specificity can be achieved statistically with the application of VN gradients. We have incorporated this explanation into the Introduction and Discussion sections of the manuscript.

      (2) The bipolar crushing is limited to one single direction of flow. This introduces a lot of artificial variance across the cortical folding pattern. This is not mentioned in the manuscript. There is an entire family of papers that perform layer-fmri with black-blood imaging that solves this with a 3D contrast preparation (VAPER) that is applied across a longer time period, thus killing the blood signal while it flows across all directions of the vascular tree. Here, the signal cruising is happening with a 2D readout as a "snap-shot" crushing. This does not allow the blood to flow in multiple directions.

      VAPER also accounts for BOLD contaminations of larger draining veins by means of a tag-control sampling. The proposed approach here does not account for this contamination.

      Chai, Y., Li, L., Huber, L., Poser, B.A., Bandettini, P.A., 2020. Integrated VASO and perfusion contrast: A new tool for laminar functional MRI. NeuroImage 207, 116358. https://doi.org/10.1016/j.neuroimage.2019.116358

      Chai, Y., Liu, T.T., Marrett, S., Li, L., Khojandi, A., Handwerker, D.A., Alink, A., Muckli, L., Bandettini, P.A., 2021. Topographical and laminar distribution of audiovisual processing within human planum temporale. Progress in Neurobiology 102121. https://doi.org/10.1016/j.pneurobio.2021.102121

      If I would recommend anyone to perform layer-fMRI with blood crushing, it seems that VAPER is the superior approach. The authors could make it clearer why users might want to use the unidirectional crushing instead.

      We understand the reviewer’s concern regarding the directional limitation of bipolar crushing. As noted in the responses above, we have updated the bipolar gradient to include three orthogonal directions instead of a single direction. Furthermore, flow-related signal suppression does not necessarily require a longer time period. Bipolar diffusion gradients have been effectively used to nullify signals from fast-flowing blood, as demonstrated by Boxerman et al. (1995; DOI: 10.1002/mrm.1910340103). Their study showed that vessels with flow velocities producing phase changes greater than p radians due to bipolar gradients experience significant signal attenuation. The critical velocity for such attenuation can be calculated using the formula: 1/(2gGDd) where g is the gyromagnetic ratio, G is the gradient strength, d is the gradient pulse width and D is the time between the two bipolar gradient pulses. In the framework of Boxerman et al. at 1.5T, the critical velocity for b value of 10 s/mm<sup>2</sup> is ~8 mm/s, resulting in a ~30% reduction in functional signal. In our 3T study, b values of 6, 7, and 8 s/mm<sup>2</sup> correspond to critical velocities of 16.8, 15.2, and 13.9 mm/s, respectively. The flow velocities in capillaries and most venules remain well below these thresholds. Notably, in our VN fMRI sequences, bipolar gradients were applied in all three orthogonal directions, whereas in Boxerman et al.'s study, the gradients were applied only in the z-direction. Given the voxel dimensions of 3 × 3 × 7 mm<sup>3</sup> in the 1.5T study, vessels within a large voxel are likely oriented in multiple directions, meaning that only a subset of fast-flowing signals would be attenuated. Therefore, our approach is expected to induce greater signal reduction, even at the same b values as those used in Boxerman et al.'s study. We have incorporated this text into the Discussion section of the manuscript.

      (3) The comparison with VASO is misleading.

      The authors claim that previous VASO approaches were limited by TRs of 8.2s. The authors might be advised to check the latest literature of the last years.

      Koiso et al. performed whole brain layer-fMRI VASO at 0.8mm at 3.9 seconds (with reliable activation), 2.7 seconds (with unconvincing activation pattern, though), and 2.3 (without activation).

      Also, whole brain layer-fMRI BOLD at 0.5mm and 0.7mm has been previously performed by the Juelich group at TRs of 3.5s (their TR definition is 'fishy' though).

      Koiso, K., Müller, A.K., Akamatsu, K., Dresbach, S., Gulban, O.F., Goebel, R., Miyawaki, Y., Poser, B.A., Huber, L., 2023. Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset. Aperture Neuro 34. https://doi.org/10.1101/2022.08.19.504502

      Yun, S.D., Pais‐Roldán, P., Palomero‐Gallagher, N., Shah, N.J., 2022. Mapping of whole‐cerebrum resting‐state networks using ultra‐high resolution acquisition protocols. Human Brain Mapping. https://doi.org/10.1002/hbm.25855

      Pais-Roldan, P., Yun, S.D., Palomero-Gallagher, N., Shah, N.J., 2023. Cortical depth-dependent human fMRI of resting-state networks using EPIK. Front. Neurosci. 17, 1151544. https://doi.org/10.3389/fnins.2023.1151544

      We thank the reviewer for providing these references. While the protocol with a TR of 3.9 seconds in Koiso’s work demonstrated reasonable activation patterns, it was not tested for layer specificity. Given that higher acceleration factors (AF) can cause spatial blurring, a protocol should only be eligible for comparison if layer specificity is demonstrated.

      Secondly, the TRs reported in Koiso’s study pertain only to either the VASO or BOLD acquisition, not the combined CBV-based contrast. To generate CBV-based images, both VASO and BOLD data are required, effectively doubling the TR. For instance, if the protocol with a TR of 3.9 seconds is used, the effective TR becomes approximately 8 seconds. The stable protocol used by Koiso et al. to acquire whole-brain data (94.08 mm along the z-axis) required 5.2 seconds for VASO and 5.1 seconds for BOLD, resulting in an effective TR of 10.3 seconds. The spatial resolution achieved was 0.84 mm isotropic.

      Unfortunately, we could not find the Juelich paper mentioned by the reviewer.

      To have a more comprehensive comparison, we collated relevant literature on brain-wide layer-specific fMRI. We defined brain-wide acquisition as imaging protocols that cover more than half of the human brain, specifically exceeding 55 mm along the superior-inferior axis. We identified five studies and summarized their scan parameters, including effective TR, coverage, and spatial resolution, in Table 1.

      The authors are correct that VASO is not advised as a turn-key method for lower brain areas, incl. Hippocampus and subcortex. However, the authors use this word of caution that is intended for inexperienced "users" as a statement that this cannot be performed. This statement is taken out of context. This statement is not from the academic literature. It's advice for the 40+ user base that wants to perform layer-fMRI as a plug-and-play routine tool in neuroscience usage. In fact, sub-millimeter VASO is routinely being performed by MRI-physicists across all brain areas (including deep brain structures, hippocampus etc). E.g. see Koiso et al. and an overview lecture from a layer-fMRI workshop that I had recently attended: https://youtu.be/kzh-nWXd54s?si=hoIJjLLIxFUJ4g20&t=2401

      In this revision, we decided to focus on cortico-cortical functional connectivity and have removed the LGN-related content. Consequently, the text mentioned by the reviewer was also removed. Nevertheless, we apologize if our original description gave the impression that functional mapping of deep brain regions using VASO is not feasible. The word of caution we used is based on the layer-fMRI blog ( https://layerfmri.com/2021/02/22/vaso_ve/ ) and reflects the challenges associated with this technique, as outlined by experts like Dr. Huber and Dr. Strinberg.

      According to the information provided, including the video, functional mapping of the hippocampus and amygdala using VASO is indeed possible but remains technically challenging. The short arterial arrival times in these deep brain regions can complicate the acquisition, requiring RF inversion pulses to cover a wider area at the base of the brain. For example, as of 2023, four or more research groups were attempting to implement layer-fMRI VASO in the hippocampus. One such study at 3T required multiple inversion times to account for inflow effects, highlighting the technical complexity of these applications. This is the context in which we used the word of caution. We are not sure whether recent advancements like MAGEC VASO have improved its applicability. As of 2024, we have not identified any published VASO studies specifically targeting deep brain structures such as the hippocampus or amygdala. Therefore, it is difficult to conclude that “sub-millimeter VASO is routinely being performed by MRI physicists on deep brain structures such as the hippocampus.”

      Thus, the authors could embed this phrasing into the context of their own method that they are proposing in the manuscript. E.g. the authors could state whether they think that their sequence has the potential to be disseminated across sites, considering that it requires slow offline reconstruction in Matlab?

      We are enthusiastic about sharing our imaging sequence, provided its usefulness is conclusively established. However, it's important to note that without an online reconstruction capability, such as the ICE, the practical utility of the sequence may be limited. Unfortunately, we currently don’t have the manpower to implement the online reconstruction. Nevertheless, we are more than willing to share the offline reconstruction codes upon request.

      Do the authors think that the results shown in Fig. 6c are suggesting turn-key acquisition of a routine mapping tool? In my humble opinion, it looks like random noise, with most of the activation outside the ROI (in white matter).

      As we mentioned in the ‘general response’ in the beginning of the rebuttal, the POCS method for partial Fourier reconstruction caused the loss of functional feature, potentially accounting for the activation in white matter. In this revision, we have modified the pulse sequence, scan protocol and processing pipelines.

      According to the results in Figure 4, stable activation in M1 was observed at the single-subject level across most scan protocols. Yet, the layer-dependent activation profiles in M1 were spatially unstable, irrespective of the application of VN gradients. This spatial instability is not entirely unexpected, as T2*-based contrast is inherently sensitive to various factors that perturb the magnetic field, such as eye movements, respiration, and macrovascular signal fluctuations. Furthermore, ICA-based artifact removal was intentionally omitted in Figure 4 to ensure fair comparisons between protocols, leaving residual artifacts unaddressed. Inconsistency in performing the button-pressing task across sessions may also have contributed to the observed variability. These results suggest that submillimeter-resolution fMRI may not yet be suitable for reliable individual-level layer-dependent functional mapping, unless group-level statistics are incorporated to enhance robustness. We have incorporated this text into the Limitation section of the manuscript.

      (4) The repeatability of the results is questionable.

      The authors perform experiments about the robustness of the method (line 620). The corresponding results are not suggesting any robustness to me. In fact, the layer profiles in Fig. 4c vs. Fig 4d are completely opposite. The location of peaks turns into locations of dips and vice versa.

      The methods are not described in enough detail to reproduce these results.

      The authors mention that their image reconstruction is done "using in-house MATLAB code" (line 634). They do not post a link to github, nor do they say if they share this code.

      We thank the reviewer for the comments regarding reproducibility and data sharing. In response, we have revised the Methods section and elaborated on the technical details to improve clarity and reproducibility.

      Regarding code sharing, we acknowledge that the current in-house MATLAB reconstruction code requires further refinement to improve its readability and usability. Due to limited manpower, we have not yet been able to complete this task. However, we are committed to making the code publicly available and will upload it to GitHub as soon as the necessary resources are available.

      For data sharing, we face logistical challenges due to the large size of the dataset, which spans tens of terabytes. Platforms like OpenNeuro, for example, typically support datasets up to 10TB, making it difficult to share the data in its entirety. Despite this limitation, we are more than willing to share offline reconstruction codes and raw data upon request to facilitate reproducibility.

      Regarding data robustness, we kindly refer the reviewer to our response to the previous comment, where we addressed these concerns in greater detail.

      It is not trivial to get good phase data for fMRI. The authors do not mention how they perform the respective coil-combination.

      No data are shared for reproduction of the analysis.

      Obtaining phase data is relatively straightforward when the images are retrieved directly from raw data. For coil combination, we employed the adaptive coil combination approach described by (Walsh et al.; DOI: 10.1002/(sici)1522-2594(200005)43:5<682::aid-mrm10>3.0.co;2-g ) The MATLAB code for this implementation was developed by Dr. Diego Hernando and is publicly available at https://github.com/welton0411/matlab .

      (5) The application of NODRIC is not validated.

      Previous applications of NORDIC at 3T layer-fMRI have resulted in mixed success. When not adjusted for the right SNR regime it can result in artifactual reductions of beta scores, depending on the SNR across layers. The authors could validate their application of NORDIC and confirm that the average layer-profiles are unaffected by the application of NORDIC. Also, the NORDIC version should be explicitly mentioned in the manuscript.

      Akbari, A., Gati, J.S., Zeman, P., Liem, B., Menon, R.S., 2023. Layer Dependence of Monocular and Binocular Responses in Human Ocular Dominance Columns at 7T using VASO and BOLD (preprint). Neuroscience. https://doi.org/10.1101/2023.04.06.535924

      Knudsen, L., Guo, F., Huang, J., Blicher, J.U., Lund, T.E., Zhou, Y., Zhang, P., Yang, Y., 2023. The laminar pattern of proprioceptive activation in human primary motor cortex. bioRxiv. https://doi.org/10.1101/2023.10.29.564658

      We appreciate the reviewer’s suggestion. To validate the application of NORDIC denoising in our study, we compared the BOLD activation maps before and after denoising in the visual and motor cortices, as well as the depth-dependent activation profiles in M1. These results are presented in Figure 3. The activation patterns in the denoised maps were consistent with those in the non-denoised maps but exhibited higher statistical significance. Notably, BOLD activation within M1 was only observed after NORDIC denoising, underscoring the necessity of this approach. Figure 3c shows the depth-dependent activation profiles in M1, highlighted by the green contours in Figure 3b. Both denoised and non-denoised profiles followed similar trends; however, as expected, the non-denoised profile exhibited larger confidence intervals compared to the NORDIC-denoised profile. These results confirm that NORDIC denoising enhances sensitivity without introducing distortions in the functional signal. The corresponding text has been incorporated into the Results section.

      Regarding the implementation details of NORDIC denoising, the reconstructed images were denoised using a g-factor map (function name: NIFTI_NORDIC). The g-factor map was estimated from the image time series, and the input images were complex-valued. The width of the smoothing filter for the phase was set to 10, while all other hyperparameters were retained at their default values. This information has been integrated into the Methods section for clarity and reproducibility.

      Reviewer #2 (Public Review):

      This study developed a setup for laminar fMRI at 3T that aimed to get the best from all worlds in terms of brain coverage, temporal resolution, sensitivity to detect functional responses, and spatial specificity. They used a gradient-echo EPI readout to facilitate sensitivity, brain coverage and temporal resolution. The former was additionally boosted by NORDIC denoising and the latter two were further supported by parallel-imaging acceleration both in-plane and across slices. The authors evaluated whether the implementation of velocity-nulling (VN) gradients could mitigate macrovascular bias, known to hamper the laminar specificity of gradient-echo BOLD.

      The setup allows for 0.9 mm isotropic acquisitions with large coverage at a reasonable TR (at least for block designs) and the fMRI results presented here were acquired within practical scan-times of 12-18 minutes. Also, in terms of the availability of the method, it is favorable that it benefits from lower field strength (additional time for VN-gradient implementation, afforded by longer gray matter T2*).

      The well-known double peak feature in M1 during finger tapping was used as a test-bed to evaluate the spatial specificity. They were indeed able to demonstrate two distinct peaks in group-level laminar profiles extracted from M1 during finger tapping, which was largely free from superficial bias. This is rather intriguing as, even at 7T, clear peaks are usually only seen with spatially specific non-BOLD sequences. This is in line with their simple simulations, which nicely illustrated that, in theory, intravascular macrovascular signals should be suppressible with only minimal suppression of microvasculature when small b-values of the VN gradients are employed. However, the authors do not state how ROIs were defined making the validity of this finding unclear; were they defined from independent criteria or were they selected based on the region mostly expressing the double peak, which would clearly be circular? In any case, results are based on a very small sub-region of M1 in a single slice - it would be useful to see the generalizability of superficial-bias-free BOLD responses across a larger portion of M1.

      We appreciate and understand the reviewer’s concerns. Given the small size of the hand knob region within M1 and its intersubject variability in location, defining this region automatically remains challenging. However, we applied specific criteria to minimize bias during the delineation of M1: 1) the hand knob region was required to be anatomically located in the precentral sulcus or gyrus; 2) it needed to exhibit consistent BOLD activation across the majority of testing conditions; and 3) the region was expected to show BOLD activation in the deep cortical layers under the condition of b = 0 and TE = 30 ms. Once the boundaries across cortical depth were defined, the gray matter boundaries of hand knob region were delineated based on the T1-weighted anatomical image and the cortical ribbon mask but excluded the BOLD activation map to minimize potential bias in manual delineation. Based on the new criteria, the resulting depth-dependent profiles, as shown in Figure 4, are no longer superficial-bias-free.

      As repeatedly mentioned by the authors, a laminar fMRI setup must demonstrate adequate functional sensitivity to detect (in this case) BOLD responses. The sensitivity evaluation is unfortunately quite weak. It is mainly based on the argument that significant activation was found in a challenging sub-cortical region (LGN). However, it was a single participant, the activation map was not very convincing, and the demonstration of significant activation after considerable voxel-averaging is inadequate evidence to claim sufficient BOLD sensitivity. How well sensitivity is retained in the presence of VN gradients, high acceleration factors, etc., is therefore unclear. The ability of the setup to obtain meaningful functional connectivity results is reassuring, yet, more elaborate comparison with e.g., the conventional BOLD setup (no VN gradients) is warranted, for example by comparison of tSNR, quantification and comparison of CNR, illustration of unmasked-full-slice activation maps to compare noise-levels, comparison of the across-trial variance in each subject, etc. Furthermore, as NORDIC appears to be a cornerstone to enable submillimeter resolution in this setup at 3T, it is critical to evaluate its impact on the data through comparison with non-denoised data, which is currently lacking.

      We appreciate the reviewer’s comments and acknowledge that the LGN results from a single participant were not sufficiently convincing. In this revision, we have removed the LGN-related results and focused on cortico-cortical FC. To evaluate data quality, we opted to present BOLD activation maps rather than tSNR, as high tSNR does not necessarily translate to high functional significance. In Figure 3, we illustrate the effect of NORDIC denoising, including activation maps and depth-dependent profiles. Figure 4 presents activation maps acquired under different TE and b values, demonstrating that VN gradients effectively reduce the bias toward the pial surface without altering the overall activation patterns. The results in Figure 4 and Figure 5 provide evidence that VN gradients retain sensitivity while reducing superficial bias. The ability of the setup to obtain meaningful FC results was validated through seed-based analyses, identifying distinct connectivity patterns in the superficial and deep layers of the primary motor cortex (M1), with significant inter-layer differences (see Figure 7). Further analyses with a seed in the primary sensory cortex (S1) demonstrated the reliability of the method (see Figure 8). For further details on the results, including the impact of VN gradients and NORDIC denoising, please refer to Figures 3 to 8 in the Results section.

      Additionally, we acknowledge the limitations of our current protocol for submillimeter-resolution fMRI at the individual level. We found that robust layer-dependent functional mapping often requires group-level statistics to enhance reliability. This issue has been discussed in detail in the Limitations section.

      The proposed setup might potentially be valuable to the field, which is continuously searching for techniques to achieve laminar specificity in gradient echo EPI acquisitions. Nonetheless, the above considerations need to be tackled to make a convincing case.

      Reviewer #3 (Public Review):

      Summary:

      The authors are looking for a spatially specific functional brain response to visualise non-invasively with 3T (clinical field strength) MRI. They propose a velocity-nulled weighting to remove the signal from draining veins in a submillimeter multiband acquisition.

      Strengths:

      - This manuscript addresses a real need in the cognitive neuroscience community interested in imaging responses in cortical layers in-vivo in humans.

      - An additional benefit is the proposed implementation at 3T, a widely available field strength.

      Weaknesses:

      - Although the VASO acquisition is discussed in the introduction section, the VN-sequence seems closer to diffusion-weighted functional MRI. The authors should make it more clear to the reader what the differences are, and how results are expected to differ. Generally, it is not so clear why the introduction is so focused on the VASO acquisition (which, curiously, lacks a reference to Lu et al 2013). There are many more alternatives to BOLD-weighted imaging for fMRI. CBF-weighted ASL and GRASE have been around for a while, ABC and double-SE have been proposed more recently.

      The major distinction between diffusion-weighted fMRI (DW-fMRI) and our methodology lies in the b-value employed. DW-fMRI typically measures cellular swelling using b-values greater than 1000 s/mm<sup>2</sup> (e.g., 1800 s/mm(sup>2</sup>). In contrast, our VN-fMRI approach measures hemodynamic responses by employing smaller b-values specifically designed to suppress signals from fast-flowing draining veins rather than detecting microstructural changes.

      Regarding other functional contrasts, we agree that more layer-dependent fMRI approaches should be mentioned. In this revision, we have expanded the Introduction section to include discussions of the double spin-echo approach and CBV-based methods, such as MT-weighted fMRI, VAPER, ABC, and CBF-based method ASL. Additionally, the reference to Lu et al. (2013) has been cited in the revised manuscript. The corresponding text has been incorporated into the Introduction section to provide a more comprehensive overview of alternative functional imaging techniques.

      - The comparison in Figure 2 for different b-values shows % signal changes. However, as the baseline signal changes dramatically with added diffusion weighting, this is rather uninformative. A plot of t-values against cortical depth would be much more insightful.

      - Surprisingly, the %-signal change for a b-value of 0 is not significantly different from 0 in the gray matter. This raises some doubts about the task or ROI definition. A finger-tapping task should reliably engage the primary motor cortex, even at 3T, and even in a single participant.

      - The BOLD weighted images in Figure 3 show a very clear double-peak pattern. This contradicts the results in Figure 2 and is unexpected given the existing literature on BOLD responses as a function of cortical depth.

      - Given that data from Figures 2, 3, and 4 are derived from a single participant each, order and attention affects might have dramatically affected the observed patterns. Especially for Figure 4, neither BOLD nor VN profiles are really different from 0, and without statistical values or inter-subject averaging, these cannot be used to draw conclusions from.

      We appreciate the reviewer’s suggestions. In this revision, we have made significant updates to the participant recruitment, scan protocol, data processing, and M1 delineation. Please refer to the "General Responses" at the beginning of the rebuttal and the first response to Reviewer #2 for more details.

      Previously, the variation in depth-dependent profiles was calculated across upscaled voxels within a specific layer. However, due to the small size of the hand knob region, the number of within-layer voxels was limited, resulting in inaccurate estimations of signal variation. In the revised manuscript, the signal was averaged within each layer before performing the GLM analysis, and signal variation was calculated using the temporal residuals. The technical details of these changes are described in the "Materials and Methods" section. Furthermore, while the initial submission used percentage signal change for the profiles of M1, the dramatic baseline fluctuations observed previously are no longer an issue after the modifications. For this reason, we retained the use of percentage signal change to present the depth-dependent profiles. After these adjustments, the profiles exhibited a bias toward the pial surface, particularly in the absence of VN gradients.

      - In Figure 5, a phase regression is added to the data presented in Figure 4. However, for a phase regression to work, there has to be a (macrovascular) response to start with. As none of the responses in Figure 4 are significant for the single participant dataset, phase regression should probably not have been undertaken. In this case, the functional 'responses' appear to increase with phase regression, which is contra-intuitive and deserves an explanation.

      We agreed with reviewer’s argument. In the revised results, the issues mentioned by the reviewer are largely diminished. The updated analyses demonstrate that phase regression effectively reduces superficial bias, as shown in Figures 4 and 5.

      - Consistency of responses is indeed expected to increase by a removal of the more variable vascular component. However, the microvascular component is always expected to be smaller than the combination of microvascular + macrovascular responses. Note that the use of %signal changes may obscure this effect somewhat because of the modified baseline. Another expected feature of BOLD profiles containing both micro- and microvasculature is the draining towards the cortical surface. In the profiles shown in Figure 7, this is completely absent. In the group data, no significant responses to the task are shown anywhere in the cortical ribbon.

      We agreed with reviewer’s comments. In the revised manuscript, the results have been substantially updated to addressing the concerns raised. The original Figure 7 is no longer relevant and has been removed.

      - Although I'd like to applaud the authors for their ambition with the connectivity analysis, I feel that acquisitions that are so SNR starved as to fail to show a significant response to a motor task should not be used for brain wide directed connectivity analysis.

      We appreciate the reviewer’s comments and share the concern about SNR limitations. In the updated results presented in Figure 5, the activation patterns in the visual cortex were consistent across TEs and b values. At the motor cortex, stable activation in M1 was observed at the single-subject level across most scan protocols. However, the layer-dependent activation profiles in M1 exhibited spatial instability, irrespective of the application of VN gradients. This spatial instability is not entirely unexpected, as T2*-based contrast is inherently sensitive to factors that perturb the magnetic field, such as eye movements, respiration, and macrovascular signal fluctuations. Additionally, ICA-based artifact removal was intentionally omitted in Figure 4 to ensure fair comparisons across protocols, leaving some residual artifacts unaddressed. Variability in task performance during button-pressing sessions may have further contributed to the observed inconsistencies.

      Although these findings suggest that submillimeter-resolution fMRI may not yet be reliable for individual-level layer-dependent functional mapping, the group-level FC analyses can still yield robust results. In Figure 7, group-level statistics revealed distinct functional connectivity (FC) patterns associated with superficial and deep layers in M1. These FC maps exhibited significant differences between layers, demonstrating that VN fMRI enhances inter-layer independence. Additional FC analyses with a seed placed in S1 further validated these findings (see Figure 8).

      The claim of specificity is supported by the observation of the double-peak pattern in the motor cortex, previously shown in multiple non-BOLD studies. However, this same pattern is shown in some of the BOLD weighted data, which seems to suggest that the double-peak pattern is not solely due to the added velocity nulling gradients. In addition, the well-known draining towards the cortical surface is not replicated for the BOLD-weighted data in Figures 3, 4, or 7. This puts some doubt about the data actually having the SNR to draw conclusions about the observed patterns.

      We appreciate the reviewer’s comments. In the updated results, the efficacy of the VN gradients is evident near the pial surface, as shown in Figures 4 and 5. In Figure 4, comparing the second and third columns (b = 0 and b = 6 s/mm<sup>2</sup>, respectively, at TE = 38 ms), the percentage signal change in the superficial layers is generally lower with b = 6 s/mm<sup>2</sup> than with b = 0. This indicates that VN gradient-induced signal suppression is more pronounced in the superficial layers. Additionally, in Figure 5, the VN gradients effectively suppressed macrovascular signals as highlighted by the blue circles. These observations support the role of VN gradients in enhancing specificity by reducing superficial bias and macrovascular contamination. Furthermore, bias towards cortical surface was observed in the updated results in Figure 4.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      (1) L141: "depth dependent" is slightly misleading here. It could be misunderstood to suggest that the authors are assessing how spatial specificity varies as a function of depth. Rather, they are assessing spatial specificity based on depth-dependent responses (double peak feature). Perhaps "layer-dependent spatial specificity" could be substituted with laminar specificity?

      We thank the reviewer for the suggestion. The term “depth dependent” has been replaced by “layer dependent” in the revised manuscript.

      (2) L146-149: these do not validate spatial specificity.

      The original text is removed.

      (3) L180: Maybe helpful to describe what the b-value is to assist unfamiliar readers.

      We have clarified the b-value as “the strength of the bipolar diffusion gradients” where it is first mentioned in the manuscript.

      (4) Figure 1B: I think it would be appropriate with a sentence of how the authors define micro/macrovasculature. Figure 1B seems to suggest that large ascending veins are considered microvascular which I believe is a bit unconventional. Nevertheless, as long as it is clearly stated, it should be fine.

      In our context, macrovasculature refers to vessels that are distal to neural activation sites and contribute to extravascular contamination. These vessels are typically larger in size (e.g., > 0.1 mm in diameter) and exhibit faster flow rates (e.g., > 10 mm/s).

      (5) I think the authors could be more upfront with the point about non-suppressed extravascular effects from macrovasculature, which was briefly mentioned in the discussion. It could already be highlighted in the introduction or theory section.

      We thank the reviewer’s suggestions. We have expanded the discussion of extravascular effects from macrovasculature in both the Introduction (5th paragraph) and Discussion (3rd paragraph) sections.

      (6) The phase regression figure feels a bit misplaced to me. If the authors agree: rather than showing the TE-dependency of the effect of phase regression, it may be more relevant for the present study to compare the conventional setup with phase regression, with the VN setup without phase regression. I.e., to show how the proposed setup compares to existing 3T laminar fMRI studies.

      In this revision, both the TE-dependent and VN-dependent effects of phase regression were investigated. The results in Figure 4 and Figure 5 demonstrated that phase regression effectively suppresses macrovascular contributions primarily near the gray matter/CSF boundary, irrespective of TE or the presence of VN gradients.

      (7) L520: It might be beneficial to also cite the large body of other laminar studies showing the double peak feature to underscore that it is highly robust, which increases its relevance as a test-bed to assess spatial specificity.

      We agreed. More literatures have been cited (Chai et al., 2020; Huber et al., 2017a; Knudsen et al., 2023; Priovoulos et al., 2023).

      (8) L557: The argument that only one participant was assessed to reduce inter-subject variability is hard to buy. If significant variability exists across subjects, this would be highly relevant to the authors and something they would want to capture.

      We thank the reviewer for the suggestions. In this revision, we have increased the number of participants to 4 for protocol development and 14 for resting-state functional connectivity analysis, allowing us to better assess and account for inter-subject variability.

      (9) L637: add download link and version number.

      The download link has been added as requested. The version number is not applicable.

      (10) L638: How was the phase data coil-combined?

      The reconstructed multi-channel data, which were of complex values, were combined using the adaptive combination method (Walsh et al.; DOI: 10.1002/(sici)1522-2594(200005)43:5<682::aid-mrm10>3.0.co;2-g). The MATLAB code for this implementation was developed by Dr. Diego Hernando and is publicly available at https://github.com/welton0411/matlab . The phase data were then extracted using the MATLAB function ‘angle’.

      (11) L639: Why was the smoothing filter parameter changed (other parameters were default)?

      The smoothing filter parameter was set based on the suggestion provided in the help comments of the NIFTI_NORDIC function:

      function  NIFTI_NORDIC(fn_magn_in,fn_phase_in,fn_out,ARG)

      % fMRI

      %

      %  ARG.phase_filter_width=10;

      In other words, we simply followed the recommendation outlined in the NIFTI_NORDIC function’s documentation.

      (12) I assume the phase data was motion corrected after transforming to real and imaginary components and using parameters estimated from magnitude data? Maybe add a few sentences about this.

      Prior to phase regression, the time series of real and imaginary components were subjected to motion correction, followed by phase unwrapping. The phase regression was incorporated early in the data processing pipeline to minimize the discrepancy in data processing between magnitude and phase images (Stanley et al., 2021).

      (13) Was phase regression applied with e.g., a deming model, which accounts for noise on both the x and y variable? In my experience, this makes a huge difference compared with regular OLS.

      We appreciate the reviewer’s insightful comment. We are aware that the noise present in both magnitude and phase data therefore linear Deming regression would be a good fit to phase regression (Stanley et al., 2021). To perform Deming regression, however, the ratio of magnitude error variance to phase error variance must be predefined. In our initial tests, we found that the regression results were sensitive to this ratio. To avoid potential confounding, we opted to use OLS regression for the current analysis. However, we agreed Deming model could enhance the efficacy of phase regression if the ratio could be determined objectively and properly.

      (14) Figure 2: What is error bar reflecting? I don't think the across-voxel error, as also used in Figure 4, is super meaningful as it assumes the same response of all voxels within a layer (might be alright for such a small ROI). Would it be better to e.g. estimate single-trial response magnitude (percent signal change) and assess variability across? Also, it is not obvious to me why b=30 was chosen. The authors argue that larger values may kill signal, but based on this Figure in isolation, b=48 did not have smaller response magnitudes (larger if anything).

      We agreed with the reviewer’s opinion on the across-voxel error. In the revised manuscript, the signal was averaged within each layer before performing the GLM analysis, and signal variation was calculated using the temporal residuals. The technical details of these changes are described in the "Materials and Methods" section.

      Additionally, the bipolar diffusion gradients were modified from a single direction to three orthogonal directions. As a result, the questions and results related to b=30 or b=48 are no longer applicable.

      (15) Figure 5: would be informative to quantify the effect of phase regression over a large ROI and evaluate reduction in macrovascular influence from superficial bias in laminar profiles.

      We appreciate the reviewer’s suggestion. In the revised manuscript, the reduction in macrovascular influence from superficial bias across a large ROI is displayed in Figure 5. Additionally, the impact on laminar profiles is demonstrated in Figure 4.

      (16) L406-408: What kind of robustness?

      We acknowledge that describing the protocol as “robust” was an overstatement. The updated results indicate that the current protocol for submillimeter fMRI may not yet be suitable for reliable individual-level layer-dependent functional mapping. However, group-level functional connectivity (FC) analyses demonstrated clear layer-specific distinctions with VN fMRI, which were not evident in conventional fMRI. These findings highlight the enhanced layer specificity achievable with VN fMRI.

      (17) Figure 8: I think C) needs pointers to superficial, middle, and deep layers? Why is it not in the same format as in Figure 9C? The discussion of the FC results could benefit from more references supporting that these observations are in line with the literature.

      In the revised results, the layer pooling shown in Figure 9c has been removed, making the question regarding format alignment no longer applicable. Additionally, references supporting the FC results have been added to the revised Discussion section (7th paragraph).

      (18) L456-457: But correlation coefficients may also be biased by different CNR across layers.

      That is correct. In the updated FC results in Figure 7 to 9, we used group-level statistics rather than correlation coefficients.

      Reviewer #3 (Recommendations For The Authors):

      The results in Figure 2-6 should be repeated over, or averaged over, a (small) group of participants. N=6 is usual in this field. I would seriously reconsider the multiband acceleration - the acquisition seemingly cannot support the SNR hit.

      A few more specific points are given below:

      (1) Abstract: The sentence about LGN in the abstract came for me out of the blue - why would LGN be important here, it's not even a motor network node? Perhaps the aims of the study should be made more clear - if it's about networks as suggested earlier then a network analysis result would be expected too. Expanding the directed FC findings would improve the logical flow of the abstract. Given the many concerns, removing the connectivity analysis altogether would also be an option.

      We thank the reviewer for the suggestions. The LGN-related results indeed diluted the focus of this study and have been completely removed in this revision.

      (2) Line 105: in addition to the VASO method, ..

      The corresponding text has been revised, and as a result, the reviewer’s suggestion is no longer applicable.

      (3) If out of the set MB 4 / 5 / 6 MB4 was best, why did the authors not continue with a comparison including MB3 and MB2? It seems to me unlikely that the MB4 acquisition is actually optimal.

      Results: We appreciate the reviewer’s suggestions. In this revision, we decreased the MB factor to 3, as it allowed us to increase the in-plane acceleration rate to 3, thereby shortening the TE. The resulting sensitivity for both individual and group-level results is detailed in earlier responses, such as the response to Q16 for Reviewer #2.

      (4) The formatting of the references is occasionally flawed, including first names and/or initials. Please consider using a reliable reference manager.

      We used Zotero as our reference manager in this revision to ensure consistency and accuracy. The references have been formatted according to the APA style.

      (5) In the caption of Figure 5, corrected and uncorrected p values are identical. What multiple comparisons correction was made here? A multiple comparisions over voxels (as is standard) would usually lead to a cut-off ~z=3.2. That would remove most of the 'responses' shown in figure 5.

      We appreciate the reviewer’s comment. The original results presented in Figure 5 have been removed in the revised manuscript, making this comment no longer applicable.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors developed a mathematical model to predict human biological ages using physiological traits. This model provides a way to identify environmental and genetic factors that impact aging and lifespan.

      Strengths:

      (1) The topic addressed by the authors - human age predication using physiological traits - is an extremely interesting, important, and challenging question in the aging field. One of the biggest challenges is the lack of well-controlled data from a large number of humans. However, the authors took this challenge and tried their best to extract useful information from available data.

      Authors thank an anonymous reviewer for agreeing that physiological clock building and analysis is an interesting and important even though challenging task.

      (2) Some of the findings can provide valuable guidelines for future experimental design for human and animal studies. For example, it was found that this mathematical model can best predict age when all different organ and physiological systems are sampled. This finding makes sense in general but can be, and has been, neglected when people use molecular markers to predict age. Most of those studies have used only one molecular trait or different traits from one tissue.

      Authors thank an anonymous reviewer for highlighting the importance of the approach we employ to sample traits for biological age prediction from multiple organs and systems, which ultimately provides more wholistic information

      Weaknesses:

      (1) As I mentioned above, the Biobank data used here are not designed for this current study, so there are many limitations for model development using these data, e.g., missing data points and irrelevant measurements for aging. This is a common caveat for human studies and has been discussed by the authors.

      Thank you for pointing out the caveats. Indeed, most databases and datasets including the UKBB that we use here have missing or inaccurate entries. We do discuss it in the text, as well as suggest and employ strategies to mitigate these caveats. We now updated the text to highlight these issues even further. Specifically, in the second paragraph of the “Results” section, we added the following text: “Most large human databases and datasets, including UKBB, have certain limitations, such as incomplete or missing data points. Therefore, before proceeding to modelling aging, we needed to address the following three issues:”

      (2) There is no validation dataset to verify the proposed model. The authors suggested that human biological age can be predicted with high accuracy using 12 simple physiological measurements. It will be super useful and convincing if another biobank dataset containing those 12 traits can be applied to the current model.

      Thank you for this comment. Indeed, having a replication cohort would be quite valuable. As of today, there is no comparable dataset to verify performance of the clock model or to attempt to validate GWAS results. The closest possible is the NIH-led research program “All Of Us”, which aims to collect data on 1 million people, which unfortunately is not available to for-profit companies. It is theoretically possible to rebuild a clock only using a small number of phenotypes present in both datasets with the goal of training it on one dataset and test-applying it to another, but this won’t ultimately address the accuracy of the wholistic physiological clock presented here. We hope academic labs will utilize our clock-modeling approach and apply it to datasets currently unavailable to us and publish their findings.

      To strengthen the credentials of our biological clock, we would like to remind the reviewer that we performed 10 rounds of validation, where, in each round, 10% of the data were left out from the model training such that the clock was created using remaining 90%. The model was subsequently tested on the 10% that was left out. Over 10 rounds, different 10% of data were left out and statistics for this 10-fold cross-validation age available in the supplementary materials. We have now updated the text to make this validation more apparent.

      Specifically, we added to the "Results” section, “A mathematical model to predict age” subsection, third paragraph, the following text: “Specifically, we performed 10 rounds of cross-validation, where 10% of data were held out and the remaining 90% used for training. Over 10 rounds, different 10% were held out for validation. In each case, the findings were validated in the test set. Full statistics and approach are described in supplementary computational methods.”

      Additionally, the details of this cross-validation are described in detail in supplementary methods.

      Additionally, we compared published GWAS results obtained for human aging clocks using modalities that were different yet relevant to human health. Specifically, we looked at GWAS for “Epigenetic Blood Age Acceleration” (Lu et al., 2018), ML-imaging-based human retinal aging clock (Ahadi et al., 2023), PhenoAgeAcceleration and BioAgeAcceleration (Kuo et al., 2021), and the ∆Age GWAS that we presented in our manuscript. We now describe the results of this comparison in our manuscript. Briefly, there is no overlap between GWAS results for any two of these published clocks built via different modalities – retina, DNA methylation, or physiological functions (between each other or with our model). However, there is a significant genetic overlap (p<10E-8) between clocks built using human phenotypic measures in a cohort of National Health and Nutrition Examination Survey (NHANES) III in the United States (7 variables) and ∆Age from Physiological clock from UKBB that we describe here (121 variables), further validating our approach. It is interesting to consider the reasons why genetic associations for human aging built using different modalities do not appear to have common genetic corelates, something we also now discuss in our manuscript.

      Specifically, we added to the "Results” section, “Genetic loci associated with biological age” subsection, third paragraph, the following text: “Additionally, we compared our ∆Age GWAS association results with similar GWAS studies that were performed for other biological clocks. For example, (McCartney et al., 2021) used DNA methylation data on 40,000 individuals to compute biological age called GrimAge. After that they calculated an intrinsic epigenetic age acceleration (IEAA, a value similar to ∆Age, which measured a deviation of biological age from chronological age) and performed GWAS.” Additionally, we added to the “Discussion” section, “Broader implications of the model for physiological aging” subsection, fourth paragraph, the following text: “To further analyze the meaning of genetic associations with ∆Age that we described above, we compared several published GWAS results obtained for human aging clocks using different health modalities. Specifically, we looked at GWAS for “Epigenetic Blood Age Acceleration” (Lu et al., 2018), ML-imaging-based human retinal aging clock (Ahadi et al., 2023), PhenoAgeAcceleration and BioAgeAcceleration (Kuo et al., 2021), and the ∆Age GWAS we presented in our manuscript. Surprisingly, we discovered that there is no overlap between GWAS results for any two of these clocks built via different modalities – retina, DNA methylation, or physiological functions. However, there is a significant genetic overlap between clocks built using human phenotypic measures and our ∆Age model we describe. For example, the Biological Age Clock Acceleration calculated using HbA1c, Albumin, Cholesterol, FEV, Urea nitrogen, SBP, and Creatinine (Levine, 2013) in a US cohort [from National Health and Nutrition Examination Survey (NHANES)] yielded 16 significant hits in the GWAS analysis, five of which were also significant in our GWAS for UKBB based ∆Age. These five common loci were close to the following genes - APOB, PIK3CG, TRIB1, SMARCA4, and APOE. The significance of this overlap is p < 10<sup>-8</sup>, suggesting that the ∆Age model we propose might be translatable to other cohorts of people.

      An interesting question to consider is why GWAS results from other clock modalities, such as DNA methylation and retinal imaging do not yield any genetic similarities to each other or to physiological and biological clocks. It is possible that these modalities of age assessment depend on completely genetically independent biological processes. For example, in a simplified manner - blood composition might be heavily weighted for DNA methylation, vascular structure for retinal scans, and muscle/bone/kidney health for physiological clocks. Data from model organisms suggest the master regulators of aging exist, and APOE is the best genetic variant known to influence human aging. Interestingly, only the biological and physiological clock models that we propose here pick it up as a hit. Alternatively, it is also possible that the true master regulators of aging rate are under stringent purifying selection; for example, due to an important role in development, and therefore, do not have genetic variability in human populations examined. As such, they could not be identified as hits in any GWAS studies.”

      Reviewer #2 (Public Review):

      In this manuscript, Libert et al. develop a model to predict an individual's age using physiological traits from multiple organ systems. The difference between the predicted biological age and the chronological age -- ∆Age, has an effect equivalent to that of a chronological year on Gompertz mortality risk. By conducting GWAS on ∆Age, the authors identify genetic factors that affect aging and distinguish those associated with age-related diseases. The study also uncovers environmental factors and employs dropout analysis to identify potential biomarkers and drivers for ∆Age. This research not only reveals new factors potentially affecting aging but also shows promise for evaluating therapeutics aimed at prolonging a healthy lifespan. This work represents a significant advancement in data-driven understanding of aging and provides new insights into human aging. Addressing the points raised would enhance its scientific validity and broaden its implications.

      Thank you!

      Major points:

      (1) Enhance the description and clarity of model evaluation.

      The manuscript requires additional details regarding the model's evaluation. The authors have stated "To develop a model that predicts age, we experimented with several algorithms, including simple linear regression, Gradient Boosting Machine (GBM) and Partial Least Squares regression (PLS). The outcomes of these approaches were almost identical". It is currently unclear whether the 'almost identical outcomes' mentioned refer to the similarity in top contribution phenotypes, the accuracy of age prediction, or both. To resolve this ambiguity, it would be beneficial to include specific results and comparisons from each of these models.

      Thank you for this comment. We now describe details of the model selection and provide data on outcome caparisons. Briefly, different approaches have different advantages and limitations; however, we chose one approach, and did not develop and analyze several independent models in parallel in order to not artificially inflate our False Discovery Rate (FDR). However, we now provide rationale and comparative performance of these three approaches. Specifically, we added to the "Results” section, “A mathematical model to predict age” subsection, first paragraph the following text: “Different approaches have different advantages and limitations; however, we decided to choose one approach, and not develop and analyze several independent models in parallel in order to not artificially inflate the False Discovery Rate (FDR). We ultimately selected PLS regression because it enabled us to determine the number and composition of components required to predict age optimally from the data, which provides additional insights into the biology of human aging. But before making this selection, we compared the performance of the three approaches. The outcomes of PLS and linear regression were almost identical (R-squared between ∆Age values derived by these two methods was 0.99, meaning that if one model were to predict an individual was 62 years old, the other model would have the same prediction). This similarity is likely due to the small number of predictors (121 phenotypes) and comparatively large number of participants (over 400,000). The correlation between GBM model outcomes and PLS (and linear regression) was slightly smaller (R-squared = 0.87). The reason for the lower correlation is likely the need for imputation in PLS and linear regression models. The GBM model tolerates missing data, whereas linear regression and PLS methods require imputation or removal of individuals with too many datapoints missing, an approach we describe in more detail below.”

      Additionally, after we obtained associations of ∆Age values with genetical loci, which formed the candidate base for gene targets to influence human aging (figure 5b), we verified the top association obtained via the PLS model in Linear and GBM models. All the top candidates that we verified had statistically significant associations in all the models of ∆Age (CST3, APOE, HLA locus, CPS1, PIK3CG, IGF1). The precise strengths of the associations were different, but that is to be expected given that linear datasets had some data imputed while GBM model was built with missing values. We believe that due to small number of predictors (121) compared to a vastly larger number of individuals (over 400,000), the differences the three models introduced to final outcomes were quite small.

      To convey this message, we added to the "Discussion” section, “Broader implications of the model for physiological aging” subsection, 7th paragraph, the following text: “It is interesting to note that the three approaches we used to generate age prediction model (PLS, GBM, and linear regression) yielded very similar or identical results in performance. We chose to settle on one approach (PLS) to not artificially inflate the False Discovery Rate (FDR); however, we verified that the top genetic loci associations obtained via the PLS model were also obtained in the GBM and linear models. Specifically, the top candidates (CST3, APOE, HLA locus, CPS1, PIK3CG, IGF1) identified in the PLS approach had statistically significant associations in all the models of ∆Age. It is likely that due to the small number of predictors (121) compared to a vastly larger number of individuals (over 400,000), the differences that these models introduce to final outcomes are quite small, which increases our confidence in the results.”

      Furthermore, the authors mention "to test for overfitting, a PLS model had been generated on randomly selected 90% of individuals and tested on the remaining 10% with similar results". To comprehensively assess the model's performance, it is crucial to provide detailed results for both the test and validation datasets. This should at least include metrics such as correlation coefficients and mean squared error for both training and test datasets.

      Thank you for bringing up this point. The detailed description, details and statistics of cross-validation procedure is described in supplementary computational methods. Briefly, across 10 rounds of validation the Root Mean Square Error of Prediction (RMSEP) did not exceed 4.81 for females when all 9 PLS components were considered, and RMSEP form males was 5.1 when all 11 components were considered. The variation of RMSEP between different datasets was less than 0.1. We have now updated the text to make this validation more apparent. Specifically, we added to the "Results” section, “A mathematical model to predict age” subsection, third paragraph the following text: “Specifically, we performed 10 rounds of cross-validation, where 10% of data were held out and the remaining 90% used for training. Over 10 rounds, different 10% were held out for validation. In each case, the findings were validated in the test set. Full statistics and approach are described in supplementary computational methods.”

      (2) External validation and generalization of results

      To enhance the robustness and generalizability of the study's findings, it is crucial to perform external validation using an independent population. Specifically, conducting validation with the participants of the 'All of Us' research program offers a unique opportunity. This diverse and extensive cohort, distinct from the initial study group, will serve as an independent validation set, providing insights into the applicability of the study's conclusions across varied demographics.

      Thank you for this comment. As we mentioned above, we agree that having a replication cohort would be very valuable for this study, as well as many other studies that stem from UKBB dataset. However, yet, there is no comparable dataset to verify performance of the clock or to attempt to validate GWAS results. The closest possible is NIH-led research program “All Of Us”, which aims to collect data on 1 million people, which unfortunately is not available to for-profit companies. It is theoretically possible to rebuild a clock only using the small number of phenotypes present in both datasets with the goal of training it on one dataset and test-applying it to another, but that approach would not ultimately be informative about the accuracy of the complete physiological clock presented here. We hope academic labs will utilize our clock approach and apply it to datasets currently unavailable to us and publish their findings. For the detailed response on this issue, please see the response to the second comment of the first reviewer above.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Specific questions/suggestions:<br /> - It looks like the ages of participants are enriched around 60 years (Fig. 1, Fig 3b). Can authors clarify whether age distribution affects the correlation tests (e.g. correlation in Fig 2)?

      Indeed, the distribution of people by age is enriched by 60–65-year-olds and is depleted at younger and older ages. Such a distribution influences the uncertainty of correlations that we compute, with error bars being larger for 40- and 70-year-olds and lower for 50- and 60-year-olds. The example of this can be seen on figure 1F. Figures 2a,b,g,h mostly deal with the correlation of phenotypes with each other and thus are not influenced by age. For other computations, such age prediction, it is theoretically possible that if age determinants among 65-year-olds differ from those for 40- or 80-year-olds, the calculated contributions would be skewed to increase accuracy in the middle of distribution at the expense of the ends. ∆Age, however, was explicitly normalized for each age cohort (Fig. 3a) to avoid “birth cohort” bias, therefore minimizing the effect of uneven distribution on further analysis, such as GWAS. We now acknowledge and describe this feature of UKBB dataset in the first paragraph of the “Results” section.

      - Phenotypic variation usually increases during aging. However, the authors showed that delta-age and age are not correlated (Figure 3a), suggesting that biological variation does not increase during aging in their analysis. Can authors provide more evidence supporting their findings? Is this phenomenon affected by their normalization method?

      Thank you for this comment. We find that there is no strict rule for phenotypic variation change with age. Certain phenotypes, such as blood pressure (Fig. 1a) or SHGB (Fig. 1d), indeed increase in variation with advanced age, however many others, such as grip strength (Fig. 1b) and BMI do not change in variation, and certain phenotypes even decrease their variation with age. As we stated above, in order to minimize the possible effect of “birth cohort” bias on subsequent analysis, as well as uneven distribution of people across ages, ∆Age was normalized per age cohort. Additionally, purifying selection likely also limits how far most physiological factors can deviate. For example, people with too high or too low blood pressures would simply perish, which would limit continuous increase in variation. 

      - Authors correlate GWAS data with delta-age (Figure 4). It would be important to show whether the delta-age from young and old participants correlates with GWAS patterns in a similar manner. If not, the authors have to consider how age differences affect delta-age and the GWAS correlation. For example, the authors mentioned that APOE genotype influences age-delta even in the 40-year-old group (Figure 4f). If the APOE genotype already shows high delta-age in the 40-year-old group, how does aging affect the delta-age distribution?

      Thank you for this comment. It is an interesting question to understand how age influences GWAS hits identified through ∆Age. At the same time, one must remember that our dataset is cross-sectional in nature and “different age” in reality is a subset of different people, which lived in different times with different exposures to environments and different standards of medical care (which are evolving over time). We specifically attempted to factor age and this “cohort effect” out of our analysis and presented Figure 4f simply as an illustration that APOE variants seem to influence human aging at any age, which challenges the theory proposed by previous studies that APOE is implicated in aging simply because APOE4 carriers likely die from Alzheimer disease and are thus excluded from the oldest cohorts. To investigate the question raised by the reviewer it is possible to do GWAS on age, however one must keep in mind the limitations associated with interpreting those results; as “age” in reality (in this cross-sectional cohort) also represents changes in population composition, changes in the environment, food quality, early life care, medical care, social habits, and other parameters associated with changing society.

      - For the discussion part, it would be great if the authors could add one section to provide guidelines for future human and lab animal studies based on observations from the current study. For example, what physiological traits are most useful, and what can be further added when collecting human data?

      Thank you for the great suggestion. We now propose and discuss certain experiments that can be performed in humans and animals to better differentiate between drivers and markers of aging.

      - In line 479, I found the statement "It is possible that synapse function accounts for the association of computer gaming with ΔAge" came from nowhere, and suggest removing it.

      Done—thank you.

      - Minor. Line 155. Is it a wrong citation of table S2c, 2d as there are only 2a and 2b?<br />

      Thank you, corrected.

      Reviewer #2 (Recommendations For The Authors):

      (1) Between lines 300-305, there is a missing reference to Figure 3e.

      Thank you, corrected.

      (2) For Figures 4a and 4c, please add the lambda statistic to the QQ plots.

      Thank you, we have added lambda inflation factors to the QQ plots.

      (3) In line 384, the p-value cut-off is mentioned as 10-9. However, this does not seem to be consistently represented in Figures 4b and 4d, where the gray lines do not align with this threshold. Please adjust these figures to accurately reflect the mentioned p-value cut-off.

      Thank you, corrected.

      (4) Clarification for Figure 5a. Add titles and correlation coefficients to Figure 5a to clearly define what the clusters represent. Please also add a discussion to explain why the cluster 10 (general health) dropout model can affect ∆Age compared to the full model, with some individuals showing a 5-year difference. Furthermore, despite the substantial effect of removing cluster 10 on ΔAge, all the top loci remain unchanged in terms of effect sizes and p-values compared to the full model.

      We have added the titles and correlation coefficients to the Figure 5a. Thank you for these suggestions, it makes the presentation of data much clearer. It is an interesting observation that whereas dropping out cluster 10 resulted in quite significant changes of ∆Age distribution, the genetic signature as determined by GWAS did not change much. The most obvious explanation is that many parameters in this category are influenced by environment more than by genetics, therefore genetic signature did not change much after the cluster removal. We now mention this observation in the text. Specifically, in the subsection “Cluster-dropout analysis enriches for GWAS hits that influence aging globally”, we added the following text: “Another interesting observation is that degree by which certain cluster contributes to the model does not necessarily correlate with how much this cluster contributes to genetic signature of human aging. For example, while dropping out cluster 10 (General Health) resulted in quite significant changes of ∆Age distribution (R<sup>2</sup>=0.88), the genetic signature as determined by GWAS did not change substantially. The most likely explanation is that many parameters in this category are influenced by environment more strongly than by genetics; for example, not as much as caused by cluster 1 (muscle-related) removal.”

      (5) Discussion on drivers and markers. Given the theoretical nature of the study, it would be beneficial to propose potential experimental validations for your findings. Even if these validations have not been performed, suggesting them would greatly enhance the value of the discussion.

      Thank you, it is a great idea. We now propose and discuss certain experiments that can be performed in humans and animals to better differentiate between drivers and markers of aging. Specifically, in the subsection “Cluster-dropout analysis enriches for GWAS hits that influence aging globally”, we added the following text: “To definitively distinguish whether a gene is a driver or a marker of aging, an experiment would need to be performed. It is possible that certain gene activities are influenced by existing FDA-approved medications, and retrospective analyses of human cohorts who take certain medications can be performed. More likely, however, an animal model would need to be employed, where animals with candidate genes modified via genetic means are investigated for lifespan and onset and progression of age-associated conditions. For example, one can engineer a mouse with a conditional allele of Cystatin-C and evaluate how changes in dosage of this protein influence various phenotypes of aging.”

    1. Author response:

      Reviewing editor comments:

      Overall, the reviewers found the imaging data to be strong but identified the physiology experiments as the weakest aspect of the study. Please consider either removing Figures 7 and 8 from the manuscript or significantly revising the data. If you choose to revise these figures, refer to the specific reviewer comments addressing them. Additionally, several reviewers noted that the prior literature was not adequately cited, so please consider addressing this concern.

      As noted below, we will work to strengthen the physiological side of the study and ensure that we are more scrupulous in citing the prior literature. Below we summarize the major concerns of each reviewer and outline our proposed response.

      Reviewer #1:

      (1) Sex differences and generalizability

      Various studies have shown sex differences in emotional responses and neural activity in mice, but to study both male and female mice would have required much larger numbers of mice than we could accommodate for practical reasons, so we chose to use only female mice to lay a solid foundation for future studies that compare (and perhaps contrast) males.

      We will:

      Make clear in the main text that we used only females.

      Cite literature on sex-specific mPFC-BLA/NAc functions in the Discussion.

      (2) Missing link between behavioral states and "emotional states"...relevant readouts such as cortisol

      We appreciate the reviewer pointing out this inadvertent conceptual slippage. We will:

      Include corticosterone measurements using an ELISA kit from archived plasma samples (collected before and after OFT/EPM tests) to correlate with behavioral and neural activity (approach refers to Panczyszyn-Trzewik et al., Steroids, 2024).

      Be more precise in our language to differentiate behavioral correlates from inferred emotional states.

      Carefully review the literature on OFT center time, EPM open-arm exploration, and tube test outcomes as anxiety/social hierarchy indicators and decide the best interpretation for our findings.

      (3) Improve methodological detail and rigor of population-level analysis

      We will:

      Expand the methods section with electrophysiology parameters (e.g., access resistance criteria, stimulus protocols).

      Add detailed histology figures (viral targeting, electrode placements) for mPFC-BLA/NAc projections.

      Include raw data points in all plots and report exact p-values, effect sizes, and group sizes (e.g., n = 12 cells from 4 mice).

      To enhance statistical rigor, we will provide clearer scatter plots with individual data points, report exact p-values, and specify group sizes in all figures.

      (4) Acute vs. sustained effects after tube test and additional controls

      We would like to clarify that we used repeated tube tests (3 times a day and continuing for 7 days) for assessing sustained rank effects. To address concerns about sustained emotional state changes post-tube test, we will:

      Assess corticosterone levels pre/post-tube test (approach refers to Panczyszyn-Trzewik et al., Steroids, 2024).

      Discuss the transient nature of hierarchy effects and cite studies using repeated tube tests for sustained rank effects.

      Reviewer #2:

      (1) Sub-region targeting in BLA/NAc

      Although different subregions within the BLA and NAc receive distinct inputs and exhibit diverse functions, comparing neuronal activity across these subregions is beyond the scope of this paper. Our primary focus is on mPFC projections, emphasizing presynaptic activity rather than postsynaptic activity within the NAc and BLA. We focused on the PL-NAc shell and PL-BLA (BA) regions because PL-to-NAc shell projections in mice are well-documented, particularly in studies utilizing viral tracers and optogenetic tools (Britt et al., Neuron, 2012; Bossert et al., J. Neurosci., 2012). These projections regulate aversive behaviors, stress responses, and motivational states and are implicated in drug-seeking behaviors and emotional valence encoding (Jocelyn & Berridge, Biol. Psychiatry, 2013; Fetcho et al., Nat. Commun., 2023; Capuzzo & Floresco, J. Neurosci., 2020; Xie et al., BioRxiv., 2025; Domingues et al., Nat Commun., 2025). The PL-BLA projection in turn sends topographically organized projections to BLA subregions, primarily targeting the basal (BA) nuclei of the BLA (McGarry & Carter, J. Neurosci., 2016; Hoover & Vertes, Brain Struct. Funct., 2007). Both the recorded NAc shell and BLA subregions are involved in emotional valence encoding.

      A detailed comparison of neuronal activity across different NAc shell and BLA subregions or comparing different cell types, such as NAc shell D1- and D2-medium spiny neurons, could each be the subject of a whole other study. Nevertheless,

      We will discuss how sub-region connectivity could contribute to observed heterogeneity in the discussion, citing relevant studies, and make sure we clarify our rationale for our experimental design.

      (2) Electrophysiological confounds

      To strengthen the rationale for our patch-clamp recordings, we will:

      Clarify in methods that recordings were performed in acute slices from behaviorally naive mice (post-tube test) to isolate synaptic changes.

      Include access resistance and cell health criteria (e.g., resting membrane potential, input resistance ranges), along with precise optogenetic stimulus protocols.

      Add example traces of mEPSCs/mIPSCs and quantify exclusion rates.

      Reviewer #3:

      (1) Specify the sexes used throughout the manuscript.

      We will make this clear throughout the paper.

      (2) Exclusion of mice lacking "center-ON" neurons

      We will:

      Explain the exclusion of mice that lacked center-ON neurons. We will also discuss the potential interpretations (e.g., floor effects in anxiety tasks) in the limitations section.

      (3) Baseline activity comparisons

      We will:

      Add baseline neuronal activity comparison between mPFC-BLA and mPFC-NAc neurons.

      (4) Stress from repeated behavioral testing

      We will:

      Clarify our experimental design to state how we tried to minimize the stress caused by multiple behavioral assays.

      Include pre-test habituation protocols in methods.

      Discuss potential cumulative stress effects in limitations.

      (5) Grooming classification

      While the reviewer is correct that grooming can be a stress-relieving behavior, it also obviously has many other functions, from the pragmatic to the social. In our study grooming occurred primarily in the periphery of the open field test, where it was exhibited as a behavior corresponding to neural activity patterns that differed from that which occurred in the center. As we classify the behavior in the center zone of the open field test as anxiety-like, we interpreted the peripheral grooming as indicative of the animal's adjustment to a novel environment, as suggested by previous work (Estanislau et al., Neurosci. Res., 2013; Rojas-Carvajal et al., Animal Behaviour, 2018). The nature of the grooming was primarily rostral body-licking, which accords with what Rojas-Carvajal et al. calls a “de-arousal inhibition system” that subserves novelty habituation. The duration and nature of this behavior are, interestingly enough, influenced by whether the mouse or rat lived in an enriched environment prior to the OFT (enriched environments made them quicker to explore a new environment but also quicker to get bored - no surprise, really).

      We did not explain any of this in the manuscript, however, so in our revision, we will make sure to discuss these nuances and cite the relevant literature.

      (6) Integrate neuronal activity and behavioral data

      We will:

      Include additional analyses quantifying neuronal activity overlap across tasks and refine our Discussion to better integrate these findings with prior literature.

      Perform cross-correlation analyses to quantify activity overlap between OFT, EPM, and SI tasks.

      Minor weaknesses

      - Clarify the cohorts of mice that were used for each behavioral assay.

      - Adjust Figure 2G scale and add insets to highlight sniffing differences.

      - Specify that M1/M2 were age-/sex-matched unfamiliar mice in the three-chamber test.

      - Detail statistical tests (e.g., mixed-effects models) and animal selection criteria in methods.

      We believe these revisions will address the reviewers’ major concerns and significantly improve the manuscript. We welcome further feedback on these plans and will provide updated figures/data for the resubmission.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors in this study extensively investigate how telomere length (TL) regulates hTERT expression via non-telomeric binding of the telomere-associated protein TRF2. They conclusively show that TRF2 binding to long telomeres results in a reduction in its binding to the hTERT promoter. In contrast, short telomeres restore TRF2 binding in the hTERT promoter, recruiting repressor complexes like PRC2, and suppressing hTERT expression. The study presents several significant findings revealing a previously unknown mechanism of hTERT regulation by TRF2 in a TL-dependent manner

      Strengths:

      (1) A previously unknown mechanism linking telomere length and hTERT regulation through the non-telomeric TRF2 protein has been established strengthening the telomere biology understanding.

      (2) The authors used both cancer cell lines and iPSCs to showcase their hypothesis and multiple parameters to validate the role of TRF2 in hTERT regulation.

      (3) Comprehensive integration of the recent literature findings and implementation in the current study.

      (4) In vivo validation of the findings.

      (5) Rigorous controls and well-designed assays have been use.

      Weaknesses:

      (1) The authors should comment on the cell proliferation and morphology of the engineered cell lines with ST or LT.

      The cell proliferation and morphology of the engineered cells were monitored during experiments. With a doubling time within 16-18 hours, all the cancer cell line pairs used in the study were counted and seeded equally before experiments.

      No significant difference in morphology or cell count (before harvesting for experiments) was noted for the stable cell lines, namely, HT1080 ST-HT1080 LT, HCT116 p53 null scrambled control-HCT116 p53 null hTERC knockdown.

      MDAMB 231 cells which were treated with guanine-rich telomere repeats (GTR) over a period of 12 days, as per the protocol mentioned in Methods. Due to the alternate day of GTR treatment in serum-free media followed by replenishment with serum-supplemented media, we noted that cells would undergo periodic delay in their proliferation (or transient arrest) aligning with the GTR oligo-feeding cycles and appeared somewhat larger in comparison to their parental untreated cells.

      Next, the cells with Cas9-telomeric sgRNA mediated telomere trimming were maintained transiently (till 3 days after transfection). During this time, no significant change in morphology or cell proliferation was observed in any of the cell lines, namely HCT116 or HEK293T Gaussia Luciferase reporter cells. iPSCs were also monitored. However, no change in morphology or cellular proliferation was observed during the 5 days post-transfection and antibiotic selection.  

      (2) Also, the entire study uses engineered cell lines, with artificially elongated or shortened telomeres that conclusively demonstrate the role of hTERT regulation by TRF2 in telomere-length dependent manner, but using ALT negative cell lines with naturally short telomere length vs those with long telomeres will give better perspective. Primary cells can also be used in this context.

      The reviewer correctly highlights (as we also acknowledge in the Discussion) that our study primarily utilizes engineered cell lines with artificially elongated or shortened telomeres. We agree that using ALT-negative cells with naturally short versus long telomeres would provide additional perspective in testing our hypothesis. However, a key challenge in this experimental setup is the inherent variation in TRF2 protein levels among these cell types—a parameter central to our hypothesis. Comparing observations across such non-isogenic cell line pairs would require extensive normalization for multiple factors and could introduce additional complexities, potentially raising more questions among scientific readers.

      We had also explored primary cells, specifically foreskin fibroblasts and MRC5 lung fibroblasts, as suggested by the reviewer. However, we encountered two significant challenges. To achieve a notable telomere length difference of at least 20%, these primary cells had to undergo a minimum of 25 passages. During this period, we observed a substantial decline in their proliferation capacity and an increased tendency toward replicative senescence. Additionally, we noted a significant reduction in TRF2 protein levels as the primary cells aged, consistent with findings from Fujita K et al., 2010 (Nat Cell Biol.), which reported p53-induced, Siah-1-mediated proteasomal degradation of TRF2. Due to these practical limitations, we focused on cancerous cell lines with an isogenic background, ensuring a controlled experimental framework. This, in turn, opens new avenues for future research to explore broader implications. Investigating other primary cell types that may not present these challenges could be a valuable direction for future studies.

      (3) The authors set up time-dependent telomere length changes by dox induction, which may differ from the gradual telomere attrition or elongation that occurs naturally during aging, disease progression, or therapy. This aspect should be explored.

      In this study, we utilized a Doxycycline-inducible hTERT expression system to modulate telomere length in cancer cells, aiming to capture any gradual changes that might occur upon steady telomerase induction or overexpression—an event frequently observed in cancer progression. We monitored telomere length and telomerase activity at regular intervals (Supplementary Figure 2), noting a gradual increase until a characteristic threshold was reached, followed by a reversal to the initial telomere length.

      While this model provides interesting insights in context of cancer cells, it does not replicate the conditions of aging or therapeutic intervention. We agree that exploring telomere length-dependent regulation of hTERT in normal aging cells is an important avenue for future research. Investigating TRF2 occupancy on the hTERT promoter in response to telomere length alterations through therapeutic interventions—such as telomestatin or imetelstat (telomerase inhibitors) and 6-thio-2’-deoxyguanosine (telomere damage inducer)—would provide valuable insights and warrants further exploration.

      (4) How does the hTERT regulation by TRF2 in a TL-dependent manner affect the ETS binding on hTERT mutant promoter sites?

      In our previous study (Sharma et al., 2021, Cell Reports), we have experimentally demonstrated that GABPA and TRF2 do not compete for binding at the mutant hTERT promoter (Figure 4M-R). Silencing GABPA in various mutant hTERT promoter cells did not increase TRF2 binding. While GABPA has been reported to show increased binding at the mutant promoter compared to the wild-type (Bell et al., 2015, Science), no telomere length (TL) sensitivity has been noted yet. This manuscript shows that telomere alterations in hTERT mutant cells do not significantly increase TRF2 occupancy at the promoter, reinforcing our earlier findings that G-quadruplex formation is crucial for TRF2 recruitment. Since TRF2 binding does not increase significantly at the mutant promoter and does not compete with GABPA, TL-sensitive TRF2 binding is unlikely to directly influence ETS binding by GABPA. Hence, increased GABPA binding to the mutant promoter as reported in the literature, remains independent of TL-sensitive TRF2 binding. However, an experimental demonstration of the above observation-based speculation would be ideal to answer the query in the future.

      (5) Stabilization of the G-quadruplex structures in ST and LT conditions along with the G4 disruption experimentation (demonstrated by the authors) will strengthen the hypothesis.

      We agree with the reviewer’s suggestion that stabilizing G-quadruplex (G4) structures in mutant promoter cells under ST and LT conditions would further strengthen our hypothesis. From our ChIP experiments on hTERT promoter mutant cells following G4 stabilization with ligands, as reported in Sharma et al. 2021 (Figure 5G), we observed that TRF2 occupancy was regained in the telomere-length unaltered versions of -124G>A and -146G>A HEK293T Gaussia luciferase cells (referred to as LT cells in the current manuscript).

      Based on these published findings, we anticipate a similar restoration of TRF2 binding in the short telomere (ST) versions, given the increased availability of TRF2 protein molecules, as proposed in our Telomere Sequestration Partitioning model.

      (6) The telomere length and the telomerase activity are not very consistent (Figure 2A, and S1A, Figure 4B and S3). Please comment.

      In this study, we employed both telomerase-dependent and independent methods for telomere elongation.

      HT1080 model: Telomere elongation resulted from constitutive overexpression of hTERC and hTERT, leading to a direct correlation with telomerase activity.

      HCT116 (p53-null) model: hTERC silencing in ST cells, a known limiting factor for telomerase activity, resulted in significantly lower telomerase activity and a 1.5-fold telomere length difference.

      MDAMB231 model: Guanine-rich telomeric repeat (GTR) feeding induced telomere elongation through recombinatorial mechanisms (Wright et al., 1996), leading to significant telomere length gain but no notable change in telomerase activity.

      HCT116 Cas9-telomeric sgRNA model: Telomere shortening occurred without modifying telomerase components, resulting in a minor, insignificant increase in telomerase activity (Figure 2A, S1).

      Regarding xenograft-derived HT1080 ST and LT cells (Figure 4B, S3), the observed variability in telomere length and telomerase activity may stem from infiltrating mouse cells, which naturally have longer telomeres and higher telomerase activity than human cells. Since in the reported assay tumour masses were not sorted to exclude mouse cells, using species-specific markers or fluorescently labelled HT1080 cells in future experiments would minimize bias. However, even though telomere length and telomerase activity assays cannot differentiate for cross-species differences, mRNA analysis and ChIP experiments performed specifically for hTERT and hTERC mRNA levels, TRF2 occupancy, and H3K27me3 enrichment on hTERT promoter (Figure 4B–E) strongly support our conclusions.

      (7) Please comment on the other telomere-associated proteins or regulatory pathways that might contribute to hTERT expression based on telomere length.

      The current study provides experimental evidence that TRF2, a well-characterized telomere-binding protein, mediates crosstalk between telomeres and the regulatory region of the hTERT gene in a telomere length-dependent manner. Given the observed link between hTERT expression and telomere length, it is likely that additional telomere-associated proteins and regulatory pathways contribute to this regulation.

      The remaining shelterin complex components—POT1, hRap1, TRF1, TIN2, and TPP1—may play crucial roles in this context, as they are integral to telomere maintenance and protection. Additionally, several DNA damage response (DDR) proteins, which interact with telomere-binding factors and help preserve telomere integrity, could potentially influence hTERT regulation in a telomere length-dependent manner. However, direct interactions or regulatory roles would require further experimental validation. Another group of proteins with potential relevance in this mechanism are the sirtuins, which directly associate with telomeres and are known to positively regulate telomere length, undergoing repression upon telomere shortening. Notably, SIRT1 has been reported to interact with telomerase (Lee SE et al., 2024, Biochem Biophys Res Commun.), while SIRT6 has been implicated in TRF2 degradation and telomerase activation. Given their roles in telomere homeostasis, sirtuins may serve as key mediators of telomere length-dependent hTERT regulation.

      Beyond protein-mediated mechanisms like the Telomere Sequestration partitioning model, telomere length-dependent regulation of hTERT may also involve chromatin architecture. The Telomere Position Effect—Over Long Distances (TPE-OLD), a phenomenon whereby telomere conformation influences gene expression at distant loci, has been reviewed extensively (Kim et al., 2018, Differentiation).

      Reviewer #2 (Public review):

      Summary:

      Telomeres are key genomic structures linked to everything from aging to cancer. These key structures at the end of chromosomes protect them from degradation during replication and rely on a complex made up of human telomerase RNA gene (hTERC) and human telomerase reverse transcriptase (hTERT). While hTERC is expressed in all cells, the amount of hTERT is tightly controlled. The main hypothesis being tested is whether telomere length itself could regulate the hTERT enzyme. The authors conducted several experiments with different methods to alter telomere length and measured the binding of key regulatory proteins to this gene. It was generally observed that the shortening of telomere length leads to the recruitment of factors that reduce hTERT expression and lengthening of telomeres has the opposite effect. To rule out direct chromatin looping between telomeres and hTERT as driving this effect artificial constructs were designed and inserted a significant distance away and similar results were obtained.

      Overall, the claims of telomere length-dependent regulation of hTERT are supported throughout the manuscript.

      Strengths:

      The paper has several important strengths. Firstly, it uses several methods and cell lines that consistently demonstrate the same directionality of the findings. Secondly, it builds on established findings in the field but still demonstrates how this mechanism is separate from that which has been observed. Specifically, designing and implementing luciferase assays in the CCR5 locus supports that direct chromatin looping isn't necessary to drive this effect with TRF2 binding. Another strength of this paper is that it has been built on a variety of other studies that have established principles such as G4-DNA in the hTERT locus and TRF2 binding to these G4 sites.

      Weaknesses:

      The largest technical weakness of the paper is that minimal replicates are used for each experiment. I understand that these kinds of experiments are quite costly, and many of the effects are quite large, however, experiments such as the flow cytometry or the IPSC telomere length and activity assays appear to be based on a single sample, and several are based upon two maximum three biological replicates. If samples were added the main effects would likely hold, and many of the assays using GAPDH as a control would result in significant differences between the groups. This unnecessarily weakens the strength of the claims.

      We appreciate the reviewer’s recognition of the resource-intensive nature of our experiments, and we are confident in the robustness of the observed results. Due to the project’s timeline constraints and the need for consistency across experiments, we have reported findings based on 3 biological replicates with appropriate statistical analysis.

      Regarding the fibroblast-iPSC model, we would like to clarify that we have presented data from two independent biological replicates, each consisting of a fibroblast and its derived iPS cell pair, rather than a single sample. Additionally, the Tel-FACS assay involved analyzing at least 10,000 events, ensuring statistical significance in all cases. Alongside this, we also conducted qRT-PCR-based telomere length determination assays. While both assays were performed, we chose to report the more sensitive Tel-FACS data in the manuscript to provide a clearer representation of the results.

      Another detail that weakens the confidence in the claims is that throughout the manuscript there are several examples of the control group with zero variance between any of the samples: e.g. Figure 2K, Figure 3N, and Figure 6G. It is my understanding that a delta delta method has been used for calculation (though no exact formula is reported and would assist in understanding). If this is the case, then an average of the control group would be used to calculate that fold change and variance would exist in the group. The only way I could understand those control group samples always set to 1 is if a tube of cells was divided into conditions and therefore normalized to the control group in each case. A clearer description in the figure legend and methods would be required if this is what was done and repeated measures ANOVA and other statistics should accompany this.

      We thank the reviewer for their valuable feedback. In response to the comment about the control group and error calculation, we would like to clarify our approach. In our previous analysis, we set the control group (Day 0) as 1 to calculate the fold change and did not include error bars, as there was no variation in the control group (since all values were normalized to 1). However, as per the reviewer’s suggestion, we will now include error bars on the Day 0 control group. These error bars will be calculated based on the standard deviation (SD) of the Ct values across the biological replicates for the control group. For the Day 10 and Day 24 time points, we retain the error bars that reflect the variance in fold change across replicates, as originally reported.

      This adjustment would allow for a clearer representation of the data and variance in the control group. We believe this addresses the reviewer’s concerns about the error calculation, and we shall update the figure legend and methods to reflect these changes. Statistical analysis, including ANOVA, was already applied as indicated in the figure.

      A final technical weakness of the paper is the data in Figure 5 where the modified hTERT promoter was inserted upstream of the luciferase gene. Specifically, it is unclear why data was not directly compared between the constructs that could and could not form G4s to make this point. For this reason, the large variance in several samples, and minimal biological replicates, this data was the least convincing in the manuscript (though other papers from this laboratory and others support the claim, it is not convincing standalone data).

      We appreciate the reviewer's thoughtful feedback on the presentation of the luciferase assay data in Figure 5. The data for the wild-type hTERT promoter (capable of forming G4 structures) was previously reported in Figure 2G-K. To avoid redundancy in data presentation, we initially chose to report the results of the mutated promoter separately. However, we recognize that directly comparing the wild-type and mutated promoter constructs within the same figure would provide clearer context and strengthen the interpretation of the results. In light of this, we will revise Figure 5 in the updated manuscript to include the data for both constructs, ensuring a more comprehensive and informative comparison.

      The second largest weakness of the paper is formatting.

      When I initially read the paper without a careful reading of the methods, I thought that the authors did not have appropriate controls meaning that if a method is applied to lengthen, there should be one that is not lengthened, and when a method is applied to shorten, one which is not shortened should be analysed as well. In fact, this is what the authors have done with isogenic controls. However, by describing all samples as either telomere short or telomere long, while this simplifies the writing and the colour scheme, it makes it less clear that each experiment is performed relative to an unmodified. I would suggest putting the isogenic control in one colour, the artificially shortened in another, and the artificially lengthened in another.

      Similarly, the graphs, in general, should be consistent with labelling. Figure 2 was the most confusing. I would suggest one dotted line with cell lines above it, and then the method of either elongation or shortening below it. I.e. HT1080 above, hTERC overexpression below, MDAMB-231 above guanine terminal repeats below, like was done on the right. Figure 2 readability would also be improved by putting hTERT promoter GAPDH (-ve control) under each graph that uses this (Panel B and Panel C not just Panel C). All information is contained in the manuscript but one must currently flip between figure legends, methods, and figures to understand what was done and this reduces clarity for the reader.

      We sincerely thank the reviewer for their constructive feedback on the formatting and clarity of the figures. We appreciate the time and effort taken to suggest ways to enhance the visual presentation and readability of the manuscript. We agree that clearer differentiation of the experimental groups would help avoid confusion, and we will consider ways to improve the visual organization, as much as possible. Additionally, we will work on restructuring the graphs for greater consistency in labeling and alignment, especially in Figure 2, to improve readability and reduce the need for cross-referencing between the figures, figure legends, and methods section. We will also ensure the hTERT promoter GAPDH (-ve control) label appears under all relevant graphs for consistency. We will make revisions to the figures in line with these suggestions to improve the overall clarity and flow of the manuscript, as much as possible.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This study provides valuable and comprehensive information about the SARS-CoV-2 seroprevalence during 2021 and 2022 in different regions of Bolivia. Moreover, data on immune responses against the SARS-CoV-2 variants based on neutralization tests denotes the presence of several virus variants circulating in the Bolivian population. Evidence for seroprevalence data provided by the authors is solid, across the study period, while data regarding variant circulation is limited to the early stages of the pandemic.

      Strengths:

      The major strength of this study is that it provided nationwide seroprevalence estimates from infection and/or vaccination based on antibodies against both spike and the nucleocapsid protein in a large representative sample of sera collected at two time-points from all departments of Bolivia, gaining insight into COVID-19 epidemiology. On the other hand, data from virus neutralization assays inferred the circulation during the study period of four SARS-CoV-2 variants in the population. Overall, the study results provide an overview of the level of viral transmission and vaccination and insights into the spread across the country of SARS-CoV-2 variants.

      Weaknesses:

      The assessment of a Lambda variant that circulated in several neighboring countries (Peru, Chile, and Argentina), which had a significant impact on the COVID-19 pandemic in the region, may have strengthened the study to contrast Gamma spread. In addition, even though neutralizing antibodies can certainly reveal previous infections of SARSCOV2 variants in the population, it is of limited value to infer from this information some potential timing estimates of specific variant circulation, considering the heterogeneous effects that past infections, vaccinations, or a combination of both could have on the level of variant-specific neutralizing antibodies and/or their cross-neutralization capacity.

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      The conclusions of this paper are well supported by data, particularly regarding seroprevalence that reliably reflects the epidemiology of COVID-19 in Bolivia, and seroprevalence trends in other low- and middle-income countries.

      A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community:

      Since this is the first study that has been conducted to assess indicators of immunity against SARSCoV-2 in the population of Bolivia at a nationwide scale, seroprevalence data provided by geographic regions at two time-points can be useful as a reference for potential retrospective global metaanalysis and further explore and compare the risk factors for infection, variant distribution, and the impact on infection and vaccination, gaining deeper insights into understanding the evolution of the COVID-19 pandemic in Bolivia and in the region.

      Reviewer #2 (Public Review):

      Significance of the findings:

      In this study, blood donors were assessed using serology and viral neutralization assays to determine the prevalence of SARS-CoV-2 antibodies. S1 and NCP antibodies were used to distinguish between vaccination and natural infection and virus-specific neut titers were used to determine which variants the antibodies respond to. The study reports almost universal antibody prevalence and increases in antibodies against specific variants at different points corresponding to circulating variants identified phylogenetically in neighbouring countries. The authors propose this approach for settings like Bolivia where genetic sequencing is not readily available. Unfortunately, there are significant limitations to this approach that limit its utility - serological data are available after the fact in a fast-moving pandemic and so are a poor alternative to phylogenetic data. Rather, serological information can supplement phylogenetic data and is most useful in estimating population-level immunity.

      (1) Considerations in interpreting the results:

      We appreciate the reviewer's valuable feedback, which will certainly enhance the quality of our manuscript. As a result, we have revised the text to address their suggestions as thoroughly as possible.

      a. Serology provides different information to phylogenetic sequencing of the viruses and so both are important. Viral sequencing provides real-time information on circulating variants and indicates the proportion of each variant in circulation at any point as there are almost always multiple variants spreading but it is the fastest spreading variant that comes to dominate. Importantly serology measures asymptomatic infections as well, providing population estimates of infection that are not available through viral gene sequencing.

      We underscored this point in the introduction by incorporating the following sentences:

      “Seroprevalence studies are a valuable adjunct to active surveillance because they allow analysis of the level of immunity of a population to a specific pathogen without the need for prospective testing, and also provide information on the frequency of cases that do not attract medical attention (asymptomatic infections)(4).” and “To date, the circulation of SARS-CoV-2 variants has mainly been studied through molecular surveillance, giving the proportion of circulating variants in real time. Therefore, genomic surveillance and serology offer distinct yet complementary insights thus far.”

      b. A major concern in the interpretation of serology is that antibody titers vary markedly over time with rapid declines in the first year post-infection or post-vaccination. However, these declines vary depending on whether hybrid immunity is present. Disentangling this retrospectively is a challenge. A low antibody titer could reflect an infection that occurred a few months ago but may be below the threshold for positivity at the time of testing. There is also substantial individual variability in antibody responses.

      This limitation merits emphasis and has consequently been elaborated upon in the discussion section:

      “Secondly, our results are based on serological data and may not be strictly identical to the genomic data from a quantitative point of view, although they are likely to reflect similar trends and distributions (see below). The results could also be influenced by various factors, including significant individual variation in antibody responses, as well as the decline in antibody titers during the first months following infection or vaccination(31-34) and could therefore sligly underestimated. As the complexity of SARS-CoV-2 antigen exposure histories increased among tested individuals, we observed a tendency for serological data to start diverging from genomic data. This suggests, as expected, that the effectiveness of this method would be greater if implemented early in an epidemic when the occurrence of multiple infections with different variants or the administration of varying doses of vaccine in the analyzed population before or after infection (resulting in hybrid immunity) is still limited. However, to mitigate the potential challenges arising from complex antigen exposure, we employed straightforward criteria to identify the variant among the four tested in VNT that exhibited the highest value (cf methods), thereby likely indicating the main or most recent infection and minimizing the influence of crossneutralization on the final outcomes. In addition, several approaches were used to analyze the results, including quantification of circulating antigenic groups and individual variants, yielding results that were comparable and closely aligned with the genomic data.”

      c. Serology becomes increasingly difficult to untangle when an individual has had doses of vaccine and multiple natural infections with different variants. Due to the importance of hybrid immunity in population risk to new variants, it would be useful for estimates of hybrid immunity to be generated based on anti-S1 and anti-NCP antibodies. From a population immunity perspective, this could be important in guiding future protection and boosting strategies.

      We estimated the hybrid immunity for each department in 2021 and 2022 based on the prevalence of anti-S1 and anti-NCP antibodies and added a new Supplementary Table 1. We also added a description of this table in the result section: “The estimated hybrid immunity, based on the prevalence of anti-S1 and anti-NCP antibodies, ranged from 51.4% in Pando to 73.6% in Potosí in 2021. By 2022, this increased to between 83.3% in Santa Cruz and 90.6% in Tarija (Supplementary Table 1).”

      d. Since there is cross-neutralization by the antibodies stimulated by each variant, it is important to establish the sensitivity and specificity of each of the neutralization assays in a panel comprising multiple variants. An assessment of the accuracy of the neut assay for each variant is needed to be confident that it is able to distinguish between variants.

      Assessing the performance of a the VNT for each SARS-CoV-2 variants is a highly complex task. This evaluation requires samples with comprehensive data on vaccination and infection specific to each variant to determine the specificity of each VNT for each variant. However, the access to such samples for every newly emerging variant remains challenging. In order to circumvent this issue, we evaluated the circulation level of γ, δ, and ο variants under increasingly stringent conditions, by calculating the proportion of the population with log2-ratio values of ≤0 (variant titer equal to or greater than D614G), ≤-1 (variant titer at least twice that of D614G), and ≤-2 (variant titer at least four times that of D614G).

      e. Blood donors are notoriously poor representations of the general population in many countries, driven partly by whether donation is financially rewarded. For example, in the USA, drug addicts are disproportionately over-represented in blood donor populations as they use it as a source of money. The authors provide no information on whether the blood donor population in Bolivia is representative of the entire population. Comparison of the prevalence of specific disease markers in the general population and in blood donors could provide a signal of their comparability.

      This is a significant aspect addressed in point 3.

      (2) Please provide the sensitivity and specificity of each of the assays so that the reader can assess the degree of accuracy in the assay that claims that the prevalent antibodies are due to, for example, omicron.

      The sensitivity and specificity of the in vitro assays are now referenced in a previous study: “The sensitivity and specificity of the in vitro assays were described previously(23).”

      Neutralization assays are considered the gold standard for measuring neutralizing antibodies against SARS-CoV-2 and its variants, and they are widely used in seroprevalence studies. However, until now, no one has successfully evaluated the specificity and sensitivity of this assay for SARS-CoV-2 variants, as it requires sera from individuals exposed to a single variant, which are increasingly difficult to collect for each newly emerging variants. Nevertheless, using sera from laboratory-infected animals (primarily hamsters) with a single variant exposure has enabled the antigenic characterization of SARS-CoV-2 variants through viral neutralization. This approach has shown that it is possible to distinguish between sera from individuals infected with different variants, even among the Omicron subvariants (Anna Z. Mykytyn et al. Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct.Sci. Immunol.7,eabq4450(2022); Samuel H. Wilks et al. Mapping SARS-CoV-2 antigenic relationships and serological responses.Science382,eadj0070(2023)).

      (3) Please provide an assessment of the representativity of the blood donor population eg. Is the prevalence of hepatitis B serological markers in the blood donor population comparable with the prevalence of hepatitis B serological markers in the general population from community-based studies?

      A new sentence was included in the discussion to offer support for considering the blood donor population as a representative sample of the general population: “In addition, in Bolivia, blood donation is unrewarded, and blood donors appear to be quite representative of the general population. Indeed, routine screening for several infection markers (such as HIV or HBV) is conducted in all donors, and the prevalences of these markers do not differ from those observed in the general population. For example, UNAIDS data highlights a 0.4% HIV prevalence within the Bolivian general population, with significantly higher rates exceeding 25% observed in high-risk groups such as men who have sex with men(29). Moreover, Sheena et al. estimated a 0.6% prevalence of HBsAg in Bolivia in 2019(30). Bolivian national statistics of National Blood Program of the Ministry of Health and Sports, indicate that between 2019 and 2023, the proportion of HIV- and HBV-reactive units among screened blood donors ranged from 0.26% to 0.41% and 0.16% to 0.25%, respectively (Dr. Lissete Bautista’s personal communication).”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This study demonstrates the significant role of secretory leukocyte protease inhibitor (SLPI) in regulating B. burgdorferi-induced periarticular inflammation in mice. They found that SLPI-deficient mice showed significantly higher B. burgdorferi infection burden in ankle joints compared to wild-type controls. This increased infection was accompanied by infiltration of neutrophils and macrophages in periarticular tissues, suggesting SLPI's role in immune regulation. The authors strengthened their findings by demonstrating a direct interaction between SLPI and B. burgdorferi through BASEHIT library screening and FACS analysis. Further investigation of SLPI as a target could lead to valuable clinical applications.

      The conclusions of this paper are mostly well supported by data, but two aspects need attention:

      (1) Cytokine Analysis:

      The serum cytokine/chemokine profile analysis appears without TNF-alpha data. Given TNF-alpha's established role in inflammatory responses, comparing its levels between wild-type and infected B. burgdorferi conditions would provide valuable insight into the inflammatory mechanism.

      (2) Sample Size Concerns:

      While the authors note limitations in obtaining Lyme disease patient samples, the control group is notably smaller than the patient group. This imbalance should either be addressed by including additional healthy controls or explicitly justified in the methodology section.

      We thank the reviewer for the careful review and positive comments.

      (1) We did look into the level of TNF-alpha in both WT and SLPI-/- mice with and without B. burgdorferi infection. At serum level, using ELISA, we did not observe any significant difference between all four groups. At gene expression level, using RT-qPCR on the tibiotarsal tissue, we also did not observe any significant differences. Our RT-qPCR result is consistent with the previous microarray study using the whole murine joint tissue (DOI: 10.4049/jimmunol.177.11.7930). The microarray study did not show significant changes in TNF-alpha level in C57BL/6 mice following B. burgdorferi infection. A brief discussion has been added, and the above data is provided as Supplemental figure 4 in the revised manuscript, line 334-339, and 756-763.

      (2) We agree with the reviewer that the control group is smaller than the patient group. Among the archived samples that are available, the number of adult healthy controls are limited. It has been shown that the serum level of SLPI in healthy volunteers is in average about 40 ng/ml  (DOI: 10.3389/fimmu.2019.00664 and 10.1097/00003246-200005000-00003). The median level in the healthy control in our data was 38.92 ng/ml, which is comparable to the previous results. A brief discussion has been added in the revised manuscript, line 364-369.

      Reviewer #2 (Public review):

      Summary:

      This manuscript by Yu and coworkers investigates the potential role of Secretory leukocyte protease inhibitor (SLPI) in Lyme arthritis. They show that, after needle inoculation of the Lyme disease (LD) agent, B. burgdorferi, compared to wild type mice, a SLPI-deficient mouse suffers elevated bacterial burden, joint swelling and inflammation, pro-inflammatory cytokines in the joint, and levels of serum neutrophil elastase (NE). They suggest that SLPI levels of Lyme disease patients are diminished relative to healthy controls. Finally, they find that SLPI may interact directly the B. burgdorferi.

      Strengths:

      Many of these observations are interesting and the use of SLPI-deficient mice is useful (and has not previously been done).

      We appreciate the reviewer’s careful reading and positive comments.

      Weaknesses:

      (a) The known role of SLPI in dampening inflammation and inflammatory damage by inhibition of NE makes the enhanced inflammation in the joint of B. burgdorferi-infected mice a predicted result;

      We agree that the observation of the elevated NE level and the enhanced inflammation is theoretically likely. Indeed, that was the hypothesis that we explored, and often what is theoretically possible does not turn out to occur. In addition, despite the known contribution of neutrophils to the severity of murine Lyme arthritis, the importance of the neutrophil serine proteases and anti-protease has not been specifically studied, and neutrophils secrete many factors. Therefore, our data fill an important gap in the knowledge of murine Lyme arthritis development – and set the stage for the further exploration of this hypothesis in the genesis of human Lyme arthritis.

      (b) The potential contribution of the greater bacterial burden to the enhanced inflammation is not addressed;

      We agree with the reviewer’s viewpoint that the increased infection burden in the tibiotarsal tissue of the infected SLPI-/- mice could contribute to the enhanced inflammation. A brief discussion of this possibility has been added in the revised manuscript, line 287-288.

      (c) The relationship of SLPI binding by B. burgdorferi to the enhanced disease of SLPI-deficient mice is not clear; and

      We agree with the reviewer that we have not shown the importance of the SLPI-B. burgdorferi binding in the development of periarticular inflammation. It is an ongoing project in our lab to identify the SLPI binding partner in B. burgdorferi. Our hypothesis is that SLPI could bind and inhibit an unknown B. burgdorferi virulence factor that contributes to murine Lyme arthritis. A brief discussion has been added in the revised manuscript, line 401-407.

      (d) Several methodological aspects of the study are unclear.

      We appreciate the critique. We have modified the methods section in greater detail in the revised manuscript.

      Reviewer #3 (Public review):

      Summary:

      The authors investigated the role of secretory leukocyte protease inhibitors (SLPI) in developing Lyme disease in mice infected with Borrelia burgdorferi. Using a combination of histological, gene expression, and flow cytometry analyses, they demonstrated significantly higher bacterial burden and elevated neutrophil and macrophage infiltration in SLPI-deficient mouse ankle joints. Furthermore, they also showed direct interaction of SLPI with B. burgdorferi, which likely depletes the local environment of SLPI and causes excessive protease activity. These results overall suggest ankle tissue inflammation in B. burgdorferi-infected mice is driven by unchecked protease activity.

      Strengths:

      Utilizing a comprehensive suite of techniques, this is the first study showing the importance of anti-protease-protease balance in the development of periarticular joint inflammation in Lyme disease.

      We greatly appreciate the reviewer’s careful reading and positive comments.

      Weaknesses:

      Due to the limited sample availability, the authors investigated the serum level of SLPI in both in Lyme arthritis patients and patients with earlier disease manifestations.

      We agree with the reviewer that it would be ideal to have more samples from Lyme arthritis patients. However, among the available archived samples, samples from Lyme arthritis patients are limited. For the samples from patients with single EM, the symptom persisted into 3-4 month after diagnosis, the same timeframe when acute arthritis is developed. A brief discussion has been added in the revised manuscript, line 364-369.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) In Figure 2, for histological scoring, do they have similar n numbers?

      In panel B, 20 infected WT mice and 19 infected SLPI-/- mice were examined. In panel D, 13 infected WT and SLPI-/- mice were examined. Without infection, WT and SLPI-/- mice do not develop spontaneous arthritis. Due to the slow breeding of the SLPI-/- mice, a small number of uninfected control animals were used. All the supporting data values are provided in the supplemental excel.

      (2) In Figure 3, for macrophage population analysis, maybe consider implementing Ly6G-negative gating strategy to prevent neutrophil contamination in macrophage population?

      We appreciate reviewer’s suggestion. We have analyzed the data using the Ly6G-negative gating strategy and provided the result in the Supplemental figure 1. The two gating strategies showed consistent result, significantly higher percentage of infiltrating macrophages in the tibiotarsal tissue from infected SLPI-/- mice, line 154-158, line 726-729.

      Reviewer #2 (Recommendations for the authors):

      (1) The investigators should address the possibility that much of the enhanced inflammatory features of infected SLPI-deficient mice are simply due to the higher bacterial load in the joint.

      We agree with the reviewer’s viewpoint that the increased infection burden in the tibiotarsal tissue of the infected SLPI-/- mice could contribute to the enhanced inflammation. A brief discussion of this possibility has been added in the revised manuscript, line 287-288.

      (2) Fig. 1. (A) There is no statistically significant difference in the bacterial load in the heart or skin, in contrast to the tibiotarsal joint. It would be of interest to know whether other tissues that are routinely sampled to assess the bacterial load, such as injection site, knee, and bladder, also harbored increased bacterial load in SLPI-deficient mice. (B) Heart and joint burden were measured at "21-28" days. The two time points should be analyzed separately rather than pooled.

      (A) We appreciate the reviewer’s suggestion. We agree that looking into the infection load in other tissues is helpful. However, studies into murine Lyme arthritis have been predominantly focused on tibiotarsal tissue, which displays the most consistent and prominent swelling that’s easy to observe and measure. Thus, we focused on the tibiotarsal joint in our study. (B) We collected the heart and joint tissue approximately 3-week post infection within a 3-day window based on the feasibility and logistics of the laboratory. Using “21-28 d”, we meant to describe between 21 to 24 days post infection. We apologize for the mislabeling and it has been corrected it in the revised manuscript. In the methods, we defined the timeframe as “Mice were euthanized approximately 3-week post infection within a 3-day window (between 21 to 24 dpi) based on the feasibility and logistics of the laboratory”, line 464-466. In the results and figure legend, we corrected it as “between 21 to 24 dpi”.

      (3) Fig. 2. (A) The same ambiguity as to the days post-infection as cited above in Point 2B exists in this figure. (B) Panel B: Caliper measurements to assess joint swelling should be utilized rather than visual scoring. (In addition, the legend should make clear that the black circles represent mock-infected mice.)

      (A) The histology scoring, and histopathology examination were performed at the same time as heart and joint tissue collection, approximately 3 weeks post infection within a 3-day window based on the feasibility and logistics of the laboratory. We apologize for the mislabeling and it has been corrected in the revised manuscript. (B) We appreciate the reviewer’s suggestion. However, our extensive experience is that caliper measurement can alter the assessment of swelling by placing pressure on the joints and did not produce consistent results. Double blinded scoring was thus performed. Histopathology examination was performed by an independent pathologist and confirmed the histology score and provided additional measurements.

      (4) Fig. 3. (A) See Point 2B. (B) For Panels C-E, uninfected controls are lacking.

      We apologize for this omission. Uninfected controls have been provided in Figure 3 in the revised manuscript.

      (5) Fig. 4. Fig. 4. Some LD subjects were sampled multiple times (5 samples from 3 subjects with Lyme arthritis; 13 samples from 4 subjects with EM), and samples from same individuals apparently are treated as biological replicates in the statistical analysis. In contrast, the 5 healthy controls were each sampled only once.

      We agree with the reviewer that the control group is smaller than the patient group. Among the archived samples that are available, the number of adult healthy controls are limited, and sampled once. We used these samples to establish the baseline level of SLPI in the serum. It has been shown that the serum level of SLPI in healthy volunteers is in average about 40 ng/ml  (DOI: 10.3389/fimmu.2019.00664 and 10.1097/00003246-200005000-00003). The median level in the healthy control in our data was 38.92 ng/ml, which is comparable to the previous results. A brief discussion has been added in the revised manuscript, line 364-369.

      (6) Fig. 5. (A) Panel A: does binding occur when intact bacteria are used? (B) Panels B, C: Were bacteria probed with PI to indicate binding likely to occur to surface? How many biological replicates were performed for each panel? Is "antibody control" a no SLPI control? What is the blue line?

      Actively growing B. burgdorferi were collected and used for binding assays. We do not permeabilize the bacteria for flow cytometry. Thus, all the binding detected occurs to the bacterial surface. Three biological replicates were performed for each panel. The antibody control is no SLPI control. For panel D, the bacteria were stained with Hoechst, which shows the morphology of bacteria. We apologize for the missing information. A complete and detailed description of Figure 5 has been provided in both methods and figure legend in the revised manuscript. 

      (7) Sup Fig. 1. (A) Panel A: Was this experiment performed multiple times? I.e., how many biological replicates? (B) Panel B: Strain should be specified.

      The binding assay to B. burgdorferi B31A was performed two times. In panel B, B. burgdorferi B31A3 was used. We apologize for the missing information. A complete and detailed description has been provided in the figure legend in the revised manuscript. 

      (8) Fig. S2. It is not clear that the condition (20% serum) has any bactericidal activity, so the potential protective activity of SLPI cannot be determined. (Typical serum killing assays in the absence of specific antibody utilized 40% serum.)

      In Fig. S2, panel B, the first two bars (without SLPI, with 20% WT anti serum) showed around 40% viability. It indicates that the 20% WT anti serum has bactericidal activity. Serum was collected from B. burgdorferi-infected WT mice at 21 dpi, which should contain polyclonal antibody against B. burgdorferi.

      Reviewer #3 (Recommendations for the authors):

      It was a pleasure to review! I congratulate the authors on this elegant study. I think the manuscript is very well-written and clearly conveys the research outcomes. I only have minor suggestions to improve the readability of the text.

      We greatly appreciate the reviewer’s recognition of our work.

      Line 92: Please briefly summarize the key results of the study at the end of the introduction section.

      We appreciate the reviewer’s suggestion. A brief summary has been added in the revised manuscript, line 93-103.

      Line 108: Why is the inflammation significantly occurred only in ankle joints of SLPI-I mice? Could you please provide a brief explanation?

      The inflammation may also happen in other joints the B. burgdorferi infected SLPI-/- mice, which has not been studied. The study into murine Lyme arthritis has been predominantly done in the tibiotarsal tissue, which displays the most prominent swelling that’s easy to observe and measure. Thus, we focused on the tibiotarsal joint in our study.

      Line 136: Please also include the gene names in Figure 3.

      We apologize for the omission. Gene names has been included in figure legend in the revised manuscript.

      Line 181: Please briefly introduce BASEHIT. Why did you use this tool? What are the benefits?

      We appreciate the reviewer’s suggestion. We have provided a brief introduction on BASEHIT in the revised manuscript, line 216-218.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors address an important issue in Babesia research by repurposing cipargamin (CIP) as a potential therapeutic against selective Babesia spp. In this study, CIP demonstrated potent in vitro inhibition of B. bovis and B. gibsoni with IC<sub>50</sub> values of 20.2 ± 1.4 nM and 69.4 ± 2.2 nM, respectively, and the in vivo efficacy against Babesia spp. using mouse model. The authors identified two key resistance mutations in the BgATP4 gene (BgATP4<sup>L921I</sup> and BgATP4<sup>L921V</sup>) and explored their implications through phenotypic characterization of the parasite using cell biological experiments, complemented by in silico analysis. Overall, the findings are promising and could significantly advance Babesia treatment strategies.

      Strengths:

      In this manuscript, the authors effectively repurpose cipargamin (CIP) as a potential treatment for Babesia spp. They provide compelling in vitro and in vivo data showing strong efficacy. Key resistance mutations in the BgATP4 gene are identified and analyzed through both phenotypic and in silico methods, offering valuable insights for advancing treatment strategies.

      Thank you for your insightful comments and for taking the time to review our manuscript.

      Weaknesses:

      The manuscript explores important aspects of drug repurposing and rational drug design using cipargamin (CIP) against Babesia. However, several weaknesses should be addressed. The study lacks novelty as similar research on cipargamin has been conducted, and the experimental design could be improved. The rationale for choosing CIP over other ATP4-targeting compounds is not well-explained. Validation of mutations relies heavily on in silico predictions without sufficient experimental support. The Ion Transport Assay has limitations and would benefit from additional assays like Radiolabeled Ion Flux and Electrophysiological Assays. Also, the study lacks appropriate control drugs and detailed functional characterization. Further clarity on mutation percentages, additional safety testing, and exploration of cross-resistance would strengthen the findings.

      We appreciate your feedback and for giving us the chance to improve our paper. We have specified how we revised the below comments one by one. I hope these address your concerns.

      Comment 1: It is commendable to explore drug repurposing, drug deprescribing, drug repositioning, and rational drug design, especially using established ATP4 inhibitors that are well-studied in Plasmodium and other protozoan parasites. While the study provides some interesting findings, it appears to lack novelty, as similar investigations of cipargamin on other protozoan parasites have been conducted. The study does not introduce new concepts, and the experimental design could benefit from refinement to strengthen the results. Additionally, the rationale for choosing CIP over other MMV compounds targeting ATP4 is not clearly articulated. Clarifying the specific advantages CIP may offer against Babesia would be beneficial. Finally, the validation of the identified mutations might be strengthened by additional experimental support, as reliance on in silico predictions alone may not fully address the functional impact, particularly given the potential ambiguity of the mutations (BgATP4 L to V and I).

      Thank you for your thoughtful feedback. We have addressed the concerns as follows: (1) Introduction of new concepts and experimental design: While our study primarily builds on existing frameworks, it provides novel insights into the interaction of CIP with Babesia parasites, which we believe contribute to the field. Regarding the experimental design, we acknowledge its limitations and have revised the manuscript to include additional experiments to strengthen the robustness of our findings. Specifically, we have added experiments on the detection of BgATP4-associated ATPase activity (Figure 3H), the evaluation of cross-resistance to antibabesial agents (Figures 5A and 5B), and the efficacy of CIP plus TQ combination in eliminating B. microti infection with no recrudescence in SCID mice (Figure 5C).

      (2) Rationale for choosing CIP over other MMV compounds targeting ATP4: We appreciate this point and have expanded the introduction section to articulate our rationale for selecting CIP (Lines 94-97). Specifically, CIP was chosen due to its previously demonstrated efficacy against Plasmodium and other protozoan parasites.

      (3) Validation of identified mutations: We agree that additional experimental data would strengthen the validation of the identified mutations. In response, we have indicated the ratio of wild-type to mutant parasites by Illumina NovaSeq6000 to validate the impact of the BgATP4 C-to-G and A mutations (Figure 2D).

      Comment 2: Conducting an Ion Transport Assay is useful but has limitations. Non-specific binding or transport by other cellular components can lead to inaccurate results, causing false positives or negatives and making data interpretation difficult. Indirect measurements, like changes in fluorescence or electrical potential, can introduce artifacts. To improve accuracy, consider additional assays such as

      a. Radiolabeled Ion Flux Assay: tracks the movement of Na<sup>+</sup> using radiolabeled ions, providing direct evidence of ion transport.

      b. Electrophysiological Assay: measures ionic currents in real-time with patch-clamp techniques, offering detailed information about ATP4 activity.

      Thank you for highlighting the limitations of the ion transport assay and suggesting alternative approaches to improve accuracy. However, they require specialized equipment and expertise not currently available in our laboratory. We have acknowledged these limitations and included these alternative methods as part of the study's future directions. Thank you for your suggestions which will undoubtedly enhance the rigor and depth of our research.

      Comment 3: In-silico predictions can provide plausible outcomes, but it is essential to evaluate how the recombinant purified protein and ligand interact and function at physiological levels. This aspect is currently missing and should be included. For example, incorporating immunoprecipitation and ATPase activity assays with both wild-type and mutant proteins, as well as detailed kinetic studies with Cipargamin, would be recommended to validate the findings of the study.

      Thank you for your insightful suggestions regarding the validation of in-silico predictions. We recognize the importance of evaluating the interaction and function of recombinant purified proteins and ligands at physiological levels to strengthen the study's findings. (1) Incorporating experimental validation:

      a. Immunoprecipitation assays: We agree that immunoprecipitation could provide valuable evidence of protein-ligand interactions. While this was not included in the current study due to limitations in sample availability, we plan to incorporate this assay in follow-up experiments.

      b. ATPase activity assays: Assessing ATPase activity in both wild-type and mutant proteins is a crucial step in validating the functional impact of the identified mutations. We included the results in the revised manuscript (Figure 3H).

      (2) Detailed kinetic studies with cipargamin: We appreciate the recommendation to conduct detailed kinetic analyses. These studies would provide deeper insights into the binding affinity and inhibition dynamics of cipargamin. We have included the results of these experiments in the current study (Figure 3I).

      Comment 4: The study lacks specific suitable control drugs tested both in vitro and in vivo. For accurate drug assessment, especially when evaluating drugs based on a specific phenotype, such as enlarged parasites, it is important to use ATP4 gene-specific inhibitors. Including similar classes of drugs, such as Aminopyrazoles, Dihydroisoquinolines, Pyrazoleamides, Pantothenamides, Imidazolopiperazines (e.g., GNF179), and Bicyclic Azetidine Compounds, would provide more comprehensive validation.

      Thank you for emphasizing the importance of including suitable control drugs. We acknowledge the absence of specific control drugs in the previous version of the manuscript. To date, no drug targeting ATP4 proteins in Babesia has been definitively identified. The suggested drugs could potentially disrupt the parasite's ability to regulate sodium levels by inhibiting PfATP4, a protein essential for its survival. This highlights PfATP4 as an attractive target for antimalarial drug development. However, further studies are required to evaluate whether these drugs exhibit similar activity against ATP4 homologs in Babesia.

      Comment 5: Functional characterization of CIP through microscopic examination and quantification for assessing parasite size enlargement is not entirely reliable. A Flow Cytometry-Based Assay is recommended instead 9 along with suitable control antiparasitic drugs). To effectively monitor Cipargamin's action, conducting time-course experiments with 6-hour intervals is advisable rather than relying solely on endpoint measurements. Additionally, for accurate assessment of parasite morphology, obtaining representative qualitative images using Scanning Electron Microscopy (SEM) or Transmission Electron Microscopy (TEM) for treated versus untreated samples is recommended for precise measurements.

      Thank you for your constructive feedback regarding the methods for functional characterization of CIP and the evaluation of parasite morphology.

      (1) Flow Cytometry-Based Assay: We agree that a flow cytometry-based assay would enhance the accuracy of detecting changes in parasite size and morphology. We will implement this method in future studies as our laboratory currently does not have the capability to conduct such experiments.

      (2) Microscopy for Morphology Assessment: We acknowledge the importance of obtaining high-resolution, representative images of treated and untreated samples. Utilizing Scanning Electron Microscopy (SEM) or Transmission Electron Microscopy (TEM) for qualitative analysis will significantly improve the precision of our morphological assessments. However, both methods have limitations.

      a. SEM: This technique can only scan the erythrocytes' surface; it cannot scan the parasite itself because it is inside the erythrocytes.

      b. TEM: Since the parasite is fixed, observations from various angles may reveal longitudinal or cross-sectional portions, making it impossible to precisely view the parasite's dimensions. As a result, we employed TEM to precisely observe the parasite's internal structure alterations both before and after treatment, as seen in Figure 3C.

      Comment 6: A notable contradiction observed is that mutant cells displayed reduced efficacy and affinity but more pronounced phenotypic effects. The BgATP4<sup>L921I</sup> mutation shows a 2x lower susceptibility (IC<sub>50</sub> of 887.9 ± 61.97 nM) and a predicted binding affinity of -6.26 kcal/mol with CIP. However, the phenotype exhibits significantly lower Na<sup>+</sup> concentration in BgATP4<sup>L921I</sup> (P = 0.0087) (Figure 3E).

      The seemingly contradicting observation of reduced CIP binding and efficacy in the BgATP4<sup>L921I</sup> mutant with a significant decrease in intracellular Na<sup>+</sup> concentration may be explained by factors other than the direct CIP interaction. Logically, we consider that CIP binds less effectively to its target in the BgATP4<sup>L921I</sup> mutant, but the observed phenotype may be attributed to the functional consequences of the mutation. The BgATP4<sup>L921I</sup> mutation probably directly impacts the function of BgATP4's ion transport mechanism, which likely disrupts Na<sup>+</sup> homeostasis independently. Thus, we hypothesize that the dysregulated Na<sup>+</sup> homeostasis is driven by the mutation itself rather than the already weakened inhibitory effect of CIP.

      Comment 7: The manuscript does not clarify the percentage of mutations, and the number of sequence iterations performed on the ATP4 gene. It is also unclear whether clonal selection was carried out on the resistant population. If mutations are not present in 100% of the resistant parasites, please indicate the ratio of wild-type to mutant parasites and represent this information in the figure, along with the chromatograms.

      Thank you for your valuable comments. We appreciate your detailed observations and giving us the opportunity to clarify these points. During the long-term culture process, subculturing was performed every three days. Although clonal selection was not conducted, mutant strains were effectively selected during this process. Using the Illumina NovaSeq6000 sequencing platform, high-throughput next-generation sequencing was performed to detect ratio of wild-type to mutant parasites. Results showed that for BgATP4<sup>L921V</sup>, 99.97% of 7,960 reads were G, and for BgATP4<sup>L921I</sup>, 99.92% of 7,862 reads were A. To enhance clarity, we have included a new figure (Figure 2D) illustrating the sequencing results. We believe this addition will help provide a clearer understanding for the readers.

      Comment 8: While the compound's toxicity data is well-established, it is advisable to include additional testing in epithelial cells and liver-specific cell lines (e.g., HeLa, HCT, HepG2) if feasible for the authors. This would provide a more comprehensive assessment of the compound's safety profile.

      Thank you for your thoughtful suggestion. We included toxicity testing in human foreskin fibroblasts (HFF) as supplemental toxicity data to provide a more comprehensive evaluation of the compound's safety profile (Figure supplement 1B).

      Comment 9: In the in vivo efficacy study, recrudescent parasites emerged after 8 days of treatment. Did these parasites harbor the same mutation in the ATP4 gene? The authors did not investigate this aspect, which is crucial for understanding the basis of recrudescence.

      Thank you for raising this important point. We acknowledge that understanding the genetic basis of recrudescence is critical for elucidating mechanisms of resistance and treatment failure. Although our current study did not include an analysis of the BrATP4 gene in relapse parasites due to limitations in sample availability, we evaluated CIP efficacy in SCID mice and performed sequencing analysis of the BmATP4 gene in recrudescent samples. However, no mutation points were identified (Lines 211-212). We believe that if a relapse occurs after the 7-day treatment, it is unlikely that the parasites would easily acquire mutations.  

      Comment 10: The authors should explain their choice of BABL/c mice for evaluating CIP efficacy, as these mice clear the infection and may not fully represent the compound's effectiveness. Investigating CIP efficacy in SCID mice would be valuable, as they provide a more reliable model and eliminate the influence of the immune system. The rationale for not using SCID mice should be clarified.

      We appreciate the reviewer's suggestion regarding the use of SCID mice to evaluate the efficacy of CIP. In response to your suggestion, we have now included an experiment using SCID mice to evaluate the efficacy of CIP and to eliminate the confounding influence of the immune system. We further investigated the potential of combined administration of CIP plus TQ to eliminate parasites, as we are concerned that the long-term use of CIP as a monotherapy may be limited due to its potential for developing resistance. The results are shown in Figure 5C.

      Comment 11: Do the in vitro-resistant parasites show any potential for cross-resistance with commonly used antiparasitic drugs? Have the authors considered this possibility, and what are their expectations regarding cross-resistance?

      Thank you for your insightful question regarding the potential for cross-resistance between in vitro-resistant parasites and commonly used antiparasitic drugs. In response to your suggestion, we have now included experiments to assess whether B. gibsoni parasites that are resistant to CIP exhibit any cross-resistance to other commonly used antiparasitic drugs, such as atovaquone (ATO) and tafenoquine (TQ). The IC<sub>50</sub> values for both ATO and TQ in the resistant strains showed only slight changes compared to the wild-type strain, with less than a onefold difference (Figure 5A, 5B). This minimal variation suggests that the resistant strain has a mild alteration in susceptibility to ATO and TQ, but not enough to indicate strong resistance or significant cross-resistance. This suggests that CIP could be used in combination with TQ to treat babesiosis.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors have tried to repurpose cipargamin (CIP), a known drug against plasmodium and toxoplasma against babesia. They proved the efficacy of CIP on babesia in the nanomolar range. In silico analyses revealed the drug resistance mechanism through a single amino acid mutation at amino acid position 921 on the ATP4 gene of Babesia. Overall, the conclusions drawn by the authors are well justified by their data. I believe this study opens up a novel therapeutic strategy against babesiosis.

      Strengths:

      The authors have carried out a comprehensive study. All the experiments performed were carried out methodically and logically.

      Thank you for the comments and your time to review our manuscript.

      Weaknesses:

      The introduction section needs to be more informative. The authors are investigating the binding of CIP to the ATP4 gene, but they did not give any information about the gene or how the ATP4 inhibitors work in general. The resolution of the figures is not good and the font size is too small to read properly. I also have several minor concerns which have been addressed in the "Recommendations for the authors" section.

      We thank the reviewer for their valuable comments. In response, we have revised the introduction to include a more detailed explanation of the ATP4 gene, its biological significance, and the mechanism of ATP4 inhibitors to provide a better context of the study (Lines 86-93). Additionally, we have reformatted the figures to enhance resolution and increased the font size to ensure improved readability. We also appreciate the reviewer's careful assessment of the manuscript and have addressed all minor concerns outlined in the "Recommendations for the Authors" section. A detailed, point-by-point response to each concern is provided in the response letter, and the corresponding revisions have been incorporated into the manuscript.

      Reviewer #3 (Public review):

      Summary:

      The authors aim to establish that cipargamin can be used for the treatment of infection caused by Babesia organisms.

      Strengths:

      The study provides strong evidence that cipargamin is effective against various Babesia species. In vitro, growth assays were used to establish that cipargamin is effective against Babesia bovis and Babesia gibsoni. Infection of mice with Babesia microti demonstrated that cipargamin is as effective as the combination of atovaquone plus azithromycin. Cipargamin protected mice from lethal infection with Babesia rodhaini. Mutations that confer resistance to cipargamin were identified in the gene encoding ATP4, a P-type Na<sup>+</sup> ATPase that was found in other apicomplexan parasites, thereby validating ATP4 as the target of cipargamin.

      We appreciate the reviewer for taking the time to review our manuscript.

      Weaknesses:

      Cipargamin was tested in vivo at a single dose administered daily for 7 days. Despite the prospect of using cipargamin for the treatment of human babesiosis, there was no attempt to identify the lowest dose of cipagarmin that protects mice from Babesia microti infection. Exposure to cipargamin can induce resistance, indicating that cipargamin should not be used alone but in combination with other drugs. There was no attempt at testing cipargamin in combination with other drugs, particularly atovaquone, in the mouse model of Babesia microti infection. Given the difficulty in treating immunocompromised patients infected with Babesia microti, it would have been informative to test cipargamin in a mouse model of severe immunosuppression (SCID or rag-deficient mice).

      We thank the reviewer for raising these important comments. We address each concern as follows:

      (1) Identifying the lowest protective dose of CIP:

      Although our current study was designed to assess the efficacy of CIP at a single therapeutic dose over a 7-day period, we acknowledge that identifying the lowest effective dose would provide valuable information for optimizing treatment regimens. We plan to address this in future studies by conducting a dose-response experiment to identify the minimal protective dose of CIP.

      (2) Testing CIP in combination with other drugs:

      In the current study, we have tested the efficacy of tafenoquine (TQ) combined with CIP, as well as CIP or TQ administered individually, in a mouse model of B. microti infection. Our results demonstrated that, compared with monotherapy, the combination of CIP and TQ completely eliminated the parasites within 90 days of observation (Figure 5C).

      (3) Testing in an immunocompromised mouse model:

      We agree with the reviewer that evaluating CIP in immunocompromised models is critical for understanding its potential in treating immunocompromised patients. To address this, we have conducted experiments using SCID mice infected with B. microti. Our results indicated that the combination therapy of CIP plus TQ was effective in eliminating parasites in the severely immunocompromised model (Figure 5D).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Comment 1: Table: Include the in-silico binding energies for each mutation and ligand.

      We have added binding energies for each mutation and ligand in Table supplement 3.

      Comment 2: Did the authors investigate the potential of combination therapies involving CIP?

      We have tested the efficacy of TQ combined with CIP in a mouse model of B. microti infection.

      Comment 3: Does this mutation affect the transmission of the parasite?

      Based on our observations, the growth and generation rates of the mutant strain are comparable to those of the wild-type strain. These findings suggest that the mutation does not significantly affect the spread or transmission of the parasite. We have included this observation in the revised manuscript (Lines 243-244).

      Comment 4: 60: Use abbreviations CLN for clindamycin and QUI for quinine.

      We have revised them accordingly (Lines 59-60).

      Comment 5: 86: The hypothesis is not strong or convincing; it needs to be modified to be more specific and convincing.

      We have revised the hypothesis to reflect the rationale behind the study better and to support our claim more strongly (Lines 94-97).

      Comment 6: 93: Change to: "In vitro efficacy of CIP against B. bovis and B. gibsoni.".

      We have changed the suggested content in the manuscript (Line 104).

      Comment 7: 96: Define CC<sub>50</sub>.

      We have added the definition of CC<sub>50</sub> (Line 106).

      Comment 8: 102: Change to: "...Balb/c mice increased dramatically in the...".

      We have changed the word following your recommendation (Line 114).

      Comment 9: 108: "...significant decrease at 12 DPI...".

      We have revised it according to your suggestion (Line 120).

      Comment 10: 110: "This indicates that the administration...".

      We have revised it according to your suggestion (Line 122).

      Comment 11: Figure 1:

      (1) Panels A and B should clearly indicate parasite species within the graph for better self-explanation.

      We have indicated parasite species within the graph.

      (2) For panels C, D, and E, if mice were eliminated or euthanized in the study, include a symbol in the graph to indicate this.

      For panels C and D, no mice were eliminated during the study; therefore, no symbol was added to these graphs. Panel F already provides information about the number of eliminated mice, which corresponds to the data in Panel E.

      (3) In panels C, D, and E, use a continuation arrow for drug treatment rather than a straight line, to cover the duration of the treatment.

      We have updated the figures to use continuation arrows instead of straight lines to represent the duration of drug treatment.

      Comment 12: Figure 2: The color combination for the WT and mutant curves is hard to read; consider using regular, less fluorescent, and more distinguishable colors.

      We have adjusted the color scheme to use more distinguishable and less fluorescent colors, ensuring better readability and clarity. The revised figure with the updated color scheme has been included in the updated manuscript, and we hope this resolves the readability concern.

      Comment 13: Figure 3:

      (1) Panel A: Represent a single infected iRBC rather than a field for better visualization.

      We have updated Panel A to display a single infected iRBC instead of a field.

      (2) Panels E and F: Change the color patterns, as the current colors, especially the green variants (WT and mutant L921V), are difficult to read.

      To improve readability, we have updated the color patterns for these panels by selecting more distinguishable colors with higher contrast (Figure 3F, 3G).

      Comment 14: Figure 4: Panels B, C, and D: The text is too small to read; increase the font size or change the resolution.

      We have increased the font size and replaced the panels with high-resolution versions (Figure 4B, 4C, 4D).

      Reviewer #2 (Recommendations for the authors):

      Comment 1: In the last paragraph of the introduction, the authors mentioned determining the activity of CIP in vitro in B. bovis and B. gibsoni while in vivo in B. microti and B. rodhaini. It is not explained why they are testing the in vitro and in vivo effects on different Babesia species. Could you please add some logic there? Also, why did they mention measuring the inhibitory activity of CIP by monitoring the Na<sup>+</sup> and H<sup>+</sup> balance? This part needs to be rewritten with more information. The ATP4 gene is not properly introduced in the manuscript.

      We thank the reviewer for raising these important points. Below, we address each aspect of the comment in detail:

      (1) Rationale for testing different Babesia spp. in vitro and in vivo:

      B. bovis and B. gibsoni are well-established Babesia models for in vitro culture systems, allowing evaluation of CIP's inhibitory activity under controlled laboratory conditions. B. microti and B. rodhaini, on the other hand, are commonly used rodent models for the in vivo studies of babesiosis, enabling the assessment of drug efficacy in a mammalian host system. This multi-species approach provides a comprehensive evaluation of CIP's efficacy across Babesia spp. with different biological characteristics.

      (2) Measuring CIP's inhibitory activity via Na<sup>+</sup> and H<sup>+</sup> balance:

      We acknowledge that this section of the introduction requires more context. The revised manuscript now includes additional information explaining that the ATP4 gene, which encodes a Na<sup>+</sup>/H<sup>+</sup> transporter, is the proposed target of CIP (Lines 86-93). CIP disrupts the ion homeostasis maintained by ATP4, leading to an imbalance in Na<sup>+</sup> and H<sup>+</sup> concentrations. Monitoring these ionic changes provides a mechanistic understanding of CIP's mode of action and its impact on parasite viability. This rationale has been expanded in the introduction to clarify its significance.

      Comment 2: The figure fonts are too small. The resolution for the images is also poor.

      We have increased the font size in all figures to improve readability. Additionally, we have replaced the figures with high-resolution versions to ensure clarity and visual quality.

      Comment 3: Figures 1A and 1B: one of the error bars merged to the X-axis legend. Please modify these panels. Which curve was used to determine the IC<sub>50</sub> values (although it's mentioned in the methods section, would it be better to have the information in the figure legends as well)?

      We thank the reviewer for their comments regarding Figures 1A and 1B.

      (1) Error bars overlapping the X-axis legend:

      The error bars in the figures were automatically generated using GraphPad Prism9 based on the data and are determined by the values themselves. Unfortunately, this overlap cannot be avoided without altering the data representation.

      (2) IC<sub>50</sub> curve information:

      To clarify the determination of IC<sub>50</sub> values, we have already included gray dashed lines in the graphs to indicate where the IC<sub>50</sub> values were derived from the curves. This visual representation provides clear information about the IC<sub>50</sub> points.

      Comment 4: Supplementary Figure 1: what are MDCK cells? What is CC<sub>50</sub>? Please mention their full forms in the text and figure legends (they should be described here because the methods section comes later). What is meant by a predicted selectivity index? There should be an explanation of why and how they did it. Which curve was used to determine the IC<sub>50</sub> values?

      We thank the reviewer for pointing out the need to clarify terms and provide additional context in the supplementary figure and text. We have updated the figure legend and text to include the full forms of MDCK (Madin-Darby canine kidney) cells and CC<sub>50</sub> (50% cytotoxic concentration), ensuring clarity for readers encountering these terms for the first time. In text, now we have included a brief explanation of the selectivity index as a measure of a drug's safety and specificity (Lines 108-110). The selectivity index is calculated as the ratio between the half maximal inhibitory concentration (IC<sub>50</sub>) and the 50% cytotoxic concentration (CC<sub>50</sub>) values (Lines 333-335). We also have already included gray dashed lines in the graphs to indicate where the IC<sub>50</sub> values were derived from the curves (Figure supplement 1).

      Comment 5: Figures 1C-F: It feels unnecessary to write down n=6 for each panel and each group. Since "n" is equal for all, it would be nice to just mention it in the figure legend only.

      We appreciate the reviewer's suggestion regarding the notation of "n=6" in Figures 1C-F. To improve clarity and reduce redundancy, we have removed the "n=6" notation from the individual panels and included it in the figure legend instead.

      Comment 6: Figure 2A: was never mentioned in the text.

      We have described the sequencing results for the wild-type B. gibsoni ATP4 gene with a reference to Figure 2A in the revised manuscript (Lines 134-135).

      Comment 7: Figure 2D: some of the error bars merged to the X-axis legend. Please modify. Again, which curve was used to determine the IC<sub>50</sub> values? Can the authors explain why the pH declined after 4 minutes?

      We thank the reviewer for this insightful question.

      (1) Error bars overlapping the X-axis legend:

      The error bars in Figure 2E were automatically generated using GraphPad Prism9 and are determined by the underlying data values. Unfortunately, this overlap cannot be avoided without altering the data representation.

      (2) IC<sub>50</sub> curve information:

      Since Figure 2E contains three separate curves, adding dashed lines to indicate the IC<sub>50</sub> for each curve would make the figure overly cluttered and reduce readability. To address this, we have clearly indicated the IC<sub>50</sub> values in Figures 1A and 1B and described the methodology for determining IC<sub>50</sub> values in the Methods section. We believe this approach provides sufficient clarity without compromising the visual experience of Figure 2E.

      (3) The pH decline observed after 4 minutes (Figure 3E) may be attributed to the following factors:

      a. Ion transport dynamics:

      The initial rise in pH likely reflects the rapid inhibition of Na<sup>+</sup>/H<sup>+</sup> exchange mediated by CIP, which temporarily alkalinizes the intracellular environment. However, after this initial phase, compensatory mechanisms, such as proton influx or metabolic acid production, may lead to a subsequent decline in pH.

      b. Drug kinetics and target interaction:

      The decline could also result from the time-dependent effects of CIP on ATP4-mediated ion transport. As the drug action stabilizes, the parasite may partially restore ionic balance, leading to a decrease in intracellular pH.

      Comment 8: Supplementary Figure 2: It's difficult to distinguish between red and pink colors, so it would be wise to use two contrasting colors to distinguish between Pf and Tg CIP resistant cites.

      We have updated the figure to enhance clarity. Purple squares and arrows now represent sites linked to P. falciparum CIP resistance, replacing the previous red squares. Similarly, gray squares and arrows have replaced the green squares to denote sites associated with T. gondii (Figure supplement 2).

      Comment 9: Line 65: Is it possible to add a reference here?

      We have added a reference in line 65.

      Comment 10: Line 69: Please spell the full form of G6PD as it was never mentioned before.

      We have added the full form of G6PD in lines 69-70.

      Comment 11: Line 103: mention what DPI is (irrespective of the methods section which comes later).

      We have spelled out DPI (days postinfection) in line 115.

      Comment 12: Line 120: It's not explained why B. gibsoni ATP4 gene was investigated? There should be more explanation and references to previous work.

      We thank the reviewer for pointing out the need to provide more context for investigating the B. gibsoni ATP4 gene. To address this, we have added more information to the introduction, explaining that the ATP4 gene, which encodes a Na<sup>+</sup>/H<sup>+</sup> transporter, is the proposed target of CIP (Lines 86-93).

      Comment 13: Line 203-219: line spacing seems different from the rest of the manuscript.

      We have corrected the incorrect format (Lines 262-278).

      Reviewer #3 (Recommendations for the authors):

      Comment 1: Lines 66-68: The report by Marcos et al. 2022 did not demonstrate that tafenoquine was effective in curing relapsing babesiosis. In the discussion of that article, the authors state that "it is impossible to conclude that the drug tafenoquine provided any clinical benefit." The first demonstration of tafenoquine efficacy against relapsing babesiosis was reported by Rogers et al. 2023 and confirmed by Krause et al. 2024. Please rephrase the statement and use relevant citations.

      We thank the reviewer for pointing out this issue and we have rephrased the statement and used relevant citations (Lines 66-68).

      Comment 2: Line 103: mean parasitemia at 10 DPI is reported to be 35.88% but Figure 1C appears to indicate otherwise.

      We are sorry for the carelessness, the correct mean parasitemia at 10 DPI is 38.55%, and this has been updated in line 115 of the revised manuscript to reflect the data shown in Figure 1C.

      Comment 3: Line 116: parasitemia is said to recur on day 14 post-infection but Figure 1E indicates that recurrence was already noted on day 12 post-infection.

      We thank the reviewer for pointing out this inconsistency. We have corrected the relapse day to reflect that recurrence was noted on day 12 post-infection, as shown in Figure 1E. This correction has been made in the revised manuscript (Line 128).

      Comment 4: Line 120: Replace "wells" with "strains". Also, start the paragraph with one brief sentence to state how resistant parasites were generated.

      We have replaced "wells" with "strains" and added one brief sentence to explain how resistant parasites were generated (Lines 132-134).

      Comment 5: Line 169: is Ji et al, 2022b truly the appropriate reference to support a statement on tafenoquine?

      We thank the reviewer for highlighting this point. We have added one other reference to support a statement on tafenoquine. The IC<sub>50</sub> value of TQ was 20.0 ± 2.4 μM against B. gibsoni (Ji et al., 2022b), and 31 μM against B. bovis (Carvalho et al., 2020) (Lines 223-225).

      Comment 6: Lines 184-185: given that exposure to CIP induces mutations in the ATP4 gene and therefore resistance to CIP, what is the prospect of using CIP for the treatment of babesiosis? Can the authors speculate on whether CIP should not be used alone but rather in combination with other drugs currently used for the treatment of human babesiosis?

      We thank the reviewer for raising this important question. Given that exposure to CIP induces mutations in the ATP4 gene, leading to resistance, we acknowledge that the long-term use of CIP as a monotherapy may be limited due to the potential for resistance development. To address this concern, we investigated the combination therapy of TQ and CIP to achieve the complete elimination of B. microti in infected mice (a model for human babesiosis). The results of this study are presented in Figure 5C.

      Comment 7: Lines 258-259: it is stated that drug treatment was initiated on day 4 post-infection when mean parasitemia was 1% and that drug treatment was continued for 7 days. This is not the case for B. rodhaini infection. As reported in Figure 1E, treatment was initiated on day 2 post-infection.

      We apologize for the oversight and any confusion caused. We have corrected the statement to reflect that drug treatment for B. rodhaini-infected mice was initiated at 2 DPI, as reported in Figure 1E (Lines 347-349).

      Comment 8: Lines 282-285: RBCs are said to be exposed to CIP for 3 days but parasite size is said to be measured on day 4. Which is correct?

      We thank the reviewer for pointing out this discrepancy. To clarify, the infected erythrocytes were exposed to CIP for three consecutive days (72 hours). Blood smears were then prepared at the 73<sup>rd</sup> hour, corresponding to the fourth day.

      Comment 9: Lines 35-37: this sentence can be omitted from the abstract as it does not summarize additional insight or additional data.

      We have omitted this sentence from the abstract.

      Comment 10: Line 55: replace Drews et al. 2023 with Gray and Ogden 2021 (doi: 10.3390/pathogens10111430). This excellent article directly supports the statement made by the authors.

      We appreciate the reviewer's suggestion and have replaced the reference with Gray and Ogden, 2021 (doi: 10.3390/pathogens10111430) (Line 54).

      Comment 11: Line 55: modify the start of sentence to read "The disease is known as babesiosis ...".

      We have modified the sentence (Line 54).

      Comment 12: Line 56: rephrase to read ".... but chronic infections can be asymptomatic".

      We have modified the sentence (Line 55).

      Comment 13: Line 57: rephrase to read "The fatality rate ranges from 1% among all cases to 3% among hospitalized cases but has been as high as 20% in immunocompromised patients."

      We have rephrased the sentence (Lines 55-57).

      Comment 14: Line 61: replace Holbrook et al. 2023 with Krause et al. 2021 (doi: 10.1093/cid/ciaa1216).

      We have replaced Holbrook et al. 2023 with Krause et al. 2021 (doi: 10.1093/cid/ciaa1216) (Line 60).

      Comment 15: Line 62: rephrase to read "... cytochrome b, which is targeted by atovaquone, were identified in patients with relapsing babesiosis." Here, also cite Lemieux et al., 2016; Simon et al., 2017; Rosenblatt et al, 2021, Marcos et al., 2022; Rogers et al., 2023; Krause et al., 2024.

      We have rephrased the sentence and cited the suggested references (Lines 61-64).

      Comment 16: Line 65: rephrase "Despite its efficacy, this combination can elicit adverse drug reactions (Vannier and Krause, 2012)."

      We have rephrased the sentence (Lines 65-66).

      Comment 17: Lines 75-77: rephrase to read "... of the drug indicated that CIP taken orally had good absorption, a long half-life, and ...".

      We have rephrased the sentence (Lines 76-77).

      Comment 18: Line 79: remove "the".

      We have removed "the" (Lines 79-80).

      Comment 19: Lines 83-85: rephrase to read "Mice infected with T. gondii that were treated with CIP on the day of infection and the following day had 90% fewer parasites 5 days post-infection (Zhou et al., 2014).".

      We have rephrased the sentence (Lines 83-85).

      Comment 20: Line 90: shorten the sentence to end as follows "... of CIP on Babesia parasites.".

      We have shortened the sentence in line 100 with your suggestion.

      Comment 21: Line 96: spell out CC<sub>50</sub>.

      We have spelled out the full form of CC<sub>50</sub> (Line 106).

      Comment 22: Line 104: remove "of body weight".

      We have removed "of body weight" (Line 116).

      Comment 23: Line 108: delete "from 8 DPI to 24 DPI, with statistically significant decreases".

      We have deleted "from 8 DPI to 24 DPI, with statistically significant decreases" (Line 120).

      Comment 24: Line 111: start a new paragraph with the sentence "BALB/c mice infected ...".

      We have started a new paragraph with the sentence "BALB/c mice infected ..." (Line 124).

      Comment 25: Line 123: replace "showed" with "occurred".

      We have replaced "showed" with "occurred" (Line 138).

      Comment 26: Line 127: rephrase to read "... sensitivity of the resistant parasite lines ...".

      We have rephrased the sentence (Line 144).

      Comment 27: Lines 137-140: rephrase to read ".... lines were lower when compared with ..." .

      We have rephrased the sentence (Line 158).

      Comment 28: Line 149: replace "BgATP4" with "B. gibsoni ATP4".

      We have replaced "BgATP4" with "B. gibsoni ATP4" (Line 183).

      Comment 29: Line 154: spell out "pLDDT" prior to pLDDT.

      We have provided the full form of pLDDT in the revised manuscript (Line 188).

      Comment 30: Lines 165-166: rephrase to read "CIP is a novel compound that inhibits Plasmodium development by targeting ATP4 and has been ...".

      We have rephrased the sentence (Lines 219-220).

      Comment 31: Lines 171-172: rephrase to read "...AZI, the combination recommended by the CDC in the United States.

      We have rephrased the sentence (Lines 226-227).

      Comment 32: Line 173: rephrase to read "... B. rodhaini infection, with survival up to 67%.".

      We have rephrased the sentence (Line 228).

      Comment 33: Lines 175-178: rephrase to read "In a previous study, a P. falciparum Dd2 strain that acquired resistance to CIP carried the G358S mutation in the ...".

      We have rephrased the sentence (Lines 230-231).

      Comment 34: Lines 179-180: rephrase to read "ATP4 is found in the parasite plasma membrane and is specific to the subclass of apicomplexan parasites.".

      We have rephrased the sentence (Lines 232-233).

      Comment 35: Lines 182-184: rephrase to read "In another study of Toxoplasma gondii, a cell line that carried the mutation G419S in the TgATP4 gene was 34 times ...".

      We have rephrased the sentence (Lines 235-237).

      Comment 36: Lines 201-202: deleted the last sentence of this paragraph.

      We have deleted the last sentence of the paragraph (Line 261).

      Comment 37: Line 228: rephrase to read "... that CIP had a weaker binding to BgATP4<sup>L921I</sup> than to BgATP4<sup>L921V</sup>.".

      We have rephrased the sentence (Lines 294-295).

      Comment 38: Lines 261-262: please state that drugs were prepared in sesame oil. Add "20 mg/kg" in front of AZI.

      We have stated that drugs were prepared in sesame oil and added "20 mg/kg" in front of AZI (Lines 350-352).

      Comment 39: Line 265: replace "care" with "treatments".

      We have replaced "care" with "treatments" (Line 355).

      Comment 40: Line 267: replace "observe" with "assess".

      We have replaced "observe" with "assess" (Line 357).

      Comment 41: Lines 269-271: please provide the absolute numbers of B. gibsoni infected RBCs and the absolute numbers of uninfected RBCs that were added to the culture medium.

      We thank the reviewer for this suggestion. In the revised manuscript, we have included the absolute numbers of B. gibsoni-infected RBCs and uninfected RBCs added to the culture medium. Specifically, the culture medium contained 10 μL (5×10 <sup>6</sup>) B. gibsoni iRBCs mixed with 40 μL (4×10 <sup>8</sup>) uninfected RBCs (Lines 360-361).

      Comment 42: Line 279: replace "confirmed" with "identified".

      We have replaced "confirmed" with "identified" (Line 370).

      Comment 43: Figure Supplement 2: the squares are not readily visible. Could the entire column corresponding to the mutation position be highlighted?

      We thank the reviewer for this suggestion. To improve visibility, we have changed the color of the squares and added arrows to make the mutation sites as prominent as possible. Unfortunately, due to software limitations, we were unable to highlight the entire column corresponding to the mutation position.

      Comment 44: Figure Supplement 4: for the parasite that carries a mutation in BgATP4, please delete the arrows that are next to BgATP4. These arrows send the message that the mutation ATP4 has an active role in pumping back Na<sup>+</sup> and H<sup>+</sup> back in their compartment, which is not the case.

      We thank the reviewer for their observation. The dotted arrows next to BgATP4 are intended to indicate the recovery of H<sup>+</sup> and Na<sup>+</sup> balance facilitated by the mutated ATP4, which reduces susceptibility to ATP4 inhibitors. To avoid potential confusion, we have revised the figure legend to clearly explain the role of the arrows, ensuring the intended message is accurately conveyed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      As our understanding of the immune system increases it becomes clear that murine models of immunity cannot always prove an accurate model system for human immunity. However, mechanistic studies in humans are necessarily limited. To bridge this gap many groups have worked on developing humanised mouse models in which human immune cells are introduced into mice allowing their fine manipulation. However, since human immune cells will attack murine tissues, it has proven complex to establish a human-like immune system in mice. To help address this, Vecchione et al have previously developed several models using human cell transfer into mice with or without human thymic fragments that allow negative selection of autoreactive cells. In this report they focus on the examination of the function of the B-helper CD4 T-cell subsets T-follicular helper (Tfh) and T-peripheral helper (Tph) cells. They demonstrate that these cells are able to drive both autoantibody production and can also induce B-cell independent autoimmunity.

      Strengths:

      A strength of this paper is that currently there is no well-established model for Tfh or Tph in HIS mice and that currently there is no clear murine Tph equivalent making new models for the study of this cell type of value. Equally, since many HIS mice struggle to maintain effective follicular structures Tfh models in HIS mice are not well established giving additional value to this model.

      Weaknesses:

      A weakness of the paper is that the models seem to lack a clear ability to generate germinal centres. For Tfh it is unclear how we can interpret their function without the structure where they have the greatest influence. In some cases, the definition of Tph does not seem to differentiate well between Tph and highly activated CD4 T-cells in general.

      The limited ability of HIS mice to generate well-defined lymphoid tissue structures is well noted. While the emergence of T cells in HIS mice increases the size of lymphoid tissues, the structure remains suboptimal and vaccination responses are limited. We believe this is mainly due to the common gamma chain knockout, which results in a lack of murine lymphoid tissue inducer (LTi) cells, which require IL-7 signaling to interact with murine mesenchymal cells for normal lymphoid tissue development. Ongoing efforts by our group and others aim to address this challenge by providing the necessary signals. Despite this challenge, these mice do develop Tfh cells, allowing us to study this cell subset.

      We agree with the reviewer that the distinction between Tph and highly activated CD4 T cells is incomplete.

      However, we have provided several distinctions in our manuscript that support the presence of Tph in HIS mice: 1) Tph cells exhibit very high levels of PD-1 expression, whereas other activated CD4 cells have varying levels of PD-1 expression. 2) Tph cells express IL-21. 3) Tph cells promote B cell differentiation and antibody production. 

      Reviewer #2 (Public Review):

      Summary:

      Humanized mice, developed by transplanting human cells into immunodeficient NSG mice to recapitulate the human immune system, are utilized in basic life science research and preclinical trials of pharmaceuticals in fields such as oncology, immunology, and regenerative medicine. However, there are limitations to using humanized mice for mechanistic analysis as models of autoimmune diseases due to the unnatural T cell selection, antigen presentation/recognition process, and immune system disruption due to xenogeneic GVHD onset.

      In the present study, Vecchione et al. detailed the mechanisms of autoimmune disease-like pathologies observed in a humanized mouse (Human immune system; HIS mouse) model, demonstrating the importance of CD4+ Tfh and Tph cells for the disease onset. They clarified the conditions under which these T cells become reactive using techniques involving the human thymus engraftment and mouse thymectomy, showing their ability to trigger B cell responses, although this was not a major factor in the mouse pathology. These valuable findings provide an essential basis for interpreting past and future autoimmune disease research conducted using HIS mice.

      Strengths:

      (1) Mice transplanted with human thymus and HSCs were repeatedly executed with sufficient reproducibility, with each experiment sometimes taking over 30 weeks and requiring desperate efforts. While the interpretation of the results is still debatable, these description is valuable knowledge for this field of research.

      (2) Mechanistic analysis of T-B interaction in humanized mice, which has not been extensively addressed before, suggests part of the activation mechanism of autoreactive B cells. Additionally, the differences in pathogenicity due to T cell selection by either the mouse or human thymus are emphasized, which encompasses the essential mechanisms of immune tolerance and activation in both central and peripheral systems.

      Weaknesses:

      (1) In this manuscript, for example in Figure 2, the proportion of suppressive cells like regulatory T cells is not clarified, making it unclear to what extent the percentages of Tph or Tfh cells reflect immune activation. It would have been preferable to distinguish follicular regulatory T cells, at least. While Figure 3 shows Tregs are gated out using CD25- cells, it is unclear how the presence of Treg cells affects the overall cell population immunogenic functionally.

      We analyzed the % FOXP3+ cells and the % of ICOS+ cells within the Tfh and Tph cells in the spleen of Hu/Hu and Mu/Hu mice at 20 weeks post-transplantation. Importantly, we see no difference in FOXP3 expression between Tfh of Mu/Hu and Hu/Hu mice. The results have been added to panels J and K of Figure 2. 

      (2) The definition of "Disease" discussed after Figure 6 should be explicitly described in the Methods section. It seems to follow Khosravi-Maharlooei et al. 2021. If the disease onset determination aligns with GVHD scoring, generally an indicator of T cell response, it is unsurprising that B cell contribution is negligible. The accelerated disease onset by B cell depletion likely results from lymphopenia-induced T cell activation. However, this result does not prove that these mice avoid organ-specific autoimmune diseases mediated by auto-antibodies and the current conclusion by the authors may overlook significant changes. For instance, would defining Disease Onset by the appearance of circulating autoantibodies alter the result of Disease-Free curve? Are there possibly histological findings at the endpoint of the experiment suggesting tissue damage by autoantibodies?

      We have added a definition of disease to the Methods section as requested. Regarding the possibility of antibody-mediated disease that may be missed by this definition, we acknowledge this point in the Discussion section. However, we also discuss the point that the deficient complement pathway in NSG mice is likely to have protected the HIS mice from autoantibody-mediated organ damage.

      (3) Helper functions, such as differentiating B cells into CXCR5+, were demonstrated for both Hu/Hu and Mu/Huderived T cells. This function seemed higher in Hu/Hu than in Mu/Hu. From the results in Figure 7-8, Hu/Hu Tph/Tfh cells have a stronger T cell identity and higher activation capacity in vivo on a per-cell basis than Mu/Hu's ones. However, Hu/Hu-T cells lacked an ability to induce class-switching in contrast to Mu/Hu's. The mechanisms causing these functional differences were not fully discussed. Discussions touching on possible changes in TCR repertoire diversity between Mu/Hu- and Hu/Hu- T cells would have been beneficial. 

      Consistent with the reviewer’s suggestion, we have previously shown that the TCR repertoire in Mu/Hu mice is less diverse than that in Hu/Hu mice (Khosravi-Maharlooei M, et al., J Autoimmun., 2021). We believe that the narrowed TCR repertoire in the periphery of Mu/Hu mice, combined with the inadequate negative selection in the murine thymus reported in the paper cited above, results in selective peripheral expansion primarily of the few T cell clones that are cross-reactive with HLA/murine self peptide complexes presented by human APCs in the periphery.  We have discussed the reasons why these cells, when transferred to secondary recipients containing the same APCs, might not be as active as the more diverse, HLA-selected T cell repertoire transferred from Hu/Hu mice.  These possible reasons include exhaustion of the T cells in Mu/Hu mice, limited expression of the few targeted HLA-peptide complexes recognized by the narrow cross-reactive TCR repertoire of Mu/Hu T cells and the consequent relatively impaired T-B cell collaboration in these mice.   

      Recommendations for the authors:  

      Reviewer #1 (Recommendations For The Authors):

      The authors note that they removed an outlier result from Figures 1 B & C. With only 4 mice it seems difficult to see exactly how they determined the result was an outlier. Presumably, it was quite different from the others but in such a small dataset removing data without a very clear statistical rationale seems likely to strongly influence the results.

      We have revised Fig 1 to include the previously-deleted outlier mouse.   

      Figure 4. The authors describe the follicular area. Were they able to observe any GC-like structures in their data?

      From the examples, I can see that the PNA staining is sometimes diffuse but even if the authors felt they could not observe a distinct GC this should be stated and discussed in the text.

      We now describe the three colors IF staining in more detail in accordance with this comment. We characterized 4 Hu/Hu and 3 Mu/Hu spleens earlier than 20 weeks post-transplant. In all of these mice, distinct B cell areas (CD20+) were obvious and PNA+ cells were more concentrated in the B cell zones. We stained 4 Hu/Hu and 3 Mu/Hu spleens from mice between 20-30 weeks post-transplant and found that B cell areas were smaller in all these spleens compared to those taken before 20-weeks post-transplant. PNA+ areas are also more diffusely distributed and are not enriched in the B cell areas. Only 2 Mu/Hu mice showed clear B cell zones with some enriched PNA+ areas in the B cell zones. Additionally, we stained 2 Hu/Hu and 2 Mu/Hu mice later than week 30 post-transplant. No distinct B cell areas were observed in any of the spleens of these mice and PNA+ cells were diffusely distributed.  

      In Figure 3E the authors sort CD25-CXCR5-CD45RA- CD4 T-cells as Tph. This does seem a very loose definition including essentially all non-naïve CD4 cells that are not Tregs or Tfh.

      We agree with the reviewer that the distinction between Tph and highly activated CD4 T cells is incomplete.

      However, we have provided several distinctions in our manuscript that support the presence of Tph in HIS mice: 1) Tph cells exhibit very high levels of PD-1, whereas other activated CD4 cells have varying levels of PD-1 expression. 2) Tph cells express IL-21. 3) Tph cells promote B cell differentiation and antibody production. 

      Tph is sometimes a hard cell type to separate from more general highly activated CD4 T-cells. The broad CXCR5PD1+ phenotype they have used is common in the literature and the authors have confirmed some enrichment of IL21 production by these cells. However, they should consider if there are ways of further confirming this by examination of other markers such as CCR2 and CCR5 or elimination of other effector identities such as Th1 and Th17 or PD1+ exhaustion phenotypes.

      For this study, we chose to follow the commonly used definitions in the literature for Tph and Tfh cells. For this reason, we are careful to refer to “Tph-like” cells rather than Tph cells in this manuscript. Distinguishing Tph cells from other subsets of activated CD4 cells would require further studies such as single cell RNA seq, which we hope to be able to perform in the future with additional funding.  

      Figure 8. The authors perform some analysis of B-cell phenotypes looking at markers such as CD27, IgD in 8B, and CD11c in 8C. Why is CD11c considered in isolation? The level of expression of the other markers would change how this data would be interpreted e.g. IgD-CD27-CD11c+ = DN2/Atypical cells, IgD-CD27+CD11c+ = Activated or ageassociated, etc.

      In response to this comment, we reanalyzed the splenic samples of the donor Mu/Hu and Hu/Hu mice and their adoptive recipients. Interestingly, in the T cell donors, the Mu/Hu B cells included greater proportions of activated/age-associated B cells (IgD-CD27+CD11c+) and atypical cells (IgD-CD27-CD11c+), compared to the Hu/Hu B cells. This is consistent with the increased disease, increased Tph/Tfh and increased IgG antibody findings in the primary Mu/Hu compared to Hu/Hu mice. These results have been added to Figure 5G. We performed a similar analysis in the blood (week 9) and spleen of adoptive recipient mice. These studies showed that activated/ageassociated B cells (IgD-CD27+CD11c+) and atypical cells (IgD-CD27-CD11c+) were significantly increased in the adoptive recipients of Hu/Hu Tph and Tfh cells compared to the adoptive recipients of Mu/Hu Tph and Tfh cells (Fig. 8C). These results are consistent with the disease, T cell expansion and antibody results in the adoptive recipients. 

      Data not shown occurs often in this manuscript. In some cases what is not shown is potentially important. The authors note in the text relating to Figure 7 that the "purity of the cell populations as assessed by FCM ranged from 56-60% (data not shown)". Those numbers are a little alarming. They are referring to the purity of the FCS sorted Tfh and Tph prior to transfer? Currently, some of the discussion of this paper is about the possibility of plasticity, with Tfh switching into a Tph phenotype. If the transferred cell populations are 56-60% pure I don't think it is possible to make any interpretation of plasticity.

      We looked into this further and realized that the purity figure cited in the original manuscript was erroneous due to a misunderstanding on the part of the first author of a question from the senior author. Unfortunately, data on the purity of the FACS-sorted population was not saved. However, we have added panel B to Figure 7 to show the sorting strategy for Tfh and Tph cells.   We agree that any discussion of plasticity between these cell types is speculative, as outgrowth of a minor population is possible even from well-purified sorted cells.  

      Minor points:

      Some graphs have issues with presentation; Figures 5D and 5E, split scale clips data points. 5F the color representing time would be better replaced with direct labels. 6C and 6C some distortion of text clipping other elements.

      We changed 5D and 5E y axis scales to avoid cutting the data points. Also, we changed 5F labels. Distortion of text clipping and other elements in Fig 6E and 6A have been corrected.  

      The abbreviation LIP is used in the abstract without a clear definition until later in the text.

      This abbreviation has been defined again in the text.

      Generally, the discussion section is quite long.

      We agree that the discussion is quite long, but the results are quite complex and require considerable discussion.  We have attempted to be as concise as possible.

      Reviewer #2 (Recommendations For The Authors):

      Suggestion

      Can Supplementary Figures be merged into the mains for the convenience of readers? There is enough extra margin.

      We prefer to keep the order of main and supplementary figures as they are. 

      There are some confusing results which I would recommend to make the additional explanation for readers. For example, about 10% of Hu/Hu CD3+ T cells reacted to Auto-DC in Figure 1B, but neither CD4+ nor CD8+ cells did in Figure 1C.

      We have re-analyzed the data in Fig 1 and included the previously-deleted outlier mouse. 

      Minor

      Figure 3C

      The figure legend does not explain the figure. Hu/Mu or Mu/Mu?

      Both groups were combined in the figure, as the results were similar for both.  The N per group is given in the figure legend.  The same applies to figure 3D.

      Figure 4B, 4C

      Why were Hu/Hu and Mu/Hu data merged only in 4B? They should be discussed in the context of parallel comparison. Both y-axis labels are the same between B and C despite the legend saying differently.

      We switched the order of Figure 4B and 4C, each of which serves a different purpose. Figure 4B aims to demonstrate the similarity between the two groups at each timepoint.  Figure 4C combines the two groups in order to provide sufficient animal numbers to demonstrate the statistically significant changes over time. 

      Figure 5D

      The axis label was missing and the uncertain bar emerged. The authors should replace it with the corrected one.

      The axis and the bar in 5D have been corrected.

      Figure 5F

      The legend does not explain the figure. What are these numbers? Also, it is better if the authors add a detailed explanation to the manuscript about the reason why the sum of antibody titer represents the poly-reactivity of IgM in these mice.

      The numbers in the previous version of the figure were eartag numbers, which we have now renumbered as animal 1,2,3, etc in each group. Please refer to the final paragraph of the "Autoreactivity of IgM and IgG in HIS Mice" section in the Results section for an explanation of IgM polyreactivity.

      Fig. 7D-E etc.

      The definition of Asterisk is insufficient. Between what to what in the multiple comparisons?

      The green asterisks show significant differences between the Tph in Hu/Hu vs Mu/Hu mice, while the orange asterisks show significant differences between the Tfh in Hu/Hu vs Mu/Hu mice. This has been added to the figure legend.

      Figure 7 ~ Figure 8

      The legends on the figure are confusing due to the different order of figures. The scales are inappropriate in some figures. The readers cannot interpret the data from the unfairly compressed plots.

      We made the plots bigger to make them readable and changed the order.

      Methods

      In the description of B cell depletion Experiments, the authors should directly mention the figure number instead of "In the second Experiment ..."

      We have corrected this in the Methods section.

      There is no definition of how to define the "disease" onset.

      This definition has been added to the Methods section.

      Several undefined abbreviations: "LIP", "BLT" ...

      We defined these in the text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      Comment 1- I would like the authors to discuss and justify their use of high-dose (1.3%) isolfurane. A recent consensus paper on rat fMRI (Grandjean et al., "A Consensus Protocol for Functional Connectivity Analysis in the Rat Brain.") found that medetomidine combined with low dose isoflurane provided optimal control of physiology and fMRI signal. To overcome any doubts about the effects of the high-dose anaesthetic I'd encourage the authors to show the results of their functional connectivity specificity using the same or similar image processing protocol as described in that consensus paper. This is especially true since the fMRI ICs in Figure 2A appear fairly restricted.

      We thank the reviewer for their insightful comments. We agree that the combination of medetomidine and isoflurane, as recommended by Grandjean et al. in their consensus paper, provides superior physiological stability and fMRI signal quality, and should indeed be considered the preferred protocol for future studies. In fact, we have adopted this combination in our subsequent research [1]. However, the data acquired in the present study were acquired prior to the publication of the consensus recommendations and have been previously published [2, 3]. While isoflurane is not the ideal anesthetic for functional connectivity studies, we have demonstrated in earlier work [4], that using isoflurane at 1.3% maintains stable physiological parameters and avoids burst suppression, a key issue with higher isoflurane doses.

      Regarding preprocessing, we acknowledge the importance of standardized approaches as outlined in the consensus paper. However, to maintain methodological consistency with our prior work, we retained the original preprocessing pipeline for this study. This decision ensures comparability with our previous analyses. To address the reviewer’s concerns and encourage further verification, we have uploaded the full dataset to a public repository (as suggested in Comment 4). This will enable other researchers to reanalyze the data using updated preprocessing pipelines or explore additional analyses.

      We have updated the manuscript discussion (page 19) to clearly acknowledge these points:

      “One limitation of our study is that our experimental protocols predate the recently published consensus recommendations for rat fMRI [42], particularly concerning anesthesia and preprocessing pipelines. The use of isoflurane anesthesia, although common at the time of data acquisition, introduces a potential confound due to its known effects on neuronal activity. However, we previously demonstrated that isoflurane at 1.3% maintains stable physiological parameters and avoids burst suppression [43], a concern at higher doses. Furthermore, other studies have reported that low-dose isoflurane remains feasible for resting-state functional connectivity studies [44]. While isoflurane, as a GABA-A agonist, could theoretically interact with the mechanisms of MDMA in the brain, we found no evidence in the literature suggesting significant cross-talk between these substances. Future studies employing medetomidine-based protocols may help minimize this potential confound.

      Regarding data preprocessing, we chose to retain the same pipeline used in our prior publications [13, 14] to maintain methodological consistency. While we recognize the advantages of adopting standardized preprocessing as outlined in the consensus guidelines, this approach ensures comparability with our previous analyses. To facilitate further investigation, we have made the full dataset publicly available (see Data Availability Statement), enabling reanalysis with updated pipelines or additional explorations of this dataset.”

      Comment 2 - I'd also be interested to read more about why the cerebellum was chosen as a reference region, given that serotonin is highly expressed in the cerebellum, and what effects the choice of reference region has on their quantification.

      This is something we ourselves have examined in a paper, dedicated to determine the most suitable reference region for [11C]DASB, and while the reviewer is correct in saying there is also serotonin in the cerebellum, we found the lowest binding for this tracer in the cerebellar gray matter, recommending this region as a valid reference area. (“Displaceable binding of (11)C-DASB was found in all brain regions of both rats and mice, with the highest binding being in the thalamus and the lowest in the cerebellum. In rats, displaceable binding was largely reduced in the cerebellar cortex”, please refer to [5]).

      We amended our materials and methods part to specify that we had shown in this previous publication that the cerebellar gray matter is appropriate as a reference region (page 6):

      “Binding potentials were calculated frame-wise for all dynamic PET scans using the DVR-1 (equation 1) to generate regional BPND values with the cerebellar gray matter as a reference region, which our earlier studies have demonstrated to be the most appropriate for this tracer in rats [5, 6]:”

      Comment 3 - The PET ICs appear less bilateral than the fMRI ICs. Is that simply a thresholding artefact or is it a real signal?

      We thank the reviewer for this observation. The reduced bilaterality of PET ICs compared to fMRI ICs is likely due to the inherent limitation in the temporal resolution of PET, which provides significantly fewer frames (100 frames compared to 3000 frames for fMRI). This lower temporal resolution leads to reduced signal-to-noise ratio when computing the ICA, which can affect the stability and symmetry of the ICs during ICA computation, particularly at higher IC numbers. While thresholding may also a minor role, we believe the primary factor is poorer SNR associated with the PET data. We have clarified this point in the discussion section (page 17) as follows:

      “In our analysis, PET ICs appeared less bilateral than fMRI ICs. This is likely due to the lower temporal resolution of PET (100 frames) compared to fMRI (3000 frames), resulting in reduced signal-to-noise ratio (SNR) and potentially affecting the stability and symmetry of the independent components.”

      Comment 4 - "The data will be made available upon reasonable request" is not sufficient - please deposit the data in an open repository and link to its location.

      We agree with the request of the reviewer and uploaded the data to a Dryad repository. We amended our Data Availability Statement accordingly.

      Comment 5 (recommendation) - Please add the age and sex of the rats in lines 92-97.

      Amended.

      Comment 6 (recommendation) - There are multiple typos throughout the manuscript - for example, "z-vlaue" on line 164, "negligable" on line 194, etc.. Sometimes the 11 in 11C is superscripted, sometimes it isn't. This paper would benefit from a careful proofread.

      Thank you for pointing this out. We sent the manuscript for language and grammar editing to AJE (see certificate).

      Reviewer 2:

      Comment 1 - While the study protocol is referenced in the paper, it would be useful to at least report whether the study uses bolus, constant infusion, or a combination of the two and the duration of the frames chosen for reconstruction. Minimal details on anesthesia should also be reported, clarifying whether an interaction between the pharmacological agent for anesthesia and MDMA can be expected (whole-brain or in specific regions).

      We fully agree that this would improve the readability of our manuscript and added the information to the materials and methods and discussion accordingly. Please refer to page 4/5.

      Comment 2 - Some terminology is used in a bit unclear way. E.g. "seed-based" usually refers to seed-to-voxel and not ROI-to-ROI analysis, or e.g. it is a bit confusing to have IC1 called SERT network when in fact all ICs derived from DASB data are SERT networks. Perhaps a different wording could be used (IC1 = SERT xxxxx network; IC2= SERT salience network).

      Based on the reviewer´s suggestion, we suggest to rename IC1 and IC2 according to their anatomical and functional characteristics (page 13):

      “IC1 = SERT Salience Network: This name highlights the involvement of the regions typically associated with the salience network (e.g., CPu, Cg, NAc, Amyg, Ins, mPFC), which play key roles in emotional and cognitive processing.”

      “IC2 = SERT Subcortical Network: This name reflects the involvement of subcortical regions which play a role in arousal, stress response, and autonomic regulation, which are heavily modulated by serotonin in areas like the hypothalamus, PAG, and thalamus.”

      Comment 3 - The limited sample size for the rats undergoing pharmacological stimulation which might make the study (potentially) not particularly powerful. This could not be a problem if the MDMA effect observed is particularly consistent across rats. Information on inter-individual variability of FC, MC, and BPND could be provided in this regard.

      We thank the reviewer for raising this point. To address the concern about limited sample size and inter-individual variability, we have added this information to Figures 5 B and D. Regarding the BPND variability, the dotted lines in Figure 3 indicate the standard deviation in the regional BPNDs, however, this was not clearly stated in the original figure description. We have now amended the figure legend to explicitly clarify this point.

      Comment 4 (recommendation) - "Our research employs a novel approach named "molecular connectivity" (MC), which merges the strengths of various imaging methods to offer a comprehensive view of how molecules interact within the brain and affect its function." I'd recommend rephrasing to "..how molecular interact across different areas within the brain..". Molecular connectivity is a potentially ambiguous term (used to study interactions across different molecules (in the same compartment/environment) vs. to study interactions across the same molecules in different areas). I'd add a couple of references to help the reader disambiguate too (e.g. https://pubmed.ncbi.nlm.nih.gov/30544240/ , https://pubmed.ncbi.nlm.nih.gov/36621368/)

      We appreciate the reviewer’s suggestion and agree that the term "Molecular Connectivity" could be ambiguous. To clarify, we rephrased the description to emphasize that our approach specifically examines interactions of the same molecule (i.e., serotonin transporter) across different brain regions, rather than interactions between different molecules within the same environment. We propose the following revised text (page 2):

      “Our research employs a novel approach termed molecular connectivity (MC), which combines the strengths of various imaging methods to provide a comprehensive view of how specific molecules, such as the serotonin transporter, interact across different brain regions and influence brain function.”

      Additionally, we will incorporate the suggested references to help the reader further contextualize the use of this term.

      Comment 5 - In the methods, it is not clear if for MC the authors also compute ROI-to-ROI correlations or only ICA.

      Thank you for highlighting this point. To clarify, our MC analysis, includes both ROI-to-ROI correlations and ICA. Specifically, as described at the end of the “Molecular Connectivity Analysis” subchapter, we compute ROI-to-ROI correlations using the following steps: 1. The first 20 minutes of each scan are discarded to account for perfusion effects. 2. A detrending approach is applied to the remaining 60 minutes of BP<sub>ND</sub> time courses. 3. ROI-to-ROI calculations are then calculated and organized into subject-level correlation matrices, which are subsequently z-transformed to generate mean correlation matrices across subjects.

      We revised the methods section to explicitly state that both ROI-to-ROI correlations and ICA are integral components of the MC analysis to ensure this point is clear to readers (page 6).

      “The BP<sub>ND</sub> time courses were then used to calculate MC as described above for fMRI: ROI-to-ROI subject-level correlation matrices between all regional time courses were generated and z-transformed correlation coefficients were used to calculate mean correlation matrices.”

      Comment 7 - In the discussion, it could be useful to relate IC1 and IC2 to well-established neuroanatomical/molecular knowledge of the serotoninergic system. Did the authors expect the IC1 and IC2 anatomical distributions? is there a plausible biological reason as to why the time courses of BPnd variations would be somehow different between IC1 and IC2?

      We appreciate the reviewer’s insightful comment and agree on the importance of relating IC1 and IC2 to well-established neuroanatomical and molecular knowledge of the serotonergic system.

      In our discussion, we noted that IC1 primarily encompasses subcortical structures such as the brainstem, midbrain, and thalamus. These regions are consistent with areas housing dense serotonergic projections originating from the raphe nuclei, the primary source of serotonin release. In contrast, IC2 involves limbic and cortical regions - including the striatum, amygdala, cingulate, insular, and prefrontal cortices - which are key targets of the serotonergic pathways. This anatomical distinction aligns with the hierarchical organization of the serotonergic system, where the brainstem nuclei exert both local and distal serotonergic modulation.

      The observed differences in the temporal dynamics of the binding potential (BP<sub>ND</sub>) variations between IC1 and IC2 likely reflect the distinct functional roles of these regions within the serotonergic network. The more immediate changes in IC1 could be attributed to the direct effect of MDMA on the raphe nuclei, leading to rapid serotonin release in subcortical structures. In contrast, the delayed changes in IC2 may reflect downstream modulation in cortical and limbic regions involved in processing more complex emotional and cognitive functions.

      That said, while these interpretations are plausible based on current neuroanatomical and functional knowledge, the exact biological mechanisms underlying the differential time courses remain unclear. As discussed in the manuscript, future studies incorporating direct, simultaneous measurements of serotonin levels and imaging data will be essential to fully elucidate the temporal and spatial dynamics of serotonin transmission in these regions. We have revised to better highlight this limitation in the discussion section (page 17) as an important area for further investigation:

      “Our results demonstrate that compared with FC, MDMA induces more pronounced changes in MCs, particularly in regions associated with the SERT subcortical network. The distinct temporal dynamics of BPnd variations between these components may reflect the hierarchical organization of the serotonergic system. Specifically, the raphe nuclei, as the primary source of serotonin, are likely to exert more immediate modulation on posterior subcortical structures (IC2), whereas downstream effects on limbic and cortical regions (IC1) may occur more gradually. While these findings align with current neuroanatomical and molecular knowledge, the precise biological mechanisms driving these temporal differences remain unclear. Future investigations are warranted to elucidate these mechanisms. Future studies combining direct measurements of serotonin levels with neuroimaging data will be critical to fully understanding these components’ distinct roles and temporal profiles in regulating serotonergic function.”

      Comment 8 - In the discussion (physiological basis), could the authors detail the expected "time scale" in changes in SERT expression? How quickly can SERT expression change, especially under resting-state conditions? Is it reasonable to consider tracer fluctuations under rest conditions as biologically meaningful?

      SERT regulation can occur over different time scales depending on the mechanism involved [7].

      Acute, rapid changes (milliseconds to seconds): Protein-protein interactions with key regulatory proteins (e.g., syntaxin1A, neuronal nitric oxide synthase) can lead to rapid modulation of SERT surface expression [8-11]. These interactions often involve changes in transporter trafficking or conformational states and can occur within milliseconds to seconds. For example, syntaxin1A directly interacts with the N-terminus of SERT, influencing its availability on the plasma membrane within short timescales.

      Intermediate time scales (seconds to minutes): Posttranslational modifications, such as phosphorylation by kinases (e.g., protein kinase C) or dephosphorylation by phosphatases, are known to influence SERT function and surface expression [12-14]. These processes are typically initiated in response to cellular signaling and occur over seconds to minutes, affecting the SERT trafficking dynamics and serotonin uptake capacity [15, 16].

      Longer-term changes (minutes to hours): Longer-term regulation involves processes like endocytosis, recycling, or degradation of SERT. These pathways typically take minutes to hours and are often part of more sustained cellular responses to changes in neuronal activity or serotonin levels. Such changes are slower but contribute to the overall cellular homeostasis of SERT under prolonged stimulation.

      Under resting-state conditions, where neurons are not subjected to rapid or dramatic fluctuations in neurotransmitter release or signaling, SERT expression and activity are generally stable but still subject to subtle fluctuations due to ongoing basal regulatory processes. Basal phosphorylation or low-level protein-protein interactions can still dynamically modulate SERT trafficking and function, albeit at a lower intensity than under stimulated conditions. These fluctuations, although smaller in magnitude, may reflect fine-tuning of serotonin homeostasis and can occur on shorter timescales (seconds to minutes).

      Biological Relevance of Tracer Fluctuations at Rest:

      It is reasonable to consider that tracer fluctuations under resting conditions could reflect biologically meaningful variations in SERT expression and function. Even subtle shifts in SERT surface availability or activity can impact serotonin clearance and signaling, given the fine balance required to maintain serotonergic tone. These fluctuations may reflect intrinsic neuronal variability or ongoing homeostatic adjustments to maintain optimal neurotransmitter levels or serve as early indicators of adaptive responses to environmental or physiological changes before more overt modifications in transporter expression or activity become apparent.

      In summary, while SERT expression can change rapidly in response to signaling events (milliseconds to minutes), even under resting-state conditions, subtle regulatory fluctuations can be biologically meaningful. These fluctuations likely reflect ongoing regulatory adjustments essential for maintaining serotonergic balance and should not be disregarded as noise, particularly in experimental measurements using tracers.

      We added the following paragraph to the discussion (page 16):

      In addition, SERT regulation occurs over multiple time scales, ranging from milliseconds to hours, depending on the mechanism involved [31]. Rapid changes in SERT surface expression can be mediated by protein-protein interactions or posttranslational modifications [32, 33], such as phosphorylation, which occur on a timescale of milliseconds to minutes. These processes dynamically modulate surface availability and function, allowing fine-tuned regulation of serotonin uptake even under resting-state conditions. Additionally, while slower processes involving endocytosis, recycling, and degradation typically occur over minutes to hours, subtle fluctuations in SERT trafficking and activity can still occur under basal conditions. These minor yet biologically relevant changes likely reflect ongoing homeostatic regulation essential for maintaining serotonergic balance. Therefore, tracer fluctuations observed during resting-state measurements should not be dismissed, as they may represent meaningful variations in SERT regulation that contribute to the fine control of serotonin clearance.

      Comment 9 - In the discussion, the SERT network results should be commented on more extensively, as there is now only a generic reference to MC changes being stronger than FC ones, without spatial reference to the SERT network (while only negative salience network results are referenced explicitly instead, making the paragraph a bit confusing).

      We expanded the discussion to accommodate a more thorough contemplation of this network. This revised paragraph (page 17) directly addresses the spatial aspects of the SERT network, highlighting the specific regions involved in serotonergic connectivity and contrasting molecular and functional connectivity changes induced by MDMA.

      Comment 10 - Figure 3; I'd switch left and right charts in the bottom panel (last row only), to keep the SERT network always on the left of the Figure.

      We agree with the suggestion and changed the figure accordingly.

      Comment 11 - Figure 4: I'd add FC decreases to the figure, to allow the reader to compare BPnd, MC, and FC changes more easily and I'd add a horizontal line at the equivalent of e.g. Z-1.96 (or similar) so that it is clear which measures/regions display significant changes.

      We prefer to keep the figure focusing on the two analyses of PET alterations, since we want to emphasize their complementarity in the context of PET specifically. However, we added lines indicating significances, in line with the reviewer’s suggestion.

      Comment 12 - In Figure 5D, the y-axis mentioned FC but I suppose it should mention MC.

      We amended the figure accordingly, together with the changes to the names of the networks implemented across the manuscript.

      (1) Marciano, S., et al., Combining CRISPR-Cas9 and brain imaging to study the link from genes to molecules to networks. Proc Natl Acad Sci U S A, 2022. 119(40): p. e2122552119.

      (2) Ionescu, T.M., et al., Striatal and prefrontal D2R and SERT distributions contrastingly correlate with default-mode connectivity. Neuroimage, 2021. 243: p. 118501.

      (3) Ionescu, T.M., et al., Neurovascular Uncoupling: Multimodal Imaging Delineates the Acute Effects of 3,4-Methylenedioxymethamphetamine. J Nucl Med, 2023. 64(3): p. 466-471.

      (4) Ionescu, T.M., et al., Elucidating the complementarity of resting-state networks derived from dynamic [(18)F]FDG and hemodynamic fluctuations using simultaneous small-animal PET/MRI. Neuroimage, 2021. 236: p. 118045.

      (5) Walker, M., et al., In Vivo Evaluation of 11C-DASB for Quantitative SERT Imaging in Rats and Mice. J Nucl Med, 2016. 57(1): p. 115-21.

      (6) Walker, M., et al., Imaging SERT Availability in a Rat Model of L-DOPA-Induced Dyskinesia. Mol Imaging Biol, 2020. 22(3): p. 634-642.

      (7) Lau, T. and P. Schloss, Differential regulation of serotonin transporter cell surface expression. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling, 2012. 1(3): p. 259-268.

      (8) Haase, J., et al., Regulation of the serotonin transporter by interacting proteins. Biochem Soc Trans, 2001. 29(Pt 6): p. 722-8.

      (9) Quick, M.W., Regulating the conducting states of a mammalian serotonin transporter. Neuron, 2003. 40(3): p. 537-49.

      (10) Ciccone, M.A., et al., Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology, 2008. 55(5): p. 763-70.

      (11) Chanrion, B., et al., Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity. Proc Natl Acad Sci U S A, 2007. 104(19): p. 8119-24.

      (12) Qian, Y., et al., Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression. J Neurosci, 1997. 17(1): p. 45-57.

      (13) Ramamoorthy, S., et al., Phosphorylation and regulation of antidepressant-sensitive serotonin transporters. J Biol Chem, 1998. 273(4): p. 2458-66.

      (14) Jayanthi, L.D., et al., Evidence for biphasic effects of protein kinase C on serotonin transporter function, endocytosis, and phosphorylation. Mol Pharmacol, 2005. 67(6): p. 2077-87.

      (15) Steiner, J.A., A.M. Carneiro, and R.D. Blakely, Going with the flow: trafficking-dependent and -independent regulation of serotonin transport. Traffic, 2008. 9(9): p. 1393-402.

      (16) Lau, T., et al., Monitoring mouse serotonin transporter internalization in stem cell-derived serotonergic neurons by confocal laser scanning microscopy. Neurochem Int, 2009. 54(3-4): p. 271-6.

    1. Author response:

      The following is the authors’ response to the previous reviews

      According to the reviewers' comments, we appreciate your substantial updates. However, the statistical issue remains unsolved. The following is a general way to get fold changes between controls and experimental samples. Each sample will generate relative differences between target molecules and internal controls. For the case of Fig 1B, the target is pSmad2, and the internal control is the total Smad2. Three control samples will generate three numbers for pSmad2/Smad2 ratios with variations. Similarly, T204D samples will generate three numbers with variations. Then, the average of these three numbers will be set as 1 (with variations) to calculate fold changes between the control and T204D groups. The point is that the statistical significance needs to be evaluated between two groups with variations. This standard method differs from what you described in the manuscript. I hope this explains why the issue needs to be fixed. Please work on the following 11 panels to revise.

      (1) Fig 1B, WB, pSmad2, reference Smad2, loading control GAPDH, fold change by T204D.

      (2) Fig 1C, WB, pSmad2, reference Smad2, loading control GAPDH, fold change by Tb/Rudhira.

      (3) Fig 1D, QRT PCR, pai1/mmp9, fold change by Tb treatment, reference not disclosed.

      (4) Fig 2A, migration, crystal red absorbance.

      (5) Fig 2B, migration, crystal red absorbance.

      (6) Fig 4A, QRT PCR, fold change by Tb.

      (7) Fig 4B, WB, Rudhira, fold change by Tb.

      (8) Fig 4C, intensity, with variation, fine.

      (9) Fig 4D, WB, Rudhira, loading control GAPDH, fold change by Smad2/3 silencing.

      (10) Fig 5A, WB, Rudhira/Glu-Tub, loading control GAPDH, fold change by Tb and/or AcD.

      (11) Fig 5C, WB, Glu-Tub.

      For western blots:

      Graphs for western blots in the following figures have been modified to show the variance in controls, as suggested:

      (1) Fig 1B, WB, pSmad2, reference Smad2, loading control GAPDH, fold change by T204D.

      (2) Fig 1C, WB, pSmad2, reference Smad2, loading control GAPDH, fold change by Tb/Rudhira.

      (7) Fig 4B, WB, Rudhira, fold change by Tb.

      (9) Fig 4D, WB, Rudhira, loading control GAPDH, fold change by Smad2/3 silencing.

      (10) Fig 5A, WB, Rudhira/Glu-Tub, loading control GAPDH, fold change by Tb and/or AcD.

      (11) Fig 5C, WB, Glu-Tub.

      For qPCRs:

      The reader’s comment asked to display error bars if the variance in controls was considered. The variance in controls was not considered, which is a standard practice in the qPCR assay. In this regard, an example from an eLife paper is cited below (variation not considered in controls):

      Fig 4C from Conti et al., N6-methyladenosine in DNA promotes genome stability, revised v2 Feb 3, 2025.

      Accordingly, the following graphs remain unchanged:

      (3) Fig 1D, QRT PCR, pai1/mmp9, fold change by Tb treatment, reference not disclosed.

      (6) Fig 4A, QRT PCR, fold change by Tb.

      For crystal violet experiments:

      Due to variability in the procedure introduced from CV preparation, uptake, and extraction etc., in the absence of a reference/standard, it is not possible to determine the absolute cell number across experiments. To simplify the calculation, we normalize CV intensity of all the samples to control for an experiment, so the control group doesn’t have error bars. In this regard, an example from an eLife paper is cited below (variation not considered in controls).

      Fig 2H from Brunner et al., PTEN and DNA-PK determine sensitivity and recovery in response to WEE1 inhibition in human breast cancer, version of record July 6, 2020.

      Accordingly, the following graphs remain unchanged:

      (4) Fig 2A, migration, crystal red absorbance.

      (5) Fig 2B, migration, crystal red absorbance.

      Lastly, #8 remains unchanged.

      (8) Fig 4C, intensity, with variation, fine.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public reviews):

      Summary:

      In this study, Fakhar et al. use a game-theoretical framework to model interregional communication in the brain. They perform virtual lesioning using MSA to obtain a representation of the influence each node exerts on every other node, and then compare the optimal influence profiles of nodes across different communication models. Their results indicate that cortical regions within the brain's "rich club" are most influential.

      Strengths:

      Overall, the manuscript is well-written. Illustrative examples help to give the reader intuition for the approach and its implementation in this context. The analyses appear to be rigorously performed and appropriate null models are included.

      Thank you.

      Weaknesses:

      The use of game theory to model brain dynamics relies on the assumption that brain regions are similar to agents optimizing their influence, and implies competition between regions. The model can be neatly formalized, but is there biological evidence that the brain optimizes signaling in this way? This could be explored further. Specifically, it would be beneficial if the authors could clarify what the agents (brain regions) are optimizing for at the level of neurobiology - is there evidence for a relationship between regional influence and metabolic demands? Identifying a neurobiological correlate at the same scale at which the authors are modeling neural dynamics would be most compelling.

      This is a fundamental point, and we put together a new project to address it. The current work focuses on, firstly, rigorously formalizing a prevailing assumption that brain regions optimize communication, and then uncovering what are the characteristics of communication if this optimization is indeed taking place. Based on our findings, we suspect the mechanism of an optimal communication to be through broadcasting (compared to other modes explored in our work, e.g., the shortest-path signalling or diffusion). However, we recognize that our game-theoretical framework does not directly address “how” this mechanism is implemented. Thus, in our follow-up work, we are analyzing available datasets of signal propagation in the brain to see if communication dynamics there match the predictions of the game-theoretical setup. However, following your question, we extended our discussion to cover this point, cited five other works on this topic, and what, we think, could be the neurobiological mechanism of optimal signalling.  

      It is not entirely clear what Figure 6 is meant to contribute to the paper's main findings on communication. The transition to describing this Figure in line 317 is rather abrupt. The authors could more explicitly link these results to earlier analyses to make the rationale for this figure clearer. What motivated the authors' investigation into the persistence of the signal influence across steps?

      Great question. Figure 6 in part follows Figure 5, which summarizes a key aspect of our work: Signals subside at every step but not exponentially (Figure 5), and they nearly fall apart after around 6 steps (Figure 6 A and B). Subplots A and B together suggest that although measures like communicability account for all possible pathways, the network uses a handful instead, presumably to balance signalling robustness versus the energetic cost of signalling. Subplot C, one of our main findings, then shows how one simple model is all needed to predict a large portion of optimal influence compared to other models and variables. In sum, Figure 5 focused on the decay dynamics while Figure 6 focused on the extent, in terms of steps, given that the decay is monotonic. Together, our motivation for this figure was to show how the right assumption about decay rate and dynamics can outperform other measures in predicting optimal communication. 

      The authors used resting-state fMRI data to generate functional connectivity matrices, which they used to inform their model of neural dynamics. If I understand correctly, their functional connectivity matrices represent correlations in neural activity across an entire fMRI scan computed for each individual and then averaged across individuals. This approach seems limited in its ability to capture neural dynamics across time. Modeling time series data or using a sliding window FC approach to capture changes across time might make more sense as a means of informing neural dynamics.

      We agree with you on the fact that static fMRI is limited in capturing neural dynamics. However, we opted not to perform dynamic functional connectivity fitting just yet for a practical reason: Other communication models used here do not fit to any empirical data and provide a static view of the dynamics, comparable to the static functional connectivity. Since one of our goals was to compare different communication regimes, and the fact that fitting dynamics does not seem to substantially change the outcome if the end result is static (Figure 7), we decided to go with the poorer representation of neural data for this work. However, part of our follow-up project involves looking into the dynamics of influence over time and for that, we will fit our models to represent more realistic dynamics.

      The authors evaluated their model using three different structural connectomes: one inferred from diffusion spectrum imaging in humans, one inferred from anterograde tract tracing in mice, and one inferred from retrograde tract-tracing in macaque. While the human connectome is presumably an undirected network, the mouse and macaque connectomes are directed. What bearing does experimentally inferred knowledge of directionality have on the derivation of optimal influence and its interpretation?

      In terms of if directionality changes the interpretation of optimal influence, we think it sets limits for how much we can compare communication dynamics of these two types of networks. We think interpreting optimal communication in directed graphs needs to disentangle incoming influence from outgoing influence, e.g., analyzing “projector hubs/coordinators” and “receiver hubs/integrators” instead of putting both into a common class of hubs. Also, here we showed the extent of which a signal travels before it significantly degrades, having done so in an undirected graph. One of its implications for a directed graph is the possibility that some nodes can be unreachable from others, given the more restricted navigation. A possibility that we did not observe in the human connectome as all nodes could reach others, although with limited influence (see Figure 2. C). We did not explore these differences, as we used mice and macaque connectomes primarily to control for modality-specific confounds of DSI. However, our relatively poorer fit for directed networks (Supplementary Figure 2) motivated us to analyze how reciprocal connections shape dynamics and what impact do they have on networks’ function. Using the same connectomes as the current work, we addressed this question in a separate publication (Hadaeghi et al., 2024) and plan to extend both works by analyzing the signalling properties of directed networks.

      It would be useful if the authors could assess the performance of the model for other datasets. Does the model reflect changes during task engagement or in disease states in which relative nodal influence would be expected to change? The model assumes optimality, but this assumption might be violated in disease states.

      This is a wonderful idea that we initially had in mind for this work as well, but decided to dedicate a separate work on deviations in different tasks states, as well as disease states (mainly neurodegenerative disorders). We noticed the practical challenges of fitting large-scale models to task dynamics and harmonizing neuroimaging datasets of neurodegenerative disorders is beyond the scope of the current work. Unfortunately, this effort, although exciting and promising, is still pending as the corresponding author does not yet have the required expertise of neuroimaging processing pipelines.

      The MSA approach is highly computationally intensive, which the authors touch on in the Discussion section. Would it be feasible to extend this approach to task or disease conditions, which might necessitate modeling multiple states or time points, or could adaptations be made that would make this possible?

      Continuing our response from the previous point, yes, we think, in theory, the framework is applicable to both settings. Currently, our main point of concern is not the computational cost of the framework but the harmonization of the data, to ensure differences in results are not due to differences in preprocessing steps. However, assuming that all is taken care of, we believe a reasonable compute cluster should suffice by parallelizing the analytical pipeline over subjects. We acknowledge that the process would still be time-consuming, but besides the fitting process, we expect a modern high-performance CPU with about 32–64 threads to take up to 3 days analyzing one subject, given 100 brain regions or fewer. This performance then scales with the number of cluster nodes that can each work on one subject. We note that the analytical estimators such as SAR could be used instead, as it largely predicts the results from MSA. The limitations are then the lack of dynamics over time and potential estimation errors.

      Reviewer #2 (Public review):

      Summary:

      The authors provide a compelling method for characterizing communication within brain networks. The study engages important, biologically pertinent, concerns related to the balance of dynamics and structure in assessing the focal points of brain communication. The methods are clear and seem broadly applicable, however further clarity on this front is required.

      Strengths:

      The study is well-developed, providing an overall clear exposition of relevant methods, as well as in-depth validation of the key network structural and dynamical assumptions. The questions and concerns raised in reading the text were always answered in time, with straightforward figures and supplemental materials.

      Thank you.

      Weaknesses:

      The narrative structure of the work at times conflicts with the interpretability. Specifically, in the current draft, the model details are discussed and validated in succession, leading to confusion. Introducing a "base model" and "core datasets" needed for this type of analysis would greatly benefit the interpretability of the manuscript, as well as its impact.

      Following your suggestion, we modified the introduction to emphasize on the human connectome and the linear model as the main toolkit. We also added a paragraph explaining the datasets that can be used instead.

      Recommendations for the authors:

      Essential Revisions (for the authors):

      (1) The method presents an important and well-validated method for linking structural and functional networks, but it was not clear precisely what the necessary data inputs were and what assumptions about the data mattered. To improve the clarity of the presentation for the reader, it would be beneficial to have an early and explicit description of the flow of the method - what exact kinds of datasets are needed and what decisions need to be made to perform the analysis. In addition, there were questions about how the use or interpretation of the method might change with different methods of measuring structure or function, which could be answered via an explicit discussion of the issue. For example, how do undirected fMRI correlation networks compare to directed tracer injection projection networks? Similarly, could this approach apply in cases like EM connectomics with linked functional imaging that do not have full observability in both modalities?

      This is an important point that we missed addressing in detail in the original manuscript. Now we did so, by first adding a paragraph (lines 292-305, page 10) explaining the pipeline and how our framework handles different modeling choices, and then further discussing it in the Discussion (lines 733-748, page 28). Moreover, we adjusted Figure 1, by delineating two main steps of the pipeline. Briefly, we clarified that MSA is model-agnostic, meaning that, in principle, any model of neural dynamics can be used with it, from the most abstract to the most biologically detailed. Moreover, the approach extends to networks built on EM connectomics, tract-tracing, DTI, and other measures of anatomical connectivity. However, we realized that a key detail was not explicitly discussed (pointed to by Reviewer #2), that is, the fact that these models naturally need to be fitted to the empirical dataset, even though this fitting step appears not to be critical, as shown in Figure 7.

      Lines 292-305:

      “The MSA begins by defining a ‘game.’ To derive OSP, this game is formulated as a model of dynamics, such as a network of interacting nodes. These can range from abstract epidemic and excitable models (Garcia et al., 2012; Messé et al., 2015a) to detailed spiking neural networks (Pronold et al., 2023) and to mean-field models of the whole brain dynamics, as chosen here (see below). The model should ideally be fitted to reflect real data dynamics, after which MSA systematically lesions all nodes to derive the OSP. Put together, the framework is general and model-agnostic in the sense that it accommodates a wide range of network models built on different empirical datasets, from human neuroimaging and electrophysiology to invertebrate calcium imaging, and anything in between. In essence, the framework is not bound to specific modelling paradigms, allowing direct comparison among different models (e.g., see section Global Network Topology is More Influential Than Local Node Dynamics).”

      Lines 733-740:

      “As noted in the introduction, OI is model-agnostic, here, we leveraged this liberty to compare signaling under different models of local dynamics, primarily built upon undirected human connectome data. We also considered different modalities, e.g., tract tracing in Macaque (see Structural and Functional Connectomes under Materials and Methods) to confirm that the influence of weak connections is not inflated due to imaging limitations (Supplementary Figure 5. A). The game theoretical formulation of signaling allows for systematic comparison among many combinations of modeling choices and data sources.”

      We then continued with addressing the issue of full observability. We clarified that in this work, full observability was assumed. However, the mathematical foundations of our method capture unobserved contributors/influencers as an extra term, similar to the additive error term of a linear regression model. To keep the paper as non-technical as possible, we omitted expanding the axioms and the proof of how this is achieved, and instead referred to previous papers introducing the framework. 

      Lines 740-748:

      “Nonetheless, in this work, we assumed full observability, i.e., complete empirical knowledge of brain structure and function that is not necessarily practically given. Although a detailed investigation of this issue is needed, mathematical principles behind the method suggest that the framework can isolate the unobserved influences. In these cases, activity of the target node is decomposed such that the influence from the observed sources is precisely mapped, while the unobserved influences form an extra term, capturing anything that is left unaccounted for, see (Algaba et al., 2019b; Fakhar et al., 2024) for more technical details.”

      (2) The value of the normative game theoretic approach was clear, but the neurobiological interpretation was less so. To better interpret the model and understand its range of applicability, it would be useful to have a discussion of the potential neurobiological correlates that were at the same level of resolution as the modeling itself. Would such an optimization still make sense in disease states that might also be of interest?

      This is a brilliant question, which we decided to explore further in separate studies. Specifically, the link between optimal communication and brain disorders is a natural next step that we are pursuing. Here, we expanded our discussion with a few lines first explaining the roots of our main assumption, which is that neurons optimize information flow, among other goals. We then hypothesized that the biological mechanisms by which this goal is achieved include (based on our findings) adopting a broadcasting regime of signaling. We suspect that this mode of communication, operationalized on complex network topologies, is a trade-off between robust signaling and energy efficiency. Currently, we are planning practical steps to test this hypothesis.

      Lines 943-962:

      “Nonetheless, our framework is grounded in game theory where its fundamental assumption is that nodes aim at maximizing their influence over each other, given the existing constraints. This assumption is well explored using various theoretical frameworks (Buehlmann and Deco, 2010; Bullmore and Sporns, 2012; Chklovskii et al., 2002; Laughlin and Sejnowski, 2003; O’Byrne and Jerbi, 2022) and remains open to further empirical investigation. Here, we used game theory to mathematically formalize a theoretical optimum for communication in brain networks. Our findings then provide a possible mechanism for achieving this optimality through broadcasting. Based on our results, we speculate that, there exists an optimal broadcasting strength that balances robustness of the signal with its metabolic cost. This hypothesis is reminiscent of the concept of brain criticality, which suggests the brain to be positioned in a state in which the information propagates maximally and efficiently (O’Byrne and Jerbi, 2022; Safavi et al., 2024). Together, we suggest broadcasting to be the possible mechanism with which communication is optimized in brain networks, however, further research directions include investigating whether signaling within brain networks indeed aligns with a game-theoretic definition of optimality. Additionally, if it does, subsequent studies could then examine how deviations from optimal communication contribute to or result from various brain states or neurological and psychiatric disorders.”

      Reviewer #1 (Recommendations for the authors):

      I would recommend that the authors consider the following point in a revision, as well as the major weaknesses of the public review. Some aspects of Figure 1 could be clearer. What is being illustrated by the looping arrow to MSA? What is being represented in the matrices (labeling "source" and "target" on the matrix might enhance clarity)? Is R2 the metric used to assess the degree of similarity between communication models? These could be addressed by making small additions to the figure legend or to the figure itself.

      Thank you for your constructive comment on Figure 1, which is arguably the most important figure in the manuscript. We adjusted the figure and its caption (see above) based on your suggestions. After doing so, we think the figure is now clearer regarding the pipeline used in this work.

      Reviewer #2 (Recommendations for the authors):

      Overall, as stated in the public review and the short assessment, the manuscript is in a clearly mature state and brings an important method to link the fields of structural and functional brain networks.

      Nevertheless, the paper would benefit from an early, and clear, discussion of the:

      (1) components of the model, and assumptions of each, should be stated at the end of the introduction, or early in results. (2) datasets necessary to run the analysis.

      The confusion arises from lines 130-131, stating "In the present work (summarized in Figure 1), we used the human connectome, large-131 scale models of dynamics, and a game-theoretical perspective of signaling." This, to me, indicated that a structural connectivity map may be the only dataset required, as the dynamics model and game theory component are solely simulated. However, later, lines 214-216 state that the empirical functional connectivity is estimated from the structural connectivity, indicating that the method is only applied to cases where we have both.

      Finally, Supplemental Figure 5 validates a number of metrics on different solely structural networks (which is a very necessary and well-done control). Similarly, while the dynamical model is discussed in depth, and beautifully shown that the specific choice of dynamical model does not directly impact the results, it would be helpful to clarify the dynamical model utilized in the early figures.

      Thank you for pointing out a critical detail that we missed elaborating sufficiently early in the paper: the modelling step. Following your suggestions, we added a paragraph from line 292 to 305 (page 10) expanding on the modelling framework. We also explicitly divided the modelling step in Figure 1 and briefly clarified our modelling choices in the caption. Together, we emphasized the fact that our framework is generally model agnostic, which allows different models of dynamics to be plugged into various anatomical networks. We then clarified that, like in any modelling effort, one needs to first fit/optimize the model parameters to reproduce empirical data. In other words, we emphasized the fact that our framework relies on a computational model as its ‘game’ to infer how regions interact, and we fine-tuned our models to reproduce the empirical FC.

      Again, this is not a critique of the methods, which are excellent, but the presentation. It would help readers, and even me, to have a clear indication of the model earlier. Further, it would help to discuss, both in the introduction and discussion, the datasets required for applying these methods more broadly. For instance, 2-photon recordings are discussed - would it be possible to apply this method then to EM connectomes with functional data recorded for them? In theory, it seems like yes, although the current datasets have 100% observability, whereas 2-photon imaging, or other local methods, will not have perfect overlap between structural and functional connectomes. Discussions like this, related to the assumptions of the model, the necessary datasets, and broader application directions beyond DSI, fMRI, and BOLD cases where the method was validated, would increase the impact and interpretability for a broad readership.

      This is a valid point that we should have been more explicit about. The revised manuscript now contains a paragraph (lines 740-748) clarifying the fact that, throughout this work, we assumed full observability. We then briefly discuss, based on the mathematical principles of the framework, what we expect to happen in cases with partial observability. We then point at two references in which the details of a framework with partial observability are laid out, one containing mathematical proofs and the other using numerical simulations.

      References:

      Hadaeghi, F., Fakhar, K., & Hilgetag, C. C. (2024). Controlling Reciprocity in Binary and Weighted Networks: A Novel Density-Conserving Approach (p. 2024.11.24.625064). bioRxiv. https://doi.org/10.1101/2024.11.24.625064

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The paper addresses the problem of optimising the mapping of serum antibody responses against a known antigen. It uses the croEM analysis of polyclonal Fabs to antibody genes, with the ultimate aim of getting complete and accurate antibody sequences. The method, commonly termed EMPEM, is becoming increasingly used to understand responses in convalescent sera and optimisation of the workflows and

      The authors do not address the experimental aspects of the methods and do not present novel computational tools, rather they use a series of established computational methods to provide workflows that simplify the interpretation of the EM map in terms of the sequences of dominant antibodies.

      We would like to thank the reviewer for this assessment. While indeed we implement ModelAngelo as published without changes to its algorithms or code, we did add new functionality to Stitch to read the generated output from ModelAngelo and assemble it against known databases of germline-encoded antibody sequences. Of note, ModelAngelo was not primarily developed to determine exact sequence from CryoEM images, but instead to provide input for sequence determination from sequence searches with profile HMMs. Such models are designed to handle ambiguous calls of residues at different positions of a protein sequence. We are of the opinion that one of the main contributions of our study is to finally benchmark the EMPEM approach against known sequences to build a framework for data quality requirements in the future. From our study in best-case scenario’s EM data alone will provide sequences at 80-90% accuracy. In other words, the sequences are riddled with errors and cannot be taken at face value without orthogonal sequencing data. We demonstrate that mass spectrometry data can fill this requirement and yield much improved accuracy of the sequences even against high backgrounds of unrelated antibody sequences. We are incredibly excited about the prospects and future developments for EMPEM and believe that its integration with orthogonal sequencing approaches like MS are critical moving forward. By developing this pipeline we hope to have taken steps in the right direction.

      Strengths:

      The paper is well-written and clearly argued. The tests constructed seem appropriate and fair and demonstrate that the workflow works pretty well. For a small subset (~17%) of the EMPEM maps analysed the workflow was able to get convincing assignments of the V-genes.

      Thanks for the kind assessment.

      Weaknesses:

      The AI methods used are not a substitute for high quality data and at present very few of the results obtained from EMPEM will be of sufficient quality to robustly assign the sequence of the antibody. However, rather more are likely to be good enough, especially in combination with MS data, to provide a pretty good indication of the V-gene family.

      We fully agree with the assessment of the reviewer, as this being a general limitation of the EMPEM field. If anything, we hope our benchmark study and developed pipeline to integrate with MS-based sequencing data have more clearly established the current limitations of the technique and the requirements/prospects for orthogonal sequencing data to fill the missing gaps.

      Reviewer #2 (Public review):

      In this manuscript, the authors seek to demonstrate that it is possible to sequence antibody variable domains from cryoEM reconstructions in combination with bottom-up LC-MSMS. In particular, they extract de novo sequences from single particle-cryo-EM-derived maps of antibodies using the "deep-learning tool ModelAngelo", which are run through the program Stitch to try to select the top scoring V-gene and construct a placeholder sequence for the CDR3 of both the heavy and light chain of the antibody under investigation. These reconstructed variable domains are then used as templates to guide the assembly of de novo peptides from LC-MS/MS data to improve the accuracy of the candidate sequence.

      Using this approach the authors claim to have demonstrated that "cryoEM reconstructions of monoclonal antigen-antibody complexes may contain sufficient information to accurately narrow down candidate V-genes and that this can be integrated with proteomics data to improve the accuracy of candidate sequences".

      WhiIe the approach is clearly a work in progress, the manuscript should made easier to understand for the general reader. Indeed, I had a hard time understanding the workflow until I got to Fig. 3. So re-ordering the figures, for example, may be helpful in this regard.

      It would be useful to provide additional concrete examples where the described workflow would assist in the elucidation of CDR3's, in cases where this isn't already known. (In the benchmark dataset from the Electron Microscopy Data Bank, all the antibodies and Fabs are presumably known, as is the case for the monoclonal antibody CR3022). I am having difficulty envisioning how one would prepare samples from actual plasma samples that would be appropriate for single particle cryo-EM and MS data on dominant antibodies of interest. In my experience, most of these samples tend to be quite complex mixtures. So additional discussion of this point would be helpful.

      We would like to thank the reviewer for their kind and critical assessment of our work. We have adopted the suggestion to reorder the graphical material, such that the workflow schematic is now Figure 1 in the main text. We hope this will improve the readability.

      Regarding the concrete examples where the workflow could aid in elucidating CDR3 sequences, we would like to refer to all published EMPEM studies and in particular those highlighted in Figure 6. We are also actively working to integrate EMPEM data with MS-based sequencing on novel samples, but those will be subject of later studies. We have added additional discussion regarding the experimental feasibility of the approach. We have highlighted several milestone results where functional antibodies were reconstructed from EMPEM and/or MS data. In the discussion we write:

      “While sample complexity remains an important bottleneck, and questions remain about the dynamic range of the true serum antibody repertoire and the depth of coverage from these novel experimental approaches, several studies have recently reached the important milestone of reconstructing functional antibodies from direct measurements of the secreted serum components.” (see references in manuscript)

      “We believe that both EMPEM and MS-based polyclonal antibody sequencing are still limited to the top 1-10 antibodies in the polyclonal mixture. The EMPEM approach is biased towards bigger and well-ordered target antigens, which calls for additional complementary approaches like HDX-MS for a comprehensive polyclonal epitope mapping exercise.”

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Line 172: I am surprised the heavy chain is not worse than the light chain

      We have added the following sentence:

      “The length of the complete antigen binding loops was estimated with an average error of 0.5 ± 3.3 or 1.7 ± 6.0 residues for heavy and light chain, with average sequence identities of 0.63 and 0.41. While CDRH3 is the more challenging region in MS-based approaches to antibody sequencing, we believe that the moderately better length and sequence accuracy of CDRH3 compared to CDRL3 in ModelAngelo output reflects the CDRH3’s notoriously tight involvement in antigen binding, hence a greater relative stability in the antibody-antigen complex, resulting in better order in the reconstructed EM density maps.”

      Line 175: Global FSC is not going to be useful. Why not use a local value?

      We agree that local resolution estimates would be more appropriate, that is exactly why we added this remark to our initial analysis. However, local resolution estimates are non-trivial and raise the question about ‘how local’ we need to estimate the quality of the map (see for instance https://doi.org/10.1016/j.sbi.2020.06.005). At present, we believe that the required work for this local resolution analysis is not warranted, only to arrive at the rather intuitive if not tautological conclusion that a better map quality translates into more accurate sequences. While we agree that a better quantitative understanding of the data requirements for EMPEM could benefit the field, we opted to leave this, especially considering that the Stitch alignment score is already a good alternative predictor of sequence accuracy compared to map resolution as demonstrated in Figure 3,

      Line 259: 'of the 23 maps' .... Actually there were 46 maps originally, so I feel this is a tad misleading.

      The statistic of ‘46 total’ was added to the text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Alternate explanations for major conclusions.

      The major conclusions are (a) surface motility of W3110 requires pili which is not novel, (b) pili synthesis and pili-dependent surface motility require putrescine — 1 mM is optimal, and 4 mM is inhibitory, and (c) the existence of a putrescine homeostatic network that maintains intracellular putrescine that involves compensatory mechanisms for low putrescine, including diversion of energy generation toward putrescine synthesis.

      Conclusion a: Reviewer 3 suggests that the mutant may have lost surface motility because of outer surface structures that actually mediate motility but are co-regulated with or depend on pili synthesis. The reviewer explicitly suggests flagella as the alternate appendage, although flagella and pili are reciprocally regulated. Most experiments were performed in a Δ_fliC_ background, which lacks the major flagella subunit, in order to prevent the generation of fast-moving flagella-dependent variants. Furthermore, no other surface structure that could mediate surface motility is apparent in the electron microscope images. This observation does not definitively rule out this possibility, especially because of the large transcriptomic changes with low putrescine. Our explanation is the simplest.

      Conclusion b, first comment: Reviewer 1 states that “it is not possible to conclude that the effects of gene deletions to biosynthetic, transport or catabolic genes on pili-dependent surface motility are due to changes in putrescine levels unless one takes it on faith that there must be changes to putrescine levels.” The comment ignores both the nutritional supplementation and the transcript changes that strongly suggest compensatory mechanisms for low putrescine. Why compensate if the putrescine concentration does not change? The reviewer then implicitly acknowledges changes in putrescine content: “it is important to know how much putrescine must be depleted in order to exert a physiological effect”.

      Conclusion b, second comment: Reviewer 1 proposes that agmatine accumulation can account for some of the observed properties, but which property is not specified. With respect to motility, agmatine accumulation cannot account for motility defects because motility is impaired in (a) a speA mutant which cannot make agmatine and (b) a speC speF double mutant which should not accumulate agmatine. With respect to the transcriptomic results, even if high agmatine is the reason for some transcript changes, the results still suggest a putrescine homeostasis network.

      Conclusion c: the reviewers made no comments on the RNAseq analysis or the interpretation of the existence of a homeostatic network.

      Additional experiments proposed.

      Complementation. Reviewers 1 and 3 suggested complementation experiments, but the latter states that nutritional supplementation strengthens our arguments. The most relevant complementation is with speB.  We tried complementation and found that our control plasmid inhibited motility by increasing the lag time before movement commenced. A plasmid with speB did stimulate motility relative to the control plasmid, but movement with the speB plasmid took 4 days, while wild-type movement took 1.5 days. We think that interpretation of this result is ambiguous. We did not systematically search for plasmids that had no effect on motility.

      The purpose of complementation is to determine whether a second-site mutation is the actual cause of the motility defect. In this case, the artifact is that an alteration in polyamine metabolism is not the cause of the defect. However, external putrescine reverses the effects on motility and pili synthesis in the speB mutant. This result is inconsistent with a second-site mutation. Still, we agree that complementation is important, and because of our difficulties, we tested numerous mutants with defects in polyamine metabolism. The results present an interpretable and coherent pattern. For example, if putrescine is not the regulator, then mutants in putrescine transport and catabolism should have had no effect. Every single mutant is consistent with a role in movement and pili synthesis. The simplest explanation is that putrescine affects movement and pili synthesis.

      Phase variation. Reviewer 2 noted that we did not discuss phase variation. The comment came from the observation that the speB mutant had fewer fimB transcripts which could explain the loss of motility. The reviewer also suggested a simple experiment, which we performed and found that putrescine does not control phase variation. We present those results in the supplemental material. Our discussion of this topic includes a major qualification.

      Testing of additional strains. Published results from another lab showed that surface motility of MG1655 requires spermidine instead of putrescine (PMID 19493013 and 21266585). MG1655 and the W3110 that we used in our study are E. coli K-12 derivatives and phylogenetic group A. Any number of changes in enzymes that affect intracellular putrescine concentration could result in different responses to putrescine. We are currently studying pili synthesis and motility in other strains. While that study is incomplete, loss of speB in a strain of phylogenetic group D eliminates no surface motility. This work was intended as our initial analysis and the focus was on a single strain.

      Measuring intracellular polyamines. We felt that we had provided sufficient evidence to conclude that putrescine controls pili synthesis and putrescine concentrations are lower in the speB mutant: the nutritional supplementation, the lower levels of transcripts for putrescine catabolic enzymes which require putrescine for their expression strongly suggest lower putrescine in a mutant lacking a putrescine biosynthesis gene, and a transcriptomic analysis that found the speB mutant had transcript changes to compensate for low putrescine. We understand the importance of measuring intracellular polyamines. We are currently examining the quantitative relationship between intracellular polyamines and pili synthesis in multiple strains which respond differently to loss of speB.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The authors should measure putrescine, agmatine, cadaverine, and spermidine levels in their gene deletion strains.

      Polyamine concentration measurements will be part of a separate study on polyamine control of pili synthesis of a uropathogenic strain. A comparison is essential, and the results from W3110 will be part of that study.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 28. Your statements about urinary tract infections are pure speculation. They are fine for the discussion, but should not be in the abstract.

      The abstract from line 27 on has been reworked. The comment of the reviewer is fair.

      (2) Line 65. Do we need this discussion about the various strains? If you keep it, you should point out that they were all W3110 strains. But you could just say that you confirmed that your background strain can do PDSM (since you are also not showing any data for the other isolates). Discussing the various strains implies that you are not confident in your strain and raises the question of why you didn't use a sequenced wt MG1655, or something like that.

      This section has been reworked. Our strain of W3110 has an insertion in fimB which is relevant for movement but does not affect our results. The insertion limits our conclusions about phase variation. We want to point out that strains variations are large. We also sequenced our strain of W3110.

      (3) Related. You occasionally use "W3110-LR" to designate the wild type. You use this or not, but be consistent throughout the text.

      Fixed

      (4) Line 99. Does eLife allow "data not shown"?  

      (5) Line 119. As you note, the phenotype of the puuA patA double mutant is exactly the opposite of what one would expect. Although you provide additional evidence that high levels also inhibit motility, complementing the double mutant would provide confidence that the strain is correct.

      We rapidly ran into issues with complementation which are discussed in public responses to reviewer comments.

      (6) Figure 6C. Either you need to quantify these data or you need a better picture.

      The files were corrupted. It was repeated several time, but we lost the other data.

      (7) Figure 7. Label panels A and B to indicate that these strains are speB. Also, you need to switch panels C and D to match the order of discussion in the manuscript.

      Done

      (8) Line 134. Is there a statistically significant difference in the ELISA between 1 and 4 mM? You need to say one way or the other.

      No statistical significance and this has been added to the paper

      (9) Figure 10C. You need to quantify these data.

      Quantification added as an extra panel.

      (10) Line 164. You include H-NS in the group of "positive effectors that control fim operon expression" and you reference Ecocyc, rather than any primary reference. Nowhere in the manuscript do you mention phase variation. In the speB mutant, you see decreased fimB, increased fimE, and decreased hns expression. My interpretation of the literature suggests that this would drive the fim switch to the off-state. This could certainly explain some of the results. It is also easily measurable with PCR. This might require testing cells scraped directly from the plates.

      The experiments were performed. There is no need to scrap cells from plates because the fimB result from RNAseq was from a liquid culture, and the prediction would be that the phase-locking should be evident in these cells.

      (11) Figure 10. Likewise, do you know that your hns mutant is not locked in the off-state? Granted, the original hns mutants (pilG) showed increased rates of switching, but growth conditions might matter.

      We also did phase variation for the hns mutant and the hns mutant was not phase locked. This result is shown. In addition to growth conditions, the strain probably matters.

      (12) Line 342. You describe the total genome sequencing of W3110, yet this is not mentioned anywhere else in the manuscript.

      It is now

      Minor points:

      (13) Line 192. "One of the most differentially expressed genes...".

      (14) Line 202. "...implicates extracellular putrescine in putrescine homeostasis."

      (15) Line 209. "...potential pili regulators...".

      (16) You are using a variety of fonts on the figures. Pick one.

      (17) Figure 9A. It took me a few minutes to figure out the labeling for this figure and I was more confused after reading the legend. It would be simpler to independently label red triangles, blue triangles, red circles, and blue circles.

      (18) Figure 9B and 10. The reader can likely figure out what W3110_1.0_3 means, but more straightforward labeling would be better, or you need to define these labels.

      All points were addressed and fixed.

      Reviewer #3 (Recommendations for the authors):

      Other comments:

      (1) Please go through the figures and the reference to figures in the text, as they often do not refer to the right panel (ex: figures 2 and 7 for instance). In the text, please homogenize the reference to figures (Figure 2C vs Figure 3). To help compare motility experiments between figures, please use the same scale in all figures.

      This has been fixed.

      (2) Lines 65-70: I am not sure I get the reason behind choosing the W3110 strain from your lab stock. In what background were the initial mutants constructed (from l.64-65)? Were the nine strains tested, all variations of W3110? If so, is the phenotype described in the manuscript robust in all strains?

      We have provided more explanation. W3110 was the most stable: insertions that allowed flagella synthesis in the presence of glucose were frequent. We deleted the major flagella subunit for most experiments. Before introduction of the fliC deletion, we needed to perform experiments 10 times so that fast-moving variants, which had mutationally altered flagella synthesis, did not complicate results.

      (3) Line 82-84: As stated in the public review, I think more controls are needed before making this conclusion, especially as type I fimbriae are usually involved in sessile phenotypes.

      Response provided in the public response.

      (4) In Figure 3: Changing the order of the image to follow the text would make the figure easier to follow.

      Fixed as requested

      (5) Lines 100-101: simultaneous - the results presented here do not support this conclusion. In Figure 4b, the addition of putrescine to speB mutants is actually not different from WT. From the results, it seems like one of biosynthesis or transport is needed, but it's not clear if both are needed simultaneously. For this, a mutant with no biosynthesis and no transport is needed and/or completely non-motile mutants would be needed to compare.

      We disagree. If there are two pathways of putrescine synthesis and both are needed, then our conclusion follows.

      (6) Lines 104-105: '... because E. coli secretes putrescine.' - not sure why this statement is there, as most transporters tested after are importers of putrescine? It is also not clear to me if putrescine is supplemented in the media in these experiments. If not, is there putrescine in the GT media?

      Good points, and this section has been reworded to clarify these issues. Some of the material was moved to the discussion.

      (7) Line 109: 'We note that potE and plaP are more highly expressed than potE and puuP...' - first potE should be potF?

      This has been corrected.

      (8) Figure 8: What is the difference between the TEM images in Figure 1 and here? The WT in Figure 1 does show pili without the supplementation unless I'm missing something here. Please specify.

      The reviewer means Figure 2 and not Figure 1. Figure 2 shows a wild-type strain which has both putrescine anabolic pathways while Figure 8 is the ΔspeB strain which lacks one pathway.

      (9) Line160-162: Transcripts for the putrescine-responsive puuAP and puuDRCBE operons, which specify genes of the major putrescine catabolic pathway, were reduced from 1.6- to 14- fold (FDR {less than or equal to} 0.02) in the speB mutant (Supplemental Table 1), which implies lower intracellular putrescine. I might not get exactly the point here. If the catabolic pathways are repressed in the speB mutant, then there will be less degradation which means more putrescine!?

      Expression of these genes is a function of intracellular putrescine: higher expression means more putrescine. Any discussion of steady putrescine must include the anabolic pathways: the catabolic pathways do not determine the intracellular putrescine, they are a reflection of intracellular putrescine.

      (10) Lines 162-163: Deletion of speB reduced transcripts for genes of the fimA operon and fimE, but not of fimB. It seems that the results suggest the opposite a reduction of fimB but not fimE!?

      The reviewer is correct, and it is our mistake, and the text now states what is in the figure..

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This manuscript presents an interesting exploration of the potential activation mechanisms of DLK following axonal injury. While the experiments are beautifully conducted and the data are solid, I feel that there is insufficient evidence to fully support the conclusions made by the authors.

      In this manuscript, the authors exclusively use the puc-lacZ reporter to determine the activation of DLK. This reporter has been shown to be induced when DLK is activated.

      However, there is insufficient evidence to confirm that the absence of reporter activation necessarily indicates that DLK is inactive. As with many MAP kinase pathways, the DLK pathway can be locally or globally activated in neurons, and the level of DLK activation may depend on the strength of the stimulation. This reporter might only reflect strong DLK activation and may not be turned on if DLK is weakly activated. The results presented in this manuscript support this interpretation. Strong stimulation, such as axotomy of all synaptic branches, caused robust DLK activation, as indicated by puc-lacZ expression. In contrast, weak stimulation, such as axotomy of some synaptic branches, resulted in weaker DLK activation, which did not induce the puc-lacZ reporter. This suggests that the strength of DLK activation depends on the severity of the injury rather than the presence of intact synapses. Given that this is a central conclusion of the study, it may be worthwhile to confirm this further. Alternatively, the authors may consider refining their conclusion to better align with the evidence presented.

      In Figure 1E we have replotted the puc-lacZ data to show comparisons between different injuries that leave different numbers of spared (or lost) boutons and branches.  We observed no differences between injuries that remove only a small fraction of boutons (injury location (a)) and injuries that remove nearly all of them (injury locations (b) and (c)) and uninjured neurons (Figure 1E). These observations argue against the interpretation that the strength of DLK activation (at least within the cell body) depends on the severity of injury. Rather, puc-lacZ induction appears to be bimodal. It is either induced (in various injuries that remove all synaptic boutons), or not induced, including in injuries that spared only a small fraction of the total boutons. We therefore think that the presence of a remaining synaptic connection rather than the extent of the injury per se is a major determinant of whether the cell body component of Wnd signaling can be activated. 

      The reviewer (and others) fairly point out that our current study focuses on puc-lacZ as a reporter of Wnd signaling in the cell body. We consider this to be a downstream integration of events in axons that are more challenging to detect. It is striking that this integration appears strongly sensitized to the presence of spared synaptic boutons. Examination of Wnd’s activation in axons and synapses is a goal for our future work.

      As noted by the authors, DLK has been implicated in both axon regeneration and degeneration. Following axotomy, DLK activation can lead to the degeneration of distal axons, where synapses are located. This raises an important question: how is DLK activated in distal axons? The authors might consider discussing the significance of this "synapse connection-dependent" DLK activation in the broader context of DLK function and activation mechanisms.

      While it has been noted that inhibition of DLK can mildly delay Wallerian degeneration (Miller et al., 2009), this does not appear to be the case for retinal ganglion cell axons following optic nerve crush (Fernandes et al., 2014). It is also not the case for Drosophila motoneurons and NMJ terminals following peripheral nerve injury (Xiong et al., 2012; Xiong and Collins, 2012). Instead, overexpression of Wnd or activation of Wnd by a conditioning injury leads to an opposite phenotype - an increase in resiliency to Wallerian degeneration for axons that have been previously injured (Xiong et al., 2012; Xiong and Collins, 2012). The downstream outcome of Wnd activation is highly dependent on the context; it may be an integration of the outcomes of local Wnd/DLK activation in axons with downstream consequences of nuclear/cell body signaling.  The current study suggests some rules for the cell body signaling, however, how Wnd is regulated at synapses and why it promotes degeneration in some circumstances but not others are important future questions.

      For the reviewer’s suggestion, it is interesting to consider DLK’s potential contributions to the loss of NMJ synapses in a mouse model of ALS (Le Pichon et al., 2017; Wlaschin et al., 2023). Our findings suggest that the synaptic terminal is an important locus of DLK regulation, while dysfunction of NMJ terminals is an important feature of the ‘dying back’ hypothesis of disease etiology (Dadon-Nachum et al., 2011; Verma et al., 2022). We propose that the regulation of DLK at synaptic terminals is an important area for future study, and may reveal how DLK might be modulated to curtail disease progression. Of note, DLK inhibitors are in clinical trials (Katz et al., 2022; Le et al., 2023; Siu et al., 2018), but at least some have been paused due to safety concerns (Katz et al., 2022). Further understanding of the mechanisms that regulate DLK are needed to understand whether and how DLK and its downstream signaling can be tuned for therapeutic benefit.

      Reviewer #2 (Public review):

      Summary:

      The authors study a panel of sparsely labeled neuronal lines in Drosophila that each form multiple synapses. Critically, each axonal branch can be injured without affecting the others, allowing the authors to differentiate between injuries that affect all axonal branches versus those that do not, creating spared branches. Axonal injuries are known to cause Wnd (mammalian DLK)-dependent retrograde signals to the cell body, culminating in a transcriptional response. This work identifies a fascinating new phenomenon that this injury response is not all-or-none. If even a single branch remains uninjured, the injury signal is not activated in the cell body. The authors rule out that this could be due to changes in the abundance of Wnd (perhaps if incrementally activated at each injured branch) by Wnd, Hiw's known negative regulator. Thus there is both a yet-undiscovered mechanism to regulate Wnd signaling, and more broadly a mechanism by which the neuron can integrate the degree of injury it has sustained. It will now be important to tease apart the mechanism(s) of this fascinating phenomenon. But even absent a clear mechanism, this is a new biology that will inform the interpretation of injury signaling studies across species.

      Strengths:

      (1) A conceptually beautiful series of experiments that reveal a fascinating new phenomenon is described, with clear implications (as the authors discuss in their Discussion) for injury signaling in mammals.

      (2) Suggests a new mode of Wnd regulation, independent of Hiw.

      Weaknesses:

      (1) The use of a somatic transcriptional reporter for Wnd activity is powerful, however, the reporter indicates whether the transcriptional response was activated, not whether the injury signal was received. It remains possible that Wnd is still activated in the case of a spared branch, but that this activation is either local within the axons (impossible to determine in the absence of a local reporter) or that the retrograde signal was indeed generated but it was somehow insufficient to activate transcription when it entered the cell body. This is more of a mechanistic detail and should not detract from the overall importance of the study

      We agree. The puc-lacZ reporter tells us about signaling in the cell body, but whether and how Wnd is regulated in axons and synaptic branches, which we think occurs upstream of the cell body response, remains to be addressed in future studies.

      (2) That the protective effect of a spared branch is independent of Hiw, the known negative regulator of Wnd, is fascinating. But this leaves open a key question: what is the signal?

      This is indeed an important future question, and would still be a question even if Hiw were part of the protective mechanism by the spared synaptic branch. Our current hypothesis (outlined in Figure 4) is that regulation of Wnd is tied to the retrograde trafficking of a signaling organelle in axons. The Hiw-independent regulation complements other observations in the literature that multiple pathways regulate Wnd/DLK (Collins et al., 2006; Feoktistov and Herman, 2016; Klinedinst et al., 2013; Li et al., 2017; Russo and DiAntonio, 2019; Valakh et al., 2013). It is logical for this critical stress response pathway to have multiple modes of regulation that may act in parallel to tune and restrain its activation. 

      Reviewer #3 (Public review):

      Summary:

      This manuscript seeks to understand how nerve injury-induced signaling to the nucleus is influenced, and it establishes a new location where these principles can be studied. By identifying and mapping specific bifurcated neuronal innervations in the Drosophila larvae, and using laser axotomy to localize the injury, the authors find that sparing a branch of a complex muscular innervation is enough to impair Wallenda-puc (analogous to DLK-JNKcJun) signaling that is known to promote regeneration. It is only when all connections to the target are disconnected that cJun-transcriptional activation occurs.

      Overall, this is a thorough and well-performed investigation of the mechanism of sparedbranch influence on axon injury signaling. The findings on control of wnd are important because this is a very widely used injury signaling pathway across species and injury models. The authors present detailed and carefully executed experiments to support their conclusions. Their effort to identify the control mechanism is admirable and will be of aid to the field as they continue to try to understand how to promote better regeneration of axons.

      Strengths:

      The paper does a very comprehensive job of investigating this phenomenon at multiple locations and through both pinpoint laser injury as well as larger crush models. They identify a non-hiw based restraint mechanism of the wnd-puc signaling axis that presumably originates from the spared terminal. They also present a large list of tests they performed to identify the actual restraint mechanism from the spared branch, which has ruled out many of the most likely explanations. This is an extremely important set of information to report, to guide future investigators in this and other model organisms on mechanisms by which regeneration signaling is controlled (or not).

      Weaknesses:

      The weakest data presented by this manuscript is the study of the actual amounts of Wallenda protein in the axon. The authors argue that increased Wnd protein is being anterogradely delivered from the soma, but no support for this is given. Whether this change is due to transcription/translation, protein stability, transport, or other means is not investigated in this work. However, because this point is not central to the arguments in the paper, it is only a minor critique.

      We agree and are glad that the reviewer considers this a minor critique; this is an area for future study. In Supplemental Figure 1 we present differences in the levels of an ectopically expressed GFP-Wnd-kinase-dead transgene, which is strikingly increased in axons that have received a full but not partial axotomy. We suspect this accumulation occurs downstream of the cell body response because of the timing. We observed the accumulations after 24 hours (Figure S1F) but not at early (1-4 hour) time points following axotomy (data not shown). Further study of the local regulation of Wnd protein and its kinase activity in axons is an important future direction.

      As far as the scope of impact: because the conclusions of the paper are focused on a single (albeit well-validated) reporter in different types of motor neurons, it is hard to determine whether the mechanism of spared branch inhibition of regeneration requires wnd-puc (DLK/cJun) signaling in all contexts (for example, sensory axons or interneurons). Is the nerve-muscle connection the rule or the exception in terms of regeneration program activation?

      DLK signaling is strongly activated in DRG sensory neurons following peripheral nerve injury (Shin et al., 2012), despite the fact that sensory neurons have bifurcated axons and their projections in the dorsal spinal cord are not directly damaged by injuries to the peripheral nerve. Therefore it is unlikely that protection by a spared synapse is a universal rule for all neuron types. However the molecular mechanisms that underlie this regulation may indeed be shared across different types of neurons but utilized in different ways. For instance, nerve growth factor withdrawal can lead to activation of DLK (Ghosh et al., 2011), however neurotrophins and their receptors are regulated and implemented differently in different cell types. We suspect that the restraint of Wnd signaling by the spared synaptic branch shares a common underlying mechanism with the restraint of DLK signaling by neurotrophin signaling. Further elucidation of the molecular mechanism is an important next step towards addressing this question. 

      Because changes in puc-lacZ intensity are the major readout, it would be helpful to better explain the significance of the amount of puc-lacZ in the nucleus with respect to the activation of regeneration. Is it known that scaling up the amount of puc-lacZ transcription scales functional responses (regeneration or others)? The alternative would be that only a small amount of puc-lacZ is sufficient to efficiently induce relevant pathways (threshold response).

      While induction of puc-lacZ expression correlates with Wnd-mediated phenotypes, including sprouting of injured axons (Xiong et al., 2010), protection from Wallerian degeneration (Xiong et al., 2012; Xiong and Collins, 2012) and synaptic overgrowth (Collins et al., 2006), we have not observed any correlation between the degree of puc-lacZ induction (eg modest, medium or high) and the phenotypic outcomes (sprouting, overgrowth, etc). Rather, there appears to be a striking all-or-none difference in whether puc-lacZ is induced or not induced. There may indeed be a threshold that can be restrained through multiple mechanisms. We posit in figure 4 that restraint may take place in the cell body, where it can be influenced by the spared bifurcation. 

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      This is a beautiful study. Naturally, you're searching now for the underlying mechanism.

      A few questions:

      (1) At present you can not determine if the Wnd signal is never initiated (when a spared branch is present) or if it gets to the cell body but is incapable of activating the puckered reporter. Is there any optical reporter (JNK activation?) that could differentiate this?

      The reviewer is correct that a tool to detect local activity of JNK kinase in axons would be ideal for probing the mechanisms that underlie our observations. A FRET reporter for JNK kinase activity has been developed and utilized in cultured cells (Fosbrink et al. 2010). It would be interesting to implement this reporter in Drosophila; it would need to be sensitive enough to visualize  in single Drosophila axons. We have previously noted Wnd-dependent phosphorylated JNK in the cell body of injured motoneurons following nerve crush (Xiong et al., 2010). However anti-pJNK antibodies detect what appears to be a constitutive signal in uninjured axons that does not appear to be influenced by activation or inhibition of Wnd (Xiong et al., 2010).

      (2) What happens when you injure the axon in a dSarm KO? This is more of a curiosity, not a necessity, but is it the axon dying or the detection of the injury itself?

      We have tested whether overexpression of Nmnat or the WldS transgene, which inhibit Wallerian degeneration of injured axons, affect the induction of puc-lacZ following nerve injury. This manipulation has no effect on puc-lacZ expression in uninjured animals, and also has no effect on the induction of puc-lacZ following peripheral nerve crush (TJ Waller, personal communication).

      (3) Are Wnd rescue experiments possible in this context? Would be an interesting place to do Wnd structure-function and compare it to the synaptic work.

      This is not possible with current reagents. Expression of wild type wnd cDNA under the Gal4/UAS promoter leads to strong induction of puc-lacZ in uninjured animals, even when weak Gal4 driver lines are used (Xiong et al., 2012, 2010). Similar observations of constitutively active signaling have been observed for expression studies of DLK in mammalian cells ((Hao et al., 2016; Huntwork-Rodriguez et al., 2013; Nihalani et al., 2000), and data not shown). These and other observations suggest that the levels of Wnd/DLK protein are tightly controlled by posttranscriptional mechanisms. Delineation of sequences within Wnd/DLK that are required for its regulation would be helpful for addressing this question.

      This will be required reading in my lab.

      That is an honor. We look forward to help from the field to understand how and why this pathway is restrained at synapses. Your students may bring new ideas to the table.

      Reviewer #3 (Recommendations for the authors):

      Piezo is spelled incorrectly in the supplemental table in multiple places.

      Thank you for pointing this out! We have made the correction.

      References cited (in rebuttal)

      Collins CA, Wairkar YP, Johnson SL, DiAntonio A. 2006. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 51:57–69.

      Dadon-Nachum M, Melamed E, Offen D. 2011. The “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci 43:470–477.

      Feoktistov AI, Herman TG. 2016. Wallenda/DLK protein levels are temporally downregulated by Tramtrack69 to allow R7 growth cones to become stationary boutons. Development 143:2983–2993.

      Fernandes KA, Harder JM, John SW, Shrager P, Libby RT. 2014. DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury. Neurobiol Dis 69:108–116.

      Ghosh AS, Wang B, Pozniak CD, Chen M, Watts RJ, Lewcock JW. 2011. DLK induces developmental neuronal degeneration via selective regulation of proapoptotic JNK activity. J Cell Biol 194:751–764.

      Hao Y, Frey E, Yoon C, Wong H, Nestorovski D, Holzman LB, Giger RJ, DiAntonio A, Collins C. 2016. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK. Elife 5. doi:10.7554/eLife.14048

      Huntwork-Rodriguez S, Wang B, Watkins T, Ghosh AS, Pozniak CD, Bustos D, Newton K, Kirkpatrick DS, Lewcock JW. 2013. JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. J Cell Biol 202:747–763.

      Katz JS, Rothstein JD, Cudkowicz ME, Genge A, Oskarsson B, Hains AB, Chen C, Galanter J, Burgess BL, Cho W, Kerchner GA, Yeh FL, Ghosh AS, Cheeti S, Brooks L, Honigberg L, Couch JA, Rothenberg ME, Brunstein F, Sharma KR, van den Berg L, Berry JD, Glass JD. 2022. A Phase 1 study of GDC-0134, a dual leucine zipper kinase inhibitor, in ALS. Ann Clin Transl Neurol 9:50–66.

      Klinedinst S, Wang X, Xiong X, Haenfler JM, Collins CA. 2013. Independent pathways downstream of the Wnd/DLK MAPKKK regulate synaptic structure, axonal transport, and injury signaling. J Neurosci 33:12764–12778.

      Le K, Soth MJ, Cross JB, Liu G, Ray WJ, Ma J, Goodwani SG, Acton PJ, Buggia-Prevot V, Akkermans O, Barker J, Conner ML, Jiang Y, Liu Z, McEwan P, Warner-Schmidt J, Xu A, Zebisch M, Heijnen CJ, Abrahams B, Jones P. 2023. Discovery of IACS-52825, a potent and selective DLK inhibitor for treatment of chemotherapy-induced peripheral neuropathy. J Med Chem 66:9954–9971.

      Le Pichon CE, Meilandt WJ, Dominguez S, Solanoy H, Lin H, Ngu H, Gogineni A, Sengupta Ghosh A, Jiang Z, Lee S-H, Maloney J, Gandham VD, Pozniak CD, Wang B, Lee S, Siu M, Patel S, Modrusan Z, Liu X, Rudhard Y, Baca M, Gustafson A, Kaminker J, Carano RAD, Huang EJ, Foreman O, Weimer R, Scearce-Levie K, Lewcock JW. 2017. Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci Transl Med 9. doi:10.1126/scitranslmed.aag0394

      Li J, Zhang YV, Asghari Adib E, Stanchev DT, Xiong X, Klinedinst S, Soppina P, Jahn TR, Hume RI, Rasse TM, Collins CA. 2017. Restraint of presynaptic protein levels by Wnd/DLK signaling mediates synaptic defects associated with the kinesin-3 motor Unc-104. Elife 6. doi:10.7554/eLife.24271

      Miller BR, Press C, Daniels RW, Sasaki Y, Milbrandt J, DiAntonio A. 2009. A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci 12:387–389.

      Nihalani D, Merritt S, Holzman LB. 2000. Identification of structural and functional domains in mixed lineage kinase dual leucine zipper-bearing kinase required for complex formation and stress-activated protein kinase activation. J Biol Chem 275:7273–7279.

      Russo A, DiAntonio A. 2019. Wnd/DLK is a critical target of FMRP responsible for neurodevelopmental and behavior defects in the Drosophila model of fragile X syndrome. Cell Rep 28:2581–2593.e5.

      Shin JE, Cho Y, Beirowski B, Milbrandt J, Cavalli V, DiAntonio A. 2012. Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 74:1015– 1022.

      Siu M, Sengupta Ghosh A, Lewcock JW. 2018. Dual Leucine Zipper Kinase Inhibitors for the Treatment of Neurodegeneration. J Med Chem 61:8078–8087.

      Valakh V, Walker LJ, Skeath JB, DiAntonio A. 2013. Loss of the spectraplakin short stop activates the DLK injury response pathway in Drosophila. J Neurosci 33:17863–17873.

      Verma S, Khurana S, Vats A, Sahu B, Ganguly NK, Chakraborti P, Gourie-Devi M, Taneja V. 2022. Neuromuscular junction dysfunction in amyotrophic lateral sclerosis. Mol Neurobiol 59:1502–1527.

      Wlaschin JJ, Donahue C, Gluski J, Osborne JF, Ramos LM, Silberberg H, Le Pichon CE. 2023. Promoting regeneration while blocking cell death preserves motor neuron function in a model of ALS. Brain 146:2016–2028.

      Xiong X, Collins CA. 2012. A conditioning lesion protects axons from degeneration via the Wallenda/DLK MAP kinase signaling cascade. J Neurosci 32:610–615.

      Xiong X, Hao Y, Sun K, Li J, Li X, Mishra B, Soppina P, Wu C, Hume RI, Collins CA. 2012. The Highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein. PLoS Biol 10:e1001440.

      Xiong X, Wang X, Ewanek R, Bhat P, Diantonio A, Collins CA. 2010. Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J Cell Biol 191:211– 223.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public reviews:

      We thank the three reviewers for the constructive suggestions made in the Public Reviews and the Recommendations to Authors. We have now addressed these comments in a revised manuscript as follows:

      (1) We will revise the text according to the reviewer suggestions and provide more detailed explanations in results and discussion.

      (2) We have uploaded higher resolution images of several figures (resolution had been reduced to achieve lower file sizes) to address the comment regarding “data quality”.

      (3) We have included additional data on eCLIP control experiments in the supplementary figures.

      (4) We have performed additional replications of the western blot analysis for Rbm20 knock-out animals and provided the data in a new Figure.

      Recommendations for the authors:

      Reviewer #1:

      (1) The study is missing CLIP-seq data from control mice that do not express HA, or HA-knocked into a safe-harbor locus. This is important because there is plenty of background HA staining in Figure S2B, in wild-type mice. Including this control would allow subsequent peak calling to distinguish between non-specific HA peaks and RBM20 specific peaks.

      The biochemical conditions used in immunostaining are much less stringent than the buffers employed for immunoprecipitation in the eCLIP protocol. Thus, background staining is not a an informative reference to assess specificity of CLIP isolations. In previous experiments, we confirmed very low background with the anti-HA antibodies in our eCLIP protocol. In the present study, we used a “no-crosslinking control” where samples were not irradiated with UV light. This negative control is now included in Supplementary Figure 4.

      (2) The GO analysis performed to infer synapse-gene specific regulation would be more useful if the authors would discuss specific genes that are represented within these terms and have been shown to be associated with neuronal function.

      We have now noted several synapse-related genes identified in the text.

      (3) Some figures would benefit from larger size and higher resolution including Fig S1, S3.

      We had previously embedded Figures as png files in the text document. In the revised version we uploaded the figures in higher resolution as individual jpeg files. Moreover, we now split Figure S1 into two separate supplementary figures (new Fig.S2) which allowed for enlarging the size of panels. We further enlarged the panels of (former) Fig.S3 (now Fig.S4).

      (4) RBP genes in Figure 1A x-axis are all lowercase. This is not standard mouse gene nomenclature.

      We corrected this.

      (5) Typo in Figure S4F rightmost panel y-axis - 'Length' is misspelled.

      We corrected this.

      Reviewer #2:

      Minor points:

      - Shortly explain DESEQ2 (p4)

      We now added a brief note and corresponding reference in the main text of the manuscript.

      - Is RBM20 a shuttling protein? Any detection in the cytoplasm?

      Our immunostainings for the endogenous RBM20 in heart and olfactory bulb cells suggest that the vast majority of wild-type RBM20 is localized to the nucleus. Previous work on RBM20 disease mutants suggest that pathological forms can accumulate in the cytoplasm. However, with the sensitivity of our detection we did not obtain evidence for a significant cytoplasmic pool in neurons. This does not exclude the possibility that the protein is shuttling – but assessing this would require different types of experiments.

      Reviewer #3:

      (1) Figure 1C: It is shown that some of the RBM20 staining do not colocalize with PV. This observation requires further explanation and discussion to clarify the significance.

      As seen in the fluorescent in situ hybridizations as well as the RiboTRap purifications (Fig.S1C,D), we observe mRNA RBM20 expression not only in parvalbumin-positive interneurons but also somatostatin-positive cells of the neocortex. Accordingly, some RBM20-positive cells do not express parvalbumin. We now clarified this in the text.

      Additionally, in Figure S1C, the resolution of the image is low, making it difficult to conclusively determine whether RBM20 RNA is localized in the nucleus. A high-resolution image would be beneficial to address this ambiguity.

      The Rbm20 mRNA is localized in the nucleus and cytoplasm. We have now split Figure S1 into two separate figures to enlarge the panels for S1C and make this more visible. Moreover, we uploaded higher resolution figure files.

      (2) Figure 1E: The molecular weight of RBM20 is approximately 135 kDa, yet there is a band near 135 kDa in the KO heart. How do the authors determine that the 150 kDa band represents RBM20 rather than the 135 kDa band? The authors may consider increasing the sample size to confirm whether the smaller band consistently appears across all KO heart tissues.

      We appreciate that in this higher molecular weight range, the indicated weight markers may not be entirely accurate. We used a validated knock-out mouse line to identify the appropriate RBM20 protein band. As the 150kDa band was reproducibly lost in the knock-out tissue in the brain and the heart tissue whereas the fainter band of lower mobility remained we concluded that on our gel system RBM20 protein has an apparent molecular weight of 150 kDa. This is further supported by the fact that also the endogenously tagged RBM20 protein has a similar mobility.

      As suggested by the reviewer, we now re-ran Western blots from multiple wild-type and corresponding knock-out tissues. This further confirmed the migration of the protein and loss of the 150 kDa band in the mutant mice (new Figure 1E).

      (3) Figure 2A: A higher-resolution image is recommended. Prior studies on RBM20 mutation knock-in mice suggest that when RBM20 localizes to the cytoplasm, it promotes molecular condensate formation. This seems to be the case in Figure 2A; however, the low image quality makes it difficult to see these molecular condensates.

      Figure2A shows endogenous RBM20 (not the epitope-tagged protein in the knock-in mice). The vast majority of the protein is localized in the nucleus rather than the cytoplasm. We are a bit uncertain what “condensates” the reviewer refers to. In the heart, we indeed see accumulations of RBM20 in foci (as described previously in the literature). As judged by their location within the DAPI-positive area, these foci are in the nucleus. By contrast, in the olfactory bulb neurons (which express lower levels of RBM20) we do not see a comparable concentration in nuclear foci but rather broad and diffuse staining. This is consistent with the hypothesis that the nuclear foci depend on the expression of highly expressed target transcripts such as titin. To better visualize this, we now uploaded files with higher resolution for the revised manuscript.

      (4) Figure 4D: This figure is not cited in the main text and should be referenced appropriately.

      We corrected this.

      (5) Page 5: The sentence "Finally, introns bound by RBM20 were significantly longer than expected by chance as assed..." contains a typo. The word "assed" should be corrected to "assessed".

      We corrected this.

      (6) Functional data: The study would benefit from functional experiments to elucidate the physiological role of RBM20 in PV neurons. For instance, since RBM20 regulates calcium-handling genes in neurons, does its absence impair calcium signaling in PV neurons? Additionally, given that RBM20 is involved in synaptic regulation, could RBM20 KO disrupt synaptic function? While it may not be feasible to address all these questions, providing some functional data would greatly enhance the overall significance of the study.

      We completely agree with the reviewer that this would greatly advance the study and the lack of data on cellular functions is the most significant limitation of this work. We attempted to obtain insights into cellular function through the structural investigations (Fig.S5). We had obtained some data on a behavioral phenotype in the mice which indicates that knock-out in vGLUT2 neurons precipitates alterations in behavior. However, due to conditions in our animal facility (emissions from construction) we struggled to solidify/confirm this data. Thus, in the interest of sharing the existing data in a timely manner we felt that more elaborate functional studies on synaptic transmission or calcium imaging should better be performed in a separate effort.

    1. Author response:

      On the control of taxonomic versus thematic information. Both reviewers had questions about the relationship between the focus of the meta-analysis, the control of responses based on taxonomic versus thematic relationships, and the simulation. Both the model and the meta-analysis focus on the same mechanism, the controlled selection of task-appropriate features. In the case of the meta-analysis, this was the features and associations needed to identify the taxonomic or thematic relationships. As reviewer 1 notes, one possibility is that these kinds of structures are represented in distinct cortical regions. For instance, Mirman, Schwartz and colleagues have suggested that temporoparietal regions may preferentially support thematic knowledge while temporal regions may preferentially support taxonomic knowledge. Alternatively, they may be supported by different features instantiated within the same regions.  However, whether taxonomic and thematic relationships require access to features in different regions or not, is not crucial to the conclusions of this paper. The simulations used here happen to select features based on their inclusion in a particular sensory modality, yet they could learn to select any combination of features. Indeed, prior simulations using the Jackson et al., (2021) model show that the functional impact on learning of “deep” conceptual representations (together with controlled behaviours) is the same regardless of whether the potentiated features are localised within one spoke or distributed across spokes. Thus, the key results regarding the acquisition of semantic knowledge before the maturation of control in the current work should hold regardless of whether knowledge of taxonomic and thematic relations is localised to different anatomical regions.

      On model size and scalability. Both reviewers noted the relatively small size of the model and wondered about implications for ecological validity of the simulations and scalability to larger, noisier, and potentially more systematically structured training environments. We agree this is an important direction for future research, but one that faces two nontrivial challenges. First, reviewer 1 notes that, whereas our model environment employs orthogonal structures across spokes and for the cross-modal features, perceptual structure may be better-aligned with conceptual structure for real-world experience. While we appreciate the intuition, its validity depends to a key extent on how visual information about objects is encoded. Conceptual structure is certainly not apparent, for instance, in the distance between bitmap images of objects, nor the overlap of simple feature-extraction algorithms (such as edge detection or Fourier decomposition, etc). Even in this age of deep vision models, it remains unclear how the visual system extracts and discerns perceptual similarity from retinal input (see e.g. Mukherjee & Rogers, 2025). Most successful contemporary models train neural networks to assign visual images to semantic categories, suggesting that the visual features the model learns, and thus the perceptual similarities it represents, depend on learning to generate semantic information. Therefore, it is not clear whether the similarity that people perceive amongst instances of the same class is natively apparent in the bottom-up visual input, or whether it depends on semantic/cross-modal learning and representation. It should also be noted that within our training environment, there are features in each modality that are predictive of features in other modalities, as well as some that are only predictive of features within this modality. Thus, the full cross-modality conceptual structure is not orthogonal to the information available in each sensory domain, instead there is a relationship between surface and multimodal similarity in the dataset as in the real-world environment. In general, one virtue of the small-scale modelling endeavour in the current work is that we can be very explicit about the nature of the structure apparent within and across spokes.

      The second non-trivial issue concerns the nature of the mechanisms that allow for context-sensitive responding in large-scale language/vision models such as GPT 4. Such models are trained on web-scale language and vision and provide a means of simulating controlled behaviour with realistic stimuli, so might seem to provide a means of assessing scalability of current neuro-cognitive models. Large language/vision models rely, however, on transformer architectures whose relationship to hypothesized mechanisms of control in the mind and brain is unclear. In transformers, context-sensitive responding depends upon “attention” mechanisms that are fully distributed and integrated throughout the entire system—there is no distinction between control, representation, and short-term memory in the architecture. As a consequence, it is very difficult to understand why a model behaves the way it does, or to relate patterns of behaviour to hypothesised mechanisms in the human mind/brain. Yet transformers are currently the only models capable of exhibiting context-sensitive patterns of responding based on both language and vision. Scaling up neuro-cognitive models will require developing alternative architectures that preserve the critical hypothesised distinctions between representation and control while retaining the ability of transformers to learn from large-scale ecologically realistic corpora of language and images. In the meantime, small-scale simulations like those reported here provide some critical insights into aspects of architecture and maturation that may aid in this endeavour.

      On including a response layer. Reviewer 1 notes that our model does not separately simulate response-generation and the selective activation of relevant feature representations. We agree that there are interesting questions about how feature-potentiation and response-generation relate to one another, and that incorporating response selection in the current model would significantly complicate the analysis. The general idea that control potentiates/suppresses task-relevant feature representations in addition to simply promoting the correct response derives from classic work by Martin and others (e.g., Martin et al., 1995) showing that, for instance, regions involved in colour perception activate more strongly in tasks requiring retrieval of colour than tasks involving retrieval of action and vice versa—results consistent with the model training/testing procedure in the current work. In general, it may be counterproductive to become aware of aspects of a concept that would be irrelevant, or even actively unhelpful in making a response, suggesting guided activation is a necessary precursor to response selection (Botvinick & Cohen, 2014). Here, we focus on this important feature potentiation step.

      On the novelty of the meta-analysis. Reviewer 2 suggests the results of the meta-analysis were already known and provided motivation for the simulation. However, an important contribution of the current work is the observation that, in fact, there is little prior work on the development of semantic control. The widely known developmental delay in domain-general executive control, which did indeed motivate the study, is exclusively based on tasks requiring very different forms of executive control. Many of these involve no meaningful stimuli or require the child to completely inhibit a practiced response and generate an opposite or completely arbitrary responses, instead of requiring the child to use context to select among two or more meaningful behaviours that are equally valid in different contexts (see the introduction to Part 2). This observation, coupled with recent evidence that semantic control relies on dedicated and partially non-overlapping neural systems to executive function, illustrates the utility of the current meta-analysis: delineating the developmental trajectory of semantic control requires a task in which control is applied to the context-appropriate retrieval and manipulation of semantic knowledge, such as the triadic matching task. Moreover, the results show that semantic control, while arising later than semantic representation, nevertheless begins to mature earlier (around 2.5 years) than typical estimations of domain-general executive control (around 4). Thus, the meta-analysis contributes to our understanding of cognitive development while also testing a key prediction of the model.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Pavel et al. analyzed a cohort of atrial fibrillation (AF) patients from the University of

      Illinois at Chicago, identifying TTN truncating variants (TTNtvs) and TTN missense variants (TTNmvs). They reported a rare TTN missense variant (T32756I) associated with adverse clinical outcomes in AF patients. To investigate its functional significance, the authors modeled the TTN-T32756I variant using human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs). They demonstrated that mutant cells exhibit aberrant contractility, increased activity of the cardiac potassium channel KCNQ1 (Kv7.1), and dysregulated calcium homeostasis. Interestingly, these effects occurred without compromising sarcomeric integrity. The study further identified increased binding of the titin-binding protein Four-and-a-Half Lim domains 2 (FHL2) with KCNQ1 and its modulatory subunit KCNE1 in the TTN-T32756I iPSCaCMs.

      Strengths:

      This work has translational potential, suggesting that targeting KCNQ1 or FHL2 could represent a novel therapeutic strategy for improving cardiac function. The findings may also have broader implications for treating patients with rare, disease-causing variants in sarcomeric proteins and underscore the importance of integrating genomic analysis with experimental evidence to advance AF research and precision medicine.

      Weaknesses

      (1) Variant Identification: It is unclear how the TTN missense variant (T32756I) was identified using REVEL, as none of the patients' parents reportedly carried the mutation or exhibited AF symptoms. Are there other TTN variants identified in the three patients carrying TTN-T32756I? Clarification on this point is necessary.  

      We thank the reviewer for their insightful comment. Our study identified deleterious missense variants using a stringent REVEL score threshold of ≥0.7; however, variants with a REVEL score above 0.5 are generally considered potentially pathogenic (Ioannidis, Nilah M., et al., Am J Human Genetics 2016; 9.4: 877-885). The TTN-T32756I variant (REVEL Score: 0.58758, Supplementary Table 1) was prioritized due to its occurrence in multiple unrelated individuals within our clinical AF cohort, despite no reported family history of AF in affected individuals. While no parental inheritance was observed, the possibility of a de novo origin cannot be excluded. Furthermore, this variant is located within a region overlapping a deletion mutation recently shown to cause AF in a zebrafish model (Jiang et al., iScience, 2024;27(7):110395) supporting its potential pathogenicity. Notably, the affected individuals did not carry additional loss-of-function TTN variants. We will clarify these points in the revised manuscript.

      (2) Patient-Specific iPSC Lines: Since the TTN-T32756I variant was modeled using only one healthy iPSC line, it is unclear whether patient-specific iPSC-derived atrial cardiomyocytes would exhibit similar AF-related phenotypes. This limitation should be addressed.

      We acknowledge the reviewer’s concern that patient-specific iPSC lines could further validate our findings. However, due to the patients' unavailability of peripheral blood mononuclear cells (PBMCs), we utilized a healthy iPSC line and introduced the TTN-T32756I variant using CRISPR/Cas9 genome editing. This approach ensures an isogenic background, thereby minimizing genetic variability and providing a controlled system to study the direct effects of the mutation. We will acknowledge this limitation in the revised manuscript.

      (3) Hypertension as a Confounding Factor: The three patients carrying TTN-T32756I also have hypertension. Could the hypertension associated with this variant contribute secondarily to AF? The authors should discuss or rule out this possibility.

      We agree that hypertension is a common comorbidity in patients with AF and could contribute to disease progression. However, all three individuals carrying TTN-T32756I exhibited early-onset AF (onset before 66 years), with one case occurring as early as 36 years. This suggests a potential two-hit mechanism, where genetic predisposition and comorbidities influence disease risk. Importantly, our iPSC model isolates the genetic effects of TTN-T32756I from other factors, supporting a direct pathogenic role. We will explicitly discuss this in the revised manuscript.

      (4) FHL2 and KCNQ1-KCNE1 Interaction: Immunostaining data demonstrating the colocalization of FHL2 with the KCNQ1-KCNE1 (MinK) complex in TTN-T32756I iPSC-aCMs are needed to strengthen the mechanistic findings.

      We appreciate the reviewer’s suggestion and agree that additional immunostaining data would strengthen the evidence for FHL2 colocalization with the KCNQ1-KCNE1 complex in TTN-T32756I iPSC-aCMs. We will work on obtaining these additional data to validate our mechanistic findings further.

      (5) Functional Characterization of FHL2-KCNQ1-KCNE1 Interaction: To further validate the proposed mechanism, additional functional assays are necessary to characterize the interaction between FHL2 and the KCNQ1-KCNE1 complex in TTN-T32756I iPSC-aCMs.

      We agree with the reviewer that additional functional assays would further validate the proposed mechanism. We will perform contractility and electrophysiological experiments, such as multielectrode array (MEA) assays, to characterize better the interaction between FHL2 and the KCNQ1-KCNE1 complex in TTN-T32756I iPSC-aCMs.

      Reviewer #2 (Public review):

      Summary:

      The authors present data from a single-center cohort of African-American and Hispanic/Latinx individuals with atrial fibrillation (AF). This study provides insight into the incidences and clinical impact of missense variants in this population in the Titin (TTN) gene. In addition, the authors identified a single amino acid TTN missense variant (TTN-T32756I) that was further studied using human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs). These studies demonstrated that the Four-and-a-Half Lim domains 2 (FHL2) has increased binding with KCNQ1 and its modulatory subunit KCNE1 in the TTN-T32756I-iPSCaCMs, enhancing the slow delayed rectifier potassium current (Iks) and is a potential mechanism for atrial fibrillation. Finally, the authors demonstrate that suppression of FHL2 could normalize the Iks current.

      Strengths:

      The strengths of this manuscript/study are listed below:

      (1) This study includes a previously underrepresented population in the study of the genetic and mechanistic basis of AF.

      (2) The authors utilize current state-of-the-art methods to investigate the pathogenicity of a specific TTN missense variant identified in this underrepresented patient population.

      (3) The findings of this study identify a potential therapeutic for treating atrial fibrillation.

      Weaknesses:

      (1) The authors do not include a non-AF group when evaluating the incidence and clinical significance of TTN missense variants in AF patients.

      We acknowledge the limitation of not including a non-AF group in our clinical analysis. Our cohort is derived from a single-center registry of individuals with AF, and we do not have a matched cohort of non-AF controls to compare the incidence of TTN missense variants. We recognize this as a limitation and will clarify that further studies are needed to define the prevalence of TTN missense variants in broader, multiethnic cohorts that include both AF and non-AF individuals.

      (2) The authors do not provide evidence that TTN-T32756I-iPSC-aCMs are arrhythmogenic, only that there is an increase in the Iks current and associated action potential changes. More specifically, the authors report that "compared to the WT, TTN-T32756I-iPSC-aCMs exhibited increased arrhythmic frequency," yet it is unclear what they are referring to by "arrhythmic frequency."

      We appreciate the reviewer’s request for clarification regarding "arrhythmic frequency." In our study, this term refers to the increased spontaneous beating rate and irregular action potentials observed in TTN-T32756I iPSC-aCMs compared to WT. Our findings suggest that the AF-associated TTN-T32756I variant induces ion channel remodeling and beating abnormalities, possibly contributing to an arrhythmogenic substrate for AF. We will refine our wording in the revised manuscript to enhance clarity and precision.

      (3) There seem to be discrepancies regarding the impact of the TTN-T32756I variant on mechanical function. Specifically, the authors report "both reduced contraction and abnormal relaxation in TTN-T32756I-iPSC-aCMs" yet, separately report "the contraction amplitude of the mutant was also increased … suggesting an increased contractile force by the TTN-T32756IiPSC-aCMs and TTN-T32756I-iPSC-CMs exhibited similar calcium transient amplitudes as the WT."

      We thank the reviewer for pointing this out and apologize for the inconsistency. We intended to report on contraction duration and relaxation rather than contraction force alone. The increased contraction amplitude reflects altered contractile force, whereas the reduced contraction duration and impaired relaxation indicate dysfunctional contractile dynamics. We will revise the text and corresponding figures to convey these findings accurately.

      Reviewer #3 (Public review):

      Summary:

      The authors describe the abnormal contractile function and cellular electrophysiology in an iPSC model of atrial myocytes with a titin missense variant. They provide contractility data by sarcomere length imaging, calcium imaging, and voltage clamp of the repolarizing current iKs. While each of the findings is interesting, the paper comes across as too descriptive because there is no data merging to support a cohesive mechanistic story/statement, especially from the electrophysiological standpoint. There is not enough support for the title "A Titin Missense Variant Causes Atrial Fibrillation", since there is no strong causative evidence. There is some interesting clinical data regarding the variant of interest and its association with HF hospitalization, which may lead to future important discoveries regarding atrial fibrillation.

      Strengths:

      The manuscript is well written, and a wide range of experimental techniques are used to probe this atrial fibrillation model.

      Weaknesses

      (1) While the clinical data is interesting, it is essential to rule out heart failure with preserved EF as a confounder. HFpEF leads to AF due to increased atrial remodeling, so the fact that patients with this missense variant have increased HF hospitalizations does not necessarily directly support the variant as causative of AF. It could be that the variant is associated directly with HFpEF instead, and this needs to be addressed and corrected in the analyses.

      We recognize that AF and HFpEF frequently coexist and that HFpEF-related atrial remodeling could contribute to AF development. The primary aim of our cohort analysis was to explore the potential clinical significance of TTNmv. While we acknowledge the inherent limitations of retrospective observational data in establishing causality, our subsequent in vitro experiments were designed to demonstrate that TTNmv can alter the electrophysiological substrate, potentially predisposing individuals to AF.

      As HFpEF is a potential confounder, it is reasonable to consider whether TTNmv may also be associated with HFpEF. However, to our knowledge, no existing literature directly links TTNmv to HFpEF. In contrast, loss-of-function TTN variants are typically associated with heart failure with reduced ejection fraction (HFrEF) and dilated cardiomyopathy, and even their role in HFrEF remains controversial. To address potential confounding, our multivariable analysis for clinical outcomes was adjusted for reduced ejection fraction, and we conducted a sensitivity analysis excluding patients with nonischemic dilated cardiomyopathy (Supplementary Table 6). We will clarify these points in the revised manuscript.

      (2) All contractility and electrophysiologic data should be done with pacing at the same rate in both control and missense variant groups, to control for the effect of cycle length on APD and calcium loading. A shorter APD cannot be claimed when the firing rate of one set of cells is much faster than the other, since shorter APD is to be expected with a quicker rate. Similarly, contractility is affected by diastolic interval because of the influence of SR calcium content on the myocyte power stroke. So the cells need to be paced at the same rate in the IonOptix for any direct comparison of contractility. The authors should familiarize themselves with the concept of electrical restitution.

      We appreciate the reviewer’s technical concern. iPSC-derived cardiomyocytes (iPSC-CMs) exhibit spontaneous beating due to the presence of pacemaker-like currents and the absence of I<sub>k1</sub>, which allows for the study of intrinsic electrophysiological properties, ion channel function, and disease modeling. In our study, we utilized this unique property of iPSCCMs to test our hypothesis that TTNmvs alter electrophysiological properties through ion channel remodeling.

      While iPSC-CMs with identical backgrounds are expected to show comparable electrophysiological phenotypes under the same conditions, variability due to biological and technical factors (e.g., protein expression and culture handling) can result in differences between samples. We agree with the reviewer that pacing iPSC-CMs at the same rate for action potential duration (APD) and contractility measurements will control for cycle length effects and improve the reliability and interpretability of our findings. We will incorporate this approach into our revised experimental design.

      (3) It is interesting that the firing rate of the myocytes is faster with the missense variant. This should lead to a hypothesis and investigation of abnormal automaticity or triggered activity, which may also explain the increased contractility since all these mechanisms are related to the SR's calcium clock and calcium loading. See #2 above for suggestions on how to probe calcium handling adequately. Such an investigation into impulse initiation mechanisms would be compelling in supporting the primary statement of the paper since these are actual mechanisms thought to cause AF.

      We agree with the reviewer that investigating abnormal automaticity or triggered activity about the increased firing rate observed with the missense variant could provide valuable insights into the mechanisms underlying AF. As these processes are closely linked to calcium handling and the calcium clock, probing calcium cycling abnormalities could strengthen our understanding of how TTNmvs contribute to AF. We will incorporate additional experiments to investigate these mechanisms, further supporting our study's central hypothesis.

      (4) The claim of shortened APD without correcting for cycle length is problematic. However, linking shortened APD in isolated cells alone to AF causation is more complicated. To have a setup for reentry, there must be a gradient of APD from short to long, and this can only be demonstrated at the tissue level, not at the cellular level, so reentry should not be invoked here. If shortened APD is demonstrated with correction of the cycle length problem, restitution curves can be made showing APD shortening at different cycle lengths. If restitution is abnormal (i.e. the APD does not shorten normally in relation to the diastolic interval), this may lead to triggered activity which is an arrhythmogenic mechanism. This would also tie in well with the finding of abnormally elevated iKs current since iKs is a repolarizing current directly responsible for restitution.

      We appreciate the reviewer’s insightful comment. We recognize that isolated cell studies cannot directly demonstrate reentrant circuits, and we agree that reentry should not be invoked solely based on cellular data. Our claim of shortened APD is based on observed abnormalities in APD and beating patterns, which may contribute to conditions conducive to reentry at the tissue level. We will clarify this distinction in the revised manuscript and refrain from directly linking APD shortening to reentry without tissue-level evidence.

    1. Author response:

      Our reviewers brought three things to our notice:

      (1) PolyP has not been introduced as an abbreviation in the abstract.

      (2) 'colorimetric' is misspelled as 'calorimetric' in the following sentence of the results section.

      This method involved the digestion of polyP by recombinant S. cerevisiae exopolyphosphatase 1 (_Sc_Ppx1) followed by calorimetric measurement of the released Pi by malachite green.

      (3) A reference for hNUDT3 has been deleted due to the same technical glitch from the following sentence of introduction.

      Recently, biochemical experiments led to the discovery of endopolyphosphatase NUDT3, an enzyme known as a dinucleoside phosphatase.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) The questions after reading this manuscript are what novel insights have been gained that significantly go beyond what was already known about the interaction of these receptors and, more importantly, what are the physiological implications of these findings? The proposed significance of the results in the last paragraph of the Discussion section is speculative since none of the receptor interactions have been investigated in TNBC cell lines. Moreover, no physiological experiments were conducted using the PRLR and GH knockout T47D cells to provide biological relevance for the receptor heteromers. The proposed role of JAK2 in the cell surface distribution and association of both receptors as stated in the title was only derived from the analysis of box 1 domain receptor mutants. A knockout of JAK2 was not conducted to assess heteromers formation.

      We thank the reviewer for these comments. The novel insight is that two different cytokine receptors can interact in an asymmetric, ligand-dependent manner, such that one receptor regulates the other receptor’s surface availability, mediated by JAK2. To our knowledge this has not been reported before. Beyond our observations, there is the question if this could be a much more common regulatory mechanism and if it has therapeutic relevance. However, answering these questions is beyond the scope of this work.

      Along the same line, the question regarding the biological relevance of our receptor heteromers and JAK2’s role in cell surface distribution is undoubtfully very important. Studying GHR-PRLR cell surface distributions in JAK2 knockout cells and certain TNBC cell lines as proposed by the reviewer could perhaps be insightful. However, most TNBCs down-regulate PRLR [1], so we would first have to identify TNBC cell lines that actually express PRLR at sufficiently high levels. Moreover, knocking out JAK2 is known to significantly reduce GHR surface availability [2,3], such that the proposed experiment would probably provide only limited insights.

      Unfortunately, our team is currently not in the position to perform any experiments (due to lack of funding and shortage of personnel). However, to address the reviewer’s comment as much as possible, we have revised the respective paragraph of the discussion section to emphasize the speculative nature of our statement and have added another paragraph discussing shortcoming and future experiments (see revised manuscript, pages 23-24).

      (1) López-Ozuna, V., Hachim, I., Hachim, M. et al. Prolactin Pro-Differentiation Pathway in Triple Negative Breast Cancer: Impact on Prognosis and Potential Therapy. Sci Rep 6, 30934 (2016). https://www.nature.com/articles/srep30934

      (2) He, K., Wang, X., Jiang, J., Guan, R., Bernstein, K.E., Sayeski, P.P., Frank, S.J. Janus kinase 2 determinants for growth hormone receptor association, surface assembly, and signaling. Mol Endocrinol. 2003;17(11):2211-27. doi: 10.1210/me.2003-0256. PMID: 12920237.

      (3) He, K., Loesch, K., Cowan, J.W., Li, X., Deng, L., Wang, X., Jiang, J., Frank, S.J. Janus Kinase 2 Enhances the Stability of the Mature Growth Hormone Receptor, Endocrinology, Volume 146, Issue 11, 2005, Pages 4755–4765,https://doi.org/10.1210/en.2005-0514

      (2) Except for some investigation of γ2A-JAK2 cells, most of the experiments in this study were conducted on a single breast cancer cell line. In terms of rigor and reproducibility, this is somewhat borderline. The CRISPR/Cas9 mutant T47D cells were not used for rescue experiments with the corresponding full-length receptors and the box1 mutants. A missed opportunity is the lack of an investigation correlating the number of receptors with physiological changes upon ligand stimulation (e.g., cellular clustering, proliferation, downstream signaling strength).

      We appreciate the reviewer’s comments. While we are confident in the reproducibility of our findings, including those obtained in the T47D cell line, we acknowledge that testing in additional cell lines would have strengthened the generalizability of our results. We also recognize that performing a rescue experiment using our T47D hPRLR or hGHR KO cells would have been valuable. Furthermore, examining physiological changes, such as proliferation rates and downstream signaling responses, would have provided additional insights. Unfortunately, these experiments were not conducted at the time, and we currently lack the resources to carry them out.

      (3) An obvious shortcoming of the study that was not discussed seems to be that the main methodology used in this study (super-resolution microscopy) does not distinguish the presence of various isoforms of the PRLR on the cell surface. Is it possible that the ligand stimulation changes the ratio between different isoforms? Which isoforms besides the long form may be involved in heteromers formation, presumably all that can bind JAK2?

      This is a very good point. We fully agree with the reviewer that a discussion of the results in the light of different PRLR isoforms is appropriate. We have added information on PRLR isoforms to the Introduction (see revised manuscript, page 2) and Discussion sections (see revised manuscript, pages 23-24).

      (4) Changes in the ligand-inducible activation of JAK2 and STAT5 were not investigated in the T47D knockout models for the PRL and GHR. It is also a missed opportunity to use super-resolution microscopy as a validation tool for the knockouts on the single cell level and how it might affect the distribution of the corresponding other receptor that is still expressed.

      We thank the reviewer for his comment. We fully agree that such additional experiments could be very valuable. We are sorry but, as already mentioned above, this is not something we are able to address at this stage due to lack of personnel and funding. However, we do hope to address these and other proposed experiments in the future.

      (5) Why does the binding of PRL not cause a similar decrease (internalization and downregulation) of the PRLR, and instead, an increase in cell surface localization? This seems to be contrary to previous observations in MCF-7 cells (J Biol Chem. 2005 October 7; 280(40): 33909-33916).

      It has been recently reported for GHR that not only JAK2 but also LYN binds to the box1-box2 region, creating competition that results in divergent signaling cascades and affects GHR nanoclustering [1]. So, it is reasonable to assume that similar mechanisms may be at work that regulate PRLR cell surface availability. Differences in cells’ expression of such kinases could perhaps play a role in the perceived inconsistency. Also, Lu et al. [2] studied the downregulation of the long PRLR isoform in response to PRL. All other PRLR isoforms were not detectable in MCF-7 cells. So, differences between MCF-7 and T47D may lead to this perceived contradiction.

      At this stage, we can only speculate about the actual reasons for these seemingly contradictory results. However, for full transparency, we are now mentioning this apparent contradiction in the Discussion section (see page 23) and have added the references below.

      (1) Chhabra, Y., Seiffert, P., Gormal, R.S., et al. Tyrosine kinases compete for growth hormone receptor binding and regulate receptor mobility and degradation. Cell Rep. 2023;42(5):112490. doi: 10.1016/j.celrep.2023.112490. PMID: 37163374.

      https://www.cell.com/cell-reports/pdf/S2211-1247(23)00501-6.pdf

      (2) Lu, J.C., Piazza, T.M., Schuler, L.A. Proteasomes mediate prolactin-induced receptor down-regulation and fragment generation in breast cancer cells. J Biol Chem. 2005 Oct 7;280(40):33909-16. doi: 10.1074/jbc.M508118200. PMID: 16103113; PMCID: PMC1976473.

      (6) Some figures and illustrations are of poor quality and were put together without paying attention to detail. For example, in Fig 5A, the GHR was cut off, possibly to omit other nonspecific bands, the WB images look 'washed out'. 5B, 5D: the labels are not in one line over the bars, and what is the point of showing all individual data points when the bar graphs with all annotations and SD lines are disappearing? As done for the y2A cells, the illustrations in 5B-5E should indicate what cell lines were used. No loading controls in Fig 5F, is there any protein in the first lane? No loading controls in Fig 6B and 6H.

      We thank the reviewer for pointing this out. We have amended Fig. 5A to now show larger crops of the two GHR and PRLR Western Blot images and thus a greater range of proteins present in the extracts. Please note that the bands in the WBs other than what is identified as GHR and PRLR are non-specific and reflect roughly equivalent loading of protein in each lane.

      We also made some changes to Figures 5B-5E.

      (7) The proximity ligation method was not described in the M&M section of the manuscript.

      We thank the reviewer for pointing this out. We have added a description of the PL method to the Methods section.

      Reviewer #1 (Recommendations for the Authors):

      A final suggestion for future investigations: Instead of focusing on the heteromer formation of the GHR/PRLR which both signal all through the same downstream effectors (JAK2, STAT5), it would have been more cancer-relevant, and perhaps even more interesting, to look for heteromers between the PRLR and receptors of the IL-6 family since it had been shown that PRL can stimulate STAT3, which is a unique feature of cancer cells. If that is the case, this would require a different modality of the interaction between different JAK kinases.

      We highly appreciate the reviewer’s recommendation and hope to follow up on it in the near future.

      Reviewer #2 (Public Review):

      (1) I could not fully evaluate some of the data, mainly because several details on acquisition and analysis are lacking. It would be useful to know what the background signal was in dSTORM and how the authors distinguished the specific signal from unspecific background fluorescence, which can be quite prominent in these experiments. Typically, one would evaluate the signal coming from antibodies randomly bound to a substrate around the cells to determine the switching properties of the dyes in their buffer and the average number of localisations representing one antibody. This would help evaluate if GHR or PRLR appeared as monomers or multimers in the plasma membrane before stimulation, which is currently a matter of debate. It would also provide better support for the model proposed in Figure 8.

      We are grateful for the reviewer’s comment. In our experience, the background signal is more relevant in dSTORM when imaging proteins that are located at deeper depths (> 3 μm) above the coverslip surface. In our experiments, cells are attached to the coverslip surface and the proteins being imaged are on the cell membrane. In addition, we employed dSTORM’s TIRF (total internal reflection fluorescence) microscopy mode to image membrane receptor proteins. TIRFM exploits the unique properties of an induced evanescent field in a limited specimen region immediately adjacent to the interface between two media having different refractive indices. It thereby dramatically reduces background by rejecting fluorescence from out-of-focus areas in the detection path and illuminating only the area right near the surface.

      Having said that, a few other sources such as auto-fluorescence, scattering, and non-bleached fluorescent molecules close to and distant from the focal plane can contribute to the background signal. We tried to reduce auto-fluorescence by ensuring that cells are grown in phenol-red-free media, imaging is performed in STORM buffer which reduces autofluorescence, and our immunostaining protocol includes a quenching step aside from using blocking buffer with different serum, in addition to BSA. Moreover, we employed extensive washing steps following antibody incubations to eliminate non-specifically bound antibodies. Ensuring that the TIRF illumination field is uniform helps reduce scatter. Additionally, an extended bleach step prior to the acquisition of frames to determine localizations helped further reduce the probability of non-bleached fluorescent molecules.

      In short, due to the experimental design we do not expect much background. However, in the future, we will address this concern and estimate background in a subtype dependent manner. To this end we will distinguish two types of background noise: (A) background with a small change between subsequent frames, which mainly consists of auto-fluorescence and non-bleached out-of-focus fluorescent molecules; and (B) background that changes every imaging frame, which is mainly from non-bleached fluorescent molecules near the focal plane. For type (A) background, temporal filters must be used for background estimation [1]; for type (B) background, low-pass filters (e.g., wavelet transform) should be used for background estimation [2].

      (1) Hoogendoorn, Crosby, Leyton-Puig, Breedijk, Jalink, Gadella, and Postma (2014). The fidelity of stochastic single-molecule super-resolution reconstructions critically depends upon robust background estimation. Scientific reports, 4, 3854. https://doi.org/10.1038/srep03854

      (2) Patel, Williamson, Owen, and Cohen (2021). Blinking statistics and molecular counting in direct stochastic reconstruction microscopy (dSTORM). Bioinformatics, Volume 37, Issue 17, September 2021, Pages 2730–2737, https://doi.org/10.1093/bioinformatics/btab136

      (2) Since many of the findings in this work come from the evaluation of localisation clusters, an image showing actual localisations would help support the main conclusions. I believe that the dSTORM images in Figures 1 and 2 are density maps, although this was not explicitly stated. Alexa 568 and Alexa 647 typically give a very different number of localisations, and this is also dependent on the concentration of BME. Did the authors take that into account when interpreting the results and creating the model in Figures 2 and 8?

      I believe that including this information is important as findings in this paper heavily rely on the number of localisations detected under different conditions.

      Including information on proximity labelling and CRISPR/Cas9 in the methods section would help with the reproducibility of these findings by other groups.

      Figures 1 and 2 show Gaussian interpolations of actual localizations, not density maps. Imaging captured the fluorophores’ blinking events and localizations were counted as true localizations, when at least 5 consecutive blinking events had been observed. Nikon software was used for Gaussian fitting. In other words, we show reconstructed images based on identifying true localizations using gaussian fitting and some strict parameters to identify true fluorophore blinking. This allowed us to identify true localizations with high confidence and generate a high-resolution image for membrane receptors.

      Indeed, Alexa 568 and 647 give different numbers of localization. This is dependent on the intrinsic photo-physics of the fluorophores. Specifically, each fluorophore has a different duty cycle, switching cycle, and survival fraction. However, we note that we focused on capturing the relative changes in receptor numbers over time, before and after stimulation by ligands, not the absolute numbers of surface GHR and PRLR. We are not comparing the absolute numbers of localizations or drawing comparisons for localization numbers between 568 and 647. For all these different conditions/times, the photo-physics for a particular fluorophore remains the same. This allows us to make relative comparisons.

      As far as the effect of BME is concerned, the concentration of mercaptoethanol needs to be carefully optimized, as too high a concentration can potentially quench the fluorescence or affect the overall stability of the sample. However, we are using an optimized concentration which has been previously validated across multiple STORM experiments. This makes the concerns relating to the concentration of BME irrelevant to the current experimental design. Besides, the concentration of BME is maintained across all experimental conditions.

      We have added information regarding PL and CRISPR/Cas9 for generating hGHR KO and hPRLR KO cells in two new subsections to the Methods section.

      Reviewer #2 (Recommendations for the authors):

      In the methods please include:<br /> (1) A section with details on proximity ligation assays.

      We have added a description of the PL method to the Methods section.

      (2) A section on CRISPR/Cas9 technology.

      We have added two new sections on “Generating hGHR knockout and hPRLR knockout T47D cells” and “Design of sgRNAs for hGHR  or hPRLR knockout” to the Methods section.

      (3) List the precise composition of the buffer or cite the paper that you followed.

      We used the buffer recipe described in this protocol [1] and have added the components with concentrations as well as the following reference to the manuscript.

      (1) Beggs, R.R., Dean, W.F., Mattheyses, A.L. (2020). dSTORM Imaging and Analysis of Desmosome Architecture. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 2367. Humana, New York, NY. https://doi.org/10.1007/7651_2020_325

      (4) Exposure time used for image acquisition to put 40 000 frames in the context of total imaging time and clarify why you decided to take 40 000 images per channel.

      Our Nikon Ti2 N-STORM microscope is equipped with an iXon DU-897 Ultra EMCCD camera from Andor (Oxford Instruments). According to the camera’s manufacturer, this camera platform uses a back-illuminated 512 x 512 frame transfer sensor and overclocks readout to 17 MHz, pushing speed performance to 56 fps (in full frame mode). We note that we always tried to acquire STORM images at the maximal frame rate. As for the exposure time, according to the manufacturer it can be as short as 17.8 ms. We would like to emphasize that we did not specify/alter the exposure time.

      See also: https://andor.oxinst.com/assets/uploads/products/andor/documents/andor-ixon-ultra-emccd-specifications.pdf

      The decision to take 40,000 images per frame was based on our intention to identify the true population of the molecules of interest that are localized and accurately represented in the final reconstruction image. The total number of frames depends on the sample complexity, density of sample labeling and desired resolution. We tested a range of frames between 20,000 and 60,000 and found for our experimental design and output requirements that 40,000 frames provided the best balance between achieving maximal resolution and desired localizations to make consistent and accurate localization estimates across different stimulation conditions compared to basal controls.

      (5) The lasers used to switch Alexa 568 and Alexa 647. Were you alternating between the lasers for switching and imaging of dyes? Intermittent and continuous illumination will produce very different unspecific background fluorescence.

      Yes, we used an alternating approach for the lasers exciting Alexa 647 and Alexa 568, for both switching and imaging of the dyes.

      (6) A paragraph with a detailed description of methods used to differentiate the background fluorescence from the signal.

      We have addressed the background fluorescence under Point 1 (Public Review). We have added a paragraph in the Methods section on this issue.

      (7) Minor corrections to the text:

      It appears as though there is a large difference in the expression level of GHR and PRLR in basal conditions in Figure 1. This can be due to the switching properties of the dyes, which is related to the amount of BME in the buffer, or it can be because there is indeed more PRL. Would the authors be able to comment on this?

      We thank the reviewer for this suggestions. According to expression data available online there is indeed more PRLR than GHR in T47D cells. According to CellMiner [1], T47D cells have an RNA-Seq gene expression level log2(FPKM + 1) of 6.814 for PRLR, and 3.587 for GHR, strongly suggesting that there is more PRLR than GHR in basal conditions, matching the reviewer’s interpretation of our images in Fig. 1 (basal). However, we would advise against using STORM images for direct comparisons of receptor expression. First, with TIRF images, we are only looking at the membrane fraction (~150 nm close to the coverslip membrane interface) that is attached to the coverslip. Secondly, as discussed above, our data represent relative cell surface receptor levels that allow for comparison of different conditions (basal vs. stimulation) and does not represent absolute quantifications. Everything is relative and in comparison to controls.

      Also, BME is not going to change the level of expression. The differences in growth factor expression as estimated by relative comparison can be attributed to the actual changes in growth factors and is not an artifact of the amount of BME in the buffer or the properties of dyes. These factors are maintained across all experimental conditions and do not influence the final outcome.

      (1) https://discover.nci.nih.gov/cellminer/

      (8) I would encourage the authors to use unspecific binding to characterize the signal coming from single antibodies bound to the substrate. This would provide a mean number of localizations that a single antibody generates. With this information, one can evaluate how many receptors there are per cluster, which would strengthen the findings and potentially provide additional support for the model presented in Figure 8. It would also explain why the distributions of localisations per cluster in Fig. 3B look very different for hGHR and hPRLR. As the authors point out in the discussion, the results on predimerization of these receptors in basal conditions are conflicting and therefore it is important to shed more light on this topic.

      We thank the reviewer for this suggestions. While we are unable to perform this experiment at this stage, we will keep it in mind for future experiments.

      (9) Minor corrections to the figures:

      Figure 1:

      In the legend, please say what representation was used. Are these density maps or another representation? Please provide examples of actual localisations (either as dots or crosses representing the peaks of the Gaussians). Most findings of this work rely on the characterisation of the clusters of localisations and therefore it is of essence to show what the clusters look like. This could potentially go to the supplemental info to minimise additional work. It's very hard to see the puncta in this figure.

      If the authors created zoomed regions in each of the images (as in Figure 3), it would be much easier to evaluate the expression level and the extent of colocalisation. Halfway through GHR 3 min green pixels become grey, but this may be the issue with the document that was created. Please check. Either increase the font on the scale bars in this figure or delete it.

      As described above, Figure 1 does not show density maps. Imaging captured the fluorophores’ blinking events and localizations were counted as true localizations, when at least 5 consecutive blinking events had been observed. Nikon software was used for Gaussian fitting and smoothing.

      We have generated zoomed regions. In our files (original as well as pdf) we do not see pixels become grey. We increased the font size above one of the scale bars and removed all others.

      Figure 3:

      In A, the GHR clusters are colour coded but PRLR are not. Are both DBSCN images? Explain the meaning of colour coding or show it as black and white. Was brightness also increased in the PRLR image? The font on the scale bars is too small. In B, right panels, the font on the axes is too small. In the figure legend explain the meaning of 33.3 and 16.7

      In our document, both GHR and PRLR are color coded but the hGHR clusters are certainly bigger and therefore appear brighter than the hPRLR clusters. Both are DBSCAN images. The color coding allows to distinguish different clusters (there is no other meaning). We have kept the color-coding but have added a sentence to the caption addressing this. Brightness was increased in both images of Panel B equally. 33.3 and 16.7 are the median cluster sizes. We have added a sentence to the caption explaining this. We have increased the font on the axes in B (right panels).

      Figure 4:

      I struggled to see any colocalization in the 2nd and the 3rd image. Please show zoomed-in sections. In the panels B and C, the data are presented as fractions. Is this per cell? My interpretation is that ~80% of PRL clusters also contain GHR.

      Is this in agreement with Figures 1 and 2? In Figure 1, PRL 3 min, Merge, colocalization seems much smaller. Could the authors give the total numbers of GHR and PRLR from which the fractions were calculated at least in basal conditions?

      We have provided zoom-in views. As for panels B and C, fractions are number of clusters containing both receptors divided by the total number of clusters. We used the same strategy that we had used for calculating the localization changes: We randomly selected 4 ROIs (regions of interest) per cell to calculate fractions and then calculated the average of three different cells from independently repeated experiments. We did not calculate total numbers of GHR/PRLR. The numbers are fractions of cluster numbers.

      Moreover, the reviewer interprets results in panels B and C that ~80% of PRLR clusters also contain GHR. We assume the reviewer refers to Basal state. Now, the reviewer’s interpretation is not correct for the following reason: ~80% of clusters have both receptors. How many of the remaining (~20%) clusters have only PRLR or only GHR is not revealed in the panels. Only if 100% of clusters have PRLR, we can conclude that 80% of PRLR clusters also contain GHR.

      Also, while Figures 1 and 2 show localization based on dSTORM images, Figure 3 indicates and quantifies co-localization based on proximity ligation assays following DBSCAN analysis using Clus-DoC. We do not think that the results are directly comparable.

      Reviewer #3 (Public Review):

      (1) The manuscript suffers from a lack of detail, which in places makes it difficult to evaluate the data and would make it very difficult for the results to be replicated by others. In addition, the manuscript would very much benefit from a full discussion of the limitations of the study. For example, the manuscript is written as if there is only one form of the PRLR while the anti-PRLR antibody used for dSTORM would also recognize the intermediate form and short forms 1a and 1b on the T47D cells. Given the very different roles of these other PRLR forms in breast cancer (Dufau, Vonderhaar, Clevenger, Walker and other labs), this limitation should at the very least be discussed. Similarly, the manuscript is written as if Jak2 essentially only signals through STAT5 but Jak2 is involved in multiple other signaling pathways from the multiple PRLRs, including the long form. Also, while there are papers suggesting that PRL can be protective in breast cancer, the majority of publications in this area find that PRL promotes breast cancer. How then would the authors interpret the effect of PRL on GHR in light of all those non-protective results? [Check papers by Hallgeir Rui]

      We thank the reviewer for such thoughtful comments. We have added a paragraph in the Discussion section on the limitations of our study, including sole focus on T47D and γ2A-JAK2 cells and lack of PRLR isoform-specific data. Also, we are now mentioning that these isoforms play different roles in breast cancer, citing papers by Dufau, Vonderhaar, Clevenger, and Walker labs.

      We did not mean to imply that JAK2 signals only via STAT5 or by only binding the long form. We have made this point clear in the Introduction as well as in our revised Discussion section. Moreover, we have added information and references on JAK2 signaling and PRLR isoform specific signaling.

      In our Discussions section we are also mentioning the findings that PRL is promoting breast cancer. We would like to point out that it is well perceivable that PRL is protective in BC by reducing surface hGHR availability but that this effect may depend on JAK2 levels as well as on expression levels of other kinases that competitively bind Box1 and/or Box2 [1]. Besides, could it not be that PRL’s effect is BC stage dependent? In any case, we have emphasized the speculative nature of our statement.

      (1) Chhabra, Y., Seiffert, P., Gormal, R.S., et al. Tyrosine kinases compete for growth hormone receptor binding and regulate receptor mobility and degradation. Cell Rep. 2023;42(5):112490. doi: 10.1016/j.celrep.2023.112490. PMID: 37163374.

      Reviewer #3 (Recommendations for the authors):

      Points for improvement of the manuscript:

      (1) Method details -

      a) "we utilized CRISPR/Cas9 to generate hPRLR knockout T47D cells ......" Exactly how? Nothing is said under methods. Can we be sure that you knocked out the whole gene?

      We have addressed this point by adding two new sections on “Generating hGHR knockout and hPRLR knockout T47D cells” and “Design of sgRNAs for hGHR or hPRLR knockout” to the Methods section.

      b) Some of the Western blots are missing mol wt markers. How specific are the various antibodies used for Westerns? For example, the previous publications are quoted as providing characterization of the antibodies also seem to use just band cutouts and do not show the full molecular weight range of whole cell extracts blotted. Anti-PRLR antibodies are notoriously bad and so this is important.

      There is an antibody referred to in Figure 5 that is not listed under "antibodies" in the methods.

      We have modified Figure 5a, showing the entire gel as well as molecular weight markers. As for specificity of our antibodies, we used monoclonal antibodies Anti-GHR-ext-mAB 74.3 and Anti-PRLR-ext-mAB 1.48, which have been previously tested and used. In addition, we did our own control experiments to ensure specificity. We have added some of our many control results as Supplementary Figures S2 and S3.

      We thank the reviewer for noticing the missing antibody in the Methods section. We have now added information about this antibody.

      c) There is no description of the proximity ligation assay.

      We have addressed this by adding a paragraph on PLA in the Methods section.

      d) What is the level of expression of GHR, PRLR, and Jak2 in the gamma2A-JAK2 cells compared to the T47D cells? Artifacts of overexpression are always a worry.

      γ2A-JAK2 cell series are over-expressing the receptors. That’s the reason we did not only rely on the observation in γ2A-JAK2 cell lines but also did the experiment in T47D cell lines.

      e) There are no concentrations given for components of the dSTORM imaging buffer. On line 380, I think the authors mean alternating lasers not alternatively.

      Thank you. Indeed, we meant alternating lasers. We are referring to [1] (the protocol we followed) for information on the imaging buffer.

      (1) Beggs, R.R., Dean, W.F., Mattheyses, A.L. (2020). dSTORM Imaging and Analysis of Desmosome Architecture. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 2367. Humana, New York, NY. https://doi.org/10.1007/7651_2020_325

      f) In general, a read-through to determine whether there is enough detail for others to replicate is required. 4% PFA in what? Do you mean PBS or should it be Dulbecco's PBS etc., etc.?

      We prepared a 4% PFA in PBS solution. We mean Dulbecco's PBS.

      (2) There are no controls shown or described for the dSTORM. For example, non-specific primary antibody and second antibodies alone for non-specific sticking. Do the second antibodies cross-react with the other primary antibody? Is there only one band when blotting whole cell extracts with the GHR antibody so we can be sure of specificity?

      We used monoclonal antibodies Anti-GHR-ext-mAB 74.3 and Anti-PRLR-ext-mAB 1.48 (but also tested several other antibodies). While these antibodies have been previously tested and used, we performed additional control experiments to ensure specificity of our primary antibodies and absence of non-specific binding of our secondary antibodies. We have added some of our many control results as Supplementary Figures S2 and S3.

      (3) Writing/figures-

      a) As discussed in the public review regarding different forms of the PRLR and the presence of other Jak2-dependent signaling

      We have added paragraphs on PRLR isoforms and other JAK2-dependent signaling pathways to the Introduction. Also, we have added a paragraph on PRLR isoforms (in the context of our findings) to the Discussion section.

      b) What are the units for figure 3c and d?

      The figures show numbers of localizations (obtained from fluorophore blinking events). In the figure caption to 3C and 3D, we have specified the unit (i.e. counts).

      c) The wheat germ agglutinin stains more than the plasma membrane and so this sentence needs some adjustment.

      We thank the reviewer for this comment. We have rephrased this sentence (see caption to Fig. 4).

      d) It might be better not to use the term "downregulation" since this is usually associated with expression and not internalization.

      While we understand the reviewer’s discomfort with the use of the word “downregulation”, we still think that it best describes the observed effect. Moreover, we would like to note that in the field of receptorology “downregulation” is a specific term for trafficking of cell surface receptors in response to ligands. That said, to address the reviewer’s comment, we are now using the terms “cell surface downregulation” or “downregulation of cell surface [..] receptor” throughout the manuscript in order to explicitly distinguish it from gene downregulation.

      e) Line 420 talks about "previous work", a term that usually indicates work from the same lab. My apologies if I am wrong, but the reference doesn't seem to be associated with the authors.

      At the end of the sentence containing the phrase “previous work”, we are referring to reference [57], which has Dr. Stuart Frank as senior and corresponding author. Dr. Frank is also a co-corresponding author on this manuscript. While in our opinion, “previous work” does not imply some sort of ownership, we are happy to confirm that one of us was responsible for the work we are referencing.

      Reviewing Editor's recommendations:

      The reviewers have all provided a very constructive assessment of the work and offered many useful suggestions to improve the manuscript. I'd advise thinking carefully about how many of these can be reasonably addressed. Most will not require further experiments. I consider it essential to improve the methods to ensure others could repeat the work. This includes adding methods for the PLA and including detail about the controls for the dSTORM. The reviewers have offered suggestions about types of controls to include if these have not already been done.

      We thank the editor for their recommendations. We have revised the methods section, which now includes a paragraph on PLA as well as on CRISPR/Cas9-based generation of mutant cell lines. We have also added information on the dSTORM buffer to the manuscript. Data of controls indicating antibody specificity (using confocal microscopy) have been added to the manuscript’s supplementary material (see Fig. S2 and S3).

      I agree with the reviewers that the different isoforms of the prolactin receptor need to be considered. I think this could be done as an acknowledgment and point of discussion.

      We have revised the discussions section and have added a paragraph on the different PRLR isoforms, among others.

      For Figure 2E, make it clear in the figure (or at least in legend) that the middle line is the basal condition.

      We thank the editor for their comment. We have made changes to Fig 2E and have added a sentence to the legend making it clear that the middle depicts the basal condition.

      My biggest concern overall was the fact that this is all largely conducted in a single cell line. This was echoed by at least one of the reviewers. I wonder if you have replicated this in other breast cancer cell lines or mammary epithelial cells? I don't think this is necessary for the current manuscript but would increase confidence if available.

      We thank the editor for their comment and fully agree with their assessment. Unfortunately, we have not replicated these experiments in other BC cell lines nor mammary epithelial cells but would certainly want to do so in the near future.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this work, the authors investigate the functional difference between the most commonly expressed form of PTH, and a novel point mutation in PTH identified in a patient with chronic hypocalcemia and hyperphosphatemia. The value of this mutant form of PTH as a potential anabolic agent for bone is investigated alongside PTH(1-84), which is a current anabolic therapy. The authors have achieved the aims of the study.

      Strengths:

      The work is novel, as it describes the function of a novel, naturally occurring, variant of PTH in terms of its ability to dimerise, to lead to cAMP activation, to increase serum calcium, and its pharmacological action compared to normal PTH.

      Recommendations for the authors:

      (1) In your response to the reviewers you included a figure. You said it was for the reviewers only. We are *not* including it here. Is that correct or should it be in the Public Reviews?

      We apologize for any confusion and appreciate your thorough review. The phrase “data only for reviewers” was intended to indicate that the content was included in the revision based on reviewers’ comments, not in the main text (article). However, we acknowledge that this phrasing may be inappropriate. We are agree to make the figure included in the previous author response of the public reviews. Accordingly, we propose to revise the previous author response as follows:

      - Remove "(data only for reviewers)".

      -  Correct the typo from "perosteal" to "periosteal".

      - “Thank you for your comment. First, we ensured that the bones sampled during the experiment showed no defects, and we carefully separated the femur bones from the mice to preserve their integrity. In the 3-point bending test, PTH treatment significantly increased the maximum load of the femur bone compared to the OVX-control group. Additionally, the maximum load in the PTH treatment group was significantly greater than that observed in the PTH dimer group. Furthermore, structural factors influencing bone strength, such as the periosteal perimeter and the endocortical bone perimeter, were also increased in the PTH treatment group compared to the PTH dimer group.”

      (2) Do you mean to always have R<sup>0</sup> (have a superscript) and RG (never have a superscript) or should they be shown in the same way throughout your paper?

      Thank you for your thorough review. Based on previous studies that addressed the conformation of PTH1R, R<sup>0</sup> is typically shown with a superscript, while RG is not (Hoare et al., 2001; Dean et al., 2006; Okazaki et al., 2008). We have followed this notation and will ensure consistency throughout our paper.

      Hoare, S. R., Gardella, T. J., & Usdin, T. B. (2001). Evaluating the signal transduction mechanism of the parathyroid hormone 1 receptor: effect of receptor-G-protein interaction on the ligand binding mechanism and receptor conformation. Journal of Biological Chemistry, 276(11), 7741-7753.

      Dean, T., Linglart, A., Mahon, M. J., Bastepe, M., Jüppner, H., Potts Jr, J. T., & Gardella, T. J. (2006). Mechanisms of ligand binding to the parathyroid hormone (PTH)/PTH-related protein receptor: selectivity of a modified PTH (1–15) radioligand for GαS-coupled receptor conformations. Molecular endocrinology, 20(4), 931-943.

      Okazaki, M., Ferrandon, S., Vilardaga, J. P., Bouxsein, M. L., Potts Jr, J. T., & Gardella, T. J. (2008). Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. Proceedings of the National Academy of Sciences, 105(43), 16525-16530.

      (3) The following grammatical and fact changes and word changes are requested.

      We appreciate the thoughtful review and thank you for pointing out the grammatical, factual, and word changes required. We have carefully reviewed and addressed each of these corrections to ensure the paper's accuracy and readability.

      We appreciate the reviewers' detailed and constructive reviews. We have addressed all the comments to improve the quality of our paper.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We would like to sincerely thank the reviewers again for their insightful comments on the previous version of our manuscript. In the last round of review, the reviewers were mostly satisfied with our revision but raised a few suggestions and/or remaining concerns. We have further edited the manuscript to address these concerns.

      Reviewer #1:

      - An explicit, quantitative link between the RNN and fMRI data is perhaps a last point that would integrate the RNN conclusion and analyses in line with the human imaging data.

      Reviewer #2:

      - Few. While more could be perhaps done to understand the RNN-fMRI correspondence, the paper contributes a compelling set of empirical findings and interpretations that can inform future research.

      To better align the RNN and fMRI results qualitatively, we performed an additional representational similarity analysis (RSA) on the data. Specifically, we computed the representational dissimilarity matrices (RDMs) for fMRI and RNN data separately, and calculated the correlation between the RDMs to quantify the similarity between fMRI data and different RNN models. We found that, consistent with our main claims, RNN2 generally demonstrated higher similarity with the fMRI data compared to RNN1. These results provide further support that RNN2 aligns better with human neuroimaging data. We have included this result (lines 496-505) and the corresponding figure (Figure 7) in the manuscript.

      Reviewer #1:

      - As Rev 2 mentions, multiple types of information codes may be present, and the response letter Figure 5 using representational similarity (RSA) gets at this question. It would strengthen the work to, at minimum, include this analysis as an extended or supplemental figure.

      Following this suggestion, we have now included Response Letter Figure 5 from the previous round of review in the manuscript (lines 381-387 and Appendix 1 – figure 7).

      Reviewer #1:

      - To sum up the results, a possible, brief schematic of each cortical area analyzed and its contribution to information coding in WM and successful subsequent behavior may help readers take away important conclusions of the cortical circuitry involved.

      Following this suggestion, we have added a schematic figure illustrating the contribution of each cortical region in our experiment to better summarize our findings (Figure 8).

      We hope that these changes further clarify the issues and strengthen the key claims in our manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public review): 

      The manuscript consists of two separate but interlinked investigations: genomic epidemiology and virulence assessment of Salmonella Dublin. ST10 dominates the epidemiological landscape of S. Dublin, while ST74 was uncommonly isolated. Detailed genomic epidemiology of ST10 unfolded the evolutionary history of this common genotype, highlighting clonal expansions linked to each distinct geography. Notably, North American ST10 was associated with more antimicrobial resistance compared to others. The authors also performed long-read sequencing on a subset of isolates (ST10 and ST74) and uncovered a novel recombinant virulence plasmid in ST10 (IncX1/IncFII/IncN). Separately, the authors performed cell invasion and cytotoxicity assays on the two S. Dublin genotypes, showing differential responses between the two STs. ST74 replicates better intracellularly in macrophages compared to ST10, but both STs induced comparable cytotoxicity levels.

      Comparative genomic analyses between the two genotypes showed certain genetic content unique to each genotype, but no further analyses were conducted to investigate which genetic factors were likely associated with the observed differences. The study provides a comprehensive and novel understanding of the evolution and adaptation of two S. Dublin genotypes, which can inform public health measures. 

      The methodology included in both approaches was sound and written in sufficient detail, and data analysis was performed with rigour. Source data were fully presented and accessible to readers. Certain aspects of the manuscript could be clarified and extended to improve the manuscript. 

      (1) For epidemiology purposes, it is not clear which human diseases were associated with the genomes included in this manuscript. This is important since S. Dublin can cause invasive bloodstream infections in humans. While such information may be unavailable for public sequences, this should be detailed for the 53 isolates sequenced for this study, especially for isolates selected to perform experiments in vitro.

      Thank you for the suggestion. We have added the sample type for the 53 isolates sequenced for this study. These additional details have been added to Supplementary Tables 1, 4, 9 and 10.

      (2) The major AMR plasmid in described S. Dublin was the IncC associated with clonal expansion in North America. While this plasmid is not found in the Australian isolates sequenced in this study, the reviewer finds that it is still important to include its characterization, since it carries blaCMY-2 and was sustainedly inherited in ST10 clade 5. If the plasmid structure is already published, the authors should include the accession number in the Main Results.

      We have provided accessions and context for two of the IncC hybrid plasmids that have been previously reported in the literature in the Introduction. The text now reads:

      “These MDR S. Dublin isolates all type as sequence type 10 (ST10), and the AMR determinants have been demonstrated to be carried on an IncC plasmid that has recombined with a virulence plasmid encoding the spvRABCD operon (12,16,18,19).  This has resulted in hybrid virulence and AMR plasmids circulating in North America including a 329kb megaplasmid with IncX1, IncFIA, IncFIB, and IncFII replicons (isolate CVM22429, NCBI accession CP032397.1) (12,16) and a smaller hybrid plasmid 172,265 bases in size with an IncX1 replicon (isolate N13-01125, NCBI accession KX815983.1) (19).”

      Further characterisation of the IncA/C plasmid circulating in North America was beyond the scope of this study.

      (a) The reviewer is concerned that the multiple annotations missing in  plasmid structures in Supplementary Figures 5 & 6, and  genetic content unique to ST10 and ST74 was due to insufficient annotation by Prokka. I would recommend the authors use another annotation tool, such as Bakta (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743544/) for plasmid annotation, and reconstruction of the pangenome described in Supplementary Figure 10. Since the recombinant virulence plasmid in ST10 is a novel one, I would recommend putting Supplementary Figure 5 as a main figure, with better annotations to show the virulence region, plasmid maintenance/replication, and possible conjugation cluster.

      In the supplementary figures of the plasmids, we sought to highlight key traits on interest on the plasmids, namely plasmid replicons, antimicrobial resistance and heavy metal resistance (Supplementary Figure 5) and virulence genes (Supplementary Figure 6). The inclusion of the accessions of publicly available isolates provide for characterised plasmids such as the S. Dublin virulence plasmid (NCBI accession: CP001143). 

      For the potentially hybrid plasmid with IncN/IncX1/IncFII reported in Supplementary Figure 6, we have undertaken additional analyses of the two Australian isolates to reannotate these isolates with Bakta which provides for more detailed annotations. 

      We have added new text to the methods which reads as: 

      “The final genome assemblies were confirmed as S. Dublin using SISTR and annotated using both Prokka v1.14.6 (69) for consistency with the draft genome assemblies and  Bakta v1.10.1 (93) which provides for more detailed annotations (Supplementary Table 13). Both Prokka and Bakta annotations were in agreement for AMR, HMR and virulence genes, with Bakta annotating between 3-7 additional CDS which were largely ‘hypothetical protein’.”

      For the pangenome analysis of the seven ST74 and ten ST10 isolates, we have continued to use the Prokka annotated draft genome assemblies for input to Panaroo. 

      (4) The authors are lauded for the use of multiple strains of ST10 and ST74 in the in vitro experiment. While results for ST74 were more consistent, readouts from ST10 were more heterogenous (Figure 5, 6). This is interesting as the tested ST10 were mostly clade 1, so ST10 was, as expected, of lower genetic diversity compared to tested ST74 (partly shown in Figure 1D. Could the authors confirm this by constructing an SNP table separately for tested ST10 and ST74? Additionally, the tested ST10 did not represent the phylogenetic diversity of the global epidemiology, and this limitation should be reflected in the Discussion.

      In response to the reviewer’s comments, we have provided a detailed SNP table (Supplementary Table 12) to further clarify the genetic diversity within the tested ST10 and ST74 strains. 

      Additionally, we have expanded on the limitation regarding the phylogenetic diversity of the ST10 isolates in the Discussion, highlighting how the strains used in the in vitro experiments may not fully represent the global epidemiological diversity of S. Dublin ST10. The new text now reads:

      “This study has limitations, including a focus on ST10 isolates from clade 1, which do not represent global phylogenetic diversity. Nonetheless, our pangenome analysis identified >900 uncharacterised genes unique to ST74, offering potential targets for future research. Another limitation is the geographic bias in available genomes, with underrepresentation from Asia and South America. This reflects broader disparities in genomic research resources but may improve as public health genomics capacity expands globally.”

      (5) The comparative genomics between ST10 and ST74 can be further improved to allow more interpretation of the experiments. Why were only SPI-1, 2, 6, and 19 included in the search for virulome, how about other SPIs? ST74 lacks SPI-19 and has truncated SPI-6, so what would explain the larger genome size of ST74? Have the authors screened for other SPIs using more well-annotated databases or references (S. Typhi CT18 or S. Typhimurium ST313)? The mismatching between in silico prediction of invasiveness and phenotypes also warrants a brief discussion, perhaps linked to bigger ST74 genome size (as intracellular lifestyle is usually linked with genome degradation).

      Systematic screening for SPIs with detailed reporting on individual genes and known effectors is still an area of development in Salmonella comparative genomics. In our characterisation of the virulome in this S. Dublin dataset we decided to focus on SPI1, SPI-2, SPI-6 and SPI-19 as these had been identified in previous studies and were considered to be most likely linked to the invasive phenotype of S. Dublin. We thought the truncation of SPI-6 and lack of SPI-19 in ST74 compared to the ST10 isolates would provide a basis to explore genomic differences in the two genotypes, with the screening for individual genes on each SPIs reported in Supplementary Figure 7 and Supplementary Table 9.  

      We have expanded upon the mismatching of the in silico prediction of invasiveness and phenotypes in the Discussion. We now explore the increased genome size and intracellular replication of the ST74 population. We hypothesise that invasiveness has not been studied as thoroughly in zoonotic iNTS as much as human adapted iNTS and S. Typhi, and the increased genome content may be required for survival in different host species. The new text now reads:

      “Our phenotypic data demonstrated a striking difference in replication dynamics between ST10 and ST74 populations in human macrophages. ST74 isolates replicated significantly over 24 hours, whereas ST10 isolates were rapidly cleared after 9 hours of infection. ST74 induced significantly less host cell death during the early-mid stage of macrophage infection, supported by limited processing and release of IL-1ß at 9 hpi. While NTS are generally potent inflammasome activators (60), most supporting data come from laboratory-adapted S. Typhimurium strains. Our findings suggest that ST74 isolates may employ immune evasion mechanisms to avoid host recognition and activation of cell death signaling in early infection stages. Similar trends have been observed with S. Typhimurium ST313, which induces less inflammasome activation than ST19 during murine macrophage infection (61). This could facilitate increased replication and dissemination at later stages of infection. Consistent with this, we observed comparable cytotoxicity between ST10 and ST74 isolates at 24 hpi, suggesting ST74 induces cell death via alternative mechanisms once intracellular bacterial numbers are unsustainable. Further research is needed to identify genomic factors underpinning these observations.”

      (6) On the epidemiology scale, ST10 is more successful, perhaps due to its ongoing adaptation to replication inside GI epithelial cells, favouring shedding. ST74 may tend to cause more invasive disease and less transmission via fecal shedding. The presence of T6SS in ST10 also can benefit its competition with other gut commensals, overcoming gut colonization resistance. The reviewer thinks that these details should be more clearly rephrased in the Discussion, as the results highly suggested different adaptations of two genotypes of the same serovar, leading to different epidemiological success.

      We thank the reviewer for highlighting that we could rephrase this important point. We have added additional text in the Discussion to better interpret the differences in the two genotypes of S. Dublin and how this relates to difference epidemiological success. The new text now reads:

      “While machine learning predicted lower invasiveness for ST74 compared to ST10, the increased genomic content of ST74 may support higher replication in macrophages. We speculate that increased intracellular replication could enhance systemic dissemination, though this requires in vivo validation. Invasiveness of S. enterica is often linked to genome degradation (4,62–64). However, this is mostly based on studies of human-adapted iNTS (ST313) and S. Typhi, leaving open the possibility that the additional genomic content of ST74 supports survival in diverse host species. An uncharacterised virulence factor may underlie this replication advantage. Collectively, these findings highlight phenotypic differences between S. Dublin populations ST10 and ST74. Enhanced intra-macrophage survival of ST74 could promote invasive disease, whereas the prevalence of ST10 may relate to better intestinal adaptation and enhanced faecal shedding. In vivo models are needed to test this hypothesis. Interestingly, the absence of SPI-19 in ST74, which encodes a T6SS, may reflect adaptation to enhanced replication in macrophages. SPI-19 has been linked to intestinal colonisation in poultry (23,56) and mucosal virulence in mice (56). It’s possible that the efficient replication of ST74 in macrophages might compensate for the absence of SPI-19, relying instead on phagocyte uptake via M cells or dendritic cells. The larger pangenome of ST74 compared to ST10 could further enhance survival within hosts. These findings highlight important knowledge gaps in zoonotic NTS host-pathogen interactions and drivers of emerging invasive NTS lineages with broad host ranges.”

      Reviewer #2 (Public review): 

      This is a comprehensive analysis of Salmonella Dublin genomes that offers insights into the global spread of this pathogen and region-specific traits that are important to understanding its evolution. The phenotyping of isolates of ST10 and ST74 also offers insights into the variability that can be seen in S. Dublin, which is also seen in other Salmonella serovars, and reminds the field that it is important to look beyond lab-adapted strains to truly understand these pathogens. This is a valuable contribution to the field. The only limitation, which the authors also acknowledge, is the bias towards S. Dublin genomes from high-income settings. However, there is no selection bias; this is simply a consequence of publically available sequences.

      Reviewer #1 (Recommendations for the authors): 

      (1) The Abstract did not summarize the main findings of the study. The authors should rewrite to highlight the key findings in genomic epidemiology (low AMR generally, novel plasmid of which Inc type, etc.) and the in vitro experiments. The findings clearly illustrate the differing adaptations of the two genotypes. Suggest to omit 'economic burden' and 'livestock' as this study did not specifically address them.

      We agree with the Reviewer and have re-written the abstract to directly reflect the major outcomes of the research. We have also deleted wording such as ‘livestock’, ‘economic burden’ and ‘One Health’ as we did not specifically address these issues as highlighted by the Reviewer. 

      (2) Figure 2: The MCC tree should include posterior support in major internal nodes. The current colour scheme is also confusing to readers (columns 1, 2). Suggest to revise and include additional key information as columns: major AMR genes (blaCMY-2, strAB, floR) and mer locus, so this info can be visualized in the main figure. 

      Thank you for your valuable feedback. We have revised Figure 2 with the MCC tree to include posterior support on the internal nodes. We have also amended the figure legend to explain the additional coloured internal nodes. We have also amended the heatmap in Figure 2 to include additional white space between the columns to make it easier for the readers to distinguish. We didn’t change the colours in this figure as we have used the same colours throughout for the different traits reported in this study. Further, we chose to keep the AMR profiles reported in Figure 2 at the susceptible, resistant or MDR. This was done to convey the overview of the AMR profiles, and we provide detail in the AMR and HMR determinants in the Supplementary Figures and Tables. 

      (3) The manuscript title is not informative, as it did not study the 'dynamics' of the two genotypes. Suggest to revise the study title along the lines of main results.

      Thank you for the feedback on the title. We have amended this to better reflect the main findings of the study, and it now reads as “Distinct adaptation and epidemiological success of different genotypes within Salmonella enterica serovar Dublin”

      (4) The co-occurrence of AMR and heavy metal resistance genes (like mer) are quite common in Salmonella and E. coli. This is not a novel finding. The reviewer would suggest shortening the details related to heavy metal resistance in Results and Discussion, to make the writing more streamlined. 

      In line with the Reviewer comments, we have shortened the details in the Results and Discussion on the co-occurrence of AMR and HMR.  

      (5) L185: missing info after n=82. 

      This has been revised to now read as “n=82 from Canada”. 

      (6) I think Vi refers to the capsular antigen, not flagelle. Please double-check this.

      Thank you for highlighting this mistake. We have revised all instances.

      (7) L252-253: which statistic was used to state 'no association'. Also, there is no evidence presented to support 'no fitness cost associated with resistance and virulence."

      We have removed this sentence.

      (8) 320: Figure 6F is a scatterplot, not PCA. Please confirm. 

      The reviewer is correct, this is in fact a scatterplot. We have amended the figure legend and text.

      (9) For Discussion, it would be helpful to compare the phenotype findings with that of other invasive Salmonella like Typhi or Typhimurium ST313.

      Thank you for noting this, we had alluded to findings from ST313 but have now expanded include some further comparisons to S. Typhimurium ST313 and added references for these within the Discussion. The additional text now reads:

      “Similar trends have been observed with S. Typhimurium ST313, which induces less inflammasome activation than ST19 during murine macrophage infection (61). This could facilitate increased replication and dissemination at later stages of infection.”

      "Invasiveness of S. enterica is often linked to genome degradation (4,62–64).

      However, this is mostly based on studies of human-adapted iNTS (ST313) and S. Typhi, leaving open the possibility that the additional genomic content of ST74 supports survival in diverse host species. An uncharacterised virulence factor may underlie this replication advantage.”

      (10) L440: no evidence for "successful colonization" of ST74. Actually, the findings suggested otherwise.

      Thank you for picking this up, we have amended the sentence to better reflect the findings. The amended text now reads as:

      “It’s possible that the efficient replication of ST74 in macrophages might compensate for the absence of SPI-19, relying instead on phagocyte uptake via M cells or dendritic cells. The larger pangenome of ST74 compared to ST10 could further enhance survival within hosts.”

      (11) L460-461: The data did not show an increasing trend of iNTS related to S. Dublin.

      Thank you for identifying this. This sentence has been revised accordingly and now reads as:

      “While the data did not indicate an increasing trend of iNTS associated with S. Dublin, the potential public health risk of this pathogen suggests it may still warrant considering it a notifiable disease, similar to typhoid and paratyphoid fever.”

      (12) L465: Data were not analyzed explicitly in the context of animal vs. human. Suggest omitting 'One Health' from the conclusion.

      Thank you for the suggestion. We have omitted “One Health” from the conclusion

      (13) L500: Was the alignment not checked for recombination using Gubbins? The approach here is inconsistent with the method described in the subtree selected for BEAST analysis (L546).

      We have now applied Gubbins to the phylogenetic tree constructed using IQTREE, and the methods and results have been updated accordingly.

      (14) What was the output of Tempest? Correlation or R2 value? 

      We have now included the R2 value from Tempest and reported this in the manuscript. 

      (15) L556: marginal likelihood to allow evaluation of the best-fit model. Please rephrase to state this clearly.

      We have rephrased this in the manuscript to state this clearly.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The main observation that the sperm from CRISP proteins 1 and 3 KO lines are postfertilization less developmentally competent is convincing. However, the molecular characterization of the mechanism that leads to these defects and the temporal appearance of the defects requires additional studies.

      We thank the reviewer for the valuable comments. As requested, additional experiments were carried out to analyze both the molecular mechanisms and the temporal appearance of the observed defects. Our results showed that DNA integrity defects appear during epididymal maturation and/or storage (see Figure 5B), that the epididymal fluid contributes to sperm DNA fragmentation defects (See Figure 6A) and that these defects seem not to be due to an increase in oxidative stress (Figure 5C) but rather to a dysregulation in Ca<sup>2+</sup> homeostasis within the epididymis (Figure 6A,B).

      Strengths:

      The generation of these double mutant mice is valuable for the field. Moreover, the fact that the double mutant line of Crisp 1 and 3 is phenotypically different from the Crisp 1 and 4 line suggests different functions of these epididymis proteins. The methods used to demonstrate that developmental defects are largely due to post-fertilization defects are also a considerable strength. The initial characterization of these sperm has altered intracellular Ca<sup>2+</sup> levels, and increased rates of DNA fragmentation are valuable.

      We thank the reviewer for the positive comments on our work.

      Weaknesses:

      The study is mechanistically incomplete because there is no direct demonstration that the absence of these proteins alters the epididymal environment and fluid, wherein during the passage through the epididymis the sperm become affected. Also, a direct demonstration of how the proteins in question cause or lead to DNA damage and increased Ca<sup>2+</sup> requires further characterization.

      The new experiments included in the revised version (see Figure 6A) showed that exposure of control WT sperm to epididymal fluid form mutant mice leads to an increase in sperm DNA fragmentation levels, confirming that the absence of CRISP1 and CRISP3 alters the epididymal fluid wherein the sperm become affected. In addition, new observations showing that WT sperm exposed to WT epididymal fluid in the presence of Ca<sup>2+</sup> also exhibit higher DNA fragmentation levels (Figure 6A) together with the finding that mutant sperm exhibit higher intracellular Ca<sup>2+</sup> levels (Figure 6B) but no higher levels of ROS, strongly support a dysregulation in Ca<sup>2+</sup> homeostasis within the epididymis and sperm as the main responsible for DNA integrity defects.

      Reviewer #2 (Public Review):

      The authors showed that CRISP1 and CRISP3, secreted proteins in the epididymis, are required for early embryogenesis after fertilization through DNA integrity in cauda epididymal sperm. This paper is the first report showing that the epididymal proteins are required for embryogenesis after fertilization. However, some data in this paper (Table 1 and Figure 2A) are overlapped in a published paper (Curci et al., FASEB J, 34,15718-15733, 2020; PMID: 33037689). Furthermore, the authors did not address why the disruption of CRISP1/3 leads to these phenomena (the increased level of the intracellular Ca<sup>2+</sup> level and impaired DNA integrity in sperm) with direct evidence. Therefore, if the authors can address the following comments to improve the paper's novelty and clarification, this paper may be worthwhile to readers.

      We thank the reviewer for the constructive comments. Regarding the data included in Table 1 and Figure 2A, it is important to note that Table 1 includes data on embryo development corresponding to C1/C4 DKO mice not published before in which the data on embryo development corresponding to C1/C3 DKO was used as simultaneous control. Figure 2A showed in vivo fertilization results at short times after mating (4h instead of 18 h) that have been neither reported before.

      Regarding studies to address why the disruption of CRISP1 and CRISP3 leads to defects in DNA integrity and Ca<sup>2+</sup> levels, we have carried out new experiments showing that mutant sperm do not exhibit higher levels of ROS (see Figure 5C), not favoring oxidative stress as the mechanism underlying mutant sperm defects. In addition, we found that DNA integrity defects develop during epididymal transit (Figure 5B) and that exposure of WT sperm to epididymal fluid from mutant mice leads to an increase in sperm DNA fragmentation levels (Figure 6A), confirming that the absence of CRISP1 and CRISP3 alters the epididymal fluid. Finally, our new results showing that WT sperm exposed to WT epididymal fluid in the presence of Ca<sup>2+</sup> also exhibit higher DNA fragmentation levels (Figure 6A) together with the higher intracellular Ca<sup>2+</sup> levels detected in mutant sperm (Figure 6B) strongly support a dysregulation in Ca<sup>2+</sup> homeostasis within the epididymis and sperm as the main responsible for DNA integrity defects.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Overall comments:

      This manuscript investigates the mechanisms whereby the absence of the epididymal CRISP proteins 1 and 3 (Cysteine-Rich Secretory Proteins) causes infertility and lower embryo developmental rates. This strain's infertility seems to have a post-fertilization origin because the rates of in vivo fertilization are like the controls, but the development to the blastocyst stage is decreased. The results of this study show that (1) mutant sperm viability, progressive motility, and morphology are normal;

      (2) in vivo fertilization rates are comparable to controls, but embryo development is reduced;

      (3) in vitro fertilization studies found reduced fertilization rates and activation rates even in zona-free studies;

      (4) additional functional studies showed increased rates of DNA fragmentation and elevated Ca<sup>2+</sup> levels in mutant sperm.

      The results presented are credible and hint that the epididymis might play a role before and after fertilization and directly affect embryo development. However, the study is mechanistically incomplete, as there is no direct demonstration that the absence of these proteins alters the epididymal environment and fluid, wherein the passage through the epididymis the sperm become functionally defective, and whether mutant or control epididymal fluid or purified CRISP proteins can change, either reduce or overcome, respectively, the developmental competence of the control or mutant sperm and induce functional changes in the counterpart sperm. In summary, the main observation that the sperm from CRISP proteins 1 and 3 KO lines are post-fertilization less developmentally competent is significant and important, but the molecular characterization of the defects and the temporal appearance of defects requires additional studies.

      Specific comments:

      (1) Introduction.

      It is too long. The description of the function of the epididymis should be reduced. The functional properties of the Crisp genes should also be substantially shortened.

      As requested, the Introduction has been revised and descriptions of the epididymis and CRISP have been shortened

      (2) Results.

      • Lines 140 to 142. Remove these initial lines. Start directly addressing the results of the C1/C3 strain, which is the mutant under consideration here. Referring to the C1/C4 results detracts from the focus of the study.

      As suggested by the reviewer, lines 140 to 142 have been removed.

      • Table 1. Move the two-cell embryo line to the top of the Table and place the Blastocyst line below it. This organization is the conventional method to present this type of data.

      As suggested, the order of the lines in Table 1 has been modified to align with the conventional presentation method.

      • Figures 1 and 2A and B data are solid and support the notion that enough sperm reach the site of fertilization, and that the sperm are defective in their capacity to support embryo development. Figures 2C and D have interesting data, although additional information would strengthen these results. The authors concluded that the sperm were defective in the epididymis. Where in the epididymis? These sperm were all from the cauda. Could the authors collect sperm from the upper portion of the cauda, or midportion, and compare if the defects manifest gradually?

      We appreciate this interesting and appropriate comment from the reviewer. In this regard, all the studies in our work were carried out using sperm from the whole cauda epididymis, the reason why we could not answer where defective sperm appear in the epididymis. In view of this, we have now conducted a comparative DNA fragmentation analysis between caput and cauda sperm from both genotypes. Our findings indicate that while cauda mutant sperm showed once again higher DNA fragmentation levels than controls, caput sperm exhibited levels of DNA damage not significantly different between genotypes. These results confirm that defects in DNA appear following sperm passage through the epididymal caput, supporting the hypothesis that defects in DNA fragmentation manifest during sperm transit through the epididymis and /or during storage in the cauda. These results have been included in the revised version of the manuscript (see lines 235-240/Figure 5B of the revised version)

      • Figure 3 displays the results of in vitro fertilization, either COCs A-C or zona-free fertilization D-F. The results are important and differ from those produced by fertilization in vivo. The authors indicate that these confirm that the in vivo conditions overcome in vitro defects. However, this study never addresses the reason behind it. Is there less expression of proteins related to these functions, or the function of some proteins is compromised? The authors should advance a hypothesis or a rationale to explain these results.

      As indicated by the reviewer, our results showed differences between the fertilization rates observed for mutant mice under in vivo and in vitro conditions, as previously observed for all our single and multiple KO models (Da Ros et al., 2008; PMID: 18571638, Brukman et al., 2016; PMID: 26786179, Weigel Muñoz, 2018; PMID: 29481619, Ernesto et al., 2015; PMID: 26416967, Carvajal et al,. 2018; PMID: 30510210) and also reported by other groups (Okabe et al., 2007; PMID: 17558467). In this regard, it has been well established that, although millions of sperm are ejaculated into the female tract, only a few (approximately one per oocyte) reach the fertilization site (i.e. the ampulla) (Cummins and Yanagimachi, 1982; doi:10.1002/mrd.1120050304). This efficient selection system by the female reproductive tract leads to the arrival of only the best sperm at the fertilization site, even in males with reproductive deficiencies, thereby “masking” sperm defects that can be detected under in vitro conditions due to the competition between good and bad quality sperm for the egg. Thus, although we can not exclude other mechanisms to explain the commonly observed differences between in vivo and in vitro fertilization rates, our rationale is that the natural and efficient sperm selection process that takes place within the female reproductive tract masks sperm defects that can, otherwise, be detected under the competitive in vitro conditions. This explanation is now included in the discussion of the revised version of the manuscript (see lines 320-325).

      • Data in Figures 4 and 5 support the interpretation of the authors. However, it is necessary to establish the level of oxidative stress in the mutant sperm vs. the controls. Also, a question to explore is for how long does the sperm need to reside in that mutant environment to start undergoing the DNA fragmentation reported?

      In response to the valuable request from the reviewer regarding the level of oxidative stress in sperm, we have analyzed reactive oxygen species (ROS) levels in mutant and control epididymal sperm. Our results showed that ROS levels in mutant sperm were not higher than those observed in the control group, supporting the idea that mechanisms other than oxidative stress may be leading to the increased DNA fragmentation observed in mutant sperm. These results are now included in the revised version of the manuscript (see Figure 5C).

      Regarding the question on how long the sperm need to reside in the mutant environment to undergo DNA fragmentation, recent experiments carried out in response to this reviewer in which we analyzed DNA fragmentation in caput sperm led us to conclude that DNA fragmentation develops during epididymal transit and/or storage in the cauda. While these observations do not precisely define the time within the epididymis that sperm require for exhibiting DNA fragmentation, our additional new in vitro experiments analyzing the effect of epididymal fluids on sperm DNA integrity showed that exposure of WT sperm to DKO fluid for only 1 hr already leads to an increase in DNA fragmentation (see Figure 6A of the revised manuscript), suggesting that sperm do not need long periods within the mutant environment to be affected.

      (3) The length of the Discussion section should be shortened, especially by not recapitulating data presented in the Results section.

      As requested by the reviewer, sections recapitulating results have been modified.

      Minor comments:

      (1) The sentence in lines 171 and 172 is unclear, "However, despite the short time after mating, once again, the in vivo fertilized eggs corresponding to the mutant group exhibited clear defects to reach the blastocyst stage in vitro compared to controls." What do the authors mean by short time? It is the expected time, correct?

      It is well established that after copulatory plug formation, most oocytes are fertilized within 2 to 8 hours, with fertilization rates that increase over time: 0–5% at 1.5 hours post-mating; 40% at 4 hours post-mating and more than 90% at 7 hs after mating (Muro et al., 2016; PMID: 26962112, La Spina et al., 2016; PMID: 26872876). In order to examine whether the embryo development defects observed for mutant mice were due to a delayed arrival of sperm to the ampulla, we decided to analyze the percentage of fertilized eggs recovered from the ampulla at “short times” (4 hs) after mating to avoid the possibility that the prolonged stay of sperm within the female tract corresponding to the usual “overnight mating” schedule could be giving defective sperm enough time to reach the ampulla and, finally, fertilize the eggs (i.e. delayed fertilization). Our results showed that, despite the expected lower fertilization rates observed for both control and mutant males when analyzed just 4 hs after mating, the fertilized eggs corresponding to the mutant group were still exhibiting clear defects to develop into blastocysts compared to controls, not favoring the idea that embryo development defects were due to a delayed fertilization. The sentence in lines “171 and 172” has been modified in the revised version of the manuscript to better explain this conclusion (see lines 152-155 of the revised version).

      (2) Line 177. Mutant epididymal sperm already carry defects leading to embryo development failure. Under this subheading, the authors compare within the same female the ability of mutant and control sperm delivered into different horns to support fertilization and embryo development. They show that the embryo development induced by mutant sperm is diminished vs. controls under very similar conditions, confirming the previous results of post-fertilization failure. The data also answers the question raised by the authors of whether the fertilization defects appear during or after epididymal transit; the interpretation of the results is the functional defects in the sperm are present before the transport into the female tract. Important unaddressed questions are, could these defects begin even earlier before arriving at the cauda? Did the authors try to incubate the mutant sperm with the epididymal fluid of WT mice to examine if the sperm defects could be rescued? The opposite experiment could also be performed, where WT sperm are incubated with the epididymal fluid of mutant mice, and the treated sperm examined for altered Ca<sup>2+</sup> levels or DNA fragmentation.

      First of all, we would like to clarify that our question about whether the fertilization defects appear “during or after epididymal transit” was in fact referring to whether defects appear during epididymal maturation or later on, at the moment of ejaculation. In this regard, our in vivo and in vitro fertilization studies allowed us to conclude that defects were already present in epididymal sperm without excluding the possibility that additional defects could appear at the vas deferens or at the moment of ejaculation due to the contribution of seminal plasma secretions.

      Regarding whether sperm defects could appear even earlier before arriving to the cauda, we have now analyzed DNA fragmentation defects in caput vs cauda both mutant and control sperm observing differences between genotypes only for cauda sperm. Based on these observations, we conclude that DNA integrity defects appear within the epididymis after sperm passage through the caput either when sperm reach the corpus or the cauda epididymis, or during their storage within the cauda region.

      Also, as suggested by the reviewer, we incubated in vitro WT sperm with epididymal fluid from DKO mice (and vice versa) and then analyzed DNA fragmentation levels. Results showed that exposure of control sperm to the mutant epididymal fluid for 1 hr significantly increased DNA fragmentation levels. When mutant sperm (exhibiting higher levels of DNA fragmentation than control sperm), were exposed to epididymal fluid from WT mice, no differences between groups were observed. Together, these results confirm both that the epididymal fluid from mutant mice contributes to the higher DNA fragmentation levels detected in mutant sperm, and that normal epididymal fluid would not be able to rescue the DNA fragmentation present in mutant cells. These results are now included in the revised version of the manuscript (see Figure 6A).

      (3) Lines 203 to 216. In these paragraphs the authors indicate "that mutant sperm had a lower percentage of fertilization and lower rates of blastocysts (Figure 3D, E), indicating that defects in egg coat penetration were not responsible for embryo development failure. Later, they indicated that a few eggs fertilized by mutant sperm failed to activate. It is shown that Ca<sup>2+</sup> oscillations are normal, indicating that the defects lie elsewhere. Could the authors propose a mechanism based on their sperm DNA defects?

      As described in the Result and Discussion sections of the original manuscript, we decided to investigate the existence of possible defects in sperm DNA fragmentation based on evidence indicating that delays in early embryo development may result from the time taken by the egg to repair damaged paternal DNA (Esbert et al., 2018; PMID: 30259705, Newman et al., 2022; PMID: 34954800, Nguyen et al., 2023; PMID: 37658763). In this regard, it is known that time is needed before the first embryonic cell division for activation of the egg DNA repairing machinery (Martin et al., 2019; PMID: 30541031, Newman et al., 2022; PMID: 34954800) and that increased sperm DNA damage may necessitate more time for repair by the oocyte (Martin et al., 2019; PMID: 30541031, Newman et al., 2022; PMID: 34954800). Based on this, we decided to examine possible DNA damage in sperm. Our finding that, in fact, sperm DNA fragmentation was clearly increased in mutant sperm led us to propose that delays in early embryo development in our mutant colonies may result from the time required by the egg to repair sperm DNA fragmentation.

      (4) The demonstration that C1/C3 sperm have abnormal rates of DNA fragmentation and Ca<sup>2+</sup> levels is significant. Additional studies would strengthen the findings reported here. For example, what are the levels of oxidative stress in these sperm? Are there other changes related to oxidative stress? Performing a TUNNEL assay will strengthen the notion of DNA damage demonstrated here with the chromatin dispersion assay.

      As mentioned previously, we analyzed oxidative stress by evaluating ROS levels in control and mutant sperm observing no differences between genotypes. These results have been included in the revised version of the manuscript (See Figure 5C). We appreciate the suggestion of performing TUNNEL assay for future studies.

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      (1) There are some reports small RNAs gained during the epididymal transition of sperm are essential for embryonic development (e.g., Conine et al., Dev Cell, 46, 470480, 2018; PMID: 30057276), suggesting that the luminal changes in Crisp1/3 double KO (dKO) epididymis lead to the phenotype in this study. In fact, there is no evidence whether CRISP1/CRISP3 secreted from an epididymis exists in cauda epididymal sperm and directly controls the observed phenomena. Also, the authors wrote there is no strong evidence to exclude the possible role of small RNA in Crisp1/3 dKO sperm (lines 370-372). Therefore, it is at least necessary to measure small RNA abundance in dKO mice.

      As mentioned by the reviewer and as cited in our manuscript, there is a report indicating that the small RNAs gained during epididymal transit may play a role in embryonic development (Conine et al., 2018; PMID: 30057276). However, the need of small RNAs for embryonic development still remains a topic of debate (Wang et al. 2020; PMCID: PMC7799177). In this regard, clear evidence indicating that sperm DNA fragmentation is associated with embryo development defects together with the increase in sperm DNA fragmentation levels observed in mutant sperm support sperm DNA damage as one of the causes leading to the observed phenotype in our mutant mice. Moreover, recent experiments carried out in response to Reviewer 1 comments revealed that exposure of control sperm to epididymal fluid from mutant mice significantly increases DNA fragmentation levels, confirming that the absence of CRISP1 and CRISP3 proteins in epididymal fluid contributes to sperm DNA damage in mutant sperm. Finally, whereas oxidative stress might also lead to embryo development impairment as mentioned in our original manuscript, recent evaluation of ROS levels in control and mutant sperm carried out in response to Reviewer 1’s comments did not show higher ROS levels in mutant sperm. Thus, although as mentioned in the manuscript, we do not exclude the possibility that small RNAs may also contribute to embryo development defects, our observations support DNA fragmentation and a dysregulation in Ca<sup>2+</sup> homeostasis within the epididymis and sperm as the main responsible for embryo development failure in our mutant males. The experiments using epididymal fluid (Figure 6A) and those evaluating ROS levels (Figure 5C) have been included in the revised version of the manuscript and discussed accordingly.

      (2) Lines 245-248 and 354-374: According to Figure 5C, the intracellular Ca<sup>2+</sup> level significantly increased in Crisp1/3 dKO sperm compared to control. The author hypothesized that this increase could destroy sperm DNA integrity, causing defects in early embryogenesis. However, the authors did not show the direct evidence.

      Specifically, as CRISP1 inhibits CatSper (line 95), the authors believed the increased Ca<sup>2+</sup> level in Crisp1/3 dKO sperm was observed. Crisp1/3 dKO and Crisp1/4 dKO mice share the disruption of Crisp1, but the phenotype is totally different. Thus, the authors should also examine the CatSper activity in Crisp1/3 dKO sperm.

      We appreciate the reviewer's insightful comments. In this regard, whereas C1/C3 and C1/C4 DKO colonies shares the disruption of Crisp1, the intracellular Ca<sup>2+</sup> levels in these two colonies are different as no increase in sperm intracellular Ca<sup>2+</sup> was detected in Crisp C1/C4 DKO mice. Thus, this difference in intracellular Ca<sup>2+</sup> levels might explain the different embryo development phenotype observed in our two DKO colonies. In this regard, our results revealed that sperm intracellular Ca<sup>2+</sup> levels are different depending on the Crisp gene being deleted. Whereas the lack of Crisp1 did not affect intracellular sperm Ca<sup>2+</sup> levels (Weigel Munoz et al, 2018; PMID: 29481619), there was an increase in Ca<sup>2+</sup> levels in CRISP2 KO sperm (Brukman et al., 2016; PMID: 26786179) and a decrease in sperm when Crisp4 was deleted (Carvajal 2019, Ph.D Thesis). Thus, although the ability of CRISP3 to regulate sperm Ca<sup>2+</sup> channels has not yet been reported, the existence of functional compensations between homologous CRISP members (Curci et al., 2020; PMID: 33037689) makes it complicated to draw straightforward conclusions based on the behavior of each individual protein in Ca<sup>2+</sup> regulation. In fact, while the lack of CRISP1 and CRISP4 does not affect sperm Ca<sup>2+</sup> concentration (Carvajal 2019, Ph.D Thesis), the simultaneous lack of CRISP1 and CRISP3 produced an increase in Ca<sup>2+</sup> levels and the lack of the four CRISP proteins showed a decrease in the intracellular levels of the cation after capacitation (Curci et al, 2020). Based on these observations, we conclude that the absence of CRISP1 may or may not lead to altered intracellular Ca<sup>2+</sup> levels depending on the other simultaneously-deleted gene/s.

      The authors make a hypothesis that the increased Ca<sup>2+</sup> level may lead to damaged DNA integrity by citing a published paper (lines 360-363). In the published paper, the authors examined the influence of the luminal fluid of the epididymis and vas deference on sperm chromatin fragmentation (Gawecka et al., 2015). However, they did not mention the increased DNA fragmentation in epididymal sperm when these sperm were incubated with Ca<sup>2+</sup> or Mn2+. So, the authors' hypothesis is over discussion. Thus, the correlation between the intracellular Ca<sup>2+</sup> level and DNA integrity in sperm is still unclear. So, the authors should show why the increased Ca<sup>2+</sup> level leads to DNA fragmentation with direct evidence.

      We appreciate the reviewer’s comment regarding the work by Gawecka et al., (2015), and the opportunity to clarify the proposed mechanism underlying our observations. In the above mentioned paper, the authors reported that when mouse epididymal or vas deferens sperm were incubated with divalent cations (Ca<sup>2+</sup> and Mn<sup>2+</sup>) in the presence of luminal fluid, they were induced to degrade their DNA in a process termed sperm chromatin fragmentation (SCF). The fact that both the ejaculated and epididymal mutant sperm used in our studies had been exposed to epididymal fluid lacking CRISP proteins known to regulate sperm Ca<sup>2+</sup> channels, opened the possibility that changes in Ca<sup>2+</sup> levels within the epididymal fluid and/or sperm could be responsible for the higher DNA fragmentation levels observed in mutant cells. In this regard, it is important to note that, as requested by Reviewer 1, we performed additional in vitro experiments in which WT epididymal sperm were exposed to mutant or WT epididymal fluid in the presence or absence of Ca<sup>2+</sup> and DNA fragmentation analyzed at the end of incubation. Results showed a significant increase in DNA fragmentation in WT sperm exposed to either mutant epididymal fluid or WT fluid in the presence of Ca<sup>2+</sup> (Figure 6A). We believe these observations together with the higher intracellular Ca<sup>2+</sup> levels detected in DKO sperm (Figure 6B) provides strong evidence supporting changes in Ca<sup>2+</sup> homeostasis in the epididymis and sperm as the main responsible for the observed sperm DNA integrity defects. This could be mediated by the activation of Ca<sup>2+</sup>-dependent nucleases present within the epididymal fluid and/or sperm cells as previously suggested (Shaman et al., 2006; PMID: 16914690, Sotolongo et al., 2005; PMID: 15713834, Boaz et al., 2008; PMID: 17879959, Dominguez and Ward, 2009; PMID: 19938954). These observations have now been included and discussed in the revised version of the manuscript (see lines 245-265 and 427-439).

      Minor Comments:

      (3) Standards for measuring rates should be clarified, such as two-cell rates are determined by dividing the number of two-cell embryos by the total number of eggs.

      As requested, standards for measuring rates have now been clarified in the corresponding figure legends

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review): 

      Summary: 

      In this manuscript, the authors investigate the role of BEND2, a novel regulator of meiosis, in both male and female fertility. Huang et al have created a mouse model where the full-length BEND2 transcript is depleted but the truncated BEND2 version remains. This mouse model is fertile, and the authors used it to study the role of BEND2 on both male and female meiosis. Overall, the full-length BEND2 appears dispensable for male meiosis. The more interesting phenotype was observed in females. Females exhibit a lower ovarian reserve suggesting that full-length BEND2 is involved in the establishment of the primordial follicle pool. 

      Strengths: 

      The authors generated a mouse model that enabled them to study the role of BEND2 in meiosis. The role of BEND2 in female fertility is novel and enhances our knowledge of genes involved in the establishment of the primordial follicle pool. 

      Weaknesses: 

      The manuscript extensively explores the role of BEND2 in male meiosis; however, a more interesting result was obtained from the study of female mice. 

      We sincerely appreciate the reviewer’s thoughtful evaluation of our work and recognition of the strengths of our study. We are especially grateful for the acknowledgment of the novelty of our findings regarding the role of BEND2 in female fertility. While we extensively characterized the e ects of BEND2 depletion in male meiosis, we agree that the phenotype observed in females provides particularly interesting insights into the establishment of the primordial follicle pool. 

      Reviewer #2 (Public review): 

      In their manuscript entitled "BEND2 is a crucial player in oogenesis and reproductive aging", the authors present their findings that full-length BEND2 is important for repair of meiotic double strand break repair in spermatocytes, regulation of LINE-1 elements in spermatocytes, and proper oocyte meiosis and folliculogenesis in females. The manuscript utilizes an elegant system to specifically ablate the full-length form of BEND2 which has been historically di icult to study due to its location on the X chromosome and male sterility of global knockout animals. 

      The authors have been extremely responsive to reviewer critiques and have presented strong data and appropriate conclusions, making it an excellent addition to the field. 

      We are truly grateful for the reviewer’s thoughtful review and recognition of the key contributions of our study. We appreciate the acknowledgment of how our model overcomes the challenges in studying BEND2 and the importance of our findings in both male and female meiosis. We also value the reviewer’s encouraging comments on our responsiveness to their feedback and the quality of our data and conclusions.

      Reviewer #3 (Public review): 

      Huang et al. investigated the phenotype of Bend2 mutant mice which expressed truncated isoform. Bend2 deletion in male showed fertility and this enabled them to analyze the BEND2 function in females. They showed that Bend2 deletion in females showed decreasing follicle number which may lead to loss of ovarian reserve. 

      Strengths: 

      They found the truncated isoform of Bend2 and the depletion of this isoform showed decreasing follicle number at birth. 

      Weaknesses: 

      The authors showed novel factors that impact ovarian reserve. Although the number of follicles and conception rate are reduced in mutant mice, the in vitro fertilization rate is normal and follicles remain at 40 weeks of age. It is difficult to know how critical this is when applied to the human case. 

      We greatly appreciate the reviewer’s comments and recognition of the strengths of our work. We are grateful for their acknowledgment of our findings related to the truncated isoform of Bend2 and its e ect on ovarian reserve. We also agree that, although our study provides important insights, we are still far from directly applying these results to human clinical scenarios. There is much further research needed before these findings can be translated. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):: 

      The authors have addressed all concerns both editorially and experimentally. This is a very nice manuscript, and I congratulate the authors on their work. 

      We sincerely appreciate your kind words and thoughtful review. Your feedback has been invaluable in improving our manuscript, and we are grateful for your time and effort. Thank you for your support and encouragement!

      Reviewer #2 (Recommendations for the authors):: 

      In Figure 3, graphs in panels C & D have typos in the early zygotene column where it reads "zyotene". 

      We appreciate your careful review and for pointing out the typos in Figure 4, which has been corrected in the new version of the manuscript. 

      Reviewer #3 (Recommendations for the authors): 

      ・Since there are two isoforms of Bend2, and the authors depleted one isoform, this is not suitable to use "full length" in the titles and in the manuscripts. 

      We respectfully disagree with the reviewer’s comment. In our mouse model, we specifically remove the full-length isoform of Bend2. Therefore, we consider it appropriate to refer to it as such in the manuscript. Our results indicate that the full-length isoform is not required to complete meiotic prophase in males but is indispensable for setting up the ovarian reserve in females. We appreciate the reviewer’s input and are happy to clarify this point further if needed.

      ・Is there any reason why authors used 7 month old females for in vitro fertilization? It may not be recognized as aged mice but it seems a bit old to perform IVF especially when the ovarian reserve in mutant mice is decreased. If there is any reason, please clarify it. In addition, since the authors added IVF data, which showed similar fertilization ratio between control and mutant, the authors need to discuss why the litter size was decreased in mutant mice. It may be to strong to conclude "subfertility". 

      We used 7-month-old females for IVF because this falls within the age range of the samples analyzed for ovarian reserve, with the oldest females being 8 months old. Regarding the apparent discrepancy between IVF results and litter size, we addressed this in the discussion section of the manuscript: 'Interestingly, our mutant oocyte quality analysis suggests that mature oocytes from mutant females are equally competent to develop into a blastocyst as control ones. These data suggest that the subfertility observed in Bend2 mutants may be due to errors in later developmental stages, such as implantation or organogenesis.' We appreciate the reviewer’s feedback and hope this clarification helps.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Turi, Teng and the team used state-of-the-art techniques to provide convincing evidence on the infraslow oscillation of DG cells during NREM sleep, and how serotonergic innervation modulates hippocampal activity pattern during sleep and memory. First, they showed that the glutamatergic DG cells become activated following an infraslow rhythm during NREM sleep. In addition, the infraslow oscillation in the DG is correlated with rhythmic serotonin release during sleep. Finally, they found that specific knockdown of 5-HT receptors in the DG impairs the infraslow rhythm and memory, suggesting that serotonergic signaling is crucial for regulating DG activity during sleep. Given that the functional role of infraslow rhythm still remains to be studied, their findings deepen our understanding on the role of DG cells and serotonergic signaling in regulating infraslow rhythm, sleep microarchitecture and memory.

      Reviewer #2 (Public review):

      Summary:

      The authors investigated DG neuronal activity at the population and single cell level across sleep/wake periods. They found an infraslow oscillation (0.01-0.03 Hz) in both granule cells (GC) and mossy cells (MC) during NREM sleep. The important findings are 1) the antiparallel temporal dynamics of DG neuron activities and serotonin neuron activities/extracellular serotonin levels during NREM sleep, and 2) the GC Htr1a-mediated GC infraslow oscillation.

      Strengths:

      (1) The combination of polysomnography, Ca-fiber photometry, two-photon microscopy and gene depletion is technically sound. The coincidence of microarousals and dips in DG population activity is convincing. The dip in activity in upregulated cells is responsible for the dip at the population level.

      (2) DG GCs express excitatory Htr4 and Htr7 in addition to inhibitory Htr1a, but deletion of Htr1a is sufficient to disrupt DG GC infraslow oscillation, supporting the importance of Htr1a in DG activity during NREM sleep.

      Weaknesses:

      (1) The current data set and analysis are insufficient to interpret the observation correctly.<br /> a. In Fig 1A, during NREM, the peaks and troughs of GC population activities seem to gradually decrease over time. Please address this point.

      b. In Fig 1F, about 30% of Ca dips coincided with MA (EMG increase) and 60% of Ca dips did not coincide with EMG increase. If this is true, the readers can find 8 Ca dips which are not associated with MAs from Fig 1E. If MAs were clustered, please describe this properly.<br /> c. In Fig 1F, the legend stated the percentage during NREM. If the authors want to include the percentage of wake and REM, please show the traces with Ca dips during wake and REM. This concern applies to all pie charts provided by the authors.

      d. In Fig 1C, please provide line plots connecting the same session. This request applies to all related figures.

      e. In Fig 2C, the significant increase during REM and the same level during NREM are not convincing. In Fig 2A, the several EMG increasing bouts do not appear to be MA, but rather wakefulness, because the duration of the EMG increase is greater than 15 seconds. Therefore, it is possible that the wake bouts were mixed with NREM bouts, leading to the decrease of Ca activity during NREM. In fact, In Fig 2E, the 4th MA bout seems to be the wake bout because the EMG increase lasts more than 15 seconds.

      f. Fig 5D REM data are interesting because the DRN activity is stably silenced during REM. The varied correlation means the varied DG activity during REM. The authors need to address it.

      g. In Fig 6, the authors should show the impact of DG Htr1a knockdown on sleep/wake structure including the frequency of MAs. I agree with the impact of Htr1a on DG ISO, but possible changes in sleep bout may induce the DG ISO disturbance.

      (2) It is acceptable that DG Htr1a KO induces the reduced freezing in the CFC test (Fig. 6E, F), but it is too much of a stretch that the disruption of DG ISO causes impaired fear memory. There should be a correlation.

      (3) It is necessary to describe the extent of AAV-Cre infection. The authors injected AAV into the dorsal DG (AP -1.9 mm), but the histology shows the ventral DG (Supplementary Fig. 4), which reduces the reliability of this study.

      Responses to weaknesses mentioned above have been addressed in the first revision.

      Comments on revisions:

      In the first revision, I pointed out the inappropriate analysis of the EEG/EMG/photometry data and gave examples. The authors responded only to the points raised and did not seem to see the need to improve the overall analysis and description. In this second revision, I would like to ask the authors to improve them. The biggest problem is that the detection criteria and the quantification of the specific event are not described at all in Methods and it is extremely difficult to follow the statement. All interpretations are made by the inappropriate data analysis; therefore, I have to say that the statement is not supported by the data.

      Please read my following concerns carefully and improve them.

      (1) The definition of the event is critical to the detection of the event and the subsequent analysis. In particular, the authors explicitly describe the definition of MA (microarousal), the trough and peak of the population level of intracellular Ca concentrations, or the onset of the decline and surge of Ca levels.

      (1-1) The authors categorized wake bouts of <15 seconds with high EMG activity as MA (in Methods). What degree of high EMG is relevant to MA and what is the lower limit of high EMG? In Fig 1E, there are some EMG spikes, but it was unclear which spike/wave (amplitude/duration) was detected as MA-relevant spike and which spike was not detected. In Fig 2E, the 3rd MA coincides with the EMG spike, but other EMG spikes have comparable amplitude to the 3rd MA-relevant EMG spike. Correct counting of MA events is critical in Fig 1F, 2F, 4C.

      We have added more information about the MA definition in Methods, including EMG amplitude. Furthermore, we have re-analyzed MA and MA-related calcium signals in Fig1 and Fig2. Fig-S1 shows the traces of EMG aptitude for all MA events show in Fig1G and Fig2G.

      (1-2) Please describe the definition of Ca trough in your experiments. In Fig 1G, the averaged trough time is clear (~2.5 s), so I can acknowledge that MA is followed by Ca trough. However, the authors state on page 4 that "30% of the calcium troughs during NREM sleep were followed by an MA epoch". This discrepancy should be corrected.

      We apologize for the misleading statement. We meant 30% of ISO events during NERM sleep. We have corrected this. To detect the calcium trough of ISO, we first calculated a moving baseline (blue line in Fig-S2 below) by smoothing the calcium signals over 60 s, then set a threshold (0.2 standard deviation from the moving baseline) for events of calcium decrease, and finally detected the minimum point (red dots in Fig-S2) in each event as the calcium trough. We have added these in Methods.

      (1-3) Relating comment 1-2, I agree that the latency is between MA and Ca through in page 4, as the authors explain in the methods, but, in Fig 1G, t (latency) is labeled at incorrect position. Please correct this.

      We are sorry for the mistake in describing the latency in the Methods. The latency was defined as the time difference between the onset of calcium decline (see details below in 1-4) and the onset of the MA. We have corrected this in the revised manuscript. Thus, the labeling in Fig1G was correct.

      (1-4) The authors may want to determine the onset of the decline in population Ca activity and the latency between onset and trough (Fig 1G, latency t). If so, please describe how the onset of the decline is determined. In Fig 1G, 2G, S6, I can find the horizontal dashed line and infer that the intersection of the horizontal line and the Ca curve is considered the onset. However, I have to say that the placement of this horizontal line is super arbitrary. The results (t and Drop) are highly dependent on the position of horizontal line, so the authors need to describe how to set the horizontal line.

      Indeed, we used the onset of calcium decline to calculate the latency as mentioned above. First, we defined the baseline (dashed line in Fig1G) by calculating the average of calcium signals in the10s window before the MA (from -15s to -5s in Fig1G). The onset of calcium decline is defined as the timepoint where calcium decrease was larger than 0.05 SD from this baseline. We have added these in Methods.

      (1-5) In order to follow Fig 1F correctly, the authors need to indicate the detection criteria of "Ca dip (in legend)". Please indicate "each Ca dip" in Fig 1E. As a reader, I would like to agree with the Ca dip detection of this Ca curve based on the criteria. Please also indicate "each Ca dip" in Fig 2E and 2F. In the case of the 2nd and 3rd MAs, do they follow a single Ca dip or does each MA follow each Ca dip? This chart is highly dependent on the detection criteria of Ca dip.

      We have indicated each ca dip in Fig 1 and Fig 2.

      As I mentioned above, most of the quantifications are not based on the clear detection criteria. The authors need to re-analyze the data and fix the quantification. Please interpret data and discuss the cellular mechanism of ISO based on the re-analyzed quantification.

      As suggested, we have re-analyzed the MA and MA-related photometry signals. Accordingly, parts of Fig1 and Fig2 have been revised. Although there are some small changes, the main results and conclusions remain unchanged.

      Reviewer #3 (Public review):

      Summary:

      The authors employ a series of well-conceived and well-executed experiments involving photometric imaging of the dentate gyrus and raphe nucleus, as well as cell-type specific genetic manipulations of serotonergic receptors that together serve to directly implicate serotonergic regulation of dentate gyrus (DG) granule (GC) and mossy cell (MC) activity in association with an infra slow oscillation (ISO) of neural activity has been previously linked to general cortical regulation during NREM sleep and microarousals.

      Strengths:

      There are a number of novel and important results, including the modulation of dentage granule cell activity by the infraslow oscillation during NREM sleep, the selective association of different subpopulations of granule cells to microarousals (MA), the anticorrelation of raphe activity with infraslow dentate activity.

      The discussion includes a general survey of ISOs and recent work relating to their expression in other brain areas and other potential neuromodulatory system involvement, as well as possible connections with infraslow oscillations, micro arousals, and sensory sensitivity.

      Weaknesses:

      - The behavioral results showing contextual memory impairment resulting from 5-HT1a knockdown are fine, but are over-interpreted. The term memory consolidation is used several times, as well as references to sleep-dependence. This is not what was tested. The receptor was knocked down, and then 2 weeks later animals were found to have fear conditioning deficits. They can certainly describe this result as indicating a connection between 5-HT1a receptor function and memory performance, but the connection to sleep and consolidation would just be speculation. The fact that 5-HT1a knockdown also impacted DG ISOs does not establish dependency. Some examples of this are:

      – The final conclusion asserts "Together, our study highlights the role of neuromodulation in organizing neuronal activity during sleep and sleep-dependent brain functions, such as memory.", but the reported memory effects (impairment of fear conditioning) were not shown to be explicitly sleep-dependent.

      – Earlier in the discussion it mentions "Finally, we showed that local genetic ablation of 5-HT1a receptors in GCs impaired the ISO and memory consolidation". The effect shown was on general memory performance - consolidation was not specifically implicated.

      – The assertion on page 9 that the results demonstrate "that the 5-HT is directly acting in the DG to gate the oscillations" is a bit strong given the magnitude of effect shown in Fig. 6D, and the absence of demonstration of negative effect on cortical areas that also show ISO activity and could impact DG activity (see requested cortical sigma power analysis).

      – Recent work has shown that abnormal DG GC activity can result from the use of the specific Ca indicator being used (GCaMP6s). (Teng, S., Wang, W., Wen, J.J.J. et al. Expression of GCaMP6s in the dentate gyrus induces tonic-clonic seizures. Sci Rep 14, 8104 (2024). https://doi.org/10.1038/s41598-024-58819-9). The authors of that study found that the effect seemed to be specific to GCaMP6s and that GCaMP6f did not lead to abnormal excitability. Note this is of particular concern given similar infraslow variation of cortical excitability in epilepsy (cf Vanhatalo et al. PNAS 2004). While I don't think that the experiments need to be repeated with a different indicator to address this concern, you should be able to use the 2p GCaMP7 experiments that have already been done to provide additional validation by repeating the analyses done for the GCaMP6s photometry experiments. This should be done anyway to allow appropriate comparison of the 2p and photometry results.

      – While the discussion mentions previous work that has linked ISOs during sleep with regulation of cortical oscillations in the sigma band, oddly no such analysis is performed in the current work even though it is presumably available and would be highly relevant to the interpretation of a number of primary results including the relationship between the ISOs and MAs observed in the DG and similar results reported in other areas, as well as the selective impact of DG 5-HT1a knockdown on DG ISOs. For example, in the initial results describing the cross correlation of calcium activity and EMG/EEG with MA episodes (paragraph 1, page 4), similar results relating brief arousals to the infraslow fluctuation in sleep spindles (sigma band) have been reported also at .02 Hz associated with variation in sensory arousability (cf. Cardis et al., "Cortico-autonomic local arousals and heightened somatosensory arousability during NREMS of mice in neuropathic pain", eLife 2021). It would be important to know whether the current results show similar cortical sigma band correlations. Also, in the results on ISO attenuation following 5-HT1 knockdown on page 7 (fig. 6), how is cortical EEG affected? is ISO still seen in EEG but attenuated in DG?

      – The illustrations of the effect of 5-HT1a knockdown shown in Figure 6 are somewhat misleading. The examples in panels B and C show an effect that is much more dramatic than the overall effect shown in panel D. Panels B and C do not appear to be representative examples. Which of the sample points in panel D are illustrated in panels B, C? it is not appropriate to arbitrarily select two points from different animals for comparison, or worse, to take points from the extremes of the distributions. If the intent is to illustrate what the effect shown in D looks like in the raw data, then you need to select examples that reflect the means shown in panel D. It is also important to show the effect on cortical EEG, particularly in sigma band to see if the effects are restricted to the DG ISOs. It would also be helpful to show that MAs and their correlations as shown in Fig 1 or G as well as broader sleep architecture are not affected.

      – On page 9 of the results it states that GCs and MCs are upregulated during NREM and their activity is abruptly terminated by MAs through a 5-HT mediated mechanism. I didn't see anything showing the 5-HT dependence of the MA activity correlation. The results indicate a reduction in ISO modulation of GC activity but not the MA correlated activity. I would like to see the equivalent of Fig 1,2 G panels with the 5-HT1a manipulation.

      Responses to Revewer#3 have been addressed in the first revision. 

      Reviewer #1 (Recommendations for the authors):

      Minor comment: Several recent publications from different laboratories have shown rhythmic release of norepinephrine (NE) (~0.03 Hz) in the medial prefrontal cortex, the thalamus, and in the locus coeruleus (LC) of the mouse during sleep-wake cycles-> Please add "preoptic area" here

      We have added the citation.

      Reviewer #2 (Recommendations for the authors):

      Minor

      (1) (abstract, page 2 line 9) what kind of "increased activity" did the authors find?

      Increased activity compared to that during wakefulness. We have added this.

      (2) (result, page 4) please define first, early, and late stage of NREM sleep in the methods.

      We have added these in the Methods.

      (3) (result, page 6) please define "the risetime of the phasic increase".

      It refers to the latency between the increase of 5-HT and the MA onset. We have clarified this in the text.

      (4) (supplement Fig 3 legend) please reword "5-HT events" and "5-HT signals" because these are ambiguous.

      We have defined the events in the legend.

      (5) (Fig 5A) please replace the picture without bubbles.

      We have replaced the image in Fig5A.

    1. Author response:

      Reviewer 1:

      A primary limitation of this study, acknowledged by the authors, is its reliance on self-reports of participants’ emotional states. Although considerable effort was made to minimize expectation effects, further research is needed to confirm that the observed behavioral changes reflect genuine alterations in emotional states.

      Thank you very much for raising this point. We fully agree that self-reported emotional states are inherently subjective and that the ramifications of this need to be clarified in the manuscript. However, we would suggest that the focus on self-report may be a strength rather than a limitation. First, the regularities and rules underlying and determining emotional self-report are of primary importance and interest in their own right, and the work presented here does, we believe, shed light on a rich structure present in multivariate timeseries of subjective self-reports and their response to external inputs. Second, there is no clear definition of what a ”genuine emotion state” might be; particularly if there is a discrepancy with self-reported emotions.

      Additionally, the generalizability of the findings to long-term remediation strategies remains an open question.

      Yes, we agree that what we have described is limited to a short-term intervention and change.

      Whether these changes bear on longer-term changes remains to be assessed. Furthermore, the mechanisms or processes that would support such a maintenance are of substantial interest, and will be the focus of future work.

      Second, the statistical analysis, particularly the computational approach, sometimes lacks sufficient detail and refinement. While I will not elaborate on specific points here, one notable issue is the interpretation of the intrinsic matrix (A). The model-free analysis reveals correlations between emotions at a given time or within an emotional state across time points. However, it does not provide evidence to support lagged interactions across states that would justify non-diagonal elements in A. The other result concerning the dynamics matrix only highlights a trend in the dominant eigenvalue, which is difficult to interpret in isolation. The absence of a statistically significant group x intervention interaction furthermore makes this finding a little compelling. This weakens the study’s conclusions about the importance of intrinsic dynamics, as claimed in the title.

      We appreciate the reviewer’s detailed feedback on the statistical analysis and interpretation of the intrinsic dynamics matrix. It is true that the model-free analysis as presented focuses on within-state correlations and that we have not provided such model-free evidence for lagged interactions across states. We do note that the model comparison suggested that the intervention caused changes in the full A matrix. This would be unlikely if there had not been meaningful cross-emotion lagged effects. Similarly, inference of the A matrix could have revealed a diagonal matrix, and we preferred not to impose such an assumption a priori, as it is very restrictive. Nevertheless, in the absence of a statistically significant group x intervention interaction, the findings regarding the A matrix are less compelling than those related to the control analyses. While this is likely due to a lack of statistical power, these are important points which we will consider in more detail in the revision.

      Finally, to avoid potential misunderstandings of their work, the authors should be more careful about their use of terms pertaining to the control theory and take the time to properly define them. For example, the ”controllability” of emotional states can either denote that those states are more changeable (control theory definition), or, conversely, more tightly regulated (common interpretation, as used in the abstract). This is true for numerous terms (stability, sensitivity, Gramian, etc.) for which no clear definition nor references are provided. Readers unfamiliar with the framework of control theory will likely be at a loss without more guidance.

      Thank you for this point. We recognize the potential for misunderstanding due to the dual usage of terms such as ”controllability” and will improve the clarity to avoid any misunderstanding.

      Reviewer 2:

      Acquiring data online inevitably gives rise to selection and self-selection effects. This needs to be acknowledged clearly. Exacerbating this, participant remuneration seems low at an amount below the minimum or living wage in Western countries (do the authors know where their participants came from?).

      Thank you for this point. We certainly agree that different experimental settings can induce different biases, and this is no different for online settings. However, online tasks such as the one used here, have become accepted, and there is now a substantial literature showing that in-lab effects are often well-replicated in online settings (Gillan and Rutledge, 2021) . For the current study, it is not clear that an inperson setting may not induce comparably complex biases, e.g. to do with differences between experimenters. All participants were from the UK. Remuneration rates were comparable to other experimental settings, in keeping with other online studies, UK living wage recommendations, and ultimately determined according to institutional ethical guidance.

      Another concern is that the intervention does not simply take place before the second block begins but is ongoing during the whole of the second block in that it is integrated into the phrasing of the task on each trial. It is therefore somewhat misleading to speak of a period ’after the intervention’, and it would have been interesting to assess the effect of this by including a third group where the phrasing does not change, but the floating leaves intervention takes place.

      Thank you for this point. We acknowledge that the phrasing of the emotion question in the second block may have influenced the observed effects. Including a third group without the reminder would have provided valuable insights and is an important consideration for future studies. We will acknowledge this limitation.

      As mentioned in the Limitations section, observation noise was assumed and not estimated. While this is understandable in this case, the effect of this assumption could have been assessed by simulation with varying levels of observation (and process) noise.

      Thank you for this comment. We would like to clarify that both observation noise and process noise were estimated in the analyses. We will ensure this is emphasized better in the revised version to avoid future misunderstandings.

      Relatedly, the reliance on formal model comparison is unfortunate since the outcome of such comparisons is easily influenced by slight changes to assumptions such as noise levels. An alternative approach would have been to develop a favoured model based on its suitability to address the research question and its ability, established by simulation, to distill relevant changes of behaviour into reliable parameter estimates.

      We agree that model comparison alone is insufficient. This is why we have also included extensive simulations, including posterior predictive checks, and have followed established best-practice procedures (Wilson and Collins, 2019). We have focused on a relatively simple model space to avoid overfitting to the dataset, and hence reduce the risk of spurious findings. While we agree that outcomes will be influenced by underlying assumptions, this would persist with the suggested approach of relying on a favoured model. Simulations themselves rely on predefined structures and noise specifications, which inherently shape parameter recovery and inference. Relying only on a favoured model might risk model misspecification, whereby the model may not actually capture the data, and the parameters intended to capture the intervention effect could be confounded. We will clarify the reasoning behind our approach in the revised version.

      The statistical analyses clearly show the limitations of classical statistical testing with highly complex models of the kind the authors (commendably) use. Hunting for statistically significant interactions in a multivariate repeated-measures design relying on inputs from time seriesderived point estimates is a difficult proposition. While the authors make the best of the bad situation they create by using null-hypothesis significance testing, a more promising approach would have been to estimate parameters using a sampler like Stan or PyMC and then draw conclusions based on posterior predictive simulations.

      This comment raises several interesting points. First, we agree that the value of classical test on individual parameters within such complex situations is limited. This is why our main focus is on global measures like model comparison. Our use of the classical tests is more to support the understanding of the nature of the data, i.e. they have a more descriptive aim. We will hope to clarify this further in the revision. Second, in terms of sampling, we would like to emphasize that the Kalman filter is both efficient and analytical tractable, making it well-suited to our data and research question. It may have been possible to use sampling to obtain posterior distributions rather than point estimates. However, we did not judge this to be worth the (substantial) additional computational cost.

      Reviewer 3:

      An interesting but perhaps at present slightly confusing aspect of their described results relates to the ’controllability’ of emotions, which they define as their susceptibility to external inputs. Readers should note this definition is (as I understand it) quite distinct from, and sometimes even orthogonal to, concepts of emotional control in the emotion literature, which refer to intentional control of emotions (by emotion regulation strategies such as distancing). The authors also use this second meaning in the discussion. Because of the centrality of control/controllability (in both meanings) to this paper, at present it is key for readers to bear these dual meanings in mind for juxtaposed results that distancing ”reduces controllability” while causing ”enhanced emotional control”.

      We fully agree with the reviewer’s observation that ”controllability” can be interpreted in different ways. we will revise the text to ensure consistent usage and explicitly state the distinction between the control theory definition of controllability and its interpretation in the emotion regulation literature.

      As above the authors use an active control - a relaxation intervention - which is extremely closely matched with their active intervention (and a major strength). However, there was an additional difference between the groups (as I currently understand it): ”in the group allocated to the distancing intervention, the phrasing of the question about their feelings in the second video block reminded participants about the intervention, stating: ”You observed your emotions and let them pass like the leaves floating by on the stream.” I do wonder if the effects of distancing also have been partially driven by some degree of reappraisal (considered a separate emotion regulation strategy) since this reminder might have evoked retrospective changes in ratings.

      We appreciate this substantial point. While our study was designed to isolate the effects of distancing, we acknowledge that elements of reappraisal may also have influenced the results. We will discuss this in the revised version. Additionally, as noted in our response to Reviewer 2, including a third group without the reminder could have provided valuable information, and we consider this to be an important direction for future research.

      Not necessarily a weakness, but an unanswered question is exactly how distancing is producing these effects. As the authors point out, there is a possibility that eye-movement avoidance of the more emotionally salient aspects of scenes could be changing participants’ exposure to the emotions somewhat. Not discussed by the authors, but possibly relevant, is the literature on differences between emotion types on oculomotor avoidance, which could have contributed to differential effects on different emotions.

      Thank you very much for these suggestions. It is very true that different emotions can elicit different patterns of oculomotor avoidance, which could have contributed to our observed effects. Research suggests that emotions such as disgust are associated with visual avoidance (Armstrong et al., 2014; Dalmaijer et al., 2021), whereas anxiety and other negative emotions exhibited increased attentional bias after fear conditioning (Kelly and Forsyth, 2009; Pischek-Simpson et al., 2009). It would be very interesting to repeat the experiment with eye-tracking to examine these possibilities. What would be particularly interesting to examine is whether a distancing intervention induces multiple, emotionally-specific behaviours, or not.

      References

      Armstrong, T., McClenahan, L., Kittle, J., and Olatunji, B. O. (2014). Don’t look now! Oculomotor avoidance as a conditioned disgust response. Emotion (Washington, D.C.), 14(1):95–104.

      Dalmaijer, E. S., Lee, A., Leiter, R., Brown, Z., and Armstrong, T. (2021). Forever yuck: Oculomotor avoidance of disgusting stimuli resists habituation. Journal of Experimental Psychology. General, 150(8):1598– 1611.

      Gillan, C. M. and Rutledge, R. B. (2021). Smartphones and the Neuroscience of Mental Health. Annual Review of Neuroscience, 44(Volume 44, 2021):129–151. Publisher: Annual Reviews.

      Kelly, M. M. and Forsyth, J. P. (2009). Associations between emotional avoidance, anxiety sensitivity, and reactions to an observational fear challenge procedure. Behaviour Research and Therapy, 47(4):331–338. Place: Netherlands Publisher: Elsevier Science.

      Pischek-Simpson, L. K., Boschen, M. J., Neumann, D. L., and Waters, A. M. (2009). The development of an attentional bias for angry faces following Pavlovian fear conditioning. Behaviour Research and Therapy, 47(4):322–330.

      Wilson, R. C. and Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. eLife, 8:e49547. Publisher: eLife Sciences Publications, Ltd.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Discussion: Could the authors discuss more the findings about Flavobacterium? Has it ever been associated with the urogenital tract?

      Page 13-14, line 252-268:

      ‘The genus Flavobacterium was defined in 1923 to encompass gram-negative, non-spore-forming rods, of yellow pigment (44). The inclusiveness of this definition resulted in a collective of heterogenous species. By 1984 the genus had been restricted to those that were also non-motile and non-gliding (44). More recently, with an increase in genomic profiling, many species previously considered to be of genus Flavobacterium have been reclassified to genus Chryseobacterium, Cytophaga, and Weeksella (45). Increasing numbers of Flavobacterium species are being discovered such as gondwanense, Collinsii, branchiarum, branchiicola, salegens and scophthalmum (46) (47) (48). The allocation of Flavobacterium aquatile to this genus remains controversial due to its motility (49). Flavobacterium species are widely distributed in the environment including soil, fresh water and saltwater habitats (50) (51).  There are many reports of pathogenic infections of Flavobacterium species in fish, however human infections are rare (48).  A handful of case reports have described opportunistic infections to include pneumonia, urinary tract infection, peritonitis and meningitis (52) (53) (54) (55). Flavobacterium lindanitolerans and Flavobacterium ceti have been isolated as causative agents in some (56) (54). Case reports also describe Flavobacterium odoratum as a causative agent in urinary tract infection, most often in the immunocompromised or those with indwelling devices (57) (58) (59). However, this was one of many species previously of genus Flavobacterium reclassified, in this case to genus Myroides (60). Notably in our sample participants were asymptomatic of urinary tract infection’. 

      What is the relative abundance of Flavobacterium in the present study: this type of bacterium has been previously associated with contaminations (PMID: 25387460, 30497919).

      Page 13, line 244-247:

      ‘The Flavobacterium genus taxon we identified as significantly associated with abnormal semen quality and sperm morphology was present in 36.28% of the samples, with a mean relative abundance of 1.15% in those samples. This information and the mention of previous findings of Flavibacterium in contamination studies have been added to the discussion’.

      Figure 1: Increase the size of panel A.

      Amended.

      Figure 3: Can the authors indicate the relative abundance of each genus/species by the size of the node?

      Co-occurrence network figure has been modified to display relative abundance of nodes.

      Supplementary data: I don't see anywhere the decontam plots.

      Decontam plots as suggested in the package vignette https://benjjneb.github.io/decontam/vignettes/decontam_intro.html have been added in the GitHub repository. For practical purposes, the plot corresponding to the frequency testing only display a random subset (n=15) of the total taxa (n=82) flagged by this test as contaminants. The. .csv files with the outputs of each filter are available in the same directory

      Line 12: Check the sentence

      Line 15: Genera in italics

      Line 33: Change "overall quality of the spermatozoa" to "overall semen quality"

      Lines 18-20: Rephrase

      Line 87: 28F-Borrelia

      Line 134: "Seminal microbiota" or "Composition of the seminal microbiota"

      Line 159: "These included ... genera"

      Line 166: "Of note, Flavobacterium genus was..."

      Lines 187-188: Check sentence

      Thank you, these have been amended

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews

      Reviewer #1:

      The biggest concern in this regard is: that almost all the characterization is performed in cultured dissociated neurons…

      While it is true that most of the characterization done in this paper was in cultured neurons, we verified that PFE3 mediates functional ablation of excitatory synapses in vivo (Fig. 3). Furthermore, the GPHN.FingR-XIAP (GFE3), a protein very similar to the complex formed following activation of paGFE3 and chGFE3, has been extensively tested by us and others in vivo(1-4).

      Reviewer #2:

      For paGFE3 and chGFE3, the E3 ligase (RING domain of Mdm2) is overexpressed throughout cells as a separate construct. Although the authors show that Gephyrin is not significantly reduced without light or chemical activation, it remains possible that other proteins could be ubiquitinated due to the overexpressed E3 domain.

      In our previous paper(1), we tested neurons under 3 conditions: 1. expressing a construct similar to PBP-E3, consisting of a FingR with a randomized binding domain fused to the same XIAP ring domain used in paGFE3 and chGFE3 (RAND-E3). 2. expressing GPHN.FingR. 3. not expressing any exogenous proteins (control neurons). In each case, we found that expression of a variety of excitatory and inhibitory synaptic proteins was not significantly different when exposed to either of these exogenous proteins compared with control neurons.

      Recommendations for the authors:

      (1)  Can the authors use the tools to show the ablation of endogenous PSD95 without FingR overexpression?

      The experiments described in Fig. 3 are an example of this type of experiment. Furthermore, the PSD-95.FingR was extensively tested and has been used in dozens of studies without any indication that its expression alters cellular function or morphology. Note also that the transcriptional regulation system of PSD-95.FingR limits the expression such that there is virtually no background, so it is not really being overexpressed.

      (2) I am missing some control experiments for the excitatory synapses ablator- can the authors show that cells transfected with the plasmid and no DOX, show similar numbers of synapses as neurons without transfection?

      We have added an experiment comparing cells expressing PSD-95.FingR alone, and others expressing PFE3 with no Dox. We found that the two types of cells express amounts of PSD-95 that are not significantly different (Fig. S2L).

      (3) I am not quite sure how they used paired statistics on staining since they could only stain the cell at the end of the experiment. Are the comparisons performed on different cells?

      These experiments were done on the same cells. However, the methods of labeling were different- the initial counting of synapses was done, so we agree with the reviewer that it would be best not to use a paired analysis. Accordingly, we have changed Figs. 1F and 2D.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their efforts. They have pointed out several shortcomings and made very helpful suggestions. Based on their feedback, we have substantially revised the manuscript and feel the paper has been much improved because of it.

      Notable changes are:

      (1) As our model does not contain feed-back connections, the focus of the study is now more clearly communicated to be on feed-forward processes only, with appropriate justifications for this choice added to the Introduction and Discussion sections. Accordingly, the title has been changed to include the term “feed-forward”.

      (2) The old Figure 5 has been removed in favor of reporting correlation scores to the right of the response profiles in other figures.

      (3) We now discuss changes to the network architecture (new Figure 5) and fine-tuning of the hyperparameters (new Figure 6) in the main text instead of only the Supplementary Information.

      (4) The discussion on qualitative versus quantitative analysis has been extended and given its own subsection entitled “On the importance of experimental contrasts and qualitative analysis of the model”.

      Below, we address each point that the reviewers brought up in detail and outline what improvements we have made in the revision to address them.

      Reviewer #1 (Public Review):

      Summary:

      This study trained a CNN for visual word classification and supported a model that can explain key functional effects of the evoked MEG response during visual word recognition, providing an explicit computational account from detection and segmentation of letter shapes to final word-form identification.

      Strengths:

      This paper not only bridges an important gap in modeling visual word recognition, by establishing a direct link between computational processes and key findings in experimental neuroimaging studies, but also provides some conditions to enhance biological realism.

      Weaknesses:

      The interpretation of CNN results, especially the number of layers in the final model and its relationship with the processing of visual words in the human brain, needs to be further strengthened.

      We have experimented with the number of layers and the number of units in each layer. In the previous version of the manuscript, these results could be found in the supplementary information. For the revised version, we have brought some of these results into the main text and discuss them more thoroughly.

      We have added a figure (Figure 5 in the revised manuscript) showing the impact of the number of convolution and fully-connected layers on the response profiles of the layers, as well as the correlation with the three MEG components.

      We discuss the figure in the Results section as follows:

      “Various variations in model architecture and training procedure were evaluated. We found that the number of layers had a large impact on the response patterns produced by the model (Figure 5). The original VGG-11 architecture defines 5 convolution layers and 3 fully connected layers (including the output layer). Removing a convolution layer (Figure 5, top row), or removing one of the fully connected layers (Figure 5, second row), resulted in a model that did exhibit an enlarged response to noisy stimuli in the early layers that mimics the Type-I response. However, such models failed to show a sufficiently diminished response to noisy stimuli in the later layers, hence failing to produce responses that mimic the Type-II or N400m, a failure which also showed as low correlation scores.

      Adding an additional convolution layer (Figure 5, third row) resulted in a model where none of the layer response profiles mimics that of the Type-II response. The Type-II response is characterized by a reduced response to both noise and symbols, but an equally large response to consonant strings, real and pseudo words. However, in the model with an additional convolution layer, the consonant strings evoked a reduced response already in the first fully connected layer, which is a feature of the N400m rather than the Type-II. These kind of subtleties in the response pattern, which are important for the qualitative analysis, generally did not show quantitatively in the correlation scores, as the fully connected layers in this model correlate as well with the Type-II response as models that did show a response pattern that mimics the Type-II.

      Adding an additional fully connected layer (Figure 5, fourth row) resulted in a model with similar response profiles and correlation with the MEG components as the original VGG-11 architecture (Figure 5, bottom row) The N400m-like response profile is now observed in the third fully connected layer rather than the output layer. However, the decrease in response to consonant strings versus real and pseudo words, which is typical of the N400m, is less distinct than in the original VGG-11 architecture.”

      And in the Discussion section:

      “In the model, convolution units are followed by pooling units, which serve the purpose of stratifying the response across changes in position, size and rotation within the receptive field of the pooling unit. Hence, the effect of small differences in letter shape, such as the usage of different fonts, was only present in the early convolution layers, in line with findings in the EEG literature (Chauncey et al., 2008; Grainger & Holcomb, 2009; Hauk & Pulvermüller, 2004). However, the ability of pooling units to stratify such differences depends on the size of their receptive field, which is determined by the number of convolution-and-pooling layers. As a consequence, the response profiles of the subsequent fully connected layers was also very sensitive to the number of convolution-and-pooling layers. The optimal number of such layers is likely dependent on the input size and pooling strategy. Given the VGG-11 design of doubling the receptive field after each layer, combined with an input size of 225×225 pixels, the optimal number of convolution-andpooling layers for our model was five, or the model would struggle to produce response profiles mimicking those of the Type-II component in the subsequent fully connected layers (Figure 5).”

      Reviewer #1 (Recommendations For The Authors):

      (1) The similarity between CNNs and human MEG responses, including type-I (100ms), type-II (150ms), and N400 (400ms) components, looks like separately, lacking the sequential properties among these three components. Is the recurrent neural network (RNN), which can be trained to process and convert a sequential data input into a specific sequential data output, a better choice?

      When modeling sequential effects, meaning that the processing of the current word is influenced by the word that came before it, such as priming and top-down modulations, we agree that such a model would indeed require recurrency in its architecture. However, we feel that the focus of modeling efforts in reading has been overwhelmingly on the N400 and such priming effects, usually skipping over the pixel-to-letter process. So, for this paper, we were keen on exploring more basic effects such as noise and symbols versus letters on the type-I and type-II responses. And for these effects, a feed-forward model turns out to be sufficient, so we can keep the focus of this particular paper on bottom-up processes during single word reading, on which there is already a lot to say.

      To clarify our focus on feed-forward process, we have modified the title of the paper to be:

      “Convolutional networks can model the functional modulation of the MEG responses associated with feed-forward processes during visual word recognition” furthermore, we have revised the Introduction to highlight this choice, noting:

      “Another limitation is that these models have primarily focused on feed-back lexicosemantic effects while oversimplifying the initial feed-forward processing of the visual input.

      […]

      For this study, we chose to focus on modeling the early feed-forward processing occurring during visual word recognition, as the experimental setup in Vartiainen et al. (2011) was designed to demonstrate.

      […]

      By doing so, we restrict ourselves to an investigation of how well the three evoked components can be explained by a feed-forward CNN in an experimental setting designed to demonstrate feed-forward effects. As such, the goal is not to present a complete model of all aspects of reading, which should include feed-back effects, but rather to demonstrate the effectiveness of using a model that has a realistic form of input when the aim is to align the model with the evoked responses observed during visual word recognition.”

      And in the Discussion section:

      “In this paper we have restricted our simulations to feed-forward processes. Now, the way is open to incorporate convolution-and-pooling principles in models of reading that simulate feed-back processes as well, which should allow the model to capture more nuance in the Type-II and N400m components, as well as extend the simulation to encompass a realistic semantic representation.”

      (2) There is no clear relationship between the layers that signal needs to traverse in the model and the relative duration of the three components in the brain.

      While some models offer a tentative mapping between layers and locations in the brain, none of the models we are aware of actually simulate time accurately and our model is no exception.

      While we provide some evidence that the three MEG components are best modeled with different types of layers, and the type-I becomes somewhere before type-II and N400m is last in our model, the lack of timing information is a weakness of our model we have not been able to address. In our previous version, this already was the main topic of our “Limitations of the model” section, but since this weakness was pointed out by all reviewers, we have decided to widen our discussion of it:

      “One important limitation of the current model is the lack of an explicit mapping from the units inside its layers to specific locations in the brain at specific times. The temporal ordering of the components is simulated correctly, with the response profile matching that of the type-I occurring the layers before those matching the type-II, followed by the N400m. Furthermore, every component is best modeled by a different type of layer, with the type-I best described by convolution-and-pooling, the type-II by fully-connected linear layers and the N400m by a one-hot encoded layer. However, there is no clear relationship between the number of layers the signal needs to traverse in the model to the processing time in the brain. Even if one considers that the operations performed by the initial two convolution layers happen in the retina rather than the brain, the signal needs to propagate through three more convolution layers to reach the point where it matches the type-II component at 140-200 ms, but only through one more additional layer to reach the point where it starts to match the N400m component at 300-500 ms. Still, cutting down on the number of times convolution is performed in the model seems to make it unable to achieve the desired suppression of noise (Figure 5). It also raises the question what the brain is doing during the time between the type-II and N400m component that seems to take so long. It is possible that the timings of the MEG components are not indicative solely of when the feed-forward signal first reaches a certain location, but are rather dictated by the resolution of feed-forward and feedback signals (Nour Eddine et al., 2024).”

      See also our response to the next comment of the Reviewer, in which we dive more into the effect of the number of layers, which could be seen as a manipulation of time.

      (3) I am impressed by the CNN that authors modified to match the human brain pattern for the visual word recognition process, by the increase and decrease of the number of layers. The result of this part was a little different from the author’s expectation; however, the author didn’t explain or address this issue.

      We are glad to hear that the reviewer found these results interesting. Accordingly, we now discuss these results more thoroughly in the main text.

      We have moved the figure from the supplementary information to the main text (Figure 5 in the revised manuscript). And describe the results in the Results section:

      “Various variations in model architecture and training procedure were evaluated. We found that the number of layers had a large impact on the response patterns produced by the model (Figure 5). The original VGG-11 architecture defines 5 convolution layers and 3 fully connected layers (including the output layer). Removing a convolution layer (Figure 5, top row), or removing one of the fully connected layers (Figure 5, second row), resulted in a model that did exhibit an enlarged response to noisy stimuli in the early layers that mimics the Type-I response. However, such models failed to show a sufficiently diminished response to noisy stimuli in the later layers, hence failing to produce responses that mimic the Type-II or N400m, a failure which also showed as low correlation scores.

      Adding an additional convolution layer (Figure 5, third row) resulted in a model where none of the layer response profiles mimics that of the Type-II response. The Type-II response is characterized by a reduced response to both noise and symbols, but an equally large response to consonant strings, real and pseudo words. However, in the model with an additional convolution layer, the consonant strings evoked a reduced response already in the first fully connected layer, which is a feature of the N400m rather than the Type-II. These kind of subtleties in the response pattern, which are important for the qualitative analysis, generally did not show quantitatively in the correlation scores, as the fully connected layers in this model correlate as well with the Type-II response as models that did show a response pattern that mimics the Type-II.

      Adding an additional fully connected layer (Figure 5, fourth row) resulted in a model with similar response profiles and correlation with the MEG components as the original VGG-11 architecture (Figure 5, bottom row) The N400m-like response profile is now observed in the third fully connected layer rather than the output layer. However, the decrease in response to consonant strings versus real and pseudo words, which is typical of the N400m, is less distinct than in the original VGG-11 architecture.”

      We also incorporated these results in the Discussion:

      “However, the ability of pooling units to stratify such differences depends on the size of their receptive field, which is determined by the number of convolution-andpooling layers. This might also explain why, in later layers, we observed a decreased response to stimuli where text was rendered with a font size exceeding the receptive field of the pooling units (Figure 8). Hence, the response profiles of the subsequent fully connected layers was very sensitive to the number of convolution-and-pooling layers. This number is probably dependent on the input size and pooling strategy. Given the VGG11 design of doubling the receptive field after each layer, combined with an input size of 225x225 pixels, the optimal number of convolution-and-pooling layers for our model was five, or the model would struggle to produce response profiles mimicking those of the type-II component in the subsequent fully connected layers (Figure 5).

      […]

      A minimum of two fully connected layers was needed to achieve this in our case, and adding more fully connected layers would make them behave more like the component (Figure 5).”

      (4) Can the author explain why the number of layers in the final model is optimal by benchmarking the brain hierarchy?

      We have incorporated the figure describing the correlation between each model and the MEG components (previously Figure 5) with the figures describing the response profiles (Figures 4 and 5 in the revised manuscript and Supplementary Figures 2-6). This way, we (and the reader) can now benchmark every model qualitatively and quantitatively.

      As we stated in our response to the previous comment, we have added a more thorough discussion on the number of layers, which includes the justification for our choice for the final model. The benchmark we used was primarily whether the model shows the same response patterns as the Type I, Type II and N400 responses, which disqualifies all models with fewer than 5 convolution and 3 fully connected layers. Models with more layers also show the proper response patterns, however we see that there is actually very little difference in the correlation scores between different models. Hence, our justification for sticking with the original VGG11 architecture is that it produces the qualitative best response profiles, while having roughly the same (decently high) correlation with the MEG components. Furthermore, by sticking to the standard architecture, we make it slightly easier to replicate our results as one can use readily available pre-trained ImageNet weights.

      As well as always discussing the correlation scores in tandem with the qualitative analysis, we have added the following statement to the Results:

      “Based on our qualitative and quantitative analysis, the model variant that performed best overall was the model that had the original VGG11 architecture and was preinitialized from earlier training on ImageNet, as depicted in the bottom rows of Figure 4 and Figure 5.”

      Reviewer #2 (Public Review):

      As has been shown over many decades, many potential computational algorithms, with varied model architectures, can perform the task of text recognition from an image. However, there is no evidence presented here that this particular algorithm has comparable performance to human behavior (i.e. similar accuracy with a comparable pattern of mistakes). This is a fundamental prerequisite before attempting to meaningfully correlate these layer activations to human neural activations. Therefore, it is unlikely that correlating these derived layer weights to neural activity provides meaningful novel insights into neural computation beyond what is seen using traditional experimental methods.

      We very much agree with the reviewer that a qualitative analysis of whether the model can explain experimental effects needs to happen before a quantitative analysis, such as evaluating model-brain correlation scores. In fact, this is one of the intended key points we wished to make.

      As we discuss at length in the Introduction, “traditional” models of reading (those that do not rely on deep learning) are not able to recognize a word regardless of exact letter shape, size, and (up to a point) rotation. In this study, our focus is on these low-level visual tasks rather than high-level tasks concerning semantics. As the Reviewer correctly states, there are many potential computational algorithms able to perform these visual task at a human level and so we need to evaluate the model not only on its ability to mimic human accuracy but also on generating a comparable pattern of mistakes. In our case, we need a pattern of behavior that is indicative of the visual processes at the beginning of the reading pipeline. Hence, rather than relying on behavioral responses that are produced at the very end, we chose the evaluate the model based on three MEG components that provide “snapshots” of the reading process at various stages. These components are known to manifest a distinct pattern of “behavior” in the way they respond to different experimental conditions (Figure 2), akin to what to Reviewer refers to as a “pattern of mistakes”. The model was first evaluated on its ability to replicate the behavior of the MEG components in a qualitative manner (Figure 4). Only then do we move on to a quantitative correlation analysis. In this manner, we feel we are in agreement with the approach advocated by the Reviewer.

      In the Introduction, we now clarify:

      “Another limitation is that these models have primarily focused on feed-back lexicosemantic effects while oversimplifying the initial feed-forward processing of the visual input.

      […]

      We sought to construct a model that is able to recognize words regardless of length, size, typeface and rotation, as well as humans can, so essentially perfectly, whilst producing activity that mimics the type-I, type-II, and N400m components which serve as snapshots of this process unfolding in the brain.

      […]

      These variations were first evaluated on their ability to replicate the experimental effects in that study, namely that the type-I response is larger for noise embedded words than all other stimuli, the type-II response is larger for all letter strings than symbols, and that the N400m is larger for real and pseudowords than consonant strings. Once a variation was found that could reproduce these effects satisfactorily, it was further evaluated based on the correlation between the amount of activation of the units in the model and MEG response amplitude.”

      To make this prerequisite more clear, we have removed what was previously Figure 5, which showed the correlation between the various models the MEG components out of the context of their response patterns. Instead, these correlation values are now always presented next to the response patterns (Figures 4 and 5, and Supplementary Figures 2-6 in the revised manuscript). This invites the reader to always consider these metrics in relation to one another.

      One example of a substantial discrepancy between this model and neural activations is that, while incorporating frequency weighting into the training data is shown to slightly increase neural correlation with the model, Figure 7 shows that no layer of the model appears directly sensitive to word frequency. This is in stark contrast to the strong neural sensitivity to word frequency seen in EEG (e.g. Dambacher et al 2006 Brain Research), fMRI (e.g. Kronbichler et al 2004 NeuroImage), MEG (e.g. Huizeling et al 2021 Neurobio. Lang.), and intracranial (e.g. Woolnough et al 2022 J. Neurosci.) recordings. Figure 7 also demonstrates that the late stages of the model show a strong negative correlation with font size, whereas later stages of neural visual word processing are typically insensitive to differences in visual features, instead showing sensitivity to lexical factors.

      We are glad the reviewer brought up the topic of frequency balancing, as it is a good example of the importance of the qualitative analysis. Frequency balancing during training only had a moderate impact on correlation scores and from that point of view does not seem impactful. However, when we look at the qualitative evaluation, we see that with a large vocabulary, a model without frequency balancing fails to properly distinguish between consonant strings and (pseudo)words (Figure 4, 5th row). Hence, from the point of view of being able to reproduce experimental effects, frequency balancing had a large impact. We now discuss this more explicitly in the revised Discussion section:

      “Overall, we found that a qualitative evaluation of the response profiles was more helpful than correlation scores. Often, a deficit in the response profile of a layer that would cause a decrease in correlation on one condition would be masked by an increased correlation in another condition. A notable example is the necessity for frequency-balancing the training data when building models with a vocabulary of 10 000. Going by correlation score alone, there does not seem to be much difference between the model trained with and without frequency balancing (Figure 4A, fifth row versus bottom row). However, without frequency balancing, we found that the model did not show a response profile where consonant strings were distinguished from words and pseudowords (Figure 4A, fifth row), which is an important behavioral trait that sets the N400m component apart from the Type-II component (Figure 2D). This underlines the importance of the qualitative evaluation in this study, which was only possible because of a straightforward link between the activity simulated within a model to measurements obtained from the brain, combined with the presence of clear experimental conditions.”

      It is true that the model, even with frequency balancing, only captures letter- and bigramfrequency effects and not the word-frequency effects that we know the N400m is sensitive to. Since our model is restricted to feed-forward processes, this finding adds to the evidence that frequency-modulated effects are driven by feed-back effects as modeled by Nour Eddine et al. (2024, doi:10.1016/j.cognition.2024.105755). See also our response to the next comment by the Reviewer where we discuss feed-back connections. We have added the following to the section about model limitations in the revised Discussion:

      “The fact that the model failed to simulate the effects of word-frequency on the N400m (Figure 8), even after frequency-balancing of the training data, is additional evidence that this effect may be driven by feed-back activity, as for example modeled by Nour Eddine et al. (2024).”

      Like the Reviewer, we initially thought that later stages of neural visual word processing would be insensitive to differences in font size. When diving into the literature to find support for this claim, we found only a few works directly studying the effect of font size on evoked responses, but, surprisingly, what we did find seemed to align with our model. We have added the following to our revised Discussion:

      “The fully connected linear layers in the model show a negative correlation with font size. While the N400 has been shown to be unaffected by font size during repetition priming (Chauncey et al., 2008), it has been shown that in the absence of priming, larger font sizes decrease the evoked activity in the 300–500 ms window (Bayer et al., 2012; Schindler et al., 2018). Those studies refer to the activity within this time window, which seems to encompass the N400, as early posterior negativity (EPN). What possibly happens in the model is that an increase in font size causes an initial stronger activation in the first layers, due to more convolution units receiving input. This leads to a better signal-to-noise ratio (SNR) later on, as the noise added to the activation of the units remains constant whilst the amplitude of the input signal increases. A better SNR translates ultimately in less co-activation of units corresponding to orthographic neighbours in the final layers, hence to a decrease in overall layer activity.”

      Another example of the mismatch between this model and the visual cortex is the lack of feedback connections in the model. Within the visual cortex, there are extensive feedback connections, with later processing stages providing recursive feedback to earlier stages. This is especially evident in reading, where feedback from lexical-level processes feeds back to letter-level processes (e.g. Heilbron et al 2020 Nature Comms.). This feedback is especially relevant for the reading of words in noisy conditions, as tested in the current manuscript, as lexical knowledge enhances letter representation in the visual cortex (the word superiority effect). This results in neural activity in multiple cortical areas varying over time, changing selectivity within a region at different measured time points (e.g. Woolnough et al 2021 Nature Human Behav.), which in the current study is simplified down to three discrete time windows, each attributed to different spatial locations.

      We agree with the Reviewer that a full model of reading in the brain must include feed-back connections and share their sentiment that these feed-back processes play an important role and are a fascinating topic to study. The intent for the model presented in our study is very much to be a stepping stone towards extending the capabilities of models that do include such connections.

      However, there is a problem of scale that cannot be ignored.

      Current models of reading that do include feedback connections fall into the category we refer to in the paper as “traditional models” and all only a few layers deep and operate on very simplified inputs, such as pre-defined line segments, a few pixels, or even a list of prerecognized letters. The Heilbron et al. 2020 study that the Reviewer refers to is a good example of such a model. (This excellent and relevant work was somehow overlooked in our literature discussion in the Introduction. We thank the Reviewer for pointing it out to us.) Models incorporating realistic feed-back activity need these simplifications, because they have a tendency to no longer converge when there are too many layers and units. However, in order for models of reading to be able to simulate cognitive behavior such as resolving variations in font size or typeface, or distinguish text from non-text, they need to operate on something close to the pixel-level data, which means they need many layers and units.

      Hence, as a stepping stone, it is reasonable to evaluate a model that has the necessary scale, but lacks the feed-back connections that would be problematic at this scale, to see what it can and cannot do in terms of explaining experimental effects in neuroimaging studies. This was the intended scope of our study. For the revision, we have attempted to make this more clear.

      We have changed the title to be:

      “Convolutional networks can model the functional modulation of the MEG responses associated with feed-forward processes during visual word recognition” and added the following to the Introduction:

      “The simulated environments in these models are extremely simplified, partly due to computational limitations and partly due to the complex interaction of feed-forward and feed-back connectivity that causes problems with convergence when the model grows too large. Consequently, these models have primarily focused on feed-back lexico-semantic effects while oversimplifying the initial feed-forward processing of the visual input. 

      […]

      This rather high level of visual representation sidesteps having to deal with issues such as visual noise, letters with different scales, rotations and fonts, segmentation of the individual letters, and so on. More importantly, it makes it impossible to create the visual noise and symbol string conditions used in the MEG study to modulate the type-I and type-II components. In order to model the process of visual word recognition to the extent where one may reproduce neuroimaging studies such as Vartiainen et al. (2011), we need to start with a model of vision that is able to directly operate on the pixels of a stimulus. We sought to construct a model that is able to recognize words regardless of length, size, typeface and rotation with very high accuracy, whilst producing activity that mimics the type-I, type-II, and N400m components which serve as snapshots of this process unfolding in the brain. For this model, we chose to focus on the early feed-forward processing occurring during visual word recognition, as the experimental setup in the MEG study was designed to demonstrate, rather than feed-back effects

      […]

      By doing so, we restrict ourselves to an investigation of how well the three evoked components can be explained by a feed-forward CNN in an experimental setting designed to demonstrate feed-forward effects. > As such, the goal is not to present a complete model of all aspects of reading, which should include feed-back effects, but rather to demonstrate the effectiveness of using a model that has a realistic form of input when the aim is to align the model with the evoked responses observed during visual word recognition.”

      And we have added the following to the Discussion section:

      “In this paper we have restricted our simulations to feed-forward processes. Now, the way is open to incorporate convolution-and-pooling principles in models of reading that simulate feed-back processes as well, which should allow the model to capture more nuance in the Type-II and N400m components, as well as extend the simulation to encompass a realistic semantic representation. A promising way forward may be to use a network architecture like CORNet (Kubilius et al., 2019), that performs convolution multiple times in a recurrent fashion, yet simultaneously propagates activity forward after each pass. The introduction of recursion into the model will furthermore align it better with traditional-style models, since it can cause a model to exhibit attractor behavior (McLeod et al., 2000), which will be especially important when extending the model into the semantic domain.

      Furthermore, convolution-and-pooling has recently been explored in the domain of predictive coding models (Ororbia & Mali, 2023), a type of model that seems particularly well suited to model feed-back processes during reading (Gagl et al., 2020; Heilbron et al., 2020; Nour Eddine et al., 2024).”

      We also would like to point out to the Reviewer that we did in fact perform a correlation between the model and the MNE-dSPM source estimate of all cortical locations and timepoints (Figure 7B). Such a brain-wide correlation map confirms that the three dipole groups are excellent summaries of when and where interesting effects occur within this dataset.

      The presented model needs substantial further development to be able to replicate, both behaviorally and neurally, many of the well-characterized phenomena seen in human behavior and neural recordings that are fundamental hallmarks of human visual word processing. Until that point, it is unclear what novel contributions can be gleaned from correlating low-dimensional model weights from these computational models with human neural data.

      We hope that our revisions have clarified the goals and scope of this study. The CNN model we present in this study is a small but, we feel, essential piece in a bigger effort to employ deep learning techniques to further enhance already existing models of reading. In our revision, we have extended our discussion where to go from here and outline our vision on how these techniques could help us better model the phenomena the reviewer speaks of. We agree with the reviewer that there is a long way to go, and we are excited to be a part of it.

      In addition to the changes described above, we now end the Discussion section as follows: 

      “Despite its limitations, our model is an important milestone for computational models of reading that leverages deep learning techniques to encompass the entire computational process starting from raw pixels values to representations of wordforms in the mental lexicon. The overall goal is to work towards models that can reproduce the dynamics observed in brain activity observed during the large number of neuroimaging experiments performed with human volunteers that have been performed over the last few decades. To achieve this, models need to be able to operate on more realistic inputs than a collection of predefined lines or letter banks (for example: Coltheart et al., 2001; Heilbron et al., 2020; Laszlo & Armstrong, 2014; McClelland & Rumelhart, 1981; Nour Eddine et al., 2024). We have shown that even without feed-back connections, a CNN can simulate the behavior of three important MEG evoked components across a range of experimental conditions, but only if unit activations are noisy and the frequency of occurrence of words in the training dataset mimics their frequency of use in actual language.”

      Reviewer #3 (Public Review):

      The paper is rather qualitative in nature. In particular, the authors show that some resemblance exists between the behavior of some layers and some parts of the brain, but it is hard to quantitively understand how strong the resemblances are in each layer, and the exact impact of experimental settings such as the frequency balancing (which seems to only have a very moderate effect according to Figure 5).

      The large focus on a qualitative evaluation of the model is intentional. The ability of the model to reproduce experimental effects (Figure 4) is a pre-requisite for any subsequent quantitative metrics (such as correlation) to be valid. The introduction of frequency balancing is a good example of this. As the reviewer points out, frequency balancing during training has only a moderate impact on correlation scores and from that point of view does not seem impactful. However, when we look at the qualitative evaluation, we see that with a large vocabulary, a model without frequency balancing fails to properly distinguish between consonant strings and (pseudo)words (Figure 4, 5th row). Hence, from the point of view of being able to reproduce experimental effects, frequency balancing has a large impact.

      That said, the reviewer is right to highlight the value of quantitative analysis. An important limitation of the “traditional” models of reading that do not employ deep learning is that they operate in unrealistically simplified environments (e.g. input as predefined line segments, words of a fixed length), which makes a quantitative comparison with brain data problematic. The main benefit that deep learning brings may very well be the increase in scale that makes more direct comparisons with brain data possible. In our revision we attempt to capitalize on this benefit more. The reviewer has provided some helpful suggestions for doing so in their recommendations, which we discuss in detail below.

      We have added the following discussion on the topic of qualitative versus quantitative analysis to the Introduction:

      “We sought to construct a model that is able to recognize words regardless of length, size, typeface and rotation, as well as humans can, so essentially perfectly, whilst producing activity that mimics the type-I, type-II, and N400m components which serve as snapshots of this process unfolding in the brain.

      […]

      These variations were first evaluated on their ability to replicate the experimental effects in that study, namely that the type-I response is larger for noise embedded words than all other stimuli, the type-II response is larger for all letter strings than symbols, and that the N400m is larger for real and pseudowords than consonant strings. Once a variation was found that could reproduce these effects satisfactorily, it was further evaluated based on the correlation between the amount of activation of the units in the model and MEG response amplitude.”

      And follow this up in the Discussion with a new sub-section entitled “On the importance of experimental contrasts and qualitative analysis of the model”

      The experiments only consider a rather outdated vision model (VGG).

      VGG was designed to use a minimal number of operations (convolution-and-pooling, fullyconnected linear steps, ReLU activations, and batch normalization) and rely mostly on scale to solve the classification task. This makes VGG a good place to start our explorations and see how far a basic CNN can take us in terms of explaining experimental MEG effects in visual word recognition. However, we agree with the reviewer that it is easy to envision more advanced models that could potentially explain more. In our revision, we expand on the question of where to go from here and outline our vision on what types of models would be worth investigating and how one may go about doing that in a way that provides insights beyond higher correlation values.

      We have included the following in our Discussion sub-sections on “Limitations of the current model and the path forward”:

      “The VGG-11 architecture was originally designed to achieve high image classification accuracy on the ImageNet challenge (Simonyan & Zisserman, 2015). Although we have introduced some modifications that make the model more biologically plausible, the final model is still incomplete in many ways as a complete model of brain function during reading.

      […]

      In this paper we have restricted our simulations to feed-forward processes. Now, the way is open to incorporate convolution-and-pooling principles in models of reading that simulate feed-back processes as well, which should allow the model to capture more nuance in the Type-II and N400m components, as well as extend the simulation to encompass a realistic semantic representation. A promising way forward may be to use a network architecture like CORNet (Kubilius et al., 2019), that performs convolution multiple times in a recurrent fashion, yet simultaneously propagates activity forward after each pass. The introduction of recursion into the model will furthermore align it better with traditional-style models, since it can cause a model to exhibit attractor behavior (McLeod et al., 2000), which will be especially important when extending the model into the semantic domain. Furthermore, convolution-and-pooling has recently been explored in the domain of predictive coding models (Ororbia & Mali, 2023), a type of model that seems particularly well suited to model feed-back processes during reading (Gagl et al., 2020; Heilbron et al., 2020; Nour Eddine et al., 2024).”

      Reviewer #3 (Recommendations For The Authors):

      (1) The method used to select the experimental conditions under which the behavior of the CNN is the most brain-like is rather qualitative (Figure 4). It would have been nice to have a plot where the noisyness of the activations, the vocab size and the amount of frequency balancing are varied continuously, and show how these three parameters impact the correlation of the model layers with the MEG responses.

      We now include this analysis (Figure 6 in the revised manuscript, Supplementary Figures 47) and discuss these factors in the revised Results section:

      “Various other aspects of the model architecture were evaluated which ultimately did not lead to any improvements of the model. The response profiles can be found in the supplementary information (Supplementary Figures 4–7) and the correlations between the models and the MEG components are presented in Figure 6. The vocabulary of the final model (10 000) exceeds the number of units in its fullyconnected layers, which means that a bottleneck is created in which a sub-lexical representation is formed. The number of units in the fully-connected layers, i.e. the width of the bottleneck, has some effect on the correlation between model and brain (Figure 6A), and the amount of noise added to the unit activations less so (Figure 6B). We already saw that the size of the vocabulary, i.e. the number of wordforms in the training data and number of units in the output layer of the model, had a large effect on the response profiles (Figure 4). Having a large vocabulary is of course desirable from a functional point of view, but also modestly improves correlation between model and brain (Figure 6C). For large vocabularies, we found it beneficial to apply frequency-balancing of the training data, meaning that the number of times a word-form appears in the training data is scaled according to its frequency in a large text corpus. However, this cannot be a one-to-one scaling, since the most frequent words occur so much more often than other words that the training data would consist of mostly the top-ten most common words, with less common words only occurring once or not at all. Therefore, we decided to scale not by the frequency 𝑓 directly, but by 𝑓𝑠, where 0 < 𝑠 < 1, opting for 𝑠 = 0.2 for the final model (Figure 6D).”

      (2) It is not clear which layers exactly correspond to which of the three response components. For this to be clearer, it would have been nice to have a plot with all the layers of VGG on the x-axis and three curves corresponding to the correlation of each layer with each of the three response components.

      This is a great suggestion that we were happy to incorporate in the revised version of the manuscript. Every figure comparing the response patterns of the model and brain now includes a panel depicting the correlation between each layer of the model and each of the three MEG components (Figures 4 & 5, Supplementary Figures 2-5). This has given us (and now also the reader) the ability to better benchmark the different models quantitatively, adding to our discussion on qualitative to quantitative analysis.

      (3) It is not clear to me why the authors report the correlation of all layers with the MEG responses in Figure 5: why not only report the correlation of the final layers for N400, and that of the first layers for type-I?

      We agree with the reviewer that it would have been better to compare the correlation scores for those layers which response profile matches the MEG component. While the old Figure 5 has been merged with Figure 4, and now provides the correlations between all the layers and all MEG components, we have taken the Reviewer’s advice and marked the layers which qualitatively best correspond to each MEG component, so the reader can take that into account when interpreting the correlation scores.

      (4) The authors mention that the reason that they did not reproduce the protocol with more advanced vision models is that they needed the minimal setup capable of yielding the desired experiment effect. I am not fully convinced by this and think the paper could be significantly strengthened by reporting results for a vision transformer, in particular to study the role of attention layers which are expected to play an important role in processing higher-level features.

      We appreciate and share the Reviewer’s enthusiasm in seeing how other model architectures would fare when it comes to modeling MEG components. However, we regard modifying the core model architecture (i.e., a series of convolution-and-pooling followed by fully-connected layers) to be out of scope for the current paper.

      One of the key points of our study is to create a model that reproduces the experimental effects of an existing MEG study, which necessitates modeling the initial feed-forward processing from pixel to word-form. For this purpose, a convolution-and-pooling model was the obvious choice, because these operations play a big role in cognitive models of vision in general. In order to properly capture all experimental contrasts in the MEG study, many variations of the CNN were trained and evaluated. This iterative design process concluded when all experimental contrasts could be faithfully reproduced.

      If we were to explore different model architectures, such as a transformer architecture, reproducing the experimental contrasts of the MEG study would no longer be the end goal, and it would be unclear what the end goal should be. Maximizing correlation scores has no end, and there are a nearly endless number of model architectures one could try. We could bring in a second MEG study with experimental contrasts that the CNN cannot explain and a transformer architecture potentially could and set the end goal to explain all experimental effects in both MEG studies. But even if we had access to such a dataset, this would almost double the length of the paper, which is already too long.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Insects and their relatives are commonly infected with microbes that are transmitted from mothers to their offspring. A number of these microbes have independently evolved the ability to kill the sons of infected females very early in their development; this male killing strategy has evolved because males are transmission dead-ends for the microbe. A major question in the field has been to identify the genes that cause male killing and to understand how they work. This has been especially challenging because most male-killing microbes cannot be genetically manipulated. This study focuses on a male-killing bacterium called Wolbachia. Different Wolbachia strains kill male embryos in beetles, flies, moths, and other arthropods. This is remarkable because how sex is determined differs widely in these hosts. Two Wolbachia genes have been previously implicated in male-killing by Wolbachia: oscar (in moth male-killing) and wmk (in fly male-killing). The genomes of some male-killing Wolbachia contain both of these genes, so it is a challenge to disentangle the two.

      This paper provides strong evidence that oscar is responsible for male-killing in moths. Here, the authors study a strain of Wolbachia that kills males in a pest of tea, Homona magnanima. Overexpressing oscar, but not wmk, kills male moth embryos. This is because oscar interferes with masculinizer, the master gene that controls sex determination in moths and butterflies. Interfering with the masculinizer gene in this way leads the (male) embryo down a path of female development, which causes problems in regulating the expression of genes that are found on the sex chromosomes.

      We would like to thank you for evaluating our manuscript.

      Strengths:

      The authors use a broad number of approaches to implicate oscar, and to dissect its mechanism of male lethality. These approaches include: a) overexpressing oscar (and wmk) by injecting RNA into moth eggs, b) determining the sex of embryos by staining female sex chromosomes, c) determining the consequences of oscar expression by assaying sex-specific splice variants of doublesex, a key sex determination gene, and by quantifying gene expression and dosage of sex chromosomes, using RNASeq, and d) expressing oscar along with masculinizer from various moth and butterfly species, in a silkmoth cell line. This extends recently published studies implicating oscar in male-killing by Wolbachia in Ostrinia corn borer moths, although the Homona and Ostrinia oscar proteins are quite divergent. Combined with other studies, there is now broad support for oscar as the male-killing gene in moths and butterflies (i.e. order Lepidoptera). So an outstanding question is to understand the role of wmk. Is it the master male-killing gene in insects other than Lepidoptera and if so, how does it operate?

      We would like to thank you for evaluating our manuscript. Our data demonstrated that Oscar homologs play important roles in male-killing phenotypes in moths and butterflies; however, the functional relevance of wmk remains uncertain. As you noted, whether wmk acts as a male-killing gene in insects such as flies and beetles—or even in certain lepidopteran species—requires further investigation using diverse insect models, which we are eager to explore in future research.

      Weaknesses:

      I found the transfection assays of oscar and masculinizer in the silkworm cell line (Figure 4) to be difficult to follow. There are also places in the text where more explanation would be helpful for non-experts.

      Thank you for your suggestion. We have revised the section on the cell-based experiment. Further, we revised the manuscript to make it accessible to a broader audience. We believe these revisions have significantly improved the clarity and comprehensiveness of our manuscript.

      Reviewer #2 (Public review):

      Summary:

      Wolbachia are maternally transmitted bacteria that can manipulate host reproduction in various ways. Some Wolbachia induce male killing (MK), where the sons of infected mothers are killed during development. Several MK-associated genes have been identified in Homona magnanima, including Hm-oscar and wmk-1-4, but the mechanistic links between these Wolbachia genes and MK in the native host are still unclear.

      In this manuscript, Arai et al. show that Hm-oscar is the gene responsible for Wolbachia-induced MK in Homona magnanima. They provide evidence that Hm-Oscar functions through interactions with the sex determination system. They also found that Hm-Oscar disrupts sex determination in male embryos by inducing female-type dsx splicing and impairing dosage compensation. Additionally, Hm-Oscar suppresses the function of Masc. The manuscript is well-written and presents intriguing findings. The results support their conclusions regarding the diversity and commonality of MK mechanisms, contributing to our understanding of the mechanisms and evolutionary aspects of Wolbachia-induced MK.

      We would like to thank you for evaluating our manuscript.

      Comments on revisions:

      The authors have already addressed the reviewer's concerns.

      We would like to thank you for evaluating our manuscript.

      Reviewer #3 (Public review):

      Summary:

      Overall, this is a clearly written manuscript with nice hypothesis testing in a non-model organism that addresses the mechanism of Wolbachia-mediated male killing. The authors aim to determine how five previously identified male-killing genes (encoded in the prophage region of the wHm Wolbachia strain) impact the native host, Homona magnanima moths. This work builds on the authors' previous studies in which

      (1) they tested the impact of these same wHm genes via heterologous expression in Drosophila melanogaster

      (2) also examined the activity of other male-killing genes (e.g., from the wFur Wolbachia strain in its native host: Ostrinia furnacalis moths).

      Advances here include identifying which wHm gene most strongly recapitulates the male-killing phenotype in the native host (rather than in Drosophila), and the finding that the Hm-Oscar protein has the potential for male-killing in a diverse set of lepidopterans, as inferred by the cell-culture assays.

      We would like to thank you for evaluating our manuscript.

      Strengths:

      Strengths of the manuscript include the reverse genetics approaches to dissect the impact of specific male-killing loci, and use of a "masculinization" assay in Lepidopteran cell lines to determine the impact of interactions between specific masc and oscar homologs.

      We would like to thank you for evaluating our manuscript.

      Weaknesses:

      It is clear from Figure 1 that the combinations of wmk homologs do not cause male killing on their own here. While I largely agree with the author's conclusions that oscar is the primary MK factor in this system, I don't think we can yet rule out that wmk(s) may work synergistically or interactively with oscar in vivo. This might be worth a small note in the discussion. (eg at line 294 'indicating that wmk likely targets factors other than masc." - this could be downstream of the impacts of oscar; perhaps dependent on oscar-mediated impacts on masc first).

      We sincerely appreciate your suggestion. Whilst wmk genes themselves did not exhibit apparent lethal effects on the native host, as you noted, we cannot entirely rule out the possibility that wmk may be involved in male-killing actions, either directly or indirectly assisting the function of Hb-oscar. Following your suggestion, we have added a brief note in the discussion section regarding the interpretation of wmk functions.

      “In addition, Katsuma et al. (2022) reported that the wmk homologs encoded by wFur did not affect the masculinizing function of masc in vitro, indicating that wmk likely targets factors other than masc. Whilst we cannot rule out the possibility that wmk may work synergistically or interactively with oscar in vivo—potentially acting downstream of oscar’s impact—our results strongly suggested that Wolbachia strains have acquired multiple MK genes through evolution.” (lines 287-292)

      Regarding the perceived male-bias in Figure 2a: I think readers might be interpreting "unhatched" as "total before hatching". You could eliminate ambiguity by perhaps splitting the bars into male and female, and then within a bar, coloring by hatched versus unhatched. But this is a minor point, and I think the updated text helps clarify this.

      Thank you for your suggestion. We have accordingly revised the figure 2a. In addition, we have included more detailed information in the first sentence of the section Males are killed mainly at the embryonic stage.

      “The sex of hatched larvae (neonates) and the remaining unhatched embryos was determined by the presence or absence of W chromatin, a condensed structure of the female-specific W chromosome observed during interphase.” (lines 171-173)

      The new Figure 4b looks to be largely redundant with the oscar information in Figure 1a.

      Thank you for your suggestion. We have removed Figure 4b due to its overlap with Figure 1a and have incorporated relevant figure legends into the Figure 1a legend.

      Updated statistical comparisons for the RNA-seq analysis are helpful. However these analyses are based on single libraries (albeit each a pool of many individuals), so this is still a weaker aspect of the manuscript.

      Thank you for your suggestion. As you noted, the use of single libraries (due to the limited number of available individuals, though each includes approximately 50 males and females) may be a potential limitation of this study. However, as demonstrated in the qPCR assay for the Z-linked gene provided in the previous revision, we believe that our data and conclusion—that Wolbachia/ Hb-oscar disrupts dosage compensation by causing the overexpression of Z-linked genes—are well-supported and robust.

      The new information on masc similarity is useful (Fig 4d) - if the authors could please include a heatmap legend for the colors, that would be helpful. Also, please avoid green and red in the same figure when key for interpretation.

      Thank you for your suggestion. We have accordingly included a heatmap legend and revised the colors.

      Figure 1A "helix-turn-helix" is misspelled. ("tern").

      We have revised.

      Recommendations for the authors:

      Comments from the reviewing editor: I would suggest you address the comments of the reviewer on the revised version.

      We have further revised the manuscript to address all the questions, comments and suggestions provided by the reviewers. We believe that the resulting revisions have significantly enhanced the quality and comprehensiveness of our manuscript.

      Reviewer #1 (Recommendations for the authors):

      Thank you for revising this manuscript. I have a few last recommendations:

      - Line 214: re: 'Statistical data are available in the supplementary data file', it would be more helpful to add a few words here that actually summarize the statistical results

      We would like to thank you for your suggestion. We have revised the sentence to describe the overview of the statistical results.

      “RNA-seq analysis revealed that, in Hm-oscar-injected embryos, Z-linked genes (homologs on the B. mori chromosomes 1 and 15) were more expressed in males than in females (Fig. 3a), which was not observed in the GFP-injected group (Fig. 3b). Similarly, as previously reported by Arai et al. (2023a), high levels of Z-linked gene expression were also observed in wHm-t-infected males, but not in NSR males (Fig. 3c,d). The high (i.e., doubled) Z-linked gene expression in both Hm-oscar-expressed and wHm-t-infected males was further confirmed by quantification of the Z-linked Hmtpi gene (Fig. 3e). These trends were statistically supported, with all data available in the supplementary data file.” (lines 205-213)

      - Figure 1 legend: do you mean 'bridged' instead of 'brigged'?

      We have accordingly revise, thank you for the suggestion.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer 1:

      (1) The results do not support the conclusions. The main "selling point" as summarized in the title is that the apoptotic rate of zebrafish motorneurons during development is strikingly low (~2% ) as compared to the much higher estimate (~50%) by previous studies in other systems. The results used to support the conclusion are that only a small percentage (under 2%) of apoptotic cells were found over a large population at a variety of stages 24-120hpf. This is fundamentally flawed logic, as a short-time window measure of percentage cannot represent the percentage on the long-term. For example, at any year under 1% of human population die, but over 100 years >99% of the starting group will have died. To find the real percentage of motorneurons that died, the motorneurons born at different times must be tracked over long term, or the new motorneuron birth rate must be estimated. Similar argument can be applied to the macrophage results.<br />

      In the revised manuscript (revised Figure 4), we extended the observation time window as long as possible, from 24 hpf to 240 hpf. After 240 hpf, the transparency of zebrafish body decreased dramatically, which made optical imaging quite difficult.

      We are confident that this 24-240 hpf time window covers the major time window during which motor neurons undergo programmed cell death during zebrafish early development. We chose the observation time window based on the following two reasons: 1) Previous studies showed that although the time windows of motor neuron death vary in chick (E5-E10), mouse (E11.5-E15.5), rat (E15-E18), and human (11-25 weeks of gestation), the common feature of these time windows is that they are all the developmental periods when motor neurons contact with muscle cells. The contact between zebrafish motor neurons and muscle cells occurs before 72 hpf, which is included in our observation time window. 2) Most organs of zebrafish form before 48-72 hpf, and they complete hatching during 48-72 hpf. Food-seeking and active avoidance behaviors also start at 72 hpf, indicating that motor neurons are fully functional at 72 hpf.

      Previous studies in zebrafish have shown that the production of spinal cord motor neurons largely ceases before 48 hpf, and then the motor neurons remain largely constant until adulthood (doi: 10.1016/j.celrep.2015.09.050; 10.1016/j.devcel.2013.04.012; 10.1007/BF00304606; 10.3389/fcell.2021.640414). Our observation time window covers the major motor neuron production process. Therefore, we believe that neurogenesis will not affect our findings and conclusions.

      Although we are confident that 240 h tracking is long enough to measure the motor neuron death rate, several sentences have been added in the discussion part, “In our manuscript, we tracked the motor neuron death in live zebrafish until 240 hpf, which was the longest time window we could achieve. But there was still a possibility that zebrafish motor neurons might die after 240 hpf.”

      We agreed that the “2%” description might not be very accurate. Thus, we have revised our title to “Zebrafish live imaging reveals a surprisingly small percentage of spinal cord motor neurons die during early development.”

      (2) The conclusion regarding timing of axon and cell body caspase activation and apoptosis timing also has clear issues. The ~minutes measurement are too long as compared to the transport/diffusion timescale between the cell body and the axon, caspase activity could have been activated in the cell body and either caspase or the cleaved sensor move to the axon in several seconds. The authors' results are not high frequency enough to resolve these dynamics. Many statements suggest oversight of literature, for example, in abstract "however, there is still no real-time observation showing this dying process in live animals.".

      Real-time imaging of live animals is quite challenging in the field. Currently, using confocal microscopy, we can only achieve minute-scale tracking. In the future, with more advanced imaging techniques, the sensor fish in the present study may provide us with more detailed information on motor neuron death. We have removed “real-time” from our revised manuscript. We also revised the mentioned sentence in the abstract.

      (3) Many statements should use more scholarly terms and descriptions from the spinal cord or motorneuron, neuromuscular development fields, such as line 87 "their axons converged into one bundle to extend into individual somite, which serves as a functional unit for the development and contraction of muscle cells"

      We have removed this sentence.

      (4) The transgenic line is perhaps the most meaningful contribution to the field as the work stands. However, mnx1 promoter is well known for its non-specific activation - while the images do suggest the authors' line is good, motorneuron markers should be used to validate the line. This is especially important for assessing this population later as mnx1 may be turned off in mature neurons. The author's response regarding mnx1 specificity does not mitigate the original concern.

      The mnx1 promoter has been widely used to label motor neurons in transgenic zebrafish. Previous studies have shown that most of the cells labeled in the mnx1 transgenic zebrafish are motor neurons. In this study, we observed that the neuronal cells in our sensor zebrafish formed green cell bodies inside of the spinal cord and extended to the muscle region, which is an important morphological feature of the motor neurons.

      Furthermore, a few of those green cell bodies turned into blue apoptotic bodies inside the spinal cord and changed to blue axons in the muscle regions at the same time, which strongly suggests that those apoptotic neurons are not interneurons.

      In fact, no matter what method is used, such as using antibodies to stain specific markers to label motor neurons, 100% specificity cannot be achieved. More importantly, although the mnx1 promoter might have labeled some interneurons, this will not affect our major finding that only a small percentage of spinal cord motor neurons die during the early development of zebrafish.

      Reviewer 2:

      (1) Title: The 50% figure of motor neurons dying through apoptosis during early vertebrate development is not precisely accurate. In papers referenced by the authors, there is a wide distribution of percentages of motor neurons that die depending on the species and the spinal cord region. In addition, the authors did not examine limb-innervating motor neurons, which are the ones best studied in motor neuron programmed cell death in other species. Thus, a better title that reflects what they actually show would be something like "A surprisingly small percentage of early developing zebrafish motor neurons die through apoptosis in non-limb innervating regions of the spinal cord."

      In fish, there are no such structures as limbs, although fins may be evolutionarily related to limbs. In our manuscript, we studied the naturally occurring motor neuron death in the whole spinal cord during the early stage of zebrafish development. The death of motor neurons in limb-innervating motor neurons has been extensively studied in chicks and rodents, as it is easy to undergo operations such as amputation. However, previous studies have shown this dramatic motor neuron death occurs not only in limb-innervating motor neurons but also in other spinal cord motor neurons (doi: 10.1006/dbio.1999.9413).

      We have revised our title to “Zebrafish live imaging reveals a surprisingly small percentage of spinal cord motor neurons die during early development.”

      (2) lines 18-19: "embryonic stage of vertebrates" is very broad, since zebrafish are also vertebrates; it would be better to be more specific

      lines 25-26: The authors should be more specific about which animals have widespread neuronal cell death.

      We have revised our manuscript accordingly.

      (3) lines 98-99; 110-111; 113; 122-123; 140-141: A cell can undergo apoptosis. But an axon, which is only part of a cell, cannot undergo apoptosis. Especially since the axon doesn't have a separate nucleus, and the definition of apoptosis usually includes nuclear fragmentation. A better subheading would describe the result, which is that caspase activation is seen in both the cell body and the axon.

      We have revised the subheadings and related words in the manuscript accordingly. In the introduction, we also revised the expression of the third aim from “Which part of a neuron (cell body vs. axon) will die first?” to “Which part of a neuron (cell body vs. axon) will degrade first?”.

      (4) lines 159-160; 178-179: This is an oversimplification of the literature. The authors should spell out which populations of motor neuron have been examined and say something about the similarities and difference in motor neuron death.

      We have revised it accordingly.

      (5) lines 200; 216: The authors did not observe macrophages engulfing motor neurons. But that does not mean that they cannot. Making the conclusion stated in this subheading would require some kind of experiment, not just observations.

      We did observe few colocalizations of macrophages and dead motor neurons.  To more accurately express these data, in the revised manuscript, we used “colocalization” to replace “engulfment.” The subheading has been revised to “Most dead motor neurons were not colocalized with macrophages.” Accordingly, panel C of Figure 5 has also been revised.

      (6) lines 234-246: The authors seem to have missed the point about VaP motor neuron death, which was two-fold. First, VaP death has been previously described, thus it could serve as a control for the work in this paper, especially since the conditions underlying VaP death and survival have been experimentally tested. Second, they should acknowledge that previous work showed that at least some motor neuron death in zebrafish differs from that described in chick and rodents. This conclusion came from work showing that death of VaP is independent of limitations in muscle innervation area, suggesting it is not coupled to muscle-derived neurotrophic factors.

      Figures: The authors should say which level of the spinal cord they examined in each figure.

      We have compared our findings with previous findings in the revised manuscript. The death of VaP motor neurons is not related to neurotrophic factors, but the death of other motor neurons may be related to neurotrophic factors, which needs further study and evidence. Our study examined the overall motor neuron apoptosis regardless of the causes and locations. To avoid misunderstanding, in the revised manuscript, we removed the data and words related to neurotrophic factors.

      We also extended the observation time window as long as possible, from 24 hpf to 240 hpf (revised Figure 4). After 240 hpf, the transparency of zebrafish body decreased dramatically, which made the optical imaging quite difficult.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Experiments in model organisms have revealed that the effects of genes on heritable traits are often mediated by environmental factors---so-called gene-by-environment (or GxE) interactions. In human genetics, however, where indirect statistical approaches must be taken to detect GxE, limited evidence has been found for pervasive GxE interactions. The present manuscript argues that the failure of statistical methods to detect GxE may be due to how GxE is modelled (or not modelled) by these methods.

      The authors show, via re-analysis of an existing dataset in Drosophila, that a polygenic ‘amplification’ model can parsimoniously explain patterns of differential genetic effects across environments. (Work from the same lab had previously shown that the amplification model is consistent with differential genetic effects across the sexes for several traits in humans.) The parsimony of the amplification model allows for powerful detection of GxE in scenarios in which it pertains, as the authors show via simulation.

      Before the authors consider polygenic models of GxE, however, they present a very clear analysis of a related question around GxE: When one wants to estimate the effect of an individual allele in a particular environment, when is it better to stratify one’s sample by environment (reducing sample size, and therefore increasing the variance of the estimator) versus using the entire sample (including individuals not in the environment of interest, and therefore biasing the estimator away from the true effect specific to the environment of interest)? Intuitively, the sample-size cost of stratification is worth paying if true allelic effects differ substantially between the environment of interest and other environments (i.e., GxE interactions are large), but not worth paying if effects are similar across environments. The authors quantify this trade-off in a way that is both mathematically precise and conveys the above intuition very clearly. They argue on its basis that, when allelic effects are small (as in highly polygenic traits), single-locus tests for GxE may be substantially underpowered.

      The paper is an important further demonstration of the plausibility of the amplification model of GxE, which, given its parsimony, holds substantial promise for the detection and characterization of GxE in genomic datasets. However, the empirical and simulation examples considered in the paper (and previous work from the same lab) are somewhat “best-case” scenarios for the amplification model, with only two environments, and with these environments amplifying equally the effects of only a single set of genes. It would be an important step forward to demonstrate the possibility of detecting amplification in more complex scenarios, with multiple environments each differentially modulating the effects of multiple sets of genes. This could be achieved via simulations similar to those presented in the current manuscript.

      Reviewer #2 (Public Review):

      Summary:

      Wine et al. describe a framework to view the estimation of gene-context interaction analysis through the lens of bias-variance tradeoff. They show that, depending on trait variance and context-specific effect sizes, effect estimates may be estimated more accurately in context-combined analysis rather than in context-specific analysis. They proceed by investigating, primarily via simulations, implications for the study or utilization of gene-context interaction, for testing and prediction, in traits with polygenic architecture. First, the authors describe an assessment of the identification of context-specificity (or context differences) focusing on “top hits” from association analyses. Next, they describe an assessment of polygenic scores (PGSs) that account for context-specific effect sizes, showing, in simulations, that often the PGSs that do not attempt to estimate context-specific effect sizes have superior prediction performance. An exception is a PGS approach that utilizes information across contexts. Strengths:

      The bias-variance tradeoff framing of GxE is useful, interesting, and rigorous. The PGS analysis under pervasive amplification is also interesting and demonstrates the bias-variance tradeoff.

      Weaknesses:

      The weakness of this paper is that the first part -- the bias-variance tradeoff analysis -- is not tightly connected to, i.e. not sufficiently informing, the later parts, that focus on polygenic architecture. For example, the analysis of “top hits” focuses on the question of testing, rather than estimation, and testing was not discussed within the bias-variance tradeoff framework. Similarly, while the PGS analysis does demonstrate (well) the bias-variance tradeoff, the reader is left to wonder whether a bias-variance deviation rule (discussed in the first part of the manuscript) should or could be utilized for PGS construction.

      We thank the editors and the reviewers for their thoughtful critique and helpful suggestions throughout. In our revision, we focused on tightening the relationship between the analytical single variant bias-variance tradeoff derivation and the various empirical analyses that follow.

      We improved discussion of our scope and what is beyond our scope. For example, our language was insufficiently clear if it suggested to the editor and reviewers that we are developing a method to characterize polygenic GxE. Developing a new method that does so (let alone evaluating performance across various scenarios) is beyond the scope of this manuscript.

      Similarly, we clarify that we use amplification only as an example of a mode of GxE that is not adequately characterized by current approaches. We do not wish to argue it is an omnibus explanation for all GxE in complex traits. In many cases, a mixture of polygenic GxE relationships seems most fitting (as observed, for example, in Zhu et al., 2023, for GxSex in human physiology).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      MAJOR COMMENT

      The amplification model is based on an understanding of gene networks in which environmental variables concertedly alter the effects of clusters of genes, or modules, in the network (e.g., if an environmental variable alters the effect of some gene, it indirectly and proportionately alters the effects of genes downstream of that gene in the network---or upstream if the gene acts as a bottleneck in some pathway). It is clear in this model that (i) multiple environmental variables could amplify distinct modules, and (ii) a single environmental variable could itself amplify multiple separate modules, with a separate amplification factor for each module.

      However, perhaps inspired by their previous work on GxSex interactions in humans, the authors’ focus in the present manuscript is on cases where there are only two environments (“control” and “high-sugar diet” in the Drosophila dataset that they reanalyze, and “A” and “B” in their simulations [and single-locus mathematical analysis]), and they consider models where these environments amplify only a single set of genes, i.e., with a single amplification factor. While it is of course interesting that a single-amplification-factor model can generate data that resemble those in the Drosophila dataset that the authors re-analyze, most scenarios of amplification GxE will presumably be more complex. It seems that detecting amplification in these more complex scenarios using methods such as the authors do in their final section will be correspondingly more difficult. Indeed, in the limit of sufficiently many environmental variables amplifying sufficiently many modules, the scenario would resemble one of idiosyncratic single-locus GxE which, as the authors argue, is very difficult to detect. That more complex scenarios of amplification, with multiple environments separately amplifying multiple modules each, might be difficult to detect statistically is potentially an important limitation to the authors’ approach, and should be tested in their simulations.

      We agree that characterizing GxE when there is a mixture of drivers of context-dependency is difficult. Developing a method that does so across multiple (and perhaps not pre-defined) contexts is of high interest to us but beyond the scope of the current manuscript

      We note that for GxSex, modeling this mixture does generally improve phenotypic prediction, and more so in traits where we infer amplification as a major mode of GxE.

      MINOR COMMENTS

      Lines 88-90: “This estimation model is equivalent to a linear model with a term for the interaction between context and reference allele count, in the sense that context-specific allelic effect estimators have the same distributions in the two models.”

      Does this equivalence require the model with the interaction term also to have an interaction term for the intercept, i.e., the slope on a binary variable for context (since the generative model in Eq. 1 allows for context-specific intercepts)?

      It does require an interaction term for the intercept. This is e_i (and its effect beta_E) in Eq. S2 (line 70 of the supplement).

      Lines 94-96: Perhaps just a language thing, but in what sense does the estimation model described in lines 92-94 “assume” a particular distribution of trait values in the combined sample? It’s just an OLS regression, and one can analyze its expected coefficients with reference to the generative model in Eq. 1, or any other model. To say that it “assumes” something presupposes its purpose, which is not clear from its description in lines 92-94.

      We corrected “assume” to “posit”.

      Lines 115-116: It should perhaps be noted that the weights wA and wB need not sum to 1.

      Indeed; it is now explicitly stated.

      Lines 154-160: I think the role of r could be made even clearer by also discussing why, when VA>>VB, it is better to use the whole-sample estimate of betaA than the sample-A-specific estimate (since this is a more counterintuitive case than the case of VA<<VB discussed by the authors).

      This is addressed in lines 153-154, stating: “Typically, this (VA<<VB) will also imply that the additive estimator is greatly preferable for estimating β_B , as β_B will be extremely noisy”

      Line 243 and Figure 4 caption: The text states that the simulated effects in the high-sugar environment are 1.1x greater than those in the control environment, while the caption states that they are 1.4x greater.

      We have corrected the text to be consistent with our simulations.

      TYPOS/WORDING

      Line 14: “harder to interpret” --> “harder-to-interpret”

      Line 22: We --> we

      Line 40: “as average effect” -> “as the average effect”?

      Line 57: “context specific” --> “context-specific”

      Line 139: “re-parmaterization” --> “re-parameterization”

      Lines 140, 158, 412: “signal to noise” --> “signal-to-noise”

      Figure 3C,D: “pule rate” --> “pulse rate”

      The caption of Figure 3: “conutinous” --> “continuous”

      Line 227: “a variant may fall” --> “a variant may fall into”

      Line 295: “conferring to more GxE” --> “conferring more GxE” or “corresponding to more GxE”? This is very pedantic, but I think “bias-variance” should be “bias--variance” throughout, i.e., with an en-dash rather than a hyphen.

      We have corrected all of the above typos.

      Reviewer #2 (Recommendations For The Authors):

      (This section repeats some of what I wrote earlier).

      - First polygenic architecture part: the manuscript focuses on “top hits” in trying to identify sets of variants that are context-specific. This “top hits” approach seems somewhat esoteric and, as written, not connected tightly enough to the bias-variance tradeoff issue. The first section of the paper which focuses on bias-variance trade-off mostly deals with estimation. The “top hits” section deals with testing, which introduces additional issues that are due to thresholding. Perhaps the authors can think of ways to make the connection stronger between the bias-variance tradeoff part to the “top hits” part, e.g., by introducing testing earlier on and/or discussion estimation in addition to testing in the “top hits” part of the manuscript. The second polygenic architecture part: polygenic scores that account for interaction terms. Here the authors focused (well, also here) on pervasive amplification in simulations. This part combines estimation and testing (both the choice of variants and their estimated effects are important). In pervasive amplification the idea is that causal variants are shared, the results may be different than in a model with context-specific effects and variant selection may have a large impact. Still, I think that these simulations demonstrate the idea developed in the bias-variance tradeoff part of the paper, though the reader is left to wonder whether a bias-variance decision rule should or could be utilized for PGS construction.

      In both of these sections we discuss how the consideration of polygenic GxE patterns alters the conclusions based on the single-variant tradeoff. In the “top hits” section, we show that single-variant classification itself, based on a series of marginal hypothesis tests alone, can be misleading. The PGS prediction accuracy analysis shows that both approaches are beaten by the polygenic GxE estimation approach. Intuitively, this is because the consideration of polygenic GxE can mitigate both the bias and variance, as it leverages signals from many variants.

      We agree that the links between these sections of the paper were not sufficiently clear, and have added signposting to help clarify them (lines 176-180; lines 275-277; lines 316-321).

      - Simulation of GxDiet effects on longevity: the methods of the simulation are strange, or communicated unclearly. The authors’ report (page 17) poses a joint distribution of genetic effects (line 439), but then, they simulated effect estimates standard errors by sampling from summary statistics (line 445) rather than simulated data and then estimating effect and effect SE. Why pose a true underlying multivariate distribution if it isn’t used?

      We rewrote the Methods section “Simulation of GxDiet effects on longevity in Drosophila to make our simulation approach clearer (lines 427-449). We are indeed simulating the true effects from the joint distribution proposed. However, in order to mimic the noisiness of the experiment in our simulations, we sample estimated effects from the true simulated effects, with estimation noise conferring to that estimated in the Pallares et al. dataset (i.e., sampling estimation variances from the squares of empirical SEs).

      - How were the “most significantly associated variants” selected into the PGS in the polygenic prediction part? Based on a context-specific test? A combined-context test of effect size estimates?

      For the “Additive” and “Additive ascertainment, GxE estimation” models (red and orange in Fig. 5, respectively), we ascertain the combined-context set. For the “GxE” and “polygenic GxE” (green and blue in Fig. 5, respectively) models, we ascertain in a context-specific test. We now state this explicitly in lines 280-288 and lines 507-526.

      - As stated, I find the conclusion statement not specific enough in light of the rest of the manuscript. “the consideration of polygenic GxE trends is key” - this is very vague. What does it mean “to consider polygenic GxE trends” in the context of this paper? I can’t tell. “The notion that complex trait analyses should combine observations at top associated loci” - I don’t think the authors really refer to combining “observations”, rather perhaps combine information from top associated loci. But this does not represent the “top hits” approach that merely counts loci by their testing patterns. “It may be a similarly important missing piece...” What does “it” refer to? The top loci? What makes it an important missing piece?

      We rewrote the conclusion paragraph to address these concerns (lines 316-321).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      […] Overall, this is an important paper that demonstrates that one model for transgenerational inheritance in C. elegans is not reproducible. This is important because it is not clear how many of the reported models of transgenerational inheritance reported in C. elegans are reproducible. The authors do demonstrate a memory for F1 embryos that could be a maternal effect, and the authors confirm that this is mediated by a systemic small RNA response. There are several points in the manuscript where a more positive tone might be helpful.

      We would like to correct the statement made in the second to last sentence. The demonstration of an F1 response to PA14 was first reported by Moore et al., (2019) and then by Pereira et al., (2020) using a different behavioral assay. We merely confirmed these results in our hands, and confirmed the observation, first reported by Kaletsky et al., (2020), that sid-1 and sid-2 are required for this F1 response; although we did find that sid-1 and sid-2 are not required for the PA14-induced increase in daf-7p::gfp expression in ASI neurons in the F1 progeny of trained adults, which had not been addressed in the published work.

      Yes, the intergenerational F1 response could be a maternal effect, but the in utero F1 embryos and their precursor germ cells were directly exposed to PA14 metabolites and toxins (non-maternal effect) as well as any parental response, whether mediated by small RNAs, prions, hormones, or other unknown information carriers. While the F1 aversion response does require sid-1 and sid-2, we would not presume that the substrate is therefore an RNA molecule, particularly because the systemic RNAi response supported by sid-1 and sid-2 is via long double-stranded RNA. To date, no evidence suggests that either protein transports small RNAs, particularly single-stranded RNAs.

      Strengths:

      The authors note that the high copy number daf-7::GFP transgene used by the Murphy group displayed variable expression and evidence for somatic silencing or transgene breakdown in the Hunter lab, as confirmed by the Murphy group. The authors nicely use single copy daf-7::GFP to show that neuronal daf-7::GFP is elevated in F1 but not F2 progeny with regards to the memory of PA14 avoidance, speaking to an intergenerational phenotype.

      The authors nicely confirm that sid-1 and sid-2 are generally required for intergenerational avoidance of F1 embryos of moms exposed to PA14. However, these small RNA proteins did not affect daf-7::GFP elevation in the F1 progeny. This result is unexpected given previous reports that single copy daf-7::GFP is not elevated in F1 progeny of sid mutants. Because the Murphy group reported that daf-7 mutation abolishes avoidance for F1 progeny, this means that the sid genes function downstream of daf-7 or in parallel, rather than upstream as previously suggested.

      The published report (Moore et al., 2019) shows only multicopy daf-7p::gfp results and does not address the daf-7p::gfp response in sid-1 or sid-2 mutants. Thus, our discovery that systemic RNAi, exogenous RNAi, and heritable RNAi mutants don’t disrupt elevated daf-7p::gfp in ASI neurons in the F1 progeny of PA14 trained P0’s is only unexpected with respect to the published models (Moore et al., 2019, Kaletsky et al., 2020).

      The authors studied antisense small RNAs that change in Murphy data sets, identifying 116 mRNAs that might be regulated by sRNAs in response to PA14. Importantly, the authors show that the maco-1 gene, putatively targeted by piRNAs according to the Kaletsky 2020 paper, displays few siRNAs that change in response to PA14. The authors conclude that the P11 ncRNA of PA14, which was proposed to promote interkingdom RNA communication by the Murphy group, is unlikely to affect maco-1 expression by generating sRNAs that target maco-1 in C. elegans. The authors define 8 genes based on their analysis of sRNAs and mRNAs that might promote resistance to PA14, but they do not further characterize these genes' role in pathogen avoidance. The Murphy group might wish to consider following up on these genes and their possible relationship with P11.

      Weaknesses:

      This very thorough and interesting manuscript is at times pugnacious.

      We reiterate that we never claimed that Moore et al., (2019) did not obtain their reported results. We simply stated that we could not replicate their results using the published methods and then failed in our search to identify variable(s) that might account for our results. In revising the manuscript, we have striven to make clear, unmuddied statements of facts and state that future investigations may provide independent evidence that supports the original claims and explains our divergent results.

      Please explain more clearly what is High Growth media for E. coli in the text and methods, conveying why it was used by the Murphy lab, and if Normal Growth or High Growth is better for intergenerational heritability assays.

      We added the standard recipes and the following explanations in the methods section to the revised text.

      “NG plates minimally support OP50 growth, resulting in a thin lawn that facilitates visualization of larvae and embryos. HG plates (8X more peptone) support much higher OP50 growth, resulting in a thick bacterial lawn that supports larger worm populations.”

      We have also included the following text in our presentation and discussion of the effects of growth conditions on worm choice in PA14 vs OP50 choice assays.

      “Furthermore, because OP50 pathogenicity is enhanced by increased E. coli nutritive conditions (Garsin et al., 2003, Shi et al., 2006), the growth of F1-F4 progeny on High Growth (HG) plates (Moore et al., 2019; 2021b), which contain 8X more peptone than NG plates and therefore support much higher OP50 growth levels, immediately prior to the F1-F4 choice assays may further contribute to OP50 aversion among the control animals.”

      We don’t know enough to claim that HG or NG media is better than the other for intergenerational assays, but they are different. Thus, switching between the two in a multigenerational experiment likely introduces unknown variability.

      Reviewer #2 (Public Review):

      This paper examines the reproducibility of results reported by the Murphy lab regarding transgenerational inheritance of a learned avoidance behavior in C. elegans. It has been well established by multiple labs that worms can learn to avoid the pathogen pseudomonas aeruginosa (PA14) after a single exposure. The Murphy lab has reported that learned avoidance is transmittable to 4 generations and dependent on a small RNA expressed by PA14 that elicits the transgenerational silencing of a gene in C. elegans. The Hunter lab now reports that although they can reproduce inheritance of the learned behavior by the first generation (F1), they cannot reproduce inheritance in subsequent generations.

      This is an important study that will be useful for the community. Although they fail to identify a "smoking gun", the study examines several possible sources for the discrepancy, and their findings will be useful to others interested in using these assays. The preference assay appears to work in their hands in as much as they are able to detect the learned behavior in the P0 and F1 generations, suggesting that the failure to reproduce the transgenerational effect is not due to trivial mistakes in the protocol. An obvious reason, however, to account for the differing results is that the culture conditions used by the authors are not permissive for the expression of the small RNA by PA14 that the MUrphy lab identified as required for transgenerational inheritance. It would seem prudent for the authors to determine whether this small RNA is present in their cultures, or at least acknowledge this possibility.

      We thank the reviewer for raising this issue and have added the following statement to this effect in the revised manuscript.

      “We note that previous bacterial RNA sequence analysis identified a small non-coding RNA called P11 whose expression correlates with bacterial growth conditions that induce heritable avoidance (Kaletsky et al., 2020). Critically, C. elegans trained on a PA14 ΔP11 strain (which lacks this small RNA) still learn to avoid PA14, but their F1 and F2-F4 progeny fail to show an intergenerational or transgenerational response (Figure 3L in Kaletsky et al., 2020). The fact that we observed an intergenerational (F1) avoidance response is evidence that our PA14 growth conditions induce P11 expression.”

      We believe that this addresses the concern raised here.

      The authors should also note that their protocol was significantly different from the Murphy protocol (see comments below) and therefore it remains possible that protocol differences cumulatively account for the different results.

      As suggested below, we have added to the supplemental documents the protocol we followed for the aversion assay. In our view, this document shows that our adjustments to the core protocol were minor. Furthermore, where possible, these adjustments were explicitly tested in side-by-side experiments for both the aversion assay and the daf-7p::gfp expression assay and presented in the manuscript.

      To discover the source(s) of discrepancy between our results and the published results we subsequently introduced variations to this core protocol to exclude likely variables (worm and bacteria growth temperatures, assay conditions, worm handling methods, bacterial culture and storage conditions, and some minor developmental timing issues). Again, where possible, the effect of variations was tested in side-by-side experiments for both the aversion assay and the daf-7p::gfp expression assay and were presented in or have now been added to the manuscript.

      It remains possible that we misunderstood the published Murphy lab protocols, but we were highly motivated to replicate the results so we could use these assays to investigate the reported RNAi-pathway dependent steps, thus we read every published version with extreme care.

      Reviewer #3 (Public Review):

      […] Strengths:

      (1) The authors provide a thorough description of their methods, and a marked-up version of a published protocol that describes how they adapted the protocol to their lab conditions. It should be easy to replicate the experiments.

      As noted above in response to a suggestion by reviewer #2, we have replaced the annotated published protocol with the protocol that we followed. This will aid other groups' attempts to replicate our experimental conditions.

      (2) The authors test the source of bacteria, growth temperature (of both C. elegans and bacteria), and light/dark husbandry conditions. They also supply all their raw data, so that the sample size for each testing plate can be easily seen (in the supplementary data). None of these variations appears to have a measurable effect on pathogen avoidance in the F2 generation, with all but one of the experiments failing to exhibit learned pathogen avoidance.

      We note that the parallel analysis of daf-7p::gfp expression in ASI neurons was also tested for several of these conditions and also failed to replicate the published findings.

      (3) The small RNA seq and mRNA seq analysis is well performed and extends the results shown in the original paper. The original paper did not give many details of the small RNA analysis, which was an oversight. Although not a major focus of this paper, it is a worthwhile extension of the previous work.

      (4) It is rare that negative results such as these are accessible. Although the authors were unable to determine the reason that their results differ from those previously published, it is important to document these attempts in detail, as has been done here. Behavioral assays are notoriously difficult to perform and public discourse around these attempts may give clarity to the difficulties faced by a controversial field.

      Thank you for your support. Choosing to pursue publication of these negative results was not an easy decision, and we thank members of the community for their support and encouragement.

      Weaknesses:

      (1) Although the "standard" conditions have been tested over multiple biological replicates, many of the potential confounders that may have altered the results have been tested only once or twice. For example, changing the incubation temperature to 25{degree sign}C was tested in only two biological replicates (Exp 5.1 and 5.2) - and one of these experiments actually resulted in apparent pathogen avoidance inheritance in the F2 generation (but not in the F1). An alternative pathogen source was tested in only one biological replicate (Exp 3). Given the variability observed in the F2 generation, increasing biological replicates would have added to the strengths of the report.

      We agree that our study was not exhaustive in our exploration of variables that might be interfering with our ability to detect F2 avoidance. We also note that some of these variables also failed (with many more independent experiments) to induce elevated daf-7p::gfp expression in ASI neurons in F2 progeny. Our goal was not to show that variation in some growth or assay condition would generate reproducible negative results, but the exploration was designed to tweak conditions to enable detection of a robust F2 response. Given the strength of the data presented in Moore et al., (2019) we expected that adjustment of the problematic variable would produce positive results apparent in a single replicate, which could then be followed up. If we had succeeded, then we would have documented the conditions that enabled robust F2 inheritance and would have explored molecular mechanisms that support this important but mysterious process.

      (2) A key difference between the methods used here and those published previously, is an increase in the age of the animals used for training - from mostly L4 to mostly young adults. I was unable to find a clear example of an experiment when these two conditions were compared, although the authors state that it made no difference to their results.

      We can state firmly that the apparent time delay did not affect P0 learned avoidance (new Figure S1) or, as documented in Table S1, daf-7p::gfp expression in ASI neurons. In our experience, training mostly L4’s on PA14 frequently failed to produce sufficient F1 embryos for both F1 avoidance assays or daf-7p::gfp measurements in ASI neurons and collection of F2 progeny. Indeed, in early attempts to detect heritable PA14 aversion, trained P0 and F1 progeny were not assayed in order to obtain sufficient F2’s for a choice assay. These animals failed to display aversion, but without evidence of successful P0 training or an F1 intergenerational response this was deemed a non-fruitful trouble-shooting approach. We have added supplemental Figure S1 which presents P0 choice assay results from experiments using younger trained animals that failed to produce sufficient F1’s to continue the inheritance experiments.

      The different timing at the start of training between the two protocols may reflect the age of the recovered bleached P0 embryos. It is reasonable to assume that bleaching day 1 adults vs day 2 or 3 adults from the P-1 population could shift the average age of recovered P0 embryos by several hours. The Murphy protocol only states that P0 embryos were obtained by bleaching healthy adults. Regardless, if the hypothesis entertained here is true, that a several hour difference in larval/adult age during 24 hours of training affects F2 inheritance of learned aversion but does not affect P0 learned avoidance, then we would argue that this paradigm for heritable learned avoidance, as described in Moore et al., (2019, 2021), is not sufficiently robust for mechanistic investigations.

      (3) The original paper reports a transgenerational avoidance effect up to the F5 generation. Although in this work the authors failed to see avoidance in the F2 generation, it would have been prudent to extend their tests for more generations in at least a couple of their experiments to ensure that the F2 generation was not an aberration (although this reviewer acknowledges that this seems unlikely to be the case).

      We would point out that we also failed to robustly replicate the F2 response in the daf-7p::gfp expression assays. An F2-specific aberration that affects two different assays seems quite unlikely, and it remains unclear how we would interpret a positive result in F3 and F4 generations without a positive result in the F2 generation. Were we to further extend these investigations, we believe that exploration of additional culture conditions would warrant higher priority than extension of our results to the F3 and F4 generations.

      Reviewing Editor Comments:

      The reviewers' suggestions for improving the manuscript were mostly minor, to change the wording in some places and to add some more explanation regarding the methods.

      What should be highlighted in the section on OP50 growth conditions is that the initial preference for PA14 in the Murphy lab has also been observed by multiple other labs (Bargmann, Kim, Zhang, Abbalay). The fact that this preference was not observed by the Hunter lab is one of several indicators of subtle differences in the environment that might add up to explain the differences in results.

      We agree that subtle known and unknown differences in OP50 and PA14 culture conditions can have measurable effects on the detection of PA14 attraction/aversion relative to OP50 attraction/aversion that could obscure or create the appearance of heritable effects between generations. We have added (see below) to the text a fuller description of the variability in the initial or naive preference observed in different laboratories using similar or variant 2-choice assays and culture conditions. It is worth emphasizing that direct comparison of the OP50 growth conditions specified in Moore et al., (2021) frequently revealed a much larger effect on the naïve choice index than is reported between labs (Figure 4).  

      “Naïve (OP50 grown) worms often show a bias towards PA14 in choice assays (Zhang et al., 2005; Ha et al., 2010; Moore et al., 2019; Pereira et al., 2020; Lalsiamthara and Aballay, 2022). This response, rather than representing an innate attraction to PA14, likely reflects the context of the worm's recent growth on OP50, a mild C. elegans pathogen (Garigan et al., 2002; Garsin et al., 2003; Shi et al., 2006). Thus, the naïve worms presented with a choice between a recently experienced mild pathogen (OP50) and a novel food choice (PA14) initially choose the novel food instead of the known mild pathogen (OP50 aversion).

      In line with our results, some other groups have also reported higher naïve choice index scores (Lee et al., 2017). This variability in naïve choice may reflect differences in growth conditions of either the OP50 or PA14 bacteria. In addition, we note that among the studies that show naïve worm attraction to Pseudomonas (OP50 aversion) there are extensive methodological differences from the methods in Moore et al., (2019; 2021b), including differences in bacterial growth temperature, incubation time, whether the bacteria is diluted or concentrated prior to placement on the choice plates, the concentration of peptone in the choice plates, the length of the choice assay, and the inclusion of sodium azide in the choice assays (Zhang et al., 2005; Ha et al., 2010; Moore et al., 2019; Pereira et al 2020; Lalsiamthara and Aballay, 2022). Thus, the cause of the variability across published reports is not clear.”

      Overall, an emphasis on the absence of robustness of the reported results, rather than failure to reproduce them (which can always have many reasons), is appropriate.

      We agree that an emphasis on robustness is appropriate and have modified the text throughout the manuscript to shift the emphasis to absence of robustness. This includes a change to the manuscript title, which is now, “Reported transgenerational responses to Pseudomonas aeruginosa in C. elegans are not robust”

      A significant experimental addition would be some attempts to determine whether the bacterial PA14 pathogen in the authors' lab produces the P11 small RNA, which has been proposed to have a causal role in initiating the previously reported transgenerational inheritance.

      We acknowledge in the revised manuscript that a subsequent publication (Kaletsky et al., 2020) identified a correlation between PA14 training conditions that induced transgenerational memory and the expression of P11, a P. aeruginosa small non-coding RNA (see our response above to Reviewer #2’s similar query). While testing for the presence of P11 in Harvard culture conditions would be an important assay in any study whose purpose was to investigate the proposed P11-mediated mechanism underlying the transgenerational responses reported by the Murphy Lab, our goal was rather to replicate the robust transgenerational (F2) responses to PA14 training and then to investigate in more detail how sid-1 and sid-2 contribute to transgenerational epigenetic inheritance. Neither sid-1 nor sid-2 are predicted to transport small RNAs or single-stranded RNAs, thus testing for the presence of P11 is less relevant to our goals. Regardless, we note that Figure 3L in Kaletsky et al., (2020) showed that PA14 ΔP11 bacteria failed to induce an F1 avoidance response. Thus, the fact that we observed F1 avoidance implies that our culture conditions successfully induced P11 expression.

      Reviewer #1 (Recommendations For The Authors):

      The abstract could be more positive by concluding that 'We conclude that this example of transgenerational inheritance lacks robustness but instead reflects an example of small RNA-mediated intergenerational inheritance.'

      As recommended, we have added additional clarifying information to the abstract and moderated the conclusion sentence.

      “We did confirm that the dsRNA transport proteins SID-1 and SID-2 are required for the intergenerational (F1) inheritance of pathogen avoidance, but not for the F1 inheritance of elevated daf-7 expression. Furthermore, our reanalysis of RNA seq data provides additional evidence that this intergenerational inherited PA14 response may be mediated by small RNAs.”

      “We conclude that this example of transgenerational inheritance lacks robustness, confirm that the intergenerational avoidance response, but not the elevated daf-7p::gfp expression in F1 progeny, requires sid-1 and sid-2, and identify candidate siRNAs and target genes that may mediate this intergenerational response.”

      Differential expression of sRNAs or mRNAs might be better understood quantitatively by presenting data in scatterplots (Reed and Montgomery 2020) rather than in volcano plots.

      We agree and have modified Figure 6A and 6B.

      This statement in the main text might be unnecessary, as it affects the tenor of the conclusion of this significant manuscript. 'We note that none of the raw data for the published figures and unpublished replicate experiments . . . this hampered our ability to fully compare'.

      We have rewritten this paragraph to focus on our goal: to identify the source of the discrepancy between our results and the published results. We considered discarding this statement but ultimately decided that our inability to directly compare our data to that of previously published work is a shortcoming of our study that deserves to be acknowledged and explained.

      “Ideally, we would have compared our results with the published results (Moore et al., 2019), to possibly identify additional experimental parameters for further investigation; for example, a quantitative comparison of naïve choice in the P0 and F1 generations could help to determine the role of bacterial growth in the choice assay response. However, none of the raw data for the published figures and unpublished replicate experiments (Moore et al., 2019) were available on the publisher’s website or provided upon request to the corresponding author. In the absence of a quantitative comparison, it remains possible that an explanation for the discrepancies between our results and those of Moore et al., (2019) has been overlooked.”

      The final sentence of the Discussion could be tempered and more positive by stating 'Thus independent reproducibility is of paramount concern, and we have tried to be completely transparent as a model for how heritability research should be conducted within the C. elegans community'.

      Thank you. The suggested sentence nicely captures our intention. We now use it, almost verbatim, as our final sentence.

      “Thus, independent reproducibility is of paramount concern, and we have tried to be completely transparent as a model for how heritability research should be presented within the C. elegans community.”

      Reviewer #2 (Recommendations For The Authors):

      Specific comments:

      (1) Protocol: It is difficult to assess from the Methods the exact protocol used by the authors to assay food preference. The annotated Murphy protocol is not sufficient. The authors should provide their own protocol - a detailed lab-ready protocol where every step is outlined, and any steps that deviate from the Murphy lab protocol are called out.

      Thank you for this excellent suggestion. We now include a protocol that documents the precise steps, timings, and controls that we followed (S1_aversion_protocol). We also include footnotes to both explain the reasons behind particular steps and to document known differences to the published protocol. Given the thoroughness of this suggested approach, we have thus removed the annotated version of Moore et al., (2021) from the revised submission.

      (2) The authors imply in the methods that, unlike the Murphy lab, they did NOT use azide in the assay, and instead used 4oC to "freeze" the worms in place - It is not clear whether this method was used throughout all their assays and whether this could be a source of the difference. This change is NOT indicated in the annotated Murphy lab STAR Protocol they provide in the supplement.

      We apologize for the lack of clarity. Concerned that azide may be interfering with our ability to detect heritable silencing we tested and then used cold-induced rigor to preserve worm choice in some choice assay results. This was not a change to the core protocol, but a variation used in some assays to determine whether azide could reduce our ability to detect heritable behavioral responses to PA14 exposure. As Moore et al., (2021) show, too much azide can affect measurement of worm choice. Too little or ineffective azide also can affect measurement of worm choice. Azide also affects bacteria (both OP50 and PA14), which could affect the production of molecules that attract or repel worms, much like performing the assay in light vs dark conditions can influence the measured choice index.

      In our hands, cold-induced rigor worked well and within biological replicates was indistinguishable from azide (Figure S10). Thus, we include those results in our analysis and now indicate in Tables 2 and S2 and in Figures 1 and 3 which experiments used which method. As suggested, we now provide a detailed protocol that includes a note describing our precise method for cold-induced rigor.

      Also, the number of worms used in each assay needs to be specified (same or different from Murphy protocol?), and whether any worms were "censored" as in the Murphy protocol, and if so on what basis.

      While we published the exact number of worms scored in each assay (on each plate) it is unknown how this might compare to the results published in Moore et al., (2019), as the number of animals in the presented choice assays (either per plate or per choice) were not reported. Details on censoring, when to exclude data, and additional criteria to abandon an in-progress experiment are now detailed in the protocol (S1_aversion_protocol)

      (3) Several instances in the text cite changes in the protocol as producing "no meaningful differences" without referring to a specific experiment that supports that statement (for example, line 399 regarding azide).

      We now include data and methods comparing azide and cold-induced rigor (Supplemental document S1_aversion_protocol, Supplemental Figure S10), and data showing the P0 choice index for 48-52 hour post-bleach L4/young adults (Supplemental Figure S1), in addition to the previously noted absence of effects due to differences in embryo bleaching protocols (Figures 2, 3 and Tables 1, 2, S1, and S2).

      (4) If the authors want to claim the irreproducibility of the Murphy lab results, they should use the exact protocol used by the Murphy lab in its entirety. It is not sufficient to show that individual changes do not affect the outcome, since the protocol they use appears to include SEVERAL changes which could cumulatively affect the results. If the authors do not want to do this, they should at least acknowledge and summarize in their discussion ALL their protocol changes.

      We acknowledge these minor differences between the protocols we followed and the published methods but disagree that they invalidate our results. We transparently present the effect of known minimal protocol changes. We also present analysis of possible invalidating variations (number of animals in a choice assay). We emphasize that in our hands both measures of TEI, the choice assay and measurement of daf-7p::gfp in ASI neurons, failed to replicate the published transgenerational results.

      If the protocol is sensitive to how animals are counted, whether bleached embryos are mixed gently or vigorously or a few hours difference in age at training, then in our view this TEI paradigm is not robust.

      See also our response to reviewer #3’s public reviews above.

      (5) The authors acknowledge that "non-obvious growth culture differences" could account for the different results. In this respect, the Murphy lab has proposed that the transgenerational effect requires a small RNA expressed in PA14. The authors should check that this RNA is expressed in the cultures they grow in their lab and use for their experiments. This could potentially identify where the two protocols diverge.

      The bacterial culture conditions and worm training procedures described in Moore et al., (2019) successfully produced trained P0 animals that transmitted a PA14 aversion response to their F1 progeny. In a subsequent publication (Kaletsky et al., 2020), the Murphy lab showed a correlation between the culture conditions that induce heritable avoidance and the expression of P11, a P. aeruginosa small non-coding RNA. As mentioned above in response to Reviewer #2’s public review and the Reviewing Editor’s comments to authors, the Murphy lab showed that PA14 ΔP11 bacteria fail to induce an F1 avoidance response (Figure 3L in Kaletsky et al., (2020)). Thus, the fact that we observed F1 avoidance implies that our culture conditions successfully induced P11 expression. We believe that this addresses the concern raised here. Furthermore, if P11 is not reliably expressed in pathogenic PA14, then the published model is unlikely to be relevant in a natural environment. Again, we thank the reviewer for raising this issue and have added this information to the revised manuscript (see above response to Reviewer #2’s Public Reviews).

      (6) Legend to Figure 1: please clarify which experiments were done with which PA14 isolates especially for A-C. What is the origin of the N2 strain used here?

      These details from Tables 2 and S2 have been added to Figure 1 panels A-C and Figure 3. Bristol N2, obtained from the CGC (reference 257), was used for aversion experiments.

      (7) Growth conditions: "These young adults produced comparable P0 and F1 results (Figure 1, Figure 2, and Figure 3)." It is not clear from the text what specific figure panels need to be compared to examine the effect of the variables described in the text. Please indicate which figure panels should be compared (lines 70-95).

      The information for the daf-7p::gfp expression experiments displayed in Figure 1 and Figure 2 is presented in Table 1 and Table S1. The data for P0 aversion training using younger animals is now presented in Figure S1.

      Reviewer #3 (Recommendations For The Authors):

      While overall I found this easy to follow and well-written, I think the clarity of the figures could be improved by incorporating some of the information from S2 into Figure 3. Besides the figure label listing the experiment (Exp1, Exp2, etc) it would be helpful to add pertinent information about the experiment. For example Exp 1.1 (light, 20{degree sign}C), Exp1.2 (dark, 20{degree sign}C), Exp 5 (25{degree sign}C, light), etc.

      Thank you for the suggestion. These details from Tables 2 and S2 have been added to Figures 1 A-C, and 3.

      Citations

      • Moore, R.S., Kaletsky, R., and Murphy, C.T. (2019). Piwi/PRG-1 Argonaute and TGF-beta Mediate Transgenerational Learned Pathogenic Avoidance. Cell 177, 1827-1841 e1812.

      • Moore, R.S., Kaletsky, R., and Murphy, C.T. (2021). Protocol for transgenerational learned pathogen avoidance behavior assays in Caenorhabditis elegans. STAR Protoc 2, 100384.

      • Kaletsky, R., Moore, R.S., Vrla, G.D., Parsons, L.R., Gitai, Z., and Murphy, C.T. (2020). C. elegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature 586, 445-451.

      • Pereira, A.G., Gracida, X., Kagias, K., and Zhang, Y. (2020). C. elegans aversive olfactory learning generates diverse intergenerational effects. J Neurogenet 34, 378-388.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Chen and colleagues investigated ZC3H11A as a potential cause of high myopia (HM) in humans through the analysis of exome sequencing in 1,015 adolescents and experiments involving Zc3h11a knock-out mice. The authors showed four possibly pathogenic missense variants in four adolescents with HM. After that, the authors presented the phenotypic features of Zc3h11a knock-out mice, the result of RNA-sequencing, and a comparison of mRNA and protein levels of the functional candidates between wild-type and Zc3h11a knock-out mice. Based on their observations, the authors concluded that ZC3H11A protein contributes to the early onset of myopia.

      The strengths of this manuscript include: (1) successful identification of characteristic ophthalmic phenotypes in Zc3h11a knock-out mice, (2) demonstration of biological features related to myopia, such as PI3K-AKT and NF-kB pathways, and (3) inclusion of supporting human genetic data in individuals with HM. On the other hand, the weaknesses of this paper appear to be: (1) the lack of robust evidence from their genomic analysis, and (2) insufficient evidence to support phenotypic similarity between humans with ZC3H11A mutations and Zc3h11a knock-out mice. Given that the biological mechanisms of high myopia are not fully understood, the identification of a novel gene is valuable. As described in the manuscript, it is worth noting that the previous study using myopic mouse model has implicated the role of ZC3H11A in the etiology of myopia (Fan et al. Plos Genet 2012).

      Thank you very much for your valuable suggestions.

      Specific comments:

      (1) I am concerned about the certainty of similarity in phenotypes between individuals with ZC3H11A mutation and Zc3h11a knock-out mice. A crucial point would be that there are no statistical differences in axial lengths (ALs) between wild-type and Zc3h11a knock-out mice at 8W and 10W, even though ALs in the individuals with ZC3H11A mutation were long. I would also like to note that the phenotypic information of these individuals is not available in the manuscript, although the authors indicated the suppressed b-wave amplitude in Zc3h11a knock-out mice. Considering that the authors described that "Detailed ophthalmic examinations were performed (lines: 321-323)", the detailed clinical features of these individuals should be included in the manuscript.

      Thank you for your valuable comments. The axial length in Zc3h11a Het-KO mice were found to be significantly greater than in WT littermates at weeks 4 and 6 (Independent samples t-test, p<0.05; Figure 2A and B). Although no significant differences were observed at other time points, there was still some degree of increase in these parameters. We continued to measure corneal curvature and found no significant differences between the two groups. Therefore, the difference in refraction may be due to the small size of the mouse eye. A 1 D change in refraction corresponds to only a 5-6 μm change in AL(1). However, the SD-OCT resolution used in this study is relatively low (theoretical resolution of 6 μm)(2, 3), so the small changes measured in vitreous cavity depth and AL may not be statistically significant. Additionally, some studies have shown that axial lengths reported in frozen sections are longer than those measured in vivo for age-matched mice(1, 4). Another possible explanation is that the curvature and refractive power of the lens have changed. These hypotheses provide a reasonable explanation for the mismatch between changes in refraction and ocular length parameters.

      Reference

      (1) Schmucker C, Schaeffel F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision research 44, 1857-1867 (2004).

      (2) Yuan Y, Chen F, Shen M, Lu F, Wang J. Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography. Eye & contact lens 38, 102-108 (2012).

      (3) Shen M, et al. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surgery, Lasers and Imaging Retina 41, S65-S69 (2010).

      (4) Schmucker C, Schaeffel F. In vivo biometry in the mouse eye with low coherence interferometry. Vision research 44, 2445-2456 (2004).

      Additionally, regarding the “detailed ophthalmic examinations”, due to our patients were selected from a myopia screening cohort of over one million (children and adolescents myopia survey [CAMS] program), and ophthalmic examination only includes semi-annual refractive error measurements (a total of 5 times, with refractive error being the average of the three maximum values) and only one axial length measurement. The inappropriate description of “Detailed clinical features” has been removed.

      (2) The term "pathogenic variant" should be used cautiously. Please clarify the pathogenicity of the reported variants in accordance with the ACMG guideline.

      Thank you for your valuable comments. Four missense mutations in the ZC3H11A gene (c.412G>A, p.V138I; c.128G>A, p.G43E; c.461C>T, p.P154L; and c.2239T>A, p.S747T) were identified in the 1015 HM patients aged from 15 to 18 years. All of the identified mutations exhibited very low frequencies or does not exist in the Genome Aggregation Database (gnomAD) and Clinvar, and using pathogenicity prediction software SIFT, PolyPhen2, and CADD, most of them display high pathogenicity levels. Among them, c.412G>A, c.128G>A and c.461C>T were located in or around a domain named zf-CCCH_3 (Figure 1A and B). Furthermore, all of the mutation sites were located in highly conserved amino acids across different species (Figure 1C). Four mutations resulted in a higher degree of conformational flexibility and altered the negative charge at the corresponding sites (Figure 1D and E). Meanwhile, through transfection of overexpression mutant plasmids, it was found that compared to the wild-type, the mRNA expression levels of IκBα in the nucleus of all four mutant types (ZC3H11A<sup>V138I</sup>, ZC3H11A<sup>G43E</sup>, ZC3H11A<sup>P154L</sup> and ZC3H11A<sup>S747T</sup>) were significantly reduced (Supplement Figure 3). According to the ACMG guidelines, the above mutations can be classified as “Pathogenic Moderate”.

      (3) The genetic analysis does not fully support the claim that ZC3H11A is causative for HM. While the authors showed the rare allele frequencies and high CADD scores (> 20) of the identified variants, these were insufficient to establish causality. A helpful way to assess the causality would be performing a segregation analysis. An alternative approach is to show significant association by performing a gene-level association test. Assessing the pathogenicity of the variants using various prediction software, such as SIFT, PolyPhen2, and REVEL may also provide additional supportive evidence.

      Thank you for your valuable comments. We have addad the pathogenicity of the variants using various prediction software, such as SIFT, PolyPhen2, CADD, and the population variation databases, such as Genome Aggregation Database (gnomAD_AF) and ClinVar. Meanwhile, through transfection of overexpression mutant plasmids, it was found that compared to the wild-type, the mRNA expression levels of IκBα in the nucleus of all four mutant types (ZC3H11A<sup>V138I</sup>, ZC3H11A<sup>G43E</sup>, ZC3H11A<sup>P154L</sup> and ZC3H11A<sup>S747T</sup>) were significantly reduced (Supplement Figure 3).

      (4) As shown in Figure 2, significant differences in refraction were observed from 4 weeks to 10 weeks. Nevertheless, no differences were observed in AL, anterior/vitreous chamber depth, and lens depth. The author should experimentally clarify what factors contribute to the observed difference in refraction.

      Thank you for your valuable comments. The existing data show significant differences in refraction between 4 and 10 weeks, with the AL and vitreous cavity depth of Het mice being longer than those of WT mice at 4 and 6 weeks. Although no significant differences were observed at other time points, there was still some degree of increase in these parameters. We continued to measure corneal curvature and found no significant differences between the two groups. Therefore, the difference in refraction may be due to the small size of the mouse eye. A 1 D change in refraction corresponds to only a 5-6 μm change in AL(1). However, the SD-OCT resolution used in this study is relatively low (theoretical resolution of 6 μm)(2, 3), so the small changes measured in vitreous cavity depth and AL may not be statistically significant. Additionally, some studies have shown that axial lengths reported in frozen sections are longer than those measured in vivo for age-matched mice(1, 4). Another possible explanation is that the curvature and refractive power of the lens have changed. These hypotheses provide a reasonable explanation for the mismatch between changes in refraction and ocular length parameters.

      Reference

      (1) Schmucker C, Schaeffel F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision research 44, 1857-1867 (2004).

      (2) Yuan Y, Chen F, Shen M, Lu F, Wang J. Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography. Eye & contact lens 38, 102-108 (2012).

      (3) Shen M, et al. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surgery, Lasers and Imaging Retina 41, S65-S69 (2010).

      (4) Schmucker C, Schaeffel F. In vivo biometry in the mouse eye with low coherence interferometry. Vision research 44, 2445-2456 (2004).

      (5) The gene names should be italicized throughout the manuscript.

      Thank you for your valuable comments. The gene names have been italicized throughout the manuscript.

      (6) Table 1: providing chromosomal positions and rs numbers (if available) would be helpful for readers.

      Thank you for your valuable comments. We have provided the chromosome positions and rs number (if available) of each mutation in Table 1.

      (7) Figure 5b, c, and d: the results of pathway analysis and GO enrichment analysis are difficult to interpret due to the small font size. It would be preferable to present these results in tables. Moreover, the authors should set a significant threshold in the enrichment analyses.

      Thank you for your valuable comments. We have adjusted the font size of the image. In the retina transcriptome analysis, we have set Fold change (FC) of at least two and a P value < 0.05 as thresholds to analyze differentially expressed genes (DEGs). The GO terms and KEGG pathways enrichment analysis selected the top 20 with the most significant differences or the highest number of enriched genes for display.

      Reviewer #2 (Public Review):

      Summary: Chong Chen and colleagues reported that mutations were identified in the ZC3H11A gene in four adolescents from 1015 high myopia subjects in their myopia cohort. They further generated Zc3h11a knockout mice utilizing the CRISPR/Cas9 technology. They analyzed the heterozygotes knockout mice compared to control littermates and found refractive error changes, electrophysiological differences, and retinal inflammation-related gene expression differences. They concluded that ZC3H11A may play a role in the early onset of myopia by regulating inflammatory responses.

      Strengths:

      Data were shown from both clinical cohort and animal models.

      Weaknesses:

      Their findings are interesting and important, however; they need to resolve several points to make the current conclusion.

      (1) They described the ZC3H11A gene as a pathogenic variant for high myopia. It should be classified as pathogenic according to the guidelines of the American College of Medical Genetics and Genomics (Richards et al., Genet Med 17(5):405-24, 2015). The modes of inheritance for the families need to be shown. They also described identifying the gene as a "new" candidate. It should be checked in databases such as gnomAD and ClinVar, and any previous publications and be declared as a novel variant.

      Thank you for your valuable comments. Four missense mutations in the ZC3H11A gene (c.412G>A, p.V138I; c.128G>A, p.G43E; c.461C>T, p.P154L; and c.2239T>A, p.S747T) were identified in the 1015 HM patients aged from 15 to 18 years. All of the identified mutations exhibited very low frequencies or does not exist in the Genome Aggregation Database (gnomAD) and Clinvar, and using pathogenicity prediction software SIFT, PolyPhen2, and CADD, most of them display high pathogenicity levels. Among them, c.412G>A, c.128G>A and c.461C>T were located in or around a domain named zf-CCCH_3 (Figure 1A and B). Furthermore, all of the mutation sites were located in highly conserved amino acids across different species (Figure 1C). Four mutations resulted in a higher degree of conformational flexibility and altered the negative charge at the corresponding sites (Figure 1D and E). Meanwhile, through transfection of overexpression mutant plasmids, it was found that compared to the wild-type, the mRNA expression levels of IκBα in the nucleus of all four mutant types (ZC3H11A<sup>V138I</sup>, ZC3H11A<sup>G43E</sup>, ZC3H11A<sup>P154L</sup> and ZC3H11A<sup>S747T</sup>) were significantly reduced (Supplement Figure 3). According to the ACMG guidelines, the above mutations can be classified as “Pathogenic Moderate”.

      Unfortunately, our patients are part of the MAGIC project (aged 15 years or older), a cohort consists of thousands of individuals with HM (patients from the children and adolescents myopia survey [CAMS] program) who have undergone WES, and their parents' relevant information was not collected for performing a segregation analysis.

      (2) The phenotypes of the heterozygote mice are weak overall. The het mice showed mild to moderate myopic refractive shifts from 4 to 10 weeks of age. However, this cannot be explained by other ocular biometrics such as anterior chamber depth or lens thickness. Some differences are found between het and WT littermates in axial length and vitreous chamber depth but disappear after 8 weeks old. Furthermore, the early differences are not enough to explain the refractive error changes. They mentioned that they did not use homozygotes because of the embryonic lethality. I would strongly suggest employing conditional knockout systems to analyze homozygotes. This will also be able to identify the causative tissues/cells because they assume bipolar cells are functional. The cells in the retinal pigment epithelium and choroid are also important to contribute to myopia development.

      Thank you for your valuable comments. The existing data show significant differences in refraction between 4 and 10 weeks, with the AL and vitreous cavity depth of Het mice being longer than those of WT mice at 4 and 6 weeks. Although no significant differences were observed at other time points, there was still some degree of increase in these parameters. We continued to measure corneal curvature and found no significant differences between the two groups. Therefore, the difference in refraction may be due to the small size of the mouse eye. A 1 D change in refraction corresponds to only a 5-6 μm change in AL(1). However, the SD-OCT resolution used in this study is relatively low (theoretical resolution of 6 μm)(2, 3), so the small changes measured in vitreous cavity depth and AL may not be statistically significant. Additionally, some studies have shown that axial lengths reported in frozen sections are longer than those measured in vivo for age-matched mice(1, 4). Another possible explanation is that the curvature and refractive power of the lens have changed. These hypotheses provide a reasonable explanation for the mismatch between changes in refraction and ocular length parameters.

      Reference

      (1) Schmucker C, Schaeffel F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision research 44, 1857-1867 (2004).

      (2) Yuan Y, Chen F, Shen M, Lu F, Wang J. Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography. Eye & contact lens 38, 102-108 (2012).

      (3) Shen M, et al. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surgery, Lasers and Imaging Retina 41, S65-S69 (2010).

      (4) Schmucker C, Schaeffel F. In vivo biometry in the mouse eye with low coherence interferometry. Vision research 44, 2445-2456 (2004).

      The drawback is that, we did not conduct relevant research on homozygous knockout mice. The first reason is that our patient's mutation pattern is heterozygous mutation (Heterozygous knockout mice can better simulate human phenotypes). The second reason is that homozygous knockout mice are lethal, and we did not use the conditional knockout mouse model for further research. At the same time, we limited the pathway of myopia to the recognized and classical retina-sclera pathway, and did not study other pathways such as retinal pigment epithelium and choroid.

      (3) Their hypothesis regarding inflammatory gene changes and myopic development is not logical. Are the inflammatory responses evoked from bipolar cells? Did the mice show an accumulation of inflammatory cells in the inner retina? Visible retinal inflammation is not generally seen in either early-onset or high-myopia human subjects. Can this be seen in the actual subjects in the cohort? To me, this is difficult to adapt the retina-to-sclera signaling they mentioned in the discussion so far. Egr-1 may be examined as described.

      Thank you for your valuable comments. We have removed the hypothesis regarding inflammatory gene changes and myopic development. At present, the explanation is based solely on the correlation of signal pathways, the theoretical basis comes from the reference literature:

      “Lin et al., Role of Chronic Inflammation in Myopia Progression: Clinical Evidence and Experimental Validation. EBioMedicine, 2016 Aug:10:269-81, Figure 7.”

      Reviewer #3 (Public Review):

      Chen et al have identified a new candidate gene for high myopia, ZC3H11A, and using a knock-out mouse model, have attempted to validate it as a myopia gene and explain a potential mechanism. They identified 4 heterozygous missense variants in highly myopic teenagers. These variants are in conserved regions of the protein, but the authors provide no evidence that these specific variants affect protein function. They then created a knock-out mouse. Heterozygotes show myopia at all ages examined but increased axial length only at very early ages. Unfortunately, the authors do not address this point or examine corneal structure in these animals. They show that the mice have decreased B-wave amplitude on electroretinogram (a sign of retinal dysfunction associated with bipolar cells), and decreased expression of a bipolar cell marker, PKCa. They do not address, however, whether there are fewer bipolar cells, or simply decreased expression of the marker protein. On electron microscopy, there are morphologic differences in the outer nuclear layer (where bipolar, amacrine, and horizontal cell bodies reside). Transcriptome analysis identified over 700 differentially expressed genes. The authors chose to focus on the PI3K-AKT and NF-kB signaling pathways and show changes in the expression of genes and proteins in those pathways, including PI3K, AKT, IkBa, NF-kB, TGF-b1, MMP-2, and IL-6, although there is very high variability between animals. They propose that myopia may develop in these animals either as a result of visual abnormality (decreased bipolar cell function in the retina) or by alteration of NF-kB signaling. These data provide an interesting new candidate variant for the development of high myopia, and provide additional data that MMP2 and IL6 have a role in myopia development, but do not support the claim of the title that myopia is caused by an inflammatory reaction.

      Thank you for your valuable comments. Four missense mutations in the ZC3H11A gene (c.412G>A, p.V138I; c.128G>A, p.G43E; c.461C>T, p.P154L; and c.2239T>A, p.S747T) were identified in the 1015 HM patients aged from 15 to 18 years. All of the identified mutations exhibited very low frequencies or does not exist in the Genome Aggregation Database (gnomAD) and Clinvar, and using pathogenicity prediction software SIFT, PolyPhen2, and CADD, most of them display high pathogenicity levels. Among them, c.412G>A, c.128G>A and c.461C>T were located in or around a domain named zf-CCCH_3 (Figure 1A and B). Furthermore, all of the mutation sites were located in highly conserved amino acids across different species (Figure 1C). Four mutations resulted in a higher degree of conformational flexibility and altered the negative charge at the corresponding sites (Figure 1D and E). Meanwhile, through transfection of overexpression mutant plasmids, it was found that compared to the wild-type, the mRNA expression levels of IκBα in the nucleus of all four mutant types (ZC3H11A<sup>V138I</sup>, ZC3H11A<sup>G43E</sup>, ZC3H11A<sup>P154L</sup> and ZC3H11A<sup>S747T</sup>) were significantly reduced (Supplement Figure 3). According to the ACMG guidelines, the above mutations can be classified as “Pathogenic Moderate”.

      The existing data show significant differences in refraction between 4 and 10 weeks, with the AL and vitreous cavity depth of Het mice being longer than those of WT mice at 4 and 6 weeks. Although no significant differences were observed at other time points, there was still some degree of increase in these parameters. We continued to measure corneal curvature and found no significant differences between the two groups. Therefore, the difference in refraction may be due to the small size of the mouse eye. A 1 D change in refraction corresponds to only a 5-6 μm change in AL(1). However, the SD-OCT resolution used in this study is relatively low (theoretical resolution of 6 μm)(2, 3), so the small changes measured in vitreous cavity depth and AL may not be statistically significant. Additionally, some studies have shown that axial lengths reported in frozen sections are longer than those measured in vivo for age-matched mice(1, 4). Another possible explanation is that the curvature and refractive power of the lens have changed. These hypotheses provide a reasonable explanation for the mismatch between changes in refraction and ocular length parameters.

      To evaluate the change in the number of a specific type of retinal cells, the most commonly used experimental method involves staining with antibodies specific to the target cell type, followed by fluorescence microscopy. The fluorescence intensity or the number of cells can be analyzed semi-quantitatively to assess the changes in the specific cell type in the retina. For example, in retinal degenerative models, rhodopsin-specific staining is used to identify the loss of rod cells. In our study, we selected PCK-α as a marker protein for bipolar cells to assess their number. Additionally, transmission electron microscopy (TEM) was used to observe damage to the cell morphology in the inner nuclear layer (INL) of Het mice, where bipolar cell bodies are located. Based on both sets of data, we conclude that bipolar cells have indeed undergone structural damage and a reduction in number.

      Reference

      (1) Schmucker C, Schaeffel F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision research 44, 1857-1867 (2004).

      (2) Yuan Y, Chen F, Shen M, Lu F, Wang J. Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography. Eye & contact lens 38, 102-108 (2012).

      (3) Shen M, et al. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surgery, Lasers and Imaging Retina 41, S65-S69 (2010).

      (4) Schmucker C, Schaeffel F. In vivo biometry in the mouse eye with low coherence interferometry. Vision research 44, 2445-2456 (2004).

      We have removed the hypothesis regarding inflammatory gene changes and myopic development. At present, the explanation is based solely on the correlation of signal pathways, the theoretical basis comes from the reference literature:

      “Lin et al., Role of Chronic Inflammation in Myopia Progression: Clinical Evidence and Experimental Validation. EBioMedicine, 2016 Aug:10:269-81, Figure 7.”

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this detailed study, Cohen and Ben-Shaul characterized the AOB cell responses to various conspecific urine samples in female mice across the estrous cycle. The authors found that AOB cell responses vary with the strains and sexes of the samples. Between estrous and non-estrous females, no clear or consistent difference in responses was found. The cell response patterns, as measured by the distance between pairs of stimuli, are largely stable. When some changes do occur, they are not consistent across strains or male status. The authors concluded that AOB detects the signals without interpreting them. Overall, this study will provide useful information for scientists in the field of olfaction.

      Strengths:

      The study uses electrophysiological recording to characterize the responses of AOB cells to various urines in female mice. AOB recording is not trivial as it requires activation of VNO pump. The team uses a unique preparation to activate the VNO pump with electric stimulation, allowing them to record AOB cell responses to urines in anesthetized animals. The study comprehensively described the AOB cell responses to social stimuli and how the responses vary (or not) with features of the urine source and the reproductive state of the recording females. The dataset could be a valuable resource for scientists in the field of olfaction.

      Weaknesses:

      (1) The figures could be better labeled.

      Figures will be revised to provide more detailed labeling.

      (2) For Figure 2E, please plot the error bar. Are there any statistics performed to compare the mean responses?

      We did not perform statistical comparisons (between the mean rates across the population). We will add this analysis and the corresponding error bars. 

      (3) For Figure 2D, it will be more informative to plot the percentage of responsive units.

      We will do it.

      (4) Could the similarity in response be explained by the similarity in urine composition? The study will be significantly strengthened by understanding the "distance" of chemical composition in different urine.

      We agree. As we wrote in the Discussion: “Ultimately, lacking knowledge of the chemical space associated with each of the stimuli, this and all the other ideas developed here remain speculative.”

      A better understanding of the chemical distance is an important aspect that we aim to include in our future studies. However, this is far from trivial, as it is not chemical distance per se (which in itself is hard to define), but rather the “projection” of chemical space on the vomeronasal receptor neurons array. That is, knowledge of the chemical composition of the stimuli, lacking full knowledge of which molecules are vomeronasal system ligands, will only provide a partial picture. Despite these limitations, this is an important analysis which we would have done had we access to this data.

      (5) If it is not possible for the authors to obtain these data first-hand, published data on MUPs and chemicals found in these urines may provide some clues.

      Measurements about some classes of molecules may be found for some of the stimuli that we used here, but not for all. We are not aware of any single dataset that contains this information for any type of molecules (e.g., MUPs) across the entire stimulus set that we have used. More generally, pooling results from different studies has limited validity because of the biological and technical variability across studies. In order to reliably interpret our current recordings, it would be necessary to measure the urinary content of the very same samples that were used for stimulation. Unfortunately, we are not able to conduct this analysis at this stage.

      (6) It is not very clear to me whether the female overrepresentation is because there are truly more AOB cells that respond to females than males or because there are only two female samples but 9 male samples.

      It is true that the number of neurons fulfilling each of the patterns depends on the number of individual stimuli that define it. However, our measure of “over-representation” aims to overcome this bias, by using bootstrapping to reveal if the observed number of patterns is larger than expected by chance. We also note that more generally, the higher frequency of responses to female, as compared to male stimuli, is obtained in other studies by others and by us, also when the number of male and female stimuli is matched (e.g., Bansal et al BMC Biol 2021, Ben-Shaul et al, PNAS 2010, Hendrickson et al, JNS, 2008).

      (7) If the authors only select two male samples, let's say ICR Naïve and ICR DOM, combine them with responses to two female samples, and do the same analysis as in Figure 3, will the female response still be overrepresented?

      We believe that the answer is positive, but we can, and will perform this analysis to check.

      (8) In Figure 4B and 4C, the pairwise distance during non-estrus is generally higher than that during estrus, although they are highly correlated. Does it mean that the cells respond to different urines more distinctively during diestrus than in estrus?

      This is an important observation. For the Euclidean distance there might be a simple explanation as the distance depends on the number of units (and there are more units recorded in non-estrus females). However, this simple explanation does not hold for the correlation distance. A higher distance implies higher discrimination during the non-estrus stage, but our other analyses of sparseness and the selectivity indices do not support this idea. We note that absolute values of distance measures should generally be interpreted cautiously, as they may depend on multiple factors including sample size. Also, a small number of non-selective units could increase the correlation in responses among stimuli, and thus globally shift the distances. For these reasons, we focus on comparisons, rather than the absolute values of the correlation distances. In the revised manuscript, we will note and discuss this important observation.

      (9) The correlation analysis is not entirely intuitive when just looking at the figures. Some sample heatmaps showing the response differences between estrous states will be helpful.

      If we understand correctly, the idea is to show the correlation matrices from which the values in 4B and 4C are taken. We can and will do this, probably as a supplementary figure.

      Reviewer #2 (Public review):

      Summary:

      Many aspects of the study are carefully done, and in the grand scheme this is a solid contribution. I have no "big-picture" concerns about the approach or methodology. However, in numerous places the manuscript is unnecessarily vague, ambiguous, or confusing. Tightening up the presentation will magnify their impact.

      We will revise the text with the aim of tightening the presentation.

      Strengths:

      (1) The study includes urine donors from males of three strains each with three social states, as well as females in two states. This diversity significantly enhances their ability to interpret their results.

      (2) Several distinct analyses are used to explore the question of whether AOB MCs are biased towards specific states or different between estrus and non-estrus females. The results of these different analyses are self-reinforcing about the main conclusions of the study.

      (3) The presentation maintains a neutral perspective throughout while touching on topics of widespread interest.

      Weaknesses:

      (1) Introduction:

      The discussion of the role of the VNS and preferences for different male stimuli should perhaps include Wysocki and Lepri 1991

      Agreed. we will refer to this work in our discussion.

      (2) Results:

      a) Given the 20s gap between them, the distinction between sample application and sympathetic nerve trunk stimulation needs to be made crystal clear; in many places, "stimulus application" is used in places where this reviewer suspects they actually mean sympathetic nerve trunk stimulation.

      In this study, we have considered both responses that are triggered by sympathetic trunk activation, and those that occur (as happens in some preparations) immediately following stimulus application (and prior to nerve trunk stimulation). An example of the latter Is provided in the second unit shown in Figure 1D (and this is indicated also in the figure legend). In our revision, we will further clarify this confusing point.

      b) There appears to be a mismatch between the discussion of Figure 3 and its contents. Specifically, there is an example of an "adjusted" pattern in 3A, not 3B.

      True. Thanks for catching this error. We will correct this.

      c) The discussion of patterns neglects to mention whether it's possible for a neuron to belong to more than one pattern. For example, it would seem possible for a neuron to simultaneously fit the "ICR pattern" and the "dominant adjusted pattern" if, e.g., all ICR responses are stronger than all others, but if simultaneously within each strain the dominant male causes the largest response.

      This is true. In the legend to Figure 3B, we actually write: “A neuron may fulfill more than one pattern and thus may appear in more than one row.”, but we will discuss this point in the main text as well.

      (3) Discussion:

      a) The discussion of chemical specificity in urine focuses on volatiles and MUPs (citation #47), but many important molecules for the VNS are small, nonvolatile ligands. For such molecules, the corresponding study is Fu et al 2015.

      We fully agree. We will expand our discussion and refer to Fu et al.

      b) "Following our line of reasoning, this scarcity may represent an optimal allocation of resources to separate dominant from naïve males": 1 unit out of 215 is roughly consistent with a single receptor. Surely little would be lost if there could be more computational capacity devoted to this important axis than that? It seems more likely that dominance is computed from multiple neuronal types with mixed encoding.

      We agree, and we are not claiming that dominance, nor any other feature, is derived using dedicated feature selective neurons.  Our discussion of resource allocation is inevitably speculative. Our main point in this context is that a lack of overrepresentation does not imply that a feature is not important. We will revise our discussion to better clarify our view of this issue.

      (4) Methods:

      a) Male status, "were unambiguous in most cases": is it possible to put numerical estimates on this? 55% and 99% are both "most," yet they differ substantially in interpretive uncertainty.

      This sentence is actually misleading and irrelevant. Ambiguous cases were not considered as dominant for urine collection. We only classified mice as dominant if they were “won” in the tube test and exhibited dominant behavior in the subsequent observation period in the cage. We will correct the wording in the revised manuscript.

      b) Surgical procedures and electrode positioning: important details of probes are missing (electrode recording area, spacing, etc).

      True. We will add these details.

      c) Stimulus presentation procedure: Are stimuli manually pipetted or delivered by apparatus with precise timing?

      They are delivered manually. We will clarify this as well.

      d) Data analysis, "we applied more permissive criteria involving response magnitude": it's not clear whether this is what's spelled out in the next paragraph, or whether that's left unspecified. In either case, the next paragraph appears to be about establishing a noise floor on pattern membership, not a "permissive criterion."

      True, the next paragraph is not the explanation for the more permissive criteria. The more permissive criteria involving response magnitude are actually those described in Figure 3A and 3B. The sentence that was quoted above merely states that before applying those criteria, we had also searched for patterns defined by binary designation of neurons as responsive, or not responsive, to each of the stimuli (this is directly related to the next comment below). Using those binary definitions, we obtained a very small number of neurons for each pattern and thus decided to apply the approach actually used and described in the manuscript.

      e) Data analysis, method for assessing significance: there's a lot to like about the use of pooling to estimate the baseline and the use of an ANOVA-like test to assess unit responsiveness.

      But:

      i) for a specific stimulus, at 4 trials (the minimum specified in "Stimulus presentation procedure") kruskalwallis is questionable. They state that most trials use 5, however, and that should be okay.

      The number of cases with 4 trials is truly a minority, and we will provide the exact numbers in our revision.

      ii) the methods statement suggests they are running kruskalwallis individually for each neuron/stimulus, rather than once per neuron across all stimuli. With 11 stimuli, there is a substantial chance of a false-positive if they used p < 0.05 to assess significance. (The actual threshold was unstated.) Were there any multiple comparison corrections performed? Or did they run kruskalwallis on the neuron, and then if significant assess individual stimuli? (Which is a form of multiple-comparisons correction.)

      First, we indeed failed to mention that our criterion was 0.05. We will correct that in our revision. We did not apply any multiple comparison measures. We consider each neuron-stimulus pair as an independent entity, and we are aware that this leads to a higher false positive rate. On the other hand, applying multiple comparisons would be problematic, as we do not always use the same number of stimuli in different studies. Applying multiple comparison corrections would lead to different response criteria across different studies. Notably, most, if not all, of our conclusions involve comparisons across conditions, and for this purpose we think that our procedure is valid. We do not attach any special meaning to the significance threshold, but rather think of it as a basic criterion that allows us to exclude non-responsive neurons, and to compare frequencies of neurons that fulfill this criterion.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The study by Pinho et al. presents a novel behavioral paradigm for investigating higher-order conditioning in mice. The authors developed a task that creates associations between light and tone sensory cues, driving mediated learning. They observed sex differences in task acquisition, with females demonstrating faster-mediated learning compared to males. Using fiber photometry and chemogenetic tools, the study reveals that the dorsal hippocampus (dHPC) plays a central role in encoding mediated learning. These findings are crucial for understanding how environmental cues, which are not directly linked to positive/negative outcomes, contribute to associative learning. Overall, the study is well-designed, with robust results, and the experimental approach aligns with the study's objectives.

      Strengths:

      (1) The authors develop a robust behavioral paradigm to examine higher-order associative learning in mice.

      (2) They discover a sex-specific component influencing mediated learning, with females exhibiting enhanced learning abilities.

      (3) Using fiber photometry and chemogenetic techniques, the authors identify the dorsal hippocampus but not the ventral hippocampus, which plays a crucial for encoding mediated learning.

      Weaknesses:

      (1) The study would be strengthened by further elaboration on the rationale for investigating specific cell types within the hippocampus.

      We will add more information to better explain the rationale of our experiments and/or manipulations.

      (2) The analysis of photometry data could be improved by distinguishing between early and late responses, as well as enhancing the overall presentation of the data.

      We will provide new photometry analysis to differentiate between early and late responses during stimuli presentations.

      (3) The manuscript would benefit from revisions to improve clarity and readability.

      We will improve the clarity and readability of our manuscript.

      Reviewer #2 (Public review):

      Summary:

      Pinho et al. developed a new auditory-visual sensory preconditioning procedure in mice and examined the contribution of the dorsal and ventral hippocampus to learning in this task. Using photometry they observed activation of the dorsal and ventral hippocampus during sensory preconditioning and conditioning. Finally, the authors combined their sensory preconditioning task with DREADDs to examine the effect of inhibiting specific cell populations (CaMKII and PV) in the DH on the formation and retrieval/expression of mediated learning.

      Strengths:

      The authors provide one of the first demonstrations of auditory-visual sensory preconditioning in male mice. Research on the neurobiology of sensory preconditioning has primarily used rats as subjects. The development of a robust protocol in mice will be beneficial to the field, allowing researchers to take advantage of the many transgenic mouse lines. Indeed, in this study, the authors take advantage of a PV-Cre mouse line to examine the role of hippocampal PV cells in sensory preconditioning.

      Weaknesses:

      (1) The authors report that sensory preconditioning was observed in both male and female mice. However, their data only supports sensory preconditioning in male mice. In female mice, both paired and unpaired presentations of the light and tone in stage 1 led to increased freezing to the tone at test. In this case, fear to the tone could be attributed to factors other than sensory preconditioning, for example, generalization of fear between the auditory and visual stimulus.

      To address the pertinent doubt raised by the reviewer, we will perform new experiments to generate a new unpaired group in female mice through the increase of the temporal interval between light and tone exposure during the preconditioning phase. We believe this new results will bring additional information to better understand the performance of female mice in sensory preconditioning.

      (2) In the photometry experiment, the authors report an increase in neural activity in the hippocampus during both phase 1 (sensory preconditioning) and phase 2 (conditioning). In the subsequent experiment, they inhibit neural activity in the DH during phase 1 (sensory preconditioning) and the probe test, but do not include inhibition during phase 2 (conditioning). It was not clear why they didn't carry forward investigating the role of the hippocampus during phase 2 conditioning. Sensory preconditioning could occur due to the integration of the tone and shock during phase two, or retrieval and chaining of the tone-light-shock memories at test. These two possibilities cannot be differentiated based on the data. Given that we do not know at which stage the mediate learning is occurring, it would have been beneficial to additionally include inhibition of the DH during phase 2.

      We will perform new experiments to generate novel data by inhibiting the CamK-positive neurons of the dorsal hippocampus during the conditioning phase.

      (3) In the final experiment, the authors report that inhibition of the dorsal hippocampus during the sensory preconditioning phase blocked mediated learning. While this may be the case, the failure to observe sensory preconditioning at test appears to be due more to an increase in baseline freezing (during the stimulus off period), rather than a decrease in freezing to the conditioned stimulus. Given the small effect, this study would benefit from an experiment validating that administration of J60 inhibited DH cells. Further, given that the authors did not observe any effect of DREADD inhibition in PV cells, it would also be important to validate successful cellular silencing in this protocol.

      By combining chemogenetic and fiber photometry approaches, we will perform a control experiments to demonstrate that our chemogenetic experiments are decreasing CAMK- or PV-dependent activity in dorsal and ventral hippocampus.

      Reviewer #3 (Public review):

      Summary:

      Pinho et al. investigated the role of the dorsal vs ventral hippocampus and the gender differences in mediated learning. While previous studies already established the engagement of the hippocampus in sensory preconditioning, the authors here took advantage of freely-moving fiber photometry recording and chemogenetics to observe and manipulate sub-regions of the hippocampus (dorsal vs. ventral) in a cell-specific manner. The authors first found sex differences in the preconditioning phase of a sensory preconditioning procedure, where males required more preconditioning training than females for mediating learning to manifest, and where females displayed evidence of mediated learning even when neutral stimuli were never presented together within the session.

      After validation of a sensory preconditioning procedure in mice using light and tone neutral stimuli and a mild foot shock as the unconditioned stimulus, the authors used fiber photometry to record from all neurons vs. parvalbumin_positive_only neurons in the dorsal hippocampus or ventral hippocampus of male mice during both preconditioning and conditioning phases. They found increased activity of all neurons, as well as PV+_only neurons in both sub-regions of the hippocampus during both preconditioning and conditioning phases. Finally, the authors found that chemogenetic inhibition of CaMKII+ neurons in the dorsal, but not ventral, hippocampus specifically prevented the formation of an association between the two neutral stimuli (i.e., light and tone cues), but not the direct association between the light cue and the mild foot shock. This set of data: (1) validates the mediated learning in mice using a sensory preconditioning protocol, and stresses the importance of taking sex effect into account; (2) validates the recruitment of dorsal and ventral hippocampi during preconditioning and conditioning phases; and (3) further establishes the specific role of CaMKII+ neurons in the dorsal but not ventral hippocampus in the formation of an association between two neutral stimuli, but not between a neutral-stimulus and a mild foot shock.

      Strengths:

      The authors developed a sensory preconditioning procedure in mice to investigate mediated learning using light and tone cues as neutral stimuli, and a mild foot shock as the unconditioned stimulus. They provide evidence of a sex effect in the formation of light-cue association. The authors took advantage of fiber-photometry and chemogenetics to target sub-regions of the hippocampus, in a cell-specific manner and investigate their role during different phases of a sensory conditioning procedure.

      Weaknesses:

      The authors went further than previous studies by investigating the role of sub-regions of the hippocampus in mediated learning, however, there are several weaknesses that should be noted:

      (1) This work first validates mediated learning in a sensory preconditioning procedure using light and tone cues as neutral stimuli and a mild foot shock as the unconditioned stimulus, in both males and females. They found interesting sex differences at the behavioral level, but then only focused on male mice when recording and manipulating the hippocampus. The authors do not address sex differences at the neural level.

      As discussed above, we will perform additional experiment to evaluate the presence of a reliable sensory preconditioning in female mice. In addition, although observing sex differences at the neural level can be very interesting, we think that it is out of the scope of the present work. However, we will mention this issue/limitation in the Discussion in the new version of the manuscript.

      (2) As expected in fear conditioning, the range of inter-individual differences is quite high. Mice that didn't develop a strong light-->shock association, as evidenced by a lower percentage of freezing during the Probe Test Light phase, should manifest a low percentage of freezing during the Probe Test Tone phase. It would interesting to test for a correlation between the level of freezing during mediated vs test phases.

      We will provide correlations between the behavioral responses in both probe tests.

      (3) The use of a synapsin promoter to transfect neurons in a non-specific manner does not bring much information. The authors applied a more specific approach to target PV+ neurons only, and it would have been more informative to keep with this cell-specific approach, for example by looking also at somatostatin+ inter-neurons.

      We will better justify the use of specific promoters and the targeting of PV-positive neurons. We will also add discussion on potential interesting future experiments such as the targeting of other GABAergic subtypes.

      (4) The authors observed event-related Ca2+ transients on hippocampal pan-neurons and PV+ inter-neurons using fiber photometry. They then used chemogenetics to inhibit CaMKII+ hippocampal neurons, which does not logically follow. It does not undermine the main finding of CaMKII+ neurons of the dorsal, but not ventral, hippocampus being involved in the preconditioning, but not conditioning, phase. However, observing CaMKII+ neurons (using fiber photometry) in mice running the same task would be more informative, as it would indicate when these neurons are recruited during different phases of sensory preconditioning. Applying then optogenetics to cancel the observed event-related transients (e.g., during the presentation of light and tone cues, or during the foot shock presentation) would be more appropriate.

      We will perform new experiments to analyze the activity of CAMK-positive neurons during light-tone associations during the preconditioning phase in male mice.

      (5) Probe tests always start with the "Probe Test Tone", followed by the "Probe Test Light". "Probe Test Tone" consists of an extinction session, which could affect the freezing response during "Probe Test Light" (e.g., Polack et al. (http://dx.doi.org/10.3758/s13420-013-0119-5)). Preferably, adding a group of mice with a Probe Test Light with no Probe Test Tone could help clarify this potential issue. The authors should at least discuss the possibility that the tone extinction session prior to the "Probe Test Light" could have affected the freezing response to the light cue.

      We will add discussion on this issue raised by the reviewer.

      Reviewer #4 (Public review):

      Summary

      Pinho et al use in vivo calcium imaging and chemogenetic approaches to examine the involvement of hippocampal sub-regions across the different stages of a sensory preconditioning task in mice. They find clear evidence for sensory preconditioning in male but not female mice. They also find that, in the male mice, CaMKII-positive neurons in the dorsal hippocampus: (1) encode the audio-visual association that forms in stage 1 of the task, and (2) retrieve/express sensory preconditioned fear to the auditory stimulus at test. These findings are supported by evidence that ranges from incomplete to convincing. They will be valuable to researchers in the field of learning and memory.

      Abstract

      Please note that sensory preconditioning doesn't require the stage 1 stimuli to be presented repeatedly or simultaneously.

      We will correct this wrong sentence in the abstract.

      "Finally, we combined our sensory preconditioning task with chemogenetic approaches to assess the role of these two hippocampal subregions in mediated learning."

      This implies some form of inhibition of hippocampal neurons in stage 2 of the protocol, as this is the only stage of the protocol that permits one to make statements about mediated learning. However, it is clear from what follows that the authors interrogate the involvement of hippocampal sub-regions in stages 1 and 3 of the protocol - not stage 2. As such, most statements about mediated learning throughout the paper are potentially misleading (see below for a further elaboration of this point). If the authors persist in using the term mediated learning to describe the response to a sensory preconditioned stimulus, they should clarify what they mean by mediated learning at some point in the introduction. Alternatively, they might consider using a different phrase such as "sensory preconditioned responding".

      Through the text, we will avoid the term “mediated learning” and we will replace it with more accurate terms. In addition, we will interrogate the role of dHPC in Stage 2 as commented above.

      Introduction

      "Low-salience" is used to describe stimuli such as tone, light, or odour that do not typically elicit responses that are of interest to experimenters. However, a tone, light, or odour can be very salient even though they don't elicit these particular responses. As such, it would be worth redescribing the "low-salience" stimuli in some other terms.

      We will substitute “low-salience” for “innocuous”.

      "These higher-order conditioning processes, also known as mediated learning, can be captured in laboratory settings through sensory preconditioning procedures2,6-11."

      Higher-order conditioning and mediated learning are not interchangeable terms: e.g., some forms of second-order conditioning are not due to mediated learning. More generally, the use of mediated learning is not necessary for the story that the authors develop in the paper and could be replaced for accuracy and clarity. E.g., "These higher-order conditioning processes can be studied in the laboratory using sensory preconditioning procedures2,6-11."

      Through the text, we will avoid the term “mediated learning” and we will replace it with more accurate terms.

      In reference to Experiment 2, it is stated that: "However, when light and tone were separated on time (Unpaired group), male mice were not able to exhibit mediated learning response (Figure 2B) whereas their response to the light (direct learning) was not affected (Figure 2D). On the other hand, female mice still present a lower but significant mediated learning response (Figure 2C) and normal direct learning (Figure 2E). Finally, in the No-Shock group, both male (Figure 2B and 2D) and female mice (Figure 2C and 2E) did not present either mediated or direct learning, which also confirmed that the exposure to the tone or light during Probe Tests do not elicit any behavioral change by themselves as the presence of the electric footshock is required to obtain a reliable mediated and direct learning responses."<br /> The absence of a difference between the paired and unpaired female mice should not be described as "significant mediated learning" in the latter. It should be taken to indicate that performance in the females is due to generalization between the tone and light. That is, there is no sensory preconditioning in the female mice. The description of performance in the No-shock group really shouldn't be in terms of mediated or direct learning: that is, this group is another control for assessing the presence of sensory preconditioning in the group of interest. As a control, there is no potential for them to exhibit sensory preconditioning, so their performance should not be described in a way that suggests this potential.

      We will re-write the text to clarify the right comments raised by the Reviewer.

      Methods - Behavior

      I appreciate the reasons for testing the animals in a new context. This does, however, raise other issues that complicate the interpretation of any hippocampal engagement: e.g., exposure to a novel context may engage the hippocampus for exploration/encoding of its features - hence, it is engaged for retrieving/expressing sensory preconditioned fear to the tone. This should be noted somewhere in the paper given that one of its aims is to shed light on the broader functioning of the hippocampus in associative processes.

      We will further discuss this aspect on the manuscript.

      This general issue - that the conditions of testing were such as to force engagement of the hippocampus - is amplified by two further features of testing with the tone. The first is the presence of background noise in the training context and its absence in the test context. The second is the fact that the tone was presented for 30 s in stage 1 and then continuously for 180s at test. Both changes could have contributed to the engagement of the hippocampus as they introduce the potential for discrimination between the tone that was trained and tested.

      We will consider the aspect raised by the reviewer on the manuscript.

      Results - Behavior

      The suggestion of sex differences based on differences in the parameters needed to generate sensory preconditioning is interesting. Perhaps it could be supported through some set of formal analyses. That is, the data in supplementary materials may well show that the parameters needed to generate sensory preconditioning in males and females are not the same. However, there needs to be some form of statistical comparison to support this point. As part of this comparison, it would be neat if the authors included body weight as a covariate to determine whether any interactions with sex are moderated by body weight.

      We will add statistical comparisons between male and female mice.

      What is the value of the data shown in Figure 1 given that there are no controls for unpaired presentations of the sound and light? In the absence of these controls, the experiment cannot have shown that "Female and male mice show mediated learning using an auditory-visual sensory preconditioning task" as implied by its title. Minimally, this experiment should be relabelled.

      We will relabel Figure 1.

      "Altogether, this data confirmed that we successfully set up an LTSPC protocol in mice and that this behavioral paradigm can be used to further study the brain circuits involved in higher-order conditioning."

      Please insert the qualifier that LTSPC was successfully established in male mice. There is no evidence of LTSPC in female mice.

      We will generate new experiments to try to demonstrate that SPC can be also observed in female mice.

      Results - Brain

      "Notably, the inhibition of CaMKII-positive neurons in the dHPC (i.e. J60 administration in DREADD-Gi mice) during preconditioning (Figure 4B), but not before the Probe Test 1 (Figure 4B), fully blocked mediated, but not direct learning (Figure 4D)."

      The right panel of Figure 4B indicates no difference between the controls and Group DPC in the percent change in freezing from OFF to ON periods of the tone. How does this fit with the claim that CaMKII-positive neurons in the dorsal hippocampus regulate associative formation during the session of tone-light exposures in stage 1 of sensory preconditioning?

      We will rephrase and add more Discussion regarding this section of the results to stick to what the graphs are showing. We will clarify that the group where dHPC activity is inhibited during preconditioning is the only one where the % of change is not significantly different from 0 (compared to the control or the group where the dHPC activity was modulated during the test).

      Discussion

      "When low salience stimuli were presented separated on time or when the electric footshock was absent, mediated and direct learning were abolished in male mice. In female mice, although light and tone were presented separately during the preconditioning phase, mediated learning was reduced but still present, which implies that female mice are still able to associate the two low-salience stimuli."

      This doesn't quite follow from the results. The failure of the female unpaired mice to withhold their freezing to the tone should not be taken to indicate the formation of a light-tone association across the very long interval that was interpolated between these stimulus presentations. It could and should be taken to indicate that, in female mice, freezing conditioned to the light simply generalized to the tone (i.e., these mice could not discriminate well between the tone and light).

      We will rewrite this part depending on the results observed in female mice.

      "Indeed, our data suggests that when hippocampal activity is modulated by the specific manipulation of hippocampal subregions, this brain region is not involved during retrieval."

      Does this relate to the results that are shown in the right panel of Figure 4B, where there is no significant difference between the different groups? If so, how does it fit with the results shown in the left panel of this figure, where differences between the groups are observed?

      We will re-write it to clearly describe our results and we will also revise all the statistical analysis.

      "In line with this, the inhibition of CaMKII-positive neurons from the dorsal hippocampus, which has been shown to project to the restrosplenial cortex56, blocked the formation of mediated learning."

      Is this a reference to the findings shown in Figure 4B and, if so, which of the panels exactly? That is, one panel appears to support the claim made here while the other doesn't. In general, what should the reader make of data showing the percent change in freezing from stimulus OFF to stimulus ON periods?

      We will rewrite the text to clearly describe our results, and we will also revise all the statistical analysis. In addition, we will better explain the data showing the % of change.

    1. Author response:

      Many thanks for assessing our submission. We are grateful for the reviews and recommendations that will inform a revised version of the paper, which will include additional data and modified text to take into account the reviewers’ comments.

      We appreciate Reviewer #1’s suggestion regarding the use of mutational work to demonstrate that collagen binding is indeed dependent on the T-shaped fold. However, we believe that this approach is neither feasible nor necessary for our study. Instead, we propose to measure collagen binding to a monomeric form of M3, which preserves all residues including the ones involved in binding, but cannot form the T-shaped structure. This will achieve the same as unravelling the T fold through mutations, but at the same time removes the risk of directly affecting binding through altering residues that are involved in both binding and definition of the T fold.

      Structural biology is by its nature observational, which is not a limitation but the very purpose of this approach. Our study goes beyond observing structures. We identify a critical residue within a previously mapped binding site, and demonstrate through mutagenesis a causal link between presence of this residue on a tertiary fold and collagen binding activity. We will firm up our mutational experiments with a characterisation of the M3 Tyr96 variants to confirm that these mutations did not affect the overall fold. We further demonstrate that the interaction between M3 and collagen promotes biofilm formation as observed in patient biopsies and a tissue model of infection. We show that other streptococci, that do not possess a surface protein presenting collagen binding sites like M3, do not form collagen-dependent biofilm. We therefore do not think that criticising our study for being almost entirely observational is justified. 

      We thank Reviewer #2 for the thorough analysis of our reported findings. The main criticism here concerns the question if binding of emm3 streptococci would differ for different types of collagen. We will address this point in the revised manuscript. Our collagen peptide binding assays together with the structural data identify the collagen triple helix as the binding site for M3. While collagen types differ in their functions and morphology in various tissues, they all have in common triple-helical tropocollagen regions (with very high sequence similarity) that are non-specifically recognised by M3. Therefore, our data in conjunction with the body of published work showing binding of M3 to collagens I, II, III and IV suggest it is highly likely that emm3 streptococci will indeed bind to many if not all types of collagen in the same manner. Whether this means all collagen types, in the various tissues where they occur, are targeted by emm3 streptococci is a very interesting question, however one that goes beyond the scope of our study.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This work considers the biases introduced into pathogen surveillance due to congregation effects, and also models homophily and variants/clades. The results are primarily quantitative assessments of this bias but some qualitative insights are gained e.g. that initial variant transmission tends to be biased upwards due to this effect, which is closely related to classical founder effects.

      Strengths:

      The model considered involves a simplification of the process of congregation using multinomial sampling that allows for a simpler and more easily interpretable analysis.

      Weaknesses:

      This simplification removes some realism, for example, detailed temporal transmission dynamics of congregations.

      We appreciate Reviewer #1's comments. We hope our framework, like the classic SIR model, can be adapted in the future to build more complex and realistic models.

      Reviewer #2 (Public review):

      Summary:

      In "Founder effects arising from gathering dynamics systematically bias emerging pathogen surveillance" Bradford and Hang present an extension to the SIR model to account for the role of larger than pairwise interactions in infectious disease dynamics. They explore the impact of accounting for group interactions on the progression of infection through the various sub-populations that make up the population as a whole. Further, they explore the extent to which interaction heterogeneity can bias epidemiological inference from surveillance data in the form of IFR and variant growth rate dynamics. This work advances the theoretical formulation of the SIR model and may allow for more realistic modeling of infectious disease outbreaks in the future.

      Strengths:

      (1) This work addresses an important limitation of standard SIR models. While this limitation has been addressed previously in the form of network-based models, those are, as the authors argue, difficult to parameterize to real-world scenarios. Further, this work highlights critical biases that may appear in real-world epidemiological surveillance data. Particularly, over-estimation of variant growth rates shortly after emergence has led to a number of "false alarms" about new variants over the past five years (although also to some true alarms).

      (2) While the results presented here generally confirm my intuitions on this topic, I think it is really useful for the field to have it presented in such a clear manner with a corresponding mathematical framework. This will be a helpful piece of work to point to to temper concerns about rapid increases in the frequency of rare variants.

      (3) The authors provide a succinct derivation of their model that helps the reader understand how they arrived at their formulation starting from the standard SIR model.

      (4) The visualizations throughout are generally easy to interpret and communicate the key points of the authors' work.

      (5) I thank the authors for providing detailed code to reproduce manuscript figures in the associated GitHub repo.

      Weaknesses:

      (1) The authors argue that network-based SIR models are difficult to parameterize (line 66), however, the model presented here also has a key parameter, mainly P_n, or the distribution of risk groups in the population. I think it is important to explore the extent to which this parameter can be inferred from real-world data to assess whether this model is, in practice, any easier to parameterize.

      (2) The authors explore only up to four different risk groups, accounting for only four-wise interactions. But, clearly, in real-world settings, there can be much larger gatherings that promote transmission. What was the justification for setting such a low limit on the maximum group size? I presume it's due to computational efficiency, which is understandable, but it should be discussed as a limitation.

      (3) Another key limitation that isn't addressed by the authors is that there may be population structure beyond just risk heterogeneity. For example, there may be two separate (or, weakly connected) high-risk sub-groups. This will introduce temporal correlation in interactions that are not (and can not easily be) captured in this model. My instinct is that this would dampen the difference between risk groups shown in Figure 2A. While I appreciate the authors's desire to keep their model relatively simple, I think this limitation should be explicitly discussed as it is, in my opinion, relatively significant.

      We appreciate Reviewer 2's thoughtful comments and wish to address some of the weaknesses:

      We agree that inferring P_n from real data will be challenging, but think this is an important direction for future research. Further, we’d like to reframe our claim that our approach is "easier to parameterize" than network models. Rather, P_n has fewer degrees of freedom than analogous network models, just as many different networks can share the same degree distribution. Fewer degrees of freedom mean that we expect our model to suffer from fewer identifiability issues when fitting to data, though non-identifiability is often inescapable in models of this nature (e.g., \beta and \gamma in the SIR model are not uniquely identifiable during exponential growth). Whether this is more or less accurate is another question. Classic bias-variance tradeoffs argue that a model with a moderate complexity trained on one data set can better fit future data than overly simple or overly complex models.

      We chose four risk groups for purposes of illustration, but this can be increased arbitrarily. It should be noted that the simulation bottleneck when increasing the numbers of risk groups is numerical due the stiffness of the ODEs. This arises because the nonlinearity of infection terms scales with the number of risk groups (e.g., ~ \beta * S * I^3 for 4 risk groups). As such, a careful choice of numerical solvers may be required when integrating the ODEs. Meanwhile, this is not an issue for stochastic, individual based implementation (e.g., Gillespie). As for how well this captures super-spreading, we believe choosing smaller risk groups does not hinder modeling disease spread at large gatherings. Consider a statistical interpretation, where individuals at a large gathering engage in a series of smaller interactions over time (e.g., 2/3/4/etc person conversations). The key determinants of the resulting gathering size distribution at any one large gathering are the number of individuals within some shared proximity over time and the infectiousness/dispersal of the pathogen. Of course, whether this interpretation is a sufficient approximation for classic super-spreading events (e.g., funerals during 2014-2015 West Africa Ebola outbreak) is a matter of debate. Our framework is best interpreted at a population level where the effects of any single gathering are washed out by the overall gathering distribution, P_n. As the prior weakness highlighted, establishing P_n is challenging, but we believe empirically measuring proxies of it may provide future insight in how behavior impacts disease spread. For example, prior work has combined contact tracing and co-location data from connection to WiFi networks to estimate the distribution of contacts per individual, and its degree of overdispersion (Petros et al. Med 2022).

      We chose to introduce our framework in a simple SIR context familiar to many readers. This decision does not in any way limit applying it to settings with more population structure. Rather, we believe our framework is easily adaptable and that our presentation (hopefully) makes it clear how to do this. For example, two weakly connected groups could be easily achieved by (for each gathering) first sampling the preferred group and then sampling from the population in a biased manner. The biased sampling could even be a function of gathering sizes, time, etc. The resulting infection terms are still (sums of) multinomials. More generally, the sampling probabilities for an individual of some type need not be its frequency (e.g., S/N, I/N). Indeed, we believe generating models with complex social interactions is both simplified and made more robust by focusing on modeling the generative process of attending gatherings.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      This paper describes technically-impressive measurements of calcium signals near synaptic ribbons in goldfish bipolar cells. The data presented provides high spatial and temporal resolution information about calcium concentrations along the ribbon at various distances from the site of entry at the plasma membrane. This is important information. Important gaps in the data presented mean that the evidence for the main conclusions is currently inadequate.

      Strengths

      (1) The technical aspects of the measurements are impressive. The authors use calcium indicators bound to the ribbon and high-speed line scans to resolve changes with a spatial resolution of ~250 nm and a temporal resolution of less than 10 ms. These spatial and temporal scales are much closer to those relevant for vesicle release than previous measurements.

      (2) The use of calcium indicators with very different affinities and different intracellular calcium buffers helps provide confirmation of key results.

      Thank you very much for this positive evaluation of our work.

      Weaknesses

      (1) Multiple key points of the paper lack statistical tests or summary data from populations of cells. For example, the text states that the proximal and distal calcium kinetics in Figure 2A differ. This is not clear from the inset to Figure 2A - where the traces look like scaled versions of each other. Values for time to half-maximal peak fluorescence are given for one example cell but no statistics or summary are provided. Figure 8 shows examples from one cell with no summary data. This issue comes up in other places as well.

      Thank you for this feedback. We will address this in our revised manuscript.

      (2) Figure 5 is confusing. The figure caption describes red, green, and blue traces, but the figure itself has only two traces in each panel and none are red, green, or blue. It's not possible currently to evaluate this figure.

      Thank you for pointing out this oversight. The figure indeed only shows the proximal and distal calcium signals, but not the cytoplasmic ones. The figure will be corrected in our revised manuscript.

      (3) The rise time measurements in Figure 2 are very different for low and high-affinity indicators, but no explanation is given for this difference. Similarly, the measurements of peak calcium concentration in Figure 4 are very different from the two indicators. That might suggest that the high-affinity indicator is strongly saturated, which raises concerns about whether that is impacting the kinetic measurements.

      As we had mentioned in the text, we do believe that the high-affinity version is partially saturated. This will be a problem for strong depolarizations and signals near the membrane. The higher affinity indicators are more useful for reporting calcium levels on the ribbon after the depolarization when the signal from the low affinity indicators is small. We will address this in the discussion of the revision.

      Reviewer #2 (Public review):

      Summary:

      The study introduces new tools for measuring intracellular Ca2+ concentration gradients around retinal rod bipolar cell (rbc) synaptic ribbons. This is done by comparing the Ca2+ profiles measured with mobile Ca2+ indicator dyes versus ribbon-tethered (immobile) Ca2+ indicator dyes. The Ca2+ imaging results provide a straightforward demonstration of Ca2+ gradients around the ribbon and validate their experimental strategy. This experimental work is complemented by a coherent, open-source, computational model that successfully describes changes in Ca2+ domains as a function of Ca2+ buffering. In addition, the authors try to demonstrate that there is heterogeneity among synaptic ribbons within an individual rbc terminal.

      Strengths:

      The study introduces a new set of tools for estimating Ca2+ concentration gradients at ribbon AZs, and the experimental results are accompanied by an open-source, computational model that nicely describes Ca2+ buffering at the rbc synaptic ribbon. In addition, the dissociated retinal preparation remains a valuable approach for studying ribbon synapses. Lastly, excellent EM.

      Thank you very much for this appreciation.

      Weaknesses:

      Heterogeneity in the spatiotemporal dynamics of Ca2+ influx was not convincingly related to ribbon size, nor was the functional relevance of Ca2+ dynamics to rod bipolars demonstrated (e.g., exocytosis to different postsynaptic targets). In addition, the study would benefit from the inclusion of the Ca2+ currents that were recorded in parallel with the Ca2+ imaging.

      Thank you for this critique. We agree that the relationship between size and Ca2+ signal is not established by our recordings. By analogy to the hair cell literature, we believe that it is a reasonable hypothesis, but more studies will be necessary to definitively determine whether the signal relates to the ribbon size or synaptic signaling. This will be addressed in future experiments.

      We will include the Ca<sup>2+</sup> currents in the revision.

      Reviewer #3 (Public review):

      Summary:

      In this study, the authors have developed a new Ca indicator conjugated to the peptide, which likely recognizes synaptic ribbons, and have measured microdomain Ca near synaptic ribbons at retinal bipolar cells. This interesting approach allows one to measure Ca close to transmitter release sites, which may be relevant for synaptic vesicle fusion and replenishment. Though microdomain Ca at the active zone of ribbon synapses has been measured by Hudspeth and Moser, the new study uses the peptide recognizing synaptic ribbons, potentially measuring the Ca concentration relatively proximal to the release sites.

      Strengths:

      The study is in principle technically well done, and the peptide approach is technically interesting, which allows one to image Ca near the particular protein complexes. The approach is potentially applicable to other types of imaging.

      Thank you very much for this appreciation.

      Weaknesses:

      Peptides may not be entirely specific, and the genetic approach tagging particular active zone proteins with fluorescent Ca indicator proteins may well be more specific. I also feel that "Nano-physiology" is overselling, because the measured Ca is most likely the local average surrounding synaptic ribbons. With this approach, nobody knows about the real release site Ca or the Ca relevant for synaptic vesicle replenishment. It is rather "microdomain physiology" which measures the local Ca near synaptic ribbons, relatively large structures responsible for fusion, replenishment, and recycling of synaptic vesicles.

      The peptide approach has been used fairly extensively in the ribbon synapse field and the evidence that it efficiently labels the ribbon is well established, however, we do acknowledge that the peptide is in equilibrium with a cytoplasmic pool. Thus, some of the signal arises from this cytoplasmic pool. The alternative of a genetically encoded Ca-indicator concatenated to a ribbon protein would not have this problem, but would be more limited in flexibility in changing calcium indicators. We believe both approaches have their merits, each with separate advantages and disadvantages.

      As for the nano vs. micro argument, we certainly do not want to suggest that we are measuring the same nano-domains, in the 10s of nanometers, that drive neurotransmitter release, but we do believe we are in the sub-micrometer--100s of nm—range. We chose the term based on the usage by other authors to describe similar measurements (Neef et al., 2018; https://doi.org/10.1038/s41467-017-02612-y), but we see the reviewer’s point. To avoid confusion, we will change the title in the revision.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This retrospective study provides new data regarding the prevalence of pain in women with PCOS and its relationship with health outcomes. Using data from electronic health records (EHR), the authors found a significantly higher prevalence of pain among women with PCOS compared to those without the condition: 19.21% of women with PCOS versus 15.8% in non-PCOS women. The highest prevalence of pain was conducted among Black or African American (32.11%) and White (30.75%) populations. Besides, women with PCOS and pain have at least a 2-fold increased prevalence of obesity (34.68%) at baseline compared to women with PCOS in general (16.11%). Also, women with PCOS had the highest risk for infertility and T2D, but women with PCOS and pain had higher risks for ovarian cysts and liver disease. Regarding these results, the authors suggested the critical need to address pain in the diagnosis and management of PCOS due to its significant impact on patient health outcomes.

      Strengths:

      (1) The problem of pain assessment in PCOS patients is well described and the authors provided a clear rationale selection of the retrospective design to investigate this problem.(2) A large number of analyzed patient records (76,859,666 women) and their uniformity increases the power of the study. Using the Propensity Score Matching makes it possible to reduce the heterogeneity of the compared cohorts and the influence of comorbid conditions.(3) Analysis in different ethnic cohorts provides actual and necessary data regarding the prevalence of pain and its relationship with different health conditions that will be helpful for clinicians to make a diagnosis and manage PCOS in women of different ethnicities. (4) Assessment of the risk of different health conditions including PCOS-associated pathology as other common groups of diseases in PCOS women with or without pain allows to differentiate the risk of comorbid conditions depending on the presence of one symptom (pelvic or abdominal pain, dysmenorrhea).

      We appreciate the positive feedback on this manuscript. Pain assessment in women with PCOS is of paramount interest and because of a gap in this research area, we are trying to address it.

      Weaknesses:

      (1) Although the paper has strengths in methodology and data analysis, it also has some weaknesses.

      The lack of a hypothesis doesn't allow us to evaluate the aim and significance of this study.

      We would like to thank the Reviewer for their valuable feedback regarding the hypothesis of this study. We understand that the hypothesis may not have been written clearly under the objectives and we will correct this in the formal revision.

      The primary hypothesis of this study is that women with PCOS experience a higher prevalence to pain (including dysmenorrhea, abdominal pain and pelvic pain) compared to women without PCOS, and this prevalence varies by racial groups. Our hypothesis aims to explore the relationship between PCOS and pain, the associated health risks, and the potential racial disparities in pain prevalence and long-term health outcomes. Additionally, we seek to assess the effect of treatment on reducing pain symptoms in women with PCOS. This study not only examines the immediate burden of pain but also investigates its long-term consequences, including risks of infertility, obesity, and type 2 diabetes.

      To enhance clarity for readers, we will explicitly state this hypothesis in the revised manuscript and ensure that its connection to the study’s objectives is clearly articulated. We appreciate the Reviewer’s insights and will incorporate these refinements to strengthen the manuscript.

      (2) The exclusion criteria don't include conditions, that can lead to symptoms similar to PCOS: thyroid diseases, hyperprolactinemia, and congenital adrenal hyperplasia. Thyroid status is not being taken into account in the criteria for matching. All these conditions could occur as on prevalence results as on risk assessment.

      We would like to thank the Reviewer for highlighting the need to include these additional conditions that mimic PCOS. After excluding hypothyroidism, hyperprolactinemia, and adrenal hyperplasia from the PCOS and PCOS and pain cohorts, we observed that 7,690 patients (1.65%) with PCOS and 1,854 patients (1.36%) with PCOS were removed. Based on this observation, we plan to add these three conditions to our exclusion criteria and rerun our analysis for disease prevalence and relative risk for our resubmission.

      We will update the manuscript accordingly to reflect these exclusions and ensure clarity in our methodology. Additionally, we will discuss the rationale for excluding these conditions to improve transparency and provide a more precise interpretation of our findings.

      (3) The significant weakness of the study is the absence of a Latin American cohort. Probably the White cohort includes Latin Americans or others, but the results of the study cannot be extrapolated to particular White ethnicities.

      We appreciate the Reviewer’s suggestion to include Latin American cohorts in studies. In this paper we only used race as a variable and did not incorporate ethnicity. However, for our resubmission we plan to include self-reported ethnicity in our analysis which will capture the Latin American cohort stratified by self-reported race groups. This addition will provide a more comprehensive understanding of racial and ethnic differences in our study population, and we will update the manuscript accordingly to reflect this expansion.

      (4) The authors didn't provide sufficient rationale for future health outcomes and this list didn't include diseases of the digestive system or disorders of thyroid glands, which can also cause abdominal pain.

      We appreciate the Reviewer comment and understand their concern. Our current results highlight the prevalence of disorders of the digestive system in Figure 2 and in the results section. To further strengthen our analysis, we plan to include disorders of the digestive system in our relative risk (RR) assessment. However, we will not be able to include the same analysis for thyroid dysfunctions as they will be considered as an exclusion criterion. These updates will be incorporated into the revised manuscript to ensure clarity and completeness.

      Reviewer #2 (Public review):

      Summary:

      The study offers a thorough analysis of the prevalence of pain in women with polycystic ovary syndrome (PCOS) and its associations with health outcomes across various racial groups. Furthermore, the research investigates the prevalence of PCOS and pain among different racial demographics, as well as the increased risk of developing various conditions in comparison to individuals who have PCOS alone.

      Strengths:

      The study emphasizes pain as a significant comorbidity of PCOS, an area that is critically underexplored in existing literature. The findings regarding the increased prevalence of some of the diseases in the PCOS + pain group provide valuable direction for future research and clinical care. I believe physicians should incorporate pain score assessments into their clinical practice to improve patient's quality of life and raise awareness about pain management. If future research focuses on the mechanisms of pain, it would provide a better understanding of pain and allow for a focus on the underlying causes rather than just symptomatic management. The study also highlights the association between PCOS+pain and various comorbidities, such as obesity, hypertension, and type 2 diabetes, as well as conditions like infertility and ovarian cysts, offering a holistic view of the burden of PCOS.

      We sincerely appreciate the Reviewer’s insightful comments. We hope that our findings will encourage further research on the occurrence of pain in women with PCOS and that others will replicate our results to strengthen the evidence in this area. As noted in our introduction, there are currently no standardized abdominal pain score assessments specifically for women with PCOS. We hope that the findings from this study will contribute to efforts toward developing a standardized pain assessment for the PCOS community. In the meantime, further research across more diverse populations will be essential to build a more comprehensive understanding of this issue.

      Weaknesses:

      Due to the nature of the retrospective study, some data may not be readily available in the system. Instead of simply categorizing participants based on whether they experience pain, it would be more useful to employ a pain scale or questionnaire to better understand the severity and type of patients' pain. This approach would allow for a more thorough analysis of pain improvement following treatment with the three widely used medications for PCOS. Additionally, it would be beneficial for the authors to specify subtypes of the disease rather than generalizing conditions, such as mentioning specific digestive system disorders or mental health disorders. The lack of detailed analysis of specific disorders limits the depth of the findings. This may cause authors to make incorrect conclusions.

      We appreciate the Reviewer for highlighting the importance of categorizing pain levels experienced by women with PCOS. However, there is currently no standardized pain assessment for abdominal pain, and therefore more research is required before such a classification can be made. Additionally, the electronic health record data we leveraged via the TriNextX platform does not include any pain scale data from unstructured notes. Despite these limitations, this study is an important step toward recognizing abdominal and pelvic pain in women with PCOS. Our findings indicate that women with PCOS report abdominal pain independent of digestive conditions such as irritable bowel syndrome— a condition often associated with pain in this population.

      We would like to thank the Reviewer for their thoughtful comment with respect to subtyping the future health outcomes. To address this, we plan to include the most common diseases associated with PCOS for each general disease group as a supplemental figure in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1(Public review):

      comment 1: Lu et al. use their workflow to visualize RNA expression of five enzymes that are each involved in the biosynthetic pathway of different neurotransmitters/modulators, namely chat (cholinergeric), gad (GABAergic), tbh (octopaminergic), th (dopaminergic), and tph (serotonergic). In this way, they generate an anatomical atlas of neurons that produce these molecules. Collectively these markers are referred to as the "neuronpool." They overstate when they write, "The combination of these five types of neurons constitutes a neuron pool that enables the labeling of all neurons throughout the entire body." This statement does not accurately represent the state of our knowledge about the diversity of neurons in S. mediterranea. There are several lines of evidence that support the presence of glutamatergic and glycinergic neurons, including the following. The glutamate receptor agonists NMDA and AMPA both produce seizure-like behaviors in S. mediterranea that are blocked by the application of glutamate receptor antagonists MK-801 and DNQX (which antagonize NMDA and AMPA glutamate receptors, respectively; Rawls et al., 2009). scRNA-Seq data indicates that neurons in S. mediterranea express a vesicular glutamate transporter, a kainite-type glutamate receptor, a glycine receptor, and a glycine transporter (Brunet Avalos and Sprecher, 2021; Wyss et al., 2022). Two AMPA glutamate receptors, GluR1 and GluR2, are known to be expressed in the CNS of another planarian species, D. japonica (Cebria et al., 2002). Likewise, there is abundant evidence for the presence of peptidergic neurons in S. mediterranea (Collins et al., 2010; Fraguas et al., 2012; Ong et al., 2016; Wyss et al., 2022; among others) and in D. japonica (Shimoyama et al., 2016). For these reasons, the authors should not assume that all neurons can be assayed using the five markers that they selected. The situation is made more complex by the fact that many neurons in S. mediterranea appear to produce more than one neurotransmitter/modulator/peptide (Brunet Avalos and Sprecher, 2021; Wyss et al., 2022), which is common among animals (Vaaga et al., 2014; Brunet Avalos and Sprecher, 2021). However the published literature indicates that there are substantial populations of glutamatergic, glycinergic, and peptidergic neurons in S. mediterranea that do not produce other classes of neurotransmission molecule (Brunet Avalos and Sprecher, 2021; Wyss et al., 2022). Thus it seems likely that the neuronpool will miss many neurons that only produce glutamate, glycine or a neuropeptide.

      In response to your comments, we agree that our initial statement regarding the "neuron pool" overstated the extent of neuronal coverage provided by the five selected markers. We have revised the sentence as “The combination of these five types of neurons constitutes a neuron pool that enables the labeling of most of the neurons throughout the entire body, including the eyes, brain, and pharynx”.

      Furthermore, we chose the five neurotransmitter systems (cholinergic, GABAergic, octopaminergic, dopaminergic, and serotonergic) based on their well-characterized roles in planarian neurobiology and the availability of reliable markers. However, we acknowledge the limitations of this approach and recognize that it does not encompass all neuron types, particularly those involved in glutamatergic, glycinergic, and peptidergic signaling, which have been documented in S. mediterranea. We have also added the content about other neuron types in our revised results section “Additionally, the neuron system of S. mediterranea is complex which characterized by considerable diversity among glutamatergic, glycinergic, and peptidergic neurons in planarians and many neurons in S. mediterranea express more than one neurotransmitter or neuropeptide, which adds further complexity to the system. We used five markers for a proof of concept illustration. By employing Fluorescence in Situ Hybridization (FISH), we successfully visualized a variety of planarian neurons, including cholinergic (chat<sup>+</sup>), serotonergic (tph<sup>+</sup>), octopaminergic (tbh<sup>+</sup>), GABAergic (gad<sup>+</sup>), and dopaminergic (th<sup>+</sup>) neurons based on their well-characterized roles in planarian neurobiology and the availability of reliable markers. (Figure S2A, Supplemental video 2) (Currie et al., 2016). The combination of these five types of neurons constitutes a neuron pool that enables the labeling of most of the neurons throughout the entire body, including the eyes, brain, and pharynx (Figure 1B).”

      comment 2: The authors use their technique to image the neural network of the CNS using antibodies raised vs. Arrestin, Synaptotagmin, and phospho-Ser/Thr. They document examples of both contralateral and ipsilateral projections from the eyes to the brain in the optic chiasma (Figure 1C-F). These data all seem to be drawn from a single animal in which there appears to be a greater than normal number of nerve fiber defasciculatations. It isn't clear how well their technique works for fibers that remain within a nerve tract or the brain. The markers used to image neural networks are broadly expressed, and it's possible that most nerve fibers are too densely packed (even after expansion) to allow for image segmentation. The authors also show a close association between estrella-positive glial cells and nerve fibers in the optic chiasma.

      Thank you for your detailed feedback. While we did not perform segmentation of all neuron fibers, we were able to segment more isolated fibers that were not densely packed within the neural tracts. We use 120 nm resolution to segment neurons along the three axes. Our data show the presence of both contralateral and ipsilateral projections of visual neurons. Although Figure 1C-F shows data from one planarian, we imaged three independent specimens to confirm the consistency of these observations. In the revised manuscript, we have included a discussion on the limitations of TLSM in reconstructing neural networks. In the discussion part, we added “It should be noted that the current resolution for our segmentation may be limited when resolving fibers within densely packed regions of the nerve tracts”.

      comment 3: The authors count all cell types, neuron pool neurons, and neurons of each class assayed. They find that the cell number to body volume ratio remains stable during homeostasis (Figure S3C), and that the brain volume steadily increases with increasing body volume (Figure S3E). They also observe that the proportion of neurons to total body cells is higher in worms 2-6 mm in length than in worms 7-9 mm in length (Figure 2D, S3F). They find that the rate at which four classes of neurons (GABAergic, octopaminergic, dopaminergic, serotonergic) increase relative to the total body cell number is constant (Figure S3G-J). They write: "Since the pattern of cholinergic neurons is the major cell population in the brain, these results suggest that the above observation of the non-linear dynamics between neurons and cell numbers is likely from the cholinergic neurons." This conclusion should not be reached without first directly counting the number of cholinergic neurons and total body cells. Given that glutamatergic, glycinergic, and peptidergic neurons were not counted, it also remains possible that the non-linear dynamics are due (in part or in whole) to one or more of these populations.

      We have revised the statement into “These results suggest that the above observation of the non-linear dynamics between neuron and total cell number is not likely from the octopaminergic, GABAergic, dopaminergic, and serotonergic neurons. Since our neuron pool may not include glutamatergic, glycinergic, and peptidergic neurons, the non-linear dynamics may be from cholinergic neurons or other neurons not included in our staining.”

      Reviewer #2 (Public review):

      Weaknesses:

      (1) The proprietary nature of the microscope, protected by a patent, limits the technical details provided, making the method hard to reproduce in other labs.

      Thank you for your comment. We understand the importance of reproducibility and transparency in scientific research. We would like to point out that the detailed design and technical specifications of the TLSM are publicly available in our published work: Chen et al., Cell Reports, 2020. Additionally, the protocol for C-MAP, including the specific experimental steps, is comprehensively described in the methods section of this paper. We believe that these resources should provide sufficient information for other labs to replicate the method.

      (2) The resolution of the analyses is mostly limited to the cellular level, which does not fully leverage the advantages of expansion microscopy. Previous applications of expansion microscopy have revealed finer nanostructures in the planarian nervous system (see Fan et al. Methods in Cell Biology 2021; Wang et al. eLife 2021). It is unclear whether the current protocol can achieve a comparable resolution.

      Thank you for raising this important point. The strength of our C-MAP protocol lies in its fluorescence-protective nature and user convenience. Notably, the sample can be expanded up to 4.5-fold linearly without the need for heating or proteinase digestion, which helps preserve fluorescence signals. In addition, the entire expansion process can be completed within 48 hours. While our current analysis focused on cellular-level structures, our method can achieve comparable or better resolution and we will add this information in the revised manuscript as “It is important to point out that the strength of our C-MAP protocol lies in its fluorescence-protective nature and user convenience. Notably, the sample can be expanded up to 4.5-fold linearly without the need for heating or proteinase digestion, which helps preserve fluorescence signals. In addition, the entire expansion process can be completed within 48 hours. Based on our research requirement, two spatial resolutions were adopted to image expanded planarians, 2×2×5 μm<sup>3</sup> and 0.5×0.5×1.6 μm<sup>3</sup>. The resolution can be further improved to 500 nm and 120 nm, respectively.”

      (3) The data largely corroborate past observations, while the novel claims are insufficiently substantiated.

      A few major issues with the claims:

      Line 303-304: While 6G10 is a widely used antibody to label muscle fibers in the planarian, it doesn't uniformly mark all muscle types (Scimone at al. Nature 2017). For a more complete view of muscle fibers, it is important to use a combination of antibodies targeting different fiber types or a generic marker such as phalloidin. This raises fundamental concerns about all the conclusions drawn from Figures 4 and 6 about differences between various muscle types. Additionally, the authors should cite the original paper that developed the 6G10 antibody (Ross et al. BMC Developmental Biology 2015).

      We appreciate the reviewer’s insightful comments and acknowledge that 6G10 does not uniformly label all muscle fiber types. We agree that this limitation should be recognized in the interpretation of our results. We have revised the manuscript to explicitly state the limitations of using 6G10 alone for muscle fiber labeling and highlight the need for additional markers. We have included the following statement in the Results section: “It is noted that previous studies reported that 6G10 does not label all body wall muscles equivalently with the limitation of predominantly labeling circular and diagonal fibers (Scimone et al., 2017; Ross et al., 2015). Our observation may be limited by this preference”. We would also clarify that the primary objective of our study was to demonstrate the application of our 3D tissue reconstruction method in addressing traditional research questions. Nonetheless, we agree that expanding the labeling strategy in future studies would allow for a more thorough investigation of muscle fiber diversity. Relevant citations have been properly revised and updated.

      (4) Lines 371-379: The claim that DV muscles regenerate into longitudinal fibers lacks evidence. Furthermore, previous studies have shown that TFs specifying different muscle types (DV, circular, longitudinal, and intestinal) both during regeneration and homeostasis are completely different (Scimone et al., Nature 2017 and Scimone et al., Current Biology 2018). Single-cell RNAseq data further establishes the existence of divergent muscle progenitors giving rise to different muscle fibers. These observations directly contradict the authors' claim, which is only based on images of fixed samples at a coarse time resolution.

      Thank you for your valuable feedback. Our intent was not to suggest that DV muscles regenerate into longitudinal fibers. Our observations focused on the wound site, where DV muscle fibers appear to reconnect, and longitudinal fibers, along with other muscle types, gradually regenerate to restore the structure of the injured area. We have revised the our statement as:“During the regeneration process, DV muscle fibers reconnect at the wound site, with longitudinal fibers and other muscle types gradually restoring the structure at the anterior tip and later integrating with circular and diagonal fibers through small DV fiber branches (Figure S5O1-O3).”

      (5) Line 423: The manuscript lacks evidence to claim glia guide muscle fiber branching.

      We agree with your concerns that our statement may be overestimated. We have removed this statement from the revised version. Instead, we focused on describing our observations of the connections between glial cells and muscle fibers. We have revised the section as follows: “Considering the interaction between glial and muscle cells, the localization of estrella<sup>+</sup> glia and muscle fibers is further investigated. By dual-staining of anti-Phospho (Ser/Thr) and 6G10 in inr-1 RNAi and β-catenin-1 RNAi planarians, we found that the morphologies of neurons are normal, and they have close contact with muscle fibers (Figure 6D, E). However, by dual staining of estrella and 6G10, we found that the structure of glial cells is star-shaped in egfp RNAi planarian, however, glial cells in inr-1 RNAi and β-catenin-1 RNAi planarians have shorter cytoplasmic projections, and their sizes are smaller, lacking the major projection onto the muscles (Figure 6D, E, Figure S6E-K). Especially, in the posterior head of β-catenin-1 RNAi planarians, the glial cell has few axons and can hardly connect with muscle fibers (Figure 6E). These results indicated that proper neuronal guidance and muscle fiber distribution could potentially contribute to facilitating accurate glial-to-muscle projections.

      (6) Lines 432/478: The conclusion about neuronal and muscle guidance on glial projections is similarly speculative, lacking functional evidence. It is possible that the morphological defects of estrella+ cells after bcat1 RNAi are caused by Wnt signaling directly acting on estrella+ cells independent of muscles or neurons.

      We understand that this approach is insufficient and we have revised the this section as follows: “Further investigation is required to distinguish the cell-autonomous and non-autonomous effects of inr-1 RNAi and β-catenin-1 RNAi on muscle and glial cells.”

      (7) Finally, several technical issues make the results difficult to interpret. For example, in line 125, cell boundaries appear to be determined using nucleus images; in line 136, the current resolution seems insufficient to reliably trace neural connections, at least based on the images presented.

      We use two setups for imaging cells and neuron projections. For cellular resolution imaging, we utilized a 1× air objective with a numerical aperture (NA) of 0.25 and a working distance of 60 mm (OLYMPUS MV PLAPO). The voxel size used was 0.8×0.8×2.5 μm<sup>3</sup>. This configuration resulted in a resolution of 2×2×5 μm<sup>3</sup> and a spatial resolution of 0.5×0.5×1.25 μm<sup>3</sup> with 4.5× isotropic expansion. Alternatively, for sub-cellular imaging, we employed a 10×0.6 SV MP water immersion objective with 0.8 NA and a working distance of 8 mm (OLYMPUS). The voxel size used in this configuration was 0.26×0.26×0.8 μm<sup>3</sup>. As a result of this configuration, we achieved a resolution of 0.5×0.5×1.6 μm<sup>3</sup> and a spatial resolution of 0.12×0.12×0.4 μm<sup>3</sup> with a 4.5× isotropic expansion. The higher resolution achieved with sub-cellular imaging allows us to observe finer structures and trace neural connections.

      Regarding your question about cell boundaries, we have revised the manuscript to specify that the boundaries we identified are those of each nucleus.

      Reviewer #3 (Public review):

      Weaknesses:

      (1) The work would have been strengthened by a more careful consideration of previous literature. Many papers directly relevant to this work were not cited. Such omissions do the authors a disservice because in some cases, they fail to consider relevant information that impacts the choice of reagents they have used or the conclusions they are drawing.

      For example, when describing the antibody they use to label muscles (monoclonal 6G10), they do not cite the paper that generated this reagent (Ross et al PMCID: PMC4307677), and instead, one of the papers they do cite (Cebria 2016) that does not mention this antibody. Ross et al reported that 6G10 does not label all body wall muscles equivalently, but rather "predominantly labels circular and diagonal fibers" (which is apparent in Figure S5A-D of the manuscript being reviewed here). For this reason, the authors of the paper showing different body wall muscle populations play different roles in body patterning (Scimone et al 2017, PMCID: PMC6263039, also not cited in this paper) used this monoclonal in combination with a polyclonal antibody to label all body wall muscle types. Because their "pan-muscle" reagent does not label all muscle types equivalently, it calls into question their quantification of the different body wall muscle populations throughout the manuscript. It does not help matters that their initial description of the body wall muscle types fails to mention the layer of thin (inner) longitudinal muscles between the circular and diagonal muscles (Cebria 2016 and citations therein).

      Ipsilateral and contralateral projections of the visual axons were beautifully shown by dye-tracing experiments (Okamoto et al 2005, PMID: 15930826). This paper should be cited when the authors report that they are corroborating the existence of ipsilateral and contralateral projections.

      Thank you for your feedback. We have incorporated these citations and clarifications into the revised manuscript. We acknowledge the limitations of this approach and have added a statement for this limitation in the revised manuscript “It is noted that previous studies reported that 6G10 does not label all body wall muscles equivalently with the limitation of predominantly labeling circular and diagonal fibers (Scimone et al., 2017; Ross et al., 2015). Our observation may be limited by this preference.”

      (2) The proportional decrease of neurons with growth in S. mediterranea was shown by counting different cell types in macerated planarians (Baguna and Romero, 1981; https://link.springer.com/article/10.1007/BF00026179) and earlier histological observations cited there. These results have also been validated by single-cell sequencing (Emili et al, bioRxiv 2023, https://www.biorxiv.org/content/10.1101/2023.11.01.565140v). Allometric growth of the planaria tail (the tail is proportionately longer in large vs small planaria) can explain this decrease in animal size. The authors never really discuss allometric growth in a way that would help readers unfamiliar with the system understand this.

      Thank you for your feedback. We have incorporated these citations and clarifications into the revised manuscript “These findings provide evidence to support the previous prediction and consistency between different planarian species (Baguñà et al., 1981; Emili et al.,2023). Because the tail is proportionately longer in large than in small planarians, the allometric growth of the planarians can be one possibility for this decrease along with the increase in animal size. The phenomenon may also suggest the existence of a threshold in the increase of planarian neuron numbers, which may ultimately contribute to some physiological changes, such as planarian fission.”

      (3) In some cases, the authors draw stronger conclusions than their results warrant. The authors claim that they are showing glial-muscle interactions, however, they do not provide any images of triple-stained samples labeling muscle, neurons, and glia, so it is impossible for the reader to judge whether the glial cells are interacting directly with body wall muscles or instead with the well-described submuscular nerve plexus. Their conclusion that neurons are unaffected by beta-cat or inr-1 RNAi based on anti-phospho-Ser/Thr staining (Fig. 6E) is unconvincing. They claim that during regeneration "DV muscles initially regenerate into longitudinal fibers at the anterior tip" (line 373). They provide no evidence for such switching of muscle cell types, so it is unclear why they say this.

      We acknowledge that some of our conclusions were overclaimed given the current data, and we appreciate the opportunity to clarify and refine these claims in the revised manuscript. Due the technique reason, we have not achieved the triple-staining to address this concern. We hope to make a progress in our future studies. Regarding the statement that "DV muscles initially regenerate into longitudinal fibers at the anterior tip" (line 373), as addressed in our previous response, this statement was unclear. Our intent was not to imply that DV muscles switch into longitudinal fibers. Instead, we observed that muscle fibers reconnect at the wound site, with longitudinal fibers and other muscle types gradually restoring the structure. We have revised this section: “During the regeneration process, DV muscle fibers reconnect at the wound site, with longitudinal fibers and other muscle types gradually restoring the structure at the anterior tip and later integrating with circular and diagonal fibers through small DV fiber branches (Figure S5O1-O3).”

      (4) The authors show how their automated workflow compares to manual counts using PI-stained specimens (Figure S1T). I may have missed it, but I do not recall seeing a similar ground truth comparison for their muscle fiber counting workflow. I mention this because the segmented image of the posterior muscles in Figure 4I seems to be missing the vast majority of circular fibers visible to the naked eye in the original image.

      Thank you for raising this important point. We have included a ground truth comparison of our automated muscle fiber segmentation with the original image in the revised Figure S6. The original Figure S6 has been changed as Figure S7. Regarding the observation of missing circular fibers in Figure 4I, we agree that the segmentation appears to have missed a significant number of circular fibers in this particular image. This may have been due to limitations in the current parameters of the segmentation algorithm, especially in distinguishing fibers in regions of varying intensity or overlap.

      (5) It is unclear why the abstract says, "We found the rate of neuron cell proliferation tends to lag..." (line 25). The authors did not measure proliferation in this work and neurons do not proliferate in planaria.

      Thank you for pointing out this mistake. What we intended to convey was the increase in neuron number during homeostasis. We have revised the abstract “We found that the increase in neuron cell number tends to lag behind the rapid expansion of somatic cells during the later phase of homeostasis.”

      (6) It is unclear what readers are to make of the measurements of brain lobe angles. Why is this a useful measurement and what does it tell us?

      The measurement of brain lobe angles is intended to provide a quantitative assessment of the growth and morphological changes of the planarian brain during regeneration. Additionally, the relevance of brain lobe angles has been explored in previous studies, such as Arnold et al., Nature, 2016, further supporting its use as a meaningful parameter.

      (7) The authors repeatedly say that this work lets them investigate planarians at the single-cell level, but they don't really make the case that they are seeing things that haven't already been described at the single-cell level using standard confocal microscopy.

      Thank you for your comment. We agree that single-cell level imaging has been previously achieved in planarians using conventional confocal microscopy. However, our goal was to extend the application of expansion microscopy by combining C-MAP with tiling light sheet microscopy (TLSM), which allows for faster and high-resolution 3D imaging of whole-mount planarians. We have added in the discussion section: “This combination offers several key advantages over standard techniques. For example, it enables high-throughput imaging across entire organisms with a level of detail and speed that is not easily achieved using confocal methods. This approach allows us to investigate the planarian nervous system at multiple developmental and regenerative stages in a more comprehensive manner, capturing large-scale structures while preserving fine cellular details. The ability to rapidly image whole planarians in 3D with this resolution provides a more efficient workflow for studying complex biological processes.”

    1. Author response:

      In view of the suggestions of the referees, we wish to underline that a user can interact with celldetective at two levels: a non-coder can analyse data and train models without coding, but is necessarily offered pre-determined choices and flexibility. An advanced user however has practically limitless flexibility to extend the fully-open source celldetective, aided by its modularity and detailed manual.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Torro et al. presented CellDetective, an open-source software designed for a user-friendly execution of single-cell segmentation, tracking, and analysis of time-lapse microscopy data. The authors demonstrated the applications of the software by measuring NK cell spreading events acquired with reflection interference contrast microscopy (RICM), as well as detecting target cell death events and their interaction with neighboring NK cells in a multichannel widefield microscopy dataset.

      Strengths:

      The segmentation (StarDist, Cellpose) and tracking (bTrack) modules implemented were based on existing and published software packages. The authors added the event detection, classification, and analysis modules to enable an end-to-end time-lapse microscopy data processing and analysis pipeline, complete with a graphical user interface (GUI). This minimizes the coding experience required from the user. The documentation that accompanies CellDetective is also adequate.

      Weaknesses:

      Given that the software was designed to improve user experience, such an approach also limits its scope and functionality and is currently capable of handling very specific types of experiments. Additionally, this reviewer has also encountered many technical difficulties (see documented bugs/crashes below) that have prevented an extensive exploration of all the functionality of CellDetective.

      We apologize for the technical difficulties and bugs; the ones mentioned have been already corrected. New users have also tested the installation and reported it to be bug-free.

      We fully agree on the compromise that has to be found between user experience and versatility. We have already tested celldetective in other biological contexts, such as microbiology, but made a choice to showcase it in the article for immunological applications. We invite the reader to consult the software documentation and online examples to learn about more options.

      Specifics:

      (1) The software can only handle 2D 'widefield' time-lapse imaging datasets. It should be noted that many studies that examine cell-cell interactions in vitro also used confocal microscopy and acquired the time-lapse images in 3D z-stacks to enable the reconstruction of entire cell volumes from multiple optical sections along the z-axis.

      Given that almost all of the implemented segmentation (StarDist, Cellpose) and tracking (bTrack) packages already support the handling of 3D datasets, it is unclear why CellDetective was designed to only work with 2D datasets.

      As noted above, extending the support for 3D images would allow the scope and utility of this software to be further extended for imaging studies acquired in z-stacks. As an example, the dense clustering of effector cells in Figure 4 had prevented accurate segmentation due to the 2D nature of the experimental dataset. More importantly, support for a 3D dataset could also allow for the tracking of fluorescent protein-based sub-cellular as well as membrane protein localization during cell-cell interactions.

      Furthermore, it also widens the potential applicability for analyzing datasets from 3D organoid imaging and perhaps even intravital two-photon microscopy.

      We thank the reviewer for this suggestion. Indeed, extension to 3-dimensions is a natural development, since we have chosen segmentation and tracking methods which are compatible with 3D. However, two important strengths of celldetective are: harnessing statistical power of cell populations together with multiplexing biological conditions, and dynamic analysis of fast events.

      For both, 2D is advantageous. Our own focus is on analyzing cellular events with minute time resolution, relevant in immunology. By our estimate (experience and literature), 3D timelapse acquisition would reduce the time resolution, as well as throughput (in terms of events and conditions) to below acceptable level. While we don’t envisage this upgrade in the immediate future, we encourage advanced users to contribute to further develop the open-source code in this direction. As a mitigation solution, a 2.5D approach on a flat sample by combining two z planes (in order to address issues of cell superposition for example), could be readily implemented with minimal change.

      (2) The software in its current form only allows the broad demarcation of the cells examined into two populations: targets and effectors. This limits the number of cell populations that can be examined for their interactions. It might be more useful to just allow multiple user-defined populations instead of restricting the populations to target and effector cells only.

      We thank the reviewer for this suggestion. There is little architectural limitation to its implementation; this will be proposed in the future version. This updated version will allow more than two user-defined populations, labelled directly by the user, which will also facilitate the natural extension to more varied biological applications. Three-way interactions are much more complex, and, to our knowledge, not currently addressed by biologists. The interactions will for the moment be limited to 2 populations interactions, as multipartite ones involve a higher level of code modifications, not immediately envisaged.

      (3) Similarly, subsetting of each of the populations could be made more intuitive. Although it is possible to define subsets of cells using the "Custom classification" function under the "Measure" module with user-defined parameters, visualization of multiple groups remains unintuitive and it appears that only one custom classified group can be selected and visualized at any given time in the Signal Annotator under Measurement instead of allowing visualization of multiple (custom defined) groups of cells in different colors. It is also unclear how, if possible at all, to visualize a custom group of cells in the Signal Annotator under the Detect Events module.

      The simultaneous visualization of several classes poses problems in the choice of colors and symbols, and may render the tool difficult to use. The time propagation option in the classification tool allows to define event classes as opposed to groups, that are compatible with the Signal Annotator. For more complex classifications, a simple solution is to work with composite classifications, which are already supported by using logical AND/OR operators on the condition defining the class. We believe that this feature is sufficient to address this issue.

      Software issues:

      (4) When initially tested on v1.3.9, the Segment module could not be initiated (with the error message AttributeError: 'WindowsPath' object has no attribute 'endswith' when attempting to run segmentation).

      Update: this has been fixed in v1.3.9.post4 dated February 7th, 2025.

      (5) Further testing was then performed by downgrading the software to v1.3.1. While testing the ADCC demo experiment (https://celldetective.readthedocs.io/en/latest/adcc-example.html), the workflow was stuck at attempts to initiate the Detect Events step:

      AssertionError: No signal matches with the requirements of the model ['dead_nuclei_channel_mean', 'area']. Please pass the signals manually with the argument selected_signals or add measurements. Abort.

      (Update: fixed in the latest v1.3.9.post4 version dated February 7th, 2025)

      (6) Random bugs causing the software to crash. Example: switching characteristic to 'status_color' in the Signal Annotator under Measurement caused the software to crash (v1.3.9.post4):

      TypeError: ufunc 'isnan' is not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule 'safe'

      (7) Overall, when exploring the functionality of the software, there have been multiple instances of software crashes when clicking/switching around to show different parameters, etc.

      This reviewer understands the difficulties and time involved in bug fixing and hopes that the experience could have been much smoother and that the software behaves much more stably in order to maximize its useability.

      We apologize again for the various technical issues encountered during the review process, and thank the reviewer for mentioning that several bugs were already fixed in the last software release. The open source and software maintenance protocol enabled by github should help to resolve any further emerging issue.

      Reviewer #2 (Public review):

      Summary:

      Immune assays enable the analysis of immune responses in vitro. These assays generate time series image data across several experimental conditions. The imaging parameters such as the imaging modality and the number of channels can vary across experiments. A challenge in the field is the lack of (open source) tools to process and analyze these data. R. Torro, et. al. developed an open source end-to-end pipeline for the analysis of image data from these immune assays. The pipeline is designed with a GUI and is suited for experimental biologists with no coding experience. The authors have incorporated several existing methods and tools for individual tasks such as for segmentation and cell tracking, and incorporated them with custom methods where necessary such as for tracking cell state transitions.

      Strengths:

      (1) The tool is extremely well-documented and easy to install.

      (2) Applicable to a wide variety of imaging modalities and analysis.

      (3) There are several different options for each step, such as segmentation using traditional methods or deep learning methods, and all the analysis steps are integrated in one place with a GUI. The no-coding requirement makes this a very powerful tool for biologists and has the potential to enable a wide variety of analyses.

      Weakness:

      (1) It would be good to provide documentation on how to make the tool applicable for applications and analysis other than for immune profiling since most methods integrated here are applicable well beyond immune profiling. For example, a user might want to use the tool just for the segmentation of their IF microscopy-images.

      This is an important suggestion that we will implement as short demonstrations using data from the public domain. These will be proposed as examples in the online documentation.

      (2) They applied Celldetective to two immune assays. The authors present the results from these assays and use the results to validate their assay. However, they have not included data that demonstrates results obtained via this pipeline are comparable to results obtained with other pipelines and/or if these results are consistent with what is expected in the literature.

      In the final version of the article, we shall compare celldetective with existing literature, including our previous work, when possible. However, we emphasize that most of the presented data are original and don’t have any published equivalent in the literature. Concerning the immunotherapy assays, data presented already show expected trends (see for example Fig. 2 and Fig. 5). We reserve for future publications the systematic comparison with traditional (non microscopy-based) methods, as we consider it out-of-scope here. Additionally, there is, to our knowledge no existing open pipeline performing the full end-to-end analysis.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This paper uses single-molecule FRET to investigate the molecular basis for the distinct activation mechanisms between 2 GPCR responding to the chemokine CXCL12 : CXCR4, that couples to G-proteins, and ACKR3, which is G-protein independent and displays a higher basal activity.

      Strengths:

      It nicely combines the state-of-the-art techniques used in the studies of the structural dynamics of GPCR. The receptors are produced from eukaryotic cells, mutated, and labeled with single molecule compatible fluorescent dyes. They are reconstituted in nanodiscs, which maintain an environment as close as possible to the cell membrane, and immobilized through the nanodisc MSP protein, to avoid perturbing the receptor's structural dynamics by the use of an antibody for example.

      The smFRET data are analysed using the HHMI technique, and the number of states to be taken into account is evaluated using a Bayesian Information Criterion, which constitutes the state-of-the-art for this task.

      The data show convincingly that the activation of the CXCR4 and ACKR3 by an agonist leads to a shift from an ensemble of high FRET states to an ensemble of lower FRET states, consistent with an increase in distance between the TM4 and TM6. The two receptors also appear to explore a different conformational space. A wider distribution of states is observed for ACKR3 as compared to CXCR4, and it shifts in the presence of agonists toward the active states, which correlates well with ACKR3's tendency to be constitutively active. This interpretation is confirmed by the use of the mutation of Y254 to leucine (the corresponding residue in CXCR4), which leads to a conformational distribution that resembles the one observed with CXCR4. It is correlated with a decrease in constitutive activity of ACKR3.

      Weaknesses:

      Although the data overall support the claims of the authors, there are however some details in the data analysis and interpretation that should be modified, clarified, or discussed in my opinion

      Concerning the amplitude of the changes in FRET efficiency: the authors do not provide any structural information on the amplitude of the FRET changes that are expected. To me, it looks like a FRET change from ~0.9 to ~0.1 is very important, for a distance change that is expected to be only a few angstroms concerning the movement of the TM6. Can the authors give an explanation for that? How does this FRET change relate to those observed with other GPCRs modified at the same or equivalent positions on TM4 and TM6?

      The large FRET change in our system was initially unexpected. However, the reviewer is mistaken that the expected distance change is only a few angstroms. Crystal structures of the homologous beta2 adrenergic receptor (β<sub>2</sub>AR) in inactive and active conformations reveal that the cytoplasmic end of TM6 moves outwards by 16 angstroms during activation (Rasmussen et al., 2011, ref 47).  Consistent with this, smFRET studies of β<sub>2</sub>AR labeled in TM4 and TM6 (as here) showed that the donor-acceptor (D-A) distance was 14 angstroms longer in the active conformation (Gregorio et al., ref 38).  Surprisingly, the apparent distance change in our system (calculated for our FRET probes, A555/Cy5, using FPbase.com) is almost 30 angstroms. A possible explanation is that the fluorophore attached to TM6 interacts with lipids within the nanodisc when TM6 moves outwards, which could stretch the fluorophore linker and thereby increase the D-A distance (lipids were absent in the β<sub>2</sub>AR study). Such an interaction could also constrain the fluorophore in an unfavorable orientation for energy transfer, also leading to lower than expected FRET efficiencies and inflated distance calculations. Regardless, it is important to emphasize that none of the interpretations or conclusions of our study are based on computed D-A distances. Rather, we resolved different receptor conformations and quantified their relative populations based on the measured FRET efficiency distributions.

      Finally, we note that a recent smFRET study of the glucagon receptor (labeled in TM4 and TM6, as here) also revealed a large difference in apparent FRET efficiencies between inactive (E<sub>app</sub> = 0.83) and active (E<sub>app</sub> = 0.32) conformations (Kumar et al., ref. 39). Thus, the large change in FRET efficiency observed in our study is not unprecedented.

      Concerning the intermediate states: the authors observe several intermediate states.

      (1) First I am surprised, looking at the time traces, by the dwell times of the transitions between the states, which often last several seconds. Is such a long transition time compatible with what is known about the kinetic activation of these receptors?

      We too were surprised by the apparent kinetics of the receptors in our system. However, it was previously noted that purified systems, including nanodiscs, lead to slower activation times for GPCRs compared to cellular membrane systems (Lohse et al, Curr. Opin. Cell Biology, 27, 8792, 2014). Indeed, slow transitions among different FRET states (dwell times in the seconds range) were also observed in recent smFRET studies of the mu opioid receptor (Zhao et al., 2024, ref. 41) and the glucagon receptor (Kumar et al., 2023, ref. 39). These studies are consistent with the observed time scale of the FRET transitions reported here.

      (2) Second is it possible that these “intermediate” states correspond to differences in FRET efficiencies, that arise from different photophysical states of the dyes? Alexa555 and Cy5 are Cyanines, that are known to be very sensitive to their local environment. This could lead to different quantum yields and therefore different FRET efficiencies for a similar distance. In addition, the authors use statistical labeling of two cysteines, and have therefore in their experiment a mixture of receptors where the donor and acceptor are switched, and can therefore experience different environments. The authors do not speculate structurally on what these intermediate states could be, which is appreciated, but I think they should nevertheless discuss the potential issue of fluorophore photophysics effects.

      The reviewer is correct that the intermediate FRET states could, in principle, arise from a conformational change of the receptor that alters the local environment of the donor and/or acceptor fluorophores, rather than a change in donor-acceptor distance. This caveat is now included in the discussion on Pg. 10:

      “In principle, the intermediates in CXCR4 and ACKR3 could represent partial movements of TM6 from the inactive to active conformation or more subtle conformational changes altering the photophysical characteristics of the probes without drastically altering the donor-acceptor distance. Either possibility leads to detectable changes in apparent FRET efficiency and reflect discrete conformational steps on the activation pathway; however, it is not possible to resolve specific structural changes from the data.”

      Regarding the second possibility, it is true that our labeling methodology leads to a statistical mixture of labeled species (D on TM6 and A on TM4, D on TM4 and A on TM6). If the photophysical properties of the fluorophores were markedly different for the two labeling orientations, this would produce two different FRET efficiencies for a given receptor conformation. Assuming two receptor conformations, this scenario would produce four distinct FRET states: E<sub>1</sub> (inactive receptor, labeling configuration 1), E<sub>2</sub> (active receptor, labeling configuration 1), E<sub>3</sub> (inactive receptor, labeling configuration 2) and E<sub>4</sub> (active receptor, labeling configuration 2), with two cross peaks in the TDP plots, corresponding to E<sub>1</sub> ↔ E<sub>2</sub> and E<sub>3</sub> ↔ E<sub>4</sub> transitions. Notably, E<sub>2</sub> ↔ E<sub>3</sub> cross peaks would not be present, since states E<sub>2</sub> and E<sub>3</sub> exist on separate molecules. Instead, we see all states inter-connected sequentially, R ↔ R’ ↔ R* in CXCR4 and R ↔ R’ ↔ R*’ ↔ R* in ACKR3 (Fig. 2), suggesting that the resolved FRET states represent interconnected conformational states.

      We added the following text to the Results section on Pg. 6:

      “Two-dimensional transition density probability (TDP) plots revealed that the three FRET states were connected in a sequential fashion (Figs. 2A & B), indicating that the transitions occurred within the same molecules. Notably, these observations exclude the possibility that the midFRET state arises from different local fluorophore environments (hence FRET efficiencies) for the two possible labeling orientations of the introduced cysteines: assuming two receptor conformations, this model would produce four distinct FRET states, but only two cross peaks in the TDP plot.”

      (3) It would also have been nice to discuss whether these types of intermediate states have been observed in other studies by smFRET on GPCR labeled at similar positions.

      Intermediate states have also been reported in previous smFRET studies of other GPCRs. For example, in the glucagon receptor (also labeled in TM4 and TM6), a third FRET state (E<sub>app</sub> =  0.63) was resolved between the inactive (E<sub>app</sub>  = 0.85) and active (E<sub>app</sub>  = 0.32) states (Kumar et al., Ref. 39).  Discrete intermediate receptor conformations were also observed in the A<sub>2A</sub>R labeled in TM4 and TM6 (Fernandes et al., Ref 40). These examples are now cited in the Discussion.

      On line 239: the authors talk about the R↔R' transitions that are more probable. In fact it is more striking that the R'↔R* transition appears in the plot. This transition is a signature of the behavior observed in the presence of an agonist, although IT1t is supposed to be an inverse agonist. This observation is consistent with the unexpected (for an inverse agonist) shift in the FRET histogram distribution. In fact, it appears that all CXCR4 antagonists or inverse agonists have a similar (although smaller) effect than the agonist. Is this related to the fact that these (antagonist or inverse agonist) ligands lead to a conformation that is similar to the agonists, but cannot interact with the G-protein ?? Maybe a very interesting experiment would be here to repeat these measurements in the presence of purified G-protein. G-protein has been shown to lead to a shift of the conformational space explored by GPCR toward the active state (using smFRET on class A and class C GPCR). It would be interesting to explore its role on CXCR4 in the presence of these various ligands. Although I am aware that this experiment might go beyond the scope of this study, I think this point should be discussed nevertheless.

      We thank the reviewer for this observation and the possible explanation offered.  In response, we have added the following text to the Results section on Pg. 7:

      “The small-molecule ligand IT1t is reported to act as an inverse agonist of CXCR4 (54-56). However, the conformational distribution of CXCR4 showed little change to the overall apparent

      FRET profile, although R’ ↔ R* transitions appeared in the TDP plot (Figs. 3A & B, Fig. S8). This suggests that the small molecule does not suppress CXCR4 basal signaling by changing the conformational equilibrium. Instead IT1t appears to increase transition probabilities which may impair G protein coupling by CXCR4.”

      We have also added the following text to the Results on Pg. 8:

      “Despite the ability of CXCL12<sub>P2G</sub> and CXCL12<sub>LRHQ</sub> to stabilize the active R* conformation of CXCR4, both variants are known to act as antagonists (20). This suggests that the CXCL12 mutants inhibit CXCR4 coupling to G proteins not by suppressing the active receptor population but rather by increasing the dynamics of the receptor state transitions. Our results suggest that the helical movements considered classic signatures of the active state may not be sufficient for CXCR4 to engage productively with G proteins.”

      In addition, we have added the following text to the Discussion on Pg. 11:

      “The chemokine variants CXCL12<sub>P2G</sub> and CXCL12<sub>LRHQ</sub> are reported to act as antagonists of CXCR4 (19, 20), and the small molecule IT1t acts as an inverse agonist (54-56). Surprisingly, none of these ligands inhibit formation of the active R* conformation of CXCR4. In fact, the chemokine variants both stabilize and increase this state to some degree, although less effectively than CXCL12<sub>WT</sub>. Thus, the antagonism and inverse agonism of these ligands does not appear to be linked exclusively to receptor conformation, suggesting that the ligands inhibit coupling of G proteins to CXCR4 or disrupt the ligand-receptor-G protein interaction network required for signaling (Fig. S10) (21, 23).  Interestingly, these ligands also increase the probabilities of state-to-state transitions (Figs. 3B & 4B), suggesting that enhanced conformational exchange prevents the receptor from productively engaging G proteins. Similarly, ACKR3 is naturally dynamic and lacks G protein coupling, suggesting a common mechanism of G protein antagonism.”

      Finally, we also agree that experiments with G proteins could be informative. In fact, we initiated such experiments during the course of this study.  However, it soon became apparent that significant optimization would be required to identify fluorophore labeling positions that report receptor conformation without inhibiting G protein coupling. Accordingly, we decided that G protein experiments would be the subject of future studies.

      However, we added the following text to the Discussion on Pg. 12:

      “Future smFRET studies performed in the presence of G proteins should be informative in this regard”.

      The authors also mentioned in Figure 6 that the energetic landscape of the receptors is relatively flat ... I do not really agree with this statement. For me, a flat conformational landscape would be one where the receptors are able to switch very rapidly between the states (typically in the submillisecond timescale, which is the timescale of protein domain dynamics). Here, the authors observed that the transition between states is in the second timescale, which for me implies that the transition barrier between the states is relatively high to preclude the fast transitions.

      We thank the reviewer for the comment. We have modified the description of the energy landscapes of ACKR3 and CXCR4 in the discussion on Pg. 10 as follows:

      “These observations imply that ACKR3 has a relatively flat energy landscape, with similar energy minima for the different conformations, whereas the energy landscape of CXCR4 is more rugged (Fig. 6). For both receptors, the energy barriers between states are sufficiently high that transitions occur relatively slowly with seconds long dwell times (Figs. 1C and S2).”

      Reviewer #2 (Public Review):

      Summary:

      his manuscript uses single-molecule fluorescence resonance energy transfer (smFRET) to identify differences in the molecular mechanisms of CXCR4 and ACKR3, two 7transmembrane receptors that both respond to the chemokine CXCL12 but otherwise have very different signaling profiles. CXCR4 is highly selective for CXCL12 and activates heterotrimeric G proteins. In contrast, ACKR3 is quite promiscuous and does not couple to G proteins, but like most G protein-coupled receptors (GPCRs), it is phosphorylated by GPCR kinases and recruits arrestins. By monitoring FRET between two positions on the intracellular face of the receptor (which highlights the movement of transmembrane helix 6 [TM6], a key hallmark of GPCR activation), the authors show that CXCR4 remains mostly in an inactive-like state until CXCL12 binds and stabilizes a single active-like state. ACKR3 rapidly exchanges among four different conformations even in the absence of ligands, and agonists stabilize multiple activated states.

      Strengths:

      The core method employed in this paper, smFRET, can reveal dynamic aspects of these receptors (the breadth of conformations explored and the rate of exchange among them) that are not evident from static structures or many other biophysical methods. smFRET has not been broadly employed in studies of GPCRs. Therefore, this manuscript makes important conceptual advances in our understanding of how related GPCRs can vary in their conformational dynamics.

      Weaknesses:

      (1) The cysteine mutations in ACKR3 required to site-specifically install fluorophores substantially increase its basal and ligand-induced activity. If, as the authors posit, basal activity correlates with conformational heterogeneity, the smFRET data could greatly overestimate the conformational heterogeneity of ACKR3.

      The change in basal ACKR3 activity with the Cys introductions are modest in comparison and insignificantly different as determined by extra-sum-of-squares F test (P=0.14).

      (2) The probes used cannot reveal conformational changes in other positions besides TM6. GPCRs are known to exhibit loose allosteric coupling, so the conformational distribution observed at TM6 may not fully reflect the global conformational distribution of receptors. This could mask important differences that determine the ability of intracellular transducers to couple to specific receptor conformations.

      We agree that the overall conformational landscape of the receptors has not been investigated and we have added this caveat to the discussion on Pg. 12.

      “An important caveat is that our study does not report on the dynamics of the other TM helices and H8, some of which are known to participate in arrestin interactions.”

      (3) While it is clear that CXCR4 and ACKR3 have very different conformational dynamics, the data do not definitively show that this is the main or only mechanism that contributes to their functional differences. There is little discussion of alternative potential mechanisms.

      The main functional difference between CXCR4 and ACRK3 is their effector coupling: CXCR4 couples to G proteins, whereas ACKR3 only couples to arrestins (following phosphorylation of the C-terminal tail by GRKs). As currently noted in the discussion, ACKR3 has many features that may contribute to its lack of G protein coupling, including lack of a well-ordered intracellular pocket due to conformational dynamics, lack of an N-term-ECL3 disulfide, different chemokine binding mode, and the presence of Y257. Steric interference due to different ICL loop structures may also interfere with G protein activation. No one thing has proven to confer ACKR3 with G protein activity including swapping all of the ICLs to those of canonical chemokine receptor, suggesting it is a combination of these different factors. The following has been added to the discussion on Pg. 13 to clearly note that any one feature is unlikely to drive the atypical behavior of ACKR3:

      “The atypical activation of ACKR3 does not appear to be dependent on any singular receptor feature and is likely a combination of several factors.”

      (4) The extent to which conformational heterogeneity is a characteristic feature of ACKRs that contributes to their promiscuity and arrestin bias is unclear. The key residue the authors find promotes ACKR3 conformational heterogeneity is not conserved in most other ACKRs, but alternative mechanisms could generate similar heterogeneity.

      Despite the commonalities in the roles of the ACKRs, they all appear to have evolved independently. Thus, we do not believe that all features observed and described for one ACKR will explain the behavior of another. We have carefully avoided expanding our observations to other ACKRs to avoid suggesting common mechanisms.

      (5) There are no data to confirm that the two receptors retain the same functional profiles observed in cell-based systems following in vitro manipulations (purification, labeling, nanodisc reconstitution).

      We agree this is an important point. All labeled receptors responded to agonist stimulation as expected. As only properly folded receptors are able to make the extensive interactions with ligands necessary for conformational changes (for instance, CXCL12 interacts with all TMs and ECLs), this suggests that the proteins are folded correctly and functional following all manipulations.

      Reviewer #3 (Public Review):

      Summary:

      This is a well-designed and rigorous comparative study of the conformational dynamics of two chemokine receptors, the canonical CXCR4 and the atypical ACKR3, using single-molecule fluorescence spectroscopy. These receptors play a role in cell migration and may be relevant for developing drugs targeting tumor growth in cancers. The authors use single-molecule FRET to obtain distributions of a specific intermolecular distance that changes upon activation of the receptor and track differences between the two receptors in the apo state, and in response to ligands and mutations. The picture emerging is that more dynamic conformations promote more basal activity and more promiscuous coupling of the receptor to effectors.

      Strengths:

      The study is well designed to test the main hypothesis, the sample preparation and the experiments conducted are sound and the data analysis is rigorous. The technique, smFRET, allows for the detection of several substates, even those that are rarely sampled, and it can provide a "connectivity map" by looking at the transition probabilities between states. The receptors are reconstituted in nanodiscs to create a native-like environment. The examples of raw donor/acceptor intensity traces and FRET traces look convincing and the data analysis is reliable to extract the sub-states of the ensemble. The role of specific residues in creating a more flat conformational landscape in ACKR3 (e.g., Y257 and the C34-C287 bridge) is well documented in the paper.

      Weaknesses:

      The kinetics side of the analysis is mentioned, but not described and discussed. I am not sure why since the data contains that information. For instance, it is not clear if greater conformational flexibility is accompanied by faster transitions between states or not.

      The reviewer is correct that kinetic information is available, in principle, from smFRET experiments. However, a detailed kinetic analysis will require a much larger data set than we currently possess, to adequately sample all possible transitions and the dwell times of each FRET state. We intend to perform such an analysis in the future as more data becomes available. The purpose of this initial study was to explore the conformational landscapes of CXCR4 and ACKR3 and to reveal differences between them. To this end, we have documented major differences in conformational preferences and response to ligands of the two receptors that are likely relevant to their different biological behavior. Future kinetic information will add further detail, but is not expected to alter the conclusions drawn here.

      The method to choose the number of states seems reasonable, but the "similarity" of states argument (Figures S4 and S6) is not that clear.

      We thank the reviewer for noting a need for further clarification. We qualitatively compared the positions of the various FRET peaks across treatments to gain insight into the consistency of the conformations and avoid splitting real states by overfitting the data. For instance, fitting the ACKR3 treatments with three states leads to three distinct FRET populations for the R’ intermediate. Adding a fourth state results in two intermediates that are fairly well overlapping. In contrast, the two-intermediate model for CXCR4 appears to split the R* state of the CXCL12 treated sample and causes a general shift in both intermediate states to lower FRET values when CXCL12 is present. As we assume that the conformations are consistent throughout the treatments, we conclude that this represents an overfitting artifact and not a novel CXCL12CXCR4 R*’ state. Additional sentences have been added to the supplemental figure legend to better describe the comparative analysis.

      “(Top) With the 3-state model, the R’ states for apo-CXCR4 and for CXCL12- and IT1t-bound receptor overlapped well with similar apparent FRET values across all of the tested conditions. In the case of the four-state model, the R*’ (Middle) and R’ (Bottom) states were substantially different across the ligand treatments. In particular, the R*’ state with CXCL12 treatment appears to arise from a splitting of the R* conformation, indicating that the model was overfitting the data.”

      Also, the "dynamics" explanation offered for ACKR3's failure to couple and activate G proteins is not very convincing. In other studies, it was shown that activation of GPCRs by agonists leads to an increase in local dynamics around the TM6 labelling site, but that did not prevent G protein coupling and activation.

      We agree with the reviewer that any single explanation for ACKR3 bias, including the dynamics argument presented here, is insufficient to fully characterize the ACKR3 responses. As noted by the reviewer, the TM6 movement and dynamics is generally correlated with G protein coupling, whereas other dynamics studies (Wingler et al. Cell 2019) have noted that arrestinbiased ligands do not lead to the same degree of TM6 movement. We have added the following statement to the discussion on Pg. 13:

      “The atypical activation of ACKR3 does not appear to be dependent on any singular receptor feature and is likely a combination of several factors.” 

      Recommendations for the authors:  

      Reviewer #1 (Recommendations For The Authors):

      I would like to raise a technical point about the calculation and reporting of the FRET efficiency. The authors report the FRET efficiency as E=IA/(IA+ID). There is now a strong recommendation from the FRET community (https://doi.org/10.1038/s41592-018-0085-0) to use the term “FRET efficiency” only when a proper correction procedure of all correction factors has been applied, which is not the case here (gamma factor has not been calculated). The authors should therefore use the term “Apparent FRET Efficiency” and  E<sub>app</sub> in all the manuscripts.

      Also, it would be nice to indicate directly on the figures whether a ligand that is used is an agonist, antagonist, inverse agonist, etc...

      We thank the reviewer for suggesting this clarification in terminology. We now refer to apparent FRET efficiency (or E<sub>app</sub>) throughout the manuscript and in the figures. In addition, we have added ligand descriptions to the relevant figures.

      Reviewer #2 (Recommendations For The Authors):

      (1) M159(4.40)C/Q245(6.28)C ACKR3 appears to have higher constitutive activity than ACKR3 Wt (Fig. S1). While the vehicle point itself is likely not significant due to the error in the Wt, the overall trend is clear and arguably even stronger than the effect of Y257(6.40)L (Fig. S9). While this is an inherent limitation of the method used, it should be clearly acknowledged; the comment in lines 162-164 seems to skirt the issue by only saying that arrestin recruitment is retained. It would be helpful and more rigorous to report the curve fit parameters (basal, E<sub>max</sub>, EC50) for the arrestin recruitment experiments and the associated errors/significance (see https://www.graphpad.com/guides/prism/latest/statistics/stat_qa_multiple_comparisons_ after_.htm for a discussion).

      The Emin, E<sub>max</sub>, and EC50 for M159<sup>4</sup>.<sup>40</sup>C/Q245<sup>6</sup>.<sup>28</sup>C ACKR3 were compared against the values for WT ACKR3 from Fig. S1 and only the E<sub>max</sub> was determined to be significantly different by the extra sum of squares F test. A note has been added to the text to reflect these results on Pg. 5.

      “Only the E<sub>max</sub> for arrestin recruitment to CXCL12-stimulated ACKR3 was significantly altered by the mutations, while all other pharmacological parameters were the same as for WT receptors.”

      (2) The methods do not specify the reactive group of the dyes used for labeling (i.e., AlexaFluor 555-maleimide and Cy5-maleimide?).

      We regret the omission and have added the necessary details to the materials and methods.

      (3) Were any of the native Cys residues removed from ACKR3 and CXCR4 in the constructs used for smFRET? ACKR3 appears to have two additional Cys residues in the N-terminus besides the one involved in the second disulfide bridge, and these would presumably be solvent-exposed. If so, please specify in the Methods and clarify whether the constructs tested in functional assays included these. (Also, please specify if the human receptors were used.)

      No additional cysteine residues were mutated in either receptor. All exposed cysteines are predicted to form disulfides. The residues in the N-terminus that the reviewer alludes to, C21 and C26, form a disulfide (Gustavsson et al. Nature Communications 2017) and are thus protected from our probes. Consistent with these expectations, neither WT CXCR4 nor ACKR3 exhibited significant fluorophore labeling (now mentioned in the text on Pg. 5). The species of origin has been added to the material and methods.

      (4) There are a few instances where the data seem to slightly diverge from the proposed models that may be helpful to comment on explicitly in the text:

      - Figure 4E (ACKR3/CXCL12(P2G)): As noted in the legend, despite stabilizing R*/R*', CXCL12(P2G) reduces transitions between these states compared to Apo. This is more similar to the effects of VUF16840 (Figure 3D) than the other ACKR3 agonists. The authors note the difference between CXCL12(LHRQ) and CXCL12(P2G) (but not vs Apo) in this regard. There might be some other information here regarding the relative importance of the conformational equilibrium vs transition rates for receptor activity.

      Although the TDPs for CXCL12<sub>P2G</sub> and VUF16840 are similar, as noted by the reviewer, the overall FRET envelopes are drastically different.

      The differences in transition probabilities for R ↔ R’ and R*’ « R* transitions observed in the presence of CXCL12<sub>P2G</sub> or CXCL12<sub>LRHQ</sub> relative to the apo receptor are now explicitly noted in the Results.

      - The conformational distributions of ACKR3 apo and ACKR3 Y257L CXCL12 are very similar (Figure 5A,D). However, there is a substantial difference in the basal activity of WT vs CXCL12stimulated Y257L (Figure S9).

      The mutation Y257L appears to promote the highest and lowest FRET states at the expense of the intermediates. Although the distribution appears similar between Apo-WT and CXCL12Y257L, the depopulation of the R’ state may lead to the observed activation in cells.

      (5) There are inconsistent statements regarding the compatibility of G protein binding to the "active-like" ACKR3 conformation observed in the authors' previous structures (Yen et al, Sci Adv 2022). In the introduction, the authors seem to be making the case that steric clashes cannot account for its lack of coupling; in the discussion, they seem to consider it a possibility.

      The introduction to previous research on the molecular mechanisms governing the lack of ACKR3-G protein coupling was not intended to be all encompassing, but rather to highlight previous efforts to elucidate this process and justify our study of the role  of dynamics. Due to the positions of the probes, we can only comment on the impact on TM6 movements and not other conformational changes. The steric clash reported in Yen et al. was in ICL2 and not directly tested here, so our observations do not preclude changes occurring in this region. We also do not claim that the active-like state resolved in our previous structures matches any specific state isolated here by smFRET.

      (6) Line 83-85: "Having excluded other mechanisms we therefore surmised that the inability of ACKR3 to activate G proteins may be due to differences in receptor dynamics."

      Line 400-402: "It is possible that the active receptor conformation clashes sterically with the G protein as suggested by docking of G proteins to structures of ACKR3."

      As mentioned above, we suspect the mechanisms governing the inability of  ACKR3 to couple to G proteins may be more complex than one particular feature but instead due to a combination of several factors. Accordingly, we have not completely eliminated a contribution of steric hindrance as we described in Yen et al. Sci Adv 2022 and instead include it as a possibility. Following the line highlighted here, we list several alternatives: 

      “Alternatively, the receptor dynamics and conformational transitions revealed here may prevent formation of productive contacts between ACKR3 and G protein that are required for coupling, even though G proteins appear to constitutively associate with the receptor.”

      And, at the end of the paragraph, we have added the following sentence: 

      “The atypical activation of ACKR3 does not appear to be dependent on any singular receptor feature and is likely a combination of several factors.”

      (7) If the authors believe that the various ligands/mutations are only altering the distribution/dynamics of the same 3/4 conformations of CXCR4/ACKR3, respectively, is there a reason each FRET efficiency histogram is fit independently instead of constraining the individual components to Gaussian components with the same centroids, and/or globally fitting all datasets for the same receptor?

      We performed global analysis across all data sets for each sample and condition. Since the peak positions of the various FRET states recovered in this way were consistent across treatments (Fig. S4,S6), we did not feel it was necessary to perform a further global analysis across all samples for a given receptor.

      Reviewer #3 (Recommendations For The Authors):

      The manuscript is well-written, the arguments are easy to follow and the figures are helpful and clear. Here are a few questions/suggestions that the authors might want to address before the paper will be published:

      (1) Include a table with kinetic rates between states in SI and have a brief discussion in the main text to support the trends observed in transition probabilities.

      As noted above, determining rate constants for each of the state-to-state transitions will require a much larger set of experimental smFRET data than is currently available and will be the subject of future studies.

      (2) The argument of state similarity (Figure S4 and S6)... why are the profiles not Gaussian, like in the fits on Figures S3 and S5, repectively? I would also suggest that once the number of states is chosen to do a global fit, where the FRET values of a certain sub-state across different conditions for one receptor are shared.

      The state distributions presented in Figs. S4 and S6 (as well as throughout the rest of the paper) are derived from HMM fitting of the time traces themselves, and are not constrained to be Gaussian, whereas the GMM analysis in Figs. S3 and S5 are Gaussian fits to the final apparent FRET efficiency histograms.

      Similar to our response to Review 2 above, due to the consistency of the fitted peak positions obtained across different conditions for a given sample, we did not feel that further global analysis was necessary.

      (3) It is shown FRET changes from ~0.85 in the inactive (closed) state to ~0.25 in the active (open) state. How do these values match the expectations based on crystal structure and dye properties?

      As noted in our response to Reviewer 1, translating the apparent FRET values using the assumed Förster distances for A555/Cy5 (per FPbase) suggest a change in D-A distance of ~30 angstroms, whereas the expected change from structures is ~16 Å. We suspect this discrepancy is due to the lipids immediately adjacent to the fluorophores, which may lead to the probes being constrained in an extended position when TM6 moves outwards, thus also reporting the linker length in the distance change. Additionally, such interactions may constrain the donor and acceptor in unfavorable orientations for energy transfer, which would also reduce the FRET efficiency in the active state. Since the calculated D-A distance changes appear too large for GPCR activation, we have opted to not make any structural interpretations. Instead, all of our conclusions are based on resolving individual conformational states and quantifying their relative populations, which is based directly on the measured FRET efficiency distributions, not computed distances.

      (4) The results on the effect of CXCL12-P2G on CXCR4 are confusing...despite being an antagonist, this ligand stabilizes the "active state"...I am not sure if the explanation offered is sufficient that the opening of the intracellular cleft is not sufficient to drive the G protein coupling/activation.

      We agree that the explanation related to the opening of the intracellular cleft being insufficient to drive G protein coupling/activation is speculative and we have removed that text. We now simply propose that the CXCL12 variants inhibit coupling of G proteins to CXCR4 or disrupt interactions necessary for signaling, as stated in the following text to the results on Pg. 8:

      “Despite the ability of CXCL12<sub>P2G</sub> and CXCL12<sub>LRHQ</sub> to stabilize the active R* conformation of CXCR4, both variants are known to act as antagonists (20). This suggests that the CXCL12 mutants inhibit CXCR4 coupling to G proteins not by suppressing the active receptor population but rather by increasing the dynamics of the receptor state-to-state transitions. Our results suggest that the helical movements considered classic signatures of the active state may not be sufficient for CXCR4 to engage productively with G proteins.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      We thank the Reviewer for being very supportive of the work and acknowledging how important it is to understand allosteric modulation in the spike and the potential of this knowledge to contribute to the design of novel therapeutic strategies (for example, disrupting or altering the allosteric networks within the spike can be a novel strategy for drug development against COVID-19). We address their comments below: 

      (1) The Reviewer states that although the strategy used to extract the responses has been "previously validated", the complexity of the interactions investigated requires "a robust statistical analysis, which is not shown quantitatively". 

      As the Reviewer points out, the D-NEMD approach has been previously validated in various protein systems ranging from soluble enzymes to integral membrane proteins, including the spike (e.g. [Kamsri et al. (2024) Biochem; Beer et al. (2024) Chem Sci; Oliveira et al. (2023) J Mol Cell Biol; Chan et al. (2023) JACS Au; Castelli et al. (2023) JACS; Castelli et al. (2023) Protein Sci; Oliveira et al. (2022) Comput Struct Biotechnol J; Gupta et al. (2022) Nat Comm; Oliveira et al. (2021) JACS; Galdadas et al. (2021) eLife; Abreu et al. (2019) Proteins; Oliveira et al. (2019) JACS; Oliveira et al. (2019) Structure]. The Kubo-Onsager relation is used to extract the evolution of the protein's response to a perturbation by comparing the equilibrium and nonequilibrium trajectories at equivalent points in time. The calculated responses at individual times are then averaged over all the repeats (210 repeats in the current work), and the standard error of the mean (SEM) is used to assess the significance of the average response. The SEM indicates how much the calculated mean deviates from the true population mean. Calculating the SEM allows us to determine how accurate the measured response is as an estimate of the population response and assess the convergence of our calculations. The evolution of the average C<sub>α</sub> displacement and corresponding SEM values for each individual monomer can be visualised in detail in Figures S7-S9. We have added a new sentence to the Materials and Methods section in the Supporting Information, explicitly stating how the convergence and statistical significance of the responses were assessed.

      (2) The Reviewer considers that the evidence presented in the paper "is compelling" but suggests performing a sequence analysis to facilitate the understanding of the results by the scientific community. 

      We thank the Reviewer for their excellent suggestion to perform a sequence analysis of the FA site region and its allosteric connections. Indeed, this analysis (Figure S24) clearly shows that several of the mutations, deletions and insertions in the Alpha, Beta, Gamma, Delta, and Omicron variants are located either in or near the regions of the protein shown to respond to the removal of linoleate from the FA site. These sequence changes affect the protein's responses, and are responsible for the differences in allosteric behaviour observed between variants, as described previously for the non-glycosylated spike [Oliveira et al. (2023) J Mol Cell Biol]. Furthermore, some variants, such as Beta, Gamma, and Omicron, contain residue substitutions at the FA site. For example, the lysine in position 417 in the ancestral spike is mutated to asparagine in Beta and Omicron and threonine in the Gamma variant. Another example is arginine 408 in the original protein, which has been replaced by asparagine in several Omicron sub-variants. 

      To summarise, the sequence analysis (Figure S24) supports our initial 3D analysis (Figure S25), indicating that many of the changes observed in the variants of concern are indeed in or close to the allosteric networks involving the FA site. We have now included the sequence analysis results in the current paper and added a new figure to Supporting Information showing the sequence alignments between the ancestral spike and different variants (Figure S24). 

      (3) The Reviewer also has "minor considerations": first, they point to a discrepancy in the presentation of residue values S325 in the plots of Chains A, B, and C of Figure S3; second, they ask why several regions, such as RBM and Furin Site in figures S6, S7, and S8 show significant changes.

      To answer both points raised by the Reviewer, we need to start by explaining that the spike typically features 22 N-glycosylation and at least two O-glycans sites per monomer. These sites have been found to be heterogeneously populated in different experimental studies (e.g. [Watanabe et al. (2020) Science; Shajahan et al. (2020) Glycobiology; Zhang et al. (2021) Mol Cell Proteomics]). Given this, the spike model used as the starting point for this work reflects this heterogeneity, with asymmetric site-specific glycosylation profiles derived from the glycoanalytic data reported by Watanable et al. for N-glycans [Watanabe et al. (2020) Science] and Shajahan et al. for O-glycans [Shajahan et al. (2020) Glycobiology]. This means that the glycan occupancy and composition for each site differ between the three monomers. For example, while monomer A contains the two O-glycans sites (linked to T323 and S325, respectively) fully occupied, monomers B and C only contain the T323 O-glycan. A detailed description of the glycosylation of the spike model is given in the supporting information of [Casalino et al. (2020) ACS Cent Sci].

      Regarding the Reviewer's first minor point, the discrepancy in behaviour observed in Figure S3 for S325 is related to the fact that this glycosylation site is only occupied in monomer A, with no glycans present in this site in monomers B and C. 

      Regarding the second point, the differences observed in the responses between the three monomers in Figures S7-S9 are probably due to asymmetries in the protein dynamics introduced by the different glycosylation patterns in the monomers. 

      We have now added a new paragraph to the materials and methods section in the Supporting Information describing the asymmetric site-specific glycosylation profiles of the monomers.

      (4) Due to the complexity of the allosteric interactions observed, the Reviewer suggests including in the paper a "diagram showing the flow of allosteric interactions" or a "vector showing how the perturbation done in the FA Active site takes contact with other relevant regions". 

      This is an excellent suggestion to facilitate the visualisation of the allosteric networks. We have added a new figure to Supporting Information highlighting the allosteric pathways identified from the DNEMD simulations and the direction of the propagation of the structural changes (Figure S26).

      Reviewer #2:

      We thank the Reviewer for their time in evaluating our manuscript and providing suggestions for improving it and ideas for further work. We are happy that the Reviewer found this to be a "nice paper" with the calculations "well done" and interesting results. We address their comments below: 

      (1) The Reviewer suggests improving the paper by adding a more detailed explanation of the DNEMD simulations approach, a method that, although proposed decades ago, is still generally unfamiliar to the community. They also asked for "information on the convergence of the observables".

      As stated by the Reviewer, a dynamical approach to nonequilibrium molecular dynamics (D-NEMD) was first proposed in the seventies by Ciccotti et al. [Ciccotti et al. (1975) Phys Rev Lett; Ciccotti et al. (1979) J Stat Phys]. This approach combines MD simulations in equilibrium and nonequilibrium conditions. The rationale for the D-NEMD approach is simple and can be described as follows: if an external perturbation (e.g. binding/unbinding of a ligand) is added to a simulation sampling an equilibrium state and, by doing so, a parallel nonequilibrium simulation is started, the structural response of the protein to the perturbation can be directly measured by comparing the equilibrium and nonequilibrium trajectories at equivalent points in time by using the Kubo-Onsager relation as long as enough sapling is gathered (for more details, please see the reviews [Balega et al. (2024) Mol Phys; Oliveira et al. (2021) Eur Phys J B; Ciccotti et al. (2016) Mol Simul]). This approach, although conceptually simple, is very powerful as it allows for computing the evolution of the dynamic response of the protein to the external perturbation, while assessing the convergence and statistical significance of that response. This approach also has the advantage that the convergence and significance of the response can be easily evaluated, and the associated errors can be computed and made as small as desirable by increasing the number of nonequilibrium trajectories. Determining the statistical errors associated with the responses (through, e.g., the determination of the standard error of the mean, SEM) is essential to test if the sampling gathered is sufficient. In this paper, the SEM was calculated for each average C<sub>α</sub> displacement value at times 0.1, 1 and 10 ns after the removal of linoleate, LA (see Figures S7-S9). The SEM indicates how accurate the measured response is as an estimate of the population response and allows us to assess the convergence of the results. 

      Generally, multiple (tens to hundreds) D-NEMD simulations are needed to achieve statistically significant results for biomolecular systems (for examples, see [Balega et al. (2024) Mol Phys; Oliveira et al. (2021) Eur Phys J B]). As such, the length of the D-NEMD simulations (typically 5 to 10 ns) reflects the balance between the computational resources available and the number of replicates needed to achieve statistically significant responses from the system. Following the Reviewer's suggestion, we have now added a brief description of the D-NEMD approach to the main manuscript and expanded the D-NEMD section in the Supporting Information with a more detailed description of the method, including adding a new figure showing a schematic representation of the D-NEMD approach (Figure S5) as well as explicitly stating the settings used in these simulations and how the statistical significance of the responses was assessed. 

      (2) The Reviewer suggests comparing the D-NEMD results with "more traditional analysis, such as correlation analysis, or community network analysis". 

      We agree with the Reviewer that this is an important comparison, which can provide a broader, more articulate and coherent picture of spike allostery and have, therefore, performed additional analysis. The dynamic cross-correlation analysis suggested by the Reviewer is a valuable tool for identifying the regions in the protein influenced by the FA site in equilibrium conditions. However, such an approach is not straightforwardly applicable to D-NEMD simulations, as these simulations are not in equilibrium. Nevertheless, as suggested by the Reviewer, we have determined the cross-correlation matrices for both the equilibrium and D-NEMD simulations (Figure S22), similar to those in our previous work [Galdadas et al. (2021) eLife] and [Oliveira et al. (2022) J Mol Cell Biol]. The analysis of these matrices can provide information about possible allosteric networks. In Figure S22, the cyan and blue regions represent moderate and high negative correlations between C<sub>α</sub> atoms, while orange and red regions correspond to moderate and high positive correlations. Negative correlations indicate residues moving in opposite directions (moving toward or away from each other). In contrast, positive values imply that the residues are moving in similar directions. We also note that, with collaborators, we have compared D-NEMD and other nonequilibrium and equilibrium MD analysis methods for allostery [Castelli et al.  (2023) JACS].

      The cross-correlation maps depicted in Figure S22 show moderate to high positive correlations between the FA sites and two of the three RBDs in the protein. This happens because each FA site sits at the interface between two neighbouring RBDs. Low to moderate negative and mildly positive correlated motions can also be observed between the FA site and the NTDs and fusion peptide surrounding regions, respectively. To facilitate the visualisation of the above-described motions, we have also mapped the statistical correlations for R408 and K417 (two FA site residues able to directly form salt-bridge interactions with the carboxylate head group of LA) on the protein's three-dimensional structure (Figure S23). Figure S23 highlights the patterns of movement described above and allows us to identify the regions whose motions are coupled to the FA site.

      Interestingly, some segments forming the signal propagation pathways, such as R454-K458 in all three monomers, and C525-K537 in monomers B and C, can also be identified from the cross-correlation matrices, showing moderate to high correlations with the FA site (Figures S22-S23). The crosscorrelation maps computed from the equilibrium trajectories (with FA sites occupied with LA) show a slight increase in the dynamic correlations, mainly for the RBDs, compared to the maps obtained from the nonequilibrium trajectories (Figure S22). This indicates that the presence of LA in the FA strengthens the connections between the FA site and other parts of the protein. 

      We have updated the manuscript to include the cross-correlation analysis, with two new figures added to Supporting Information: one depicting the cross-correlation maps for the D-NEMD and equilibrium simulations (Figure S22), and the other showing the statistical correlations for R408 and K417 (Figure S23). 

      (3) The Reviewer considers the observed connection between the fatty acid site and the heme/biliverdin site "interesting" and suggests "exploring the impact of ligand removal on this secondary site on the protein".

      Similarly to the Reviewer, we find the connection between the FA and the heme/biliverdin site fascinating and worthy of further investigation. The observed connection between these two sites shows the complexity of the allosteric effects in the spike. It would be interesting and informative to perform new equilibrium simulations of the heme/biliverdin spike complex and a new set of D-NEMD simulations in which this site is perturbed (e.g. through the removal of the heme group) to map the networks connecting this allosteric site to other functionally important regions of the spike, including the FA site and potentially other allosteric sites. These new simulations would allow us to assess the reversibility of the connection between the FA and heme/biliverdin sites and enhance our understanding of allosteric modulation in the spike and the role of the heme/biliverdin site in this process. However, due to the large size of the system and the associated computational demands, such simulations are not possible within the timeframe of the revision of this paper. These simulations would take many months to complete using our HPC resources. We also note that an experimental structure of the spike containing both heme and linoleate is not available. Further simulation analysis of the communication pathways involving the heme/biliverdin site is an excellent idea for future work.

      (4) The Reviewer "liked the mapping of existing mutations on the communication pathway" and suggested a more detailed study focusing on the effect of the mutations. 

      We fully agree with the Reviewer and consider that a detailed study focusing on the effect of the mutations, insertions, and deletions in the different glycosylated variants of concern (including new emerging ones) would be of great interest. Our previous work using D-NEMD on the non-glycosylated ancestral, Alpha, Delta, Delta plus and Omicron BA.1 spikes revealed significant differences in the allosteric responses to LA removal, with the changes in the variants affecting both the amplitude of the structural responses and the rates at which these rearrangements propagate within the protein [Oliveira et al. (2023) J Mol Cell Biol]. 

      Using the D-NEMD approach to systematically investigate the impact of each individual mutation and their contribution to the overall allosteric response of the glycosylated variants (similar to what we have done previously for the D614G mutation in the non-glycosylated protein [Oliveira et al. (2021) Comput Struct Biotechnol J]) would provide insights into the functional modulation of the spike. However, as noted above in point 3, spike simulations are highly computationally expensive, both in terms of processing and data storage requirements, because of the large size of the protein and the need for equilibrium and D-NEMD simulations. This makes the suggested mutational study unfeasible within the timeframe of the current revisions. It is, however, an excellent idea for future research.

      Reviewer #3:

      We thank the Reviewer for carefully reading and critically reviewing this work and recognising that the findings reported are "based on an impressive amount of sampling" and "meticulous" analysis. We address their comments below: 

      (1) The Reviewer considers that this work "does not clearly show any new findings" as it shows that the glycans do not significantly impact the internal networks in the protein.

      We respectfully disagree with the Reviewer. This work identifies new allosteric effects in the spike, specifically, the connection of the FA site with the heme binding site. The equilibrium simulations alone provide the first analysis of the effects of linoleate binding in the fully glycosylated spike. The finding that glycosylation does not significantly affect the allosteric pathways in the spike is in itself an important finding. Previous D-NEMD simulations investigated only the non-glycosylated spike ([Oliveira et al. (2021) Comput Struct Biotechnol J; Oliveira et al. (2022) J Mol Cell Biol] ) leading to questions of whether the allosteric effects pathways were changed by glycosylation; our results here show that the main conclusions are reinforced, but glycosylation does have some effect on networks, and also on the speed of the dynamical response. To the best of our knowledge, our work represents the first investigation to analyse the impact of glycosylation on the allosteric networks in the spike. We show that even though the presence of glycans in the exterior of the spike does not significantly alter the internal communication pathways in the protein, in some cases (for example, the glycans linked to N234, T373 and S375), they create direct connections between different regions, which may facilitate the propagation of the structural changes. 

      (2) The Reviewer suggests adding a "clear and concise description" of the D-NEMD approach to the manuscript.

      We appreciate that the use of the D-NEMD method to study biomolecular systems is relatively new, and so may be unfamiliar. As explained above in our response to Reviewer 2 (point 1), a brief description of the D-NEMD approach was now included in the main manuscript. A detailed description of the method was also added to Supporting Information, including a new figure representing the rationale for the approach (Figure S5). The interested reader is directed to previous applications and reviews for more details of the method (e.g. [Balega et al. (2024) Mol Phys; Oliveira et al. (2021) Eur Phys J B; Ciccotti et al. (2016) Mol Simul; Kamsri et al. (2024) Biochem; Beer et al. (2024) Chem Sci; Oliveira et al. (2023) J Mol Cell Biol; Chan et al. (2023) JACS Au; Castelli et al. (2023) JACS; Castelli et al. (2023) Protein Sci; Oliveira et al. (2022) Comput Struct Biotechnol J; Gupta et al. (2022) Nat Comm; Oliveira et al. (2021) JACS; Galdadas et al. (2021) eLife; Abreu et al. (2019) Proteins; Oliveira et al. (2019) JACS; Oliveira et al. (2019) Structure]). 

      (3) The Reviewer invites us to "discuss the robustness of the findings with respect to forcefield choices".

      The Reviewer raises an important but rather complex question, and one which can, of course, be posed for any molecular dynamics simulation study. The short answer is that we have chosen state-of-the-art forcefields, which have been shown to give results for the spike that are in good agreement with experiments; glycosylated spike simulations are rather computationally expensive, and constructing the models also requires significant human time and effort. Thus, while in principle interesting, it is not practical to repeat the current simulations with different forcefields. However, as detailed below, comparison of our simulations of the glycosylated and non-glycosylated [Oliveira et al. (2022) Comput Struct Biotechnol J] spike using different forcefields indicates that our conclusions are robust and are not dependent on the choice of forcefield. 

      Comparing the performance and accuracy of different force fields is not straightforward, as the results depend on the system of interest, properties simulated and sampling. In this work, the CHARMM36m all-atom additive force field was used to describe the protein and glycans. CHARMM36m is a widely used force field that has previously been validated for the simulations of biological systems [Huang et al. (2013) J Comput Chem; Guvench et al. (2009) J Chem Theory Comput], including proteins, lipids and glycans, with many of studies adopting it in the literature. Additionally, the glycosylated models of the spike used in this work have also been successfully applied and tested before (e.g. [Dommer et al. (2023) Int J High Perform Comput Appl; Sztain et al. (2021) Nat Chem; Casalino et al. (2021) Int J High Perform Comput Appl; Casalino et al. (2020) ACS Cent Sci]), with their dynamics shown to correlate well with experimental data.   

      It is also worth pointing out that, despite differences in the amplitude of the responses, the allosteric networks identified using the D-NEMD approach for the non-glycosylated [Oliveira et al. (2022) Comput Struct Biotechnol J] and glycosylated spikes are generally similar (Figure S13). While the responses for the non-glycosylated protein were extracted from simulations using the AMBER99SBILDN forcefield [Oliveira et al. (2022) Comput Struct Biotechnol J], those reported in this work were obtained from trajectories using the CHARMM36m forcefield. The similarity between the responses for the two systems (which were simulated using different forcefields) is a good indication that our findings are forcefield independent. 

      (4) The Reviewer suggests comparing our findings with "alternative methods of analysing allostery". 

      As stated above in our response to Reviewer 2 point 2, we consider the suggested comparison an excellent idea. We have therefore performed a dynamic cross-correlation analysis to identify the regions in the protein coupled to the FA site in both equilibrium and nonequilibrium conditions (see Figures S22-S23). Overall, this analysis shows that the FA site motions are strongly coupled to the RBDs and moderately to weakly connected to the NTDs and fusion peptide surrounding regions (please see a detailed description of the results of the correlation analysis in our response to Reviewer 2 point 2). The cross-correlation analysis performed was added to the manuscript, and two new figures were included in the Supporting Information (Figures S22-S23): the first, showing the cross-correlation maps for the D-NEMD and equilibrium simulations; the second, showing the statistical correlations for R408 and K417 (two residues forming the FA site and that can directly interact with the carboxylate head group of LA). 

      We agree that comparing different allosteric analysis methods is interesting, informative and important. As noted above, we have compared D-NEMD and other nonequilibrium and equilibrium MD analysis methods for allostery in the well-characterised K-Ras system [Castelli et al.  (2023) JACS].

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:  

      Reviewer # 1 (Public Review): 

      Summary:

      The authors use an innovative behavior assay (chamber preference test) and standard calcium imaging experiments on cultured dorsal root ganglion (DRG) neurons to evaluate the consequences of global knockout of TRPV1 and TRPM2, and overexpression of TRPV1, on warmth detection. They find a profound effect of TRPM2 elimination in the behavioral assay, whereas the elimination of TRPV1 has the largest effect on the neuronal responses. These findings are very important, as there is substantial ongoing discussion in the field regarding the contribution of TRP channels to different aspects of thermosensation.

      Strengths:

      The chamber preference test is an important innovation compared to the standard two-plate test, as it depends on thermal information sampled from the entire skin, as opposed to only the plantar side of the paws. With this assay, and the detailed analysis, the authors provide strong supporting evidence for a role of TRPM2 in warmth avoidance. The conceptual framework using the Drift Diffusion Model provides a first glimpse of how this decision of a mouse to change between temperatures can be interpreted and may form the basis for further analysis of thermosensory behavior.

      Weaknesses:

      The authors juxtapose these behavioral data with calcium imaging data using isolated DRG neurons. As the authors acknowledge, it remains unclear whether the clear behavioral effect seen in the TRPM2 knockout animals is directly related to TRPM2 functioning as a warmth sensor in sensory neurons. The effects of the TRPM2 KO on the proportion of warmth sensing neurons are very subtle, and TRPM2 may also play a role in the behavioral assay through its expression in thermoregulatory processes in the brain. Future behavioral experiments on sensory-neuron specific TRPM2 knockout animals will be required to clarify this important point.

      Reviewer # 1 (Recommendations for the authors):

      (1) I have no further suggestions for the authors, and congratulate them with their excellent study.

      For the authors information, ref. 42 does contain behavioral data from both male (Fig. 4 and Extended Figure 7) and female (Extended Figure 8) mice.

      We thank the referee for pointing out that both males and female mice were tested in the Vandewauw et al. 2018 study. We deliberated whether to include this at the appropriate section of our manuscript (“Limitations of the Study”). But since Vandewauw et al. assessed noxious heat temperatures and we here assess innocuous warmth temperature, we felt that this reference would not add to the clarification whether there are sex differences in Trp channelbased warmth temperature sensing. In particular, we did not want to “use” the argument and to suggest that there are no sex temperature differences in the warmth range just because Vandewauw et al. did not observe major sex differences in the noxious temperature range. 

      Reviewer #3 (Public Review):  

      Summary and strengths:

      In the manuscript, Abd El Hay et al investigate the role of thermally sensitive ion channels TRPM2 and TRPV1 in warm preference and their dynamic response features to thermal stimulation. They develop a novel thermal preference task, where both the floor and air temperature are controlled, and conclude that mice likely integrate floor with air temperature to form a thermal preference. They go on to use knockout mice and show that TRPM2-/- mice play a role in the avoidance of warmer temperatures. Using a new approach for culturing DRG neurons they show the involvement of both channels in warm responsiveness and dynamics. This is an interesting study with novel methods that generate important new information on the different roles of TRPV1 and TRPM2 on thermal behavior.

      Comments on revisions:

      Thanks to the authors for addressing all the points raised. They now include more details about the classifier, better place their work in context of the literature, corrected the FOVs, and explained the model a bit further. The new analysis in Figure 2 has thrown up some surprising results about cellular responses that seem to reduce the connection between the cellular and behavioral data and there are a few things to address because of this:

      (1) TRPM2 deficient responses: The differences in the proportion of TRPM2 deficient responders compared to WT are only observed at one amplitude (39C), and even at this amplitude the effect is subtle. Most surprisingly, TRPM2 deficient cells have an enhanced response to warm compared to WT mice to 33C, but the same response amplitude as WT at 36C and 39C. The authors discuss why this disconnect might be the case, but together with the lack of differences between WT and TRPM2 deficient mice in Fig 3, the data seem in good agreement with ref 7 that there is little effect of TRPM2 on DRG responses to warm in contrast to a larger effect of TRPV1. This doesn't take away from the fact there is a behavioral phenotype in the TRPM2 deficient mice, but the impact of TRPM2 on DRG cellular warm responses is weak and the authors should tone down or remove statements about the strength of TRPM2's impact throughout the manuscript, for example:

      "Trpv1 and Trpm2 knockouts have decreased proportions of WSNs."

      "this is the first cellular evidence for the involvement of TRPM2 on the response of DRG sensory neurons to warm-temperature stimuli"

      "we demonstrate that TRPV1 and TRPM2 channels contribute differently to temperature detection, supported by behavioural and cellular data"

      "TRPV1 and TRPM2 affect the abundance of WSNs, with TRPV1 mediating the rapid, dynamic response to warmth and TRPM2 affecting the population response of WSNs."

      "Lack of TRPV1 or TRPM2 led to a significant reduction in the proportion of WSNs, compared to wildtype cultures".

      We agree with the referee that the somewhat surprising result of the subtle phenotype in Trpm2 knock-out DRG culture experiments, that became detectable in the course of the new analysis, was overemphasized in the previous version of the manuscript. Per suggestion, we have toned down or removed the statements in the revised manuscript (for the referee to find those changes easily, they are indicated in “track-changes mode” in the submitted document).  

      (2) The new analysis also shows that the removal of TRPV1 leads to cellular responses with smaller responses at low stimulus levels but larger responses with longer latencies at higher stimulus levels. Authors should discuss this further and how it fits with the behavioral data.

      Because these changes shown in Fig. 2E are also subtle (similar to the cellular Trpm2 phenotype discussed above), and because both the “% Responders” (Fig 2.D) and The AUC analysis (Fig. 2F) show a reduction in Trpv1 knock out cultures ––both, at lower and at higher stimulus levels–– we did not want to overstate this difference too much and therefore did not further discuss this aspect in the context of the behavioral differences observed in the Trpv1 knock-out animals.  

      (3) Analysis clarification: authors state that TRPM2 deficient WSNs show "Their response to the second and third stimulus, however, are similar to wildtype WSNs, suggesting that tuning of the response magnitude to different warmth stimuli is degraded in Trpm2-/- animals." but is there a graded response in WT mice? It looks like there is in terms of the %responders but not in terms of response amplitude or AUC. Authors could show stats on the figure showing differences in response amplitude/AUC/responders% to different stimulus amplitudes within the WT group.

      We have added the statistics in the main text, you find them on page 7 (also in “track changes mode”).

      (4) New discussion point: sex differences are "similar to what has been shown for an operant-based thermal choice assay (11,56)", but in their rebuttal, they mention that ref 11 did not report sex differences. 56 does. Check this.

      Thank you for pointing out this mishap. We have now corrected this in the “Limitations of the study” section of the discussion and have removed the Paricio-Montesions et al study from that section and slightly revised the text (see “track-changes” on page 16).

      (5) The authors added in new text about the drift diffusion model in the results, however it's still not completely clear whether the "noise" is due to a perceptual deficit or some other underlying cause. Perhaps authors could discuss this further in the discussion.

      We have now included more discussion concerning this (page 14):

      “However, the increased noise in the drift-di3usion model points to a less reliable temperature detection mechanism. Although noise in drift di3usion models can encompass various sources of variability—ranging from peripheral sensory processing to central mechanisms like attention or motor initiation—the most parsimonious interpretation in our study aligns with a perceptual deficit, given the altered temperatureresponsive neuronal populations we observed. This implies that, despite the substantial loss of WSNs, the remaining neuronal population provides su3icient information for the detection of warmer temperatures, albeit with reduced precision”

      Within the limits of the data that is available, we hope the referee agrees with us that we have now adequately discussed this aspect; we feel that any further discussion would be too speculative.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Authors of this article have previously shown the involvement of the transcription factor Zinc finger homeobox-3 (ZFHX3) in the function of the circadian clock and the development/differentiation of the central circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. Here, they show that ZFHX3 plays a critical role in the transcriptional regulation of numerous genes in the SCN. Using inducible knockout mice, they further demonstrate that the deletion Of Zfhx3 induces a phase advance of the circadian clock, both at the molecular and behavioral levels.

      Strengths:

      - Inducible deletion of Zfhx3 in adults

      - Behavioral analysis

      - Properly designed and analyzed ChIP-Seq and RNA-Seq supporting the conclusion of the behavioral analysis

      Weaknesses:

      - Further characterization of the disruption of the activity of the SCN is required.

      (1) We thank the reviewer for their valuable inputs. Indeed, a comprehensive behavioral assessment of mice of this genotype was executed in Wilcox et al. ;2017 study. In Wilcox et al.; 2017, Figure 4, 6-h phase advance (jetlag) clearly showed faster reentrainment in ZFHX3-KO mice when compared to the controls.

      - The description of the controls needs some clarification.

      (2) We agree with the reviewer and have modified the text at line 211-212 to clearly describe the controls.

      Reviewer #2 (Public review):

      Summary:

      ZFHX3 is a transcription factor expressed in discrete populations of adult SCN and was shown by the authors previously to control circadian behavioral rhythms using either a dominant missense mutation in Zfhx3 or conditional null Zfhx3 mutation using the Ubc-Cre line (Wilcox et al., 2017). In the current manuscript, the authors assess the function of ZFHX3 by using a multi-omics approach including ChIPSeq in wildtype SCNs and RNAseq of SCN tissues from both wildtype and conditional null mice. RNAseq analysis showed a loss of oscillation in Bmal1 and changes in expression levels of other clock output genes. Moreover, a phase advance gene transcriptional profile using the TimeTeller algorithm suggests the presence of a regulatory network that could underlie the observed pattern of advanced activity onset in locomotor behavior in knockout mice.

      In figure1, the authors identified the ZFHX3 bound sites using ChIPseq and compared the loci with other histone marks that occur at promoters, TSS, enhancers and intergenic regions. And the analysis broadly points to a role for ZFHX3 in transcriptional regulation. The vast majority of nearly 40000 peaks overlapped H3K4me3 and K27ac marks, active promoters which also included genes falling under the GO category circadian rhythms. However, no significant differential ZFHX3 bound peaks were detected between ZT3 and ZT15. In these experiments, it is not clear if and how the different ChIP samples (ZFHX3 and histone PTM ChIPs) were normalized/downsampled for analysis. Moreover, it seems that ZFHX3 binding or recruitment has little to do with whether the promoters are active.

      (3) We thank the reviewer for their valuable comment. Different ChIP samples (ZFHX3 and histone PTM ChIPs) were treated in the same manner from preprocessing (quality control by FastQC, adapter trimming, alignment to mm10 genome) and peak calling was performed using respective input samples as control using MACS2 as mentioned in Methods. The data was normalized using bamCoverage tools and bigwig files were generated for visual inspection using UCSC Genome Browser. These additional details are added to Methods at line 592. Finally, BEDTools was employed to study overlapping peaks between ZFHX3 and histone PTMs.

      We agree that, alone, the current data does not make any claim for ZFHX3 being crucial for promoter to be active. Our data clearly suggests that a vast majority of ZFHX3 genomic binding in the SCN was observed at active promoters marked by H3K4me3 and H3K27ac and potentially regulating gene transcription.

      Based on a enrichment of ARNT domains next to K4Me3 and K27ac PTMs, the authors propose a model where the core-clock TFs and ZFHX3 interact. If the authors develop other assays beyond just predictions to test their hypothesis, it would strengthen the argument for role in circadian transcription in the SCN. It would be important in this context to perform a ChIP-seq experiment for ZFHX3 in the knockout animal (described from Figure 2 onwards) to eliminate the possibility of non-specific enrichment of signal from "open chromatin'. Alternatively, a ChIPseq analysis for BMAL1 or CLOCK could also strengthen this argument to identify the sites co-occupied by ZFHX3 and core-clock TFs.

      (4a) We agree that follow-up experiments such as BMAL1/CLOCK ChIPseq suggested by the reviewer will further confirm the proposed interaction of ZFHX3 with core-clock TFs. However, this is beyond the scope of the current study. 

      (4b) Again, conducting complementary ChIPseq in ZFHX3 knockout mice will strengthen the findings, but conducting TF-ChIPseq in a specific brain tissue such as the SCN (unlike peripheral tissues such as liver) does not only warrant use of multiple animals per sample but is also technically challenging and time-consuming to ensure specificity of the sample. For these reasons, datasets such as ours on the SCN are uncommon. Furthermore, in this particular context, we are certain that, based on current dataset, the ZFHX3 peaks (narrow) we observed were well-defined and met the specified statistical criteria mitigating any risk of signal arising from non-specific enrichment from open-chromatin regions.

      Next, they compared locomotor activity rhythms in floxed mice with or without tamoxifen treatment. As reported before in Wilcox et al 2017, the loss of ZFHX3 led to a shorter free running period and reduced amplitude and earlier onset of activity. Overall, the behavioral data in Figure 2 and supplementary figure 2 has been reported before and are not novel.

      (5) We recognise that a detailed circadian behavior assessment from adult mice lacking ZFHX3 has been conducted previously by Nolan lab (Wilcox et al; 2017). In the current study, however, we used a separate cohort of mice, to focus on the behavioral advance noted in 24-h LD cycle and generated a more refined assessment. Importantly, these mice were also used for transcriptomic studies as detailed in Figure 3, which we consider to be a positive feature of our experimental design: behavior and molecular analyses were performed on the same animals.

      Next, the authors performed RNAseq at 4hr intervals on wildtype and knockout animals maintained in light/dark cycles to determine the impact of loss of ZFHX3. Overall transcriptomic analysis indicated changes in gene expression in nearly 36% of expressed genes, with nearly half being upregulated while an equal fraction was downregulated. Pathways affected included mostly neureopeptide neurotransmitter pathways. Surprisingly, there was no correlation between the direction in change in expression and TF binding since nearly all the sites were bound by ZFHX3 and the active histone PTMs. The ChIP-seq experiment for ZFHX3 in the UBC-Cre+Tam mice again could help resolve the real targets of ZFHX3 and the transcriptional state in knockout animals.

      (6) We agree with the reviewer that most of the differentially expressed genes showed ZFHX3 binding at active promoter sites. That said, the current dataset is in line with recently published ZFHX3-CHIPseq data by Baca et al; 2024 [PMID: 38412861] in human neural stem cells and Hu et al; 2024 [PMID: 38871709] in human prostate cancer cells that clearly suggests ZFHX3 binds at active promoters and act as chromatin remodellers/mediators that modulate gene transcription depending on the accessory TFs assembled at target genes. Therefore, finding no correlation in the direction of change in expression is not striking. 

      To determine the fraction of rhythmic transcripts, Using dryR, the authors categorise the rhythmic transcriptome into modules that include genes that lose rhythmicity in the KO, gain rhythmicity in the KO or remain unaffected or partially affected. The analysis indicates that a large fraction of the rhythmic transcriptome is affected in the KO model. However, among core-clock genes only Bmal1 expression is affected showing a complete loss of rhythm. The authors state a decrease in Clock mRNA expression (line 294) but the panel figure 4A does not show this data. Instead it depicts the loss in Avp expression - {{ misstated in line 321 ( we noted severe loss in 24-h rhythm for crucial SCN neuropeptides such as Avp (Fig. 3a).}}

      (7a) Indeed, among the core-clock genes rhythmic expression is lost after ZFHX3 knockout only for Bmal1. However, given the mice were rhythmic (as assessed by wheel-running activity) in LD conditions, the observed 24-h gene expression rhythm in the majority of core-clock genes (Pers and Crys) is consistent with behavior data, and suggests towards an altered molecular clock with plausible scenarios as explained at line 439. That said, the unique and well-defined changes (amplitude and phase) observed as demonstrated in Figure 5 highlights a model in which ZFHX3 exerts differential control, for example in case of Per2 noted advance in molecular rhythm (~2-h), but no such change in Cry, presents an opportunity to delineate further the regulation of TTFL genes.

      (7b) Line 294 revised as – “Bmal1 demonstrating a complete loss of 24-h rhythm (Fig. 4A), and its counterpart Clock mRNA showing overall reduced expression levels (Supplementary Table 3)”.

      7c) Line 321 is referring to loss of Avp expression and the typo has been corrected from “Figure 3a to 4a”. Thank you. 

      However, core-clock genes such as Pers and Crys show minor or no change in expression patterns while Per2 and Per3 show a ~2hr phase advance. While these could only weakly account for the behavioral phase advance, the authors used TimeTeller to assess circadian phase in wildtype and ZFHX3 deficient mice. This approach clearly indicated that while the clock is not disrupted in the knockout animals, the phase advance can be correctly predicted from a network of gene expression patterns.

      Strengths:

      The authors use a multiomic strategy in order to reveal the role of the ZFHX3 transcription factor with a combination of TF and histone PTM ChIPseq, time-resolved RNAseq from wildtype and knockout mice and modeling the transcriptomic data using TimeTeller. The RNAseq experiments are nicely controlled and the analysis of the data indicates a clear impact on gene-expression levels in the knockout mice and the presence of a regulatory network that could underlie the advanced activity onset behavior.

      Weaknesses:

      It is not clear whether ZFHX3 has a direct role in any of the processes and seems to be a general factor that marks H3K4me3 and K27ac marked chromatin. Why it would specifically impact the core-clock TTFL clock gene expression or indeed daily gene expression rhythms is not clear either. Details for treatment of different ChIP samples (ZFHX3 and histone PTM ChIPs) on data normalization for analysis are needed. The loss of complete rhythmicity of Avp and other neuropeptides or indeed other TFs could instead account for the transcriptional deregulation noted in the knockout mice.

      (8) We thank the reviewer for the constructive feedback.  The current data suggests ZFHX3 acts as a mediating factor, occupying targeted active promoter sites and regulating gene expression by partnering with other key TFs in the SCN. Please see point 6 for clarification. The binding sites of ZFHX3 clearly showed enrichment for E-box(CACGTG) motif bound by CLOCK/BMAL1 along with binding sites for key SCN-specific TFs such as RFX (please see Supplementary Fig1). Our data thereby shows that it affects both core-clock and clock output genes (at varied levels) thereby exercising a pervasive control over the SCN transcriptome.

      For treatment of ChIP samples please see point 3. We followed ENCODE guidelines strictly. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      - The early activity onset associated with a short photoperiod is a phenotype found in mice with a perturbed function of the SCN like Per2 mutant (PMID: 17218255), or Clock KO (PMID: 22431615). Such disruption of the SCN function also leads to a faster synchronization to day feeding (PMID: 23824542) or jetlag (PMID: 25063847; PMID: 24092737). Therefore, authors should study the synchronizing function of these mice to day feeding and/or jetlag.

      (9) Please see our response to point 1.

      - The description of the negative controls needs clarification. While the "Method" suggests that both Cre- and Cre+ mice are treated with Tamoxifen, the text rather suggest that the controls are Cre- and Cre+ animals non-treated by Tamoxifen. Because of the potential effect of Tamoxifen on gene expression, Cre- treated animals are a required control.

      (10) We thank the reviewer. As detailed in Methods, both Cre- and Cre+ mice were treated with Tamoxifen and compared. The text had been revised at line 212. In addition to this, another genetic control (-Tamoxifen) was also used (Figure 2 and 3).

      - On line 486, authors wrote "It is important to note that although in the present study we used adult-specific Zfhx3 null mutants resulting in global loss of ZFHX3, the effects observed both at molecular and behavioural levels are independent of its functional role(s) in other tissues." On what evidence is this statement based? Using global KO rather suggest a potential role of other tissues.

      (11) We agree with the reviewer, but at line 486 we refer to the effects observed at circadian behavior and daily gene expression in the SCN to be independent of pleiotropic roles of ZFHX3 such as involvement in angiogenesis, spinocerebellar ataxia etc. We have revised the text.

      Reviewer #2 (Recommendations for the authors):

      It is not clear whether the behavioral experiments presented in this study were performed on a new set of animals - different from the cohort used in the Wilcox et al 2017 paper. For example, the proportion of total activity graphed in Figure 2C look strikingly similar to activity counts in Figure 3A in the prior publication (doi: 10.1177/0748730417722631)- down to the small burst in activity after ZT20 in the control (-Tam) group.

      (12) The behavioral experiments presented in this study were performed on a completely new cohort of mice to those used in Wilcox et al.; 2017. The mice used for behavioral assessment. In the current study were later used for molecular experiments. Please see point 5.

      Information on ChIP-seq such as read length, PE or SE seq, number of reads/replicate/condition/sample is missing. Versions of the softwares used should be indicated if known.

      (13) The details are added as:

      (13a) “Briefly, SCN punches were pooled from 80 mice at each. designated times (ZT3, ZT15) corresponding to one biological replicate per timepoint” at line 567.

      (13b) “24 ug sheared chromatin sample collected from each time point (ZT3, ZT15)” at line 571.

      (13c) “75-bp single end sequencing : 30 million reads/sample” at line 577.  

      (13d) “At line 584 – MACS algorithm v2.1.0 added”

      Versions of other softwares used were already mentioned.

    1. Author response:

      We thank the reviewers for their appreciation of our work and the recommendations to improve the manuscript. We have included a point-by-point response below. To summarize, for revision we plan to:

      • Clarify the manuscript to improve readability and coherence,

      • Ensure that all figures are thoroughly discussed in the text,

      • Tone down biological claims based on RNA velocity where applicable.

      While we agree with the reviewer that functional validation and/or spatial proteomics data accompanying this study could provide additional insights and broader contextualization, this is unfortunately beyond the scope of the study.

      Reviewer #1 (Public review):

      Summary:

      The authors conducted a spatial analysis of dysplastic colon tissue using the Slide-seq method. Their main objective is to build a detailed spatial atlas that identifies distinct cellular programs and microenvironments within dysplastic lesions. Next, they correlated this observation with clinical outcomes in human colorectal cancer.

      Strengths:

      The work is a good example of utilising spatial methods to study different tumour models. The authors identified a unique stem cell program to understand tumours gently and improve patient stratification strategies.

      Weaknesses:

      However, the study's predominantly descriptive nature is a significant limitation. Although the spatial maps and correlations between cell states are interesting observations, the lack of functional validation-primarily through experiments in mouse models-weakens the causal inferences regarding the roles these cellular programs play in tumour progression and therapy resistance.

      We thank the reviewer for this comment. Indeed, functional validation to pin down causal dependencies and a more thorough investigation of tumor progression and therapy resistance both in mouse model as well as human patients and/or patient derived samples would broaden the insights to be gained from this work. Unfortunately, this is beyond the scope of this study.

      The authors also missed an opportunity to link the mutational status of malignant cells with the cellular neighbourhoods.

      The data reported in this study only contains spatial data for one mouse model (AV). As spatial data for the other model (AKPV) is missing, it is not possible to link the mutational type of the model with the cellular neighborhoods. We did investigate whether there is extra "somatic" mutational heterogeneity in the AV data, both regarding single nucleotide variations (SNVs) and copy number variations (CNVs). But at the time when the mice were sacrificed (after 3 weeks) there was no significant mutational heterogeneity discoverable.

      Overall, the study contributes to profiling the dysplastic colon landscape. The methodologies and data will benefit the research community, but further functional validation is crucial to validate the biological and clinical implications of the described cellular interactions.

      Reviewer #2 (Public review):

      In their study, Avraham-Davidi et al. combined scRNA-seq and spatial mapping studies to profile two preclinical mouse models of colorectal cancer: Apcfl/fl VilincreERT2 (AV) and Apcfl/fl LSL-KrasG12D Trp53fl/fl Rosa26LSL-tdTomato/+ VillinCreERT2 (AKPV). In the first part of the manuscript, the authors describe the analysis of the normal colon and dysplastic lesions induced in these models following tamoxifen injection. They highlight broad variations in immune and stromal cell composition within dysplastic lesions, emphasizing the infiltration of monocytes and granulocytes, the accumulation of IL-17+gdT cells, and the presence of a distinct group of endothelial cells. A major focus of the study is the remodeling of the epithelial compartment, where the most significant changes are observed. Using non-negative matrix factorization, the authors identify molecular programs of epithelial cell functions, emphasizing stemness, Wnt signaling, angiogenesis, and inflammation as major features associated with dysplastic cells. They conclude that findings from scRNA-seq analyses in mouse models are transposable to human CRC. In the second part of the manuscript, the authors aim to provide the spatial context for their scRNA-seq findings using Slide-seq and TACCO. They demonstrate that dysplastic lesions are disorganized and contain tumor-specific regions, which contextualize the spatial proximity between specific cell states and gene programs. Finally, they claim that these spatial organizations are conserved in human tumors and associate region-based gene signatures with patient outcomes in public datasets. Overall, the data were collected and analyzed using solid and validated methodology to offer a useful resource to the community.

      Main comments:

      (1) Clarity

      The manuscript would benefit from a substantial reorganization to improve clarity and accessibility for a broad readership. The text could be shortened and the number of figure panels reduced to emphasize the novel contributions of this work while minimizing extensive discussions on general and expected findings, such as tissue disorganization in dysplastic lesions. Additionally, figure panels are not consistently introduced in the correct order, and some are not discussed at all (e.g., Figure S1D; Figure 3C is introduced before Figure 3A; several panels in Figure 4 are not discussed). The annotation of scRNA-seq cell states is insufficiently explained, with no corresponding information about associated genes provided in the figures or tables. Multiple annotations are used to describe cell groups (e.g., TKN01 = γδ T and CD8 T, TKN05 = γδT_IL17+), but these are not jointly accessible in the figures, making the manuscript challenging to follow. It is also not clear what is the respective value of the two mouse models and time points of tissue collection in the analysis.

      We thank the reviewer for this suggestion. For the revision we plan to clarify the manuscript to improve readability and coherence in text and figures, and expand on the cell type nomenclature.

      (2) Novelty

      While the study is of interest, it does not present major findings that significantly advance the field or motivate new directions and hypotheses. Many conclusions related to tissue composition and patient outcomes, such as the epithelial programs of Wnt signaling, angiogenesis, and stem cells, are well-established and not particularly novel. Greater exploration of the scRNA-seq data beyond cell type composition could enhance the novelty of the findings. For instance, several tumor microenvironment clusters uniquely detected in dysplastic lesions (e.g., Mono2, Mono3, Gran01, Gran02) are identified, but no further investigation is conducted to understand their biological programs, such as applying nNMF as was done for epithelial cells. Additional efforts to explore precise tissue localization and cellular interactions within tissue niches would provide deeper insights and go beyond the limited analyses currently displayed in the manuscript.

      We thank the reviewer for this comment. Our study aimed to spatially characterize the tumor microenvironment, with scRNA-seq analysis serving to support this spatial characterization.<br /> Due to technical limitations—such as the number of samples and the limited capture efficiency of Slide-seq—the resolution of immune cell identification in our spatial analysis is constrained. Additionally, while immune and stromal cells formed distinct clusters, epithelial cells exhibited a continuum that was better captured using nNMF.

      Lastly, our manuscript provides a general characterization of monocyte and granulocyte populations in scRNA-seq (line 142) and their spatial microenvironments (line 390). We believe that additional analyses of these populations would be beyond the scope of this study and could place an unnecessary burden on the reader. Instead, we suggest that such analyses be explored in future studies.

      We remark that we analyzed tissue localization for two entirely different spatial transcriptomics assays (Slide-seq and Cartana) to the resolution of cell types and programs, which was feasible within the constraints of the sparsity and gene panel and sample size in the experiments. A path to further increase the resolution of investigation in this dataset is to include other datasets, e.g. by the emerging transformer-based spatial transcriptomics integration methods, which unfortunately is outside the scope of the current study.

      We also remark that the current manuscript already includes an investigation of cellular interactions within tissue niches based on COMMOT (Fig 4k, Fig S8i, Supp Item 4).

      (3) Validation

      Several statements made by the authors are insufficiently supported by the data presented in the manuscript and should be nuanced in the absence of proper validation. For example:<br /> (a) RNA velocity analyses: The conclusions drawn from these analyses are speculative and need further support.

      We thank the reviewer for this comment. We will clarify that our conclusions from the RNA velocity analysis need further support by experimental validation, which is out of the scope of the study.

      (b) Annotations of epithelial clusters as dysplastic: These annotations could have been validated through morphological analyses and staining on FFPE slides.

      We thank the reviewer for this comment. While this could have been a possible approach, our study primarily relies on scRNA-seq, which does not preserve tissue morphology, and Slide-seq of fresh tissue, where such an analysis is particularly challenging.

      (c) Conservation of mouse epithelial programs in human tumors: The data in Figure S5B does not convincingly demonstrate the enrichment of stem cell program 16 in human samples. This should be more explicitly stated in the text, given the emphasis placed on this program by the authors.

      We thank the reviewer for pointing this out. Indeed, Figure S5B does not demonstrate the program 16 enrichment in human samples. We will clarify this in the manuscript.

      (d) Figure S6E: Cluster Epi06 is significantly overrepresented in spatial data compared to scRNA-seq, yet the authors claim that cell type composition is largely recapitulated without further discussion, which reduces confidence in other conclusions drawn.

      We thank the reviewer for this remark. Indeed, Epi06 was a cluster which drew our attention during early analyses for its mixed expression profiles with contributions of vastly different cell types. We concluded that this is best explained by doublets and excluded it from further analysis. In the current manuscript we only briefly hinted at this in figure legend 2A ("Cluster Epi06: doublets (not called by Scrublet)"), and we will expand on this in the revised manuscript. The observation that this cluster is significantly overrepresented in the annotation of the spatial data is not surprising in this context as this annotation comes from the decomposition of compositional data which contains contributions of multiple cells per Slide-seq bead which are structurally very similar to doublets. We will add this point as well to the revised manuscript.

      Furthermore, stronger validation of key dysplastic regions (regions 6, 8, and 11) in mouse and human tissues using antibody-based imaging with markers identified in the analyses would have considerably strengthened the study. Such validation would better contextualize the distribution, composition, and relative abundance of these regions within human tumors, increasing the significance of the findings and aiding the generation of new pathophysiological hypotheses.

      We agree with the reviewer with their assessment that validation by antibody-based imaging (or other spatial proteomics data) would have been useful follow-up experiments to the experiments and results presented in our manuscript, yet these are beyond the scope of the current study.

    1. Author response:

      We thank the editor and reviewers for recognizing the value of studying neural dynamics and behavior in naturalistic, task-free conditions and the importance of linking olfactory bulb activity to movement and place.  We appreciate the suggestions for analyses and edits to further quantify these relationships and clarify our interpretation.

      The primary sticking point regards our result that olfactory bulb neurons are selective for place:

      “analysis supporting the potentially exciting result on the encoding of place is currently incomplete”

      In this paper, we report evidence for spatial selectivity in the olfactory bulb, make relative comparisons with canonical “place cells” in the hippocampus, and control for alternative hypotheses such as odor- or behavior-driven sources, to motivate future experiments which can more precisely identify the mechanistic basis of these responses. Throughout the reviews, our result on the correlation of OB activity with place is not questioned, but rather whether we can better determine how much behavior or odor explain this result. Regarding the concern about behavior, we are confident that the spatial non-uniformities of breathing rhythms do not explain OB spatial selectivity based on the analyses included in the paper. We thank the reviewers for suggestions of additional analyses with which we can further test this claim and will incorporate several, as we will detail below.

      Regarding the points about odor, indeed we do not claim that we have entirely ruled out odors as an explanation of place selectivity in the bulb. Rather, our claim is that our analyses show that scent marks on the floor, the most obvious olfactory place cue, cannot fully explain place selectivity.  We acknowledge that our experiments do not exclude the possibility that other odors in the environment may also contribute. Odors are invisible and difficult to measure, and the odor sensitivity of rodents vastly outstrips that of any device known to humanity. Indeed, no study of which we are aware can fully rule out odor as a cue to the animal’s internal model of place. However, encoding of place, even if explained by odor, is still encoding of place. We will clarify our interpretation of the data, and we thank the reviewers for proposing ideas for further analysis, some of which we are implementing. However, experiments such as effects of distal cues on spatially selective olfactory bulb neurons are beyond the scope of this paper.

      We will further test whether neurons in the olfactory bulb are spatially selective by reporting additional statistical analyses including:

      - More completely quantifying the spatial distribution of sniffing patterns (visualized in Figure 8 - Sup 1) by plotting sniff-frequency distributions across locations in the arena.

      - Demonstrating independent contribution of place over speed in GLMs

      - Characterizing the temporal stability of spatially selective cells across a session (1st half vs second half)

      - reporting mean decoding errors for olfactory bulb and hippocampal decoders (visualized in Fig 7C)

      We will add to the analyses of behavioral state models by:

      - Comparing the performance of hidden Markov models fit to breathing frequency alone with those fit to breathing frequency and movement speed

      - Quantifying individual differences in state-transition matrices

      Further, we address the question around the use of “grooming” as a descriptor of the intermediate sniff frequency state. We used the term ‘grooming’ based on extensive video observation. During this state, ‘Speed’ is significantly non-zero because we defined speed as the movement of the head keypoint which moves substantially during grooming. We will make this point more explicit in the figures and text, and we will provide additional video documentation of these and the other behavioral states.

      Lastly, we will further discuss the fact stated in the first paragraph of the Results section that mice are placed in “head-fixation on a stationary platform” and thus inhibited from running. While different breathing states than those observed in our stationary platform may occur during head-fixation with a treadmill, we believe the differences between head-fixed running and free moving running are beyond the scope of this paper. Nevertheless, it’s an important point that we will more explicitly discuss in our revision.

      We appreciate these constructive comments and hope these additional analyses and textual edits will help clarify our interpretations and motivate future experiments to further test and refine them.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This paper investigates the effects of the explicit recognition of statistical structure and sleep consolidation on the transfer of learned structure to novel stimuli. The results show a striking dissociation in transfer ability between explicit and implicit learning of structure, finding that only explicit learners transfer structure immediately. Implicit learners, on the other hand, show an intriguing immediate structural interference effect (better learning of novel structure) followed by successful transfer only after a period of sleep.

      Strengths:

      This paper is very well written and motivated, and the data are presented clearly with a logical flow. There are several replications and control experiments and analyses that make the pattern of results very compelling. The results are novel and intriguing, providing important constraints on theories of consolidation. The discussion of relevant literature is thorough. In sum, this work makes an exciting and important contribution to the literature.

      Weaknesses:

      There have been several recent papers which have identified issues with alternative forced choice (AFC) tests as a method of assessing statistical learning (e.g. Isbilen et al. 2020, Cognitive Science). A key argument is that while statistical learning is typically implicit, AFC involves explicit deliberation and therefore does not match the learning process well. The use of AFC in this study thus leaves open the question of whether the AFC measure benefits the explicit learners in particular, given the congruence between knowledge and testing format, and whether, more generally, the results would have been different had the method of assessing generalization been implicit. Prior work has shown that explicit and implicit measures of statistical learning do not always produce the same results (eg. Kiai & Melloni, 2021, bioRxiv; Liu et al. 2023, Cognition).

      The authors argued in their response to this point that this issue could have quantitative but not qualitative impacts on the results, but we see no reason that the impact could not be qualitative. In other words, it should be acknowledged that an implicit test could potentially result in the implicit group exhibiting immediate structure transfer.

      We thank the reviewer for their feedback and added a statement in our discussion section acknowledging the possible effects of alternative measures of learning.

      Given that the explicit/implicit classification was based on an exit survey, it is unclear when participants who are labeled "explicit" gained that explicit knowledge. This might have occurred during or after either of the sessions, which could impact the interpretation of the effects and deserves discussion.

      We agree with the mentioned shortcoming in principle, although there are good methodological reasons for this, as discussed in our previous response. We added a statement on this topic to our discussion to make the potential issues and our reasoning in the design decision more transparent for the reader.

      Reviewer #2 (Public review):

      Summary:

      Sleep has not only been shown to support the strengthening of memory traces, but also their transformation. A special form of such transformation is the abstraction of general rules from the presentation of individual exemplars. The current work used large online experiments with hundreds of participants to shed further light on this question. In the training phase participants saw composite items (scenes) that were made up of pairs of spatially coupled (i.e., they were next to each other) abstract shapes. In the initial training, they saw scenes made up of six horizontally structured pairs and in the second training phase, which took place after a retention phase (2 min awake, 12 hour incl. sleep, 12 h only wake, 24 h incl. sleep), they saw pairs that were horizontally or vertically coupled. After the second training phase, a two-alternativesforced-choice (2-AFC) paradigm, where participants had to identify true pairs versus randomly assembled foils, was used to measure performance on all pairs. Finally, participants were asked five questions to identify, if they had insight into the pair structure and post-hoc groups were assigned based on this. Mainly the authors find that participants in the 2 minute retention experiment without explicit knowledge of the task structure were at chance level performance for the same structure in the second training phase, but had above chance performance for the vertical structure. The opposite was true for both sleep conditions. In the 12 h wake condition these participants showed no ability to discriminate the pairs from the second training phase at all.

      Strengths:

      All in all, the study was performed to a high standard and the sample size in the implicit condition was large enough to draw robust conclusions. The authors make several important statistical comparisons and also report an interesting resampling approach. There is also a lot of supplemental data regarding robustness.

      Weaknesses:

      My main concern regards the small sample size in the explicit group and the lack of experimental control.

      We thank the reviewer for the valuable feedback throughout the review process. The issues mentioned here have been addressed in our previous response.

      Reviewer #3 (Public review):

      In this project, Garber and Fiser examined how the structure of incidentally learned regularities influences subsequent learning of regularities, that either have the same structure or a different one. Over a series of six online experiments, it was found that the structure (spatial arrangement) of the first set of regularities affected learning of the second set, indicating that it has indeed been abstracted away from the specific items that have been learned. The effect was found to depend on the explicitness of the original learning: Participants who noticed regularities in the stimuli were better at learning subsequent regularities of the same structure than of a different one. On the other hand, participants whose learning was only implicit had an opposite pattern: they were better in learning regularities of a novel structure than of the same one. However, when an overnight sleep separated the first and second learning phases, this opposite effect was reversed and came to match the pattern of the explicit group, suggesting that the abstraction and transfer in the implicit case were aided by memory consolidation.

      In their revision the authors addressed my major comments successfully and I commend them for that.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      We would encourage the authors to add text to the manuscript that acknowledges/discusses the two issues pointed out in our review.

      We added relevant passages to the discussion section of the manuscript.

      Reviewer #2 (Recommendations for the authors):

      The authors have improved some sections of the manuscript and this is reflected in my assessment. The major weaknesses remain unchanged. Since my review is published alongside the paper, readers can make up their own mind regarding their severity.

      My only hard ask would be to add that the study was not preregistered into the main manuscript as I asked before! I am surprised that the authors are so reluctant to honestly state this fact....

      We have not stated this fact in our manuscript until now since our understanding is that papers that report preregistered studies state and cite their preregistration in their method section, while any omission of such a statement by default conveys that no preregistration occurred. In fact, we cannot recall encountering papers with statements of no-preregistration in the literature. Nevertheless, we have no issue stating that our study was not preregistered and per the reviewer's request, we have added such an explicit statement in our manuscript.

      Reviewer #3 (Recommendations for the authors):

      *  I strongly urge the authors to remove the Results sub-sections from Methods.

      We thank the reviewer for highlighting this issue arising from our previous layout, which we decided to handle the following way. We re-labeledl the subsections in question as “Additional Analyses” to avoid confusion, we removed any redundant findings already reported in Results of the main text, and we moved a small number of more substantial findings from the Methods Section to the main text Results as requested. We believe that this solution constitutes the most readable option, as we do not clutter the main results with extensive sanity checks and results

      of minor interest, while we also do not need to establish experiment-wise result sections in the Supplementary Materials, which would further disperse information interested readers might look for.

      *  Authors report that in Experiment 4 "Participants with explicit knowledge (n=23) show the same pattern of results as they did in Experiment 1", but that seems inaccurate, as they did learn novel pairs in Exp4 whereas they did not in Exp1. This can be seen in the figure and also in Methods-Results: "performing above chance for ... pairs of a novel structure (M=69.6, SE=5.9, d=0.69, t(22)=3.33 p=0.012, BF=13.6) in the second training phase"

      We thank the reviewer for pointing out this error in our interpretation of the results and adjusted the section in question to better align with what our result actually shows.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Multiple compounds that inhibit ATP-sensitive potassium (KATP) channels also chaperone channels to the surface membrane. The authors used an artificial intelligence (AI)-based virtual screening (AtomNet) to identify novel compounds that exhibit chaperoning effects on trafficking-deficient disease-causing mutant channels. One compound, which they named Aekatperone, acts as a low affinity, reversible inhibitor and effective chaperone. A cryoEM structure of KATP bound to Aekatperone showed that the molecule binds at the canonical inhibitory site.

      Strengths and weaknesses:

      The details of the AI screening itself are inevitably opaque, but appear to differ from classical virtual screening in not involving any physical docking of test compounds into the target site. The authors mention criteria that were used to limit the number of compounds, so that those with high similarity to known binders and 'sequence identity' (does this mean structural identity) were excluded. The identified molecules contain sulfonylurea-like moieties. How different are they from other sulfonylure4as?

      We thank the reviewers for the questions. As part of the library preparation, molecules with greater than 0.5 Tanimoto similarity in ECFP4 space to any known binders of the target protein and its homologs within 70% sequence identity were excluded to increase the possibility of identifying novel hits. After scoring and ranking the molecules by the AtomNet® technology, a diversity clustering was performed using the Butina algorithm (Butina D. Unsupervised Data Base Clustering Based on Daylight’s Fingerprint and Tanimoto Similarity: A Fast and Automated Way To Cluster Small and Large Data Sets, J. Chem. Inf. Comput. Sci. 1999, 39, 747–750) with a Tanimoto similarity cutoff of 0.35 in ECFP4 space to minimize selection of structurally similar scaffolds for the final compound buy-list. We have revised the results and methods sections to make this clear.

      Sulfonylureas are defined by their core structure comprising a sulfonyl group (–S(=O)<sub>2</sub>) and a urea moiety (–NH–CO–NH–). While some compounds identified in our study contain a sulfonamide group (R-S(=O) <sub>2</sub>-NR<sub>2</sub>), they differ structurally from sulfonylureas by lacking the key urea group and by incorporating unique R-group substitutions (we have now added this to Figure 1A legend). For example, compound C27 (Z2068224500) includes a sulfonamide group but not a urea moiety. Likewise, C45 (Aekatperone, Z1620764636) contains a sulfonamide group along with an aromatic, nitrogen-rich heterocyclic ring, but no urea group. Additionally, the R-groups in these compounds are more complex than the simple aromatic or alkyl chains typical of sulfonylureas. They include heterocyclic aromatic systems and nitrogen-rich structures, which likely influence their binding properties and lipophilicity. These structural differences suggest distinct functional and pharmacological profiles as supported by our biochemical and functional studies.

      The experimental work confirming that Aekatperone acts to traffic mutant KATP channels to the surface and acts as a low affinity, reversible, inhibitor is comprehensive and clear, with very convincing cell biological and patch-clamp data, as is the cryoEM structural analysis, for which the group are leading experts. In addition to the three positive chaperone-effective molecules, the authors identified a large number of compounds that are predicted binders but apparently have no chaperoning effect. Did any of them have inhibitory action on channels? If so, does this give clues to separating chaperoning from inhibitory effects?

      This is an interesting question. Evidence from cryo-EM, biochemical and electrophysiology studies reveal a critical role of Kir6.2 N-terminus in K<sub>ATP</sub> channel assembly and gating, and that pharmacological chaperones like glibenclamide, repaglinide, carbamazepine, and now aekatperone exert their chaperoning and inhibitory effects by stabilizing the interaction between Kir6.2 N-terminus and the SUR1-ABC core. This stabilization, while promoting the assembly of Kir6.2 and SUR1 to “chaperone” trafficking-impaired mutant channels to the cell surface, also inhibits the channel by restricting the Kir6.2 C-terminal domain from rotating to an open state. An additional mechanism by which these compounds inhibit channel activity is by preventing SUR1-NBD dimerization, which mediates physiological activation of the channel by MgADP (see review: Driggers CM, Shyng SL. Mechanistic insights on K<sub>ATP</sub> channel regulation from cryo-EM structures. J Gen Physiol. 2023 Jan 2;155(1): e202113046, PMID: 36441147). From our compound screening, we did find some compounds that showed mild inhibition of the channel by electrophysiology but no obvious chaperone effects by western blots. It is possible that small chaperoning effects of some compounds showing mild channel inhibition effects were missed due to the lower sensitivity of the western blot assay compared to electrophysiology. Alternatively, these compounds could inhibit channels by preventing SUR1NBD dimerization without stabilizing the Kir6.2 N-terminus, which is required for the chaperone effect based on our model. Unfortunately, we did not find any compounds that show chaperone effects but no channel inhibition effects, which is consistent with our understanding of how this type of K<sub>ATP</sub> chaperones work (i.e. by stabilizing Kir6.2 N-terminus interaction with SUR1’s ABC core).

      The authors suggest that the novel compound may be a promising therapeutic for treatment of congenital hyperinsulinism due to trafficking defective KATP mutations. Because they are low affinity, reversible, inhibitors. This is a very interesting concept, and perhaps a pulsed dosing regimen would allow trafficking without constant channel inhibition (which otherwise defeats the therapeutic purpose), although it is unclear whether the new compound will offer advantages over earlier low-affinity sulfonylurea inhibitor chaperones. These include tolbutamide which has very similar affinity and effect to Aekatperone. As the authors point out this (as well as other sulfonlyureas) are currently out of favor because of potential adverse cardiovascular effects, but again, it is unclear why Aekatperone should not have the same concerns.

      We thank the reviewer for the comments. This is clearly an important question to address in the future. While we have not directly tested the effects of Aekatperone on cardiac functions, we did assess its inhibitory effect on cells expressing the cardiac K<sub>ATP</sub> channel isoform (SUR2A/Kir6.2). Our results indicate that Aekatperone exhibits higher sensitivity toward the pancreatic K<sub>ATP</sub> channel isoform (SUR1/Kir6.2) compared to the cardiac isoform. However, we acknowledge that Aekatperone could still have cardiotoxic effects through its potential action on other channels, such as the hERG channel.

      It is worth noting that tolbutamide, despite its known cardiotoxic effects, does not exert these effects through cardiac K<sub>ATP</sub> channel inhibition. This has been demonstrated in studies showing no inhibitory effect of tolbutamide on SUR2A/Kir6.2 channels and on channels formed by Kir6.2 and SUR1 harboring the S1238Y mutation (also shown as S1237Y in some studies using a different SUR1 isoform)--the amino acid substitution found in SUR2A at the corresponding position (Ashfield R, Gribble FM, Ashcroft SJ, Ashcroft FM. Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K<sub>ATP</sub> channel. Diabetes. 1999 Jun;48(6):1341-7, PMID: 10342826). This suggests that tolbutamide’s cardiotoxic effects might involve other targets like the hERG channel. Interestingly, tolbutamide contains a hydrophobic tail and aromatic rings that align well with the structural features for hERG interaction (Garrido A, Lepailleur A, Mignani SM, Dallemagne P, Rochais C. hERG toxicity assessment: Useful guidelines for drug design. Eur J Med Chem. 2020 Jun 1;195:112290, PMID: 32283295). In contrast, highaffinity sulfonylureas such as glibenclamide and glimepiride, which have additional benzamide moieties, are associated with lower cardiovascular risks (Douros A, Yin H, Yu OHY, Filion KB, Azoulay L, Suissa S. Pharmacologic Differences of Sulfonylureas and the Risk of Adverse Cardiovascular and Hypoglycemic Events. Diabetes Care. 2017, 40:1506-1513, PMID:

      28864502). Given these considerations, a comprehensive assessment of Aekatperone’s potential cardiotoxicity is crucial. Future studies involving in silico modeling, in vitro, and in vivo experiments will be essential to evaluate Aekatperone’s interaction with hERG and other offtarget effects. These efforts will help clarify its safety profile. This point has now been added to the Discussion.

      Reviewer #2 (Public review):

      Summary:

      In their study 'AI-Based Discovery and CryoEM Structural Elucidation of a KATP Channel Pharmacochaperone', ElSheikh and colleagues undertake a computational screening approach to identify candidate drugs that may bind to an identified binding pocket in the SUR1 subunit of

      KATP channels. Other KATP channel inhibitors such as glibenclamide have been previously shown to bind in this pocket, and in addition to inhibition KATP channel function, these inhibitors can very effectively rescue cell surface expression of trafficking deficient KATP mutations that cause excessive insulin secretion (Congenital Hyperinsulinism). However, a challenge for their utility for treatment of hyperinsulinism has been that they are powerful inhibitors of the channels that are rescued to the channel surface. In contrast, successful therapeutic pharmacochaperones (eg. CFTR chaperones) permit function of the channels rescued to the cell membrane. Thus, a key criteria for the authors' approach in this case was to identify relatively low affinity compounds that target the glibenclamide binding site (and be washed off) - these could potentially rescue KATP surface expression, but also permit KATP function.

      Strengths:

      The main findings of the manuscript include:

      (1) Computational screening of a large virtual compound library, followed by functional screening of cell surface expression, which identified several potential candidate pharmacochaperones that target the glibenclamide binding site.

      (2) Prioritization and functional characterization of Aekatperone as a low affinity KATP inhibitor which can be readily 'washed off' in patch clamp, and cell based efflux assays. Thus the drug clearly rescues cell surface expression, but can be manipulated experimentally to permit function of rescued channels.

      (3) Determination of the binding site and dynamics of this candidate drug by cryo-EM, and functional validation of several residues involved in drug sensitivity using mutagenesis and patch clamp.

      The experiments are well-conceived and executed, and the study is clearly described. The results of the experiments are very straightforward and clearly support the conclusions drawn by the authors. I found the study to provide important new information about KATP chaperone effects of certain drugs, with interesting considerations in terms of ion channel biology and human disease.

      Weaknesses:

      I don't have any major criticisms of the study as described, but I had some remaining questions that could be addressed in a revision.

      (1) The chaperones can effectively rescue KATP trafficking mutants, but clearly not as strongly as the higher affinity inhibitor glibenclamide. Is this relationship between inhibitory potency, and efficacy of trafficking an intrinsic challenge of the approach? I suspect that it may be an intractable problem in the sense that the inhibitor bound conformation that underlies the chaperone effect cannot be uncoupled from the inhibited gating state. But this might not be true (many partial agonist drugs with low efficacy can be strongly potent, for example). In this case, the approach is really to find a 'happy medium' of a drug that is a weak enough inhibitor to be washed away, but still strong enough to exert some satisfactory chaperone effect. Could some additional clarity be added in the discussion on whether the chaperone and gating effects can be 'uncoupled'.

      Thank you for the suggestion. A similar question was raised by Reviewer 1, which was addressed above (public review, point 2). We have now added more discussion to clarify this point.

      (2) Based on the western blots in Figure 2B, the rescue of cell surface expression appears to require a higher concentration of AKP compared to the concentration response of channel inhibition (~9 microM in Figure 3, perhaps even more potent in patch clamp in Figure 2C). Could the authors clarify/quantify the concentration response for trafficking rescue?

      Thank you for bringing up this observation. Indeed, the pharmacochaperone effects of Aekatperone as well as other previously published K<sub>ATP</sub> pharmacochaperones require higher concentrations compared to their inhibitory effects on surface-expressed channels. This difference likely stems from the necessity for these compounds to cross the cell membrane and interact with newly synthesized channels in the endoplasmic reticulum, where the trafficking rescue occurs. We estimate that effective pharmacochaperone activity for Aekatperone can be achieved at concentrations ranging from 50 to 100 µM in cells expressing trafficking-deficient K<sub>ATP</sub> channel mutants, higher than that required for inhibition of surface-expressed channels (~9 µM IC50). Future work could focus on medicinal chemistry modifications, for example esterification of Aekatperone (Zhou G. Exploring Ester Prodrugs: A Comprehensive Review of Approaches, Applications, and Methods. Pharmacology & Pharmacy, 2024, 15, 269-284). Once inside the cell, the esters would be cleaved by endogenous esterases to release the active compound, ensuring efficient intracellular delivery. This strategy could potentially improve membrane permeability and bioavailability of the compound, which would lower the required concentrations to achieve desired chaperoning effects.

      (3) A future challenge in the application of pharmacochaperones of this type in hyperinsulinism may be the manipulation of chaperone concentration in order to permit function. In experiments it is straightforward to wash off the chaperone, but this would not be the case in an organism. I wondered if the authors had attempted to rescue channel function with diazoxide ine presence of AKP, rather than after washing off (ie. is AKP inhibition insurmountable, or can it be overcome by sufficient diazoxide).

      Thank you for raising this important point. We have previously shown (Martin GM et al. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations. J Biol Chem. 2016, 291: 21971-21983, PMID: 27573238) that diazoxide, which stabilizes K<sub>ATP</sub> channels in an open conformation, also reduces physical association between Kir6.2 N-terminus and SUR1 as demonstrated by reduced crosslinking of engineered azido-phenylalanine (an unnatural amino acid) at Kir6.2 N-terminal amino acid 12 position to SUR1. Incubating cells with diazoxide did not rescue the trafficking mutants but actually further reduced the maturation efficiency of trafficking mutants. For this reason, we did not include diazoxide during Aekatperone incubation and instead added diazoxide after Aekatperone washout to potentiate the activity of mutant channels rescued to the cell surface. In vivo, we envision testing alternating Aekatperone and diazoxide dosing to maximize functional rescue of K<sub>ATP</sub> trafficking mutants.

      (4) Do the authors have any information about the turnover time of KATP after washoff of the chaperone (how stable are the rescued channels at the cell surface)? This is a difficult question to probe when glibenclamide is used as a chaperone, but maybe much simpler to address with a lower affinity chaperone like AKP.

      Thank you for your thoughtful comment. While we have not yet tested the duration of rescued K<sub>ATP</sub> channels at the cell surface following Aekatperone washout, we have conducted similar studies with carbamazepine (Chen PC et al. Carbamazepine as a novel small molecule corrector of trafficking-impaired ATP-sensitive potassium channels identified in congenital hyperinsulinism. J Biol Chem. 2013, 288: 20942-20954, PMID: 23744072), another compound exhibiting reversible inhibitory and chaperone effects (apparent affinity between glibenclamide and Aekatperone). Our previous findings with carbamazepine showed that in cultured cells its chaperone effects were detectable as early as 1 hour and peaked around 6 hours after treatment. Furthermore, when carbamazepine was removed following a 16-hour treatment, the rescue effect persisted for up to 6 hours post-drug removal. These results provide a potential duration of the surface expression rescue effects of reversible pharmacochaperones.

      Reviewer #1 (Recommendations for the authors):

      The paper is well-written and comprehensive with only very minor essentially copy-editing needed. That said, it would be good if the authors could answer the main points raised above:

      (1) What is the relevant Tanimoto parameters and sequence identity (does this mean structural identity) for the identified compounds?

      As we answered above in response to the overall assessment, to facilitate the identification of novel hits, molecules with greater than 0.5 Tanimoto similarity in ECFP4 space to any known binders of the target protein and its homologs within 70% amino acid sequence identity were excluded from the commercial library. Additionally, after scoring and ranking the molecules by the AtomNet® technology, a diversity clustering was performed on the top 30,000 molecules using the Butina algorithm with a Tanimoto similarity cutoff of 0.35 in ECFP4 space to minimize selection of structurally similar scaffolds for the final compound buy-list.

      (2) Did any of the identified putative binders have inhibitory action on channels? If so, does this give clues to separating chaperoning from inhibitory effects?

      Please see response to the same question in the overall assessment above.

      (3) Acknowledge that the identified compounds contain sulfonylurea-like moieties, and address why Aekatperone should (or perhaps does not) offer anything advantage over low affinity sulfonrylureas such as tolbutamide?

      Please see response to the same question in the overall assessment above.

      Reviewer #2 (Recommendations for the authors):

      Thank you for assembling the interesting study, which I felt was well designed and communicated. The diverse approaches used in the study, with consistent findings, were definitely a strength. The core findings are also well distilled in the main body of the text, and although there is quite a lot of supplementary information, I felt that it was presented appropriately and well selected in terms of what would be important for readers hoping to learn more. In addition to the questions described above, I only had a few minor editorial issues that could be fixed related to presentation.

      (1) Figure 1B. The colours and resolution of the chemical structures are difficult to see clearly and could be improved.

      We have revised the figure accordingly.

      (2) This is a minor wording point... first sentence of the discussion describes the drugs as pancreatic-selective, when it would be more clear to describe them as selective for the pancreatic isoform of KATP (Kir6.2/SUR1), or perhaps better as 'exhibiting ~4-5 fold selective for SUR1-containing KATP channels vs. SUR2A or SUR2B'.

      We have changed the wording as suggested.

      (3) As a curiosity (not necessary to do more experiments), but I am curious if the authors know whether there is any meaningful enhancement of trafficking of WT channels by AKP.

      All pharmacochaperones we have identified to date including Aekatperone also slightly enhance WT channel surface expression (10-20%).

      Reviewing editor recommendations:

      (1) Given the modest resolution of the EM reconstruction, it is perhaps not entirely clear how AKP was assigned to the density observed. Specifically, it would be helpful to include a comparison of an AKP-free map and the current AKP map (filtered to a similar resolution) showing slice views of densities in the region around the inferred binding site. This would be very helpful in ascertaining whether the cryoEM reconstruction is an independent validation of the computational and functional experiments or whether the density inference depends on the additional knowledge.

      We appreciate the editor’s suggestion. We have now added a Supplemental Figure (Supplementary Figure 7 in the revised manuscript) that compares our AKP-free cryoEM density deposited previously to the EMDB (EMD-26320) and the AKP-bound cryoEM density from this study, with cryoEM density (filtered to the same resolution) superimposed on the structural model.

      (2) It could help to mention in brief what is a probable mechanism of AKP inhibition - that is how after binding of AKP, channel opening is restricted. Is it similar to that of other site A ligands?

      Based on the strong Kir6.2 N-terminal cryoEM density observed in our AKP map, AKP most likely inhibits K<sub>ATP</sub> channels by trapping the Kir6.2 N-terminus in the central cavity of SUR1’s ABC core thus preventing Kir6.2-C-terminal domain from rotating to an open conformation, similar to other ligands that stabilize the Kir6.2 N-terminus-SUR1 interface by binding to site A (such as tolbutamide and AKP), site B (such as repaglinide), or both site A and site B (such as glibenclamide). We have now included this in the revised Results and Discussion sections.

      (3) In the context of the MD simulations, do other site A ligands (which from my understanding bind at a similar site) also exhibit similar flexibility as AKP? If there is information available on the flexibility of ligands of varying affinities, bound to the same site, maybe some correlative inferences can be drawn? However, in MD simulation trajectories it is not entirely uncommon for a ligand to simply get trapped in a local energy well. Since the authors have performed significant analysis of their MD results it could be worth mentioning/discussing such phenomena.

      Previously published MD data addressing ligand dynamics, such as glibenclamide in the SUR1 pocket (Walczewska-Szewc K, Nowak W. Photo-Switchable Sulfonylureas Binding to ATPSensitive Potassium Channel Reveal the Mechanism of Light-Controlled Insulin Release. J Phys Chem B. 2021, 125: 13111-13121, PMID: 34825567), indicate a certain degree of flexibility. Unfortunately, we cannot directly compare these results, as the simulations were performed without the KNtp domain in the SUR1 cavity, which partially contributes to ligand stabilization. This is an issue we plan to investigate in the future.

      In this study, we ran five independent MD simulations, each 500 ns long, resulting in a total of 2.5 μs of simulation time. Across all replicates, the ligand stayed in the same position, with variations mainly in the dynamics of the blurred segment. Considering the length of the simulations and the consistency across the runs, we believe this binding pose is stable and represents a global (or at least highly stable) energy minimum, consistent with the cryo-EM data.

      (4) In electrophysiological assays, 10 uM AKP seems to inhibit all currents (Figure 2), but in the Rb+ flux assay ~10 uM appears to be the IC50. The reason for this difference is not entirely clear and it would help to comment on this.

      Thank you for noticing the difference. The initial electrophysiological experiments were conducted using the very small amount of AKP provided to us from Atomwise. We estimated the concentration of the reconstituted AKP the best we could, but the concentration was likely to not be very accurate due to difficulty in handling the very small amount of the AKP powder. Subsequent Rb<sup>+>/sup> efflux experiments were conducted using a different, larger batch of AKP we purchased from Enamine. We have now stated this in the Methods section.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      As reported above, this paper by Xu et al reports on a new method to combine the analysis of coevolutionary patterns with dynamic profiles to identify functionally important residues and reveal correlations between binding sites.

      Strengths:

      In general, coevolutionary analysis and MD analysis are carried out separately and while there have been attempts to compare the information provided by the two, no unified framework exists. Here, the authors convincingly demonstrate that integrating signals from Dynamics and coevolution gives information that substantially overcomes the one provided by either method in isolation. While other methods are useful, they do not capture how dynamics is fundamental to define function and thus sculpts coevolution, via the 3D structure of the protein. At the same time, the authors demonstrate how coevolution in turn also influences internal dynamics. The Networks they rebuild unveil information at an even higher level: the model starts pairwise but through network representation the authors arrive to community analysis, reporting on interaction patterns that are larger than simple couples.

      Weaknesses:

      The authors should

      - Make an effort in suggesting/commenting the limits of applicability of their method;

      We have added a sentence on Page 17, line 15 that describes the limitation of our method.

      - Expand discussion on how DyNoPy compares to other methods;

      A paragraph has been added to explain the comparison with other models (Page 3, line 18)

      - Dynamic is not essential in all systems (structural proteins): The authors may want to comment on possible strategies they would use for other systems where their framework may not be suitable/applicable.

      We agree with the reviewer that dynamics is not essential in all systems. In systems where there is limited role of dynamics in the function, the analysis done with DyNoPy is equivalent to conventional coevolution analysis, which can be consider one limitation of our method. Conversely, for dynamic proteins, combining functional dynamics descriptors with coevolution analysis using DyNoPy, helps in denoising information by deconvolution of communities. We have included this in the manuscript to highlight the suitability/applicability of the method.

      Further, we have added a paragraph in the Introduction and conclusions highlighting the main difference between DyNoPy and existing computational tools like DCCM, KIN, and SPM and for your convenience it is provided below:

      “Functional sites are often regulated by both, local and global interactions. Changes in these interactions are instrumental for functional events like substrate binding, catalysis, and conformational changes (18). The development of physical models of protein dynamics and the increase in available computational power has stimulated the adoption of computational techniques (19, 20) to investigate the conformational dynamics of proteins, an essential component of the many biological functions (21, 22). Different models have been proposed to describe the interactions between residues during simulations and network models have been particularly popular,  including methods on single structures and MD simulations data built by analysing the response to external forces on residue networks (23), by estimating the prevalence of non-covalent energy interaction networks in homologous proteins (24), or by analysing linear or non-linear correlation in atomic fluctuations (25, 26). These techniques have demonstrated their usefulness in extracting allosteric networks from structural data with applications in enzyme design (26).”

      Reviewer #2 (Public review):

      Summary:

      Authors introduced a computational framework, DyNoPy, that integrates residue coevolution analysis with molecular dynamics (MD) simulations to identify functionally important residues in proteins. DyNoPy identifies key residues and residue-residue coupling to generate an interaction graph and attempts to validate using two clinically relevant β-lactamases (SHV-1 and PDC-3).

      Strengths:

      DyNoPy could not only show clinically relevance of mutations but also predict new potential evolutionary mutations. Authors have provided biologically relevant insights into protein dynamics which can have potential applications in drug discovery and understanding molecular evolution.

      Weaknesses:

      Although DyNoPy could show the relevance of key residues in active and non-active site residues, no experiments have been performed to validate their predictions.

      We thank the reviewer for highlighting this point. We acknowledge that direct experimental validation of our predictions for DyNoPy has not yet been performed. However, we have provided explanations and evidence from experiments conducted on closely related homologs to support the relevance of key residues. These homologs share significant structural and functional similarity, which strengthens the reliability of our predictions.

      In addition, they should compare their method with conventional techniques and show how their method could be different.

      We thank all the reviewers for highlighting this oversight on our behalf. In Introduction and conclusion, we have added the following paragraphs:

      “Functional sites are often regulated by both, local and global interactions. Changes in these interactions are instrumental for functional events like substrate binding, catalysis, and conformational changes (18). The development of physical models of protein dynamics and the increase in available computational power has stimulated the adoption of computational techniques (19, 20) to investigate the conformational dynamics of proteins, an essential component of the many biological functions (21, 22). Different models have been proposed to describe the interactions between residues during simulations and network models have been particularly popular,  including methods on single structures and MD simulations data built by analysing the response to external forces on residue networks (23), by estimating the prevalence of non-covalent energy interaction networks in homologous proteins (24), or by analysing linear or non-linear correlation in atomic fluctuations (25, 26). These techniques have demonstrated their usefulness in extracting allosteric networks from structural data with applications in enzyme design (26). ”

      An explanation of "communities" divided in the work and how these communities are relevant to the article should be provided. In addition, choice of collective variables and their relevance in residue coupling movement is also not very well explained. Dynamics cross correlation map can also be a good method for understanding the residue movements and can explain the residue-residue coupling, it is not explained how DyNoPy is different from the conventional methods or can perform better.

      The following sentences have been included in the manuscript to address the questions raised by the reviewer:

      On Community Definition and relevance

      DyNoPy identified coevolving residue pairs (scaled coevolution score >1) with interactions strongly correlated with protein functional motions (i.e., J values larger than zero). Applying network analysis on the combined dynamics-coevolution matrix helps us extracting higher-order interactions beyond pairwise coupling and detecting critical residues, which show multiple interactions with each other. Moreover, indirect long-range relationships, which would be hard to identify from numerical data, could be detected through community clustering. Community-based analysis offers a more comprehensive understanding of residue relationships and enables the visualization of residue couplings on the protein structure.

      On Choice of collective variables:

      DyNoPy works on the assumption that time-dependent interactions between critical residues, either having significant structural change or not will correlate with functional conformational motions. Since MD simulation data is high-dimensional, a time-dependent dynamic descriptor is required to extract the most relevant information for the process under study. A good collective variable (CV) should appropriately describe protein functional motions. Thus, a CV that detects the highest number of residue couplings is expected to be the most suitable descriptor (Mentioned in Page 22 Line 14). In our study, we tested 12 CVs, either focusing on the entire protein or on selected regions. And the best performed CV (the one identified the most residue couplings) was selected for further analysis. In practical applications, users can decide whether to focus on the most relevant global or local dynamics descriptor  depending on the dynamics of their specific system.

      We have added a paragraph in the Introduction differentiating DyNoPy with other methods including DCCM. DCCM differs from DyNoPy in two aspects 1) it does not account for inter-residue coevolution 2) the correlation matrix captures correlations of atomic/residue movements associated with the whole intrinsic dynamics of the system, without filtering for the contributions to the important motions involved in the biological function. Additionally, any residue pair contributing to functional motion without itself undergoing any structural change will not be visible in this approach.

      In the sentence "DyNoPy identified eight significant communities of strongly coupled residues within SHV-1 (Supporting Fig. S4A)" I could not find a clear description of eight significant communities.

      The following sentences have been included in the results, methods and figure legends that define ‘significant community’:

      ‘DyNoPy identified eight meaningful communities, each consisting of at least three strongly coupled residues within SHV-1 (Supplementary Fig. S4A). All crucial catalytic residues and critical substitution sites previously mentioned participating in one of these communities with the exceptions of R<sub>43</sub>, R<sub>202</sub>, and S<sub>130</sub>.’ (Page 8 Line 28)

      ‘A meaningful community should contain at least three residues.’ (Page 21 Line 2)

      ‘A reasonable residue community should contain at least three residues.’ (SI Page 11)

      Again the description of communities is not clear to me in the following sentence "Detailed description of the other three communities is provided in the supporting information (Fig. S6)."

      This following sentence has been rewritten.

      ‘Detailed description of communities with secondary importance for protein function (community 3, 8, and 9) is provided in the supplementary information (Supplementary Fig. S6).’ (Page 9, line 8)

      In the sentence "N170 acts as an intermediary between N136 and E166". Kindly cite the reference figure to show N179 as intermediate residue.

      This sentence has been rewritten to avoid any confusion.

      ‘Although DyNoPy did not detect this direct interaction between N136 and E166, the established relationship between N136 and N170 highlights the role of N136 in influencing E166.’ (Page 10 Line 8)

      Please be careful with the numbers. In the sentence "These residues not only interact with each other directly but are also indirectly coupled via 21 other residues." I could count 22 other residues and not 21.

      We thank the reviewer for spotting this error. This has now been corrected. All the communities are counted again.

      ‘These residues not only interact with each other directly but are also indirectly coupled via 22 other residues.’ (Page 12 Line 14)

      In the sentence "Unlike other substitution sites that are adjacent to the active site, R<sub>205</sub> is situated more than 16 Å away from catalytic serine S<sub>70</sub>". Please add this label somewhere in the figure.

      The figure legends have been updated to include this. Distances have been added to community 4 Fig. 3 and community 6 Fig. 4. Residue index in the legend of Fig.3 has been included as subscript. Distance in the main text has been changed to be more accurate.

      ‘G<sub>156</sub> and A<sub>146</sub> are two functional important residues distant from the active site. G<sub>156</sub> is 21.3Å away from the catalytic S<sub>70</sub>. A<sub>146</sub> is 16.8Å away from S<sub>70</sub>.’ (Page 12 Line 2)

      ‘R<sub>205</sub> is a functional important residue that is 20.6Å away from the active site S<sub>70</sub>.’ (Page 13 Line 10)

      Please cite a reference in the sentence "This indicates that mutations on G238 would result in an alteration on protein catalytic function, as well as an increased flexibility of the protein, which strongly aligns with previous finding."

      The citation has been added

      ‘This indicates that mutations on G238 would result in an alteration on protein catalytic function, as well as an increased flexibility of the protein, which strongly aligns with previous finding (62).’ (Page 15 Line 2)

      Reviewer #3 (Public review):

      Summary:

      In this paper, Xu, Dantu and coworkers report a protocol for analyzing coevolutionary and dynamical information to identify a subset of communities that capture functionally relevant sites in beta-lactamases.

      Strengths:

      The combination of coevolutionary information and metrics from MD simulations is interesting for capturing functionally relevant sites, which can have implications in the fields of drug discovery but also in protein design.

      Weaknesses:

      The combination of coevolutionary information and metrics from MD simulations is not new as other protocols have been proposed along the years (the current version of the paper neglects some of them, see below), and there are a few parameters of the protocol that, in my opinion, should be better analyzed and discussed.

      (1) As mentioned, the introduction of the paper lacks some important publications in the field of using graph theory to represent important interaction networks extracted from MD simulations (DOI: 10.1002/pro.4911), and also combining MD data with MSA to identify functionally relevant sites for enzyme design (doi: 10.1021/acscatal.4c04587, 10.1093/protein/gzae005).

      We are very grateful for pointing us to these references. We have added a paragraph in the Introduction mentioning these and other computational tools similar to DyNoPy. Further, in conclusion we have highlighted the differences between DyNoPy and existing tools.

      (2) The matrix used to apply graph theory (J_ij) is built from summing the scaled coevolution and degree of correlation values. The alpha and beta weights are defined, and the authors mention that alpha is set to 0.5, thus beta as well to fulfil with the alpha + beta = 1. Why a value of 0.5 has been selected? How this affects the overall results and conclusions extracted? The finding that many catalytically relevant residues are identified in the communities is not surprising given that such sites usually present a high conservation score.

      This is an excellent question. Our present formulation allows the user to easily assess the influence of coevolution and dynamic couplings on the output. Setting alpha to 0.5, weights both evolutionary and dynamics information equally and has shown promising results in SHV-1 and PDC-3. As it has been presented in the manuscript, setting alpha to 1, i.e., purely utilising coevolution data does not let us identify critical residues effectively as all residues are included in the set (Supplementary Fig. S4 and S5). In future work, we would like to investigate the effect of scanning alpha from 0 to 1 on the final residue list, possibly on a larger set of proteins and protein families.

      We would also like to point out that some of the residue pairs with coevolution scores in the top 1% have J-scores set to 0, as they lacked significant coupling to the functional dynamics.

      (3) Another important point that needs further explanation is the selection of the relevant descriptor of protein dynamics. In this study two different strategies have been used (one more global the other more local), but more details should be provided regarding their choice. What is the best strategy according to the authors? Why not using the same strategy for both related systems? The obtained results using one methodology or the other will have a large impact on the dynamical score. Another related point is: what is the impact of the MD simulation length, how the MSA is generated and number of sequences used for MSA construction?

      As in the case of many complex proteins, the flow of information occurs in β-lactamases via structural interactions (https://doi.org/10.7554/eLife.66567). These interactions occur both on a local level, as in the case of binding site residues or residues immediately surrounding the binding site; however, there are interactions far away (>20Å) from the binding site that have the ability to alter function. We have obtained this information from extensive surveys of clinical isolates and experimental data. To account for such interactions, a more global approach has to be taken. To answer the reviewer’s question: each system is unique and there is no one-fixed strategy. In short, the method used should be able to denoise information and the user is advised to fine-tune their findings by corroborating with experimental and clinical information.

      The length of MD simulations is also system specific. Some systems effectively sample the functional dynamics within a shorter simulation time, while others take a long timescale MD simulation to converge. The results won’t change as long as the simulation has effectively sampled the functional dynamics associated with biological function.

      The MSA is generated by the HH-Suite package as mentioned on Page 19 Line 19. More specifically, the MSA is constructed based on the UniRef30 database, where sequences are clustered, and each cluster contains sequences with at least 30% sequence identity. This provides a non-redundant set of protein sequences. Our package allows the automatic generation of MSAs from the database. For SHV-1, the alignment contains 18,175 protein sequences and for PDC-3, the alignment consists of 27,892 protein sequences. Full details of this protocol are published in Bibik et al. (https://doi.org/10.1093/bioinformatics/btae166). We have revised the methods section to include these details.

      Other Minor Alterations

      ‘Fig. S1 and S2’ has been changed to ‘Supplementary Fig. S1 and S2’ for consistency (Page 6 Line 12)

      (1) ‘Figure 5B’ has been changed to ‘Fig. 5B’ for consistency (Page 16 Line 11)

      (2) All the ‘Figure’ has been changed to ‘Fig.’ in the SI for consistency

      (3) Just as the suggestion, an alteration has been made on the Step 1 of Fig.1.

    1. Author response:

      Reviewer #1 (Evidence, reproducibility and clarity):

      Summary:

      In this manuscript, Hammond et al. study robustness of the vertebrate segmentation clock against morphogenetic processes such as cell ingression, cell movement and cell division to ask whether the segmentation clock and morphogenesis are modular or not. The modularity of these two would be important for evolvability of the segmenting system. The authors adopt a previously proposed 3D model of the presomitic mesoderm (Uriu et al. 2021 eLife) and include new elements; different types of cell ingression, tissue compaction and cell cycles. Based on the results of numerical simulations that synchrony of the segmentation clock is robust, the authors conclude that there is a modularity in the segmentation clock and morphogenetic processes. The presented results support the conclusion. The manuscript is clearly written. I have several comments that could help the authors further strengthen their arguments.

      Major comment: 

      [Optional] In both the current model and Uriu et al. 2021, coupling delay in phase oscillator model is not considered. Given that several previous studies (e.g. Lewis 2003, Herrgen et al. 2010, Yoshioka-Kobayashi et al. 2020) suggested the presence of coupling delays in DeltaNotch signaling, could the authors analyze the effect of coupling delay on robustness of the segmentation clock against morphogenetic processes?

      We thank the reviewer for the suggestion. Owing to the computational demands of including such a delay in the model, we cannot feasibly repeat every simulation analysed here in the presence of delay, and would like to note that the increased computational demand that delays put on the simulations is also the reason why Uriu et al 2021 did not include it, as stated in their published exchange with reviewers. However, analogous to our analysis in figure 7, we can analyse how varying the position of progenitor cell ingression affects synchrony in the presence of the coupling delay measured in zebrafish by Herrgen et al. (2010). We show this analysis in a new figure 8 (8B, specifically), on page 21, and discuss its implications in the text on pages 2022. Our analysis reveals that the model cannot recover synchrony using the default parameters used by Uriu et al. (2021) and reveal a much stronger dependence on the rate of cell mixing (vs) than shown in the instantaneous coupling case (cf. figure 7). However, by systematically varying the value of the delay we find that a relatively minor increase in the delay is sufficient to recover synchrony using the parameter set of Uriu et al. (see figure 8C). Repeating this across the three scenarios of cell ingression we see that the combination of coupling strength and delay determine the robustness of synchrony to varying position of cell ingression. This suggests that the combination of these two parameters constrain the evolution of morphogenesis.

      Minor comments: 

      -  PSM radius and oscillation synchrony are both denoted by the same alphabet r. The authors should use different alphabets for these two to avoid confusion.

      We thank the reviewer for spotting this. This has now been changed throughout to rT, as shorthand for ‘radius of tissue’.

      -  page 5 Figure 1 caption: (x-x_a/L) should be (x-x_a)/L.

      We thank the reviewer for spotting this. This has now been corrected.

      -  Figure 3C: Description of black crosses in the panels is required in the figure legend.

      Thank you for spotting this. The legend has now been corrected.

      -  Figure 3C another comment: In this panel, synchrony r at the anterior PSM is shown. It is true that synchrony at anterior PSM is most relevant for normal segment formation. However, in this case, the mobility profile is changed, so it may be appropriate to show how synchrony at mid and posterior PSM would depend on changes in mobility profile. Is synchrony improved by cell mobility at the region where cell ingression happens?

      We thank the reviewer for the suggestion. We have now plotted the synchrony along the AP axis for varying motility profiles, and this can be seen in figure 3 supplement 1, and is briefly discussed in the text on page 11. We show that while the synchrony varies with x-position (as already expected, see figure 2), there is no trend associated with the shape of the motility profile.

      -  In page 12, the authors state that "the results for the DP and DP+LV cases are exactly equal for L = 185 um, as .... and the two ingression methods are numerically equivalent in the model". I understood that in this case two ingression methods are equivalent, but I do not understand why the results are "exactly" equal, given the presence of stochasticity in the model.

      These results can be exactly equal despite the simulations being stochastic because they were both initialised using the same ‘seed’ in the source code. However, we now see that this might be confusing to the reader, and we have re-generated this figure but this time initialising the simulations for each ingression scenario using a different seed value. This is now reflected in the text on page 12 and in figure 4.

      -  The authors analyze the effect of cell density on oscillation synchrony in Fig. 4 and they mention that higher density increases robustness of the clock by increasing the average number of interacting neighbours. I think it would be helpful to plot the average number of neighbouring cells in simulations as a function of density to quantitatively support the claim.

      We thank the reviewer for their suggestion. Distributions of neighbour numbers for exemplar simulations with varying density can now be found in  figure 4 supplementary figure 1 and are referred to in the text on page 11.

      -  The authors analyze the effect of PSM length on synchrony in Fig. 4. I think kymographs of synchrony r as shown in Fig. 2D would also be helpful to show that indeed cells get synchronized while advecting through a longer PSM.

      We thank the reviewer for their suggestion and agree that visualising the data in this way is an excellent idea. We have generated the suggested kymographs and added them to figure 4 as supplements 2 and 4, and discussed these results in the text on page 12.

      -  I understand that cells in M phase can interact with neighboring cells with the same coupling strength kappa in the model, although their clocks are arrested. If so, this aspect should be also mentioned in the main text in page 16, as this coupling can be another noise source for synchrony.

      We agree this is an important clarification. We explicitly state this, and briefly justify our choice, in the text on page 16.

      -  Figure 5-figure supplement 2: panel labels A, B, C are missing. 

      Thank you for bringing this to our attention. These have now been added.

      – Figure 5-figure supplement 3: panel labels A, B, C are missing.

      Thank you for bringing this to our attention. These have now been added.

      Reviewer #1 (Significance):

      Synchronization of the segmentation clock has been studied by mathematical modeling, but most previous studies considered cells in a static tissue without morphogenesis. In the previous study by Uriu et al. 2021, morphogenetic processes such as cell advection due to tissue elongation, tissue shortening, and cell mobility were considered in synchronization. The current manuscript provides methodological advances in this aspect by newly including cell ingression, tissue compaction and cell cycle. In addition, the authors bring a concept of modularity and evolvability to the field of the vertebrate segmentation clock, which is new. On the other hand, the manuscript confirms that the synchronization of the segmentation clock is robust by careful simulations, but it does not propose or reveal new mechanisms for making it robust or modular. The main targets of the manuscript will be researchers working on somitogenesis and evolutionary biologists who are interested in evolution of developmental systems. The manuscript will also be interested by broader audiences, like developmental biologists, biophysicists, and physicists and computer scientists who are working on dynamical systems.

      We thank the reviewer for their interest in our manuscript and for acknowledging us as one of the first to address the modularity and evolvability of somitogenesis. We hope that this work will encourage others to think about these concepts in this system too.  

      In the original submission, we identified a high enough coupling strength as the main mechanism underlying the identified modularity in somitogenesis. Since, we have included an analysis of the coupling delay and find that it is the interplay between coupling strength and coupling delay that mediate the identified modularity, allowing PSM morphogenesis and the segmentation clock to evolve independently in regions of parameter space that are constrained and determined by the interplay between these two parameters. We have now added an extra figure (figure 8) where we explore this interplay and have discussed it at length in the last section of the results and in the discussion. We again thank the reviewer for encouraging us to include delays in our analysis.

      Reviewer #2 (Evidence, reproducibility and clarity):

      SUMMARY 

      The manuscript from Hammond et al., investigates the modularity of the segmentation clock and morphogenesis in early vertebrate development, focusing on how these processes might independently evolve to influence the diversity of segment numbers across vertebrates.

      Methodology: The study uses a previously published computational model, parameterized for zebrafish, to simulate and analyse the interactions between the segmentation clock and the morphogenesis of the pre-somitic mesoderm (PSM). Their model integrates cell advection, motility, compaction, cell division, and the synchronization of the embryo clock. Three alternative scenarios of PSM morphogenesis were modeled to examine how these changes affect the segmentation clock.

      Model System: The computational model system combines a representation of cell movements and the phase oscillator dynamics of the segmentation clock within a three-dimensional horseshoe-shaped domain mimicking the geometry of the vertebrate embryo PSM. The parameters used for the mathematical model are mostly estimated from previously published experimental findings.

      Key Findings and Conclusions: (1) The segmentation clock was found to be broadly robust against variations in morphogenetic processes such as cell ingression and motility; (2) Changes in the length of the PSM and the strength of phase coupling within the clock significantly influenced the system's robustness; (3) The authors conclude that the segmentation clock and PSM morphogenesis exhibited developmental modularity (i.e. relative independence), allowing these two phenomena to evolve independently, and therefore possibly contributing to the diverse segment numbers observed in vertebrates.

      MAJOR COMMENTS

      (1) The key conclusion drawn by the authors (that there is robustness, and therefore modularity, between the morphogenetic cellular processes modeled and the embryo clock synchronization) stems directly from the modeling results appropriately presented and discussed in the manuscript. The model comprises some strong assumptions, however all have been clearly explained and the parameterization choices are supported by experimental findings, providing biological meaning to the model. Estimated parameters are well explained and seem reasonable assumptions (from the embryology perspective).

      We thank the reviewer for their positive comments about our work

      (2) This study, as is, achieves its proposed goal of evaluating the potential robustness of the embryo clock to changes in (some) morphogenetic processes. The authors do not claim that the model used is complete, and they properly identify some limitations, including the lack of cellcell interactions. Given the recognized importance of cellular physical interactions for successful embryo development, including them in the model would be a significant addition in future studies.

      We would like to clarify that the model does include cell-cell interactions as cells interact with their neighbours’ clock phase to synchronise and to avoid occupying the same physical space. 

      (3) The authors have deposited all the code used for analysis in a public GitHub repository that is updated and available for the research community.

      We support open source coding practices.

      (4) In page 6, the authors justify their choice of clock parameters for cells ingressing the PSM: "As ingressing cells do not appear to express segmentation clock genes (Mara et al. (2007)), the position at which cells ingress into the PSM can create challenges for clock patterning, as only in the 'off' phase of the clock will ingressing cells be in-phase with their neighbours."  However, there are several lines of evidence (in chick and mouse), that some oscillatory clock genes are already being expressed as early as in the gastrulation phase (so prior to PSM ingression) (Feitas et al, 2001 [10.1242/dev.128.24.5139]; Jouve et al, 2002 [10.1242/dev.129.5.1107]; Maia-Fernandes at al, 2024 [10.1371/journal.pone.0297853]) Question: Is this also true in zebrafish? (I.e. is there any recent experimental evidence that the clock genes are not expressed at ingression, since the paper cited to support this assumption is from 2007). If they are expressed in zebrafish (as they are in mouse and chick), then the cell addition should have random clock gene periods when they enter the PSM and not start all with a constant initial phase of zero. Probably this will not impact the results since the cells will also be out of phase with their neighbours when they "ingress", however, it will model more closely the biological scenario (and avoid such criticism).

      We thank the reviewer for their comments. While it is known that in zebrafish the clock begins oscillating during epiboly and before the onset of segmentation (Riedel-Kruse et al., 2007), to our knowledge no-one has examined whether posteriorly or laterally ingressing progenitor cells express clock genes prior to their ingression into the PSM, which occurs later in development than the first oscillations which give rise to the first somites. We have not found any published evidence of her/hes gene expression in the dorsal donor tissues or lateral tissues surrounding the PSM, however we acknowledge that this has not been actively studied before and our assumption relies on an absence of evidence, rather than evidence of absence. 

      However, we agree with the reviewer that one should include such an analysis for completeness, and we have now generated additional simulations where progenitor cells ingress with a random clock phase. This data is presented in figure 2 supplement 1 and mentioned in the main text on page 9.

      MINOR COMMENTS 

      (1) The citations are appropriate and cover the major labs that have published work related to this study (although with some overrepresentation of the lab that published the model used).

      We have cited the vast literature on somitogenesis to the best of our ability and do recognise that the work of the Oates lab appears prominently, but this is probably because their experimental data were originally used to parametrise the model in Uriu et al. 2021.

      (2) The text is clear, carefully written, and both the methods and the reasoning behind them are clearly explained and supported by proper citations.

      We are very glad to see that the reviewer found that the manuscript was clearly presented.

      (3) The figures are comprehensive, properly annotated, with explanatory self-contained legends. I have no comments regarding the presentation of the results.

      Thank you

      (4) Minor suggestions: 

      a. Page 26: In the Cell addition sub-section of the Methods section, correct all instances where the word domain is used, but subdomain should be used (for clarity and coherence with the description of the model, stated as having a single domain comprising 3 subdomains).

      We thank the reviewer for raising this, this is a good point. We have now corrected to ‘subdomain’ where appropriate.

      b. Page 32: Table 1. Parameter values used in our work, unless otherwise stated -> Suggestion: Add a column with the individual citations used for each parameter (to facilitate the confirmation of each corresponding reference).

      Thank you for the suggstion, we have now done this (see table 1 page 36).

      Reviewer #2 (Significance):

      GENERAL ASSESSMENT 

      This study uses a previously published model to simulate alternative scenarios of morphogenetic parameters to infer the potential independence (termed here modularity) between the segmentation clock and a set of morphogenetic processes, arguing that such modularity could allow the evolution of more flexible body plans, therefore partially explaining the variability in the number of segments observed in the vertebrates. This question is fundamental and relevant, yet still poorly researched. This work provides a comprehensive simulation with a model that tries to simplify the many morphogenetic processes described in the literature, reducing it to a few core fundamental processes that allow drawing the conclusions seeked. It provides theoretical insight to support a conceptual advance in the field of evolutionary vertebrate embryology.

      ADVANCE

      This study builds on a model recently published by Uriu et al. (eLife, 2021) that incorporates quantitative experimental data within a modeling framework including cell and tissue-level parameters, allowing the study of multiscale phenomena active during zebrafish embryo segmentation. Uriu's publication reports many relevant and often non-intuitive insights uncovered by the model, most notably the description of phase vortices formed by the synchronizing genetic oscillators interfering with the traveling-wave front pattern.  However, this model can be further explored to ask additional questions beyond those described in the original paper. A good example is the present study, which uses this mathematical framework to investigate the potential independence between two of the modeled processes, thereby extracting extra knowledge from it. Accordingly, the present study represents a step forward in the direction of using relevant theoretical frameworks to quantitatively explore the landscape of complex molecular hypotheses in silico, and with it shed some light on fundamental open questions or inform the design of future experiments in the lab.

      The study incorporates a wide range of existing literature on the developmental biology of vertebrates. It comprehensively cites prior work, such as the foundational studies by Cooke and Zeeman on the segmentation clock and the role of FGF signaling in PSM development as discussed by Gomez et al. The literature properly covers the breadth of knowledge in this field.

      AUDIENCE

      Target audience | This study is relevant for fundamental research in developmental biology, specifically targeting researchers who focus on early embryo development and morphogenesis from both experimental and theoretical perspectives. It is also relevant for evolutionary biologists investigating the genetic factors that influence vertebrate evolution, as well as to computational biologists and bioinformatics researchers studying developmental processes and embryology.

      Developmental researchers studying the segmentation clock in other vertebrate model organisms (namely mouse and chick), will find this publication especially valuable since it provides insights that can help them formulate new hypotheses to elucidate the molecular mechanisms of the clock (for example finding a set of evolutionarily divergent genes that might interfere with PSM length). Additionally, this study provides a set of cellular parameters that have yet to be measured in mouse and chick, therefore guiding the design of future experiments to measure them, allowing the simulation of the same model with sets of parameters from different vertebrate model organisms, therefore testing the robustness of the findings reported for zebrafish.

      Reviewer #3 (Evidence, reproducibility and clarity): 

      In this manuscript, Verd and colleagues explored how various biologically relevant factors influence the robustness of clock dynamics synchronization among neighboring cells within the context of somatogenesis, adapting a mathematical model presented by Urio et. al in 2021 in a similar context. Specifically they show that clock dynamics is robust to different biological mechanisms such as cell infusion, cellular motility, compaction-extension and cell-division. On the other hand , the length of Presomitic Mesoderm (PSM) and density of cells in it has a significant role in the robustness of clock dynamics. While the manuscript is well-written and provides clear descriptions of methods and technical details, it tends to be somewhat lengthy.

      Below are the comments I would like the authors to address:

      (1) The authors mention that "...the model is three dimensional and so can quantitatively recapture the rates of cell mixing that we observe in the PSM". I am not convinced with this justification of using a 3D model. None of the effects the authors explore in this manuscript requires a three dimensional model or full physical description of the cellular mechanics such as excluded volume interaction etc. A one-dimensional model characterized by cell position along the arclength of PSM and somatic region and segmentation clock phase θ can incorporate all the physics authors described in this manuscript as well as significantly computationally cheap allowing the authors to explore the effect of different parameters in greater detail.

      One of the main objectives of the work we present in this manuscript is to assess how the evolution of PSM morphogenesis affects, or does not affect, segment patterning. The PSM is a three-dimensional tissue with differing cell rearrangement dynamics along its anterior-posterior axis. In addition, PSM dimension, density, the rearrangement rate, and patterns of cell ingression all vary across vertebrate species, and they are functional, especially cell mixing as it promotes synchronisation and drives elongation. In order to answer questions on the modularity of somitogenesis we therefore consider it absolutely necessary to include a three-dimensional representation of the PSM that captures single cells and their movements. In addition, this will allow us, as Reviewer #2 also pointed out, to reparametrize our model using species-specific data as it becomes available. 

      While the reviewer is right in that lower dimensional representations would be computationally more efficient, and are generally more tractable, it would not be possible to represent cell mixing in one dimension, as this happens in three dimensions. One could perhaps encode the synchrony-promoting effect of cell mixing via some coupling function κ(x) that increases towards the posterior, however it is unclear what existing biological data one could use to parameterise this function or determine its form. Cell mixing can be modelled in a two-dimensional framework, however this cannot quantitatively recapture the rate of cell mixing observed in vivo, which is an advantage of this model. 

      Furthermore, it is unclear how one would simulate processes such as compactionextension using a one-dimensional model. The two different scenarios of cell ingression which we consider can also not be replicated in a one-dimensional model, as having a population of cells re-acquiring synchrony on the dorsal surface of the tissue while new material is added to the ventral side, creating asynchrony, is qualitatively different than a one-dimensional scenario where cells are introduced continuously along the spatial axis.

      (2) I am not sure about the justification for limiting the quantification of phase synchrony in a very limited (one cell diameter wide) region at one end of the somatic part (Page 33 below Fig. 9). From my understanding of the manuscript, the segments appear in significant length anterior to this region. Wouldn't an ensemble average of multiple such one cell diameter wide regions in the somatic region be a more accurate metric for quantifying synchrony?

      Indeed, such a metric (e.g. as that used by Uriu et al. to quantify synchrony along the xaxis) would be more accurate for determining synchrony within the PSM. However, as per the clock and wavefront model of somitogenesis, only synchrony at the very anterior of the PSM (or at the wavefront, equivalently) is functional for somitogenesis and thus evolution. Therefore, we restrict our analysis to the anterior-most region of the PSM. We now further justify this in the main text on page 9.

      (3) While studying the effect of cellular ingression, the authors study three discrete modes- random, DP and DP+LV and show that in the DP+LV mode the clock synchrony becomes affected. I would like the authors to explore this in a continuous fashion from a pure DP ingression to Pure LV ingression and intermediates.

      We thank the reviewer for this suggestion; this is a very interesting question. We are currently working on a related computational and experimental project to address the question of how PSM morphogenesis can change over evolutionary time to evolve the different modes that we see across species. As part of this work, we are running precisely the simulations suggested by the reviewer to find regions of parameter space in which all the relevant morphogenetic processes can freely evolve.  While interesting, this work is however outside the scope of the current manuscript.

      (4) While studying the effect of length and density of cells in PSM on cellular synchrony, the authors restrict to 3 values of density and 6 values of PSM length keeping the other parameter constant. I would be interested to see a phase diagram similar to Fig. 7 in the two-dimensional parameter space of L and ρ0. I am curious if a scaling relation exists for the parameter values that partition the parameter space with and without synchrony.

      We thank the reviewer for their suggestion and agree that this would constitute an interesting addition to the manuscript. We have now generated these data, which are shown in figure 4 supplement 5 and mentioned on page 13. We see no clear relationship between these two variables when co-varying in the presence of random ingression. 

      (5) Both in the abstract and introduction, the authors discuss at a great length about the variability in the number of segments. I am curious how the number and width of the segments observed depend on different parameters related to cellular mechanics and the segmentation clock ?

      We thank the reviewer for this question. It was not clear to us if this was something the reviewer wants us to address in the study’s background and introduction, or an analysis we should include in the results. Therefore, we have responded to both comprehensively below:

      The prevailing conceptual framework for understanding this is the clock and wavefront model (Cooke and Zeeman, 1976), which posits that the somite length is inversely proportional to the frequency of the clock relative to the speed of the wavefront, and that the total number of segments is the relative frequency multiplied by the total duration of somitogenesis.

      Experimentally we know that the frequency is determined in part by the coupling strength (Liao, Jorg, and Oates, 2016), and from comparative embryological studies (Gomez et al., 2008; Steventon et al., 2016) we know that changes in the elongation dynamics of the PSM correlate with changes in somite number, presumably by altering the total duration of somitogenesis (Gomez et al., 2009). These changes in elongation are thought to be driven by the changes in cell and tissue mechanics we test in our manuscript. 

      Within our model, we cannot in general predict how the number of segments responds to changes in either clock parameters or cell mechanical parameters, as we lack understanding of what causes somitogenesis to cease; this is thus not encoded in our model and segmentation can in principle proceed indefinitely. Therefore, we have not performed this analysis.

      Similarly, we have not included an analysis of somite length. This is for two reasons: 1) as per the clock and wavefront model, the frequency at the PSM anterior (which we analyse) is equivalent to this measurement, as we assume (in general) the wavefront ($x = x_{a}$) is inertial. 2) the length of the nascent somite is not thought to be of much relevance to the adult phenotype, and by extension evolution. Somites undergo cell division and growth soon after their patterning by the segmentation clock, therefore their final size does not majorly depend on the dynamics of the segmentation clock. Rather, the main function of the clock is to control their number (and polarity).

      (6) The authors assume that the phase dynamics of the chemical network may be described by an oscillator with constant frequency. For the completeness of the manuscript, the author should discuss in detail, for which chemical networks this is a good assumption.

      We thank the reviewer for their suggestion and now justify this assumption in the methods on page 31. 

      Such an assumption is appropriate for the segmentation clock, as the clock in the posterior of the PSM is thought to oscillate with a constant frequency, at least for the majority of somitogenesis although the frequency of somite formation slows towards the end of this process in zebrafish (Giudicelli et al., 2007, PLoS Biol.). In addition, PSM cells isolated and cultured in the presence of FGF (thus replicating the signalling environment of the posterior PSM) will continue to exhibit her1 oscillations with an apparently constant frequency (Webb et al., 2016). 

      We note that such formulations are widely used within the segmentation clock literature (e.g. Riedel-Kruse et al., 2007, Morelli et al., 2009).

      (7) Figure 3 and the associated text shows no effect of the cellular motility profile in the synchrony of the segmentation clock. This may be moved to the supplementary considering the length of this manuscript.

      Thank you for the suggestion. However, we would argue that the lack of effect is a crucial result when discussing modularity. Reviewer #2 agrees with this assessment.

      Reviewer #3 (Significance): 

      The manuscript answers some important questions in the synchrony of segmentation clock in the vertebrates utilizing a model published earlier. However, the presented result is incomplete in some aspects (points 2 to 5 of section A) and that could be overcome by a more detailed analysis using a simpler one dimensional (point 1 of section A). I believe this manuscript could be of interest to an intersecting audience of developmental biologists, systems biologists, and physicists/engineers interested in dynamical systems.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary

      Farkas and colleagues conducted a comparative neuroimaging study with domestic dogs and humans to explore whether social perception in both species is underpinned by an analogous distinction between animate and inanimate entities an established functional organizing principle in the primate and human brain. Presenting domestic dogs and humans with clips of three animate classes (dogs, humans, cats) and one inanimate control (cars), the authors also set out to compare how dogs and humans perceive their own vs other species. Both research questions have been previously studied in dogs, but the authors used novel dynamic stimuli and added animate and inanimate classes, which have not been investigated before (i.e., cats and cars). Combining univariate and multivariate analysis approaches, they identified functionally analogous areas in the dog and human occipitotemporal cortex involved in the perception of animate entities, largely replicating previous observations. This further emphasizes a potentially shared functional organizing principle of social perception in the two species. The authors also describe between- species divergencies in the perception of the different animate classes, arguing for a less generalized perception of animate entities in dogs, but this conclusion is not convincingly supported by the applied analyses and reported findings.

      Strengths

      Domestic dogs represent a compelling model species to study the neural bases of social perception and potentially shared functional organizing principles with humans and primates. The field of comparative neuroimaging with dogs is still young, with a growing but still small number of studies, and the present study exemplifies the reproducibility of previous research. Using dynamic instead of static stimuli and adding new stimuli classes, Farkas and colleagues successfully replicated and expanded previous findings, adding to the growing body of evidence that social perception is underpinned by a shared functional organizing principle in the dog and human occipito-temporal cortex.

      Weaknesses

      The study design is imbalanced, with only one category of inanimate objects vs. three animate entities. Moreover, based on the example videos, it appears that the animate stimuli also differed in the complexity of the content from the car stimuli, with often multiple agents interacting or performing goal-directed actions. Moreover, while dogs are familiar with cars, they are definitely of lower relevance and interest to them than the animate stimuli. Thus, to a certain extent, the results might also reflect differences in attention towards/salience of the stimuli.

      We agree with the Reviewer and were aware that using only one class of inanimate objects but three classes of animate entities, along with the differences in complexity and relevance between the animate and the inanimate stimuli potentially elicited more attention to the inanimate condition and may have thus introduced a confound. We are revising the related limitation in the discussion to acknowledge this and to emphasize why we believe these differences do not compromise our main findings.

      The methods section and rationale behind the chosen approaches were often difficult to follow and lacked a lot of information, which makes it difficult to judge the evidence and the drawn conclusions, and it weakens the potential for reproducibility of this work. For example, for many preprocessing and analysis steps, parameters were missing or descriptions of the tools used, no information on anatomical masks and atlas used in humans was provided, and it is often not clear if the authors are referring to the univariate or multivariate analysis.

      We acknowledge the concerns regarding the clarity and completeness of the methods section and are significantly revising the descriptions of the methods. Of note, in humans, the Harvard-Oxford Cortical Structural Atlas (Frazier et al., 2005; Makris et al., 2006; Desikan et al., 2006; Goldstein et al., 2007), implemented within the FSL software package, was used for anatomical masks, while the Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002) was used for assigning labels.

      In regard to the chosen approaches and rationale, the authors generally binarize a lot of rich information. Instead of directly testing potential differences in the neural representations of the different animate entities, they binarize dissimilarity maps for, e.g. animate entity > inanimate cars and then calculate the overlap between the maps.

      We thank the Reviewer for these comments and ideas. We also appreciate the second Reviewer for their related concerns and suggestions about the overlap calculation. Since the neural processing of different animate entities in the dog brain is largely unexplored, in some of our analyses we aimed to provide a straightforward and directly comparable characterization of animacy perception in the two species. We believe that a measure of how overlapping the neural representations of different animate classes are in the dog vs. the human visual cortex is a simple but meaningful and insightful characterization of how animacy perception is structured in the two species, despite the lack of spatial detail. Our decision to use binarization was based on these considerations. In response to this Reviewer’s request for providing richer information, in our revised manuscript, we will present more details and additional non-binarized calculations. Specifically, we are going to use nonbinarized data to present the response profiles of a broad, anatomically defined set of regions that have been related in other works to visual functions, to thus show where there is significant difference and overlap between the neural responses for the three animate classes in each species.

      The comparison of the overlap of these three maps between species is also problematic, considering that the human RSA was constricted to the occipital and temporal cortex (there is now information on how they defined it) vs. whole-brain in dogs.

      We thank this Reviewer for raising yet another relevant point about overlap calculation. We note that the overlap calculation for univariate results used the visually responsive cortex in both dogs and humans. The decision to restrict the multivariate analysis to the occipital and temporal lobes in humans, where the visual areas are, was to reduce computational load. Since RSA in dogs yielded significant voxels almost exclusively in the occipital and temporal cortices, we believe this decision did not introduce major bias in our results. This concern will also be discussed in our revised submission.

      Of note, in the category- and class-boundary test, as for the other multivariate tests, the occipital and temporal cortex of humans was delineated based on the MNI atlas.

      Considering that the stimuli do differ based on low-level visual properties (just not significantly within a run), the RSA would also allow the authors to directly test if some of the (dis)similarities might be driven by low-level visual features like they, e.g. did with the early visual cortex model. I do think RSA is generally an excellent choice to investigate the neural representation of animate (and inanimate) stimuli, but the authors should apply it more appropriately and use its full potential.

      We thank the Reviewer for this suggestion. While this study did not aim to investigate the correlation between low-level visual features and animacy, the data is available, and the suggested analysis can be conducted in the future. This issue will also be discussed in our revised submission.

      The authors localized some of the "animate areas" also with the early visual cortex model (e.g. ectomarginal gyrus, mid suprasylvian); in humans, it only included the known early visual cortex - what does this mean for the animate areas in dogs?

      We thank the Reviewer for raising this point. Although the labels are the same, both EMG and mSSG are relatively large gyri, and the clusters revealed by each of the two analyses hardly overlap, with peak coordinates more than 12 mm apart for R EMG, and in different hemispheres for mSSG (but more than 11 mm apart even if projected on the same hemisphere). We will detail the differences and the overlaps in the revised submission.

      The results section also lacks information and statistical evidence; for example, for the univariate region-of-interest (ROI) analysis (called response profiles) comparing activation strength towards each stimulus type, it is not reported if comparisons were significant or not, but the authors state they conducted t-tests. The authors describe that they created spheres on all peaks reported for the contrast animate > inanimate, but they only report results for the mid suprasylvian and occipital gyrus (e.g. caudal suprasylvian gyrus is missing).

      We thank this Reviewer for catching these errors. The missing statistics will be provided in the revised manuscript. Also, we mistakenly named the peak in caudal suprasylvian gyrus occipital gyrus on the figure depicting the response profiles. This will also be corrected.

      Furthermore, considering that the ROIs were chosen based on the contrast animate > inanimate stimuli, activation strength should only be compared between animate entities (i.e., dogs, humans, cats), while cars should not be reported (as this would be double dipping, after selecting voxels showing lower activation for that category).

      We thank both Reviewers for raising this relevant point about potential double dipping. The aim of this analysis was to describe the relationship between the neural response elicited by the three animate stimulus classes, to show that the animacy-sensitive peaks are not the results of the standalone greater response to a single animate class. We conducted t-tests only to assess significant difference between these three animate conditions and no stats were performed or reported for any animate class vs. inanimate comparisons in these ROIs. In addition to providing the missing t-tests (comparing animate classes), we will present response profiles and corresponding statistics for a broad set of additional, independent ROIs, defined either anatomically or functionally by other studies in the revised version.

      The descriptive data in Figure 3B (pending statistical evidence) suggests there were no strong differences in activation for the three species in dog and human animate areas. Thus, the ROI analysis appears to contradict findings from the binary analysis approach to investigate species preference, but the authors only discuss the results of the latter in support of their narrative for conspecific preference in dogs and do not discuss research from other labs investigating own-species preference.

      Studying conspecific-preference was not the primary aim of this study. We only used our data to characterize the animate-sensitive regions from this aspect. The species-preference test provides an overall characterization of the entire animate-sensitive region, revealing a higher number of voxels with a maximal response to conspecific than other stimuli in dogs (and a similar tendency in humans), confirming previous evidence on neural conspecific preference in visual areas in both species. The response profiles presented so far describe only the ROIs around the main animate-sensitive peaks and, as the Reviewer points out, in most cases reveal no significant conspecific bias. We believe there is no contradiction here: the entire animate-sensitive region may weakly but still be conspecific-preferring, whereas the main animate-sensitive peaks are not; the centers of conspecific preference may be located elsewhere in the visual cortex and may be supported by mechanisms other than animacy-sensitivity. In the revised manuscript, we will elaborate more on this. Additionally, in response to other comments, and for a better and more coherent characterization of species preference (and animacy sensitivity) across the visual cortex, we will present response profiles for other, independently defined regions and explore conspecific-sensitivity in those additional regions as well. Furthermore, we will discuss related own-species preference literature in greater detail.

      The authors also unnecessarily exaggerate novelty claims. Animate vs inanimate and own vs other species perceptions have both been investigated before in dogs (and humans), so any claims in that direction seem unsubstantiated - and also not needed, as novelty itself is not a sign of quality; what is novel, and a sign of theoretical advance besides the novelty, are as said the conceptual extension and replication of previous work.

      We agree with this Reviewer regarding novelty claims in general, and we confirm that we had no intention to overstate the uniqueness of our results. We also did not mean to imply that this work would be the first one on animacy perception in dogs, which it obviously is not. But we understand that we could have been more explicit presenting our work as a conceptual extension and replication of previous works, and we are revising the wording of the discussion from this aspect.

      Overall, more analyses and appropriate tests are needed to support the conclusions drawn by the authors, as well as a more comprehensive discussion of all findings.

      We are thankful for all comments. We will revise the methods section to provide sufficient detail and ensure replicability; conduct additional analyses as detailed above; and provide a more comprehensive discussion of all findings.

      Reviewer #2 (Public review):

      Summary:

      The manuscript reports an fMRI study looking at whether there is animacy organization in a non-primate, mammal, the domestic dog, that is similar to that observed in humans and non-human primates (NHPs). A simple experiment was carried out with four kinds of stimulus videos (dogs, humans, cats, and cars), and univariate contrasts and RSA searchlight analysis was performed. Previous studies have looked at this question or closely associated questions (e.g. whether there is face selectivity in dogs). The import of the present study is that it looks at multiple types of animate objects, dogs, humans, and cats, and tests whether there was overlapping/similar topography (or magnitude) of responses when these stimuli were compared to the inanimate reference class of cars. The main finding was of some selectivity for animacy though this was primarily driven by the dog stimuli, which did overlap with the other animate stimulus types, but far less so than in humans.

      Strengths:

      I believe that this is an interesting study in so far as it builds on other recent work looking at category-selectivity in the domestic dog. Given the limited number of such studies, I think it is a natural step to consider a number of different animate stimuli and look at their overlap. While some of the results were not wholly surprising (e.g. dog brains respond more selectively for dogs than humans or cats), that does not take away from their novelty, such as it is. The findings of this study are useful as a point of comparison with other recent work on the organization of high-level visual function in the brain of the domestic dog.

      Weaknesses:

      (1) One challenge for all studies like this is a lack of clarity when we say there is organization for "animacy" in the human and NHP brains. The challenge is by no means unique to the present study, but I do think it brings up two more specific topics.

      First, one property associated with animate things is "capable of self-movement". While cognitively we know that cars require a driver, and are otherwise inanimate, can we really assume that dogs think of cars in the same way? After all, just think of some dogs that chase cars. If dogs represent moving cars as another kind of selfmoving thing, then it is not clear we can say from this study that we have a contrast between animate vs inanimate. This would not mean that there are no real differences in neural organization being found.

      It was unclear whether all or some of the car videos showed them moving. But if many/most do, then I think this is a concern.

      We thank this Reviewer for raising this relevant point about the potential animacy of cars for dogs and its implication for our results. Of note, two-thirds of our car stimuli showed a car moving (slow, accelerating, or fast). We acknowledge that these stimuli contained motionbased animacy cues, and in this regard, there was no clear difference between our animate and inanimate conditions, and possibly between some of the representations they elicited. However, our animate and inanimate stimuli differed in other key factors accounting for animacy organization, such as visual features including the presence of faces, bodies, body parts, postures, and certain aspects of biological motion. So we believe that this limitation does not compromise our main conclusions. We will elaborate on this point further in the revised discussion, also considering how dogs’ differential behavioral responses to cars and animate entities may provide additional insights in this regard.

      Second, there is quite a lot of potential complexity in the human case that is worth considering when interpreting the results of this study. In the human case, some evidence suggests that animacy may be more of a continuum (Sha et al. 2015), which may reflect taxonomy (Connolly et al. 2012, 2016). However moving videos seem to be dominated more by signals relevant to threat or predation relative to taxonomy (Nastase et al. 2017). Some evidence suggests that this purported taxonomic organization might be driven by gradation in representing faces and bodies of animals based on their relative similarity to humans (Ritchie et al. 2021). Also, it may be that animacy organization reflects a number of (partially correlated) dimensions (Thorat et al. 2019, Jozwik et al. 2022). One may wonder whether the regions of (partial) overlap in animate responses in the dog brain might have some of these properties as well (or not).

      We agree that it would be interesting to dissect which animacy-related factor(s) contribute to the observed animacy sensitivity in different regions, and although this was not the original aim of the study, we agree that we could have made better use of the variation in our stimuli to discuss this aspect. Specifically, some animacy features are shared by all three animate stimulus classes, namely the presence of biological motions, faces, and bodies. In contrast, animate classes differed in some other aspects, for example in how dogs perceived dogs, humans, and cats as social agents and in their potential behavioral goals towards them. It can therefore be argued that regions with two- and especially three-way overlapping activations are more probably involved in processing biological motion, face and body aspects, and non-overlapping ones the social agency- and behavioural goal-related aspects. In line with this, the shared animacy features are indeed ones that have been reported to be central in human animacy representation and that may have made the overlaps in human brain responses greater. We will provide a more detailed discussion of the results from this viewpoint in the revised manuscript.

      (2) It is stated that previous studies provide evidence that the dog brain shows selectivity to "certain aspects of animacy". One of these already looked at selectivity for dog and human faces and bodies and identified similar regions of activity (Boch et al. 2023). An earlier study by Dilks et al. (2015), not cited in the present work (as far as I can tell), also used dynamic stimuli and did not suffer from the above limitations in choosing inanimate stimuli (e.g. using toy and scene objects for inanimate stimuli). But it only included human faces as the dynamic animate stimulus. So, as far as stimulus design, it seems the import of the present study is that it included a *third* animate stimulus (cats) and that the stimuli were dynamic.

      We agree with this Reviewer that the findings of Dilks et al. (2015) are relevant to our study and have therefore cited them. However, the citation itself was imprecise and will be corrected in the revised manuscript.

      (3) I am concerned that the univariate results, especially those depicted in Figure 3B, include double dipping (Kriegesorte et al. 2009). The analysis uses the response peak for the A > iA contrast to then look at the magnitude of the D, H, C vs iA contrasts. This means the same data is being used for feature selection and then to estimate the responses. So, the estimates are going to be inflated. For example, the high magnitudes for the three animate stimuli above the inanimate stimuli are going to inherently be inflated by this analysis and cannot be taken at face value. I have the same concern with the selectivity preference results in Figure 3E.

      I think the authors have two options here. Either they drop these analyses entirely (so that the total set of analyses really mirrors those in Figure 4), or they modify them to address this concern. I think this could be done in one of two ways. One would be to do a within- subject standard split-half analysis and use one-half of the data for feature selection and the other for magnitude estimation. The other would be to do a between-subject design of some kind, like using one subject for magnitude estimation based on an ROI defined using the data for the other subjects.

      We thank both Reviewers again for raising this important point about potential double dipping. We also thank this Reviewer for specific suggestions for split-half analyses – we agree that, had our original analyses involved double dipping, such a modification would be necessary. But, as we explained in our response above, this was not the case. Indeed, whereas we do visualize all four conditions in Fig. 3B, we only conducted t-tests to assess differences between the three animate conditions (the corresponding stats have been missing from the original manuscript but will be added during revision). So, importantly, we did not evaluate the magnitude of the D, H, C vs iA contrasts in any of the ROIs defined by animate-sensitive peaks; therefore, we believe that these analyses do not involve double dipping. This holds for the species preference results in Fig. 3E as well. We will clarify this in the revised manuscript. Of note, in response to a request by the other reviewer and to provide richer information about the univariate results, we will also provide response profiles and corresponding stats for a broad set of additional ROIs, defined either anatomically or functionally by other studies (e.g., Boch et al., 2023).

      (4) There are two concerns with how the overlap analyses were carried out. First, as typically carried out to look at overlap in humans, the proportion is of overlapping results of the contrasts of interest, e.g, for face and body selectivity overlap (Schwarlose et al. 2006), hand and tool overlap (Bracci et al. 2012), or more recently, tool and food overlap (Ritchie et al. 2024). There are a number of ways of then calculating the overlap, with their own strengths and weaknesses (see Tarr et al. 2007). Of these, I think the Jaccard index is the most intuitive, which is just the intersection of two sets as a proportion of their union. So, for example, the N of overlapping D > iA and H > iA active voxels is divided by the total number of unique active voxels for the two contrasts. Such an overlap analysis is more standard and interpretable relative to previous findings. I would strongly encourage the authors to carry out such an analysis or use a similar metric of overlap, in place of what they have currently performed (to the extent the analysis makes sense to me).

      We agree with this Reviewer that the Jaccard index is an intuitive and straightforward overlap measure. Importantly, for our overlap calculations we already use this measure (and a very similar one) – but we acknowledge that this was not clear from the original description. Specifically, for the multivariate overlap test, we used the Jaccard index exactly as described by this Reviewer. For the univariate overlap test, we use a very similar measure, with the only difference that there, to reference the search space, the intersection of specific animate-inanimate contrasts was divided by the total voxel number of animate-sensitive areas (which is highly similar to the union of the specific animate-inanimate contrasts). In the revised submission we will provide a more detailed explanation of the overlap calculations, making it explicit that we used the Jaccard index (and a variant of it).

      Second, the results summarized in Figure 3A suggest multiple distinct regions of animacy selectivity. Other studies have also identified similar networks of regions (e.g. Boch et al. 2023). These regions may serve different functions, but the overlap analysis does not tell us whether there is overlap in some of these portions of the cortex and not in others. The overlap is only looked at in a very general sense. There may be more overlap locally in some portions of the cortex and not in others.

      We thank this Reviewer for this comment, we agree that adding spatial specificity to these results will improve the manuscript. Therefore, during revision, we will assess the anatomical distribution of the overlap results, making use of a broad set of ROIs potentially relevant for animacy perception, defined either anatomically or functionally by other studies (e.g., Boch et al., 2023 for dogs).

      (5) Two comments about the RSA analyses. First, I am not quite sure why the authors used HMAX rather than layers of a standardly trained ImageNet deep convolutional neural network. This strikes me also as a missed opportunity since many labs have looked at whether later layers of DNNs trained on object categorization show similar dissimilarity structures as category-selective regions in humans and NHPs. In so far as cross-species comparisons are the motivation here, it would be genuinely interesting to see what would happen if one did a correlation searchlight with the dog brain and layers of a DNN, a la Cichy et al. (2016).

      We thank the Reviewer for this comment and suggestion. At the start of the project, HMAX was the most feasible model to implement given our time and expertise constrains. Additionally, the biologically motivated HMAX was also an appropriate choice, as it simulates the selective tuning of neurons in the primary visual cortex (V1) of primates, which is considered homologous with V1 in carnivores (Boch et al., 2024).

      Although we agree that using DNNs have recently been extensively and successfully used to explore object representations and could provide valuable additional insights for dogs’ visual perception as well, we believe that adding a large set of additional analyses would stretch the frames of this manuscript, disproportionately shifting its focus from our original research question. Also, our experiment, designed with a different, more specific aim in mind, did not provide a large enough stimulus variety of animate stimuli for a general comparison of the cortical hierarchy underlying object representations in dog and human brains and thus our data are not an optimal starting point for such extensive explorations. Having said that, we are thankful for this Reviewer for the idea and will consider using a DNN to uncover dog’ visual cortical hierarchy in future studies with a better suited stimulus set. Furthermore, in accordance with eLife’s data-sharing policies, we will make the current dataset publicly available so further hypothesis and models can be tested.

      Second, from the text is hard to tell what the models for the class- and categoryboundary effects were. Are there RDMs that can be depicted here? I am very familiar with RSA searchlight and I found the description of the methods to be rather opaque. The same point about overlap earlier regarding the univariate results also applies to the RSA results. Also, this is again a reason to potentially compare DNN RDMs to both the categorical models and the brains of both species.

      In the revised manuscript we will provide a more detailed explanation of the methods used to determine class- and category-boundary effects. In short, the analysis we performed here followed Kriegeskorte et al. (2008), and the searchlight test looked for regions in which between-class/category differences were greater than within-class/category differences. We will also include RDMs. Additionally, we will provide anatomical details for the overlap results for RSA, just as for the univariate results, using the same independently defined broad set of ROIs, defined either anatomically or functionally by other studies (e.g., Boch et al., 2023 for dogs).

      (6) There has been emphasis of late on the role of face and body selective regions and social cognition (Pitcher and Ungerleider, 2021, Puce, 2024), and also on whether these regions are more specialized for representing whole bodies/persons (Hu et al. 2020, Taubert, et al. 2022). It may be that the supposed animacy organization is more about how we socialize and interact with other organisms than anything about animacy as such (see again the earlier comments about animacy, taxonomy, and threat/predation). The result, of a great deal of selectivity for dogs, some for humans, and little for cats, seems to readily make sense if we assume it is driven by the social value of the three animate objects that are presented. This might be something worth reflecting on in relation to the present findings.

      We thank the Reviewer for this suggestion. The original manuscript already discussed how motion-related animacy cues involved in social cognition may explain that animacysensitive regions reported in our study extend beyond those reported previously and also the role of biological motion in the observed across-species differences. This discussion of the role of visual diagnostic features and features that involved in perceiving social agents will be extended in the revised discussion, also in response to the first comment of this Reviewer, to reflect on how social cognition-related animacy cues may have affected our results in dogs.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Dad et al. explored the roles of cytosolic carboxypeptidase 5(CCP5)in the development of ependymal multicilia in the brain. CCP family are erasers of polyglutamylation of ciliary-axoneme microtubules. The authors generated a new mutant mouse of Agbl5 gene, which encodes CCP5, with deletion of its N-terminus and partial carboxypeptidase (CP) domain (named AGBL5M1/M1).

      Strengths:

      The mutant mice revealed lethal hydrocephalus due to degeneration of ependymal multicilia. Interestingly, this is in contrast with the phenotype of Agbl5 mutants with disruption solely in the CP domain of CCP5 (named AGBL5M2/M2) that did not develop hydrocephalus despite increased glutamylation levels in ependymal cilia as observed for AGBL5M1/M1 mutants. The study has been well-performed and the findings suggest a unique function of the N-domain of CCP5 in ependymal multicilia stability.

      Weaknesses:

      The content of this article is relatively descriptive and lacks molecular insights.

      We thank the Reviewer’s positive comments. To address the molecular insights of the dysregulated planar cell polarity (PCP) in Agbl5<sup>M1/M1</sup> ependyma, we are planning to further assess the microtubule polarization and the expression/localization of PCP core proteins in ependymal cells. We also plan to quantify the intensity of actin networks around BB patches to better understand to which extent it is affected in the ependyma of the mutants and contributes to the impaired stability of BBs (Please see below).

      We will also assess whether Agbl5 commonly functions in multiciliated cells of other organs.

      Reviewer #2 (Public review):

      Summary:

      This study analyzed the consequences of Agbl5 mutation on ependymal cell development and function. The authors first characterize their mutant mouse line reporting a reduced lifespand and severe hydrocephalus. Next, they report a defect in ependymal cell cilia number and motility. They provide evidence for impaired basal body organisation and cilia glutamylation.

      Strengths:

      Description of a mutant mouse which implicates Cytosolic Carboxypeptidase 5 (the product of Agbl5 gene) for proper ependymal cells.

      Weaknesses:

      Description of phenotype is incomplete:

      We thank the Reviewer’s constructive comments. We agree that more quantitative analysis of the phenotypes in Agbl5<sup>M1/M1</sup> will strengthen this study.

      - Figure 3G - the sequence from the movie is not really informative. Providing beating frequencies as quantification of the data would be more informative.

      We agree that quantification of the cilia beating frequencies and directions in these experiments will be more informative.

      - Figure 3 - the quantification of actin network would strengthen the message.

      We agree with the Reviewers. We will quantify the total intensity of actin around BB patch and the total intensity of actin per BB to determine to which extent the actin networks are affected in Agbl5<sup>M1/M1</sup> ependymal cells.

      - Lines 219 -220 - the authors conclude “Taken together, in Agbl5<sup>M1/M1</sup> ependymal cells, the expression of genes promoting multiciliogenesis were not impaired but certain proteins associated with differentiated ependymal cells are not properly expressed”. However, they do not assess gene but protein expression (IF). In addition, their quantification shows differences in the number of FoxJ1 positive cells which indeed is an impaired expression.

      We will clarify this statement.

      - Microtubules are involved in the local organization of ciliary basal bodies (see Werner et al., Vladar et al.,2011; Boutin et al., 2014). It would be interesting for the authors to check whether the subapical network of microtubules is glutamylated or not during ependymal cell differentiation and how this network is affected in their mutants.

      We thank the Reviewer’s suggestion. We agree this is an interesting point to look at. We will assess the glutamylation status of the subapical microtubule networks in differentiating ependymal cells and whether they are affected in the mutants.

      - Showing the data mentioned in the discussion on Cep110 would be a nice addition to the paper.

      These results will be provided.

      - Line 354: "The latter serves as a component of tissue polarity that is required for asymmetric PCP protein localization in each cell (Boutin et al., 2014; Vladar et al., 2012)." The cited reference did not demonstrate that this microtubule network is required for asymmetric PCP localization.

      We thank the Reviewer for critical reading. We will correct the citation.

      Reviewer #3 (Public review):

      Summary:

      The authors developed a new Agbl5 KO allele, extending the deletion to the N-terminus of CCP5 to explore its function in mouse ependymal cells.

      Strengths:

      They show that the KO mice exhibit severe hydrocephalus due to disorganized and mislocated basal bodies. Additionally, they present evidence of both impaired beating coordination and a reduction in ciliary beating.

      Weaknesses:

      The manuscript is well-written but lacks specific interpretations of the results presented. Further experiments are needed to be fully convincing.

      We thank the Reviewer’s comments. We plan to conduct the following experiments to strengthen this study.

      (1) Quantify the intensity of actin staining around BB patches and its intensity relative to the number of BBs to assess to which extent the actin networks in Agbl5<sup>M1/M1</sup> ependymal cells are affected (please refer to the above response to the comments of Reviewer 2#).

      (2) Co-stain tdTomato with cell specific markers to strengthen the spatial expression of tdTomato.

      (3) Seek proper antibodies to determine the correlation between signals of GT335 and Ac-Tub in ependymal multicilia of Agbl5<sup>M1/M1</sup> mice.

      (4) Quantitatively compare the size of ependymal cells in the wild-type and Agbl5<sup>M1/M1</sup> mice to address whether there is a consequence of possible dysfunction of primary cilia in the precursors of ependymal cells in the mutants. If so, we will further analyze how the primary cilia in the precursors of ependymal cells are affected in the mutants.

      (5) Address whether the rotational polarity is affected in the Agbl5<sup>M1/M1</sup> mutant mice.

    1. Author response:

      To address Reviewer 1’s concerns, we will implement the following changes:

      Comment 1: We will clarify that, even without direct comparisons within or across species, whether vertically transmitted microbes act as pioneering colonizers or integrate into an existing community is an important factor influencing their effect on community composition.

      Comment 2: We will provide additional details on the biology of the surrogate frog Oophaga sylvatica, explain how tadpole manipulation might influence adhesion to the caregiver, and acknowledge that the lack of knowledge on the physiological mechanisms underlying tadpole attachment currently limits our discussion to speculation.

      We will further clarify in the “Methods” section that SourceTracker’s ability to accurately estimate source proportions was assessed by evaluating how well it assigned training samples to their correct source environments. We will provide the predictions for the training set and describe how they informed our data preprocessing and analysis approach.

      Comment 3: While we predicted that community distances between tadpoles and adults would be smaller in species with parental transport, we explicitly state that our results did not confirm this expectation. We thus see no contradiction in our discussion but will ensure that this point is more clearly communicated. In response to the reviewer’s suggestion, we will incorporate additional literature on how tadpoles’ skin microbial communities change over time and adapt to their environment. We will also expand on how the life history of L. longirostris—specifically, the frequent presence of adults in tadpole habitats—may facilitate horizontal microbiota transmission, potentially contributing to shorter community distances.

      Comment 4: We will remove the network visualization to prevent any misinterpretation.

      Additionally, following Reviewer 2’s suggestion, we will include data on the absolute abundance of ASVs shared between parent and offspring after one month of development to further support the manuscript.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Recommendations for the authors:

      Reviewer #1:

      The authors have thoroughly changed the manuscript and addressed most of my concerns. I appreciate adding the activity assays of the C115/120S mutants, however, I suggest that the authors embed and also discuss these data more clearly. It also escaped my attention earlier that the positioning of the disulfide bond is 117-122 in the deposited PDBs instead of 115-120. The authors should carefully check which positioning is correct here.

      We thank reviewer #1 for his or her careful assessment of our revised manuscript. As suggested, we detailed the results section “CrSBPase enzymatic activity” with additional numerical values, and discussed more clearly the comparisons of results for activity assays of mutants C115S and C120S in the section “Oligomeric states of CrSBPase”. Residues numbering was carefully proof-checked throughout the manuscript for correctness and homogeneity. C115 and C120 are numbered according to best databases consensus, ie. GenBank and Uniprot, and may differ from one database to another (including PDB) due to varying numbering rules. We clarified the chosen nomenclature in methods section “Cloning and mutagenesis of CrSBPase expression plasmids”.

      Line 246-250: I think it is evident that the two SBPase structures superpose well given the sequence identity of more than 70%. However, it would be great to include a superposition of the two structures in Figure 1, especially with regard to the region harboring C115 and C120.

      We added a panel showing superimposition of CrSBPase 7b2o and PpSBPase 5iz3 and made a close-up view around the region C115-C120 in supplementary figure 5. Given the density in information of figure 1 we prefer not to add additional images on it. Supplementary figure 5 was initially intended to illustrate sequence conservation/variation among homologs, thus fitting with the objective to compare past and present XRC results.

      Line 255-266: I am again missing a panel in Figure 1 here, e.g. a side-by-side view of Xray vs AF2/3 structure.

      We added another panel in supplementary figure 5 to visually compare side-by-side SBPase crystallographic structure 7b2o and our AF3 model. Again, for the sake of clarity we prefer not to overload figure 1 with additional panels. This will also enable thorough comparison of past XRC of PpSBPase, present XRC of CrSBPase, and various AF models (see below, oligomer comparisons).

      Line 261-266: Did the authors predict dimers and tetramers using AF3? What are the confidence metrics in this case? Do the authors see differences to the monomer prediction in case a multimer is confidently predicted?

      We modeled dimers and tetramers using AF3 and added them on supplementary figure 5 side by side with protomer of XRC model 7b2o and with monomer predicted by AF3. Color code for supplementary figure 5 panels F-H is according to AF standard representation of plDDT. Confidence metrics per residue correspond to very high reliability (navy blue) or, locally, confident prediction (cyan) and overall prediction scores range from pTM=0.85-0.91, a high-quality prediction. Interface prediction score is high for both dimer (ipTM=0.9) and tetramer (ipTM=0.82). We reported these data in supplementary figure 5 and corresponding updated legend. XRC and AF models all align with RMSD<0.5 Å, indicating a globally unchanged structure of the protomer in the various methods and oligomeric states.

      Line 441: How does the oligomeric equilibrium change in C115/120S mutants? This information should be added for the mutants. Besides, the mAU units in Fig. 6 could be normalized to allow an easier comparison between the chromatograms of wt and mutants.

      Change in oligomeric equilibrium is assessed by size-exclusion chromatography of WT and mutants C115S, C120S as reported in figure 6A. We made quantitative estimation of WT, and C115S and C120S mutants equilibrium by comparing maximal peak intensity and added this information in the text. Briefly, the oligomer ratio on a scale of 100 is 9:48:43 for WT, 42:25:33 for mutant C115S, and 29:17:54 for mutant C120S (ratio expressed as tetramer:dimer:monomer). We prefer not to normalize values of absorbance, but rather keep the actual measurement of absorbance at 280 nm on the chromatogram of figure 6, for the sake of consistency with the added text and for a more transparent report of the experiment.

      Line 447: WT activity is 12.15+-2.15 and both mutants have a higher activity. The authors should check if their values (96% and 107%) are correct. Besides, did the authors check if the increase in C120S is statistically significant? My impression is that both mutants have a higher activity than the wildtype, in both correlating with increased fractions of the tetramer. This would also make sense, as the corresponding region is part of the tetramer interface in the crystal packing.

      The reported activity values were checked for correctness. Wild-type SBPase specific activity at 12.5 ±2.15 µmol(NADPH) min<sup>-1</sup> mg(SBPase)<sup>-1</sup> was obtained by pre-incubating the enzyme with 1 µM CrTRXf2 supplemented with 1 mM DTT and 10 mM Mg<sup>2+</sup>, while the results of supplementary figure 14 reporting the comparison of activation of WT and mutants, with a variation of 107 or 96 %, were obtained with a slightly different protocol for pre-incubation of the enzyme with 10 mM DTT and 10 mM Mg<sup>2+</sup>. Please note that whether WT enzyme was assayed in 10 mM DTT 10 mM Mg or in 1 µM TRX 1 mM DTT 10 mM Mg, its specific activity appears equal within experimental error. Both mutants have nearly the same activity than the WT in the assay reported in supplementary figure 14: we fully agree that 107% (and 96%) variation is indeed not significant considering the uncertainty of the measurement (see error bars representing standard deviations of the mean in supplementary figure 14). We added this important information in the text. Even though both mutations stabilize the most active tetramer in untreated recombinant protein, we think that after reducting treatment both WT and mutants all reach the same maximal activity because they all form an equivalent proportion of the active tetramer versus alternative oligomeric states. We furhter interprete this piece of data as a decoupling of reduction and catalysis: in physiological conditions we assume that SBPase would initiate activation upon the reduction of disulfide bridges, including but not limited to C115-C120 that restricts the entry into fully active tetramer, at which point SBPase in reduced form reaches maximal activity until another post-translational signal eventually changes its conformation and oligomerisation.

      We thank again reviewer 1 for his or her assessment and valuable suggestions.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      First, the authors confirm the up-regulation of the main genes involved in the three branches of the Unfolded Protein Response (UPR) system in diet-induced obese mice in AT, observations that have been extensively reported before. Not surprisingly, IRE1a inhibition with STF led to an amelioration of the obesity and insulin resistance of the animals. Moreover, non-alcoholic fatty liver disease was also improved by the treatment. More novel are their results in terms of thermogenesis and energy expenditure, where IRE1a seems to act via activation of brown AT. Finally, mice treated with STF exhibited significantly fewer metabolically active and M1-like macrophages in the AT compared to those under vehicle conditions. Overall, the authors conclude that targeting IRE1a has therapeutical potential for treating obesity and insulin resistance.

      The study has some strengths, such as the detailed characterization of the effect of STF in different fat depots and a thorough analysis of macrophage populations. However, the lack of novelty in the findings somewhat limits the study´s impact on the field.

      We thank the reviewer for the appreciation of our findings. We would use the opportunity to highlight several novelties. First, we characterized the relationship between the newly discovered CD9<sup>+</sup> ATMs and the “M1-like” CD11c+ ATMs. Second, we demonstrated that M2 macrophage population was not reduced but instead increased in adipose tissue in obesity. Third, IRE1 inhibition does not improve thermogenesis by boosting M2 population, but instead, IRE1 inhibition suppresses pro-inflammatory macrophage populations including the M1-like ATMs.

      Reviewer #3 (Public review):

      Summary:

      The manuscript by Wu D. et al. explores an innovative approach in immunometabolism and obesity by investigating the potential of targeting macrophage Inositol-requiring enzyme 1α (IRE1α) in cases of overnutrition. Their findings suggest that pharmacological inhibition of IRE1α could influence key aspects such as adipose tissue inflammation, insulin resistance, and thermogenesis. Notable discoveries include the identification of High-Fat Diet (HFD)-induced CD9<sup>+</sup> Trem2+ macrophages and the reversal of metabolically active macrophages' activity with IRE1α inhibition using STF. These insights could significantly impact future obesity treatments.

      Strengths:

      The study's key strengths lie in its identification of specific macrophage subsets and the demonstration that inhibiting IRE1α can reverse the activity of these macrophages. This provides a potential new avenue for developing obesity treatments and contributes valuable knowledge to the field.

      Weaknesses:

      The research lacks an in-depth exploration of the broader metabolic mechanisms involved in controlling diet-induced obesity (DIO). Addressing this gap would strengthen the understanding of how targeting IRE1α might fit into the larger metabolic landscape.

      We thank the reviewer for the appreciation of strengths in our manuscript. In particular, we appreciate the reviewer’s recommendation on the exploration of broader metabolic landscape, such as the effect of IRE1 inhibition on non-adipose tissue macrophages and metabolism. We agree that achieving these will certainly broaden the therapeutic potential of IRE1 inhibition to larger metabolic disorders and we will pursue these explorations in future studies.

      Impact and Utility:

      The findings have the potential to advance the field of obesity treatment by offering a novel target for intervention. However, further research is needed to fully elucidate the metabolic pathways involved and to confirm the long-term efficacy and safety of this approach. The methods and data presented are useful, but additional context and exploration are required for broader application and understanding.

      Comments on revisions:

      The author has revised the manuscript and addressed the most relevant comments raised by the reviewers. The paper is now significantly improved, though two minor issues remain.

      (1) Studies were limited to male mice; this should be mentioned in the paper's Title.

      Thanks for comment. We have modified the title to reflect the male mice only.

      (2) Please include the sample size (n=) in all provided tables in the main manuscript and supplementary tables.

      We have included the sample size in the main manuscript.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Bacterial effectors that interfere with the inner molecular workings of eukaryotic host cells are of great biological significance across disciplines. On the one hand they help us to understand the molecular strategies that bacteria use to manipulate host cells. On the other hand they can be used as research tools to reveal molecular details of the intricate workings of the host machinery that is relevant for the interaction/defence/symbiosis with bacteria. The authors investigate the function and biological impact of a rhizobial effector that interacts with and modifies, and curiously is modified by, legume receptors essential for symbiosis. The molecular analysis revealed a bacterial effector that cleaves a plant symbiosis signaling receptor to inhibit signaling and the host counterplay by phosphorylation via a receptor kinase. These findings have potential implications beyond bacterial interactions with plants.

      Bao and colleagues investigated how rhizobial effector proteins can regulate the legume root nodule symbiosis. A rhizobial effector is described to directly modify symbiosis-related signaling proteins, altering the outcome of the symbiosis. Overall, the paper presents findings that will have a wide appeal beyond its primary field.

      Out of 15 identified effectors from Sinorhizobium fredii, they focus on the effector NopT, which exhibits proteolytic activity and may therefore cleave specific target proteins of the host plant. They focus on two Nod factor receptors of the legume Lotus japonicus, NFR1 and NFR5, both of which were previously found to be essential for the perception of rhizobial nod factor, and the induction of symbiotic responses such as bacterial infection thread formation in root hairs and root nodule development (Madsen et al., 2003, Nature; Tirichine et al., 2003; Nature). The authors present evidence for an interaction of NopT with NFR1 and NFR5. The paper aims to characterize the biochemical and functional consequences of these interactions and the phenotype that arises when the effector is mutated.

      Evidence is presented that in vitro NopT can cleave NFR5 at its juxtamembrane region. NFR5 appears also to be cleaved in vivo. and NFR1 appears to inhibit the proteolytic activity of NopT by phosphorylating NopT. When NFR5 and NFR1 are ectopically over-expressed in leaves of the non-legume Nicotiana benthamiana, they induce cell death (Madsen et al., 2011, Plant Journal). Bao et al., found that this cell death response is inhibited by the coexpression of nopT. Mutation of nopT alters the outcome of rhizobial infection in L. japonicus. These conclusions are well supported by the data.

      The authors present evidence supporting the interaction of NopT with NFR1 and NFR5. In particular, there is solid support for cleavage of NFR5 by NopT (Figure 3) and the identification of NopT phosphorylation sites that inhibit its proteolytic activity (Figure 4C). Cleavage of NFR5 upon expression in N. benthamiana (Figure 3A) requires appropriate controls (inactive mutant versions) that have been provided, since Agrobacterium as a closely rhizobia-related bacterium might increase defense related proteolytic activity in the plant host cells.

      We appreciate your recognition of the importance of appropriate controls in our experimental design. In response to your comments, we revised our manuscript to ensure that the figures and legends provide a clear description of the controls used. We also included a more detailed description of our experimental design at several places. In particular, we have highlighted the use of the protease-dead version of NopT as a control (NopT<sup>C93S</sup>). Therefore, NFR5-GFP cleavage in N. benthamiana clearly depended on protease activity of NopT and not on Agrobacterium (Fig. 3A). In the revised text, we carefully revied the conclusion and do not conclude at this stage that NopT proteolyzes NFR5. However, our subsequent experiments, including in vitro experiments, clearly show that NopT is able to proteolyze NFR5.

      Key results from N. benthamiana appear consistent with data from recombinant protein expression in bacteria. For the analysis in the host legume L. japonicus transgenic hairy roots were included. To demonstrate that the cleavage of NFR5 occurs during the interaction in plant cells the authors build largely on western blots. Regardless of whether Nicotiana leaf cells or Lotus root cells are used as the test platform, the Western blots indicate that only a small proportion of NFR5 is cleaved when co-expressed with nopT, and most of the NFR5 persists in its full-length form (Figures 3A-D). It is not quite clear how the authors explain the loss of NFR5 function (loss of cell death, impact on symbiosis), as a vast excess of the tested target remains intact. It is also not clear why a large proportion of NFR5 is unaffected by the proteolytic activity of NopT. This is particularly interesting in Nicotiana in the absence of Nod factor that could trigger NFR1 kinase activity.

      Thank you for your comments regarding the cleavage of NFR5 by NopT and its functional implications. We acknowledge that our immunoblots indicate only a relatively small proportion of the NFR5 cleavage product. Possible explanations could be as follows:

      (1) The presence of full-length NFR5 does not preclude a significant impact of NopT on function of NFR5, as NopT is able to interact with NFR5. In other words, the NopT-NFR5 and NopT-NFR1 interactions at the plasma membrane might influence the function of the NFR1/NFR5 receptor without proteolytic cleavage of NFR5. In fact, protease-dead NopT<sup>C93S</sup> expressed in NGR234ΔnopT showed certain effects in L. japonicus (less infection foci were formed compared to NGR234ΔnopT Fig. 5E). In this context, it is worth mentioning that the non-acylated NopT<sup>C93S</sup> (Fig. 1B) and NopT<sub>USDA257</sub> (Fig. 6B) proteins were unable to suppress NFR1/NFR5-induced cell death in N. benthamina, but this could be explained by the lack of acylation and altered subcellular localization.

      (2) In the cleavage assay, only small portion of NFR5 could be detected for cleavage by NopT. However, this cleavage might be sufficient to suppress signaling pathways, leading to the observed phenotypic changes (loss of cell death in N. benthamiana; altered infection in L. japonicus). We do believe this is a great point, therefore, we carefully revised the conclusion about this point. Throughout the paper, we stated that the cleavage of NFR5 suppresses symbiotic signaling but not disrupt the symbiotic signaling. We also removed the conclusion that cleavage of NFR5 by NopT results in the function loss of NFR5.

      (3) N. benthamiana co-expressing NFR1/NFR5 leads to strong cell death, which suggest that the NFR1 kinase activity might be constitutively active even in the absence of Nod factors. But why co-expression of symbiotic receptor leads to cell death and how kinase activity is active in the absence of Nod factor are not clear, which is of great interest to be studied.

      (4) The proteolytic activity of NopT may be reduced by the interaction of NopT with other proteins such as NFR1, which phosphorylates NopT and inactivates its protease activity.

      In our revised manuscript version, we provide now quantitative data for the efficiency of NFR5 cleavage by NopT in different expression systems used (Figure 3 and Supplemental Fig. 16). We have also improved our Discussion in this context.  

      Comments on latest version:

      The presentation of the figures and the language has greatly improved and the specific mistakes pointed out in the last review have been corrected. I especially appreciate the new images used to illustrate the observed mutant phenotypes, which are much clearer and easier to understand. The pictures used to illustrate the mutant phenotypes seem to be of more comparable root regions than before. Overall, the requested changes have been implemented, with some exceptions described below.

      • Figure 1: New representative images are shown for BAX1 and CERK1. These pictures are more consistent with the phenotype seen in other treatments, but since the data has not changed, I presume the data from leaf discs (where the leaf discs for these treatments looked very different) previously shown is still included. The criteria for what was considered cell death is in my opinion still not described in the legend. The cell death/total ratio has been added for all leaf discs, as requested.

      Thank you so much for carefully pointing out this. Cell death in leaf disc results in the formation of necrotic plaques, which restrains pathogens within deceased cells. These plaques commonly manifest as leaf dehydration, frequently accompanied by a translucent appearance. Brown and shriveled leaf discs serve as indicators of cell death. We have added these descriptions in the figure legend of Figure 1.

      • Figure 2: the discussion of the figure now emphasizes direct protein interaction. There is still no size marker in 2D or a description of size in the figure legend, making it difficult to compare the result to Figure 3. If I understand the rebuttal comments correctly, there are other bands on the blot, including non-specific bands. This does not negate the need to include the full blot as a supplemental figure to show cleaved NFR5 as well as other bands. I do not see any other clarifications on this subject in the manuscript.

      Thank you for your suggestion. In the revised manuscript, we have included the kDa range for all proteins detected in Figure.2D. The full blot of Co-IP assay was shown in Fig S2 (a new supplemental data). Yes, we detected some smaller bands after immunoblot, but we cannot give clear conclusion of what these bands are based on the current study. Interestingly, these smaller bands were immunoprecipitated by anti-FLAG beads, suggesting that these bands are some truncated peptides from NFR5.

      • Figure 5: From the pictures, it is now easier to understand what is meant by "infection foci". Although there is no description in the methods of how these were distinguished from infection threads, I believe the images are clear enough.

      Thank you for your helpful comment. In the revised manuscript, we have added the descriptions about this experiment in the method section and in the legend in Figure 5A.

      • Figure 6: The changes in the discussion are appreciated, but panel E still misrepresents the evidence in the paper, as from the drawing it still seems that the cleaved NFR5 is somehow directly responsible for suppressing infection when this was not shown.

      Thank you for your thoughtful comments. We appreciate your suggestion to the schematic model to illustrate the cleavage of NFR5 to suppressing rhizobia infection. In the revised manuscript, we have changed the model in Figure 6E.

      Reviewer #2 (Public review):

      Summary:

      This manuscript presents data demonstrating NopT's interaction with Nod Factor Receptors NFR1 and NFR5 and its impact on cell death inhibition and rhizobial infection. The identification of a truncated NopT variant in certain Sinorhizobium species adds an interesting dimension to the study. These data try to bridge the gaps between classical Nod-factor-dependent nodulation and T3SS NopT effector-dependent nodulation in legume-rhizobium symbiosis. Overall, the research provides interesting insights into the molecular mechanisms underlying symbiotic interactions between rhizobia and legumes.

      Strengths:

      The manuscript nicely demonstrates NopT's proteolytic cleavage of NFR5, regulated by NFR1 phosphorylation, promoting rhizobial infection in L. japonicus. Intriguingly, authors also identify a truncated NopT variant in certain Sinorhizobium species, maintaining NFR5 cleavage but lacking NFR1 interaction. These findings bridge the T3SS effector with the classical Nod-factor-dependent nodulation pathway, offering novel insights into symbiotic interactions.

      Weaknesses:

      (1) In the previous study, when transiently expressed NopT alone in Nicotiana tobacco plants, proteolytically active NopT elicited a rapid hypersensitive reaction. However, this phenotype was not observed when expressing the same NopT in Nicotiana benthamiana (Figure 1A). Conversely, cell death and a hypersensitive reaction were observed in Figure S8. This raises questions about the suitability of the exogenous expression system for studying NopT proteolysis specificity.

      We appreciate your attention to these plant-specific differences. Previous studies showed that NopT expressed in tobacco (N. tabacum) or in specific Arabidopsis ecotypes (with PBS1/RPS5 genes) causes rapid cell death (Dai et al. 2008; Khan et al. 2022). Khan et al. 2022 reported recently that cell death does not occur in N. benthamiana unless the leaves were transformed with PBS1/RPS5 constructs. Our data shown in Fig. S17 confirm these findings. As cell death is usually associated with induction of plant protease activities, we considered N. tabacum and A. thaliana plants as not suitable for testing NFR5 cleavage by NopT. In fact, no NopT/NFR5 experiments were not performed with these plants in our study. In response to your comment, we now better describe the N. benthamiana expression system and cite the previous articles_. Furthermore, we have revised the Discussion section to better emphasize effector-induced immunity in non-host plants and the negative effect of rhizobial effectors during symbiosis. Our revisions certainly provide a clearer understanding of the advantages and limitations of the _N. benthamiana expression system.

      (2) NFR5 Loss-of-function mutants do not produce nodules in the presence of rhizobia in lotus roots, and overexpression of NFR1 and NFR5 produces spontaneous nodules. In this regard, if the direct proteolysis target of NopT is NFR5, one could expect the NGR234's infection will not be very successful because of the Native NopT's specific proteolysis function of NFR5 and NFR1. Conversely, in Figure 5, authors observed the different results.

      Thank you for this comment, which points out that we did not address this aspect precisely enough in the original manuscript version. We improved our manuscript and now write that nfr1 and nfr5 mutants do not produce nodules (Madsen et al., 2003; Radutoiu et al., 2003) and that over-expression of either NFR1 or NFR5 can activate NF signaling, resulting in formation of spontaneous nodules in the absence of rhizobia (Ried et al., 2014). In fact, compared to the nopT knockout mutant NGR234ΔnopT, wildtype NGR234 (with NopT) is less successful in inducing infection foci in root hairs of L. japonicus (Fig. 5). With respect to formation of nodule primordia, we repeated our inoculation experiments with NGR234ΔnopT and wildtype NGR234 and also included a nopT over-expressing NGR234 strain into the analysis. Our data clearly showed that nodule primordium formation was negatively affected by NopT. The new data are shown in Fig. 5 of our revised version. Our data show that NGR234 infection is not really successful, especially when NopT is over-expressed. This is consistent with our observations that NopT targets Nod factor receptors in L. japonicus and inhibits NF signaling (NIN promoter-GUS experiments). Our findings indicate that NopT might be an “Avr effector” for L. japonicus. However, in other host plants of NGR234, NopT possesses a symbiosis-promoting role (Dai et al. 2008; Kambara et al. 2009). Such differences could be explained by different NopT targets in different plants (in addition to Nod factor receptors), which may influence the outcome of the infection process. Indeed, our work shows that NopT can interact with various kinase-dead LysM domain receptors, suggesting a role of NopT in suppression or activation of plant immunity responses depending on the host plant. We discuss such alternative mechanisms in our revised manuscript version and emphasize the need for further investigation to elucidate the precise mechanisms underlying the observed infection phenotype and the role of NopT in modulating symbiotic signaling pathways. In this context, we would also like to mention the new figures of our manuscript which are showing (i) the efficiency of NFR5 cleavage by NopT in different expression systems (Figure 3), (ii) the interaction between NopT<sup>C93S</sup> and His-SUMO-NFR5JM-GFP (Supplementary Fig. 5), and (iii) cleavage of His-SUMO-NFPJM-GFP by NopT (Supplementary Figs. S8 and S9).

      (3) In Figure 6E, the model illustrates how NopT digests NFR5 to regulate rhizobia infection. However, it raises the question of whether it is reasonable for NGR234 to produce an effector that restricts its own colonization in host plants.

      Thank you for mentioning this point. We are aware of the possible paradox that the broad-host-range strain NGR234 produces an effector that appears to restrict its infection of host plants. As mentioned in our answer to the previous comment, NopT could have additional functions beyond the regulation of Nod factor signaling. In our revised manuscript version, we have modified our text as follows:

      (1) We mention the potential evolutionary aspects of NopT-mediated regulation of rhizobial infection and discuss the possibility that interactions between NopT and Nod factor receptors may have evolved to fine-tune Nod factor signaling to avoid rhizobial hyperinfection in certain host legumes.

      (2) We also emphasize that the presence of NopT may confer selective advantages in other host plants than L. japonicus due to interactions with proteins related to plant immunity. Like other effectors, NopT could suppress activation of immune responses (suppression of PTI) or cause effector-triggered immunity (ETI) responses, thereby modulating rhizobial infection and nodule formation. Interactions between NopT and proteins related to the plant immune system may represent an important evolutionary driving force for host-specific nodulation and explain why the presence of NopT in NGR234 has a negative effect on symbiosis with L. japonicus but a positive one with other legumes.

      (4) The failure to generate stable transgenic plants expressing NopT in Lotus japonicus is surprising, considering the manuscript's claim that NopT specifically proteolyzes NFR5, a major player in the response to nodule symbiosis, without being essential for plant development.

      We also thank for this comment. We have revised the Discussion section of our manuscript and discuss now our failure to generate stable transgenic L. japonicus plants expressing NopT. We observed that the protease activity of NopT in aerial parts of L. japonicus had a negative effect on plant development, whereas NopT expression in hairy roots was possible. Such differences may be explained by different NopT substrates in roots and aerial parts of the plant. In this context, we also discuss our finding that NopT not only cleaves NFR5 but is also able to proteolyze other proteins of L. japonicus such as LjLYS11, suggesting that NopT not only suppresses Nod factor signaling, but may also interfere with signal transduction pathways related to plant immunity. We speculate that, depending on the host legume species, NopT could suppress PTI or induce ETI, thereby modulating rhizobial infection and nodule formation.

      Comments on revised version:

      This version has effectively addressed most of my concerns. However, one key issue remains unresolved regarding the mechanism of NopT in regulating nodule symbiosis. Specifically, the explanation of how NopT catabolizes NFR5 to regulate symbiosis is still not convincing within the current framework of plant-microbe interaction, where plants are understood to genetically control rhizobial colonization.

      While alternative regulatory mechanisms in plant-microbe interactions are plausible, the notion that the NRG234-secreted effector NopT could reduce its own infection by either suppressing plant immunity or degrading the symbiosis receptor remains unsubstantiated. I believe further revisions are needed in the discussion section to more clearly address and clarify these findings and any lingering uncertainties.

      We appreciate your positive comments on the reason why NopT catabolizes NFR5 to regulate symbiosis. NopT belongs to pathogen effecftors YopT family and also cleavage Arabidopsis AtLYK5 and L. japonicus LjLYS11 which trigger immunity responses in plants. NFR5, AtLYK5 and LjLYS11 has the conserved amino acid motif at the juxtamembrane domain, leading to cleaving NFR5 by NopT during symbiosis. Besides, in plant-microbe interaction, effector HopB1 cleaves immune co-receptor BAK1 at the kinase domain to inhibit plant defense. The effect on cleavage of receptor may be positive or negative. NopT suppressing symbiosis may avoid preventing hyperinfection in the specific interaction between rhizobia and legumes. In the revised manuscript, we have emphasized this point more clearly in why NopT could reduce its own infection by either suppressing plant immunity in discussion.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Evaluation of the author's responses to the reviewer comments during the first review round

      Reviewer's Comment:

      Regardless of whether Nicotiana leaf cells or Lotus root cells are used as the test platform, the Western blots indicate that only a small proportion of NFR5 is cleaved when co-expressed with NopT, and most of the NFR5 persists in its full-length form (Figures 3A-D). It is not quite clear how the authors explain the loss of NFR5 function (loss of cell death, impact on symbiosis), as a vast excess of the tested target remains intact. It is also not clear why a large proportion of NFR5 is unaffected by the proteolytic activity of NopT. This is particularly interesting in Nicotiana in the absence of Nod factor that could trigger NFR1 kinase activity.

      Summary of response:

      • NopT could be interfering with the NFR1/NFR5 complex without proteolytic cleavage

      • The cleaved fraction may still be sufficient to disrupt signaling pathways

      • Elevated abundance of NFR5 relative to WT levels

      • Add quantitative data for efficiency of NFR5 cleavage in different systems

      Evaluation of response:

      • The quantification of NFR5 cleavage efficiency is welcome, and there is some discussion of the possible reasons for the large proportion of uncleaved NFR5. It is clear that there is a large difference in cleavage efficiency between L. japonicus roots and N. benthamiana.

      • The data is shown as a bar plot. Given that only 3 biological replicates are used, the data points should be shown, and there is too little data to provide sensible error bars. It would be better to simply make a dot-plot and indicate the mean for each sample. However, the main aim of the comment is addressed.

      Thank you for your constructive comments regarding Figure S16. In the revised manuscript, we have presented these data into dot-Plot format.

      Reviewer's Comment:

      It is also difficult to evaluate how the ratios of cleaved and full-length protein change when different versions of NopT are present without a quantification of band strengths normalized to loading controls (Figure 3C, 3D, 3F). The same is true for the blots supporting NFR1 phosphorylation of NopT (Figure 4A).

      Summary of response:

      • Quantified proportion of cleaved and full length NFR5 in different systems (S14)

      • Band strengths of immunoblots quantified (4B)

      Evaluation of response:

      • The quantification has been performed as requested and the data is shown as bar plots. This type of data is frequently displayed as part of the blot figure itself, printed under each respective lane, making it easier for the reader to connect the ratios to the band sizes. If data is shown in a plot, the data points should be shown on the plot, as described above.

      Thank you for your constructive comments regarding Figure 3. In the revised manuscript, we have added the cleavage efficiency in the 3A-3D.

      Reviewer's Comment:

      Nodule primordia and infection threads are still formed when L. japonicus plants are inoculated with ∆nopT mutant bacteria, but it is not clear if these primordia are infected or develop into fully functional nodules (Figure 5). A quantification of the ratio of infected and non-infected nodules and primordia would reveal whether NopT is only active at the transition from infection focus to thread or perhaps also later in the bacterial infection process of the developing root nodule.

      Summary of response:

      • Additional experiments with NGR234 or NGR234ΔnopT mutants find no non-infected nodules (fig. 5)

      Evaluation of response:

      • The requested quantification has been done, although the support for the findings would be stronger if also mature nodules per plant were quantified and plotted. If non-infected nodules were neither present in NGR234 or NGR234ΔnopT, it would still be advisable to include images of cross-sections of the fully-developed nodules.

      We appreciate your positive comments on the cross-sections of the fully-developed nodules. In the revised manuscript, we have added the cross-section images of nodules in the Figure S12.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors used a subset of a very large, previously generated 16S dataset to:<br /> (1) Assess age-associated features; and (2) develop a fecal microbiome clock, based on an extensive longitudinal sampling of wild baboons for which near-exact chronological age is known. They further seek to understand deviation from age-expected patterns and uncover if and why some individuals have an older or younger microbiome than expected, and the health and longevity implications of such variation. Overall, the authors compellingly achieved their goals of discovering age-associated microbiome features and developing a fecal microbiome clock. They also showed clear and exciting evidence for sex and rank-associated variation in the pace of gut microbiome aging and impacts of seasonality on microbiome age in females. These data add to a growing understanding of modifiers of the pace of age in primates, and links among different biological indicators of age, with implications for understanding and contextualizing human variation. However, in the current version, there are gaps in the analyses with respect to the social environment, and in comparisons with other biological indicators of age. Despite this, I anticipate this work will be impactful, generate new areas of inquiry, and fuel additional comparative studies.

      Thank you for the supportive comments and constructive reviews.

      Strengths:

      The major strengths of the paper are the size and sampling depth of the study population, including the ability to characterize the social and physical environments, and the application of recent and exciting methods to characterize the microbiome clock. An additional strength was the ability of the authors to compare and contrast the relative age-predictive power of the fecal microbiome clock to other biological methods of age estimation available for the study population (dental wear, blood cell parameters, methylation data). Furthermore, the writing and support materials are clear, informative and visually appealing.

      Weaknesses:

      It seems clear that more could be done in the area of drawing comparisons among the microbiome clock and other metrics of biological age, given the extensive data available for the study population. It was confusing to see this goal (i.e. "(i) to test whether microbiome age is correlated with other hallmarks of biological age in this population"), listed as a future direction, when the authors began this process here and have the data to do more; it would add to the impact of the paper to see this more extensively developed.

      Comparing the microbiome clock to other metrics of biological age in our population is a high priority (these other metrics of biological age are in Table S5 and include epigenetic age measured in blood, the non-invasive physiology and behavior clock (NPB clock), dentine exposure, body mass index, and blood cell counts (Galbany et al. 2011; Altmann et al. 2010; Jayashankar et al. 2003; Weibel et al. 2024; Anderson et al. 2021)). However, we have opted to test these relationships in a separate manuscript. We made this decision because of the complexity of the analytical task: these metrics were not necessarily collected on the same subjects, and when they were, each metric was often measured at a different age for a given animal. Further, two of the metrics (microbiome clock and NPB clock) are measured longitudinally within subjects but on different time scales (the NPB clock is measured annually while microbiome age is measured in individual samples). The other metrics are cross-sectional. Testing the correlations between them will require exploration of how subject inclusion and time scale affect the relationships between metrics.

      We now explain the complexity of this analysis in the discussion in lines 447-450. In addition, we have added the NPB clock (Weibel et al. 2024) to the text in lines 260-262 and to Table S5.

      An additional weakness of the current set of analyses is that the authors did not explore the impact of current social network connectedness on microbiome parameters, despite the landmark finding from members of this authorship studying the same population that "Social networks predict gut microbiome composition in wild baboons" published here in eLife some years ago. While a mother's social connectedness is included as a parameter of early life adversity, overall the authors focus strongly on social dominance rank, without discussion of that parameter's impact on social network size or directly assessing it.

      Thank you for raising this important point, which was not well explained in our manuscript. We find that the signatures of social group membership and social network proximity are only detectable our population for samples collected close in time. All of the samples analyzed in  Tung et al. 2015 (“Social networks predict gut microbiome composition in wild baboons”) were collected within six weeks of each other. By contrast, the data set analyzed here spans 14 years, with very few samples from close social partners collected close in time. Hence, the effects of social group membership and social proximity are weak or undetectable. We described these findings in Grieneisen et al. 2021 and Bjork et al. 2022, and we now explain this logic on line 530, which states, “We did not model individual social network position because prior analyses of this data set find no evidence that close social partners have more similar gut microbiomes, probably because we lack samples from close social partners sampled close in time (Grieneisen et al. 2021; Björk et al. 2022).”

      We do find small effects of social group membership, which is included as a random effect in our models of how each microbiome feature is associated with host age (line 529) and our models predicting microbiome Dage (line 606; Table S6).

      Reviewer #2 (Public review):

      Summary:

      Dasari et al present an interesting study investigating the use of 'microbiota age' as an alternative to other measures of 'biological age'. The study provides several curious insights into biological aging. Although 'microbiota age' holds potential as a proxy of biological age, it comes with limitations considering the gut microbial community can be influenced by various non-age related factors, and various age-related stressors may not manifest in changes in the gut microbiota. The work would benefit from a more comprehensive discussion, that includes the limitations of the study and what these mean to the interpretation of the results.

      We agree and have text to the discussion that expands on the limitations of this study and what those limitations mean for the interpretation of the results. For instance, lines 395-400 read, “Despite the relative accuracy of the baboon microbiome clock compared to similar clocks in humans, our clock has several limitations. First, the clock’s ability to predict  individual age is lower than for age clocks based on patterns of DNA methylation—both for humans and baboons (Horvath 2013; Marioni et al. 2015; Chen et al. 2016; Binder et al. 2018; Anderson et al. 2021). One reason for this difference may be that gut microbiomes can be influenced by several non-age-related factors, including social group membership, seasonal changes in resource use, and fluctuations in microbial communities in the environment”

      In addition, lines 405-411 now reads, “Third, the relationships between potential socio-environmental drivers of biological aging and the resulting biological age predictions were inconsistent. For instance, some sources of early life adversity were linked to old-for-age gut microbiomes (e.g., males born into large social groups), while others were linked to young-for-age microbiomes (e.g., males who experienced maternal social isolation or early life drought), or were unrelated to gut microbiome age (e.g., males who experienced maternal loss; any source of early life adversity in females).”

      Strengths:

      The dataset this study is based on is impressive, and can reveal various insights into biological ageing and beyond. The analysis implemented is extensive and high-level.

      Weaknesses:

      The key weakness is the use of microbiota age instead of e.g., DNA-methylation-based epigenetic age as a proxy of biological ageing, for reasons stated in the summary. DNA methylation levels can be measured from faecal samples, and as such epigenetic clocks too can be non-invasive. I will provide authors a list of minor edits to improve the read, to provide more details on Methods, and to make sure study limitations are discussed comprehensively.

      Thank you for this point. In response, we have deleted the text from the discussion that stated that non-invasive sampling is an advantage of microbiome clocks. In addition, we now propose a non-invasive epigenetic clock from fecal samples as an important future direction for our population (see line 450).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Abstract - The opening 2 sentences are not especially original or reflective of the potential value/ premise of the study. Members of this team have themselves measured variation in biological age in many different ways, and the implication that measuring a microbiome clock is easy or straightforward is not compelling. This paper is very interesting and provides unique insight, but I think overall there is a missed opportunity in the abstract to emphasize this, given the innovative science presented here. Furthermore, the last 2 sentences of the abstract are especially interesting - but missing a final statement on the broader significance of research outside of baboons.

      We appreciate these comments and have revised the Abstract accordingly. The introductory sentences now read, “Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age.” (lines 31-34). The last two sentences of the abstract now read, “Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.” (lines 40-43).

      If possible, it would be highly useful to present some comments on concordance in patterns at different levels. Are all ASVs assessed at both the family and genus levels? Do they follow similar patterns when assessed at different levels? What can we learn about the system by looking at different levels of taxonomic assignment?

      The section on relationships between host age and individual microbiome features is already lengthy, so we have not added an analysis of concordance between different taxonomic levels. However, we added a justification for why we tested for age signatures in different levels of taxa to line 171, which reads, “We tested these different taxonomic levels in order to learn whether the degree to which coarse and fine-grained designations categories were associated with host age.”

      To calculate the delta age - please clarify if this was done at the level of years, as suggested in Figure 3C, or at the level of months or portion months, etc?

      Delta age is measured in years. This is now clarified in lines 294, 295, and 578.

      Spelling mistake in table S12, cell B4 (Octovber)

      Thank you. This typo has been corrected.

      Given the start intro with vertebrates, the second paragraph needs some tweaking to be appropriate. Perhaps, "At least among mammals, one valuable marker of biological aging may lie in the composition and dynamics of the mammalian gut microbiome (7-10)." Or simply remove "mammalian".

      We have updated this sentence based on your suggestions in line 54. It reads, “In mammals, one valuable marker of biological aging may lie in the composition and dynamics of the gut microbiome (Claesson et al. 2012; Heintz and Mair 2014; O’Toole and Jeffery 2015; Sadoughi et al. 2022).”

      A rewrite at the end of the introduction is needed to avoid the almost direct repetition in lines 115-118 and 129-131 (including lit cited). One potentially effective way to approach this is to keep the predictions in the earlier paragraph and then more clearly center the approach and the overarching results statement in the latter paragraph. (I.e., "we find that season and social rank have stronger effects on microbiome age than early life events. Further, microbiome age does not predict host development or mortality.").

      Thank you for pointing this out. We have re-organized the predictions in the introduction based on your suggestion. The alternative “recency effects” model now appears in the paragraph that starts in line 110. The final paragraph then centers on the overall approach and the results statement (lines 128-140)

      Be clear in each case where taxon-level trends are discussed if it's at Family, Genus, or other level. It's there most, but not all, of the time.

      We have gone through the text and clarified what taxa or microbiome feature was the subject of our analyses in any places where this was not clear.

      In the legend for Figure 2, add clarification for how values to right versus left of the centered value should be interpreted with respect to age (e.g. "values to x of the center are more abundant in older individuals").

      We now clarify in Figure 2C and 2D that “Positive values are more abundant in older hosts”.

      Figure 3 - Are Panels A, B, and C all needed - can the value for all individuals not also be overlaid in the panel showing sex differences and the same point showing individuals with "old" and "young" microbiomes be added in the same plot if it was slightly larger?

      We agree and have simplified Figure 3. We reduced the number of panels from three to two, and we added the information about how to calculate delta age to Panel A. We also moved the equation from the top of Panel C to the bottom right of Panel A.

      Reviewer #2 (Recommendations for the authors):

      Dasari et al present an interesting study investigating the use of 'microbiota age' as an alternative to other measures of 'biological age'. The study provides several curious insights which in principle warrant publication. However, I do think the manuscript should be carefully revised. Below I list some minor revisions that should be implemented. Importantly, the authors should discuss in the Discussion the pros and cons of using 'microbiota age' as a proxy of 'biological age'. Further, the authors should provide more information on Methods, to make sure the study can be replicated.

      Thank you for these important points. Based on your comments and those of the first reviewer, we have expanded our discussion of the limitations of using microbiota age as a proxy for biological age (see edits to the paragraph starting in line 395).

      We have also expanded our methods around sample collection, DNA extraction, and sequencing to describe our sampling methods, strategies to mitigate and address possible contamination, and batch effects. See lines 483-490 and our citations to the original papers where these methods are described in detail.

      (1) Lines 85-99: I think this paragraph could be revisited to make the assumptions clearer. For instance, the last sentence is currently a little confusing: are authors expecting males to exhibit old-for-age microbiomes already during the juvenile period?

      This prediction has been clarified. Line 96 now reads, “Hence, we predicted that adult male baboons would exhibit gut microbiomes that are old-for-age, compared to adult females (by contrast, we expected no sex effects on microbiome age in juvenile baboons).”

      (2) Lines 118-121: Could the authors discuss this assumption in relation to what has been observed e.g., in humans in terms of delays in gut microbiome development? Delayed/accelerated gut microbiome development has been studied before, so this assumption would be stronger if related to what we know from previous studies.

      This comment refers to the sentence which originally stated, “However, we also expected that some sources of early life adversity might be linked to young-for-age gut microbiota. For instance, maternal social isolation might delay gut microbiome development due to less frequent microbial exposures from conspecifics.” We have slightly expanded the text here (line 117) to explain our logic. We now include citations for our predictions. We did not include a detailed discussion of prior literature on microbiome development in the interest of keeping the same level of detail across all sections on our predictions.

      (3) As the authors discuss, various adversities can lead to old-for-age but also young-for-age microbiome composition. This should be discussed in the limitations.

      We agree. This is now discussed in the sentence starting at line 371, which reads, “…deviations from microbiome age predictions are explained by socio-environmental conditions experienced by individual hosts, especially recent conditions, although the effect sizes are small and are not always directionally consistent.” In addition, the text starting at line 405 now reads, “Third, the relationships between potential socio-environmental drivers of biological aging and the resulting biological age predictions were inconsistent. For instance, some sources of early life adversity were linked to old-for-age gut microbiomes (e.g., males born into large social groups), while others were linked to young-for-age microbiomes (e.g., males who experienced maternal social isolation or early life drought), or were unrelated to gut microbiome age (e.g., males who experienced maternal loss; any source of early life adversity in females).”

      (4) In various places, e.g., lines 129-131, it is a little unclear at what chronological age authors are expecting microbiota to appear young/old-for-age.

      This sentence was removed while responding to the comments from the first reviewer.

      (5) Lines 132-133: this statement could be backed by stating that this is because the gut microbiota can change rapidly e.g., when diet changes (or whatever the authors think could be behind this).

      We have added an expository sentence at line 123, including new citations. This sentence reads, “Indeed, gut microbiomes are highly dynamic and can change rapidly in response to host diet or other aspects of host physiology, behavior, or environments”.

      We now cite:

      · Hicks, A.L., et al. (2018). Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nature Communications 9, 1786.

      · Kolodny, O., et al. (2019). Coordinated change at the colony level in fruit bat fur microbiomes through time. Nature Ecology & Evolution 3, 116-124.

      · Risely, A., et al. (2021) Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nat Commun 12, 6017.

      (6) Lines 135-137: current or past season and social rank? This paragraph introduces the idea that it could be past rather than current socio-environmental factors that might predict microbiota age, so the authors should clarify this sentence.

      We have clarified the information in this sentence. line 135 now reads, “In general, our results support the idea that a baboon’s current socio-environmental conditions, especially their current social rank and the season of sampling, have stronger effects on microbiome age than early life events—many of which occurred many years prior to sampling.”

      (7) Lines 136-137: this sentence could include some kind of a conclusion of this finding. What might this mean?

      We have added a sentence at line 138, which speculates that, “…the dynamism of the gut microbiome may often overwhelm and erase early life effects on gut microbiome age.”

      (8) Use 'microbiota' or 'microbiome' across the manuscript; currently, the terms are used interchangeably. I don't have a strong opinion on this, although typically 'microbiota' is used when data comes from 16S rRNA.

      We have updated the text to replace any instance of “microbiota” with “microbiome”. We use the term microbiome in the sense of this definition from the National Human Genome Research Institute, which defines a microbiome as “the community of microorganisms (such as fungi, bacteria and viruses) that exists in a particular environment”.

      (9) Figure 1 legend: make sure to unify formatting; e.g., present sample sizes as N= or n=, rather than both, and either include or do not include commas in 4-digit values (sample sizes).

      We have checked the formatting related to sample sizes and the use of commas in 4-digits in the main text and supplement. The formats are now consistent.

      (10) Line 166: relative abundances surely?

      Following Gloor et al. (2017), our analyses use centered log-ratio (CLR) transformations of read counts, which is the recommended approach for compositional data such as 16S rRNA amplicon read counts. CLR transformations are scale-invariant, so the same ratio is obtained in a sample with few read versus many reads. We now cite Gloor et al. (2017) at line 169 and in the methods in line 517, which reads “centered log ratio (CLR) transformed abundances (i.e., read counts) of each microbial phyla (n=30), family (n=290), genus (n=747), and amplicon sequence variance (ASV) detected in >25% of samples (n=358). CLR transformations are a recommended approach for addressing the compositional nature of 16S rRNA amplicon read count data (Gloor et al. 2017).”  

      (11) Lines 167-172: were technical factors, e.g., read depth or sequencing batch, included as random effects?

      Thank you for catching this oversight in the text. We did model sequencing depth and batch effects. The sentence starting at line 173 now reads, “For each of these 1,440 features, we tested its association with host age by running linear mixed effects models that included linear and quadratic effects of host age and four other fixed effects: sequencing depth, the season of sample collection (wet or dry), the average maximum temperature for the month prior to sample collection, and the total rainfall in the month prior to sample collection (Grieneisen et al. 2021; Björk et al. 2022; Tung et al. 2015). Baboon identity, social group membership, hydrological year of sampling, and sequencing plate (as a batch effect) were modeled as random effects.”

      (12) Lines 175-180: When discussing how these alpha diversity results relate to previous findings, the authors should be clear about whether they talk about weighted or non-weighted measures of alpha diversity. - also maybe this should be included in the discussion rather than the results? Please consider this when revisiting the manuscript (see how it reads after edits).

      Richness is the only unweighted metric, which we now clarify in line 181. We opted to retain the interpretation in the text in its original location to maintain the emphasis in the discussion on the microbiome clock results.

      (13) Table S1 is very hard to interpret in the provided PDF format as columns are not presented side-by-side. It is currently hard to check model output for e.g., specific families. This needs to be revisited.

      We agree. We believe that eLife’s submission portal automatically generates a PDF for any supplementary item. However, we also include the supplementary tables as an Excel workbook which has the columns presented side-by-side.

      (14) Line 184: taxa meaning what? Unclear what authors refer to with this sentence, taxa across taxonomic levels, or ASVs, or what does the 51.6% refer to?

      We have edited line 191 to clarify that this sentence refers to taxa at all taxonomic levels (phyla to ASVs).

      (15) Line 191: a punctuation mark missing after ref (81).

      We have added the missing period at the end of this sentence.

      (16) Lines 189-197: this should go into the discussion in my opinion.

      We have opted to retain this interpretation, now at line 183.

      (17) Lines 215-219: Not sure what this means; do the authors mean features were not restricted to age-associated taxa, ie also e.g., diversity and other taxa-independent patterns were included? If so, the rest of the highlighted lines should be revisited to make this clear, currently to me it is very unclear what 'These could include features that are not strongly age-correlated in isolation' means. Currently, that sounds like some features included were only age-associated in combination with other features, but unclear how this relates to taxa-dependency/taxa-independency.

      We agree this was not clear. We have revised line 224 to read, “We included all 9,575 microbiome features in our age predictions, as opposed to just those that were statistically significantly associated with age because removing these non-significant features could exclude features that contribute to age prediction via interactions with other taxa.”

      (18) Line 403-407: There is now a paper showing epigenetic clocks can be built with faecal samples, so this argument is not valid. Please revisit in light of this publication: https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17330

      Thank you for bringing this paper to our attention. We deleted the text that describes epigenetic clocks as invasive, and we now cite this paper in line 450, which reads, “We also hope to measure epigenetic age in fecal samples, leveraging methods developed in Hanski et al. 2024.”

      (19) Line 427: a punctuation mark/semicolon missing before However.

      We have corrected this typo.

      (20) Lines 419-428: I don't quite understand this speculation. Why would the priority of access to food lead to an old-looking gut microbiome? This paragraph needs stronger arguments, currently unclear and also not super convincing.

      We agree this was confusing. We have revised this text to clarify the explanation. The text starting at line 424 now reads, “This outcome points towards a shared driver of high social status in shaping gut microbiome age in both males and females. While it is difficult to identify a plausible shared driver, one benefit shared by both high-ranking males and females is priority of access to food. This access may result in fewer foraging disruptions and a higher quality, more stable diet. At the same time, prior research in Amboseli suggests that as animals age, their diets become more canalized and less variable (Grieneisen et al. 2021). Hence aging and priority of access to food might both be associated with dietary stability and old-for-age microbiomes. However, this explanation is speculative and more work is needed to understand the relationship between rank and microbiome age.”

      (21) Line 434: remove 'be'.

      We have corrected this typo.

      (22) Line 478: add information on how samples were collected; e.g., were samples collected from the ground? How was cross-contamination with soil microbiota minimised? Were samples taken from the inner part of depositions? These factors can influence microbiota samples quite drastically so detailed info is needed. Also what does homogenisation mean in this context? How soon were samples freeze-dried after sample collection?

      We have expanded our methods with respect to sample collection. This text starts in line 483 and reads, “Samples were collected from the ground within 15 minutes of defecation. For each sample, approximately 20 g of feces was collected into a paper cup, homogenized by stirring with a wooden tongue depressor, and a 5 g aliquot of the homogenized sample was transferred to a tube containing 95% ethanol. While a small amount of soil was typically present on the outside of the fecal sample, mammalian feces contains 1000 times the number of microbial cells in a typical soil sample (Sender, Fuchs, and Milo 2016; Raynaud and Nunan 2014), which overwhelms the signal of soil bacteria in our analyses (Grieneisen et al. 2021). Samples were transported from the field in Amboseli to a lab in Nairobi, freeze-dried, and then sifted to remove plant matter prior to long term storage at -80°C.”

      (23) Line 480 onwards: were negative controls included in extraction batches? Were samples randomised into extraction batches?

      Yes, we included extraction blanks. These are now described in lines 495-500. This text reads, “We included one extraction blank per batch, which had significantly lower DNA concentrations than sample wells (t-test; t=-50, p < 2.2x10-16; Grieneisen et al. 2021). We also included technical replicates, which were the same fecal sample sequenced across multiple extraction and library preparation batches. Technical replicates from different batches clustered with each other rather than with their batch, indicating that true biological differences between samples are larger than batch effects.”

      (24) Were extraction, library prep, and sequencing negative controls included? Is data available?

      We included extraction blanks (described above) and technical replicates, which were the same sample sequenced across multiple extraction and library preparation batches. Technical replicates from different batches clustered with each other rather than with their batch, indicating that true biological differences between samples are larger than batch effects.

      We have updated the data availability statement to read, “All data for these analyses are available on Dryad at https://doi.org/10.5061/dryad.b2rbnzspv. The 16S rRNA gene sequencing data are deposited on EBI-ENA (project ERP119849) and Qiita (study 12949). Code is available at the following GitHub repository: https://github.com/maunadasari/Dasari_etal-GutMicrobiomeAge”.

      (25) Line 562: how were corrected microbiome delta ages calculated? Currently, the authors state x, y and z factors were corrected for, but it is unclear how this was done.

      The paragraph starting at line 577 describes how microbiome delta age was calculated. We have made only a few changes to this text because we were not sure which aspects of these methods confused the reviewer. However, briefly, we calculated sample-specific microbiome Dage in years as the difference between a sample’s microbial age estimate, age<sub>m</sub> from the microbiome clock, and the host’s chronological age in years at the time of sample collection, age<sub>c</sub>. Higher microbiome Dages indicate old-for-age microbiomes, as age<sub>m</sub> > age<sub>c</sub>, and lower values (which are often negative) indicate a young-for-age microbiome, where age<sub>c</sub> > age<sub>m</sub> (see Figure 3).

      (26) Line 579: typo 'as'.

      We have corrected this typo.

      Works Cited

      Altmann, Jeanne, Laurence Gesquiere, Jordi Galbany, Patrick O Onyango, and Susan C Alberts. 2010. “Life History Context of Reproductive Aging in a Wild Primate Model.” Annals of the New York Academy of Sciences 1204:127–38. https://doi.org/10.1111/j.1749-6632.2010.05531.x.

      Anderson, Jordan A, Rachel A Johnston, Amanda J Lea, Fernando A Campos, Tawni N Voyles, Mercy Y Akinyi, Susan C Alberts, Elizabeth A Archie, and Jenny Tung. 2021. “High Social Status Males Experience Accelerated Epigenetic Aging in Wild Baboons.” Edited by George H Perry. eLife 10 (April):e66128. https://doi.org/10.7554/eLife.66128.

      Binder, Alexandra M., Camila Corvalan, Verónica Mericq, Ana Pereira, José Luis Santos, Steve Horvath, John Shepherd, and Karin B. Michels. 2018. “Faster Ticking Rate of the Epigenetic Clock Is Associated with Faster Pubertal Development in Girls.” Epigenetics 13 (1): 85–94. https://doi.org/10.1080/15592294.2017.1414127.

      Björk, Johannes R., Mauna R. Dasari, Kim Roche, Laura Grieneisen, Trevor J. Gould, Jean-Christophe Grenier, Vania Yotova, et al. 2022. “Synchrony and Idiosyncrasy in the Gut Microbiome of Wild Baboons.” Nature Ecology & Evolution, June, 1–10. https://doi.org/10.1038/s41559-022-01773-4.

      Chen, Brian H., Riccardo E. Marioni, Elena Colicino, Marjolein J. Peters, Cavin K. Ward-Caviness, Pei-Chien Tsai, Nicholas S. Roetker, et al. 2016. “DNA Methylation-Based Measures of Biological Age: Meta-Analysis Predicting Time to Death.” Aging (Albany NY) 8 (9): 1844–59. https://doi.org/10.18632/aging.101020.

      Claesson, Marcus J., Ian B. Jeffery, Susana Conde, Susan E. Power, Eibhlís M. O’Connor, Siobhán Cusack, Hugh M. B. Harris, et al. 2012. “Gut Microbiota Composition Correlates with Diet and Health in the Elderly.” Nature 488 (7410): 178–84. https://doi.org/10.1038/nature11319.

      Galbany, Jordi, Jeanne Altmann, Alejandro Pérez-Pérez, and Susan C. Alberts. 2011. “Age and Individual Foraging Behavior Predict Tooth Wear in Amboseli Baboons.” American Journal of Physical Anthropology 144 (1): 51–59. https://doi.org/10.1002/ajpa.21368.

      Gloor, Gregory B., Jean M. Macklaim, Vera Pawlowsky-Glahn, and Juan J. Egozcue. 2017. “Microbiome Datasets Are Compositional: And This Is Not Optional.” Frontiers in Microbiology 8. https://doi.org/10.3389/fmicb.2017.02224.

      Grieneisen, Laura E., Mauna Dasari, Trevor J. Gould, Johannes R. Björk, Jean-Christophe Grenier, Vania Yotova, David Jansen, et al. 2021. “Gut Microbiome Heritability Is Nearly Universal but Environmentally Contingent.” Science 373 (6551): 181–86. https://doi.org/10.1126/science.aba5483.

      Hanski, Eveliina, Susan Joseph, Aura Raulo, Klara M. Wanelik, Áine O’Toole, Sarah C. L. Knowles, and Tom J. Little. 2024. “Epigenetic Age Estimation of Wild Mice Using Faecal Samples.” Molecular Ecology 33 (8): e17330. https://doi.org/10.1111/mec.17330.

      Heintz, Caroline, and William Mair. 2014. “You Are What You Host: Microbiome Modulation of the Aging Process.” Cell 156 (3): 408–11. http://dx.doi.org/10.1016/j.cell.2014.01.025.

      Horvath, Steve. 2013. “DNA Methylation Age of Human Tissues and Cell Types.” Genome Biology 14 (10): R115. https://doi.org/10.1186/gb-2013-14-10-r115.

      Jayashankar, Lakshmi, Kathleen M. Brasky, John A. Ward, and Roberta Attanasio. 2003. “Lymphocyte Modulation in a Baboon Model of Immunosenescence.” Clinical and Vaccine Immunology 10 (5): 870–75. https://doi.org/10.1128/CDLI.10.5.870-875.2003.

      Marioni, Riccardo E., Sonia Shah, Allan F. McRae, Brian H. Chen, Elena Colicino, Sarah E. Harris, Jude Gibson, et al. 2015. “DNA Methylation Age of Blood Predicts All-Cause Mortality in Later Life.” Genome Biology 16 (1): 25. https://doi.org/10.1186/s13059-015-0584-6.

      O’Toole, Paul W., and Ian B. Jeffery. 2015. “Gut Microbiota and Aging.” Science 350 (6265): 1214–15. https://doi.org/10.1126/science.aac8469.

      Raynaud, Xavier, and Naoise Nunan. 2014. “Spatial Ecology of Bacteria at the Microscale in Soil.” PLOS ONE 9 (1): e87217. https://doi.org/10.1371/journal.pone.0087217.

      Sadoughi, Baptiste, Dominik Schneider, Rolf Daniel, Oliver Schülke, and Julia Ostner. 2022. “Aging Gut Microbiota of Wild Macaques Are Equally Diverse, Less Stable, but Progressively Personalized.” Microbiome 10 (1): 95. https://doi.org/10.1186/s40168-022-01283-2.

      Sender, Ron, Shai Fuchs, and Ron Milo. 2016. “Revised Estimates for the Number of Human and Bacteria Cells in the Body.” PLoS Biology 14 (8): e1002533. https://doi.org/10.1371/journal.pbio.1002533.

      Tung, J, L B Barreiro, M B Burns, J C Grenier, J Lynch, L E Grieneisen, J Altmann, S C Alberts, R Blekhman, and E A Archie. 2015. “Social Networks Predict Gut Microbiome Composition in Wild Baboons.” Elife 4. https://doi.org/10.7554/eLife.05224.

      Weibel, Chelsea J., Mauna R. Dasari, David A. Jansen, Laurence R. Gesquiere, Raphael S. Mututua, J. Kinyua Warutere, Long’ida I. Siodi, Susan C. Alberts, Jenny Tung, and Elizabeth A. Archie. 2024. “Using Non-Invasive Behavioral and Physiological Data to Measure Biological Age in Wild Baboons.” GeroScience 46 (5): 4059–74. https://doi.org/10.1007/s11357-024-01157-5.

    1. Author response:

      We thank the reviewers for their thoughtful reading and review of our manuscript. These reviews make clear that, for this work to be complete, we must make progress on the following fronts:

      (1) Expand the discussion to better incorporate alternate explanations of our data

      (2) Improve data visualization and experimental support or an experimental refutation for the following concepts

      a. Photoreceptor-derived lactate exported specifically from photoreceptors is utilized in the RPE TCA cycle

      b. Photoreceptors can utilize lactate as a fuel source when starved of glucose

      To address these concerns, we will focus our efforts on infusing <sup>13</sup>C<sub>6</sub>-glucose into rodΔglut1 mice. Lactate is not made without glucose, so this experiment should indicate whether glucose utilization in photoreceptors provides lactate to the RPE, and whether that lactate is used in the TCA cycle.

      The reviewers also noted that changes in <sup>13</sup>C labeling of RPE TCA cycle intermediates downstream of lactate is not obvious (between C57BL6J mice and AIPL1<sup>-/-</sup>). We think that at least in part, this is a consequence of the way we presented the data. We will improve how we display our data so that the differences of incorporation of <sup>13</sup>C in TCA cycle intermediates in control and AIPL1<sup>-/-</sup> RPE is clearer.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):

      This paper examines the role of MLCK (myosin light chain kinase) and MLCP (myosin light chain phosphatase) in axon regeneration. Using loss-of-function approaches based on small molecule inhibitors and siRNA knockdown, the authors explore axon regeneration in cell culture and in animal models from central and peripheral nervous systems. Their evidence shows that MLCK activity facilitates axon extension/regeneration, while MLCP prevents it.

      Major concerns:

      (1) In the title, authors indicate that the observed effects from loss-of-function of MLCK/MLCP take place via F-actin redistribution in the growth cone. However, there are no experiments showing a causal effect between changes in axon growth mediated by MLCK/MLCP and F-actin redistribution.

      Thank you for your comments. We revised the title of our manuscript to “MLCK/MLCP regulates mammalian axon regeneration and redistributes the growth cone F-actin”. (line 3)

      (2) The author combines MLCK inhibitors with Bleb (Figure 6), trying to verify if both pairs of inhibitors act on the same target/pathway. MLCK may regulate axon growth independent of NMII activity. However, this has very important implications for the understanding not only on how NMII works and affects axon extension, but also in trying to understand what MLCP is doing. One wonders if MLCP actions, which are opposite of MLCK, also independent of NMII activity? The authors, in the discussion section, try to find an explanation for this finding, but I consider it fails since the whole rationale of the manuscript is still around how MLCK and MLCP affect NMII phosphorylation.

      Thank you for your comments. Although both MLCK and MLCP regulate the activity of NMII, it has been reported that they also govern domain-specific spatial control of actin-based motility in the growth cone. Specifically, MLCK activity is essential for arc translocation and retrograde flow within the P domain, while MLCP appears to specifically modulate arc movement and associated myosin II contractility in the T zone and C domain (Ref). Therefore, it is proposed that the regulatory mechanisms of MLCK and MLCP are highly complex during the process of axon growth. 

      [Ref]:Xiao-Feng Zhang, Andrew W Schaefer, Dylan T Burnette, Vincent T Schoonderwoert, Paul Forscher. Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron. 2003 Dec 4;40(5):931-44.

      What follows is a discussion of the merits and limitations of different claims of the manuscript in light of the evidence presented.

      (1) Using western blot and immunohistochemical analyses, authors first show that MLCK expression is increased in DRG sensory neurons following peripheral axotomy, concomitant to an increase in MLC phosphorylation, suggesting a causal effect (Figure 1). The authors claim that it is common that axon growth-promoting genes are upregulated. It would have been interesting at this point to study in this scenario the regulation of MLCP.

      We thank Reviewer for the positive comment on our manuscript.

      (2) Using DRG cultures and sciatic nerve crush in the context of MLCK inhibition (ML-7) and down-regulation, authors conclude that MLCK activity is required for mammalian peripheral axon regeneration both in vitro and in vivo (Figure 2). In parallel, the authors show that these treatments affect as expected the phosphorylation levels of MLC.

      The in vitro evidence is of standard methods and convincing. However, here, as well as in all other experiments using siRNAs, no Control siRNAs were used. Authors do show that the target protein is downregulated, and they can follow transfected cells with GFP. Still, it should be noted that the standard control for these experiments has not been done.

      Thank you for your comments. We utilized scrambled siRNA as a control. I sincerely apologize for the oversight in the manuscript; although we mentioned that scrambled siRNA was used as a control in the figure legends, we failed to clearly articulate this important information in the methods section. We have revised the manuscript accordingly. (line 87, line 549, line, line 562, line 568).

      (3) The authors then examined the role of the phosphatase MLCP in axon growth during regeneration. The authors first use a known MLCP blocker, phorbol 12,13-dibutyrate (PDBu), to show that is able to increase the levels of p-MLC, with a concomitant increase in the extent of axon regrowth of DRG neurons, both in permissive as well as non-permissive substrates. The authors repeat the experiments using the knockdown of MYPT1, a key component of the MLC-phosphatase, and again can observe a growth-promoting effect (Figure 3).

      The authors further show evidence for the growth-enhancing effect in vivo, in nerve crush experiments. The evidence in vivo deserves more evidence and experimental details (see comment 2). A key weakness of the data was mentioned previously: no control siARN was used.

      Thank you for your comments. As mentioned above, we used scramble siRNA as control in vivo experiment as well.

      (4) In the next set of experiments (presented in Figure 4) authors extend the previous observations in primary cultures from the CNS. For that, they use cortical and hippocampal cultures, and pharmacological and genetic loss-of-function using the above-mentioned strategies. The expected results were obtained in both CNS neurons: inhibition or knockdown of the kinase decreases axon growth, whereas inhibition or knockdown of the phosphatase increases growth. A main weakness in this set is that drugs were used from the beginning of the experiment, and hence, they would also affect axon specification. As pointed in Materials and Method (lines 143-145) authors counted as "axons" neurites longer than twice the diameter of the cell soma, and hence would not affect the variable measured. In any case, to be sure one is only affecting axon extension in these cells, the drugs should have been used after axon specification and maturation, which occurs at least after 5 DIV.

      Thank you for your comments. We acknowledge that the early administration of drugs can lead to unintended effects on neuronal polarization and axon formation. However, in line with our previous publication, we focused exclusively on measuring the longest length of the axon. To quantify axon length, we selected neurons exhibiting an axonal process exceeding twice the diameter of their cell body and measured the longest axon from 100 neurons for each condition (Ref 1, Ref 2). Consequently, we believe that drug administration at the onset of cell culture influences axon formation; however, it does not significantly affect the drug's impact on axon length.

      [Ref 1]: Chang-Mei Liu, Rui-Ying Wang, Saijilafu, Zhong-Xian Jiao, Bo-Yin Zhang, Feng-Quan Zhou. MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev. 2013 Jul 1;27(13):1473-83.

      [Ref 2]: Eun-Mi Hur, Saijilafu, Byoung Dae Lee, Seong-Jin Kim, Wen-Lin Xu, Feng-Quan Zhou. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules. Genes Dev. 2011 Sep 15;25(18):1968-81.

      (5) In Figure 7, the authors a local cytoskeletal action of the drug, but the evidence provided does not differentiate between a localized action of the drugs and a localized cell activity.

      We appreciate the reviewer’s insightful comments and have revised our title to “MLCK/MLCP Regulates mammalian axon regeneration and redistributes growth cone F-actin.” Furthermore, we have made corresponding revisions to the manuscript (line31, line 73).

      References:

      (1) Eun-Mi Hur 1, In Hong Yang, Deok-Ho Kim, Justin Byun, Saijilafu, Wen-Lin Xu, Philip R Nicovich, Raymond Cheong, Andre Levchenko, Nitish Thakor, Feng-Quan Zhou. 2011. Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5057-62. doi: 10.1073/pnas.1011258108.

      (2) Garrido-Casado M, Asensio-Juárez G, Talayero VC, Vicente-Manzanares M. 2024. Engines of change: Nonmuscle myosin II in mechanobiology. Curr Opin Cell Biol. 2024 Apr;87:102344. doi: 10.1016/j.ceb.2024.102344.

      (3) Karen A Newell-Litwa 1, Rick Horwitz 2, Marcelo L Lamers. 2015. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech. 2015 Dec;8(12):1495-515. doi: 10.1242/dmm.022103.

      Reviewer #2 (Public review):

      Summary:

      Saijilafu et al. demonstrate that MLCK/MLCP proteins promote axonal regeneration in both the central nervous system (CNS) and peripheral nervous system (PNS) using primary cultures of adult DRG neurons, hippocampal and cortical neurons, as well as in vivo experiments involving sciatic nerve injury, spinal cord injury, and optic nerve crush. The authors show that axon regrowth is possible across different contexts through genetic and pharmacological manipulation of these proteins. Additionally, they propose that MLCK/MLCP may regulate F-actin reorganization in the growth cone, which is significant as it suggests a novel strategy for promoting axonal regeneration.

      Strengths:

      This manuscript presents a wide range of experimental models to address its hypothesis and biological question. Notably, the use of multiple in vivo models significantly enhances the overall validity of the study.

      We thank Reviewer for the positive comment on our manuscript.

      Weaknesses:

      - The authors previously published that blocking myosin II activity stimulates axonal growth and that MLCK activates myosin II. The present work shows that inhibiting MLCK blocks axonal regeneration while blocking MLCP (the protein that dephosphorylates myosin II) produces the opposite effect. Although this contradiction is discussed, no new evidence has been added to the manuscript to clarify this mechanism or address the remaining questions. Critical unresolved questions include: what happens to myosin II expression when both MLCK and MLCP are inhibited? If MLCK/MLCP are acting through an independent mechanism, what would that mechanism be?

      - In the discussion, the authors mention the existence of two myosin II isoforms with opposing effects on axonal growth. Still, there is no evidence in the manuscript to support this point.

      - It is also unclear how MLCK/MLCP acts on the actin cytoskeleton. The authors suggest that proteins such as ADF/cofilin, Arp 2/3, Eps8, Profilin, Myosin II, and Myosin V could regulate changes in F-actin dynamics. However, this study provides no experimental evidence to determine which proteins may be involved in the mechanism.

      Thank you for your comments. Axon growth is an exceptionally intricate process, facilitated by the coordinated regulation of gene expression in the soma, axonal transport along the shaft, and the assembly of cytoskeletal elements and membrane proteins at the growth cone. In this paper, our results primarily demonstrate that MLCK/MLCP plays a crucial role in regulating mammalian axon regeneration and redistributing F-actin within the growth cone; however, we did not investigate which specific proteins act downstream of MLCK/MLCP during axon regeneration.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      - A title more suitable for the evidence shown can be: MLCK/MLCP regulates mammalian axon regeneration and redistributes the growth cone F-actin.

      Thank you for your comments. We revised the title of our manuscript to“MLCK/MLCP regulates mammalian axon regeneration and redistributes the growth cone F-actin” (line 3).

      -In figure 3, It would be useful to indicate in the figure legend, that the red arrow is pointing to a suture that was performed during surgery to mark clearly the injury site.

      Thank you for your comments. We revised Figure 3 legend that indicates the red arrow is pointing to a suture that was performed during surgery to mark clearly the injury site (line 571-572).

      - The following is a concern raised in the previous round, and that the response by the authors was so complete and accurate that I consider it would be useful to include it in the discussion section.

      Thank you for your comments. We included those contents in the discussion section of our revised manuscript (line 348-354, line 355-359).

      The author combines MLCK inhibitors with Bleb (Figure 6), trying to verify if both pairs of inhibitors act on the same target/pathway. The rationale is wrong for at least two reasons.

      a- Because both lines of evidence point to contrasting actions of NMII on axon growth, one approach could never "rescue" the other.

      Reply by authors in R1:If MLCK regulates axon growth through the activation of Myosin, the inhibitory effect of ML-7 (an MLCK inhibitor) on axon growth might be influenced by Bleb, a NMII inhibitor. However, our findings reveal that the combination of Bleb and ML-7 does not alter the rate of axon outgrowth compared to ML-7 alone. This suggests that the roles of ML-7 and Bleb in axon growth are independent. It means MLCK may regulate axon growth independent of NMII activity.

      b- Because the approaches target different steps on NMII activation, one could never "prevent" or rescue the other. For example, for Bleb to provide a phenotype, it should find any p-MLC, because it is only that form of MLC that is capable of inhibiting its ATPase site. In light of this, it is not surprising that Bleb is unable to exert any action in a situation where there is no p-MLC (ML-7, which by inhibiting the kinase drives the levels of p-MLC to zero, Figure 4A). Hence, the results are not possible to validate in the current general interpretation of the authors. (See 'major concern').

      Reply by authors in R1: The reported mechanism of blebbistatin is not through competition with the ATP binding site of myosin. Instead, it selectively binds to the ATPase intermediate state associated with ADP and inorganic phosphate, which decelerates the phosphate release. Importantly, blebbistatin does not impede myosin's interaction with actin or the ATP-triggered disassociation of actomyosin. It rather inhibits the myosin head when it forms a product complex with a reduced affinity for actin. This indicates that blebbistatin functions by stabilizing a particular myosin intermediate state that is independent of the phosphorylation status of myosin light chain (MLC).

      [Ref] Kovács M, Tóth J et al. Mechanism of blebbistatin inhibition of myosin II. J Biol Chem. 2004 Aug 20;279(34):35557-63.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Liu et al., present an immersion objective adapter design called RIM-Deep, which can be utilized for enhancing axial resolution and reducing spherical aberrations during inverted confocal microscopy of thick cleared tissue.

      Strengths:

      RI mismatches present a significant challenge to deep tissue imaging, and developing a robust immersion method is valuable in preventing losses in resolution. Liu et al., present data showing that RIM-Deep is suitable for tissue cleared with two different clearing techniques, demonstrating the adaptability and versatility of the approach.

      Greetings, we greatly appreciate your feedback. In truth, we have utilized three distinct clearing techniques, including iDISCO, CUBIC, and MACS, to substantiate the adaptability and multifunctionality of the RIM-Deep adapter.

      Weaknesses:

      Liu et al., claim to have developed a useful technique for deep tissue imaging, but in its current form, the paper does not provide sufficient evidence that their technique performs better than existing ones.

      We are in complete agreement with your recommendation, and the additional experiments will conduct a thorough comparison of the efficacy between the RIM-deep adapter and the official adapter in the context of fluorescence bead experiments, along with their performance in cubic and MASC tissue clearing techniques.

      Reviewer #1 (Recommendations for the authors):

      Suggestions for improvement:

      Major revisions:

      (1) For the bead experiment, the comparison was made to a 10X dry objective instead of an immersion objective, please make a comparison to the standard immersion objective.

      Thank you for your suggestion. We fully agree with your suggestion to make a comparison with the standard immersion objective. We plan to conduct this comparison in future experiments and will thoroughly analyze the imaging differences between the official adapter and the RIM-deep adapter.

      (2) It is unclear if an accurate comparison of objectives (same NA etc) is being made in Fig 1G-J, since the official adapter image appears to be of lower resolution even at the surface. At the very least, progressive 2D slices of the reconstruction must be shown for both adapters instead of just the RIM-Deep adapter.

      Thank you for your suggestion. We strictly controlled the numerical aperture (NA) of the objectives in Fig 1G-J to ensure the accuracy of the comparison. However, the imaging resolution of the official adapter is consistent with that of the RIM-deep adapter. We agree that showing progressive 2D slices of the reconstruction would provide a more comprehensive comparison of the two adapters.

      (3) Similarly, since there already exists an official adapter, it would be useful to see that RIM-Deep performs better even in the mouse tissue, since the clearing method was different.

      Thank you for your suggestion. We will investigate the imaging performance of the two additional tissue clearing protocols using both the official adapter and the RIM-deep adapter.

      (4) The movies need legends, as it is unclear if they even show 2-D slices very deep into the tissue.

      Thank you for your suggestion. We will add figure legends to each movie.

      (5) The purpose of Supplementary Figure 3 in its current form is unclear, as is the statement in the text related to it : "The effectiveness and utility of this adapter configuration have been substantiated through a comprehensive series of experimental validations".

      Thank you for your suggestion. We will revise the statement to: "We validated the effectiveness and utility of this adapter configuration through a series of experiments."

      (6) The system is variably referred to as RIM-Deep or DepthView Enhancer in the text and figures, it would be beneficial to the readers if the authors stuck to one name.

      Thank you for your suggestion. We will choose RIM-Deep as the sole name.

      Minor revisions

      Figures

      (1) “Confocal" is incorrectly spelled as "confocol" in Figure 1, "media" is misspelled in multiple places.

      Thank you. We will correct these errors.

      (2) The camera is misplaced in the Figure 1 A drawing

      Thank you. We will fix this issue.

      (3) It would be useful to have actual pictures of the immersion objective setup (both RIM-Deep and the pre-existing adapter) since the diagrams are not very clear.

      Thank you. We will include actual pictures of both the RIM-Deep and the pre-existing adapter in the supplementary materials.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      This study by Popli et al. evaluated the function of Atg14, an autophagy protein, in reproductive function using a conditional knockout mouse model. The authors showed that female mice lacking Atg14 were infertile partly due to defective embryo transport function of the oviduct and faulty uterine receptivity and decidualization using PgrCre/+;Atg14f/f mice. The findings from this work are exciting and novel. The authors demonstrated that a loss of Atg14 led to an excessive pyroptosis in the oviductal epithelial cells that compromises cellular integrity and structure, impeding the transport function of the oviduct. In addition, the authors use both genetic and pharmacological approaches to test the hypothesis. Therefore, the findings from this study are high-impact and likely reproducible. However, there are multiple major concerns that need to be addressed to improve the quality of the work.

      Thank you for the additional data that solidified the conclusion of this study. The authors addressed almost all of my previous concerns in this revised manuscript. However, some key points wording still need to be addressed.

      Comments on revisions:

      In Fig. 2A, please ensure that these are 5.0 dpc samples since implantation has already occurred at this point. However, the embryo appeared free-floating adjacent to the luminal epithelial cells (LE), even in control.

      We understand the reviewer’s concern. We have now replaced the previous H & E image with a clearer, higher-quality section that shows a fully attached embryo within a closed uterine lumen representing a typical implantation morphology at the D5 stage of pregnancy. (Revised Figure 2A)

      Fig. 3A-B: "Approximately 80-90% of blastocysts" contradicts the quantification in Figure 3C, which showed a percentage of blastocysts below 50%. Please clarify and correct as needed.

      In Fig. 3A-B, we mean to say approximately 80-90% embryos. We have now corrected the statement in the revised manuscript (Line no: 349-351).  

      The authors showed that Acetylated a-tubulin was present in the ampulla region of cKO (Fig. 4A). However, the revised manuscript still stated that (lines 397-399) ...there was a substantial loss of the ciliary epithelial cells (indicated by fewer a-tubulin and FOXJ1-positive cells) (Fig. 4B, left panel and Fig. S3)... So, the authors may want to tone down their conclusion regarding a "substantial loss" of ciliated epithelial cells if the quantification of ciliated cell number is not performed.

      We thank the reviewer for this suggestion. To avoid redundancy and ambiguity, we have revised the statement as below (Line no: 391-395):

      “As shown in Fig. 4A, normal ciliary structures were observed in the ampulla of both control and cKO oviducts. However, in the isthmus of cKO oviducts, we observed a reduction in both the FOXJ1- and PAX8-expressing cells (Fig. 4B, and Fig. S3).”

      Fig. 4C - the areas with red inset boxes labeled for isthmus are not really isthmus (in both control and cKO). The zoomed-in images (Fig. 4C - The far-right panel for both control and cKO, images are the transitional zone from the ampulla to the isthmus. The isthmus areas should have a thick muscle layer with almost no ciliated cells - see Fig. 4B cKO - those are true isthmus areas.

      We thank the reviewer for noting this. We have corrected the label accordingly. Since ciliary epithelial cells predominantly reside in the ampulla, we have included high-resolution images specifically for the ampulla regions.

      • Fig. 3A and 3C, it appears that the images were taken at different magnifications, but the scale bars are the same at 200 um. The authors, please double-check the scale bars.

      We thank the reviewer for noting this. We have double-checked all the figures to ensure the scale bars are correctly displayed and aligned with the resolution.

      • Fig. 6D - why polyphillin-treated samples did not sum to 100%? - please double-check.

      Since approximately 50% of the embryos were retained in the oviduct following polyphyllin treatment (Figure 6C, upper bar), the bar in Figure 6D represents this percentage (50% retained) rather than 100%.

      Reviewer #2 (Public review)

      In this manuscript, Popli et al investigated the roles of autophagy-related gene, Atg14, in the female reproductive tract (FRT) using conditional knockout mouse models. By ablation of Atg14 in both oviduct and uterus with PR-Cre (Atg14 cKO), authors discovered that such females are completely infertile. They went on to show that Atg14 cKO females have impaired embryo implantation as well as embryo transport from oviduct to uterus. Further analysis showed that Atg14 cKO leads to increased pyroptosis in oviduct, which disrupts oviduct epithelial integrity and leads to obstructive oviduct lumen and impaired embryo transport. The authors concluded that Atg14 is critical for maintaining the oviduct homeostasis and keeping the inflammation under check to enable proper embryo transport.

      The authors have barely addressed most of my concerns in this revised version with a few minor issues remaining to be addressed:

      (1) The authors tried to address my first concern regarding the statement that "autophagy is critical for maintaining the oviduct homeostasis". The revised statement in Lines 53-54 "we report that Atg14-dependent autophagy plays a crucial role in maintaining..." is still not correct. It should be corrected as " we report that autophagy-related protein Atg14 plays a crucial role in maintaining...".

      We thank the reviewer for this nice suggestion. We have now modified the statement as suggested (Line no: 54).

      (2) Line 349-351 described 80-90% of blastocysts retrieved from oviducts of cKO mice, which is in consistent with Figure 3B (showing more than 98%).

      We thank the reviewer for noting this. We have now corrected the statement as: “Unexpectedly, oviduct flushing from cKO mice resulted in the retrieval of approximately 90% of embryos, suggesting their potential entrapment within the oviducts, impeding their transit to the uterus”. (Line No: 349-351).

      (3) Line 447, "Fig. 5E" should be Fig. 6A. In addition, grammar error in the next sentence.

      We have corrected the figure number and addressed the grammatical error.

      (4) In Figure 6D, why the composition of blastocysts in chemical treated group do not add up to 100%.

      As explained in Reviewer 1 responses, the bar in Figure 6D represents the 50% retained embryos from Figure 6C upper bar the full count.

      Reviewer #3 (Public review):

      Summary:

      The manuscript by Pooja Popli and co-authors tested the importance of Atg14 in the female reproductive tract by conditionally deleting Atg14 use PrCre and also Foxj1cre. The authors showed that loss of Atg14 leads to infertility due to the retention of embryos within the oviduct. The authors further concluded that the retention of embryos within the oviduct is due to pyroptosis in oviduct cells leading to defective cellular integrity. The revised manuscript has included new experimental data (Figs. S2B, 5B, 5C, and S3) that satisfied the concerns of this reviewer. The manuscript should provide important advancement to the field.

      We sincerely thank the reviewer for the thoughtful evaluation of our manuscript and appreciate your constructive feedback.

    1. Author response:

      We appreciate the reviewers thoughtful consideration of our manuscript, and their recognition of the variety of experimental and computational approaches we have brought to bear in probing the very challenging question of uncoupled proton leak through EmrE.

      We did record SSME measurements with MeTPP+, a small molecule substrate at two different protein:lipid ratios. These experiments report the rate of net flux when both proton-coupled substrate antiport and substrate-gated proton leak are possible. We will add this data to the revision, including data acquired with different lipid:protein ratio that confirms we are detecting transport rather than binding. In brief, this data shows that the net flux is highly dependent on both proton concentration (pH) and drug-substrate concentration, as predicted by our mechanistic model. This demonstrates that both types of transport contribute to net flux when small molecule substrates are present.

      In the absence of drug-substrate, proton leak is the only possible transport pathway. The pyranine assay directly assesses proton leak under these conditions and unambiguously shows faster proton entry into proteoliposomes through the ∆107-EmrE mutant than through WT EmrE, with the rate of proton entry into ∆107-EmrE proteoliposomes matching the rate of proton entry achieved by the protonophore CCCP. We have revised the text to more clearly emphasize how this directly measures proton leak independently of any other type of transport activity. The SSME experiments with a proton gradient only (no small molecule substrate present) provide additional data on shorter timescales that is consistent with the pyranine data. The consistency of the data across multiple LPRs and comparison of transport to proton leak in the SSME assays  further strengthens the importance of the C-terminal tail in determining the rate of flux.

      None of the current structural models have good resolution (crystallography, EM) or sufficient restraints (NMR) to define the loop and tail conformations sufficiently for comparison with this work. We are in the process of refining an experimental structure of EmrE with better resolution of the loop and tail regions implicated in proton-entry and leak. Direct assessment of structural interactions via mutagenesis is complicated because of the antiparallel homodimer structure of EmrE. Any point mutation necessarily affects both subunits of the dimer, and mutations designed to probe the hydrophobic gate on the more open face of the transporter also have the potential to disrupt closure on the opposite face, particularly in the absence of sufficient resolution in the available structures. Thus, mutagenesis to test specific predicted structural features is deferred until our structure is complete so that we can appropriately interpret the results.

      In our simulation setup, the MD results can be considered representative and meaningful for two reasons. First, the C-terminal tail, not present in the prior structure and thus modeled by us, is only 4 residues long. We will show in the revision and detailed response that the system will lose memory of its previous conformation very quickly, such that velocity initialization alone is enough for a diverse starting point. Second, our simulation is more like simulated annealing, starting from a high free energy state to show that, given such random initialization, the tail conformation we get in the end is consistent with what we reported. It is also difficult to sample back-and-forth tail motion within a realistic MD timescale. Therefore, it can be unconclusive to causally infer the allosteric motions with unbiased MD of the wildtype alone. The best viable way is to look at the equilibrium statistics of the most stable states between WT- and ∆107-EmrE and compare the differences.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This descriptive manuscript builds on prior research showing that the elimination of Origin Recognition Complex (ORC) subunits does not halt DNA replication. The authors use various methods to genetically remove one or two ORC subunits from specific tissues and observe continued replication, though it may be incomplete. The replication appears to be primarily endoreduplication, indicating that ORC-independent replication may promote genome reduplication without mitosis. Despite similar findings in previous studies, the paper provides convincing genetic evidence in mice that liver cells can replicate and undergo endoreduplication even with severely depleted ORC levels. While the mechanism behind this ORC-independent replication remains unclear, the study lays the groundwork for future research to explore how cells compensate for the absence of ORC and to develop functional approaches to investigate this process. The reviewers agree that this valuable paper would be strengthened significantly if the authors could delve a bit deeper into the nature of replication initiation, potentially using an origin mapping experiment. Such an exciting contribution would help explain the nature of the proposed new type of Mcm loading, thereby increasing the impact of this study for the field at large.

      We appreciate the reviewers’ suggestion. Till now we know of only one paper that mapped origins of replication in regenerating mouse liver, and that was published two months back in Cell (PMID: 39293447).  We want to adopt this method, but we do not need it to answer the question asked.  We have mapped origins of replication in ORC-deleted cancer cell lines and compared to wild-type cells in Shibata et al., BioRXiv (PMID: 39554186) (it is under review).  We report the following:  Mapping of origins in cancer cell lines that are wild type or engineered to delete three of the subunits, ORC1, ORC2 or ORC5 shows that specific origins are still used and are mostly at the same sites in the genome as in wild type cells. Of the 30,197 origins in wild type cells (with ORC), only 2,466 (8%) are not used in any of the three ORC deleted cells and 18,319 (60%) are common between the four cell types. Despite the lack of ORC, excess MCM2-7 is still loaded at comparable rates in G1 phase to license reserve origins and is also repeatedly loaded in the same S phase to permit re-replication. 

      Citation: Specific origin selection and excess functional MCM2-7 loading in ORC-deficient cells. Yoshiyuki Shibata, Mihaela Peycheva, Etsuko Shibata, Daniel Malzl, Rushad Pavri, Anindya Dutta. bioRxiv 2024.10.30.621095; doi: https://doi.org/10.1101/2024.10.30.621095 (PMID: 39554186)

      We have now included this in the discussion.

      Public Reviews:

      Reviewer #1 (Public review):

      The origin recognition complex (ORC) is an essential loading factor for the replicative Mcm2-7 helicase complex. Despite ORC's critical role in DNA replication, there have been instances where the loss of specific ORC subunits has still seemingly supported DNA replication in cancer cells, endocycling hepatocytes, and Drosophila polyploid cells. Critically, all tested ORC subunits are essential for development and proliferation in normal cells. This presents a challenge, as conditional knockouts need to be generated, and a skeptic can always claim that there were limiting but sufficient ORC levels for helicase loading and replication in polyploid or transformed cells. That being said, the authors have consistently pushed the system to demonstrate replication in the absence or extreme depletion of ORC subunits.

      Here, the authors generate conditional ORC2 mutants to counter a potential argument with prior conditional ORC1 mutants that Cdc6 may substitute for ORC1 function based on homology. They also generate a double ORC1 and ORC2 mutant, which is still capable of DNA replication in polyploid hepatocytes. While this manuscript provides significantly more support for the ability of select cells to replicate in the absence or near absence of select ORC subunits, it does not shed light on a potential mechanism.

      The strengths of this manuscript are the mouse genetics and the generation of conditional alleles of ORC2 and the rigorous assessment of phenotypes resulting from limiting amounts of specific ORC subunits. It also builds on prior work with ORC1 to rule out Cdc6 complementing the loss of ORC1.

      The weakness is that it is a very hard task to resolve the fundamental question of how much ORC is enough for replication in cancer cells or hepatocytes. Clearly, there is a marked reduction in specific ORC subunits that is sufficient to impact replication during development and in fibroblasts, but the devil's advocate can always claim minimal levels of ORC remaining in these specialized cells.

      The significance of the work is that the authors keep improving their conditional alleles (and combining them), thus making it harder and harder (but not impossible) to invoke limiting but sufficient levels of ORC. This work lays the foundation for future functional screens to identify other factors that may modulate the response to the loss of ORC subunits.

      This work will be of interest to the DNA replication, polyploidy, and genome stability communities.

      Thank you.

      Reviewer #2 (Public review):

      This manuscript proposes that primary hepatocytes can replicate their DNA without the six-subunit ORC. This follows previous studies that examined mice that did not express ORC1 in the liver. In this study, the authors suppressed expression of ORC2 or ORC1 plus ORC2 in the liver.

      Comments:

      (1) I find the conclusion of the authors somewhat hard to accept. Biochemically, ORC without the ORC1 or ORC2 subunits cannot load the MCM helicase on DNA. The question arises whether the deletion in the ORC1 and ORC2 genes by Cre is not very tight, allowing some cells to replicate their DNA and allow the liver to develop, or whether the replication of DNA proceeds via non-canonical mechanisms, such as break-induced replication. The increase in the number of polyploid cells in the mice expressing Cre supports the first mechanism, because it is consistent with few cells retaining the capacity to replicate their DNA, at least for some time during development.

      In our study, we used EYFP as a marker for Cre recombinase activity. ~98% of the hepatocytes in tissue sections and cells in culture express EYFP, suggesting that the majority of hepatocytes successfully expressed the Cre protein to delete the ORC1 or ORC2 genes. To assess deletion efficiency, we employed sensitive genotyping and Western blotting techniques to confirm the deletion of ORC1 and ORC2 in hepatocytes isolated from Alb-Cre mice. Results in Fig. 2C and Fig. 6D demonstrate the near-complete absence of ORC2 and ORC1 proteins, respectively, in these hepatocytes.

      The mutant hepatocytes underwent at least 15–18 divisions during development. The inherited ORC1 or ORC2 protein present during the initial cell divisions, would be diluted to less than 1.5% of wild-type levels within six divisions, making it highly unlikely to support DNA replication, and yet we observe hepatocyte numbers that suggest there was robust cell division even after that point.

      Furthermore, the EdU incorporation data confirm DNA synthesis in the absence of ORC1 and ORC2. Specifically, immunofluorescence showed that both in vitro and in vivo, EYFP-positive hepatocytes (indicating successful ORC1 and ORC2 deletion) incorporated EdU, demonstrating that DNA synthesis can occur without ORC1 and ORC2.

      Finally, the Alb-ORC2f/f mice have 25-37.5% of the number of hepatocyte nuclei compared to WT mice (Table 2).  If that many cells had an undeleted ORC2 gene, that would have shown up in the genotyping PCR and in the Western blots.

      (2) Fig 1H shows that 5 days post infection, there is no visible expression of ORC2 in MEFs with the ORC2 flox allele. However, at 15 days post infection, some ORC2 is visible. The authors suggest that a small number of cells that retained expression of ORC2 were selected over the cells not expressing ORC2. Could a similar scenario also happen in vivo?

      This would not explain the significant incorporation of EdU in hepatocytes that are EYFP positive and do not have detectable ORC by Western blots.  Also note that for MEFs we are delivering the Cre by Adenovirus infection in vitro, so there is a finite probability that a cell will not receive the virus, the Cre and will not delete ORC2.  However, in vivo, the Alb-Cre will be expressed in every cell that turns on albumin.  There is no escaping the expression of Cre.

      (3) Figs 2E-G shows decreased body weight, decreased liver weight and decreased liver to body weight in mice with recombination of the ORC2 flox allele. This means that DNA replication is compromised in the ALB-ORC2f/f mice.

      It is possible that DNA replication is partially compromised or may slow down in the absence of ORC2. However, it is important to emphasize that livers with ORC2 deletion remain capable of DNA replication, so much so that liver function and life span are near normal. Therefore, some kind of DNA replication has to serve as a compensatory mechanism in the absence of ORC2 to maintain liver function and support regeneration.

      (4) Figs 2I-K do not report the number of hepatocytes, but the percent of hepatocytes with different nuclear sizes. I suspect that the number of hepatocytes is lower in the ALB-ORC2f/f mice than in the ORC2f/f mice. Can the authors report the actual numbers?

      We show in Table 2 that the Alb-Orc2f/f mice have about 25-37.5% of the hepatocytes compared to the WT mice.

      (5) Figs 3B-G do not report the number of nuclei, but percentages, which are plotted separately for the ORC2-f/f and ALB-ORC2-f/f mice. Can the authors report the actual numbers?

      In all the FACS experiments in Fig. 3B-G we collect data for a total of 10,000 nuclei (or cells).  For Fig. 3E-G we divide the 10,000 nuclei into the bottom 40% on the EYFP axis (EYFP low, which is mostly EYFP negative) as the control group, and EYFP high (top 20% on the EYFP axis) test group.  We have described this in the Methods in the revision and labeled EYFP negative and positive as EYFP low and high in the Figures and Figure legends.

      (6) Fig 5 shows the response of ORC2f/f and ALB-ORC2f/f mice after partial hepatectomy. The percent of EdU+ nuclei in the ORC2-f/f (aka ALB-CRE-/-) mice in Fig 5H seems low. Based on other publications in the field it should be about 20-30%. Why is it so low here? The very low nuclear density in the ALB-ORC2-f/f mice (Fig 5F) and the large nuclei (Fig 5I) could indicate that cells fire too few origins, proceed through S phase very slowly and fail to divide.

      The percentage of EdU+ nuclei in the ORC2f/f without Alb-Cre mice is 8%, while in PMID 10623657 ~10% of wild type nuclei incorporate  EdU at 42 hr post partial hepatectomy (mid-point between the 36-48 hr post hepatectomy that was used in our study).  The important result here is that in the ORC2f/f mice with Alb-Cre (+/-) we are seeing significant EdU incorporation. We have also corrected the X-axis labels in 5F, 5I, 7E and 7F to reflect that those measurements were not made at 36 hr post-resection but later (as was indicated in the schematic in Fig. 5A).

      (7) Fig 6F shows that ALB-ORC1f/f-ORC2f/f mice have very severe phenotypes in terms of body weight and liver weight (about on third of wild-type!!). Fig 6H and 6I, the actual numbers should be presented, not percentages. The fact that there are EYFP negative cells, implies that CRE was not expressed in all hepatocytes.

      The liver weight is very dependent on the body weight, and so we have to look at the liver to body weight ratio to determine if it is inordinately small, and the ratio is 70% of the WT.  In females the liver and body weight are low (although in proportion to each other), which maybe is what the reviewer is talking about.  However, the fact that liver weight and body weight are not as low in males, suggest that this is a gender (hormone?) specific effect and not a DNA replication defect.  We had discussed this possibility.  We have another paper also in BioRXiv (Su et al. doi.org/10.1101/2024.12.18.629220) that suggests that ORC subunits have significant effect on gene expression, so it is possible that that is what leads to this sexual dimorphism in phenotype.  We have now added this to the discussion.

      The bottom 40% of nuclei on the EYFP axis in the FACS profiles (what was labeled EYFP negative but will now be called EYFP low) contains mostly non-hepatocytes that are genuinely EYFP negative.   Non-hepatocytes (bile duct cells, endothelial cells, Kupffer cells, blood cells) are a significant part of cells in the dissociated liver (as can be seen in the single cell sequencing results in PMID: 32690901).  Their presence does not mean that hepatocytes are not expressing Cre.  Hepatocytes are nearly 100% EYFP positive, as can be seen in the tissue sections (where the hepatocytes take up most of visual field) and in cells in culture.  Also if there are EYFP negative hepatocyte nuclei in the FACS, that still does not rule out EYFP presence in the cytoplasm.  The important point from the FACS is that the EYFP high nuclei (which have expressed Cre for the longest period) are polyploid relative to the EYFP low nuclei.

      (8) Comparing the EdU+ cells in Fig 7G versus 5G shows very different number of EdU+ cells in the control animals. This means that one of these images is not representative. The higher fraction of EdU+ cells in the double-knockout could mean that the hepatocytes in the double-knockout take longer to complete DNA replication than the control hepatocytes. The control hepatocytes may have already completed DNA replication, which can explain why the fraction of EdU+ cells is so low in the controls. The authors may need to study mice at earlier time points after partial hepatectomy, i.e. sacrifice the mice at 30-32 hours, instead of 40-52 hours.

      The apparent difference that the reviewer comments on stems from differences in nuclear density in the images in Fig. 7G and 5G (also quantitated in Fig. 7F and 5F).  The quantitation in Fig. 7H and 5H show that the % of EdU plus cells are comparable (5-8%). 

      (9) Regarding the calculation of the number of cell divisions during development: the authors assume that all the hepatocytes in the adult liver are derived from hepatoblasts that express Alb. Is it possible to exclude the possibility that pre-hepatoblast cells that do not express Alb give rise to hepatocytes? For example the cells that give rise to hepatoblasts may proliferate more times than normal giving rise to a higher number of hepatoblasts than in wild-type mice.

      Single cell sequencing of mouse liver at e11 shows hepatoblasts expressing hepatocyte specific markers (PMID: 32690901).  All the cells annotated from the single-cell seq analysis are differentiated cells arguing against the possibility that undifferentiated endodermal cells (what the reviewer probably means by pre-hepatoblasts) exist at e11.  We have added this citation to the paper.

      Here is a review that says the hepatoblasts expressing Albumin are present before e13.  (https://www.ncbi.nlm.nih.gov/books/NBK27068/) says: “The differentiation of bi-potential hepatoblasts into hepatocytes or BECs begins around e13 of mouse development. Initially hepatoblasts express genes associated with both adult hepatocytes (Hnf4α, Albumin) ...”  Thus, we can be certain that hepatoblasts before e13 express albumin.  Our calculation of number of cell divisions in Table 2 begins from e12.

      The reviewer may be suggesting that ORC deletion leads to the immediate demise of hepatoblasts (despite having inherited ORC protein from the endodermal cells) causing undifferentiated endodermal cells to persist and proliferate much longer than in normal development.  We consider it unlikely, but if true it will be very unexpected, both by suggesting that deletion of ORC immediately leads to the death of the hepatoblasts (despite a healthy reserve of inherited ORC protein) and by suggesting that there is a novel feedback mechanism from the death/depletion of hepatoblasts leading to the persistence and proliferation of undifferentiated endodermal cells. We have added the reviewer’s suggestion to the discussion.

      (10) My interpretation of the data is that not all hepatocytes have the ORC1 and ORC2 genes deleted (eg EYFP-negative cells) and that these cells allow some proliferation in the livers of these mice.

      Please see the reply in question #1.  Particularly relevant: “Finally, the Alb-ORC2f/f mice have 25-37.5% of the number of hepatocyte nuclei compared to WT mice (Table 2).  If that many cells had an undeleted ORC2 gene, that would have shown up in the genotyping PCR and in the Western blots.

      Reviewer #3 (Public review):

      Summary:

      The authors address the role of ORC in DNA replication and that this protein complex is not essential for DNA replication in hepatocytes. They provide evidence that ORC subunit levels are substantially reduced in cells that have been induced to delete multiple exons of the corresponding ORC gene(s) in hepatocytes. They evaluate replication both in purified isolated hepatocytes and in mice after hepatectomy. In both cases, there is clear evidence that DNA replication does not decrease at a level that corresponds with the decrease in detectable ORC subunit and that endoreduplication is the primary type of replication observed. It remains possible that small amounts of residual ORC are responsible for the replication observed, although the authors provide arguments against this possibility. The mechanisms responsible for DNA replication in the absence of ORC are not examined.

      Strengths:

      The authors clearly show that there are dramatic reductions in the amount of the targeted ORC subunits in the cells that have been targeted for deletion. They also provide clear evidence that there is replication in a subset of these cells and that it is likely due to endoreduplication. Although there is no replication in MEFs derived from cells with the deletion, there is clearly DNA replication occurring in hepatocytes (both isolated in culture and in the context of the liver). Interestingly, the cells undergoing replication exhibit enlarged cell sizes and elevated ploidy indicating endoreduplication of the genome. These findings raise the interesting possibility that endoreduplication does not require ORC while normal replication does.

      Weaknesses:

      There are two significant weaknesses in this manuscript. The first is that although there is clearly robust reduction of the targeted ORC subunit, the authors cannot confirm that it is deleted in all cells. For example, the analysis in Fig. 4B would suggest that a substantial number of cells have not lost the targeted region of ORC2. Although the western blots show stronger effects, this type of analysis is notorious for non-linear response curves and no standards are provided. The second weakness is that there is no evaluation of the molecular nature of the replication observed. Are there changes in the amount of location of Mcm2-7 loading that is usually mediated by ORC? Does an associated change in Mcm2-7 loading lead to the endoreduplication observed? After numerous papers from this lab and others claiming that ORC is not required for eukaryotic DNA replication in a subset of cells, we still have no information about an alternative pathway that could explain this observation.

      We do not see a significant deficit in MCM2-7 loading (amount and rate) in cancer cell lines where we have deleted ORC1, ORC2 or ORC5 genes separately in Shibata et al. bioRxiv 2024.10.30.621095; doi: https://doi.org/10.1101/2024.10.30.621095 (PMID: 39554186).  This is now cited in the discussion.

      The authors frequently use the presence of a Cre-dependent eYFP expression as evidence that the ORC1 or ORC2 genes have been deleted. Although likely the best visual marker for this, it is not demonstrated that the presence of eYFP ensures that ORC2 has been targeted by Cre. For example, based on the data in Fig. 4B, there seems to be a substantial percentage of ORC2 genes that have not been targeted while the authors report that 100% of the cells express eYFP.

      (1) The PCR reactions in Fig. 4B are still contaminated by DNA from non-hepatocyte cells:  bile duct cells, endothelial, Kupfer cells and blood cells.  Microscopy of  cultured cells idnetifies the hepatocytes unequivocally from their morphology. <2% of the hepatocyte cells in culture in Fig. 4C are EYFP-.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      The authors should present the data as suggested in the review and reformulate their conclusions. If possible, mice should be examined 30-32 hours after partial hepatectomy.

      Based on the Literature we chose a time that is consistent with the previous paper from us (Uchida et al., Genes & Dev).

      Reviewer #3 (Recommendations for the authors):

      (1) It would improve the paper to use single-cell methods (e.g. FISH) to assess the deletion of ORC subunits in the targeted cells.

      This is something we will reserve for future studies.

      (2) The importance of the paper would be increased dramatically by showing that the elimination of ORC changed the location of Mcm2-7 loading. This would be highly likely if the authors hypothesis that ORC is not involved is true. On the other hand, given ORC's role in origin selection, an observation that the same sites are used but less frequently would support a hypothesis that residual intact ORC is responsible for the replication observed.

      Shibata et al (PMID: 39554186) has answered this question.  The loss of ORC does not change the locations of origins or even the ability to specify origins.  We argue that this is what is to be expected from our hypothesis, that although ORC is clearly important for MCM loading in yeast and in biochemical experiments, something unexpected is going on in human cells.  Either a vanishingly small amount of ORC (undetectable by commonly used methods) can load the full complement of MCM2-7 at a rate that is comparable to wild type cells, or there is an ORC-independent mechanism of MCM2-7 loading.   This is now added to the discussion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Although the scripts are available at the github link that is shown, the Readme file is not available as a text file. Spreadsheets summarizing the RNA-seq data ought to be available for download, but these are not present. Likewise, are spreadsheets available for the data used to generate the plots in Fig. 10, so that the identities of particular, correlated genes can be viewed?

      We have now included the excel sheet with all the DEGs shown in Figure 8-9 (Figure 8 – Source data 1-8). The source data include DEGs that are up- and down-regulated in gWAT, iWAT, liver, and skeletal muscle. The source data files (excel) are the standard output format. We have also updated the github (https://github.com/Leandromvelez/CTRP10-Manuscript-DEG-Sex-specific-connectivities-and-integration) to include a README file and updated the R scripts to annotate steps and processing considerations.  In addition, the README file now contains drive links to the files used the unfiltered kallisto TPM and counts at the transcript-level, as well as resulting Differential Expression results based on genotype.  Obviously, all criteria from aligned transcripts such as gene filtering and normalization are included in the scripts provided.

      Several items would strengthen the work:

      (1) Is a CTRP10 antibody available, and does the protein abundance correlate with the mRNA abundances that were assessed in Fig. 1?

      Unfortunately, no validated antibody currently exists for CTRP10. Consequently, we were not able to assess protein abundance of CTRP10 in our study.

      (2) Were there compensatory changes in the abundance of other CTRP family members? This might be observed at the protein, but not mRNA, level. It might be reasonable to test for the effects of liver, gWAT, skeletal muscle, and iWAT.

      We observed no compensatory changes in other CTRP family members based on our RNA-seq data. Unfortunately, we do not have protein data for other CTRP family members.

      (3) The gene expression changes shown in Fig. 9 are ranked according to z-score, but it is not clear how this is calculated. It would be helpful to indicate the log2 change in each case.

      The z-score is a very commonly used method to show DEGs in studies involving RNA-seq data. We calculate the z-score based on the gene transcript source data (Fig. 8 – Source data 1-8). Z-score is defined as z = (x-μ)/σ, where x is the raw score (gene transcript level), μ is the population mean (mean of gene expression across both WT and KO samples), and σ is the population standard deviation. In essence, the z-score is the raw score minus the population mean, divided by the population standard deviation. We now included this information in Fig. 9 legend.

      (4) In Fig. 6, female HFD-fed KO mice had increased glucose (and insulin) after an overnight fast, but increased glucose was not observed in the GTT data. Possibly, this is because the mice were fasted for only 6h for the GTT. This might be mentioned during the description of these data, on lines 221-224. However, this also raises the question of whether there is a difference in the rate of gluconeogenesis (or possibly glycogenolysis for the 6h data) in the KO compared to the controls. Understanding this would require the use of tracers, and is reasonably beyond the scope of this study, but might be mentioned in the discussion.

      Per reviewer’s suggestion, we have included this in the “limitation section” of the discussion.

      Reduced RER in the HFD-fed female mice might begin to suggest a mechanism since this suggests the mice might have decreased oxidation of carbohydrates and increased oxidation of fat compared to control animals. A glucose tracer might be used to test whether more glucose is stored and, if so, in what tissue this occurs. Possibly, this could be done ex vivo on isolated tissues or cells. Again, this is reasonably beyond the scope of the present study.

      Per reviewer’s suggestion, we have included this in the “limitation section” of the discussion.

      (5) The discussion includes a brief discussion of the role of estrogen and suggests that in CTRP10 KO mice there are differences in other factors that would be needed to explain the phenotype. Although it is agreed that this is likely the case, estrogen levels were not measured in the present study. It seems like this would be important to study, and might shed light on the female-specific phenotype.

      We have now included serum estrogen data. No significant differences in estrogen levels were seen between WT and KO female mice fed either a low-fat diet (Fig. 4 – figure supplement 1) or a high-fat diet (Fig. 5 – figure supplement 2).

      Reviewer #2 (Recommendations For The Authors):

      While the concept is potentially exciting, there are major problems with the current manuscript. It lacks the mechanistic details behind MHO.

      (1) There is a significant gap that was not addressed by the authors. How exactly does CTRP10 lead to the activation of proteins like Fgf1, Fgf21, Il22ra1, Ucp3, and Klf15 in Ctrp10 knockout female mice? Is it likely that CTRP10 regulates these proteins via indirect mechanisms?

      We acknowledge that the lack of mechanistic understanding of how CTRP10 loss-of-function leads to changes in gene expression is a major limitation of the study. We have highlighted this limitation in the discussion section.

      • The author notes that Ctrp10 knockout female mice, particularly those on a high-fat diet lack Nr1d1 and can sustain a relatively healthy metabolic state. This is supported by the demonstrated upregulation of Fgf1, Fgf21, Il22ra1, Ucp3, and Klf15 in Ctrp10 knockout female mice. However, the mechanisms through which Ctrp10 knockout influences the expression of these molecules are not elucidated.

      We acknowledge that this is a major limitation of the study. We have highlighted this limitation in the discussion section. 

      • How do you substantiate the role of age and a high-nutrient diet in the development of obesity in knockout female mice? However, it is still unclear whether administering a high-fat diet in >20 week age of mice can develop insulin resistance where obesity is developing in LFD.

      When fed a low-fat diet, Ctrp10-KO female mice developed obesity with age and yet show little if any glucose intolerance or insulin resistance based on our glucose tolerance and insulin tolerance tests. For the HFD group, we are only comparing WT and KO mice on the same diet (not across diet). While WT mice on HFD gained significant amount of weight over time as expected, Ctrp10-KO female mice gain substantially higher amount of weight relative to WT littermates. Despite this, we did not observe a worsening of glucose tolerance and insulin resistance (based on GTT and ITT) in the KO female mice relative to WT controls as we would expect, since greater adiposity in HFD-fed mice generally correlated with worse metabolic outcomes. 

      (2) The authors should add the NR1D1 dependency study in female mice if possible.

      To address would require the generation of Ctrp10/Nr1d1 double KO mouse model and to carry out the entire study again in these double KO mice. Although this suggestion by the reviewer is a good one, this is beyond the scope of the present study.

      (3) NR1D1 represses the set of genes that promotes lipogenesis (the author should add some data that validates this statement).

      The role of NR1D1 in regulating metabolic genes are extensively documented in the published literature. NR1D1 (also known as REV-ERBα) is a constitutive transcriptional repressor (PMID: 26044300; PMID: 27445394). Many metabolic genes that are normally represses by NR1D1 is de-repressed in mice lacking NR1D1 globally or in the tissue-specific manner (PMID: 26044300; PMID: 34350828; PMID: 22562834). Among the many NR1D1 target genes involved in lipid metabolism include: CD36, Plin2, Elovl5, Acss3 (from: PMID: 26044300); as well as Scd1, Scd2, Pnpla5, Acsl1, Fasn, Hadhb, and Oxsm (from: PMID: 34350828).  We have included this information in the discussion section.

      (4) The authors should study the effect of Ctrp10 overexpression in HFD-fed female mice and also with KO of CTRP10 in adult mice if possible.

      The suggestion by the reviewer is a good one. However, this is beyond the scope of the study. We do not have a Ctrp10 conditional KO mouse model; as such, we could not study the effect of knocking out CTRP10 in adult mice. Overexpression studies are often considered non-physiological these days since the level of the overexpressed protein is generally much higher than the normal physiological level. For this reason, we did not attempt any overexpression study. 

      Reviewer #3 (Recommendations For The Authors):

      Line 114: Could you please provide definitions for "GluK2" and "GluK4" for readers unfamiliar with these terms?

      We have now provided definition for these terms.

      Line 140: It's stated that skeletal muscle and the pancreas express similar levels of Ctrp10 as the brain. Please double-check and clarify this assertion for accuracy.

      In mice, based on our own data (Fig. 1B), Ctrp10 expression in skeletal muscle and pancreas is comparable to that in the whole brain. In human, based on publicly available data (e.g., Genotype-Tissue Expression portal; GTex), brain expresses much higher level of CTRP10 transcript relative to other peripheral tissues.

      Line 141: Have you investigated whether Ctrp10 levels in plasma change after refeeding? If not, consider exploring this aspect to enhance the comprehensiveness of the study.

      No validated antibody currently exists for CTRP10. As such, we could not assess plasma level of CTRP10 after refeeding. We have included this as limitation of our study in the discussion section.  

      Lines 143-144: Clarify the age bracket of the animals used in the study. Additionally, have you observed similar responses, such as downregulation of Ctrp10 in response to refeeding, in both old and young mice in peripheral tissues?

      We have now included the age of the mice (~10 weeks old) for the fasting refeeding study as shown in Fig. 1C in the result and method sections.  

      Lines 135-149: To complement the experiments shown in Fig 1B-D, provide data pertaining to females.

      Ideally, we would like to have this data as well. However, to do this for females would involve 47 mice and the collection of 120 tissues (Fig. 1B; n = 10 per tissue), 390 tissues (Fig. 1C; n = 7-8 per tissue per fast or refed state), and 528 tissues (Fig. 1D; n = 11 per tissue per HFD or LFD). This would be a total of 1038 tissue samples. The main purpose of Fig. 1B-D is to demonstrate that Ctrp10 transcript is widely expressed and that its expression is modulated by nutritional (HFD vs. LFD) and metabolic (fast vs. refeed) states. These data provided a rationale to examine the metabolic phenotype in mice lacking CTRP10.

      To address the reviewer’s point, we looked at the expression levels of CTRP10/C1QL1 between males and females in the Genotype-Tissue Expression (GTEx) database portal and it does not appear that there are sex differences in CTRP10 expression patterns in normal tissues.  

      Line 152: Can you provide evidence supporting the hypothesis that Ctrp10 is secreted into the circulation?

      CTRP10 has a classic signal peptide sequence and the protein is secreted when expressed in HEK 293 cells (PMID: 18783346). We have shown previously that CTRP10 can be found in the FPLC-fractionated mouse serum using a polyclonal rabbit anti-mouse CTRP10 antibody we generated (PMID: 18783346); this antibody, however, does not work on tissue lysates (many non-specific bands). There is evidence in published literature to show that CTRP10/C1QL2 is clearly found circulating in human plasma. Some of the studies include: 1) Human C1QL2/CTRP10 is detected in the human plasma from UK BioBank (PMID: 37794186; C1QL2 is highlighted in page 335) and serum samples from pregnant females (PMID: 39062451; C1QL2 is highlighted in Table 2). We have included this information in the Introduction section.

      Line 178: In Fig 4 D and E (and other figures in the paper), it would be more accurate to express adipocyte size in "μm²" instead of "uM2."

      We have double checked and fixed this issue in the figure 4 and 7.

      Line 259: Please specify the age of the animals used in the study.

      In the method section, we did mention that LFD was provided for the duration of the study, beginning at 5 weeks of age; and that HFD was provided for 14 weeks, beginning at 6-7 weeks of age. Also, in Figure 2A and Figure 4A, the age of the mice is also indicated.

      Lines 275-283 and 288-296: It would be more appropriate to move this content to the Discussion section for better contextualization.

      We feel that the published information on NR1D1 and FGF21 should be mentioned in the result section so that the readers can immediately appreciate the significance of our data shown in Fig. 8 and 9. However, we also included similar information concerning NR1D1 in the discussion section for better contextualization as suggested.  

      Line 301: The section on DEG analysis requires additional details. How was the DEG analysis conducted? Were the DEGs from "wild type and KO mice" compared with "human DEGs regulated by sex"? Also, details about the phenotype of the human subjects and their association with obesity should be included. Additionally, discuss specific genes identified by the analysis and their relevance to the Ctrp10 story and human sex-specific gene connectivity analysis.

      We have updated the section on DEG analysis and, related to reviewer comments above, significantly expanded the github repository, detailing an analytical walkthrough of all computational analyses performed. To clarify the human integration analysis, we have added the following to the methods:

      “To investigate the degree of conservation of CTRP-engaged pathways, we mapped the differentially expressed genes (DEGs) identified from Ctrp10 knockout (KO) versus wild-type (WT) mice to their human orthologs, including human CTRP10, in the GTEx database for transcriptional correlations. Individuals were stratified by sex to examine sex-specific gene connectivity, consisting of 210 males and 100 females to compare gene expression across tissues. Gene-connectivity analyses were performed based on population correlation significances summarized by cumulative -log10(pvalues) as previously described"

      Line 330: In Fig 7L, increased oxidative stress in the liver of KO mice is shown. Please provide an explanation for the claim that Ctrp10-KO female mice resembled the WT controls.

      In Fig. 7L, we did observe a modest, but significant, increase in oxidative stress in the liver based on the quantification of malondialdehyde (MDA) level, a marker of tissue oxidative stress. However, we did not see any significant differences in the expression of oxidative genes in the liver between WT and KO female mice (Fig. 7J); thus, the statement in line 330 (discussion section) that pertains to oxidative gene expression in fat and liver (Fig. 7E and 7J) is correct. 

      Line 375: Could you clarify the term "adipose tissue health" and further discuss or provide evidence demonstrating compromised adipose tissue health in female KO mice following HFD?

      Adipose tissue health refers to the healthy functioning of adipose tissue (based on its functionality, immune cell population and profile, and metabolic gene expression profiles). Adipose tissue releases free fatty acids in response to fasting and takes up lipids in response to refeeding. Both are these functions are preserved in KO mice as we did not observe any significant differences in free fatty acids (NEFA) and triglyceride levels in the fasted and refed states (Fig. 6AB). Also, we did not observe any significant differences in the expression of inflammatory and fibrotic genes in the adipose tissue of WT and KO female mice fed a high-fat diet (Fig. 7E). If anything, we actually observed a modest, but significant, reduction in the expression of some ER and oxidative stress genes in the KO female mice relative to WT controls (Fig. 7E). 

      Line 408: Please provide data regarding estrogen levels in wild-type and KO female mice for comparison.

      We have now included serum estrogen data. No significant differences in estrogen levels were seen between WT and KO female mice fed either a low-fat diet (Fig. 4 – figure supplement 1) or a high-fat diet (Fig. 5 – figure supplement 2).

      Line 587: The GitHub link provided seems to be inactive or incorrect. Please verify and provide the correct link.

      We have also updated the github (https://github.com/Leandromvelez/CTRP10-Manuscript-DEG-Sex-specific-connectivities-and-integration) to include a README file and updated the R scripts to annotate steps and processing considerations. 

      Lines 590-599: Provide additional details about the analysis of human sex-specific genes. Including a table of the top DEGs and pathways differentially regulated by sex would be beneficial for readers' comprehension.

      We have expanded the methods, results and associated github repositories to detail all reproducible parameters used in these analyses.  The new table of DEGs is included in the manuscript and github repositories.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this article, Nedbalova et al. investigate the biochemical pathway that acts in circulating immune cells to generate adenosine, a systemic signal that directs nutrients toward the immune response, and S-adenosylmethionine (SAM), a methyl donor for lipid, DNA, RNA, and protein synthetic reactions. They find that SAM is largely generated through the uptake of extracellular methionine, but that recycling of adenosine to form ATP contributes a small but important quantity of SAM in immune cells during the immune response. The authors propose that adenosine serves as a sensor of cell activity and nutrient supply, with adenosine secretion dominating in response to increased cellular activity. Their findings of impaired immune action but rescued larval developmental delay when the enzyme Ahcy is knocked down in hemocytes are interpreted as due to effects on methylation processes in hemocytes and reduced production of adenosine to regulate systemic metabolism and development, respectively. Overall this is a strong paper that uses sophisticated metabolic techniques to map the biochemical regulation of an important systemic mediator, highlighting the importance of maintaining appropriate metabolite levels in driving immune cell biology.

      Strengths:

      The authors deploy metabolic tracing - no easy feat in Drosophila hemocytes - to assess flux into pools of the SAM cycle. This is complemented by mass spectrometry analysis of total levels of SAM cycle metabolites to provide a clear picture of this metabolic pathway in resting and activated immune cells.

      The experiments show that the recycling of adenosine to ATP, and ultimately SAM, contributes meaningfully to the ability of immune cells to control infection with wasp eggs.

      This is a well-written paper, with very nice figures showing metabolic pathways under investigation. In particular, the italicized annotations, for example, "must be kept low", in Figure 1 illustrate a key point in metabolism - that cells must control levels of various intermediates to keep metabolic pathways moving in a beneficial direction.

      Experiments are conducted and controlled well, reagents are tested, and findings are robust and support most of the authors' claims.

      Weaknesses:

      The authors posit that adenosine acts as a sensor of cellular activity, with increased release indicating active cellular metabolism and insufficient nutrient supply. It is unclear how generalizable they think this may be across different cell types or organs.

      In the final part of the Discussion, we elaborate slightly more on a possible generalization of our results, while being aware of the limited space in this experimental paper and therefore intend to address this in more detail and comprehensively in a subsequent perspective article.

      The authors extrapolate the findings in Figure 3 of decreased extracellular adenosine in ex vivo cultures of hemocytes with knockdown of Ahcy (panel B) to the in vivo findings of a rescue of larval developmental delay in wasp egg-infected larvae with hemocyte-specific Ahcy RNAi (panel C). This conclusion (discussed in lines 545-547) should be somewhat tempered, as a number of additional metabolic abnormalities characterize Ahcy-knockdown hemocytes, and the in vivo situation may not mimic the ex vivo situation. If adenosine (or inosine) measurements were possible in hemolymph, this would help bolster this idea. However, adenosine at least has a very short half-life.

      We agree with the reviewer, and in the 4th paragraph of the Discussion we now discuss more extensively the limitations of our study in relation to ex vivo adenosine measurements and the importance of the SAM pathway on adenosine production.

      Reviewer #2 (Public review):

      Summary:

      In this work, the authors wish to explore the metabolic support mechanisms enabling lamellocyte encapsulation, a critical antiparasitic immune response of insects. They show that S-adenosylmethionine metabolism is specifically important in this process through a combination of measurements of metabolite levels and genetic manipulations of this metabolic process.

      Strengths:

      The metabolite measurements and the functional analyses are generally very strong and clearly show that the metabolic process under study is important in lamellocyte immune function.

      Weaknesses:

      The gene expression data are a potential weakness. Not enough is explained about how the RNAseq experiments in Figures 2 and 4 were done, and the representation of the data is unclear.

      The RNAseq data have already been described in detail in our previous paper (doi.org/10.1371/journal.pbio.3002299), but we agree with the reviewer that we should describe the necessary details again here. The replicate numbers for RNAseq data were added to figure legends, the TPM values for the selected genes shown in figures are in S1_Data and new S4_Data file with complete RNAseq data (TPM and DESeq2) was added to this revised version.

      The paper would also be strengthened by the inclusion of some measure of encapsulation effectiveness: the authors show that manipulation of the S-adenosylmethionine pathway in lamellocytes affects the ability of the host to survive infection, but they do not show direct effects on the ability of the host to encapsulate wasp eggs.

      The reviewer is correct that wasp egg encapsulation and host survival may be different (the host can encapsulate and kill the wasp egg and still not survive) and we should also include encapsulation efficiency. This is now added to Figure 3D, which shows that encapsulation efficiency is reduced upon Ahcy-RNAi, which is consistent with the reduced number of lamellocytes.

      Reviewer #3 (Public review):

      Summary:

      The authors of this study provide evidence that Drosophila immune cells show upregulated SAM transmethylation pathway and adenosine recycling upon wasp infection. Blocking this pathway compromises the lamellocyte formation, developmental delay, and host survival, suggesting its physiological relevance.

      Strengths:

      Snapshot quantification of the metabolite pool does not provide evidence that the metabolic pathway is active or not. The authors use an ex vivo isotope labelling to precisely monitor the SAM and adenosine metabolism. During infection, the methionine metabolism and adenosine recycling are upregulated, which is necessary to support the immune reaction. By combining the genetic experiment, they successfully show that the pathway is activated in immune cells.

      Weaknesses:

      The authors knocked down Ahcy to prove the importance of SAM methylation pathway. However, Ahcy-RNAi produces a massive accumulation of SAH, in addition to blocking adenosine production. To further validate the phenotypic causality, it is necessary to manipulate other enzymes in the pathway, such as Sam-S, Cbs, SamDC, etc.

      We are aware of this weakness and have addressed it in a much more detailed discussion of the limitations of our study in the 6th paragraph of the Discussion.

      The authors do not demonstrate how infection stimulates the metabolic pathway given the gene expression of metabolic enzymes is not upregulated by infection stimulus.

      Although the goal of this work was to test by 13C tracing whether the SAM pathway activity is upregulated, not to analyze how its activity is regulated, we certainly agree with the reviewer that an explanation of possible regulation, especially in the context of the enzyme expressions we show, should be included in our work. Therefore, we have supplemented the data with methyltransferase expressions (Figure 2-figure supplement 3. And S3_Data) and better describe the changes in expression of some SAM pathway genes, which also support stimulation of this pathway by changes in expression. The enzymes of the SAM transmethylation pathway are highly expressed in hemocytes, and it is known that the activity of this pathway is primarily regulated by (1) increased methionine supply to the cell and (2) the actual utilization of SAM by methyltransferases. Therefore, a possible increase in SAM transmethylation pathway in our work can be suggested (1) by increased expression of 4 transporters capable of transporting methionine, (2) by decreased expression of AhcyL2 (dominant-negative regulator of Ahcy) and (3) by increased expression of 43 out of 200 methyltransferases. This was now added to the first section of Results.

      Recommendations for the authors:

      Reviewing Editor Comments:

      In the discussion with the reviewers, two points were underlined as very important:

      (1) Knocking down Ahyc and other enzymes in the SAM methylation pathway may give very distinct phenotypes. Generalising the importance of "SAM methyaltion" only by Ahcy-RNAi is a bit cautious. The authors should be aware of this issue and probably mention it in the Discussion part.

      We are aware of this weakness and have addressed it in a much more detailed discussion of the limitations of our study in the 6th paragraph of the Discussion.

      (2) Sample sizes should be indicated in the Figure Legends. Replicate numbers on the RNAseq are important - were these expression levels/changes seen more than once?

      Sample sizes are shown as scatter plots with individual values wherever possible and all graphs are supplemented with S1_Data table with raw data. The RNAseq data have already been described in detail in our previous paper (doi.org/10.1371/journal.pbio.3002299), but we agree with the reviewers that we should describe the necessary details again here. The replicate numbers for RNAseq data were added to figure legends, the TPM values for the selected genes shown in figures are in S1_Data and new S4_Data file with complete RNAseq data (TPM and DESeq2) was added to this revised version.

      Reviewer #1 (Recommendations for the authors):

      Major points:

      (1) Please provide sample sizes in the legends rather than in a supplementary table.

      Sample sizes are shown either as scatter plots with individual values or added to figure legends now.

      (2) More details in the methods section are needed:

      For hemocyte counting, are sessile and circulating hemocytes measured?

      We counted circulating hemocytes (upon infection, most sessile hemocytes are released into the circulation). While for metabolomics all hemocyte types were included, for hemocyte counting we were mainly interested in lamellocytes. Therefore, we counted them 20 hours after infection, when most of the lamellocytes from the first wave are fully differentiated but still mostly in circulation, as they are just starting to adhere to the wasp egg. This was added to the Methods section.

      How were levels of methionine and adenosine used in ex vivo cultures selected? This is alluded to in lines 158-159, but no references are provided.

      The concentrations are based on measurements of actual hemolymph concentrations in wild-type larvae in the case of methionine, and in the case of adenosine, we used a slightly higher concentration than measured in the adgf-a mutant to have a sufficiently high concentration to allow adenosine to flow into the hemocytes. This is now added to the Methods section.

      Minor points:

      Response to all minor points:  Thank you, errors has now been fixed.

      (1) Line 186 - spell out MTA - 5-methylthioadenosine.

      (2) Lines 196-212 (and elsewhere) - spelling out cystathione rather than using the abbreviation CTH is recommended because the gene cystathione gamma-lyase (Cth) is also discussed in this paragraph. Using the full name of the metabolite will reduce confusion.

      We rather used cystathionine γ-lyase as a full name since it is used only three times while CTH many more times, including figures.

      (3) Figure 2 - supplement 2: please include scale bars.

      (4) Line 303 - spelling error: "trabsmethylation" should be "transmethylation".

      (5) Line 373 - spelling error: "higer" should be "higher".

      Reviewer #2 (Recommendations for the authors):

      For the RNAseq data, it's unclear whether the gene expression data in Figures 2 and 4 include biological replicates, so it's unclear how much weight we should place on them.

      The replicate numbers for RNAseq data were added to figure legends, the TPM values for the selected genes shown in figures are in S1_Data and new S4_Data file with complete RNAseq data (TPM and DESeq2) was added to this revised version.

      The representation of these data is also a weakness: Figure 2 shows measurements of transcripts per million, but we don't know what would be high or low expression on this scale.

      We have added the actual TPM values for each cell in the RNAseq heatmaps in Figure 2, Figure 2-figure supplement 3, and Figure 4 to make them more readable. Although it is debatable what is high or low expression, to at least have something for comparison, we have added the following information to the figure legends that only 20% of the genes in the presented RNAseq data show expression higher than 15 TPM.

      Figure 4 is intended to show expression changes with treatment, but expression changes should be shown on a log scale (so that increases and decreases in expression are shown symmetrically) and should be normalized to some standard level (such as uninfected lamellocytes).

      The bars in Figure 4C,D show the fold change (this is now stated in the y-axis legend) compared to 0 h (=uninfected) Adk3 samples - the reason for this visualization is that we wanted to show (1) the differences in levels between Adk3 and Adk2 and in levels between Ak1 and Ak2, respectively, and at the same time (2) the differences between uninfected and infected Adk3 and Ak1. In our opinion, these fold change differences are also much more visible in normal rather than log scale.

      Reviewer #3 (Recommendations for the authors):

      (1) It might be interesting to test how general this finding would be. How about Bacterial or fungal infection? The authors may also try genetic activation of immune pathways, e.g. Toll, Imd, JAK/STAT.

      Although we would also like to support our results in different systems, we believe that our results are already strong enough to propose the final hypothesis and publish it as soon as possible so that it can be tested by other researchers in different systems and contexts than the Drosophila immune response.

      (2) How does the metabolic pathway get activated? Enzyme activity? Transporters? Please test or at least discuss the possible mechanism.

      The response is already provided above in the Reviewer #3 (Public review) section.

      (3) The authors might test overexpression or genetic activation of the SAM transmethylation pathway.

      Although we agree that this would potentially strengthen our study, it may not be easy to increase the activity of the SAM transmethylation pathway - simply overexpressing the enzymes may not be enough, the regulation is primarily through the utilization of SAM by methyltransferases and there are hundreds of them and they affect numerous processes. 

      (4) Supplementation of adenosine to the Ahcy-RNAi larvae would also support their conclusion.

      Again, this is not an easy experiment, dietary supplementation would not work, direct injection of adenosine into the hemolymph would not last long enough, adenosine would be quickly removed.

      (5) It is interesting to test genetically the requirement of some transporters, especially for gb, which is upregulated upon infection.

      Although this would be an interesting experiment, it is beyond the scope of this study; we did not aim to study the role of the SAM transmethylation pathway itself or its regulation, only its overall activity and its role in adenosine production.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Wang et al. created a series of specific FLIM-FRET sensors to measure the activity of different Rab proteins in small cellular compartments. They apply the new sensors to monitor Rab activity in dendritic spines during induction of LTP. They find sustained (30 min) inactivation of Rab10 and transient (5 min) activation of Rab4 after glutamate uncaging in zero Mg. NMDAR function and CaMKII activation are required for these effects. Knockdown of Rab4 reduced spine volume change while knockdown of Rab10 boosted it and enhanced functional LTP (in KO mice). To test Rab effects on AMPA receptor exocytosis, the authors performed FRAP of fluorescently labeled GluA1 subunits in the plasma membrane. Within 2-3 min, new AMPARs appear on the surface via exocytosis. This process is accelerated by Rab10 knock-down and slowed by Rab4 knock-down. The authors conclude that CaMKII promotes AMPAR exocytosis by i) activating Rab4, the exocytosis driver and ii) inhibiting Rab10, possibly involved in AMPAR degradation.

      Strengths:

      The work is a technical tour de force, adding fundamental insights to our understanding of the crucial functions of different Rab proteins in promoting/preventing synaptic plasticity. The complexity of compartmentalized Ras signaling is poorly understood and this study makes substantial inroads. The new sensors are thoroughly characterized, seem to work very well, and will be quite useful for the neuroscience community and beyond (e.g. cancer research). The use of FLIM for read-out is compelling for precise activity measurements in rapidly expanding compartments (i.e., spines during LTP).

      Thank you for the evaluation.

      Weaknesses:

      The interpretation of the FRAP experiments (Figure 5, Ext. Data Figure 13) is not straightforward as spine volume and surface area greatly expand during uncaging. I appreciate the correction for the added spine membrane shown in Extended Data Figure 14i, but shouldn't this be a correction factor (multiplication) derived from the volume increase instead of a subtraction?

      We thank the reviewer for this question. The fluorescence change should reflect a subtraction of surface area, as SEP-GluA1 is only fluorescent on the cell surface, unlike cytosolic mCherry, whose fluorescence intensity is proportional to spine volume. Therefore, the overall fluorescence change (ΔF) should be the addition of the contribution from AMPAR trafficking (ΔF<sub>t</sub>) and the change in surface area (ΔS) multiplied by the remaining SEP-GluA1 fluorescence per unit area (f):

      ΔF = ΔF<sub>t</sub> + fΔS

      Since fluorescence immediately after photobleaching (before AMPAR trafficking happens), F<sub>o</sub>, is given by fS (S is the surface area of the spine):

      ΔF/F<sub>o</sub> = ΔF<sub>t</sub>/ F<sub>o</sub> + fΔS / fS

      \= ΔF<sub>t</sub>/fS + ΔS/S

      Assuming that the surface area change (ΔS/S) is the volume change (ΔV/V) to the power of 2/3, the contribution of the AMPAR trafficking can be calculated as:

      ΔF<sub>t</sub>/F = ΔF/F – (Δ<sup>V/V)<sup>2/3</sup>

      This is the reason that we subtracted the contribution of the spine surface area. We have discussed this in the updated method section.

      Also, experiments were not conducted or analyzed blind, risking bias in the selection/exclusion of experiments for analysis. This reduces my confidence in the results.

      We acknowledge the reviewer's concern regarding the lack of blinding in our experiments. However, it is challenging to conduct blinded experiments for certain types of studies, such as sensor screening for a protein family, where we do not have expected results or a specific hypothesis prior to the experiments. In these cases, our primary readout is whether the sensor indicates any activity change upon stimulation.

      To address this concern, after identifying that Rab10 is inactivated during structural LTP (sLTP) and is likely important for inhibiting spine structural LTP, we performed blinded electrophysiology experiments and obtained similar results (deletion of Rab10 from Camk2a-positive neurons leads to enhanced LTP; Fig. 4k, 4l).

      Reviewer #2 (Public review):

      Summary:

      Wang et al. developed a set of optical sensors to monitor Rab protein activity. Their investigation into Rab activity in dendritic spines during structural long-term plasticity (sLTP) revealed sustained Rab10 inactivation (>30min) and transient Rab4 activation (~5 min). Through pharmacological and genetic manipulation to constitutively activate or inhibit Rab proteins, they found that Rab10 negatively regulates sLTP and AMPA receptor insertion, while Rab4 positively influences sLTP but only in the transient phase. The optical sensors provide new tools for studying Rab activity in cells and neurobiology. However, a full understanding of the timing of Rab activity will require a detailed characterization of sensor kinetics.

      Strengths:

      (1) Introduction of a series of novel sensors that can address numerous questions in Rab biology.

      (2) Multiple methods to manipulate Rab proteins to reveal the roles of Rab10 and rab4 in LTP.

      (3) Discovery of Rab4 activation and Rab10 inhibition with different kinetics during sLTP, correlating with their functional roles in the transient (Rab4) and both transient and sustained (Rab10) phases of sLTP.

      Thank you for the positive evaluation.

      Weaknesses:

      (1) Lack of characterization of sensor kinetics, making it difficult to determine if the observed Rab kinetics during sLTP were due to sensor behavior or actual Rab activity.

      We estimated that the kinetics of the sensors for Rab4 and Rab10 are within a few minutes. For Rab4, we observed rapid increase and decrease of the activation in response to glutamate uncaging. Thus, this would be the upper limit of the ON/OFF time constants of Rab4. For Rab10, we observed a rapid dissociation of the sensor in response to sLTP induction within ~1 min. This means that the donor and acceptor molecules are quickly dissociated during the process. Thus, the off kinetics of the sensor is within the range of minute. Meanwhile, we have the on-kinetics from Rab10 activation (donor/accepter association) in response to NMDA application and again this is within a few minutes. Given these rapid sensor kinetics in neurons, our observation of the sustained inactivation of Rab10 should reflect the true behavior of Rab10, rather than just the sensor’s response.

      We revised our manuscript discussion session as follows:

      “Understanding the kinetics of Rab4 and Rab10 sensors is essential for interpreting their actual activity during sLTP. The Rab4 sensor exhibits a rapid rise and fall in activation (Fig. 3), indicating ON/OFF times of less than a few minutes. In contrast, the Rab10 sensor rapidly dissociates during sLTP induction (Fig. 2), with OFF kinetics occurring within one minute and fast ON kinetics in response to NMDA (Fig. 1j). Given these rapid kinetics, the observed sustained inactivation of Rab10 likely reflects its true behavior rather than sensor dynamics.”

      (2) It is crucial to assess whether the overexpression of Rab proteins as reporters, affects Rab activity and cellular structure and physiology (e.g. spine number and size).

      While we did not measure the effects of Rab sensor overexpression on Rab activity or cellular structure and physiology, we showed that sLTP is similar in neurons expressing sensors. This suggests that the overexpression of Rab sensors does not significantly disrupt signaling required for sLTP.

      (3) The paper does not explain the apparently different results between NMDA receptor activation and glutamate uncaging. NMDA receptor activation increased Rab10 activity, while glutamate uncaging decreased it. NMDA receptor activation resulted in sustained Rab4 activation, whereas glutamate uncaging caused only brief activation of about 5 minutes. A potential explanation, ideally supported by data, is needed.

      It is a long-standing question in the field why simple NMDA receptor activation by bath application of NMDA does not induce LTP, but instead induce LTD. Rab proteins are regulated by many GEFs and GAPs and identifying different mechanisms requires completely different techniques, such as molecular screening. While our manuscript provides some insights into this question by showing that they provide opposing signals for Rab10, we believe that identifying exact mechanisms would be out of the scope of this manuscript.

      (4) There is a discrepancy between spine phenotype and sLTP potential with Rab10 perturbation. Rab10 perturbation affected spine density but not size, suggesting a role in spinogenesis rather than sLTP. However, glutamate uncaging affected sLTP, and spinogenesis was not examined. Explaining the discrepancy between spine size and sLTP potential is necessary. Exploring spinogenesis with glutamate uncaging would strengthen these results. Additionally, Figure 4j shows no change in synaptic transmission with Rab10 knockout, despite an increase in spine density. An explanation, ideally supported by data, is needed for the unchanged fEPSP slope despite an increase in spine density.

      We thank the reviewer for raising these important questions. In our findings, shRNA-mediated knockdown of Rab10 did not alter spine size but did increase spine density in the basal state (Extended Data Fig. 11i). This suggests that Rab10 may restrict spinogenesis without affecting spine size. Conversely, sLTP induction via glutamate uncaging is an activity-dependent process that may involve different molecular mechanisms. The signal interplay between spinogenesis and sLTP and how the exact roles of Rab signaling in different modalities of plasticity would remain elusive for the future study.

      The lack of change in synaptic transmission with Rab10 knockout, despite the increase in spine density from Rab10 shRNA knockdown, may be due to different preparation and developmental stages: spine density measurements were conducted with shRNA knockdown in organotypic slices (sliced at P6-8, DIV 9-13), while electrophysiological recordings were performed in knockout mice in acute slices from adult animals (P30-60).

      (5) Spine volume was imaged using acceptor fluorophores (mCherry, or mCherry/Venus) at 920nm, where the two-photon cross-section of mCherry is minimal. 920nm was also used to excite the donor fluorophore, hence the spine volume measurement based on total red channel fluorescence is the sum of minimal mCherry fluorescence from direct 920nm excitation, bleed-through from the green channel, and FRET. This confounded measurement requires correction and clarification.

      We assumed that the most of fluorescence is from direct excitation of mCherry at 920 nm. The contribution from the bleed-through from mEGFP-Rab (~3%) and from FRET changes (~20%) may influence the volume measurements. However, since we observed similar fluorescence changes in the green and red channels, these factors would have only a minor impact on our results (Extended Data Fig. 6a, 6d). Also, please note that the volume change in neurons expressing sensors is just to check if the volume change is normal, and not a major point of this manuscript.  We clarified this in the method section as:

      “For the sensor experiments, we used mCherry as a volume indicator. We acknowledge that contributions from bleed-through from mEGFP-Rab (approximately 3%) and FRET changes (around 20%) could affect the volume measurements. However, since we observed similar fluorescence changes in both the green and red channels, we believe these factors have a minimal impact on our results (Extended Data Fig. 6a, 6d).”

      Reviewer #3 (Public review):

      Summary:

      This study examines the roles of Rab10 and Rab4 proteins in structural long-term potentiation (sLTP) and AMPA receptor (AMPAR) trafficking in hippocampal dendritic spines using various different methods and organotypic slice cultures as the biological model.

      The paper shows that Rab10 inactivation enhances AMPAR insertion and dendritic spine head volume increase during sLTP, while Rab4 supports the initial stages of these processes. The key contribution of this study is identifying Rab10 inactivation as a previously unknown facilitator of AMPAR insertion and spine growth, acting as a brake on sLTP when active. Rab4 and Rab10 seem to be playing opposing roles, suggesting a somewhat coordinated mechanism that precisely controls synaptic potentiation, with Rab4 facilitating early changes and Rab10 restricting the extent and timing of synaptic strengthening.

      Strengths:

      The study combines multiple techniques such as FRET/FLIM imaging, pharmacology, genetic manipulations, and electrophysiology to dissect the roles of Rab10 and Rab4 in sLTP. The authors developed highly sensitive FRET/FLIM-based sensors to monitor Rab protein activity in single dendritic spines. This allowed them to study the spatiotemporal dynamics of Rab10 and Rab4 activity during glutamate uncaging-induced sLTP. They also developed various controls to ensure the specificity of their observations. For example, they used a false acceptor sensor to verify the specificity of the Rab10 sensor response.

      This study reveals previously unknown roles for Rab10 and Rab4 in synaptic plasticity, showing their opposing functions in regulating AMPAR trafficking and spine structural plasticity during LTP.

      Thank you for the positive evaluation.

      Weaknesses:

      In sLTP, the initial volume of stimulated spines is an important determinant of induced plasticity. To address changes in initial volume and those induced by uncaging, the authors present Extended Data Figure 2. In my view, the methods of fitting, sample selection, or both may pose significant limitations for interpreting the overall results. While the initial spine size distribution for Rab10 experiments spans ~0.1-0.4 fL (with an unusually large single spine at the upper end), Rab4 spine distribution spans a broader range of ~0.1-0.9 fL. If the authors applied initial size-matched data selection or used polynomials rather than linear fitting, panels a, b, e, f, and g might display a different pattern. In that case, clustering analysis based on initial size may be necessary to enable a fair comparison between groups not only for this figure but also for main Figures 2 and 3.

      We thank the reviewer for these questions. For sensor uncaging experiments, we usually uncaged glutamate at large mushroom spines because we need to have a good signal-to-noise ratio. We just happen to choose these spines with different initial sizes for Rab4 sensor and Rab10 sensor uncaging experiments.

      Another limitation is the absence of in vivo validation, as the experiments were performed in organotypic hippocampal slices, which may not fully replicate the complexity of synaptic plasticity in an intact brain, where excitatory and inhibitory processes occur concurrently. High concentrations of MNI-glutamate (4 mM in this study) are known to block GABAergic responses due to its antagonistic effect on GABA-A receptors, thereby precluding the study of inhibitory network activity or connectivity [1], which is already known to be altered in organotypic slice cultures.

      (1) https://www.frontiersin.org/journals/neural-circuits/articles/10.3389/neuro.04.002.2009/full

      We appreciate the reviewer's comments and would like to clarify that we have conducted experiments in acute slices for LTP using conditional Rab10 knockout (Fig. 4k, 4l), and we obtained similar results. Additionally, we have recently published findings on the behavioral deficits observed in heterozygous Rab10 knockout mice (PubMed 37156612). These studies further support our conclusions and provide additional context for our findings.

      Recommendations for the authors:

      From the Senior/Reviewing Editor:

      I apologize that this took longer than intended. As you will see from the reviews there was some disagreement on several points. There was some disagreement among reviewers as to the strength of the evidence with some characterizing it as "compelling," "convincing," or "solid" while others felt the characterization of the sensors was "incomplete" and that this could have affected some of the conclusions. After extensive discussion, reviewers agreed that there was a valid concern that the conclusion that Rab10 activation is sustained could reflect a feature of the sensor. If Rab10/RBD dissociation rate were very low, and the affinity of binding were very high, this could lead to an incorrect estimate of the sustained binding due to sensor kinetics, not Rab10 activation. It was noted that this has been seen in other sensors previously (e.g. first generation PKA activity sensors), which the developers altered in later generations to increase reversibility and off kinetics of the sensor.

      There was also discussion of how this might be addressed and we would be interested in your comments on this issue. It was suggested that it might be helpful to revise Figure 2b to show binding fraction dynamics separately for each spine (to determine whether any actually return to baseline). Subsequently, clustering of these binding dynamics into two groups could be summarized in a version of Fig. 2e for each cluster. Differences in spine volume dynamics between these clusters would provide a measure of how strongly Rab10 binding correlates with spine volume. If they never go back to baseline, some extra experiments with longer post-plasticity induction (150mins instead of 35), might show if any reversible Rab10 binding exists post-LTP induction.

      An alternative suggestion was to measure the time course in the presence of a GAP or GEF, which should alter the kinetics.

      Thanks for the comments. It is important that the inactivation is observed as the dissociation of the donor and acceptor of the sensor.  Thus, the fact that the sensor rapidly decreases in response to uncaging means that they have rapid off kinetics. In addition, we provide evidence of a rapid increase of Rab10 in response to NMDA application, suggesting that kinetics is also rapid. We added discussion about this in the revised manuscript as:

      “Understanding the kinetics of Rab4 and Rab10 sensors is essential for interpreting their actual activity during sLTP. The Rab4 sensor exhibits a rapid rise and fall in activation (Fig. 3), indicating ON/OFF times of just a few minutes. In contrast, the Rab10 sensor rapidly dissociates during sLTP induction (Fig. 2), with OFF kinetics occurring within one minute and fast ON kinetics in response to NMDA (Fig. 1j). Given these rapid kinetics, the observed sustained inactivation of Rab10 likely reflects its true behavior rather than sensor dynamics.”

      There was also further discussion of the nature of the "spine volume" signal, given the fact that the two-photon cross-section of mCherry is minimal at 920nm. It was suggested that this could be due to direct acceptor excitation rather than FRET, but there was agreement that further clarity on this issue would be valuable.

      We assumed that the most of fluorescence is from direct excitation of mCherry at 920 nm. The contribution from the bleed-through from mEGFP-Rab (~3%) and from FRET changes (~20%) may influence the volume measurements. However, since we observed similar fluorescence changes in the green and red channels, these factors would have only a minor impact on our results (Extended Data Fig. 6a, 6d). Also, please note that the volume change in neurons expressing sensors is just to check if the volume change is normal, and not a major point of this manuscript.  We clarified this in the method section as:

      “For the sensor experiments, we used mCherry as a volume indicator. We acknowledge that contributions from bleed-through from mEGFP-Rab (approximately 3%) and FRET changes (around 20%) could affect the volume measurements. However, since we observed similar fluorescence changes in both the green and red channels, we believe these factors have a minimal impact on our results (Extended Data Fig. 6a, 6d).”

      The equations in the methods section differ from other papers by the same lab (e.g. Laviv et al, Neuron 2020, Tu et al. Sci Adv. 2023, Jain et al. Nature 2024). Please clarify which equations are correct.

      Thanks for pointing this out. In fact, some of the equations in this manuscript were wrong, and we have corrected them in the method session.

      Reviewer #1 (Recommendations for the authors):

      The effects of Rab knockdown affect both spine volume expansion and AMPAR recovery in a very similar fashion. To explain this tight coupling, the authors suggest that the availability of membrane could be a limiting factor for spine enlargement. However, some Rabs are known to affect actin dynamics, which could also explain the dual effects on AMPAR exocytosis and spine enlargement. It is not easy to come up with an experiment to differentiate between these alternative explanations, as blocking actin polymerization would likely affect exocytosis, too. The authors should consider/discuss the possibility that all of the observed Ras effects result from altered actin dynamics and that the lipid bilayer is sufficiently fluid to form a minimal surface around the expanding cytoskeleton.

      Thanks for the suggestions. We included the discussion about the potential impact on the actin cytoskeleton by Rab10.

      Typos: heterougenous, compartmantalization, chemaical, ballistically/biolistically (chose one).

      Thanks for pointing out these typos. We have corrected them in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      (1) Venus shows pH sensitivity, which can be significant at synapses due to pH changes. Characterizing the pH sensitivity of the sensors is essential.

      Thanks for the suggestions. We did not measure pH dependence, but the PKa of these fluorophores has already been published. PKa for EGFP and Venus are both 6.0, and it is unlikely that it influenced our measurements.

      (2) Presenting individual data points within all bar graphs (e.g. Fig. 2c, 2d) would enhance data transparency.

      Thanks for the suggestions. We now provide individual data points in the revised main figures.

      (3) In Figure 1f: Rab5 GAP expression increased the binding fraction against expectations. In addition, clarifying the color scheme in Figure 1 is needed. Are GAPs supposed to be blue/green, and GEFs red/orange? Figure 1f seems to contradict this color scheme.

      Thanks for the suggestions. We clarified these issues.

      (4) Quantification of the point spread function of the uncaging laser, response/settle time of the scan mirror during uncaging, and reason for changes in neighboring spines in many example images (e.g. Figure 2a, especially at 240 s; Figure 4a) would be important.

      The laser is controlled by Pockels cells, which changes the laser intensity with microsecond resolution. The laser is parked for milliseconds during uncaging, much longer than the settling time of the mirror (~0.1 milliseconds). The point spread function of the uncaging laser is limited by the diffraction (~0.5 um). The uncaging spot size is mostly limited by the diffusion of uncaged glutamate, but our calcium imaging and CaMKII imaging show that the signaling is induced mostly in the stimulated spines (Lee et al., 2009; Chang et al., 2017, 2019).

      (5) Please include traces for "false" sensors in stimulated spines in Figures 2b, 2e, 3b, and 3e.

      The traces for the false sensors have been presented in Extended Data Fig. 3 and Extended Data Fig. 8.

      (6) The traces in Figure 4k (fEPSP slope in response to theta burst stimulation, where there is a decrease in fEPSP slope followed by a gradual increase) differ from prior publications (e.g. PMID: 1359925, 3967730, 19144965, 20016099). An investigation and explanation for these differences are necessary.

      We appreciate the reviewer’s comments. We performed the experiments blindly and did not try to find a condition providing control data similar to previous publications. The variations in fEPSP responses compared to prior publications may be attributed to several factors, including differences in experimental conditions such as the genetic background of the animals used, the specific protocols for theta burst stimulation, and variations in the preparation of the hippocampal slices.

      (7) The title and text state that Rab10 inactivation promotes AMPAR insertion. It is unclear if this is a direct effect on AMPAR insertion or an indirect effect through membrane remodeling. Providing data to distinguish these possibilities or adjusting the title/text to reflect alternative interpretations would be beneficial.  

      We appreciate the reviewer's feedback. To clarify, we have revised our terminology to use "AMPAR trafficking" instead of "AMPAR insertion", as it includes both insertion and other mechanisms of AMPAR movement within the cell.

      (8) Please provide an explanation for the initial Rab10 inactivation observed in Figure 1j upon NMDA application.

      The application of NMDA in Fig. 1j is similar to the commonly used chemical LTD induction protocol. We used this broad stimulation approach to test whether our sensors could report Rab activity changes in neurons upon strong stimulation. However, it is an entirely different stimulation approach from the sLTP induction protocol, thus resulting in different sensor activity changes.  We describe the phenomenon in the revised manuscript, but we believe that detailed analyses of Rab10 activation in response to NMDA application are beyond the scope of this manuscript.

      (9) Please explain why the study focuses on Rab4 and Rab10 instead of other Rab proteins.

      During our initial screening of sensors for various Rab proteins, we observed significant activity changes in the sensors for Rab4 and Rab10 upon sLTP induction. This suggested their potential relevance in synaptic processes, leading us to focus on understanding their specific roles in structural long-term potentiation.

      Reviewer #3 (Recommendations for the authors):

      (1) Although it might seem trivial, the definition of adjacent spine has not been made in the text. It would be nice to have it in the Methods section.

      We included it in the Methods section as follows:

      "The adjacent spine refers to the first or second spine located next to the stimulated spine, typically positioned opposite the stimulated spine. Additionally, the size of the adjacent spine must be sufficiently large for imaging."

      (2) The transfection method has been mentioned as "ballistic" and "biolistic" transfection. You might want to use only one term. Additionally, you can add the equipment used (Bio-rad?) and pressure (psi) in the Methods section.

      We use “biolistic” throughout the manuscript now. We also added the equipment and conditions used.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary of what the authors were trying to achieve:

      In this manuscript, the authors investigated the role of β-CTF on synaptic function and memory. They report that β-CTF can trigger the loss of synapses in neurons that were transiently transfected in cultured hippocampal slices and that this synapse loss occurs independently of Aβ. They confirmed previous research (Kim et al, Molecular Psychiatry, 2016) that β-CTF-induced cellular toxicity occurs through a mechanism involving a hexapeptide domain (YENPTY) in β-CTF that induces endosomal dysfunction. Although the current study also explores the role of β-CTF in synaptic and memory function in the brain using mice chronically expressing β-CTF, the studies are inconclusive because potential effects of Aβ generated by γ-secretase cleavage of β-CTF were not considered. Based on their findings, the authors suggest developing therapies to treat Alzheimer's disease by targeting β-CTF, but did not address the lack of clinical improvement in trials of several different BACE1 inhibitors, which target β-CTF by preventing its formation.

      We would like to thank the reviewer for his/her suggestions. We have addressed the specific comments in following sections.

      Major strengths and weaknesses of the methods and results:

      The conclusions of the in vitro experiments using cultured hippocampal slices were well supported by the data, but aspects of the in vivo experiments and proteomic studies need additional clarification.

      (1) In contrast to the in vitro experiments in which a γ-secretase inhibitor was used to exclude possible effects of Aβ, this possibility was not examined in in-vivo experiments assessing synapse loss and function (Figure 3) and cognitive function (Figure 4). The absence of plaque formation (Figure 4B) is not sufficient to exclude the possibility that Aβ is involved. The potential involvement of Aβ is an important consideration given the 4-month duration of protein expression in the in vivo studies.

      We appreciate the reviewer for raising this question. While our current data did not exclude the potential involvement of Aβ-induced toxicity in the synaptic and cognitive dysfunction observed in mice overexpressing β-CTF, addressing this directly remains challenging. Treatment with γ-secretase inhibitors could potentially shed light on this issue. However, treatments with γ-secretase inhibitors are known to lead to brain dysfunction by itself likely due to its blockade of the γ-cleavage of other essential molecules, such as Notch[1, 2]. Therefore, this approach is unlikely to provide a clear answer, which prevents us from pursuing it further experimentally in vivo. We hope the reviewer understands this limitation. We have included additional discussion (page 14 of the revised manuscript) to highlight this question.

      (2) The possibility that the results of the proteomic studies conducted in primary cultured hippocampal neurons depend in part on Aβ was also not taken into consideration.

      We thank the reviewer for raising this question. In the revised manuscript, we examined the protein levels of synaptic proteins after treatment with γ-secretase inhibitors and found that the levels of certain synaptic proteins were further reduced in neurons expressing β-CTF (Supplementary figure 5A-B). These results do not support Aβ as a major contributor of the proteomic changes induced by β-CTF.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      The authors' use of sparse expression to examine the role of β-CTF on spine loss could be a useful general tool for examining synapses in brain tissue.

      We thank the reviewer for these comments.

      Additional context that might help readers interpret or understand the significance of the work:

      The discovery of BACE1 stimulated an international effort to develop BACE1 inhibitors to treat Alzheimer's disease. BACE1 inhibitors block the formation of β-CTF which, in turn, prevents the formation of Aβ and other fragments. Unfortunately, BACE1 inhibitors not only did not improve cognition in patients with Alzheimer's disease, they appeared to worsen it, suggesting that producing β-CTF actually facilitates learning and memory. Therefore, it seems unlikely that the disruptive effects of β-CTF on endosomes plays a significant role in human disease. Insights from the authors that shed further light on this issue would be welcome.

      Response: We would like to express our gratitude to the reviewer for raising this question. It remains puzzling why BACE1 inhibition has failed to yield benefits in AD patients, while amyloid clearance via Aβ antibodies are able to slow down disease progression. One possible explanation is that pharmacological inhibition of BACE1 may not be as effective as its genetic removal. Indeed, genetic depletion of BACE1 leads to the clearance of existing amyloid plaques[3], whereas its pharmacological inhibition prevents the formation of new plaques but does not deplete the existing ones[4]. We think the negative results of BACE1 inhibitors in clinical trials may not be sufficient to rule out the potential contribution of β-CTF to AD pathogenesis. Given that cognitive function continues to deteriorate rapidly in plaque-free patients after 1.5 years of treatment with Aβ antibodies in phase three clinical studies[5], it is important to consider the potential role of other Aβ-related fragments in AD pathogenesis, such as β-CTF. We included further discussion in the revised manuscript (page 15 of the revised manuscript) to discusss this question.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors investigate the potential role of other cleavage products of amyloid precursor protein (APP) in neurodegeneration. They combine in vitro and in vivo experiments, revealing that β-CTF, a product cleaved by BACE1, promotes synaptic loss independently of Aβ. Furthermore, they suggest that β-CTF may interact with Rab5, leading to endosomal dysfunction and contributing to the loss of synaptic proteins.

      We would like to thank the reviewer for his/her suggestions. We have addressed the specific comments in following sections.

      Weaknesses:

      Most experiments were conducted in vitro using overexpressed β-CTF. Additionally, the study does not elucidate the mechanisms by which β-CTF disrupts endosomal function and induces synaptic degeneration.

      We would like to thank the reviewer for this comment. While a significant portion of our experiments were conducted in vitro, the main findings were also confirmed in vivo (Figure 3 and 4). Repeating all the experiments in vivo would be challenging and may not be possible because of technical difficulties. Regarding the use of overexpressed β-CTF, we acknowledge that this represents a common limitation in neurodegenerative disease studies. These diseases progress slowly over decades in patients. To model this progression in cell or mouse models within a time frame feasible for research, overexpression of certain proteins is often inevitable. Since β-CTF levels are elevated in AD patients[6], its overexpression is not a irrelevant approach to investigate its potential effects.

      We did not further investigate the mechanisms by which β-CTF disrupted endosomal function because our preliminary results align with previous findings that could explain its mechanism. Kim et al. demonstrated that β-CTF recruits APPL1 (a Rab5 effector) via the YENPTY motif to Rab5 endosomes, where it stabilizes active GTP-Rab5, leading to pathologically accelerated endocytosis, endosome swelling and selectively impaired transport of Rab5 endosomes[6]. However, this paper did not show whether this Rab5 overactivation-induced endosomal dysfunction leads to any damages in synapses. In our study, we observed that co-expression of Rab5<sub>S34N</sub> with β-CTF effectively mitigated β-CTF-induced spine loss in hippocampal slice cultures (Figures 6L-M), indicating that Rab5 overactivation-induced endosomal dysfunction contributed to β-CTF-induced spine loss. We included further discussion in the revised manuscript to clarify this (page 15 of the revised manuscript).

      Reviewer #3 (Public Review):

      Summary:

      Most previous studies have focused on the contributions of Abeta and amyloid plaques in the neuronal degeneration associated with Alzheimer's disease, especially in the context of impaired synaptic transmission and plasticity which underlies the impaired cognitive functions, a hallmark in AD. But processes independent of Abeta and plaques are much less explored, and to some extent, the contributions of these processes are less well understood. Luo et all addressed this important question with an array of approaches, and their findings generally support the contribution of beta-CTF-dependent but non-Abeta-dependent process to the impaired synaptic properties in the neurons. Interestingly, the above process appears to operate in a cell-autonomous manner. This cell-autonomous effect of beta-CTF as reported here may facilitate our understanding of some potentially important cellular processes related to neurodegeneration. Although these findings are valuable, it is key to understand the probability of this process occurring in a more natural condition, such as when this process occurs in many neurons at the same time. This will put the authors' findings into a context for a better understanding of their contribution to either physiological or pathological processes, such as Alzheimer's. The experiments and results using the cell system are quite solid, but the in vivo results are incomplete and hence less convincing (see below). The mechanistic analysis is interesting but primitive and does not add much more weight to the significance. Hence, further efforts from the authors are required to clarify and solidify their results, in order to provide a complete picture and support for the authors' conclusions.

      We would like to thank the reviewer for the suggestions. We have addressed the specific comments in following sections.

      Strengths:

      (1) The authors have addressed an interesting and potentially important question

      (2) The analysis using the cell system is solid and provides strong support for the authors' major conclusions. This analysis has used various technical approaches to support the authors' conclusions from different aspects and most of these results are consistent with each other.

      We would like to thank the reviewer for these comments.

      Weaknesses:

      (1) The relevance of the authors' major findings to the pathology, especially the Abeta-dependent processes is less clear, and hence the importance of these findings may be limited.

      We would like to thank the reviewer for this question. Phase 3 clinical trial data from Aβ antibodies show that cognitive function continues to decline rapidly, even in plaque-free patients, after 1.5 years of treatment[5]. This suggests that plaque-independent mechanisms may drive AD progression. Therefore, it is crucial to consider the potential contributions of other Aβ species or related fragments, such as alternative forms of Aβ and β-CTF. While it is early to predict how much β-CTF contributes to AD progression, it is notable that β-CTF induced synaptic deficits in mice, which recapitulates a key pathological feature of AD. Ultimately, the contribution of β-CTF in AD pathogenesis can only be tested through clinical studies in the future.

      (2) In vivo analysis is incomplete, with certain caveats in the experimental procedures and some of the results need to be further explored to confirm the findings.

      We would like to thank the reviewer for this suggestion. We have corrected these caveats in the revised manuscript.

      (3) The mechanistic analysis is rather primitive and does not add further significance.

      We would like to thank the reviewer for this comment. We did not delve further into the underlying mechanisms because our analysis indicates that Rab5 overactivation-induced endosomal dysfunction underlies β-CTF-induced synaptic dysfunction, which is consistent with another study and has been addressed in our study[6]. We hope the reviewer could understand that our focus in this paper is on how β-CTF triggers synaptic deficits, which is why we did not investigate the mechanisms of β-CTF-induced endosomal dysfunction further.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data, or analyses:

      (1) In Figures 4H, 4J, 4K and Supplemental Figures 3C, 3E, and 3G, it was unclear whether a repeated measures 2-way ANOVA, rather than a 2-way ANOVA, followed by appropriate post-hoc analyses was used to strengthen the conclusion that there were significant effects in the behavioral tests.

      We appreciate the reviewer for raising this point and apologize for the lack of clear description in the manuscript. In those figures mentioned above, we use a repeated measures 2-way ANOVA to analyze the data by Graphpad Prism. In Figure 4H, fear conditioning tests were conducted. The same cohort of mice were used in the baseline, contextual and cued tests. Firstly, baseline freezing was tested; then these mice underwent tone and foot shock training, followed by contextual test and cued test. So, a repeated measures 2-way ANOVA is more appropriate for the experiment.

      In water T maze tests (Figure 4J and K), the same cohort of mice were trained and tested each day. So, it’s also appropriate to use a repeated measures 2-way ANOVA.

      In Supplementary figure 3C, 3E and 3G, OFT was conducted. In this experiment, the locomotion of the same cohort of mice were recorded. Also, it’s appropriate to use a repeated measures 2-way ANOVA.

      Clearer description for these experiments has been provided in the revised manuscript.

      (2) Including gender analyses would be helpful.

      The mice we used in this study were all males.

      Minor corrections to text and figures:

      (1) Quantitative analyses in Figures 5A-C, 5H, 6G, 6H, and Supplementary Figures 4 and 5C would be helpful.

      We have provided quantitative analysis of these results (Figure 5D, 5J, 6K, Supplementary figure 4D, 5F) mentioned above in the revised manuscript.

      (2) Percent correct (%) in Figures 4J and 4K should be labeled as 0, 50, and 100 instead of 0.0, 0.5, and 1.0.

      We would like to thank the reviewer for pointing out this. We have made corrections in the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      In the study conducted by Luo et al, it was observed that the fragment of amyloid precursor protein (APP) cleaved by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), known as β-CTF, plays a crucial role in synaptic damage. The study found increasing expression of β-CTF in neurons could induce synapse loss both in vitro and in vivo, independent of Aβ. Mechanistically, they explored how β-CTF could interfere with the endosome system by interacting with RAB5. While this study is intriguing, there are several points that warrant further investigation:

      (1) The study involved overexpressing β-CTF in neurons. It would be valuable to know if the levels of β-CTF are similarly increased in Alzheimer's disease (AD) patients or AD mouse models.

      We would like to thank the reviewer for the suggestion. It’s reported β-CTF levels were significantly elevated in the AD cerebral cortex[6]. Most AD mouse models are human APP transgenic mouse models with elevated β-CTF levels[7].

      (2) The study noted that β-CTF in neurons is a membranal fragment, but the overexpressed β-CTF was not located in the membrane. It is important to ascertain whether the membranal β-CTF and cytoplasmic β-CTF lead to synapse loss in a similar manner.

      We apologize for not clearly explaining the localization of β-CTF in the original manuscript. β-CTF is produced from APP through β-cleavage, a process that occurs in organelles such as endo-lysosomes[8]. The overexpressed β-CTF is also primarily localized in the endo-lysosomal systems (Figure 5C and Supplementary figure 4C), similar to those generated by APP cleavage.

      (3) The study found a significant decrease in GluA1, a subunit of AMPA receptors, due to β-CTF. It would be beneficial to investigate whether there are systematic alterations in NMDA receptors, including GluN2A and GluN2B.

      We would like to express our gratitude to the reviewer for bringing up this question. The protein levels of GluN2A and GluN2B are also reduced in neurons expressing β-CTF (Figure 6E-F)

      (4) The study showed a significant decrease in the frequency of miniature excitatory postsynaptic currents (mEPSC), indicating disrupted presynaptic vesicle neurotransmitter release. It would be pertinent to test whether the expression level of the presynaptic SNARE complex, which is required for vesicle release, is altered by β-CTF.

      We would like to express our gratitude to the reviewer for bringing up this question. The protein level of the presynaptic SNARE complex, such as VAMP2, is also reduced in neurons expressing β-CTF (Figure 6E, G).

      (5) Since AMPA receptors are glutamate receptors, it is important to determine whether the ability of glutamate release is altered by β-CTF. In vivo studies using a glutamate sensor should be conducted to examine glutamate release.

      We would like to express our gratitude to the reviewer for this suggestion. It will be interesting to use glutamate sensors to assess the ability of glutamate release in the future.

      (6) The quality of immunostaining associated with Figures 4B and 4C was noted to be suboptimal.

      We apologize for the suboptimal quality of these images. The immunostaining in Figures 4B and 4C were captured using the stitching function of a confocal microscope to display larger areas, including the entire hemisphere and hippocampus. We have reprocessed the images to obtain higher-quality versions.

      (7) It would be insightful to investigate whether treatment with a BACE1 inhibitor in the study could reverse synaptic deficits mediated by β-CTF.

      We would like to thank the reviewer for this sggestion. In Figure 1I-M, we constructed an APP mutant (APP<sub>MV</sub>), which cannot be cleaved by BACE1 to produce β-CTF and Aβ but has no impact on β’-cleavage. When co-expressed with BACE1, APP<sub>MV</sub> failed to induce spine loss, supporting the effect of β-CTF. We think these results domonstrate that β-CTF underlies the synaptic deficits. It would be interesting to test the effects of BACE1 inhibition in the future.

      (8) Considering the potential implications for therapeutics, it is worth exploring whether extremely low levels of β-CTF have beneficial effects in regulating synaptic function or promoting synaptogenesis at a physiological level.

      We would like to thank the reviewer for raising this question. We found that when the plasmid amount was reduced to 1/8 of the original dose, β-CTF no longer induced a decrease in dendritic spine density (Supplementary figure 2E-F). It’s reported APP-Swedish mutation in familial AD increased synapse numbers and synaptic transmission, whereas inhibition of BACE1 lowered synapse numbers, suppressed synaptic transmission in wild type neurons, suggesting that at physiological level, β-CTF might be synaptogenic[9].

      (9) The molecular mechanism through which β-CTF interferes with Rab5 function should be elucidated.

      We would like to thank the reviewer for raising this question. Kim et al have elucidated the mechanism through which β-CTF interferes with Rab5 function. β-CTF recruited APPL1 (a Rab5 effector) via YENPTY motif to Rab5 endosomes, where it stabilizes active GTP-Rab5, leading to pathologically accelerated endocytosis, endosome swelling and selectively impaired transport of Rab5 endosomes[6]. We have included additional discussion for this question in the revised manuscript (page 15 of the revised manuscript).

      (10) The study could compare the role of β-CTF and Aβ in neurodegeneration in AD mouse models.

      We would like to thank the reviewer for raising this point. While it is easier to dissect the role of Aβ and β-CTF in vitro, some of the critical tools are not applicabe in vivo, such as γ-secretase inhibitors, which lead to severe side effects because of their inhibition on other γ substrates[1, 2]. Therefore it will be difficult to deomonstrate their different roles in vivo. There are studies showing that β-CTF accumulation precedes Aβ deposition in model mice and mediates Aβ independent intracellular pathologies[10, 11], consistent with our results.

      (11) Based on the findings, it would be valuable to discuss possible explanations for the failure of most BACE1 inhibitors in recent clinical trials for humans.

      Response: We would like to express our gratitude to the reviewer for raising this recommendation. It is a big puzzle why BACE1 inhibition failed to provide beneficial effects in AD patients whereas clearance of amyloid by Aβ antibodies could slow down the AD progress. One potential answer is that pharmacological inhibition of BACE1 might be not as effective as its genetic removal. Indeed, genetic depletion of BACE1 leads to clearance of existing amyloid plaques[3], whereas pharmacological inhibition of BACE1 could not stop growth of existing plaques, although it prevents formation of new plaques[4]. The negative result of BACE1 inhibitors might not be sufficient to exclude the possibility that β-CTF could also contribute to the AD pathogenesis. We have included additional discussion for this question in the revised manuscript (page 15 of the revised manuscript).

      Reviewer #3 (Recommendations For The Authors):

      Major:

      (1) The cell experiments were performed at DIV 9, do the authors know whether at this age, the neurons are still developing and spine density has not reached a pleated yet? If so, the observed effect may reflect the impact on development and/or maturation, rather than on the mature neurons. The authors should be more specific about this issue.

      We would like to thank the reviewer for pointing out this question. These slice cultures were made from 1-week-old rats. DIV 9 is about two weeks old. These neurons are still developing and spine density has not reached a plateau yet[12]. In addition, we also investigated the effects of β-CTF on the synapses of mature neurons in two-month-old mice (Figure 3). So we think the observed effect reflects the impact on both immature and mature neurons.

      (2) mEPSCs shown in Figure 3D were of small amplitudes, perhaps also indicating that these synapses are not yet mature.

      In Figure 3D, the mEPSC results were obtained from pyramidal neurons in the CA1 region of two-month-old mice. At the age of two months, neurotransmitter levels and synaptic density have reached adult levels[13].

      (3) There was no data on the spine density or mEPSCs in the mice OE b-CTF, hence it is unclear whether a primary impact of this manipulation (b-CTF effect) on the synaptic transmission still occurs in vivo.

      In Figure 3, we examined the density of dendritic spines and mEPSCs from CA1 pyramidal neurons infected with lentivirus expressing β-CTF in mice and showed that those neurons expressing additional amount of β-CTF exhibited lower spine density and less mEPSCs, supporting that β-CTF also damaged synaptic transmission in vivo.

      (4) OE of b-CTF should lead to the production of Abeta, although this may not lead to the formation of significant plaques. How do the authors know whether their findings on behavioral and cognitive impairments were not largely mediated by Abeta, which has been widely reported by previous studies?

      We would like to thank the reviewer for pointing out this question. Indeed, our in vivo data could not exclude the potential involvement of Aβ in the pathology, despite the absence of amyloid plaque formation. It will be difficult to demonstrate this question in vivo because of the severe side effects from γ inhibition.

      (5) Figure 4H, the freezing level in the cued fear conditioning was very high, likely saturated; this may mask a potential reduction in the b-CTF OE mice (there is a hint for that in the results). The authors should repeat the experiments using less strong footshock strength (hence resulting in less freezing, <70%).

      We would like to express our gratitude to the reviewer for bringing up this question. The contextual fear conditioning test assesses hippocampal function, while the cued fear conditioning test assesses amygdala function. We hope the reviewer understands that our primary goal is to assess hippocampus-related functions in this experiment and we did see a significant difference between GFP and β-CTF groups. Therefore, we think the intensity of footshock we used was suitable to serve the primary purpose of this experiment.

      (6) Why was the deficit in the Morris water maze in the b-CTF OE mice only significant in the training phase?

      We would like to thank the reviewer for rasing this question and apologize for not describing the test clearly. This is a water T maze test, not Morris water maze test.

      To make the behavioral paradigm of the water T maze test easier to understand, we have provided a more detailed description of the methods in the new version of the manuscript.

      The acquisition phase of the Water T Maze (WTM) evaluates spatial learning and memory, where mice use spatial cues in the environment to navigate to a hidden platform and escape from water, while the reversal learning measures cognitive flexibility in which mice must learn a new location of the hidden platform[14]. In reversal learning task (Figure 4J-K), the learning curves of the two groups of mice did not show any significant differences, indicating that the expression of β-CTF only damages spatial learning and memory but not cognitive flexibility. This is consistent with a previous report using APP/PS1 mice[15].

      (7) Will the altered Rab5 in the b-CTF OE condition also affect the level of other proteins?

      We would like to express our gratitude to the reviewer for raising this interesting question.  Expression of Rab5<sub>S34N</sub> in β-CTF-expressing neurons did not alter the levels of synapse-related proteins that were reduced in these neurons (Supplementary figure 5G-H), suggesting Rab5 overactivation did not contribute to these protein expression changes induced by β-CTF.

      (8) How do the authors reconcile their findings with the well-established findings that Abeta affects synaptic transmission and spine density? Do they think these two processes may occur simultaneously in the neurons, or, one process may dominate in the other?

      APP, Aβ, and presenilins have been extensively studied in mouse models, providing convincing evidence that high Aβ concentrations are toxic to synapses[16]. Moreover, addition of Aβ to murine cultured neurons or brain slices is toxic to synapses[17]. However, Aβ-induced synaptotoxicity was not observed in our study. A major difference between our study and others is that our study used a isolated expression system that apply Aβ only to individual neurons surrounded by neurons without excessive amount of Aβ, whereas the rest studies generally apply Aβ to all the neurons. Therefore, we predict that Aβ does not lead to synaptic deficits from individual neurons in cell autonomous manners, whereas β-CTF does. Aβ and β-CTF represent two parallel pathways of action. Additional discussion for this question has been included in the revised manuscript (page 14 of the revised manuscript).

      Minor:

      Fig 2F-G, "prevent" rather than "reverse"?

      We would like to thank the reviewer for pointing this out. We have made corrections in the revised manuscript.

      Reference:

      (1) GüNER G, LICHTENTHALER S F. The substrate repertoire of γ-secretase/presenilin [J]. Seminars in cell & developmental biology, 2020, 105: 27-42.

      (2) DOODY R S, RAMAN R, FARLOW M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer's disease [J]. The New England journal of medicine, 2013, 369(4): 341-50.

      (3) HU X, DAS B, HOU H, et al. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions [J]. The Journal of experimental medicine, 2018, 215(3): 927-40.

      (4) PETERS F, SALIHOGLU H, RODRIGUES E, et al. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology [J]. Acta neuropathologica, 2018, 135(5): 695-710.

      (5) SIMS J R, ZIMMER J A, EVANS C D, et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial [J]. Jama, 2023, 330(6): 512-27.

      (6) KIM S, SATO Y, MOHAN P S, et al. Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer's disease [J]. Molecular psychiatry, 2016, 21(5): 707-16.

      (7) MONDRAGóN-RODRíGUEZ S, GU N, MANSEAU F, et al. Alzheimer's Transgenic Model Is Characterized by Very Early Brain Network Alterations and β-CTF Fragment Accumulation: Reversal by β-Secretase Inhibition [J]. Frontiers in cellular neuroscience, 2018, 12: 121.

      (8) ZHANG X, SONG W. The role of APP and BACE1 trafficking in APP processing and amyloid-β generation [J]. Alzheimer's research & therapy, 2013, 5(5): 46.

      (9) ZHOU B, LU J G, SIDDU A, et al. Synaptogenic effect of APP-Swedish mutation in familial Alzheimer's disease [J]. Science translational medicine, 2022, 14(667): eabn9380.

      (10) LAURITZEN I, PARDOSSI-PIQUARD R, BAUER C, et al. The β-secretase-derived C-terminal fragment of βAPP, C99, but not Aβ, is a key contributor to early intraneuronal lesions in triple-transgenic mouse hippocampus [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012, 32(46): 16243-1655a.

      (11) KAUR G, PAWLIK M, GANDY S E, et al. Lysosomal dysfunction in the brain of a mouse model with intraneuronal accumulation of carboxyl terminal fragments of the amyloid precursor protein [J]. Molecular psychiatry, 2017, 22(7): 981-9.

      (12) HARRIS K M, JENSEN F E, TSAO B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1992, 12(7): 2685-705.

      (13) SEMPLE B D, BLOMGREN K, GIMLIN K, et al. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species [J]. Progress in neurobiology, 2013, 106-107: 1-16.

      (14) GUARIGLIA S R, CHADMAN K K. Water T-maze: a useful assay for determination of repetitive behaviors in mice [J]. Journal of neuroscience methods, 2013, 220(1): 24-9.

      (15) ZOU C, MIFFLIN L, HU Z, et al. Reduction of mNAT1/hNAT2 Contributes to Cerebral Endothelial Necroptosis and Aβ Accumulation in Alzheimer's Disease [J]. Cell reports, 2020, 33(10): 108447.

      (16) CHAPMAN P F, WHITE G L, JONES M W, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice [J]. Nature neuroscience, 1999, 2(3): 271-6.

      (17) WANG Z, JACKSON R J, HONG W, et al. Human Brain-Derived Aβ Oligomers Bind to Synapses and Disrupt Synaptic Activity in a Manner That Requires APP [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2017, 37(49): 11947-66.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      A number of modifications/additions have been made to the text which help to clarify the background and details of the study and I feel have improved the study.

      NAD deficiency induced using the dietary/Haao null model showed a window of susceptibility at E7.5-10.5. Further, HAAO enymze activity data has been added at E11.5 and the minimal HAAO activity in the embryo act E11.5 supports the hypothesis that the NAD synthesis pathway from kynurenine is not functional until the liver starts to develop.

      The caveat to this is that absence of expression/activity in embryonic cells at E7.5-10/5 relies on previous scRNA-seq data. Both reviewers commented that analysis of RNA and/or protein expression at these stages (E7.5-10.5) would be necessary to rule this out, and would strongly support the conclusions regarding the necessity for yolk sac activity.

      There are a number of antibodies for HAAO, KNYU etc so it is surprising if none of these are specific for the mouse proteins, while an alternative approach in situ hydridisation would also be possible.

      We have tested 2 anti-HAAO antibodies, 2 anti-KYNU antibodies and 1 anti-QPRT antibody on adult liver and various embryonic tissues.

      Given that all tested antibodies only detected a specific band in tissues with very high expression and abundant target protein levels (adult liver), they were determined to be unsuitable to conclusively prove that these proteins of the NAD _de novo_synthesis pathway are absent in embryos prior to the development of a functional liver. They were also unsuitable for IHC experiments to determine which cell types (if any) have these proteins.

      The antibodies, tested assays and samples, and the results obtained were as follows:

      Anti-HAAO antibody (ab106436, Abcam, UK) 

      • Was tested in western blots of liver, E11.5-E14.5 yolk sac, E14.5 placenta, and E14.5 and E16.5 embryonic liver lysates from wild-type (WT) and Haao-/- mice. The target band (32.5 KD) was visible in the WT liver samples and absent in_Haao_-/- livers, and faintly visible in E11.5-E14.5 WT yolk sac, with intensity gradually increasing in E12.5 and E13.5 WT yolk sac. Multiple strong non-specific bands occurred in all samples, requiring cutting off the >50 KD area of the blots.

      • Was re-tested in western blots comparing WT, Haao-/-, and Kynu-/- E9.5-E11.5 embryo, E9.5 yolk sac, and adult liver tissues. It detected the target band faintly only in WT and Kynu-/- liver lysates. No target band could be resolved in E9.5 yolk sac or embryo lysates. Due to the low sensitivity of the antibody, it is unsuitable to conclusively determine whether HAAO is present or absent in E9.5 yolk sacs and E9.5-E11.5 embryos.

      • Was tested in IHC with DAB and IF, producing non-specific staining on both WT and Haao-/- liver and kidney tissue. 

      Anti-HAAO antibody (NBP1-77361, Novus Biologicals, LLC, CO, USA)

      • Was tested in western blots and detected a very faint target band in WT liver lysate that was absent in Haao-/- lysate, with stronger non-specific bands occurring in both genotypes.

      • Was tested in IHC with DAB, producing non-specific staining on both WT and Haao-/- liver and kidney tissue 

      Anti-L-Kynurenine Hydrolase antibody (11796-1-AP, Proteintech Group, IL, USA)

      • Was tested in western blots and detected a faint target band (52 KD) in E11.5, E12.5 E13.5, and E14.5 yolk sac lysates. Detected a weak band in E14.5 liver, a stronger band in E16.5 liver, but not in E14.5 placenta. The target band was only resolved with normal ECL substrate and extended exposure when the >75 KD part of the blot was cut off. 

      • Was re-tested in western blots comparing WT, Haao-/-, and Kynu-/- E9.5-E11.5 embryo, E9.5 yolk sac, and adult liver tissues. It detected the target band only in WT and Haao-/- liver lysates, requiring Ultra Sensitive Substrate. No target band could be resolved in yolk sac or embryo lysates of any genotype.

      Anti-L-Kynurenine Hydrolase antibody (ab236980, Abcam, UK)

      • Was tested in western blots and detected a very faint target band (52 KD) in WT liver lysates and no band in Kynu-/- liver lysates. Multiple non-specific bands occurred irrespective of the Kynu genotype of the lysate.

      • Was tested in IHC with DAB and IF, producing non-specific staining on both WT and Kynu-/- liver and kidney tissue 

      Anti-QPRT (orb317756, Biorbyt, NC, USA)

      • Was tested in western blots and detected a faint target band (31 KD) with multiple other bands between 25-75 KD and an extremely strong band around 150 KD on WT liver lysates.

      The following is the authors’ response to the original reviews.

      Reviewer 1 Public Review:

      The current dietary study narrows the period when deficiency can cause malformations (analysed at E18.5), and altered metabolite profiles (eg, increased 3HAA, lower NAD) are detected in the yolk sac and embryo at E10.5. However, without analysis of embryos at later stages in this experiment it is not known how long is needed for NAD synthesis to be recovered - and therefore until when the period of exposure to insufficient NAD lasts. This information would inform the understanding of the developmental origin of the observed defects.

      Our previous published work (Cuny et al 2023 https://doi.org/10.1242/dmm.049647) indicates that the timing of NAD de novo synthesis pathway precursor availability and consequently the timing of NAD deficiency during organogenesis drives which organs are affected in their development. Furthermore, experimental data of another project (manuscript submitted) shows that mouse embryos (from mothers on an NAD precursor restricted diet that induces CNDD) were NAD deficient at E9.5 and E11.5, but embryo NAD levels were fully recovered at E14.5 when compared to same-stage embryos from mothers on precursor-sufficient diet. This was observed irrespective of the embryos’ Haao genotype. In the current study, NAD precursor provision was only restricted until E10.5. Thus, we expect that our embryos phenotyped at E18.5 had recovered their NAD levels back to normal by E14.5 at the latest.  More research, beyond the scope of the current manuscript, is required to spatio-temporally link embryonic NAD deficiency to the occurrence of specific defect types and elucidate the mechanistic origin of the defects. To acknowledge this, we updated the respective Discussion paragraph on page 7 and added the following statement: “This observation supports our hypothesis that the timing of NAD deficiency during organogenesis determines which organs/tissues are affected (Cuny et al., 2023), but more research is needed to fully characterise the onset and duration of embryonic NAD deficiency in dietary NAD precursor restriction mouse models.”

      More importantly, there is still a question of whether in addition to the yolk sac, there is HAAO activity within the embryo itself prior to E12.5 (when it has first been assayed in the liver - Figure 1C). The prediction is that within the conceptus (embryo, chorioallantoic placenta, and visceral yok sac) the embryo is unlikely to be the site of NAD synthesis prior to liver development. Reanalysis of scRNA-seq (Fig 1B) shows expression of all the enzymes of the kynurenine pathway from E9.5 onwards. However, the expression of another available dataset at E10.5 (Fig S3) suggested that expression is 'negligible'. While the expression in Figure 1B, Figure S1 is weak this creates a lack of clarity about the possible expression of HAAO in the hepatocyte lineage, or especially elsewhere in the embryo prior to E10.5 (corresponding to the period when the authors have demonstrated that de novo NAD synthesis in the conceptus is needed). Given these questions, a direct analysis of RNA and/or protein expression in the embryos at E7.5-10.5 would be helpful. 

      We now have included additional data showing that whole embryos at E11.5 and embryos with their livers removed at E14.5 have negligible HAAO enzyme activity. The observed lack of HAAO activity in the embryo at E11.5 is consistent with the absence of a functional embryonic liver at that stage. Thus, it confirms that the embryo is dependent of extraembryonic tissues (the yolk sac) for NAD de novo synthesis prior to E12.5. The additional datasets are now included in Supplementary Table S1 and as Supplementary Figure 2. The Results section on page 2 has been updated to refer to these datasets.

      Reviewer #2 (Public Review): 

      Page 4 and Table S4. The descriptors for malformations of organs such as the kidney and vertebrae are quite vague and uninformative. More specific details are required to convey the type and range of anomalies observed as a consequence of NAD deficiency. 

      We now provide more information about the malformation types in the Results on page 4. Also, Table S4 now defines the missing vertebral, sternum, and kidney descriptors.

      Can the authors define whether the role of the NAD pathway in a couple of tissue or organ systems is the same? By this I mean is the molecular or cellular effect of NAD deficiency is the same in the vertebrae and organs such as the kidney. What unifies the effects on these specific tissues and organs and are all tissues and organs affected? If some are not, can the authors explain why they escape the need for the NAD pathway? 

      This is a good comment, highlighting that further research, beyond the scope of this manuscript, is needed to better understand the underlying mechanisms of CNDD causation. We have expanded the Discussion paragraph “NAD deficiency in early organogenesis is sufficient to cause CNDD” to indicate that while the timing of NAD deficiency during embryogenesis explains variability in phenotypes among the CNDD spectrum, it is unknown why other organs/tissues are seemingly not affected by NAD deficiency.

      To answer the reviewer’s questions and elucidate the underlying cellular and molecular processes in individual organs affected by NAD deficiency, a multiomic approach is required. This is because NAD is involved in hundreds of molecular and cellular processes affecting gene expression, protein levels, metabolism, etc. For details of NAD functions that have relevance to embryogenesis, the reviewer may refer to our recent review article (Dunwoodie et al 2023 https://doi.org/10.1089/ars.2023.0349). 

      Page 5 and Figure 6C. The expectation and conclusion for whether specific genes are expressed in particular cell types in scRNA-seq datasets depend on the number of cells sequenced, the technology (methodology) used, the depth of sequencing, and also the resolution of the analysis. It is therefore essential to perform secondary validation of the analysis of scRNA-seq data. At a minimum, the authors should perform in situ hybridization or immunostaining for Tdo2, Afmid, Kmo, Kynu, Haao, Qprt, and Nadsyn1 or some combination thereof at multiple time points during early mouse embryogenesis to truly understand the spatiotemporal dynamics of expression and NAD synthesis. 

      We have tested antibodies against HAAO, KYNU, and QPRT in adult mouse liver samples (the main site of NAD de novo synthesis) but these produced non-specific bands in western blotting experiments. Therefore, immunostaining studies on embryonic tissues were not feasible. 

      However, we agree that histological methods such as in situ hybridisation would provide secondary validation of the exact cell types that express these genes. To acknowledge this, we have updated a sentence on page 5 referring to the data shown in Figure 6C as follows: “While histological methods such as in situ hybridisation would be required to confirm the exact cell types expressing these genes, the available expression data indicates that the genes encoding those enzymes required to convert L-kynurenine to NAD (kynurenine pathway) are exclusively expressed in the yolk sac endoderm lineage from the onset of organogenesis (E8.0-8.5).”

      Absolute functional proof of the yolk sac endoderm as being essential and required for NAD synthesis in the context of CNDD might require conditional deletion of Haao in the yolk sac versus embryo using appropriate Cre driver lines or in the absence of a conditional allele, could be performed by tetraploid embryo-ES cell complementation approaches. But temporal dietary intervention can also approximate the same thing by perturbing NAD synthesis Shen the yolk sac is the primary source versus when the liver becomes the primary source in the embryo. 

      Reviewer 1 has made a similar comment about confirming that indeed NAD de novo synthesis activity is limited to extraembryonic tissues (=yolk sacs) and absent in the embryo prior to development of an embryonic liver. We now have included additional data showing that whole embryos at E11.5 and embryos with their livers removed at E14.5 have negligible HAAO enzyme activity. The observed lack of HAAO activity in the embryo at E11.5 is consistent with the absence of a functional embryonic liver at that stage. We think this provides enough proof that the embryo is dependent of extraembryonic tissues (the yolk sac) for NAD de novo synthesis prior to E12.5. The additional datasets are now included in Supplementary Table S1 and as Supplementary Figure 2. The Results section on page 2 has been updated to refer to these data.

      Reviewer #1 (Recommendations For The Authors): 

      (1) Introduction (page 1) introduces mouse models with defects in the kynurenine pathway "confirming that NAD de novo synthesis is required during embryogenesis ...". This requirement is revealed by the imposition of maternal dietary deficiency and more detail (or a more clear link to the following sentences) here would help the reader who is not familiar with the previous papers using the HAAO mice and dietary modulation.

      We have updated this paragraph in the Introduction to better indicate that the requirement of NAD de novo synthesis for embryogenesis was confirmed in mouse models by modulating the maternal dietary NAD precursor provision during pregnancy.

      (2) Discussion - throughout the introduction and results the authors refer to the NAD de novo synthesis pathway, with the study focussing on the effects of HAAO loss of function. Data implies that the kynurenine pathway is active in the yolk sac but whether de novo synthesis from L-tryptophan occurs has not been addressed. The first sub-heading of the discussion could be more accurate referring to the kynurenine pathway, or synthesis from kynurenine. 

      We agree that our manuscript needed to make better distinction between NAD de novo synthesis starting from kynurenine and starting from tryptophan. We removed “from Ltryptophan” from the sub-heading in the Discussion and clarified in this paragraph which genes are required to convert tryptophan to kynurenine and which genes to convert kynurenine to NAD. We also updated two Results paragraphs (page 2, 2nd paragraph; page 5, 5th paragraph) to improve clarity.

      It is worth noting that our statement in the Discussion “this is the first demonstration of NAD de novo synthesis occurring in a tissue outside of the liver and kidney.” is valid because vascular smooth muscle cells express Tdo2 and in combination with the other requisite genes expressed in endoderm cells, the yolk sac has the capability to synthesise NAD de novo from L-tryptophan.

      (3) Outlook - While this section is designed to be looking ahead to the potential implications of the work, the last section on gene therapy of the yolk sac seems far removed from the paper content and highly speculative. I feel this could detract from the main points of the study and could be removed. 

      We have updated the Outlook paragraph and shortened the final part to “Further research is required to better understand the mechanisms of CNDD causation and of other causes of adverse pregnancy outcomes involving the yolk sac.”

      (4) In Figure 2D it would be useful to label the clusters as the colours in the legend are difficult to match to the heatmap. 

      We now have labelled the clusters with lowercase letters above the heatmap to make it easier to match the clusters in Figure 2D to the colours used for designating tissues and genotypes. These labels are described in the figure’s key and the figure legend.  

      Reviewer #2 (Recommendations For The Authors): 

      Page 4 and Table S4. The descriptors for malformations of organs such as the kidney and vertebrae are quite vague and uninformative. More specific details are required to convey the type and range of anomalies observed as a consequence of NAD deficiency. 

      We now provide more information about the malformation types in the Results on page 4. Also, Table S4 now defines the missing vertebral, sternum, and kidney descriptors.

      Can the authors define whether the role of the NAD pathway in a couple of tissue or organ systems is the same? By this I mean is the molecular or cellular effect of NAD deficiency is the same in the vertebrae and organs such as the kidney. What unifies the effects on these specific tissues and organs and are all tissues and organs affected? If some are not, can the authors explain why they escape the need for the NAD pathway? 

      This is a good comment, highlighting that further research, beyond the scope of this manuscript, is needed to better understand the underlying mechanisms of CNDD causation. We have expanded the Discussion paragraph “NAD deficiency in early organogenesis is sufficient to cause CNDD” to indicate that while the timing of NAD deficiency during embryogenesis explains variability in phenotypes among the CNDD spectrum, it is unknown why other organs/tissues are seemingly not affected by NAD deficiency.

      To answer the reviewer’s questions and elucidate the underlying cellular and molecular processes in individual organs affected by NAD deficiency, a multiomic approach is required. This is because NAD is involved in hundreds of molecular and cellular processes affecting gene expression, protein levels, metabolism, etc. For details of NAD functions that have relevance to embryogenesis, the reviewer may refer to our recent review article (Dunwoodie et al 2023 https://doi.org/10.1089/ars.2023.0349). 

      Page 5 and Figure 6C. The expectation and conclusion for whether specific genes are expressed in particular cell types in scRNA-seq datasets depend on the number of cells sequenced, the technology (methodology) used, the depth of sequencing, and also the resolution of the analysis. It is therefore essential to perform secondary validation of the analysis of scRNA-seq data. At a minimum, the authors should perform in situ hybridization or immunostaining for Tdo2, Afmid, Kmo, Kynu, Haao, Qprt, and Nadsyn1 or some combination thereof at multiple time points during early mouse embryogenesis to truly understand the spatiotemporal dynamics of expression and NAD synthesis. 

      We have tested antibodies against HAAO, KYNU, and QPRT in adult mouse liver samples (the main site of NAD de novo synthesis) but these produced non-specific bands in western blotting experiments. Therefore, immunostaining studies on embryonic tissues were not feasible. 

      However, we agree that histological methods such as in situ hybridisation would provide secondary validation of the exact cell types that express these genes. To acknowledge this, we have updated a sentence on page 5 referring to the data shown in Figure 6C as follows: “While histological methods such as in situ hybridisation would be required to confirm the exact cell types expressing these genes, the available expression data indicates that the genes encoding those enzymes required to convert L-kynurenine to NAD (kynurenine pathway) are exclusively expressed in the yolk sac endoderm lineage from the onset of organogenesis (E8.0-8.5).”

    1. Author response:

      The following is the authors’ response to the original reviews.

      General Response to Public Reviews

      We thank the three reviewers for their positive evaluation of our work, which presents the first molecular characterization of type-II NB lineages in an insect outside the fly Drosophila. They seem convinced of our finding of an additional type-II NB and increased proliferation during embryogenesis in the red flour beetle. The reviewers expressed hesitations on our interpretation that the observed quantitative differences of embryonic lineages can directly be linked to the embryonic development of the central complex in Tribolium. While we still believe that a connection of both observations is a valid and likely hypothesis, we acknowledge that due the lack of functional experiments and lineage tracing a causal link has not directly been shown. We have therefore changed the manuscript to an even more careful wording that on one hand describes the correlation between increased embryonic proliferation with the earlier development of the Cx but on the other hand also stresses the need for additional functional and lineage tracing experiments to test this hypothesis. We have also strengthened the discussion on alternative explanations of the increased lineage size and emphasize the less disputed elements like presence and conservation of type-II NB lineages. 

      While our manuscript could in conclusion not directly show that the reason of the heterochronic shift lies in the progenitor behaviour, we still provide a first approach to answering the question of the developmental basis of this shift and testable hypotheses directly emerge from our work. We agree with reviewer#1 that functional work is best suited to test our hypothesis and we are planning to do so. However, we believe that the presented work is already rich in novel data and significantly advances our understanding on the conservation and divergence of type-II NBs in insects. We would also like to stress that most transgenic tools for which genome-wide collections exist for Drosophila have to be created for Tribolium and doing so can be quite time consuming. Conducting RNAi experiments is certainly possible in Tribolium but observing phenotypes in this defined cellular context will need laborious optimization. We have for example tried knocking down Tc-fez/erm but could not see any embryonic phenotype which might be due to an escaper effect in which only mildly affected or wild type-like embryos survive while the others die in early embryogenesis. Due to pleiotropic functions of the involved genes a cell-specific knockdown might be necessary and we are working towards establishing a system to do that in the red flour beetle. For the stated reasons, we see our work as an important basis to inspire future functional studies that build up on the framework that we introduced. 

      In response to these common points, we have made the following changes to the manuscript

      -        The title has been changed from ‘being associated’ to ‘correlate’

      -        The conclusions part of the abstract has been changed

      -        We deleted the statement ‘…thus providing the material for the early central complex formation…’

      -        Rephrased to saying that the two observations just correlate

      -        The part of the discussion ‘Divergent timing of type-II NB activity and heterochronic development of the central complex’ has been extensively rewritten and now discusses several alternative explanations that were suggested by the reviewers. It also stresses the need for further functional work and lineage tracing (line 859-862 (608-611)).

      In addition, we have made numerous changes to the manuscript to account for more specific comments of the reviewers and to the recommendations for the authors.

      Our responses to the individual comments can be found in the following. 

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      Insects inhabit diverse environments and have neuroanatomical structures appropriate to each habitat. Although the molecular mechanism of insect neural development has been mainly studied in Drosophila, the beetle, Tribolium castaneum has been introduced as another model to understand the differences and similarities in the process of insect neural development. In this manuscript, the authors focused on the origin of the central complex. In Drosophila, type II neuroblasts have been known as the origin of the central complex. Then, the authors tried to identify those cells in the beetle brain. They established a Tribolium fez enhancer trap line to visualize putative type II neuroblasts and successfully identified 9 of those cells. In addition, they also examined expression patterns of several genes that are known to be expressed in the type II neuroblasts or their lineage in Drosophila. They concluded that the putative type II neuroblasts they identified were type II neuroblasts because those cells showed characteristics of type II neuroblasts in terms of genetic codes, cell diameter, and cell lineage. 

      Strengths: 

      The authors established a useful enhancer trap line to visualize type II neuroblasts in Tribolium embryos. Using this tool, they have identified that there are 9 type II neuroblasts in the brain hemisphere during embryonic development. Since the enhancer trap line also visualized the lineage of those cells, the authors found that the lineage size of the type II neuroblasts in the beetle is larger than that in the fly. They also showed that several genetic markers are also expressed in the type II neuroblasts and their lineages as observed in Drosophila. 

      Weaknesses: 

      I recommend the authors reconstruct the manuscript because several parts of the present version are not logical. For example, the author should first examine the expression of dpn, a well-known marker of neuroblast. Without examining the expression of at least one neuroblast marker, no one can say confidently that it is a neuroblast. The purpose of this study is to understand what makes neuroanatomical differences between insects which is appropriate to their habitats. To obtain clues to the question, I think, functional analyses are necessary as well as descriptive analyses. 

      The expression of an exclusive type-II neuroblast marker would indeed have been the most convincing evidence. However, asense is absent from type-II NBs and deadpan is not specific enough as it is expressed in many other cells of the developing protocerebrum. The gene pointed, although also expressed elsewhere, emerged as the the most specific marker. Therefore, we start with pointed and fez/erm to describe the first appearance and developmental progression of the cells and then add further evidence that these cells are indeed type-II neuroblasts. Further evidence is provided in the following chapters.  We have discussed the need for functional work in the general response. 

      Reviewer #2 (Public Review): 

      The authors address the question of differences in the development of the central complex (Cx), a brain structure mainly controlling spatial orientation and locomotion in insects, which can be traced back to the neuroblast lineages that produce the Cx structure. The lineages are called type-II neuroblast (NB) lineages and are assumed to be conserved in insects. While Tribolium castaneum produces a functional larval Cx that only consists of one part of the adult Cx structure, the fan-shaped body, in Drosophila melanogaster a non-functional neuropile primordium is formed by neurons produced by the embryonic type-II NBs which then enter a dormant state and continue development in late larval and pupal stages. 

      The authors present a meticulous study demonstrating that type-II neuroblast (NB) lineages are indeed present in the developing brain of Tribolium castaneum. In contrast to type-I NB lineages, type-II NBs produce additional intermediate progenitors. The authors generate a fluorescent enhancer trap line called fez/earmuff which prominently labels the mushroom bodies but also the intermediate progenitors (INPs) of the type-II NB lineages. This is convincingly demonstrated by high-resolution images that show cellular staining next to large pointed labelled cells, a marker for type-II NBs in Drosophila melanogaster. Using these and other markers (e.g. deadpan, asense), the authors show that the cell type composition and embryonic development of the type-II NB lineages are similar to their counterparts in Drosophila melanogaster. Furthermore, the expression of the Drosophila type-II NB lineage markers six3 and six4 in subsets of the Tribolium type-II NB lineages (anterior 1-4 and 1-6 type-II NB lineages) and the expression of the Cx marker skh in the distal part of most of the lineages provide further evidence that the identified NB lineages are equivalent to the Drosophila lineages that establish the central complex. However, in contrast to Drosophila, there are 9 instead of 8 embryonic type-II NB lineages per brain hemisphere and the lineages contain more progenitor cells compared to the Drosophila lineages. The authors argue that the higher number of dividing progenitor cells supports the earlier development of a functional Cx in Tribolium. 

      While the manuscript clearly shows that type-II NB lineages similar to Drosophila exist in Tribolium, it does not considerably advance our understanding of the heterochronic development of the Cx in these insects. First of all, the contribution of these lineages to a functional larval Cx is not clear. For example, how do the described type-II NB lineages relate to the DM1-4 lineages that produce the columnar neurons of the Cx? What is the evidence that the embryonically produced type-II NB lineage neurons contribute to a functional larval Cx? The formation of functional circuits could rely on larval neurons (like in Drosophila) which would make a comparison of embryonic lineages less informative with respect to understanding the underlying variations of the developmental processes. Furthermore, the higher number of progenitors (and consequently neurons) in Tribolium could simply reflect the demand for a higher number of cells required to build the fan-shaped body compared to Drosophila. In addition, the larger lineages in Tribolium, including the higher number of INPs could be due to a greater number of NBs within the individual clusters, rather than a higher rate of proliferation of individual neuroblasts, as suggested. What is the evidence that there is only one NB per cluster? The presented schemes (Fig. 7/12) and description of the marker gene expression and classification of progenitor cells are inconsistent but indicate that NBs and immature INPs cannot be consistently distinguished. 

      We thank this reviewer for pointing out the inconsistency in our classification of cells within the lineages as one central part of our manuscript. These were due to a confusion in the used terms (young vs. immature). We have corrected this mistake and have changed the naming of the INP subtypes to immature-I and immature-II. We are confident that based on the analysed markers, type-II NBs and immature INPs can actually be distinguished with confidence.

      We agree that a functional link of increased proliferation to heterochronic CX development is not shown although we consider it to be likely. As stated in the general response we have changed the manuscript to saying that the two observations (higher number of progenitors and larger lineages/more INPs) correlate but that a causal link can only be hypothesized for the time being. At the same time, we have strengthened the discussion on alternative explanations.

      We would like to remain with our statement of an increased number of embryonic progeny of Tribolium type-II NBs. We counted the total number of progenitor cells emerging from the anterior median cluster and divided this by the number of type II NBs in that cluster. Hence, the shown increased number of cells represents an average per NB but is not influenced by the increased number of NBs. On the same line, we have never seen indication for the presence of additional NBs within any cluster while one type-II NB is what we regularly found. Hence, we are confident that we know the number of respective NBs. The fact that the fly data included also neurons and was counted at a later stage indicates that the observed differences are actually minimum estimates.

      We have discussed that based on the position and comparison to the grasshopper we believe that Tribolium type-II NB 1-4 contribute to the x, y, z and w tracts. To confirm this, lineage tracing experiments would be necessary, for which tools remain to be developed. 

      We agree that the role of larvally born neurons and the fate of Tribolium neuroblasts through the transition from embryo to larva and pupa need to be further studied.

      Available data suggests that the adult fan shaped body in Tribolium does not hugely differ in size from the Drosophila counterpart, although no data in terms of cell number is available. In the larva, however, no fan shaped body or protocerebral bridge can be distinguished in flies while in beetle larvae, these structures are clearly developed. Hence, we think that it is more likely that differences observed in the embryo reflect differences in the larval central complex. We discuss the need for further investigation of larval stages.

      The main difference between Tribolium and Drosophila Cx development with regards to the larval functionality might be that Drosophila type-II NB lineage-derived neurons undergo quiescence at the end of embryogenesis so that the development of the Cx is halted, while a developmental arrest does not occur in Tribolium. However, this needs to be confirmed (as the authors rightly observe). 

      Indeed, there is evidence that cells contributing to the CX go into quiescence in flies – hence, this certainly is one of the mechanisms. However, based on our data we would suggest that in addition, the balance of embryonic versus larval proliferation of type-II lineages is different between the two insects: The increased embryonic proliferation and development leads to a functional larval CX in beetles while in flies, postembryonic proliferation may be increased in order to catch up.

      Reviewer #3 (Public Review):

      Summary: 

      In this paper, Rethemeier et al capitalize on their previous observation that the beetle central complex develops heterochronically compared to the fly and try to identify the developmental origin of this difference. For this reason, they use a fez enhancer trap line that they generated to study the neuronal stem cells (INPs) that give rise to the central complex. Using this line and staining against Drosophila type-II neuroblast markers, they elegantly dissect the number of developmental progression of the beetle type II neuroblasts. They show that the NBs, INPs, and GMCs have a conserved marker progression by comparing to Drosophila marker genes, although the expression of some of the lineage markers (otd, six3, and six4) is slightly different. Finally, they show that the beetle type II neuroblast lineages are likely longer than the equivalent ones in Drosophila and argue that this might be the underlying reason for the observed heterochrony. 

      Strengths: 

      - A very interesting study system that compares a conserved structure that, however, develops in a heterochronic manner. 

      - Identification of a conserved molecular signature of type-II neuroblasts between beetles and flies. At the same time, identification of transcription factors expression differences in the neuroblasts, as well as identification of an extra neuroblast. 

      - Nice detailed experiments to describe the expression of conserved and divergent marker genes, including some lineaging looking into the co-expression of progenitor (fez) and neuronal (skh) markers. 

      Weaknesses: 

      - Comparing between different species is difficult as one doesn't know what the equivalent developmental stages are. How do the authors know when to compare the sizes of the lineages between Drosophila and Tribolium? Moreover, the fact that the authors recover more INPs and GMCs could also mean that the progenitors divide more slowly and, therefore, there is an accumulation of progenitors who have not undergone their programmed number of divisions. 

      We understand the difficulty of comparing stages between species, but we feel that our analysis is on the save side. At stages comparable with respect to overall embryonic development (retracting or retracted germband), the fly numbers are clearly smaller. To account for potential heterochronic shifts in NB activity, we have selected the stages to compare based on the criteria given: In Drosophila the number of INPs goes down after stage 16, meaning that they reach a peak at the selected stages. In Tribolium the chosen stages also reflect the phase when lineage size is larger than in all previous stages. Therefore, we believe that the conclusion that Tribolium has larger lineages and more INPs is well founded. Lineage size in Tribolium might further increase just before hatching (stage 15) but we were for technical reasons not able to look at this. As lineage size goes down in the last stage of Drosophila embryogenesis the number of INPs goes down and type-II NB enter quiescence, we think it is highly unlikely that the ratio between Tribolium and Drosophila INPs reverses at this stage, but a study of the behaviour of type-II NB in Tribolium and whether there is a stage of quiescence is still needed.

      - The main conclusion that the earlier central complex development in beetles is due to the enhanced activity of the neuroblasts is very handwavy and is not the only possible conclusion from their data. 

      As discussed in the general response we have made several changes to the manuscript to account for this criticism and discuss alternative explanations for the observations.

      - The argument for conserved patterns of gene expression between Tribolium and Drosophila type-II NBs, INPs, and GMCs is a bit circular, as the authors use Drosophila markers to identify the Tribolium cells. 

      We tested the hypothesis that in Tribolium there are type-II NBs with a molecular signature similar to flies. Our results are in line with that hypothesis. If pointed had not clearly marked cells with NB-morphology or fez/erm had not marked dividing cells adjacent to these NBs, we would have concluded that no such cells/lineages exist in the Tribolium embryo, or that central complex producing lineages exist but express different markers. Therefore, we regard this a valid scientific approach and hence find this argument not problematic.  

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions: Based on the above, I believe that the authors, despite advancing significantly, fall short of identifying the reasons for the divergent timing of central complex development between beetle and fly. 

      We agree that based on the available data, we cannot firmly make that link and we have changed the text accordingly.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      In addition to these descriptive analyses, functional analyses can be included. RNAi is highly effective in this beetle. 

      We agree that functional analyses of some of the studied genes and possible effects of gene knockdowns on the studied cell lineages and on central complex development could be highly informative. However, when studying specific cell types or organs these experiments are less straight forward than it may seem as knockdowns often lead to pleiotropic effects, sterility or lethality. All the genes involved are expressed in additional cells and may have essential functions there. Given the systemic RNAi of Tribolium, it is challenging to unequivocally assign phenotypes to one of the cell groups. Overcoming these challenges is often possible but needs extensive optimization. Our study, though descriptive is already rich in data and is the first description of NB-II lineages in Tribolium central complex development. We see it as a basis for future studies on central complex development that will include functional experiments.

      (1) Introduction 

      For these reasons the beetle... 

      Could you explain the differences in the habitats between Tribolium and Drosophila? or What is the biggest difference between these two species at the ecological aspect? 

      We have added a short characterisation of the main differences.

      The insect central complex is an anterior... 

      The author should explain why they focus on the structure. 

      Added

      It is however not known how these temporal... 

      If the authors want to get the answer to the question, they need to conduct functional analyses. 

      While we agree with the importance of functional work (see above) we believe that detailed descriptions under the inclusion of molecular markers as presented here is very informative by itself for understanding developmental processes and sets the foundation for the analysis of mutant/RNAi- phenotypes in future studies.

      CX - Central complex? 

      We have opted to not use this abbreviation anymore for clarity.

      “because intermediate cycling progenitors have also been...” 

      Is the sentence correct? 

      We have included ‘INPs’ in the sentence to make clear what the comparison refers to and added a comma

      “However, molecular characterization of such lineage in another...” 

      The authors should explain why molecular characterization is necessary. 

      We have done so

      (2) Results 

      a) Figure 8. Could you delineate the skh/eGFP expression region? 

      We have added brackets to figure 1 panel A to indicate the extent of skh and other gene expressions within the lineages.

      b) This section should be reorganized for better logical flow. 

      There certainly are different ways to organize this part and we have considered different structures of the results part. We eventually subjectively concluded that the chosen one is the best fit for our data (also see comment below on dpn-expression).

      c) For the tables. The authors should mention what statistical analysis they have conducted. 

      The tables themselves are just listing the raw numbers. They are the basis for the graph in figure 9. Statistical tests (t-test) are mentioned in the legend of that figure and now also in the Methods sections.

      “We also found that the large Tc-pnt...” 

      The authors could examine the mitotic index using an anti-pH3 antibody. 

      We have used the anti-pH3 antibody to detect mitoses (figure 3C, table 1 and 3) but as data on mitoses based on this antibody is only a snapshot it would require a lot of image data to reliably determine an index in this specific cells. While mitotic activity over time possibly combined with live imaging might be very interesting in this system also with regards to the timing of development, for this basic study we are satisfied with the statement that the type-II NB are indeed dividing at these stages.

      “Based on their position by the end of embryogenesis...” 

      How can the authors conclude that they are neuroblasts without examining the expression of NB markers? 

      Type-II NB do not express asense as the key marker for type I neuroblasts. To corroborate our argument that the cells are neuroblasts we have used several criteria:

      - We have used the same markers that are used in Drosophila to label type-II NBs (pnt, dpn, six4). We are not aware of any other marker that would be more specific.

      - We have shown that these cells are larger and have larger nuclei than neighbouring cells and they are dividing

      - We have shown that these cells through their INP lineages give rise to central complex neuropile

      We believe that these features taken together leave little doubt that the described cells are indeed neuroblasts. 

      “We found that the cells they had assigned as...” 

      How did the authors distinguish that they are really neuroblasts? 

      We see the difficulty that we first describe the position and development of these cells (e.g. fig 3) and then add further evidence (cell size, additional marker dpn) that these are neuroblasts (also see above). However, without previous knowledge on position (and on pnt expression as the most specific marker) the type-II NB could not have been distinguished from other NBs based on cell size or expression of other markers.

      “Conserved patterns of gene expression...” 

      This must be the first (especially dpn). 

      Dpn is not specific to type-II NB because it is also expressed in type-1 NBs, mature INPs and possibly other neural cells. It is therefore impossible to identify type-II NBs based on this gene alone. We therefore first used the most specific marker, pnt, in addition to adjacent fez expression to identify candidates for type-II lineages. Then we mapped expression of further genes on these lineages to support the interpretation (and show homology to the Drosophila lineages). Although of course the structure of a paper does not necessarily have to reflect the sequence in which experiments were done we would find putting dpn expression first misleading as it would not be clear why exactly a certain part of the expression should belong to type-II NB. Also, our pnt-fez expression data shows the position of the NB-II in the context of the whole head lobe whereas the other gene expressions are higher magnifications focussing on details. We therefore believe that the structure we chose best fits our data and the other reviewers seemed to find it acceptable as well.  

      “As type-II NBs contribute to central...” 

      Before the sentence, the author could explain differences in the central complex structure between Tribolium and Drosophila in terms of cell number and tissue size. 

      We have added references on the comparisons of tissue sizes, but unfortunately there is no Tribolium data that can be directly compared to available Drosophila resources in terms of cell number.  

      “We conclude that the embryonic development of...” 

      How did the authors conclude? They must explain their logic. 

      Actually, before this sentence, I only found the description of the comparison between Tribolium NBs and Drosophila once. 

      We agree that this conclusion is not fully evident from the presented data. We have therefore changed this part to stating that there is a correlation with the earlier central complex development described in Tribolium. See also response to the general reviewer comments.

      “Hence, we wondered...” 

      The authors need to do a functional assessment of the genes they mentioned. 

      We agree that the goals originally stated at the beginning of this paragraph can only be achieved with functional experiments. We have therefore rephrased this part.

      (3) Discussion

      “A beetle enhancer trap line...” 

      This part should be moved elsewhere (it does not seem to be a discussion) 

      In accordance with this comment and reviewer#2’s similar comment we have removed this section. We have added a statement on the importance of testing the expression of an enhancer trap line to the results part and an added the use of CRISPR-Cas9 for line generation to the introduction. 

      “We have identified a total...” 

      The authors emphasized that they discovered 9 type II NBs. The authors should clarify how important this it

      We have added some discussion on the importance of this finding.

      Dpn is a neural marker - Is this correct? 

      According to Bier et al 1992 (now added as reference) dpn is a pan-neural marker. Reviewer#2 also recommended calling dpn a neural marker.

      “Previous work described a heterochronic...” - reference? 

      Reference have been added

      “By contrast, we show that Tribolium...” 

      What about the number of neurons in the central complex in Tribolium and Drosophila? 

      Does the lineage size of type II NBs reflect the number? 

      Unfortunately, we do not have numbers for that.  

      Reviewer #2 (Recommendations For The Authors): 

      I recommend using page and line numbers to make reviewing and revising less timeconsuming. 

      We apologize for this oversight. We include a line numbering system into our resubmission.

      (1) Abstract 

      "These neural stem cells are believed to be conserved among insects, but their molecular characteristics and their role in brain development in other insect neurogenetics models, such as the beetle Tribolium castaneum have so far not been studied." 

      I recommend explaining the importance of studying Tribolium with regard to the evolution of brain centres rather than just stating that data are lacking. 

      We have now emphasized the importance of Tribolium as model for the evolution of brain centres.

      "Intriguingly, we found 9 type-II neuroblast lineages in the Tribolium embryo while Drosophila produces only 8 per brain hemisphere." 

      It should be made clear that the 9 lineages also refer to brain hemispheres. 

      We have added this information

      (2) Introduction 

      I would remove the first paragraph of the introduction; the use of Tribolium as model representative for insects is too general. The authors should focus on the specific question, i.e. the introduction should start with paragraph 2. 

      While we can relate to the preference for short and concise writing, we feel that giving some background on Tribolium might be important as we expect that many of our readers might be primarily Drosophila researchers. Keeping this paragraph also seems in line with a recommendation of reviewer#1 to add some additional information on Tribolium ecology.  

      "Several NBs of the anterior-most part of the neuroectoderm contribute to the CX and compared…”

      The abbreviation has not been introduced. 

      For clarity we have now opted to not use this abbreviation but to always spell out central complex.

      "Several NBs of the anterior-most part of the neuroectoderm contribute to the CX and compared to the ventral ganglia produced by the trunk segments, it is of distinctively greater complexity..." 

      Puzzling statement. Why would you compare a brain center with ventral ganglia? I recommend removing this. 

      We have changed this statement to just emphasizing the complexity of the brain structure.

      "The dramatically increased number of neural cells that are produced by individual type-II lineages, and the fact that one lineage can produce different types of neurons..."  In my opinion, this statement is too vague and unprofessional in style. Instead of "dramatically increased" use numbers. 

      We have removed ‘dramatically increased’ and now give a numeric example.

      "The dramatically increased number of neural cells that are produced by individual type-II lineages, and the fact that one lineage can produce different types of neurons, leads to the generation of increased neural complexity within the anterior insect brain when compared to the ventral nerve cord.." 

      I assume that this statement relates to the comparison of type I and II nb lineages. However, type I NB lineages also produce different types of neurons due to GMC temporal identity, and neuronal hemi-lineage identity. 

      We have rephrased and tried to make clear that the second part of the statement is not specific to type-II NB only. In line with the comment above we have also removed the reference to the ventral nerve cord.

      "In addition, in Drosophila brain tumours have been induced from type-II NBs lineages [34], opening up the possibility of modelling tumorigenesis in an invertebrate brain, thus making these lineages one of the most intriguing stem cell models in invertebrates [35,36]." 

      This statement is misplaced here; it should be mentioned at the start (if at all). 

      We have moved this statement up.

      "However, molecular characterisation of such lineages in another insect but the fly and a thorough comparison of type-II NBs lineages and their sub-cell-types between fly and beetle are still lacking" 

      The background information should include what is known about type-II NB lineages in Tribolium, including marker gene expression, e.g. Farnworth et al. 

      We refer to He et al 2019, Farnworth et al 2020 and Garcia-Perez 2021. All these publications speculate about a contribution of type-II NBs to Tribolium central complex development but do not show evidence of it. As we emphasize throughout the manuscript, the present work is the first description of type-II NB in Tribolium. 

      "The ETS-transcription factor pointed (pnt) marks type-II NBs [40,41], which do not express the type-I NB marker asense (ase) but the pro-neural gene deadpan (dpn)"  Deadpan is considered a pan-neural gene. To avoid confusion, I would remove "proneural" throughout.

      We have done so throughout the manuscript.

      "We further found that, like the type-II NBs itself, the youngest Tc-pnt-positive but fezmm-eGFP-negative INPs neither express Tc-ase (Fig. 5D, pink arrowheads)."  What is the evidence that these are the youngest pnt positive cells? Position? This needs to be explained. 

      We have clarified that ‘youngest pnt-positive cells’ refers to the position of these cells close to the type-II NB.

      "Therefore these neural markers can be used for a classification of type II NBs (Tc-pnt+, Tcase-), young INPs (Tc-pnt+, Tc-fez/erm-, Tc-ase-), immature INPs (Tc-pnt+, Tcfez/erm+, Tcase+), mature INPs (Tc-dpn+, Tc-ase+, Tc-fez/erm+, Tc-pros+), and GMCs (Tc-ase+, Tcfez/ erm+, Tc-pros+, Tc-dpn). This classification is summarized in Fig. 7 A-B." 

      This is not the best classification and not in line with the schemes in Figure 7 - the young INPs are also immature. What is the difference? It needs to be explained what "mature" means (dividing?). 

      Thank you for pointing this out. We have corrected the error in this part that confused the two original groups (young and immature). To take the immaturity of both types of INPs into account we have then also changed our naming of INP subtypes into immature-I and immature-II and throughout the manuscript). Figure 7 and figure 12 were also changed accordingly. While our classification if primarily based on gene expression the available data indicates that both types of immature INPs are not dividing, whereas mature INPs are. We have added a statement on that to this part.

      "In beetles a single-unit functional central complex develops during embryogenesis while in flies the structure is postembryonic." 

      This statement is vague - the authors need to explain what is meant by "single-unit". The phrase "The structure is postembryonic" also needs more explanation. The Drosophila CX neuroblasts lineages originate in the embryo and the neurons form a commissural tract that becomes incorporated into the fan-shaped body of the Cx. 

      We have explained single-unit central complex and have improved our summary of known differences in central complex development between fly and beetle.

      "To assess the size of the embryonic type-II NBs lineages in beetles we counted the Tc- fez/erm positive (fez-mm-eGFP) cells (INPs and GMCs) associated with a Tc-pntexpressing type-II NBs of the anterior medial group (type-II NBs lineages 1-7).  It is not clear what is meant by "with a Tc-pnt-expressing type-II NBs". Is this a typo?" 

      We have removed this bit.

      (3) Discussion 

      I would remove the first paragraph "A beetle enhancer trap lines reflects Tc-fez/earmuff expression". This is a repetition of the methods rather than a discussion. 

      This part has been removed also in line with reviewer#1’s comment.

      (4) Figures 

      Figure 2 

      To which developing structure do the strongly labelled areas in Figure 2D correspond? 

      We believe that these areas from the protocerebrum including central complex, mushroom bodies and optic lobe. We have added this to the text and to the figure legend.

      Figure 7 

      What do A and B represent? Different stages? 

      A and B show the same lineage but map the expression of different additional markers for clarity. We have added an explanation of this. 

      The classification contradicts the description in the section "Conserved patterns of gene expression mark Tribolium type-II NBs, different stages of INPs and GMCs" (last sentence) where young INPs are first in the sequence and described as pnt+, erm-, ase- and immature INPs as pnt+ erm+ and ase+. 

      We have corrected this mistake and changed the names of the subtypes into immatureI and immature-II (see above).

      "We conclude that the evolutionary ancient six3 territory gives rise to the neuropile of the z, y, x and w tracts." 

      Please clarify if six3 is also expressed in the corresponding grasshopper NB lineages or if your conclusion is based on the comparison of Drosophila and Tribolium and you assume that this is the ancestral condition. 

      Six3 expression has not been studied in grasshoppers. Owing to the highly conserved nature of an anterior median six3 domain in arthropods and bilaterian animals in general, we would expect it to be expressed anterior-medially in grasshoppers as well. In Drosophila the gene is expressed in the anterior-medial embryonic region where the type-II NBs are expected to develop, but to our knowledge it has not been specifically studied which type-II NB lineages are located within this domain. We have clarified in our text that we do not claim that the origin of anterior-medial type-II NB 1-4 and the X,Y, Z and W lineages from the six3 territory is highly conserved but only the territory itself. As far as we know our work is the first to analyse the relationship of type-II lineages and the conserved head patterning genes six3 and otd. We have added some clarification of this into this part of the discussion.

      (5) Methods 

      The methods section should include the methods for cell counting, as well as cell and nuclei size measurements including statistics (e.g. how many embryos, how many NB lineages). The comparison of the Tribolium NB lineage cell numbers to published Drosophila data should include a brief description of the method used in Drosophila (in addition to the method used here in Tribolium) so that the reader can understand how the data compare. 

      We have added a separate section on this to the Methods part which also includes the criteria used in Drosophila. We have also included some more information to the results part on the inclusion of neurons in the Drosophila counts that may only be partially included in our numbers. This does however not change the results in terms of larger numbers of progenitor cells in Tribolium.

      (6) Typos and minor errors 

      Abstract 

      “However, little is known on the developmental processes that create this diversity” 

      Change to ... little is known about

      Changed.

      NBs lineages 

      Change to NB lineages throughout. 

      We have used text search to find and replace all position where this was used erroneously,

      Results 

      "Schematic drawing of expression different markers in type-II NB lineages.." 

      Schematic drawing of expression of different markers 

      Corrected

      Discussion 

      "However, the type-II NB 7, which is we assigned to the anterior medial group but which..." 

      .... which we assigned.... 

      corrected

      "......might be the one that does not have a homologue in the fly embryo The identification of more..."  Full stop missing. 

      Added.

      "Adult like x, y, and w tracts as well as protocerebral bridge are...." 

      Change to "The adult like x, y, and w tracts as well as the protocerebral bridge are.... 

      This part has been removed with the rewriting of this paragraph.  

      Reviewer #3 (Recommendations For The Authors): 

      (1) Suggestions for improved or additional experiments, data, or analyses: 

      a) The analysis of nuclear size is wrong. The authors compare the largest cell of a cluster of cells with a number of random cells from the same brain. It is obvious that the largest cell of a cluster will be larger than the average cell of the same brain. A better control would be to compare the largest cell of the pnt+ cluster with the largest cell of a random sample of cells, although this also comes with biases. Personally, I have no doubt that the authors are looking at neuroblasts, based on the markers they are using, so I would recommend completely eliminating Figure 4.

      We agree that we produced a somewhat biased and expected result when we select the largest cell of a cluster for size comparison. However, we found it important to show based on a larger sample that these cells are also statistically larger than the average cell of a brain, which we think our assessment shows. We do not claim that type-II NBs are the largest cells of a brain, or that they are larger than type-I NBs, therefore in a random sample there might be cells that are equally big (see also distribution of the control sample shown in figure 4, and we have added a note on this to the text). We are happy to hear that this reviewer has no doubts we are looking at neural stem cells. However, reviewer#1 did express some hesitations and therefore we think it is important to keep the information on cell size as part of our argument that we are indeed looking at type-II NBs (gene expression, cell size, dividing, part of a neural lineage).

      b) The comparison of NB, INP, and GMC numbers between Drosophila and Trbolium (section "The Tribolium embryonic lineages of type-II NBs are larger and contain more mature INPs than those of Drosophila") compares an experiment that the authors did with published data. I would suggest that the authors repeat the Drosophila stainings and compare themselves to avoid cases of batch effects, inconsistent counting, etc.

      None of the authors is a Drosophila expert or has any experience at working with this model and reassessing the lineage size would require a number of combinatorial staining. Therefore, we feel that using the published data produced by experts and which also includes repeat experiments is for us the more reliable approach.

      c) In Figure 10, there are some otd+ GFP+ cells laterally. What are these? 

      We believe that these cells contribute to the eye anlagen. We have added this information to the legend.

      (2) Minor corrections to the text and figures: 

      a) There are some typos in the text: e.g. "pattering" in the abstract. 

      We have carefully checked the text for typos and hope that we have found everything.

      b) The referencing of figures in the text is inconsistent (eg "Figure 5 panel A" vs "Figure 5D" on page 12). 

      We have checked throughout the manuscript and made sure to always refer to a panel correctly.

      c) In Figure 3C, the white staining (anti-PH3) is not indicated in the Figure. 

      The label has been added in the figure.

      d) Moreover, in Figure 3, green is not very visible in the images. 

      We have improved the colour intensity where possible.

      e) In the figures, it might be better to outline the cells with color-coded dashed circles instead of using arrows. 

      We think that this would obscure some details of the stainings and create a rather artificial representation. We also feel that doing this consistently in all our images is an amount of work not justified by the degree of expected improvement to the figures

      NOTE: We are submitting a revised version of the supplementary material which only contains two minor changes: a headline was added to Table S4 (Antibodies and staining reagents) and a typo was corrected in line one of table S5 (TC to Tc).

    1. Author response:

      The following is the authors’ response to the original reviews.

      First, we thank the reviewers for a thorough reading of our paper and some useful comments. A recurrent remark of the reviewers concerns the appearance of kRas-expressing cells (labelled by a nuclear blue fluorescent marker) which we attribute to the progeny of the initially induced cell. The reviewers suggest that these cells may have been obtained through activation of the Cre-recombinase in other cells by cyclofen released from light scattering, via diffusion, leakiness, etc. These remarks are perfectly reasonable from people not familiar with the cyclofen uncaging approach that we are using, but are unwarranted as we shall show below. 

      We have been using cyclofen uncaging with subsequent activation of a Cre-recombinase (or some other proteins) since 2010 (see ref.34, Sinha et al., Zebrafish 7, 199-204 (2010) and our 2018 review (ref.35, Zhang et al., ChemBioChem 19,1-8 (2018)). In our experiments, the embryos are incubated in the dark in 6µM caged cyclofen (cCyc) and washed in E3 medium (and transferred to a new medium with no cCyc). In these conditions, over many years we never observed activation of the recombinase, i.e. the appearance of the associated fluorescent label in cells of embryos grown in E3 medium. Hence leakiness can be ruled out (in presence of cCyc or in its absence).

      Following transfer of the embryos to new E3 medium we illuminate the embryos locally with light at 405nm. In these conditions, cCyc is only partially uncaged and results in activation of Cre-recombinase in only a few cells (1,2, 3, …) within the illuminated region only, namely in the appearance of the kRas-associated nuclear blue fluorescent label in usually one cell (and sometimes in a few more). Data and statistics are now incorporated in the revised manuscript, see Fig.2A and S7. In absence of activation of a reprogramming factor these fluorescently labelled cells disappear within a few days (either via shut-down of their promotor, apoptosis or some other mechanism). The crucial point here is that we see less and not more kRas expressing cells (i.e. with nuclear blue fluorescence) in absence of VentX activation. This observation rules out activation of Cre-recombinase in other cells days after illumination due to leakiness, cyclofen released by light or diffusing from the illumination spot.

      To observe many more fluorescent cells days after activation of the initial cell, one needs to transiently activate VentX-GR by overnight incubation in dexamethasone (DEX). Injecting the embryos at 1-cell stage with VentX-GR only or incubating them in DEX (without injection of VentX-GR) does not result in the appearance of more blue fluorescent cells.  Following activation of VentX-GR, the fluorescent cells observed a couple of days after initiation are visualized in E3 medium (i.e. in absence of cyclofen) and are localized to the vicinity of the otic vesicle (the region where the initial cell was activated). In the revised manuscript we show images of these fluorescent cells taken a few days apart in the same embryo in which a single cell was initially activated (Fig.S8). Hence, we attribute these cells to the progeny of the activated cell. Obviously, single cell tracking via time-lapse microscopy would definitely nail down this issue and provide fascinating insight into the initial stages of tumor growth. Unfortunately, immobilization of embryos in the usual medium (e.g. MS222, tricaine) over 5-6 days to track the division and motion of single cells is not possible. We are considering some other possibilities (immobilization in bungarotoxin or via photo-activation of anionic channels), but these challenging experiments are for a future paper.

      Reviewer #1 (Public Review): 

      The authors then performed allotransplantations of allegedly single fluorescent TICs in recipient larvae and found a large number of fluorescent cells in distant locations, claiming that these cells have all originated from the single transplanted TIC and migrated away. The number of fluorescent cells showed in the recipient larve just after two days is not compatible with a normal cell cycle length and more likely represents the progeny of more than one transplanted cell.  

      As mentioned in the manuscript, we measure the density of cells/nl and inject in the yolk of 2dpf Nacre embryos a volume equivalent to about 1 cell, following published protocols (S.Nicoli and M.Presta, Nat.Prot. 2,2918 (2007)). We further image the injected cell(s) by fluorescence microscopy immediately following injection, as shown in Fig.4A and Fig.S8B. We might miss a few cells but not many. With a typical cell cycle of ~10h the images of tumors in larvae at 3dpt (and not 2dpt) correspond to  ~100 cells. In any case the purpose of this experiment was to show that the progeny of the initial induced cell is capable of developing into a tumor in a naïve fish, which is the operational definition of cancer that we adopted here. 

      The ability to migrate from the injection site should be documented by time-lapse microscopy. 

      As stated above our purpose here is not to study tumor formation from transplanted cell(s)  but to use that assay as an operational test of cancer. Besides as mentioned earlier single cell tracking in larvea over 3-4dpt is not a trivial task.

      Then, the authors conclude that "By allowing for specific and reproducible single cell malignant transformation in vivo, their optogenetic approach opens the way for a quantitative study of the initial stages of cancer at the single cell level". However, the evidence for these claims are weak and further characterization should be performed to: 

      (1) Show that they are actually activating the oncogene in a single cell (the magnification is too low and it is difficult to distinguish a single nucleus, labelling of the cell membrane may help to demonstrate that they are effectively activating the oncogene in, or transplanting, a single cell)  

      In the revised manuscript we provide larger magnification of the initial induced cell and show examples of oncogene activation in more than one cell. 

      (2) The expression of the genes used as markers of tumorigenesis is performed in whole larvae, with only a few transformed cells in them. Changes should be confirmed in FACS sorted fluorescent cells  

      When the oncogene is activated in a whole larvae all cells are fluorescent and thus FACS  is of no use for cell sorting. Sorting could be done in larvae where single cells are activated , but then the efficiency of FACS is not good enough to isolate the few fluorescent cells among the many more non-fluorescent ones. We agree that the expression change of the genes used as markers of tumorigenesis is an underestimate of their true change, but our goal at this time is not to precisely measure the change in expression level, but to show that the pattern of change was different from the controls and corresponded to what is expected in tumorigenesis.

      (3) The histology of the so called "tumor masses" is not showing malignant transformation, but at the most just hyperplasia. 

      The histology of the hyperplasic tissues show cellular proliferation with a higher density of nuclear material which is characteristic of tumors, Fig.S4C. Besides the increased expression of pERK in these tissues, Fig.S4A,B is also a hallmark of cancer. 

      In the brain, the sections are not perfectly symmetrical and the increase of cellularity on one side of the optic tectum is compatible with this asymmetry. 

      The expected T-shape formed by the sections of the tegmentum and hypothalamus are compatible with the symmetric sections shown in Fg.2D. The asymmetry in the optic tectum is a result of the hyperplasic growth.

      (4) The number of fluorescent cells found dispersed in the larvae transplanted with one single TIC after 48 hours will require a very fast cell cycle to generate over 50 cells. Do we have an idea of the cell cycle features of the transplanted TICs? 

      As answered above, the transplanted larvae are shown at 3dpt. With a cell cycle of about 10h, a single cell can give rise to about 100 cells in that time lapse.  

      Reviewer #2 (Public Review): 

      Summary: 

      This paper describes a genetically tractable and modifiable system …which could be used to study an array of combinations and temporal relationships of these cancer drivers/modifiers. 

      We thank this referee for its positive comments. We would also like to point out that our approach provides for the first quantitative means to estimate the probability of tumorigenesis from a single cell, an estimate which is crucial in any assessment of cancer malignancy and the effectiveness of prophylactics. 

      Weaknesses: 

      There is minimal quantitation of … the efficiency of activation of the Ras-TFP fusion (Fig 1) in, purportedly, a single cell. …, such information seems essential.  

      We have added more images of induction of a single (or a few cells) and a plot where the probability of RAS activation in one or a few cells is specified. 

      The authors indicate that a single cell is "initiated" (Fig 2) using the laser optogenetic technique, but without definitive genetic lineage tracing, it is not possible to conclude that cells expressing TFP distant from the target site near the ear are daughter cells of the claimed single "initiated" cell. A plausible alternative explanation is 1) that the optogenetic targeting is more diffuse (i.e. some of the light of the appropriate wavelength hits other cells nearby due to reflection/diffraction), so these adjacent cells are additional independent "initiated" cells or 2) that the uncaged tamoxifen analogue can diffuse to nearby cells and allow for CreER activation and recombination.  

      We have addressed this point in our general comments to the reviewers’ remarks. The possibilities mentioned by this reviewer would result in cells expressing TFP in absence of VentX activation, which is NOT the case. Cells expressing TFP away from the initial site are observed DAYS after activation of the oncogene (and TFP) in a single cell and ONLY upon activation of VentX.

      In Fig 2B, the claim is made that "the activated cell has divided, giving rise to two cells" - unless continuously imaged or genetically traced, this is unproven. 

      We have addressed this remark previously. Tracking of larvae over many days is not possible with the usual protocol using tricaine to immobilize the larvae. Nonetheless, in the revised version we present images of an embryo imaged at various times post activation (1hpi, 3dpi, 7dpi) where proliferation and metastasis of the cells can be observed. We are pursuing other alternatives for time-lapse microscopy over many days, since besides convincing the sceptics, a single cell tracking experiment (possibly coupled with in-situ spatial transcriptomics) will shed a new and fascinating light on the initial stages of tumor growth. 

      In addition, it appears that Figures S3 and S4 are showing that hyperplasia can arise in many different tissues (including intestine, pancreas, and liver, S4C) with broad Ras + Ventx activation …. This should be clarified in the manuscript). 

      This is true and has been clarified in the new version. 

      In Fig S7 where single cell activation and potential metastasis is discussed, similar gut tissues have TFP+ cells that are called metastatic, but this seems consistent with the possibility that multiple independent sites of initiation are occurring even when focal activation is attempted. 

      As mentioned previously this is ruled out by the fact that these cells are observed days after cyclofen uncaging (and TFP activation) and IF AND ONLY IF VentX was activated during the first dpi.

      Although the hyperplastic cells are transplantable (Fig 4), the use of the term "cells of origin of cancer" or metastatic cells should be viewed with care in the experiments showing TFP+ cells (Fig 1, 2, 3) in embryos with targeted activation for the reasons noted above.  

      The purpose of this transplantation experiment was to show that cell in which both kRas and VentX have been activated possess the capacity to metastasize and develop a tumor mass when transplanted in a naïve zebrafish. This -  to the best of our knowledge  - is the operational definition of a malignant tumor. Notice also that transplantation of kRAS only activated cells (i.e. without subsequent activation of VentX) does NOT yield tumors, rather the transplanted cell disappears after a few days, see Fig.S10. 

      Reviewer #3 (Public Review): 

      Summary: 

      This study employs an optogenetics approach … to examine tumorigenesis probabilities under altered tissue environments.  

      We thank this reviewer for this remark, since we believe that the probability to assess the probability of tumorigenesis from a single cell is probably the most significant contribution of this work.

      Weaknesses: 

      Lack of Methodological Clarity: The manuscript lacks detailed descriptions of methodologies, 

      We have included additional detail of our methodology and statistical analyses in the revised manuscript.

      Sub-optimal Data Presentation and Quality:  

      Lack of quantitative data and control condition data obtained from images of higher magnification limits the ability to robustly support the conclusions.  

      We have included more images at higher magnification and quantitative data to support the main report of targeted single cell induction. 

      Here are some details:  

      Authors might want to provide more evidence to support their claim on the single cell KRAS activation.  

      More images and a data on activation of single or few cells in the illumination field are provided as well as statistical analysis of  cell induction.  

      Stability of cCYC: The manuscript does not provide information on the half-life and stability of cCYC. Understanding these properties is crucial for evaluating the system's reliability and the likelihood of leakiness, which could significantly influence the study's outcomes. 

      We have been using the cCyc system for about 14 years. We refer the reader to our previous papers and reviews on this methodology. Briefly, cCyc is stable when not illuminated with light around 375nm. Typically, we incubate our embryos in the dark for about 1h before washing, transferring them into E3 medium and illuminating them. Assessing the leakiness of the system is easy as expression of a fluorescent marker is permanently turned on. We have observed none in the conditions of our experiment or in previous works.

      Metastatic Dissemination claim: However, the absence of a supportive cellular compartment within the fin-fold tissue makes the presence of mTFP-positive metastatic cells there particularly puzzling. This distribution raises concerns about the spatial specificity of the optogenetic activation protocol … The unexpected locations of these signals suggest potential ectopic activation of the KRAS oncogene, 

      We have addressed this remark in the introduction and above. Specifically, metastatic and proliferative mTFP-positive cells are observed IF AND ONLY IF VentX is also activated concomitant with activation of kRAS in a single cell. No proliferative cells are observed in absence of VentX activation, or in presence of VentX or Dex alone, or if kRAS has not been activated by cyclofen uncaging. 

      Image Resolution Concerns: The cells depicted in Figure 3C β, which appear to be near the surface of the yolk sac and not within the digestive system as suggested in the MS, underscore the necessity for higher-resolution imaging. Without clearer images, it is challenging to ascertain the exact locations and states of these cells, thus complicating the assessment of experimental results. 

      Better images are provided in the revised version.

      The cell transplantation experiment is lacking protocol details:

      Details are provided. We have followed regular protocols for transplantation:  S.Nicoli and M.Presta, Nat.Prot. 2,2918 (2007). 

      If the cells are obtained from whole larvae with induced RAS + VX expression, it is notable and somewhat surprising that the larvae survived up to six days post-induction (6dpi) before cells were harvested for transplantation. This survival rate and the subsequent ability to obtain single cell suspensions raise questions about the heterogeneity of the RAS + VX expressing cells that transplanted. 

      From Fig.S4D, about 50% of the embryos survive at 6dpi. Though an interesting question by itself we have not (yet) addressed the important issue of the heterogeneity of the outgrowth obtained from a single cell. Our purpose here was just to show that cells in which both kRAS and VentX have been activated possess the capacity to metastasize and develop a tumor mass when transplanted in a naïve zebrafish. This -  to the best of our knowledge  - is the operational definition of a malignant tumor.

      Unclear Experimental Conditions in Figure S3B: …It is not specified whether the activation of KRAS was targeted to specific cells or involved whole-body exposure. 

      This was whole body (global) illumination and is specified in the revised version.

      Contrasting Data in Figure S3C compared to literature: The graph in Figure S3C indicates that KRAS or KRAS + DEX induction did not result in any form of hyperplastic growth. The authors should provide detailed descriptions of the conditions under which the experiments were conducted in Figure S3B and clarifying the reasons for the discrepancies observed in Figure S3C are crucial. The authors should discuss potential reasons for the deviation from previous reports. 

      This discrepancy is discussed in the revised version. First the previous reports consider the development of tumors within 3-4 weeks which we have not studied in detail. Second, the expression of the oncogene in these reports might be stronger than in ours. Third, the stochastic and random appearance of tumors in these reports suggest that some other mechanism (transient stress-induced reprogramming?) might have activated the oncogene in the initial cell. 

      Further comments: 

      Throughout the study, KRAS-activated cell expansion and metastasis are two key phenotypes discussed that Ventx is promoting. However, the authors did not perform any experiments to directly show that KRAS+ cells proliferate only in Ventx-activated conditions.  

      Yes, we did. See Fig. S1 and compare with Fig.S3B, or Fig.S10A in comparison with Fig.2A,B.

      The authors also did not show any morphological features or time-lapse videos demonstrating that KRAS+ cells are motile, even though zebrafish is an excellent model for in vivo live imaging. This seems to be a missed opportunity for providing convincing evidence to support the authors' conclusions.  

      Performing time-lapse microscopy on larvae over many (4-5) days is not possible with the regular tricaine protocol for immobilization. We are definitely planning such experiments, but they will require some other protocol, perhaps using bungarotoxin or some optogenetic inhibitory channels.

      There were minimal experimental details provided for the qPCR data presented in the supplementary figures S5 and S6, therefore, it is hard to evaluate result obtained. 

      More details are given in the revised version.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Abstract: what is the definition of tumors that they are using? I never heard of a full-blown tumor that develops in less than 6 days from a single cell!  

      This is indeed surprising! We are using an operational definition of a tumor: if cells from an hyperplasic tissue can metastasize and outgrow when transplanted in a naïve zebrafish, then it is a tumor. 

      Introduction: The claim that this is the first report of the induction of oncogene expression in a single cell in zebrafish is wrong as there are other reports (PMID: 27810924, PMID: 30061297) 

      These other approaches are invasive (electroporation and transplantation). We have added non-invasive in the revised version. 

      Figure 2: The quality of these images is too low to visualize the infiltration that they talk about, the sections are not perfectly coronal and the asymmetric distribution of cells may be confused with an infiltration. 

      We have addressed this question above. 

      Results, page 5: how do we know that these are metastatic cells? there could have been spurious activation in other locations, you need to prove that these cells moved from one place to the other and that they are of the same cell type as the primary tumor  

      We have addressed this question extensively in the introduction and in our answers to the reviewers. We have also added a figure showing cell proliferation in the same embryos at various time post induction. Time-lapse microscopy studies of tumor initiation and growth over many days are planned, but will be the subject of an other paper.

      Figure 3: not clear why they did not use anaesthetic or mounting media to take pictures of the transplanted fish  

      We tried to minimally stress the larvae that are already in a perilous condition…

      Results, page 6: Not clear why the authors used KRAS v12 as an oncogene and uncaged its expression in the brain, as KRAS is not a common oncogene for brain tumors. 

      There are reports of kRASG12V tumors in zebrafish brain (doi: 10.1186/s12943-015-0288-2)

      It is not clear what is the mechanism of Ventx -driven oncogenesis? What changes in gene expression, cell function etc are induced by Ventx in the cells that express KRASv12? The qPCR analysis performed is done on whole larvae and an analysis on single TICs and their progeny should be done following FACS sorting of fluorescent cells.  

      FACS sorting of a single TIC (and its progeny) among many thousand cells in the embryo is not possible. The analysis on whole larvae provides an underestimate of the changes in gene expression following activation of kRAS and VentX.  We are looking for spatial transcriptomics as a better approach of the changes in gene expression induced in single TICs and their progeny, but that is beyond the scope of this paper. 

      Nuclear staining is necessary to make sure that only 1 cell was transplanted. How is it possible that we get more than 50 cells from a single transplanted cell in less than 48 hours? What is the length of the cell cycle of these transformed cells? 

      Nuclear staining is not necessary as the transplanted cell is fluorescent. Thus we can see how many cells are transplanted. With a cell-cycle of about 10h in 3dpt, a single cell will have generated as many as 100 cells. 

      Reviewer #2 (Recommendations For The Authors): 

      Minor grammatical change - hyperplasic more commonly called hyperplastic. 

      Reviewer #3 (Recommendations For The Authors): 

      Provide Detailed Methodologies: Clearly describe all experimental protocols used, particularly those for cell transplantation and photo-activation techniques. Detailed protocols will aid in replicating your findings and enhancing the manuscript's credibility.  

      Done.

      Provide High-Resolution Imaging data: To substantiate the claims about cell location and behaviour, provide high-resolution images where individual cells and their specific tissue contexts are clearly visible. 

      Greater magnification images provided.

      Quantitative Data: Incorporate quantitative analyses to strengthen the findings, particularly in experiments where cell proliferation and activation are key outcomes. 

      Done.

      Verify Single Cell Activation: Offer additional evidence or experimental validation to support the claim that KRASG12V activation is confined to single cells, considering the limitations mentioned about the photo-activation setup. 

      Discussion, figures and statistical analysis added in manuscript.

      Discuss Stability and Leakage of cCYC: Provide data on the stability and half-life of cCYC to assess the likelihood of system leakiness, which could influence the interpretation of your results.  

      Reference to our previous papers and reviews added.

      Clarify Metastatic Claims: Discuss the unexpected presence of mTFP-positive cells in nontraditional metastatic sites, like the fin fold, and consider additional experiments to verify whether these are cases of ectopic activation or true metastasis.

      Discussion added in manuscript

      Utilize time-lapse live imaging to visually document the motility and behaviour of KRAS+ cells over time, leveraging the strengths of the zebrafish model. 

      Definitely interesting, but non trivial to conduct over many days and subject for a future paper.

      Address Discrepancies in KRAS Activation Effects from literature: Specifically, discuss why your findings on KRAS-induced hyperplasia differ from existing literature. Consider whether experimental conditions or KRAS expression levels might have contributed to these differences.  

      Discussion added in revised version

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public review):

      When different groups (populations, species) are presented with similar environmental pressures, how similar are the ultimate targets (genes, pathways)? This study sought to illuminate this broader question via experimental evolution in D. simulans and quantifying gene-expression changes, specifically in the context of standing genetic variation (and not de novo mutation). Ultimately, the authors showed pleiotropy and standing-genetic variation play a significant role in the "predictability" of evolution.

      The results of this manuscript look at the interplay between pleiotropy, standing genetic variation and parallelism (i.e. predictability of evolution) in gene expression. Ultimately, their results suggest that (a) pleiotropic genes typically have a smaller range in variation/expression, and (b) adaptation to similar environments tends to favor changes in pleiotropic genes, which leads to parallelism in mechanisms (though not dramatically). However, it is still uncertain how much parallelism is directly due to pleiotropy, instead of a complex interplay between them and ancestral variation.

      Yes, the reviewer is correct that our results for the direct effects of pleiotropy were not consistent for both measures of pleiotropy. We highlight this in the discussion:” Only tissue specificity had a significant direct effect, which was even larger than the indirect effect (Table 2). No significant direct effect was found for network connectivity. The discrepancy between the two measures of pleiotropy is particularly interesting given their significant correlation (Supplementary Figure 1). This suggests that both measures capture aspects of pleiotropy that differ in their biological implications.”

      Reviewer #2 (Public review):

      Summary:

      Lai and collaborators use a previously published RNAseq dataset derived from an experimental evolution set up to compare the pleiotropic properties of genes which expression evolved in response to fluctuating temperature for over 100 generations. The authors correlate gene pleiotropy with the degree of parallelisms in the experimental evolution set up to ask: are genes that evolved in multiple replicates more or less pleiotropic?

      They find that, maybe counter to expectation, highly pleiotropic genes show more replicated evolution. And such effect seems to be driven by direct effects (which the authors can only speculate on) and indirect effect through low variance in pleiotropic genes (which the authors indirectly link to genetic variation underlying gene expression variance).

      Weaknesses:

      The results offer new insights into the evolution of gene expression and into the parameters that constrain such evolution, i.e., pleiotropy. Although the conclusions are supported by the data, I find the interpretation of the results a little bit complicated.

      We are very happy to read that the reviewer finds our conclusions to be supported by the data.

      Major comment:

      The major point I ask the authors to address is whether the connection between polygenic adaptation and parallelism can indeed be used to interpret gene expression parallelism. If the answer is not, please rephrase the introduction and discussion, if the answer is yes, please make it explicit in the text why it is so.

      Yes, we think that gene expression parallelism can be explained by polygenic adaptation.

      The authors argument: parallelism in gene expression is the same as parallelism in SNP allele frequency (AFC) (see L389-383 here they don't mention that this explanation is derived from SNP parallelism and not trait parallelism, and see Fig1 b). In previous publications the authors have explained the low level of AFC parallelism using a polygenic argument. Polygenic traits can reach a new trait optimum via multiple SNPs and therefore although the trait is parallel across replicates, the SNPs are not necessarily so.

      In the current paper, they seem to be exchanging SNP AFC by gene expression, and to me, those are two levels that cannot be interchanged. Gene expression is a trait, not a SNP, and therefore the fact that a gene expression doesn't replicate cannot be explained by polygenic basis, because again the trait is gene expression itself. And, actually the results of the simulations show that high polygenicity = less trait parallelism (Fig4).

      We agree with the reviewer that it is important to consider different hierarchies when talking about the implications of polygenic adaptation. The lowest hierarchical level is SNP variation and the highest level is fitness. In-between these extreme hierarchical levels is gene expression. While gene expression is a trait itself, as correctly pointed out by the reviewer, it is possible that selection is not favoring a specific trait value, because selection targets a trait on a higher hierarchical level. This implies that not only SNPs, but also intermediate traits such as gene expression can exhibit redundancy. Considering a simple example of one selected trait (e.g. body size), which is affected by the expression level of two genes A and B, each regulated by SNP A1, A2 and B1, B2. It is now possible to modulate the focal trait by allele frequency changes of A1, which in turn will only affect gene A. Alternatively, SNP B2 may change, modifying the expression of gene B, leading to the same change in body size. Hence, we could have redundancy both at the SNP level as well as on the gene expression level (although higher redundancy is expected on the SNP level). Most importantly, this redundancy at intermediate hierarchical levels is not pure theory, but it is supported by empirical evidence. We have shown that redundancy exists not only for gene expression (10.1111/mec.16274) but also for metabolite concentrations (10.1093/gbe/evad098).

      Now, if the authors focus on high parallel genes (present in e.g. 7 or more replicates) and they show that the eQTLs for those genes are many (highly polygenic) and the AFC of those eQTL are not parallel, then I would agree with the interpretation. But, given that here they just assess gene expression and not eQTL AFC, I do not think they can use the 'highly polygenic = low parallelism' explanation.

      This is clearly an interesting proposed research project, but we doubt that it would result in the expected outcome. Since most of the adaptive gene expression changes are not having a simple genetic basis (10.1093/gbe/evae077) and most expression variation is determined by trans-regulatory effects (10.1038/s41576-020-00304-w), eQTL mapping will most likely not identify all contributing loci. Large effect loci are more easily identified, but they are also expected to be more parallel.

      The interpretation of the results to me, should be limited to: genes with low variance and high pleiotropy tend to be more parallel, and the explanation might be synergistic pleiotropy.

      We thank the reviewer for the suggestion, but prefer to stick to our interpretation of the data.

      Comments on revisions: The authors didn't really address any of the comments made by any of the reviewers - basically nothing was changed in the main text. Therefore, I leave my original review unchanged.

      We modestly disagree, in our point to point reply, we respond to all reviewers’ comments. Since, we did not identify any major problem in our manuscript, we only modified the wording in some parts where we felt that a clarification could resolve the misunderstanding of the reviewers. In response to the reviewers’ comments, we added a new paragraph in the discussion and generated a new figure.

      Reviewer #3 (Public review):

      The authors aim to understand how gene pleiotropy affects parallel evolutionary changes among independent replicates of adaptation to a new hot environment of a set of experimental lines of Drosophila simulans using experimental evolution. The flies were RNAsequenced after more than 100 generations of lab adaptation and the changes in average gene expression were obtained relative to ancestral expression levels from reconstructed ancestral lines. Parallelism of gene expression change among lines is evaluated as variance in differential gene expression among lines relative to error variance. Similarly, the authors ask how the standing variation in gene expression estimated from a handful of flies from a reconstructed outbred line affects parallelism. The main findings are that parallelism in gene expression responses is positively associated with pleiotropy and negatively associated with expression variation. Those results are in contradiction with theoretical predictions and empirical findings. To explain those seemingly contradictory results the authors invoke the role of synergistic pleiotropy and correlated selection, although they do not attempt to measure either.

      Strengths:

      The study uses highly replicated outbred laboratory lines of Drosophila simulans evolved in the lab under constant hot regime for over 100 generations. This allows for robust comparisons of evolutionary responses among lines.

      The manuscript is well written and the hypotheses are clearly delineated at the onset.

      The authors have run a causal analysis to understand the causal dependencies between pleiotropy and expression variation on parallelism.

      The use of whole-body RNA extraction to study gene expression variation is well justified.

      Weaknesses:

      The accuracy of the estimate of ancestral phenotypic variation in gene expression is likely low because estimated from a small sample of 20 males from a reconstructed outbred line. It might not constitute a robust estimate of the genetic variation of the evolved lines under study.

      We agree with the reviewer that variation estimates based on 20 samples are not very precise. Nevertheless, we demonstrated that the estimated variance in gene expression was highly correlated between two independent samples from the same ancestral population. Furthermore, we identified a significant correlation of expression variance with evolutionary parallelism. In other words, the biological signal has been sufficiently strong despite the variance estimate has been noisy.

      There are no estimates of the standing genetic variation of expression levels of the genes under study, only estimates of their phenotypic variation. I wished the authors had been clear about that limitation and had refrained from equating phenotypic variation in expression level with standing genetic variation.

      The reviewer is right that we did not estimate genetic variation of gene expression, but use expression variation as a proxy for the standing genetic variation. There are two potential problems with this approach. First, a large expression variation could be caused by a single large effect variant segregating at intermediate frequency. Such large effect variants will exhibit a highly parallel selection response-contrary to our empirical results. Since we have shown previously (10.1093/gbe/evae077) that adaptive gene expression changes are mostly polygenic we do not consider this extreme scenario to be very relevant in our study. Rather, we would like to emphasize that neither a SNP analysis of the 5’ region nor an eQTL study will provide an unbiased estimator of genetic variation of gene expression. The second problem arises if gene expression noise differs among genes, hence more noisy genes will appear to have more standing genetic variation than genes with less noise. Since, we average across many different cells and cell types, gene expression noise is expected to be levelled out- this aspect is discussed in detail in the manuscript.

      In other words, despite these two potential limitations, we consider our approach superior to alternative approaches of estimating genetic variation in gene expression.

      Moreover, since the phenotype studied is gene expression, its genetic basis extends beyond expressed sequences. The phenotypic variation of a gene's expression may thus likely misrepresent the genetic variation available for its evolution. The authors do not present evidence that sequence variation correlates with expression variation.

      Gene expression is determined by the joint effects of cis-regulatory and trans-regulatory variation. Hence, recombination can create more extreme phenotypes than the one of the parental lines (in quantitative genetics this is called transgressive segregation). It is unclear to what extent this constitutes a problem for our analyses. Nevertheless, we would like to point out that eQTL mapping will miss many trans-acting variants and therefore we doubt that the requested empirical evidence for correlation between genetic variation (estimated by eQTL mapping) and observed expression variation is as straight forward as suggested by the reviewer.

      Nevertheless, we reference an empirical study, which showed a positive correlation between expression variation and cis-regulatory variation.

      The authors have not attempted to estimate synergistic pleiotropy among genes, nor how selection acts on gene expression modules. It makes their conclusion regarding the role of synergistic pleiotropy rather speculative.

      The reviewer is correct that we did not demonstrate synergistic pleiotropy, but we discuss this as a possible explanation for the observed direct effects of pleiotropy.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      The results of this manuscript look at the interplay between pleiotropy, standing genetic variation, and parallelism (i.e. predictability of evolution) in gene expression. Ultimately, their results suggest that (a) pleiotropic genes typically have a smaller range in variation/expression, and (b) adaptation to similar environments tends to favor changes in pleiotropic genes, which leads to parallelism in mechanisms (though not dramatically). However, it is still uncertain how much parallelism is directly due to pleiotropy, instead of a complex interplay between them and ancestral variation.

      I have a few things that I was uncertain about. It may be these things are easily answered but require more discussion or clarity in the manuscript.

      (1) The variation being talked about in this manuscript is expression levels, and not SNPs within coding regions (or elsewhere). The cause of any specific gene having a change in expression can obviously be varied - transcription factors, repressors, promoter region variation, etc. Is this taken into account within the "network connectivity" measurement? I understand the network connectivity is a proxy for pleiotropy - what I'm asking is, conceptually, what can be said about how/why those highly pleiotropic genes have a change (or not) in expression. This might be a question for another project/paper, but it feels like a next step worth mentioning somewhere.

      In current study, we are only able to detect significant and repeatable expression changes but unable to identify the underlying causal variants. An eQTL study in the founder population in combination with genomic resequencing for both evolved and ancestral populations would be required to address this question.

      (2) The authors do have a passing statement in line 361 about cis-regulatory regions. Is the assumption that genetic variation in promoter regions is the ultimate "mechanism" driving any change in expression? In the same vein, the authors bring up a potential confounding factor, though they dismiss it based on a specific citation (lines 476-481; citation 65). I'm of the mindset that in order to more confidently disregard this "issue" based on previous evidence, it requires more than one citation. Especially since the one citation is a plant. That specific point jumps out to me as needing a more careful rebuttal.

      It was not our intention to claim that the expression changes in our experiment are caused by cis-regulatory variation only. We believe that the observed expression variation has both cis- and trans-genetic components, where as some studies tend to estimate much higher cisvariation for gene expression in Drosophila populations (e.g. [1, 2]). We mentioned the positive correlation between cis-regulatory polymorphism and expression variation to (1) highlight the genetic control of gene expression and (2) make the connection between polygenic adaptation and gene expression evolutionary parallelism.

      (3) I feel like there isn't enough exploration of tissue specificity versus network connectivity. Tissue specificity was best explained by a model in which pleiotropy had both direct and indirect effects on parallelism; while network connectivity was best explained (by a small margin) via the model which was mostly pleiotropy having a direct effect on ancestral variation, that then had a direct effect on parallelism. When the strengths of either direct/indirect effects were quantified, tissue specificity showed a stronger direct effect, while network connectivity had none (i.e. not significant). My confusion is with the last point - if network connectivity is explained by a direct effect in the best-supported model, how does this work, since the direct effect isn't significant? Perhaps I am misunderstanding something.

      To clarify, for network connectivity, there’s a significant “indirect” effect on parallelism (i.e. network connectivity affect ancestral gene expression and ancestral gene expression affect parallelism). Hence, in table 2, the direct effect of network connectivity on parallelism is weak and not significant while the indirect effect via ancestral variation is significant.

      Also, network connectivity might favor the most pleiotropic genes being transcription factor hubs (or master regulators for various homeostasis pathways); while the tissue specificity metric perhaps is a kind of a space/time element. I get that a gene having expression across multiple tissues does fit the definition of pleiotropy in the broad sense, but I'm wondering if some important details are getting lost - I'm just thinking about the relative importance of what tissue specificity measurements say versus the network connectivity measurement.

      We examined the statistical relationship between the two measures and found a moderate positive correlation on the basis of which we argued that the two measures may capture different aspects of pleiotropy. We appreciate the reviewer’s suggestions about the biological basis of the two estimates of pleiotropy, but we think that without further experimental insights, an extended discussion of this topic is too premature to provide meaningful insights to the readership.

      Reviewer #2 (Public review):

      Summary:

      Lai and collaborators use a previously published RNAseq dataset derived from an experimental evolution set up to compare the pleiotropic properties of genes whose expression evolved in response to fluctuating temperature for over 100 generations. The authors correlate gene pleiotropy with the degree of parallelisms in the experimental evolution set up to ask: are genes that evolved in multiple replicates more or less pleiotropic?

      They find that, maybe counter to expectation, highly pleiotropic genes show more replicated evolution. Such an effect seems to be driven by direct effects (which the authors can only speculate on) and indirect effects through low variance in pleiotropic genes (which the authors indirectly link to genetic variation underlying gene expression variance).

      Weaknesses:

      The results offer new insights into the evolution of gene expression and into the parameters that constrain such evolution, i.e., pleiotropy. Although the conclusions are supported by the data, I find the interpretation of the results a little bit complicated.

      Major comment:

      The major point I ask the authors to address is whether the connection between polygenic adaptation and parallelism can indeed be used to interpret gene expression parallelism. If the answer is not, please rephrase the introduction and discussion, if the answer is yes, please make it explicit in the text why it is so.

      Our answer is yes, we interpreted gene expression parallelism (high ancestral variance -> less parallelism) using the same framework that links polygenic adaptation and parallelism (high polygenicity = less trait parallelism). We believe that our response covers several of the reviewer’s concerns.

      The authors' argument: parallelism in gene expression is the same as parallelism in SNP allele frequency (AFC) (see L389-383 here they don't mention that this explanation is derived from SNP parallelism and not trait parallelism, and see Figure 1 b). In previous publications, the authors have explained the low level of AFC parallelism using a polygenic argument. Polygenic traits can reach a new trait optimum via multiple SNPs and therefore although the trait is parallel across replicates, the SNPs are not necessarily so.

      Importantly, our rationale is based on the idea that gene expression is rarely the direct target of selection, but rather an intermediate trait [3]. Recently, we have specifically tested this assumption for gene expression and metabolite concentrations and our analysis showed that both traits were are redundant [4], as previously shown for DNA sequences [5]. The important implication for this manuscript is that gene expression is also redundant, so that adaptation can be achieved by distinct changes in gene expression in replicate populations adapting to the same selection pressure. This implies that we can use the same simulation framework for gene expression as for sequencing data. In our case different SNP frequencies correspond to different expression levels (averaged across individuals from a population), which in turn increases fitness by modifying the selected trait. Importantly, the selected trait in our simulations is not gene expression, but a not defined high level phenotype. A key insight from our simulations is that with increasing polygenicity the expression of a gene is more variable in the ancestral population.

      In the current paper, they seem to be exchanging SNP AFC by gene expression, and to me, those are two levels that cannot be interchanged. Gene expression is a trait, not an SNP, and therefore the fact that a gene expression doesn't replicate cannot be explained by a polygenic basis, because again the trait is gene expression itself. And, actually, the results of the simulations show that high polygenicity = less trait parallelism (Figure 4).

      As detailed above, because adaptation can be reached by changes in gene expression at different sets of genes, redundancy is also operating on the expression level not just on the level of SNPs. To clarify, the x-axis of Fig. 4 is the expression variation in the ancestral population.

      Now, if the authors focus on high parallel genes (present in e.g. 7 or more replicates) and they show that the eQTLs for those genes are many (highly polygenic) and the AFC of those eQTLs are not parallel, then I would agree with the interpretation. But, given that here they just assess gene expression and not eQTL AFC, I do not think they can use the 'highly polygenic = low parallelism' explanation.

      The interpretation of the results to me, should be limited to: genes with low variance and high pleiotropy tend to be more parallel, and the explanation might be synergistic pleiotropy.

      While we understand the desire to model the full hierarchy from eQTLs to gene expression and adaptive traits, we raise caution that this would be a very challenging task. eQTLs very often underestimate the contribution of trans-acting factors, hence the understanding of gene expression evolution based on eQTLs is very likely incomplete and cannot explain the redundancy of gene expression during adaptation. Hence, we think that the focus on redundant gene expression is conceptually simpler and thus allows us to address the question of pleiotropy without the incorporation of allele frequency changes.  

      Reviewer #3 (Public review):

      The authors aim to understand how gene pleiotropy affects parallel evolutionary changes among independent replicates of adaptation to a new hot environment of a set of experimental lines of Drosophila simulans using experimental evolution. The flies were RNAsequenced after more than 100 generations of lab adaptation and the changes in average gene expression were obtained relative to ancestral expression levels from reconstructed ancestral lines. Parallelism of gene expression change among lines is evaluated as variance in differential gene expression among lines relative to error variance. Similarly, the authors ask how the standing variation in gene expression estimated from a handful of flies from a reconstructed outbred line affects parallelism. The main findings are that parallelism in gene expression responses is positively associated with pleiotropy and negatively associated with expression variation. Those results are in contradiction with theoretical predictions and empirical findings. To explain those seemingly contradictory results the authors invoke the role of synergistic pleiotropy and correlated selection, although they do not attempt to measure either.

      Strengths:

      (1) The study uses highly replicated outbred laboratory lines of Drosophila simulans evolved in the lab under a constant hot regime for over 100 generations. This allows for robust comparisons of evolutionary responses among lines.

      (2) The manuscript is well written and the hypotheses are clearly delineated at the onset.

      (3) The authors have run a causal analysis to understand the causal dependencies between pleiotropy and expression variation on parallelism.

      (4) The use of whole-body RNA extraction to study gene expression variation is well justified.

      Weaknesses:

      (1) It is unclear how well phenotypic variation in gene expression of the evolved lines has been estimated by the sample of 20 males from a reconstructed outbred line not directly linked to the evolved lines under study. I see this as a general weakness of the experimental design.

      Our intention was not to measure the phenotypic variance of the evolved lines, but rather to estimate the phenotypic variance at the beginning of the experiment. Hence, we measured and investigated the variation of gene expression in the ancestral population since this was the beginning of the replicated experimental evolution. Furthermore, since the ancestral population represents the natural population in Florida, the gene expression variation reflects the history of selection history acting on it.

      (2) There are no estimates of standing genetic variation of expression levels of the genes under study, only phenotypic variation. I wished the authors had been clear about that limitation and had discussed the consequences of the analysis. This also constitutes a weakness of the study.

      The reviewer is correct that we do not aim to estimate the standing genetic variation, which is responsible for differences in gene expression. While we agree that it could be an interesting research question to use eQTL mapping to identify the genetic basis of gene expression, we caution that trans-effects are difficult to estimate and therefore an important component of gene expression evolution will be difficult to estimate. Hence, we consider that our focus on variation in gene expression without explicit information about the genetic basis is simpler and sufficient to address the question about the role of pleiotropy.

      (3) Moreover, since the phenotype studied is gene expression, its genetic basis extends beyond expressed sequences. The phenotypic variation of a gene's expression may thus likely misrepresent the genetic variation available for its evolution. The genetic variation of gene expression phenotypes could be estimated from a cross or pedigree information but since individuals were pool-sequenced (by batches of 50 males), this type of analysis is not possible in this study.

      We agree with the reviewer that gene expression variation may also have a non-genetic basis, we discuss this in depth in the discussion of the manuscript.  

      (4) The authors have not attempted to estimate synergistic pleiotropy among genes, nor how selection acts on gene expression modules. It makes any conclusion regarding the role of synergistic pleiotropy highly speculative.

      We mentioned synergistic pleiotropy as a possible explanation for our results. A positive correlation between the fitness effect of gene expression variation would predict more replicable evolutionary changes. A similar argument has been made by [6]. 

      I don't understand the reason why the analysis would be restricted to significantly differentially expressed genes only. It is then unclear whether pleiotropy, parallelism, and expression variation do play a role in adaptation because the two groups of adaptive and non-adaptive genes have not been compared. I recommend performing those comparisons to help us better understand how "adaptive" genes differentially contribute to adaptation relative to "nonadaptive" genes relative to their difference in population and genetic properties.

      We agree with the reviewer that the comparison between the pleiotropy of adaptive and nonadaptive genes is interesting. We performed the analysis but omitted from the current manuscript for simplicity. Similar to the results in [6], non-adaptive genes are more pleiotropic than the adaptive genes. For adaptive genes we find a positive correlation between the level of pleiotropy and evolutionary parallelism. Thus, high pleiotropy limits the evolvability of a gene, but moderate and potentially synergistic pleiotropy increases the repeatability of adaptive evolution. We included this result in the revised manuscript and discuss it.

      There is a lack of theoretical groundings on the role of so-called synergistic pleiotropy for parallel genetic evolution. The Discussion does not address this particular prediction. It could be removed from the Introduction.

      We modestly disagree with the reviewer, synergistic pleiotropy is covered by theory and empirical results also support the importance of synergistic pleiotropy. 

      References

      (1) Genissel A, McIntyre LM, Wayne ML, Nuzhdin SV. Cis and trans regulatory effects contribute to natural variation in transcriptome of Drosophila melanogaster. Molecular biology and evolution. 2008;25(1):101-10. Epub 20071112. doi: 10.1093/molbev/msm247. PubMed PMID: 17998255.

      (2) Osada N, Miyagi R, Takahashi A. Cis- and Trans-regulatory Effects on Gene Expression in a Natural Population of Drosophila melanogaster. Genetics. 2017;206(4):2139-48. Epub 20170614. doi: 10.1534/genetics.117.201459. PubMed PMID: 28615283; PubMed Central PMCID: PMCPMC5560811.

      (3) Barghi N, Hermisson J, Schlötterer C. Polygenic adaptation: a unifying framework to understand positive selection. Nature reviews Genetics. 2020;21(12):769-81. Epub 2020/07/01. doi: 10.1038/s41576-020-0250-z. PubMed PMID: 32601318.

      (4) Lai WY, Otte KA, Schlötterer C. Evolution of Metabolome and Transcriptome Supports a Hierarchical Organization of Adaptive Traits. Genome biology and evolution. 2023;15(6). Epub 2023/05/26. doi: 10.1093/gbe/evad098. PubMed PMID: 37232360; PubMed Central PMCID: PMCPMC10246829.

      (5) Barghi N, Tobler R, Nolte V, Jaksic AM, Mallard F, Otte KA, et al. Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS biology. 2019;17(2):e3000128. Epub 2019/02/05. doi: 10.1371/journal.pbio.3000128. PubMed PMID: 30716062.

      (6) Rennison DJ, Peichel CL. Pleiotropy facilitates parallel adaptation in sticklebacks. Molecular ecology. 2022;31(5):1476-86. Epub 2022/01/09. doi: 10.1111/mec.16335. PubMed PMID: 34997980; PubMed Central PMCID: PMCPMC9306781.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      Point 1 of public reviews and point 2 of recommendations to authors. 

      Temporal ambiguity in credit assignment: While the current design provides clear task conditions, future studies could explore more ambiguous scenarios to further reflect real-world complexity…. The role of ambiguity is very important for the credit assignment process. However, in the current task design, the instruction of the task design almost eliminates the ambiguity of which the trial's choice should be assigned credit to. The authors claim the realworld complexity of credit assignment in this task design. However, the real-world complexity of this type of temporal credit assignment involves this type of temporal ambiguity of responsibility as causal events. I am curious about the consequence of increasing the complexity of the credit assignment process, which is closer to the complexity in the real world.

      We agree that the structure of causal relationships can be more ambiguous in real-world contexts. However, we also believe that there are multiple ways in which a task might approach “real-world complexity”. One way is by increasing the ambiguity in the relationships between choices and outcomes (as done by Jocham et al., 2016). Another is by adding interim decisions that must be completed between viewing the outcome of a first choice, which mimics task structures such as the cooking tasks described in the introduction. In such tasks, the temporal structure of the actions maybe irrelevant, but the relationship between choice identities and the actions is critical to be effective in the task (e.g., it doesn’t matter whether I add spice before or after the salt, all I need to know that adding spice will result in spicy soup).  While ambiguity about either form of causal relation is clearly an important part of real-world complexity, and would make credit assignment harder, our study focuses on how links between outcomes and specific past choice identities are created at the neural level when they are known to be causal. 

      We consequently felt it necessary to resolve temporal ambiguity for participants. Instructing participants on the structure of the task allowed us to make assumptions about how credit assignment for choice identities should proceed (assign credit to the choice made N trials back) and allowed us make positive predictions about the content of representations in OFC when viewing an outcome. This gave the highest power to detect multivariate information about the causal choice and the highest interpretability of such findings. 

      In contrast, if we had not resolved this ambiguity, it would be difficult to tell if incorrect decoding from the classifier resulted from noise in the neural signal, or if on that trial participants were assigning credit to non-causal choices that they erroneously believed to have caused the outcome due to the perceived temporal structure. We believe this would have ultimately decreased our power to determine whether representations of the causal choice were present at the time of outcome because we would have to make assumptions about what counts as a “true” causal representation. 

      We have commented on this in the discussions (p.13): 

      “While our study was designed to focus on the complexity of assigning credit in tasks with different known causal structures, another important component of real-world credit assignment is temporal ambiguity. To isolate the mechanisms which create associations between specific choices and specific outcomes, we instructed participants on the causal structure of each task, removing temporal ambiguity about the causal choice.  However, our results are largely congruent with previously reported results in tasks that dissolved the typical experimental trial structure, producing temporal ambiguity, and which observed more pronounced spreading of effect, in addition to appropriate credit assignment (Jocham et al, 2016).  Namely, this study found that activation in the lOFC increased only when participants received rewards contingent on a previous action, an effect that was more pronounced in subjects whose behavior reflected more accurate credit assignment. This suggests a shared lOFC mechanism for credit assignment in different types of complex environments. Whether these mechanisms extend to situations where the temporal causal structure is completely unknown remains an important question.”

      Point 2 of public reviews and point 1 of recommendations to authors

      Role of task structure understanding: The difference in task comprehension between human subjects in this study and animal subjects in previous studies offers an interesting point of comparison…. The credit assignment involves the resolution of the ambiguity in which the causal responsibility of an outcome event is assigned to one of the preceding events. In the original study of Walton and his colleagues, the monkey subjects could not be instructed on the task structure defining the causal relationships of the events. Then, the authors of the original study observed the spreading of the credit assignments to the "irrelevant" events, which did not occur in the same trial of the outcome event but to the events (choices) in neighbouring trials. This aberrant pattern of the credit assignment can be due to the malfunctions of the credit assignment per se or the general confusion of the task structure on the part of the monkey subjects. In the current study design, the subjects are humans and they are not confused about the task structure. Consistently, it is well known that human subjects rarely show the same patterns of the "spreading of credit assignment". So the implicit mechanism of the credit assignment process involves the understanding of the task structure. In the current study, there are clearly demarked task conditions that almost resolve the ambiguity inherent in the credit assignment process. Yet, the focus of the current analysis stops short of elucidating the role of understanding the task structure. It would be great if the authors could comment on the general difference in the process between the conditions, whether it is behavioral or neural.

      We would like to thank the reviewer for making this important point. We believe that understanding the structure of the credit-assignment problem above is quite important, at least for the type of credit assignment described here. That is, because participants know that the outcome viewed is caused by the choice they made, 0 or 1 trials into the past, they can flexibly link choice identities to the newly observed outcomes as the probabilities change. Note, however, that this is already very challenging in the 1-back condition because participants need to track the two independently changing probabilities. We believe this is critical to address the questions we aimed to answer with this experiment, as described above. 

      We agree that this might be quite different from previous studies done with non-human primates, which also included many more training trials and lesions to the lOFC. Both of these aspects could manifest as difference in task performance and processing at behavioural and neural levels, respectively. Consistent with this possibility, in our task, we found no differences in credit spreading between conditions, suggesting that humans were quite precise in both, despite causal relationships being harder to track in the “indirect transition condition”. This lack of credit spreading could be because humans better understood the task-structure compared to macaques or be due to differences in functioning of the OFC and other regions. Because all participants were trained to understand, and were cued with explicit knowledge of, the task structure, it is difficult to isolate its role as we would need another condition in which they were not instructed about the task structure. This would also be an interesting study, and we leave it to future research to parse the contributions of task-structure ambiguity to credit assignment. 

      Point 3 of public reviews. 

      The authors used a sophisticated method of multivariate pattern analysis to find the neural correlate of the pending representation of the previous choice, which will be used for the credit assignment process in the later trials. The authors tend to use expressions that these representations are maintained throughout this intervening period. However, the analysis period is specifically at the feedback period, which is irrelevant to the credit assignment of the immediately preceding choice. This task period can interfere with the ongoing credit assignment process. Thus, rather than the passive process of maintaining the information of the previous choice, the activity of this specific period can mean the active process of protecting the information from interfering and irrelevant information. It would be great if the authors could comment on this important interpretational issue.

      We agree that lFPC is likely actively protecting the pending choice representation from interference with the most recent choice for future credit assignment. This interpretation is largely congruent with the idea of “prospective memory” (e.g., Burgess, Gonen-Yaacovi, Volle, 2011), in which the lFPC can be thought of as protecting information that will be needed in the future but is not currently needed for ongoing behavior. That said, from our study alone it is difficult to make claims about whether the information maintained in frontal pole is actively protecting this information because of potentially interfering processes. Our “indirect transition condition” only contains trials where there is incoming, potentially interfering information about new outcomes, but no trials that might avoid interference (e.g., an interim choice made but there is nothing to be learned from it). We comment on this important future direction on page 14:  

      “One interpretation of these results is that the lFPC actively protects information about causal choices when potentially interfering information must be processed. Future studies will be needed to determine if the lFPC’s contributions are specific to these instances of potential interference, and whether this is a passive or active process”

      Point 3 of recommendation to authors 

      A slightly minor, but still important issue is the interpretation of the role of lOFC. The authors compared the observed patterns of the credit assignment to the ideal patterns of credit assignment. Then, the similarity between these two matrices is used to find the associated brain region. In the assumption that lOFC is involved in the optimal credit assignment, the result seems reasonable. But as mentioned above, the current design involves the heavy role of understanding the task structure, it is debatable whether the lOFC is just involved in the credit assignment process or a more general role of representing the task structure.

      We agree that this is an important distinction to make, and it is very likely that multiple regions of the OFC carry information about the task structure, and the extent to which participants understood this structure may be reflected in behavioral estimates of credit assignment or the overall patterns of the matrices (though all participants verbalized the correct structure prior to the task). However, we believe that in our task the lOFC is specifically involved in credit-assignment because of the content of the information we decoded. We demonstrated that the lOFC and HPC carry information about the causal choice during the outcome. These results cannot be explained by differences in understanding of the task structure because that understanding would have been consistent across trials where participants choose either shape identity. Thus, a classifier could not use this to separate these types of trials and would reflect chance decoding.   

      One interpretation of the lOFC’s role in credit assignment is that it is particularly important when a model of the task structure has to be used to assign credit appropriately. Here, we show lOFC the reinstates specific causal representations precisely at the time credit needs to be assigned, which are appropriate to participants’ knowledge of the task structure.  These representations may exist alongside representations of the task structure, in the lOFC and other regions of the brain (Park et al., 2020; Boorman et al., 2021; Seo and Lee, 2010; Schuck et al., 2016). We have added the following sentences to clarify our perspective on this point in the discussion (p. 13):

      “Our results from the “indirect transition” condition show that these patterns are not merely representations of the most recent choice but are representations of the causal choice given the current task structure, and may exist alongside representations of the task structure, in the lOFC and elsewhere (Boorman et al., 2021; Park et al., 2020; Schuck et al., 2016; Seo & Lee, 2010).”

      Point 4 of public reviews and point 4 of recommendation to authors

      Broader neural involvement: While the focus on specific regions of interest (ROIs) provided clear results, future studies could benefit from a whole-brain analysis approach to provide a more comprehensive understanding of the neural networks involved in credit assignment… Also, given the ROI constraint of the analysis, the other neural structure may be involved in representing the task structure but not detected in the current analysis

      Given our strong a priori hypotheses about regions of interest (ROIs) in this study, we focused on these specific areas. This choice was based on theoretical and empirical grounds that guided our investigation. However, we thank the reviewer for pointing this out and agree that there could be other unexplored areas that are critical to credit-assignment which we did not examine. 

      We conducted the same searchlight decoding procedure on a whole brain map and corrected for multiple comparisons using TFCE. We found no significant regions of the brain in the “direct transition condition” but did find other significant regions in our information connectivity analysis of the “indirect transition condition”. In addition to replicating the effects in lOFC and HPC, we also found a region of mOFC which showed a strong correlation with pending choice in lFPC. It’s difficult to say whether this region is involved in credit assignment per se, because we did not see this region in the “direct transition condition” and so we cannot say that it is consistently related to this process. However, the mOFC is thought to be critical to representing the current task state (Schuck et al., 2016), and the task structure (Park et al., 2020). In our task, it could be a critical region for communicating how to assign credit given the more complex task structure of the “indirect transition condition” but more evidence would be needed to support this interpretation. 

      For now, we have added the results of this whole brain analysis to a new supplementary figure S7 (page 41), and all unthresholded maps have been deposited in a Neurovault repository, which is linked in the paper, for interested readers to assess.  

      Minor points:

      There are some missing and confusing details in the Figure reference in the main text. For example, references to Figure 3 are almost missing in the section "Pending item representations in FPl during indirect transitions predict credit assignment in lOFC". For readability, the authors should improve this point in this section and other sections.

      Thank you to the reviewer for pointing this out. We have now added references to Figure 3 on page 8:

      “Our analysis revealed a cluster of voxels specifically within the right lFPC ([x,y,z] = [28, 54, 8], t(19) = 3.74, pTFCE <0.05 ROI-corrected; left hemisphere all pTFCE > 0.1, Fig. 3A)”

      And on page 10: 

      Specifically, we found significant correlations in decoding distance between lFPC and bilateral lOFC ([x,y,z] = [-32,24, -22], t(19) = 3.81, [x,y,z] = [20, 38, -14], t(19) = 3.87, pTFCE <0.05 ROI corrected]) and bilateral HC ([x,y,z] = [-28, -10, -24], t(19) = 3.41, [x,y,z] = [22, -10, -24], t(19) = 4.21, pTFCE <0.05 ROI corrected]), Fig. 3C).

      Task instructions for the two conditions (direct and indirect) play important roles in the study. If possible, please include the following parts in the figures and descriptions in the introduction and/or results sections.

      We have now included a short description of the condition instructions beginning on page 5: 

      “Participants were instructed about which condition they were in with a screen displaying “Your latest choice” in the direct transition condition, and “Your previous choice” in the indirect condition.”

      And have modified Figure 1 to include the instructions in the title of each condition. We thought this to be the most parsimonious solution so that the choice options in the examples were not occluded. 

      The subject sample size might be slightly too small in the current standards. Please give some justifications.

      We originally selected the sample size for this study to be commensurate with previous studies that looked for similar behavioral and neural effects (see Boorman et al., 2016; Howard et al., 2015; Jocham et al., 2016). This has been mentioned in the “methods” section on page 24.  

      However, to be thorough, we performed a power analysis of this sample size using simulations based on an independently collected, unpublished data set. In this data set, 28 participants competed an associative learning task similar to the task in the current manuscript. We trained a classifier to decode causal choice option at the time of feedback, using the same searchlight and cross-validation procedures described in the current manuscript, for the same lateral OFC ROI. We calculated power for various sample sizes by drawing N participants with replacement 1000 times, for values of N ranging from 15 to 25. After sampling the participants, we tested for significant decoding for the causal choice within the subset of data, using smallvolume TFCE correction to correct for multiple comparisons. Finally, we calculated the proportion of these samples that were significant at a level of pTFCE <.05.  

      The results of this procedure show that an N of 20 would result in 84.2% power, which is slightly above the typically acceptable level of 80%. We have added the following sentences to the methods section on page 25: 

      “Using an independent, unpublished data set, we conducted a power analysis for the desire neural effect in lOFC. We found that this number of participants had 84% power to detect this effect (Fig. S8).” 

      We also added the following figure to the supplemental figures page (42):

      Reviewer 2:

      I have several concerns regarding the causality analyses in this study. While Multivariate analyses of information connectivity between regions are interesting and appear rigorous, they make some assumptions about the nature of the input data. It is unclear if fMRI with its poor temporal resolution (in addition to possible region-specific heterogeneity in the readouts), can be coupled with these casual analysis methods to meaningfully study dynamics on a decision task where temporal dynamics is a core component (i.e., delay). It would be helpful to include more information/justification on the methods for inferring relationships across regions from fMRI data. Along this line, discussing the reported findings in light of these limitations would be essential.

      We agree that fMRI is limited for capturing fast neural dynamics, and that it can be difficult to separate events that occur within a few seconds. However, we designed the information connectivity analysis to maximally separate the events in question – the representations of the causal choice being held in a pending state, and the representation of the causal choice during credit assignment. These events were separated by at least 10 seconds and by 15 seconds on average, which is commensurate with recommended intervals for disentangling information in such analysis (Mumford et al., 2012, 2014, also see van Loon et al., 2018, eLife; as example of fluctuations in decodability over time). This feature of our task design may not have been clear because information connectivity analyses are typically performed in the same task period. We clarify this point on page 32:

      “Note that the decoding fidelity metric at each time point represents the decodability of the same choice at different phases of the task. These phases were separated by at least 10 seconds and 15 seconds on average, which can be sufficient for disentangling unique activity (Mumford et al., 2012, 2014).”

      However, we agree with the reviewer that the limitations of fMRI make it difficult to precisely determine how roles of the OFC and lFPC might change over time, and whether other regions may contribute to information transfer at times scales which cannot be detected by fMRI. Further, we do not wish to imply causality between lFPC and lOFC (something we believe we do not claim in the paper), only that information strength in lFPC predicts subsequent strength of the same information in the OFC and HC. We have clarified this limitation on page 14:

      “Although we show evidence that lFPC is involved in maintaining specific content about causal choices during interim choices, the limited temporal resolution of fMRI makes it difficult to tell if other regions may be supporting the learning processes at timescales not detectable in the BOLD response. Thus, it is possible that the network of regions supporting credit assignment in complex tasks may be much larger. Our results provide a critical first stem in discerning the nature of interactions between cognitive subsystems that make different contributions to the learning process in these complex tasks.”

      Reviewer 3:  

      Point 1 of public reviews:

      They do find (not surprisingly) that the one-back task is harder. It would be good to ensure that the reason that they had more trouble detecting direct HC & lOFC effects on the harder task was not because the task is harder and thus that there are more learning failures on the harder oneback task. (I suspect their explanation that it is mediated by FPl is likely to be correct. But it would be nice to do some subsampling of the zero-back task [matched to the success rate of the one-back task] to ensure that they still see the direct HC and lOFC there).

      We would like to thank the reviewer for this comment and agree that the “indirect transition condition” is more difficult than the direct transition condition. However, in this task it is difficult to have an explicit measure of learning failures per se because the “correctness” of a choice is to some extent subjective (i.e., based on the gift card preference and the computational model). We could infer when learning failures occur through the computational model by looking at trials in which participants made choices that the model would consider improbable, (i.e., non-reward maximizing) while accounting for outcome preference. However, there are also a myriad of other possible explanations for these choices, such as exploratory/confirmatory strategies, lapses in attention etc. Thus, we could not guarantee that the two conditions would be uniquely matched in difficulty with specific regard to learning even if we subsampled these trials. We feel it would be better left to future experiments which can specifically compare learning failures to tackle this issue. We have now addressed this point when discussing the model on page 31:  

      “Note that learning failures are not trivial to identify in our paradigm and model, because every choice is based on a participant’s preference between gift card outcomes, and the ability of the computational model to accurately estimate participants’ beliefs in the stimulus-outcome transition probabilities.”

      Point 2 of public reviews:

      The evidence that they present in the main text (Figure 3) that the HC and lOFC are mediated by FPl is a correlation. I found the evidence presented in Supplemental Figure 7 to be much more convincing. As I understand it, what they are showing in SF7 is that when FPl decodes the cue, then (and only then) HC and lOFC decode the cue. If my understanding is correct, then this is a much cleaner explanation for what is going on than the secondary correlation analysis. If my understanding here is incorrect, then they should provide a better explanation of what is going on so as to not confuse the reader.

      SF7 (now Figures 3C and 3D) does show that positive decoding in the HC and lOFC are more likely to occur when there is positive decoding in lFPC. However, the analysis shown in these figures are only meant to be control analysis to further characterise what is being captured, but not necessarily implied, by the information connectivity analysis. For example, in principle the classifier might never correctly decode a choice label in the lOFC or HC while still getting closer to the hyperplane when the lFPC patterns are correctly decoded. This would lead to a positive correlation, but a difficult to interpret result since patterns in lOFC and HPC are incorrect. Figure SF7A (now Fig. 3C) shows that this is not the case. Lateral OFC and HC have higher than chance positive decoding when lFPC has positive decoding. Figure SF7B (now Fig. 3D) shows that we can decode that information even if a new hyperplane is constructed. However, both cases have less information about the relationship between these regions because they do not include the trials where lOFC/HC and lFPC classifiers were incorrect at the same time. The correlation in Figure 3B includes these failures, giving a more wholistic picture of the data. We therefore try to concisely clarify this point on page 10:

      “These signed distances allow us to relate both success in decoding information, as well as failures, between regions.”

      And here on page 10: 

      “Subsequent analyses confirmed that this effect was due to these regions showing a significant increase in positive (correct) decoding in trials where pending information could be positively (correctly) decoded in lFPC, and not simply due to a reduction in incorrect information fidelity (see Fig. 3C & 3D).”

      And have integrated these figures on page 9:

      Point 3 of public reviews:

      I like the idea of "credit spreading" across trials (Figure 1E). I think that credit spreading in each direction (into the past [lower left] and into the future [upper right]) is not equivalent. This can be seen in Figure 1D, where the two tasks show credit spreading differently. I think a lot more could be studied here. Does credit spreading in each of these directions decode in interesting ways in different places in the brain?

      We agree that this an interesting question because each component of the off diagonal (upper and lower triangles) may reflect qualitatively different processes of credit spreading. However, we believe this analysis is difficult to carry out with the current dataset for two reasons. First, we designed this study to ask specifically about the information represented in key credit assignment regions during precise credit assignment, meaning we did not optimize the task to induce credit spreading at any point. Indeed, our efforts to train participants on the task were to ensure they would correctly assign credit as much as possible. Figure 1F shows that the regression coefficients representing credit spreading in each condition are near zero (in the negative direction), with little individual differences compared to the credit assignment coefficients. Thus, any analysis aiming to test for credit spreading would unfortunately be poorly powered. Studies such as Jocham et al. (2016), with more variability in causal structures, or studies with ambiguity about the causal structure by dissolving the typical trial structure would be better suited to address this interesting question. The second reason why such an analysis would be challenging is that due to our design, it is difficult to intuitively determine what kind of information should be coded by neural regions when credit spreads to the upper diagonal, since these cells reflect current outcomes that are being linked to future choices. 

      Replace all the FPl with LFPC (lateral frontal polar cortex)

      We have no replace “FPl” with “LFPC” throughout the text and figures

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Comment of Review of Revised Version:

      Although the authors have partly corrected the manuscript by removing the mislabeling in their Co-IP experiments, my primary concern on the actual functional connotations and direct interaction between PA28y and C1QBP still remains unaddressed. As already mentioned in my previous review, since the core idea of the work is PA28y's direct interaction with C1QBP, stabilizing it, the same should be demonstrated in a more convincing manner.

      My other observation on the detection of C1QBP as a doublet has been addressed by usage of anti-C1QBP Monoclonal antibody against the polyclonal one used before. C1QBP doublets have not been observed in the present case.

      The authors have also worked on the presentation of the background by suitably modifying the statements and incorporating appropriate citations.

      However, the authors are requested to follow the recommendations provided to them by the reviewers to address the major concerns.

      Thank you very much for your comments. We appreciate your concerns regarding the need for more direct evidence to support the stabilizing interaction between PA28γ and C1QBP. In response to your feedback, we have taken additional steps to provide more convincing evidence of this interaction.

      To complement our existing pull-down and Co-IP experiments, we utilized AlphaFold 3 to predict the three-dimensional structure of the PA28γ-C1QBP complex. The predicted model reveals specific residues and interfaces that are likely involved in the direct interaction between PA28γ and C1QBP. Our analysis indicates that this interaction may depend on amino acids 1-167 and 1-213 of C1QBP (Revised Appendix Figure 1E-H). Furthermore, aspartate (ASP), as the 177th amino acids of PA28γ, was predicted to interact with the 76th amino acid threonine (THR) and the 78th amino acid glycine (GLY) of C1QBP (Revised Appendix Figure 1I). This structural insight was further validated by our immunoprecipitation experiments (Revised Figure 1J). These findings provide a molecular basis for the observed stabilizing effect and suggest potential mechanisms by which PA28γ influences C1QBP stability. Specifically, the identified interaction sites offer clues into how PA28γ may stabilize C1QBP at the molecular level.

      Furthermore, we performed proximity ligation assays (PLA) to detect in situ interactions between PA28γ and C1QBP at the single-cell level. PLA results clearly demonstrate the presence of PA28γ-C1QBP complexes within cells, providing direct evidence of their physical interaction (Revised Figure 1D). This approach overcomes some of the limitations associated with traditional IP experiments and confirms the direct nature of the interaction.

      In summary, the integration of AlphaFold 3 predictions, PLA data, and our previous Pull-down and Co-IP experiments provides robust and direct evidence for a stable interaction between PA28γ and C1QBP. We believe that these additional findings significantly reinforce our conclusions and effectively address the concerns raised by the reviewers. Once again, thank you for your valuable feedback, which has been instrumental in refining and enhancing our study.

      Reviewer #2 (Public review):

      Comment of Review of Revised Version:

      Weaknesses:

      Many data sets are shown in figures that cannot be understood without more descriptions either in the text or the legend, e.g., Fig. 1A. Similarly, many abbreviations are not defined.

      The revision addressed these issues.

      Some of the pull-down and coimmunoprecipitation data do not support the conclusion about the PA28g-C1QBP interaction. For example, in Appendix Fig. 1B the Flag-C1QBP was detected in the Myc beads pull-down when the protein was expressed in the 293T cells without the Myc-PA28g, suggesting that the pull-down was not due to the interaction of the C1QBP and PA28g proteins. In Appendix Fig. 1C, assume the SFB stands for a biotin tag, then the SFB-PA28g should be detected in the cells expressing this protein after pull-down by streptavidin; however, it was not. The Western blot data in Fig. 1E and many other figures must be quantified before any conclusions about the levels of proteins can be drawn.

      The revision addressed these problems.

      The immunoprecipitation method is flawed as it is described. The antigen (PA28g or C1QBP) should bind to the respective antibody that in turn should binds to Protein G beads. The resulting immunocomplex should end up in the pellet fraction after centrifugation, and analyzed further by Western blot for coprecipitates. However, the method in the Appendix states that the supernatant was used for the Western blot.

      The revision corrected this method.

      To conclude that PA28g stabilizes C1QBP through their physical interaction in the cells, one must show whether a protease inhibitor can substitute PA28q and prevent C1QBP degradation, and also show whether a mutation that disrupt the PA28g-C1QBP interaction can reduce the stability of C1QBP. In Fig. 1F, all cells expressed Myc-PA28g. Therefore, the conclusion that PA28g prevented C1QBP degradation cannot be reached. Instead, since more Myc-PA28g was detected in the cells expressing Flag-C1QBP compared to the cells not expressing this protein, a conclusion would be that the C1QBP stabilized the PA28g. Fig. 1G is a quantification of a Western blot data that should be shown.

      The binding site for PA28g in C1QBP was mapped to the N-terminal 167 residues using truncated proteins. One caveat would be that some truncated proteins did not fold correctly in the absence of the sequence that was removed. Thus, the C-terminal region of the C1QBP with residues 168-283 may still bind to the PA29g in the context of full-length protein. In Fig. 1I, more Flag-C1QBP 1-167 was pull-down by Myc-PA28g than the full-length protein or the Flag-C1QBP 1-213. Why?

      The interaction site in PA28g for C1QBP was not mapped, which prevents further analysis of the interaction. Also, if the interaction domain can be determined, structural modeling of the complex would be feasible using AlphaFold2 or other programs. Then, it is possible to test point mutations that may disrupt the interaction and if so, the functional effect.

      The revision added AlphaFold models for the protein interaction. However, the models were not analyzed and potential mutations that would disrupt the interact were not predicted, made and tested. The revision did not addressed the request for the protease inhibitor.

      Thank you for your insightful comments regarding the binding site of PA28γ in C1QBP. We appreciate your concern about the potential misfolding of truncated proteins and the possible interaction between the C-terminal region (residues 168-283) of C1QBP and PA28γ in the context of full-length protein.

      To address these concerns, we have conducted additional analyses and experiments to provide a more comprehensive understanding of the interaction between PA28γ and C1QBP. Using AlphaFold 3, we predicted the three-dimensional structure of the PA28γ-C1QBP complex. The model reveals specific residues and interfaces that are likely involved in the direct interaction between PA28γ and C1QBP. Notably, our structural analysis indicates that the interaction may primarily depend on amino acids 1-167 and 1-213 of C1QBP (Revised Appendix Figure 1E-H). Furthermore, aspartate (ASP), as the 177th amino acids of PA28γ, was predicted to interact with the 76th amino acid threonine (THR) and the 78th amino acid glycine (GLY) of C1QBP (Revised Appendix Figure 1I). This prediction supports the idea that the N-terminal region of C1QBP is crucial for its interaction with PA28γ. Regarding the observation in old Figure 1I (Revised Figure 1J), where more Flag-C1QBP 1-167 was pulled down by Myc-PA28γ compared to the full-length protein or Flag-C1QBP 1-213, we believe this can be explained by several factors:

      A. The truncation of C1QBP to residues 1-167 may expose key interaction sites that are partially obscured in the full-length protein. This enhanced accessibility could lead to stronger binding affinity and higher pull-down efficiency.

      B. While it is possible that some truncated proteins do not fold correctly, our data suggest that the N-terminal fragment (1-167) retains sufficient structural integrity to interact effectively with PA28γ. The increased pull-down of this fragment suggests that it captures the essential elements required for binding.

      C. The C-terminal region (168-283) might exert steric hindrance or allosteric effects on the N-terminal binding site in the context of the full-length protein. This interference could reduce the overall binding efficiency, leading to less pull-down of full-length C1QBP compared to the truncated version.

      Compared with the control group, the presence of Myc-PA28γ significantly increased the expression level of Flag-C1QBP (r Revised Figure 1G). Gray value analysis showed that in cells transfected with Myc-PA28γ, the decay rate of Flag-C1QBP was significantly slower than that of the control group (Revised Figure 1H), suggesting that PA28γ can delay the protein degradation of C1QBP and stabilize its protein level. This indicates that an increase in the level of PA28γ protein can significantly enhance the expression level of C1QBP protein, while PA28γ can slow down the degradation rate of C1QBP and improve its stability. In addition, our western blot analysis also proved that PA28γ could still prevent the degradation of C1QBP under the action of proteasome inhibitor MG-132 (Revised Appendix Figure 1D). Moreover, PA28γ could not stabilize the mutation of C-terminus of C1QBP (amino acids 94-282), which was not the interaction domain of PA28γ-C1QBP (Revised Figure 1K).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Barlow and coauthors utilized the high-parameter imaging platform of CODEX to characterize the cellular composition of immune cells in situ from tissues obtained from organ donors with type 1 diabetes, subjects presented with autoantibodies who are at elevated risk, or non-diabetic organ donor controls. The panels used in this important study were based on prior publications using this technology, as well as a priori and domain-specific knowledge of the field by the investigators. Thus, there was some bias in the markers selected for analysis. The authors acknowledge that these types of experiments may be complemented moving forward with the inclusion of unbiased tissue analysis platforms that are emerging that can conduct a more comprehensive analysis of pathological signatures employing emerging technologies for both high-parameter protein imaging and spatial transcriptomics.

      Strengths:

      In terms of major findings, the authors provide important confirmatory observations regarding a number of autoimmune-associated signatures reported previously. The high parameter staining now increases the resolution for linking these features with specific cellular subsets using machine learning algorithms. These signatures include a robust signature indicative of IFN-driven responses that would be expected to induce a cytotoxic T-cell-mediated immune response within the pancreas. Notable findings include the upregulation of indolamine 2,3-dioxygenase-1 in the islet microvasculature. Furthermore, the authors provide key insights as to the cell:cell interactions within organ donors, again supporting a previously reported interaction between presumably autoreactive T and B cells.

      Weaknesses:

      These studies also highlight a number of molecular pathways that will require additional validation studies to more completely understand whether they are potentially causal for pathology, or rather, epiphenomenon associated with increased innate inflammation within the pancreas of T1D subjects. Given the limitations noted above, the study does present a rich and integrated dataset for analysis of enriched immune markers that can be segmented and annotated within distinct cellular networks. This enabled the authors to analyze distinct cellular subsets and phenotypes in situ, including within islets that peri-islet infiltration and/or intra-islet insulitis.

      Despite the many technical challenges and unique organ donor cohort utilized, the data are still limited in terms of subject numbers - a challenge in a disease characterized by extensive heterogeneity in terms of age of onset and clinical and histopathological presentation. Therefore, these studies cannot adequately account for all of the potential covariates that may drive variability and alterations in the histopathologies observed (such as age of onset, background genetics, and organ donor conditions). In this study, the manuscript and figures could be improved in terms of clarifying how variable the observed signatures were across each individual donor, with the clear notion that non-diabetic donors will present with some similar challenges and variability.

      Thank you to all reviewers and editors for their thoughtful and constructive engagement with our manuscript. We agree that patient heterogeneity and the sample size limited the impact of this study. In the future, more cases with insulitis will become available and spatial technologies will become more scalable.

      Given these constraints, we have made a significant effort to illustrate the individual heterogeneity of the disease by using the same color for each nPOD case ID throughout the manuscript and showing individual donors whenever feasible (e.g. Figures 1D-E, 2C, 2I, 3E, 3G, 4B-C, 5C, and 5F). For figures related to insulitis, we do not typically include non-T1D controls since they did not have any insulitis (Figure 2C). We also explicitly discuss the differences in the two autoantibody-positive, non-T1D cases: one closely resembled the T1D cases with respect to multiple features and the other more closely resembled the non-T1D, autoantibody-negative controls.

      Reviewer #2 (Public review):

      Summary:

      The authors aimed to characterize the cellular phenotype and spatial relationship of cell types infiltrating the islets of Langerhans in human T1D using CODEX, a multiplexed examination of cellular markers

      Strengths:

      Major strengths of this study are the use of pancreas tissue from well-characterized tissue donors, and the use of CODEX, a state-of-the-art detection technique of extensive characterization and spatial characterization of cell types and cellular interactions. The authors have achieved their aims with the identification of the heterogeneity of the CD8+ T cell populations in insulitis, the identification of a vasculature phenotype and other markers that may mark insulitis-prone islets, and the characterization of tertiary lymphoid structures in the acinar tissue of the pancreas. These findings are very likely to have a positive impact on our understanding (conceptual advance) of the cellular factors involved in T1D pathogenesis which the field requires to make progress in therapeutics.

      Weaknesses:

      A major limitation of the study is the cohort size, which the authors directly state. However, this study provides avenues of inquiry for researchers to gain further understanding of the pathological process in human T1D.

      Thank you for your analysis. We point the reader to our above description of our efforts to faithfully report the patient variability despite the small sample size.

      Reviewer #3 (Public review):

      Summary:

      The authors applied an innovative approach (CO-Detection by indEXing - CODEX) together with sophisticated computational analyses to image pancreas tissues from rare organ donors with type 1 diabetes. They aimed to assess key features of inflammation in both islet and extra-islet tissue areas; they reported that the extra-islet space of lobules with extensive islet infiltration differs from the extra-islet space of less infiltrated areas within the same tissue section. The study also identifies four sub-states of inflamed islets characterized by the activation profiles of CD8+T cells enriched in islets relative to the surrounding tissue. Lymphoid structures are identified in the pancreas tissue away from islets, and these were enriched in CD45RA+ T cells - a population also enriched in one of the inflamed islet sub-states. Together, these data help define the coordination between islets and the extra-islet pancreas in the pathogenesis of human T1D.

      Strengths:

      The analysis of tissue from well-characterized organ donors, provided by the Network for the Pancreatic Organ Donor with Diabetes, adds strength to the validity of the findings.

      By using their innovative imaging/computation approaches, key known features of islet autoimmunity were confirmed, providing validation of the methodology.

      The detection of IDO+ vasculature in inflamed islets - but not in normal islets or islets that have lost insulin-expression links this expression to the islet inflammation, and it is a novel observation. IDO expression in the vasculature may be induced by inflammation and may be lost as disease progresses, and it may provide a potential therapeutic avenue.

      The high-dimensional spatial phenotyping of CD8+T cells in T1D islets confirmed that most T cells were antigen-experienced. Some additional subsets were noted: a small population of T cells expressing CD45RA and CD69, possibly naive or TEMRA cells, and cells expressing Lag-3, Granzyme-B, and ICOS.

      While much attention has been devoted to the study of the insulitis lesion in T1D, our current knowledge is quite limited; the description of four sub-clusters characterized by the activation profile of the islet-infiltrating CD8+T cells is novel. Their presence in all T1D donors indicates that the disease process is asynchronous and is not at the same stage across all islets. Although this concept is not novel, this appears to be the most advanced characterization of insulitis stages.

      When examining together both the exocrine and islet areas, which is rarely done, authors report that pancreatic lobules affected by insulitis are characterized by distinct tissue markers. Their data support the concept that disease progression may require crosstalk between cells in the islet and extra-islet compartments. Lobules enriched in β-cell-depleted islets were also enriched in nerves, vasculature, and Granzyme-B+/CD3- cells, which may be natural killer cells.

      Lastly, authors report that immature tertiary lymphoid structures (TLS) exist both near and away from islets, where CD45RA+ CD8+T cells aggregate, and also observed an inflamed islet-subcluster characterized by an abundance of CD45RA+/CD8+ T cells. These TLS may represent a point of entry for T cells and this study further supports their role in islet autoimmunity.

      Weaknesses:

      As the authors themselves acknowledge, the major limitation is that the number of donors examined is limited as those satisfying study criteria are rare. Thus, it is not possible to examine disease heterogeneity and the impact of age at diagnosis. Of 8 T1D donors examined, 4 would be considered newly diagnosed (less than 3 months from onset) and 4 had longer disease durations (2, 2, 5, and 6 years). It was unclear if disease duration impacted the results in this small cohort. In the introduction, the authors discuss that most of the pancreata from nPOD donors with T1D lack insulitis. This is correct, yet it is a function of time from diagnosis. Donors with shorter duration will be more likely to have insulitis. A related point is that the proportion of islets with insulitis is low even near diagnosis, Finally, only one donor was examined that while not diagnosed with T1D, was likely in the preclinical disease stage and had autoantibodies and insulitis. This is a critically important disease stage where the methodology developed by the investigators could be applied in future efforts.

      While this was not the focus of this investigation, it appears that the approach was very much immune-focused and there could be value in examining islet cells in greater depth using the methodology the authors developed.

      Additional comments:

      Overall, the authors were able to study pancreas tissues from T1D donors and perform sophisticated imaging and computational analysis that reproduce and importantly extend our understanding of inflammation in T1D. Despite the limitations associated with the small sample size, the results appear robust, and the claims well-supported.

      The study expands the conceptual framework of inflammation and islet autoimmunity, especially by the definition of different clusters (stages) of insulitis and by the characterization of immune cells in and outside the islets.

      Thank you for your feedback. We agree that it would be very informative to expand on our analysis of autoantibody-positive cases and look at additional non-immune features. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Do any of the observed cellular or structural features correlate with age of onset or disease duration? While numbers of subjects are low, considering these as continuous variables may clarify some of the findings.

      Thank you for the suggestion. In Supplemental Figure 5B-C, we plotted the key immune signatures from the manuscript against the diabetes duration and age of onset.

      (2) The IDO is an interesting observation and has prior support in the literature. The authors speculate this may be induced as a feature of IFNg expressed by lymphocytes in the local microenvironment. Can any of these concepts be further validated by staining for transcription factors or surrogate downstream markers associated with Th1 skewing (e.g., Tbet, CXCR3, etc)?

      The only other interferon-stimulated gene in our panel is HLA-ABC. We updated Supplemental Figure 2F to include HLA-ABC expression in IDO- and IDO+ islets (within the “Inflamed” group). Consistent with the hypothesis that IDO is stimulated by interferon, HLA-ABC is also significantly higher in IDO+ islets than IDO- islets. PDL1, another interferon-stimulated gene. was included in the panel but we did not detect any signal. This antibody was very weak during testing in the tonsil, so we couldn’t confidently claim that PDL1 was not expressed.

      (3) The authors discuss the potential that CD45RA may be expressed in Temra populations. This could use additional clarification and a distinction from Tscm if possible.

      Unfortunately, we did not have the appropriate markers to distinguish naïve, TEMRA, or Tscm cells from each other. We updated the text in the discussion to include this consideration (Line 432).

      (4) Supplemental Figure 5 is not informative in the current display.

      Thank you, we replotted these data.

      (5) Supplemental Table 1 could be expanded with additional metadata of interest, including the genetic features of the donors (e.g, class II diplotype and GRS2 values) that are published and available in the nPOD program.

      Some genetic data are only available to nPOD investigators. We think it is more appropriate to request the data directly from them.

      Reviewer #2 (Recommendations for the authors):

      (1) I had only a few specific comments. I think the statement in Lines 317 and 318 is too strong. It implies that each lobe is always homogeneous for having all islets with insulitis or not having insulitis. Some lobes are certainly enriched for islets with insulitis but insulin+ islets without insulitis in some lobes in some T1D donors are seen. Please soften that statement.

      We apologize for our lack of clarity. We have edited the text (line 305-309) to better articulate that organ donors fall on a spectrum. Thank you for raising this point as we think the motivation for our analysis is much clearer after these revisions.

      (2) Please cite and discuss In't Veld Diabetes 20210 PMID: 20413508. While the main point of the paper is that there is beta cell replication after prolonged life support, another observation is that there is a correlation between prolonged life support and CD45+ cells in the pancreas parenchyma. This might indicate that not all immune cells in the parenchyma are T1D associated in donors with T1D.

      Thank you, we have added this citation to our discussion of the importance of duration of stay in the ICU (Line 471).

      (3) Can you rule out that CD46RA+/CD69+ CD8+ T cells in the islets are not TSCM?

      (See above)

      Reviewer #3 (Recommendations for the authors):

      Similar studies in experimental models may afford increased opportunity to evaluate the significance of these findings and model their potential relevance for disease staging and therapeutic targeting.

      We agree that the lack of experimental data limits the ability to interpret and validate the significance of our findings. We hope that our study motivates and helps inform such experiments.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife Assessment<br /> …. While intuitive, the model's underlying issue is grouping many factors under "variance in reproductive success" without explicitly modeling the molecular processes. This limitation, …, provides incomplete support for the authors' claim that the observed paradoxical patterns in rRNA genes can largely be explained by homogenizing processes, such as gene conversion, unequal crossover and replication slippage.

      This second paper addresses the genetic drift in multi-copy gene systems using rRNA genes as an example. Note that genetic drift happens in two stages here – within individuals and between individuals while the drift mechanisms are very different between the two stages. We now reply to the editors’ decision that it would be more rigorous to model each molecular process, than to lump all stochastic forces into V(K).  We respond to this criticism on three fronts.

      First, for molecular evolutionists, there is NO NEED to model the detailed molecular processes.  This is because we are only interested in knowing the totality of the stochastic variations.  Interesting biological forces such as selection and meiotic drive are masked by such random forces. Our objective is precisely to lump all noises into a quantity that can be estimated.

      Second, the homogenization process is the bulk, if not the totality of the within-individual random forces (i.e,, genetic drift). The criticism of incomplete support for drift as a sufficient account of the observations is curious because we did conclude that genetic drift is an insufficient explanation of the human data.  Since drift only influences fixation time, which can have a significant effect in short-term evolution (as shown in Fig 2), but it does not affect fixation rate itself. In contrast, selection influences the both. Thus, we can define the limitation of drift in evolutionary process. Even if the speed of drift-driven fixation is only a few generations, it is still too little for the human-chimpanzee divergence comparisons. In contrast, the speed of genetic drift in mice, as extrapolated from the polymorphism data, is sufficient to drive the divergence between M. m. domesticus and Mus spretus. The criticism appears to be that unbiased gene conversion, unequal crossover and replication slippage together may be insufficient to account for the observations. Since the contribution of each of these three forces is not central to our goal of filtering out the total contributions, we only conclude that the totality of within-individual drift in mice is sufficient to explain the data.

      Third, even if we really want to dissect the molecular processes, previous attempts by prominent theorists like Tom Nagylaki and Tomoko Ohta could only model a small subset of such processes.  In fact, Ohta often lumps a few of these forces into one process. More importantly, if we want to tackle other systems like viruses and mitochondria, we will have to develop a new set of theories for each molecular process.  V(K) can take care of all such diverse systemes.  In short, genetic drift is just noises and our goal is to quantify them in total across diverse systmes.  By filtering out noises, we will be able to move on to something more important.

      We now briefly comment on the WF models in relation to multi-gene systems. For example, in the case SARS-CoV-2, there are millions of virions in each patient among millions of patients. It is not possible to know what Ne acaully means in the WF modesl. Also, the rDNA population in each individual is not the sub-populations of the WF models.  After all, the mechanisms of genetic drift within individuals by the homogenization processes are entirely different from the genetic drift between individuals.  For a comparison, we published several papers (cited in #2) using the Haldane model to estimate the strength of genetic drift. It is also important to note that the parameters and assumptions of WF model cannot fully capture the evolutionary dynamics of the multi-copy genes.

      … ., along with insufficient consideration of technical challenges in alignment and variants calling, provides incomplete support for the authors' claim …

      Before delving into the technical details, we would like to summarize our defense. First, all rRNA gene copies belong in a pseudo-population, due to the homogenization process. The concept of specific locus with specific variants does not apply. Second, the levels of within-individual and within-species variation is so low that sequence alignment is not a problem at all. Third, thanks to the large number of sequence reads, occasional sequence errors (rarely encountered) should have minimal effects on the analyses.  Now the technical details:

      Regarding the concerns about the alignment and variant calling, we would like to clarify our methodology. While we acknowledge the technical challenges inherent in alignment and variant calling, particularly with respect to orthologous alignments to distinguish different copies, it is important to note that rDNA copies are subject to homogenization processes, meaning that there is no orthology among rDNA copies. Due to the high sequence similarity and frequent genetic exchange among rDNA units within species, we used the species-specific rDNA reference sequence for variant calling. We directly utilized the raw read depth from all rDNA copies within individuals to calculate the site frequency. For each site, we focused on the frequency of the major allele to calculate nucleotide diversity using the 2p(1-p), where p represents the frequency of the major allele. This approach helps capture genetic variation while minimizing the impact of alignment or variant calling errors, which primarily affect low-frequency variants (e.g., 0.800A, 0.199T, 0.001C, with A being the major allele). As for the divergence sites between species, we defined  FST = 0.8 as a cutoff (roughly, when a mutant is > 0.95 in frequency in one species and < 0.05 in the other, FST would be > 0.80.),  which is less likely to be influenced by low-frequency polymorphic sites within species.We believe this method is more appropriate for estimating genetic diversity at rDNA than traditional variant calling pipelines designed to detect homozygotes and heterozygotes.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife Assessment (divided into 3 parts)

      This study presents a useful modification of a standard model of genetic drift by incorporating variance in reproductive success, claiming to address several paradoxes in molecular evolution. ……

      It is crucial to emphasize that our model is NOT a modification of the standard model. The Haldane model, which is generalized here for population regulation, is based on the branching process. The Haldane model and the WF model which is based on population sampling are fundamentally different. We referred to our model as the integrated WF-H model because the results obtained from the WF model over the last 90 years are often (but not always) good approximations for the Haldane model. The analogy would be the comparisons between the Diffusion model and the Coalescence model. Obviously, the results from one model are often good approximations for the other.  But it is not right to say that one is a useful modification of the other.

      We realize that it is a mistake to call our model the integrated WFH model, thus causing confusions over two entirely different models. Clearly, the word “integrated” did not help. We have now revised the paper by using the more accurate name for the model – the Generalized Haldane (GH) model. The text explains clerarly that the original Haldane model is a special case of the GH model.

      Furthermore, we present the paradoxes and resolve them by the GH model.  We indeed overreached by claiming that WF models could not resolve them. Whether the WF models have done enough to resolve the paradoxes or at least will be able to resolve them should not be a central point of our study. Here is what we state at the end of this study.:

      “We understand that further modifications of the WF models may account for some or all of these paradoxes. However, such modifications have to be biologically feasible and, if possible, intuitively straightforward. Such possible elaborations of WF models are beyond the scope of this study. We are only suggesting that the Haldane model can be extensively generalized to be an alternative approach to genetic drift. The GH model attempts to integrate population genetics and ecology and, thus, can be applied to genetic systems far more complex than those studied before. The companion study is one such example.”

      ….. However, some of the claimed "paradoxes" seem to be overstatements, as previous literature has pointed out the limitations of the standard model and proposed more advanced models to address those limitations….

      As stated in the last paragraph of the paper, it is outside of the scope of our study to comment on whether the earlier WF models can resolve these paradoxes.  So, all such statements have been removed or at least drastically toned down in the formal presentation.  That said, editors and reviewers may ask whether we are re-inventing the wheels.  The answers are as follows:

      First, two entirely different models reaching the same conclusion are NOT the re-invention of wheels. The coalescence theory does not merely rediscover the results obtained by the diffusion models. The process of obtaining the results is itself a new invention.  This would lead to the next question: is the new process more rigorous and more efficient?  I think the Haldane model is indeed more efficient in comparisons with the very complex modifications of the WF models. 

      Second, we are not sure that the paradoxes have been resolved, or even can be resolved.  Note that these skepticisms have been purged from the formal presentation. Thefore, I am presenting the arguments outside of the paper for a purely intellectual discourse. Below, please allow us to address the assertions that the WF models can resolve the paradoxes. 

      The first paradox is that the drift strength in relation to N is often opposite of the WF model predictions.  Since the WF models (standard or modified) do not generate N from within the model, how can it resolve the paradox?  In contrast, the Generalized Haldane model generates N within the model. It is the regulation of N near the carrying capacity that creates the paradox – When N increases, drift also increases.

      The second paradox that the same locus experiences different drifts in males and females is accepted by the reviewers.  Nevertheless, we would like to point out that this second paradox echoed the first one as newly stated in the Discussion section “The second paradox of sex-dependent drift is about different V(K)’s between sexes (generally Vm > Vf) but the same E(K) between them. In the conventional models of sampling, it is not clear what sort of biological sampling scheme could yield V(K) ≠ E(K), let alone two separate V(K)’s with one single E(K). Mathematically, given separate K distributions for males and females, it is unlikely that E(K) for the whole population could be 1, hence, the population would either explode in size or decline to zero. In short, N regulation has to be built into the genetic drift model as the GH model does to avoid this paradox.”

      The third paradox stems from the fact that drift is operating even for genes under selection. But then the drift strength, 2s/V(K) for an advantage of s, is indepenent of N or Ne. Since the determinant of drift strength in the WF model is ALWAYS Ne, how is Paradox 3 not a paradox for the WF model?

      The 4th paradox about multi-copy gene systems is the subject of the companion paper (Wang et al.). Note that the WF model cannot handle systems of evolution that experience totally different sorts of drift within vs. between hosts (viruses, rDNAs etc).  This paradox can be understood by the GH model and and will be addressed in the next paper.

      While the modified model presented in this paper yields some intriguing theoretical predictions, the analysis and simulations presented are incomplete to support the authors' strong claims, and it is unclear how much the model helps explain empirical observations.

      The objections appear to be that our claims of “paradox resolution” being too strong.  We interpret this objection is based on the view (which we agree) that these paradoxes are intrisicallly difficult to resolve by the WF models. Since our model has been perceived to be a modified WF model, the claim of resolution is clearly too strong.  However, the GH model is conceptually and operationally entirely different from the WF models as we have emphasized above. In case our reading of the editorial comments is incorrect, would it be possible for some clarifications on the nature of “incomplete support”?  We would be grateful for the help.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The significance of Notch in liver cancer has been inconsistently described to date. The authors conduct a PDX screen using JAG1 ab and identify 2 sensitive tumor models. Further characterization with bulk RNA seq, scRNA seq, and ATAC seq of these tumors was performed.

      Strengths:

      The reliance on an extensive panel of PDXs makes this study more definitive than prior studies.

      Gene expression analyses seem robust.

      Identification of a JAG1-dependent signature associated with hepatocyte differentiation is interesting.

      Weaknesses:

      The introduction is rather lengthy and not entirely accurate. HCC is a single cancer type/histology. There may be variants of histology (allusion to "mixed-lineage" is inaccurate as combined HCC-CCa are not conventionally considered HCC and are not treated as HCC in clinical practice as they are even excluded from HCC trials), but any cancer type can have differences in differentiation. Just state there are multiple molecular subtypes of this disease.

      We will shorten the Introduction, in part by eliminating the discussion of histological variation in HCC and focusing on the molecular classifications.

      There is minimal data on the PDXs, despite this being highlighted throughout the text. Clinical and possibly some molecular characterization of these cancers should be provided. It is also odd that the authors include only 35 HCC and then a varied sort of cancer histologies, which is peculiar given their prior statements regarding the heterogeneity of HCC.

      We agree that clinical and molecular characterizations of the PDX models would be helpful and will follow up with the relevant contract research organization to determine what characterization is available.

      Regarding the liver cancer PDX panel, we suggest that a major strength of the manuscript is the large number of HCC models that were tested (the reviewer also notes the importance of the “extensive” panel); thus, we are a bit confused by the reference to “only 35 HCC”.  To clarify the choice of models in the PDX screen, it may help to put the screen in historical perspective as the project unfolded.  In retrospect, our preliminary efficacy studies using only two HCC models were fortunate to identify the highly sensitive model, LIV78.  To go beyond the simple diagnostic hypothesis that focused on Jag1, Notch2 and Hes1 expression, we took an unbiased approach to discover features linked to Notch dependence.  This approach meant running an efficacy screen in all liver cancer models that were up and running at our chosen research organization, without biased selection criteria.  That set of models is what is represented in the “pre-clinical screen” in Fig. 1B

      "super-responder" is not a meaningful term, I would eliminate this use as it has no clinical or scientific convention that I am aware of.

      We were aware of the interchangeable terms of “exceptional-“ or “super-responder” and prefer to leave this language in the text.  Some references are as follows: 

      ● Prasad et al., Characteristics of exceptional or super responders to cancer drugs. Mayo Clinic Proceedings, 2015. 

      ● NCI Press Release 2020:  https://www.cancer.gov/news-events/press-releases/2020/cancer-exceptional-responders-study-genetic-alterations-may-contribute

      ● NIH Info:  https://www.nih.gov/news-events/nih-research-matters/understanding-exceptional-responders-cancer-treatment

      ● “What is a Super Responder?  Bradley Jones, Cancer Today, June 26, 2020.

      ● “What is a Super Responder?”  AACR.  https://www.aacr.org/patients-caregivers/progress-against-cancer/what-is-a-super-responder/

      The "expansion" of the PDX screen is poorly described. Why weren't these PDXs included in the first screen? This is quite odd as the responses in the initial screen were underwhelming. What was the denominator number of all PDXs that were assessed for JAG1 and NOTCH2 expression? This is important as it clarifies how relevant JAG1 inhibition would be to an unselected HCC population.

      We will revise the writing here to clarify as requested.  For now, we can hopefully clarify by building on the historical context described above.  As the reviewer notes and as we describe in the text, the in vivo screen revealed only a modest JAG1 dependence.  The screen also highlighted that LIV78 was exceptional, and we wanted to understand why.  Hypothesizing that the expression of progenitor markers in LIV78 were important for understanding its JAG1 dependence, we identified four additional models at other contract research organizations.  It is this set of four that comprises the “expansion” cohort.

      Was there some kind of determination of the optimal dose or dose dependency for the JAG1 ab? The original description of the JAG1 ab was in mouse lungs, not malignant or liver cells. In addition, supplementary Figure 2D is missing. There needs to be data provided on the specificity of the human-specific JAG1 ab and the anti-NOTCH2 ab. I'm not familiar with these ab, and if they are not publicly accessible reagents, more transparency on this is needed. In addition, given the reliance of the entire paper on these antibodies, I would recommend orthogonal approaches (either chemical or genetic) to confirm the sensitivity and insensitivity of select PDXs to Notch inhibition.

      First, we note that the anti-human/mouse Jagged1 and Notch2 blocking antibodies used in our study have been extensively characterized as potent and selective and have been widely used outside of our group by the Notch research community (for the human/mouse cross-reactive antibodies, see Wu et al., Nature, 2010 for anti-NOTCH2 and Lafkas et al., Nature 2015 for anti-JAG1). As noted, the antibodies have been used in studies of normal mouse lungs (Lafkas et al.).  Please note that the characterization also includes mouse models of primary liver cancer that formed the foundation for the current work (please refer to Huntzicker et al, 2015).

      While we show dose responses in Figures 1A and 1D, we have not optimized dosing, for example by determining the minimal drug exposures needed for pharmacodynamic changes (pathway inhibition) and efficacy.  For the purposes of this study, we erred on the side of dosing at high concentrations to minimize the risk of false negative responses.

      Regarding the specificity of the human-specific anti-JAG1 antibody, which is revealed here for the first time, we apologize that we incorrectly provided a text reference to Supplementary Figure 2D instead of Supplementary Figure 1D.  We will revise accordingly.  Fig. 1D shows results from a reporter assay demonstrating that the antibody blocks signaling induced by human but not mouse JAG1.

      We appreciate the value of orthogonal methods in establishing the credibility of a novel finding.  We note that genetic approaches are technically highly challenging in PDX models.  Chemically, we could have tested y-secretase inhibitors (GSIs). Our position is that such inhibitors are poor substitutes for the selective antibodies that we employed, at least for addressing the questions that are relevant in this study.   Although commonly used to perturb Notch signaling, GSIs target numerous proteins and signaling cascades independent of Notch.  Moreover, their use in vivo leads to intestinal and other toxicities, limiting exposure. 

      scRNA-seq data seems to add little to the paper and there is no follow-up of the findings. Are the low-expressing JAG1 cells eventually enriched in treated tumors contributing to disease recurrence?

      We respectfully disagree with this sentiment. The single-cell RNA sequencing dataset revealed the enrichment of hepatocyte-like tumor cells following Notch inhibition. Importantly, this dataset also allowed us to identify transcription factor activities regulating different cell states, which we could not have done otherwise. This understanding in turn was fundamental to develop our hypothesis that Notch inhibition, through derepressing CEBPA expression, allows chromatin engagement of HNF4A and CEPBA and thereby promotes a hepatocyte differentiation program that is not compatible with tumor maintenance.  

      The discussion should be tempered. The finding of only 2 PDXs that are sensitive out of 45+ tumors treated or selected for indicates that JAG1/NOTCH2 inhibition is likely only effective in rare HCC.

      We agree that strong responses to Notch inhibition in the PDX models are rare (~5%) and state as much in both the Results and Discussion sections. We maintain that it is important to put this PDX response frequency into a larger context.  First, establishing PDX models---human tumor samples that grow on the flanks of immunocompromised mice---represents a strong selective pressure.  In other words, we don’t know precisely how the frequency of responses in this selected set of PDX models may compare to the frequency that would be observed in human patient populations. Second, the magnitude of the response points to important and hitherto unappreciated biology, with blocking JAG1 or NOTCH2 reproducibly inducing regressions in the most sensitive models.  Our hope is that the field can build from this study to generate diagnostic tools that identify sensitive patient tumors, define the true frequency of this patient group within the larger HCC population (even though likely rare), and direct the relevant Notch-based therapeutics to these patients.  Within this context, and while noting the rarity of PDX responses, we hope that we have not overstated the case.

      Reviewer #2 (Public review):

      Summary:

      The authors used a large panel of hepatocellular carcinoma patient-derived xenograft models to test the hypothesis that the developmental dependence of the liver on Jagged1-Notch2 signaling is retained in at least a subset of hepatocellular carcinomas. This led to the identification of two models that were extraordinarily sensitive to well-characterized, specific inhibitory antibodies against Jagged1 or Notch2. Based on additional analyses in these in vivo models, the authors provide compelling evidence that the response is due to the inhibition of human Notch2 and human Jagged1 on tumor cells and that this inhibition leads to a change in gene expression from a progenitor-like state to a hepatocyte-like state accompanied by cell cycle arrest. This change in cell state is associated with up-regulation of HNF4a and CEBPB and increased accessibility of predicted HNF4a and CEBPB genomic binding sites, accompanied by loss of accessibility to sequences predicted to bind TFs linked to multipotent liver progenitors. The authors put forth a plausible model in which inhibition of Notch2 downregulates transcriptional repressors of the Hairy/Enhancer of Split family, leading to increased expression of CEBPB and changes in gene expression that drive hepatocyte differentiation.

      Strengths:

      The strengths of the paper include the breadth of the preclinical screen in PDX models (which may be of an unprecedented size as preclinical trials go), the high quality of the well-characterized antibodies used as therapeutics and as biological perturbagens, the quality of the data and data analysis, and the authors balanced discussion of the strengths and weaknesses of their findings.

      Weaknesses:

      The principal weakness is the inability to clearly demonstrate the "translatability" of the PDX findings to primary human hepatocellular carcinoma.

      We agree that translatability has not been fully addressed.  As noted in our response to Reviewer 1, our hope is that the field can build from this study to generate diagnostic tools that identify sensitive patient tumors, define the true frequency of this patient group within the larger HCC population, and direct the relevant Notch-based therapeutics to these patients.  We remain encouraged by the strength of the response in the sensitive models.

      Additional Comments:

      Hepatocellular carcinoma is increasing in frequency and is difficult to treat; cure is only possible through early diagnosis and surgery, often in the form of liver transplantation. It is also a common cancer, and so even if only 5% of tumors (a value based on the frequency of super-responders in this preclinical trial) fall into the Jagged1-Notch2 group defined by Seidel et al., the development of an effective therapy for this subgroup would be a very important advance. The chief limitation of their work is that it stops short of identifying primary human hepatocellular carcinomas that correspond to the super-responder PDX models. It can be hoped that their intriguing observations will spur work aimed at filling this gap.

      There are several other loose ends. An unusual feature of this model is that both Jagged 1 and Notch2 are expressed in the same cells, and even in the same individual cells. In developmental systems, the expression of ligands and receptors in the same cell generally produces receptor inhibition rather than activation, a phenomenon described as cis inhibition. Their super-responder tumor models appear to break this rule, and how and why this is so remains to be understood. A follow-up question is what explains the observed heterogeneity in tumor cells, both at the level of Notch2 activation and scRNAseq clustering, and whether these different cell states are static or interchangeable.

      We enthusiastically agree that these are fascinating questions, worthy of further study.  As noted, the majority of tumor cells express both ligand and receptor and seem to be “on” for Notch signaling.  We have not been able to determine whether the signal is induced in a cell autonomous or non-autonomous manner (or both).  As the reviewer notes, the HCC features we observe are inconsistent with the dogma that has arisen from studies on Notch signaling in developmental contexts.

      We do not yet have the experimental data to fully address the second question of what causes the heterogeneity of Notch2 activation and scRNAseq clustering.  We speculate that the cell states may be dynamic, which would be consistent with the changes in cell populations observed after antibody treatment.

      Another unanswered issue pertains to the nature of the tumor response to Notch signaling blockade, which appears to be mainly cell cycle arrest. There are a number of human tumors with cell autonomous Notch signaling due to gain of function Notch receptor mutations that also respond to Notch blockade with cell cycle arrest, such as T cell acute lymphoblastic leukemia (T-ALL). In general, clinical trials of pan-Notch inhibitors such as gamma-secretase inhibitors have been disappointing in such tumors, perhaps reflecting a limitation of treatments with significant toxicity that do not kill tumor cells directly. It could be argued that this limitation will be mitigated by the apparently excellent safety profile of Notch2 blocking antibody, which perhaps could be administered for a sustained period, akin to the use of tyrosine kinase inhibitors in chronic myeloid leukemia---but this remains to be determined.

      We agree that a full understanding of the tumor response warrants further investigation.  Like the reviewer, we speculate that the improved safety profile of selective antibodies relative to pan-Notch inhibitors may enable greater and sustained therapeutic coverage of Notch inhibition than has been feasible in T-ALL trials.  Given that in the sensitive PDX models we observe rapid tumor regressions, not just stasis, it would seem to follow that the mechanism underpinning the tumor response involves more than just cell cycle blockade.  Whether tumor shrinkage reflects additional cell death mechanisms or simply tumor cell turnover after cell cycle arrest remains to be determined. 

      A minor comment is reserved for the statement in the discussion that "In chronic myelomonocytic leukemia, which results from an inactivating mutation in the y-secretase complex component nicastrin, Notch signaling has a tumor suppressive function, that is mediated through direct repression of CEBPA and PU.1 by HES1 (Klinakis et al., 2011)". Thousands of cases of CMML and related myeloid tumors have been subjected to whole exome and even whole genome sequencing without the identification of Notch signaling pathway mutations. Thus, an important tumor suppressive role for Notch-mediated through HES1 in myeloid tumors is not proven.

      We agree that our sentence about Notch and CMML does not fit well with the prevalent paradigm established by genome wide sequencing and other methods.  We will edit this paragraph accordingly, focusing on Hes1 negative regulation of CEBPA in myeloid fate control and how that shapes our thinking on molecular mechanisms in the Notch-dependent HCCs.

      Reviewer #3 (Public review):

      Summary:

      Notch is active in HCC, but generally not mutated. The authors use a JAG1-selective blocking antibody in a large panel of liver cancer patient-derived xenograft models. They find JAG-dependent HCCs, and these are aggressive and proliferative. Notch inhibition induces cycle arrest and promotes hepatocyte differentiation, through upregulation of CEBPA expression and activation of existing HNF4A, mimicking normal developmental programs.

      The authors use aJ1.b70, a potent and selective therapeutic antibody that inhibits JAG1 against PDX models. They tested over 40 PDX models and found a handful of super-responders to single-agent inhibition. In LIV78 and Li1035 cancer cells, NOTCH2 was expressed and required, in contrast to NOTCH1. RNA-seq showed that the responsive HCCs resembled the S2 transcriptional class of HCCs, which were enriched for Notch-dependent models. They conclude that these dependent tumors have transcriptomes that resemble a hybrid progenitor cell expressing FGF9 and GAS7. Inhibition was able to induce hepatocyte differentiation away from a NOTCH-driven progenitor program. scRNA-seq analysis showed a large population of NOTCH-JAG expressing cells but also showed that there are cells that did not. Not surprisingly, NOTCH2 inhibition leads to increased CEBPA and HNF4A transcriptional activity, which are standard TFs in hepatocytes.

      Strengths:

      The paper provides useful information about the frequency of HCCs and CCA that respond to NOTCH inhibition and could allow us to anticipate the super-responder rate if these antibodies were actually used in the clinic. The inhibitor tools are highly specific, and provide useful information about NOTCH activities in liver cancers. The large number of PDXs and the careful transcriptomic analyses were positives about the study.

      Weaknesses:

      The paper is mostly descriptive.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This article investigates the phenotype of macrophages with a pathogenic role in arthritis, particularly focusing on arthritis induced by immune checkpoint inhibitor (ICI) therapy.

      Building on prior data from monocyte-macrophage coculture with fibroblasts, the authors hypothesized a unique role for the combined actions of prostaglandin PGE2 and TNF. The authors studied this combined state using an in vitro model with macrophages derived from monocytes of healthy donors. They complemented this with single-cell transcriptomic and epigenetic data from patients with ICI-RA, specifically, macrophages sorted out of synovial fluid and tissue samples. The study addressed critical questions regarding the regulation of PGE2 and TNF: Are their actions co-regulated or antagonistic? How do they interact with IFN-γ in shaping macrophage responses?

      This study is the first to specifically investigate a macrophage subset responsive to the PGE2 and TNF combination in the context of ICI-RA, describes a new and easily reproducible in vitro model, and studies the role of IFNgamma regulation of this particular Mф subset.

      Strengths:

      Methodological quality: The authors employed a robust combination of approaches, including validation of bulk RNA-seq findings through complementary methods. The methods description is excellent and allows for reproducible research. Importantly, the authors compared their in vitro model with ex vivo single-cell data, demonstrating that their model accurately reflects the molecular mechanisms driving the pathogenicity of this macrophage subset.

      Weaknesses:

      Introduction: The introduction lacks a paragraph providing an overview of ICI-induced arthritis pathogenesis and a comparison with other types of arthritis. Including this would help contextualize the study for a broader audience.

      Thank you for this suggestion, we will add a paragraph on ICI-arthritis to intro.

      Results Section: At the beginning of the results section, the experimental setup should be described in greater detail to make an easier transition into the results for the reader, rather than relying just on references to Figure 1 captions.

      We will clarify the experimental setup.

      There is insufficient comparison between single-cell RNA-seq data from ICI-induced arthritis and previously published single-cell RA datasets. Such a comparison may include DEGs and GSEA, pathway analysis comparison for similar subsets of cells. Ideally, an integration with previous datasets with RA-tissue-derived primary monocytes would allow for a direct comparison of subsets and their transcriptomic features.

      This is a great idea, we will integrate the data sets and if batch correction is successful will present this analysis.

      While it's understandable that arthritis samples are limited in numbers and myeloid cell numbers, it would still be interesting to see the results of PGE2+TNF in vitro stimulation on the primary RA or ICI-RA macrophages. It would be valuable to see RNA-Seq signatures of patient cell reactivation in comparison to primary stimulation of healthy donor-derived monocytes.

      We agree that this would be interesting but given limited samples and distribution of samples amongst many studies and investigators this is beyond the scope of the current study. 

      Discussion: Prior single-cell studies of RA and RA macrophage subpopulations from 2019, 2020, 2023 publications deserve more discussion. A thorough comparison with these datasets would place the study in a broader scientific context.

      Creating an integrated RA myeloid cell atlas that combines ICI-RA data into the RA landscape would be ideal to add value to the field.

      As one of the next research goals, TNF blockade data in RA and ICI-RA patients would be interesting to add to such an integrated atlas. Combining responders and non-responders to TNF blockade would help to understand patient stratification with the myeloid pathogenic phenotypes. It would be great to read the authors' opinion on this in the Discussion section.

      We will be happy to improve the discussion by including these topics.

      Conclusion: The authors demonstrated that while PGE2 maintains the inflammatory profile of macrophages, it also induces a distinct phenotype in simultaneous PGE2 and TNF treatment. The study of this specific subset in single-cell data from ICI-RA patients sheds light on the pathogenic mechanisms underlying this condition, however, how it compares with conventional RA is not clear from the manuscript.

      Given the substantial incidence of ICI-induced autoimmune arthritis, understanding the unique macrophage subsets involved for future targeting them therapeutically is an important challenge. The findings are significant for immunologists, cancer researchers, and specialists in autoimmune diseases, making the study relevant to a broad scientific audience.

      Reviewer #2 (Public review):

      Summary/Significance of the findings:

      The authors have done a great job by extensively carrying out transcriptomic and epigenomic analyses in the primary human/mouse monocytes/macrophages to investigate TNF-PGE2 (TP) crosstalk and their regulation by IFN-γ in the Rheumatoid arthritis (RA) synovial macrophages. They proposed that TP induces inflammatory genes via a novel regulatory axis whereby IFN-γ and PGE2 oppose each other to determine the balance between two distinct TNF-induced inflammatory gene expression programs relevant to RA and ICI-arthritis.

      Strengths:

      The authors have done a great job on RT-qPCR analysis of gene expression in primary human monocytes stimulated with TNF and showing the selective agonists of PGE2 receptors EP2 and EP4 22 that signal predominantly via cAMP. They have beautifully shown IFN-γ opposes the effects of PGE2 on TNF-induced gene expression. They found that TP signature genes are activated by cooperation of PGE2-induced AP-1, CEBP, and NR4A with TNF-induced NF-κB activity. On the other hand, they found that IFN-γ suppressed induction of AP-1, CEBP, and NR4A activity to ablate induction of IL-1, Notch, and neutrophil chemokine genes but promoted expression of distinct inflammatory genes such as TNF and T cell chemokines like CXCL10 indicating that TP induces inflammatory genes via IFN-γ in the RA and ICI-arthritis.

      Weaknesses:

      (1) The authors carried out most of the assays in the monocytes/macrophages. How do APC-cells like Dendritic cells behave with respect to this TP treatment similar dosing?

      We agree that this is an interesting topic especially as TNF + PGE2 is one of the standard methods of maturing in vitro generated human DCs. As DC maturation is quite different from monocyte activation this would represent an entire new study and is beyond the scope of the current manuscript. We will instead describe and cite the literature on DC maturation by TNF + PGE2 including one of our older papers (PMID: 18678606; 2008)

      (2) The authors studied 3h and 24h post-treatment transcriptomic and epigenomic. What happens to TP induce inflammatory genes post-treatment 12h, 36h, 48h, 72h. It is critical to see the upregulated/downregulated genes get normalised or stay the same throughout the innate immune response.

      We will clarify that the gene response is mostly subsiding at the 24 hour time point, which is in line with in vitro stimulation of primary monocytes in other systems.

      (3) The authors showed IL1-axis in response to the TP-treatment. Do other cytokine axes get modulated? If yes, then how do they cooperate to reduce/induce inflammatory responses along this proposed axis?

      We will analyze the data for other pathways that are modulated.

      Overall, the data looks good and acceptable but I need to confirm the above-mentioned criticisms.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This manuscript presents evidence of ’vocal style’ in sperm whale vocal clans. Vocal style was defined as specific patterns in the way that rhythmic codas were produced, providing a fine-scale means of comparing coda variations. Vocal style effectively distinguished clans similar to the way in which vocal repertoires are typically employed. For non-identity codas, vocal style was found to be more similar among clans with more geographic overlap. This suggests the presence of social transmission across sympatric clans while maintaining clan vocal identity.

      Strengths:

      This is a well-executed study that contributes exciting new insights into cultural vocal learning in sperm whales. The methodology is sound and appropriate for the research question, building on previous work and ground-truthing much of their theories. The use of the Dominica dataset to validate their method lends strength to the concept of vocal style and its application more broadly to the Pacific dataset. The results are framed well in the context of previous works and clearly explain what novel insights the results provide to the current understanding of sperm whale vocal clans. The discussion does an overall great job of outlining why horizontal social learning is the best explanation for the results found.

      Weaknesses:

      The primary issues with the manuscript are in the technical nature of the writing and a lack of clarity at times with certain terminology. For example, several tree figures are presented and ’distance’ between trees is key to the results, yet ’distance’ is not clearly defined in a way for someone unfamiliar with Markov chains to understand. However, these are issues that can easily be dealt with through minor revisions with a view towards making the manuscript more accessible to a general audience.

      I also feel that the discussion could focus a bit more on the broader implications - specifically what the developed methods and results might imply about cultural transmission in other species. This is specifically mentioned in the abstract but not really delved into in detail during the discussion.

      We are grateful for the Reviewer’s recognition of the study’s contributions to understanding cultural vocal learning in sperm whales. In response to the concerns regarding clarity and accessibility, we have revised the manuscript to improve the definition of key concepts, such as the notion of “distance” between subcoda trees. This adjustment ensures clarity for readers unfamiliar with the technical details of Markov chains. Additionally, we have expanded the discussion to highlight broader implications of our findings, particularly their relevance to understanding cultural transmission in other species, as suggested.

      Reviewer #2 (Public review):

      Summary:

      The current article presents a new type of analytical approach to the sequential organisation of whale coda units.

      Strengths:

      The detailed description of the internal temporal structure of whale codas is something that has been thus far lacking.

      Weaknesses:

      It is unclear how the insight gained from these analyses differs or adds to the voluminous available literature on how codas varies between whale groups and populations. It provides new details, but what new aspects have been learned, or what features of variation seem to be only revealed by this new approach? The theoretical basis and concepts of the paper are problematical and indeed, hamper potentially the insights into whale communication that the methods could offer. Some aspects of the results are also overstated.

      We appreciate the Reviewer’s acknowledgment of the novelty in describing the internal temporal structure of whale codas. Regarding the concern about the unique contributions of this approach, we have further emphasized in the revised manuscript how our methodology reveals previously uncharacterized dimensions of coda structure. Specifically, our work highlights how non-identity codas, which have received limited attention, play a significant role in inter-clan acoustic interactions. By leveraging Variable Length Markov Chains, we provide a nuanced understanding of coda subunits that complements existing studies and demonstrates the value of this analytical approach.

      Reviewer #3 (Public review):

      Summary:

      The study presented by Leitao et al., represents an important advancement in comprehending the social learning processes of sperm whales across various communicative and socio-cultural contexts. The authors introduce the concept of ”vocal style” as an addition to the previously established notion of ”vocal repertoire,” thereby enhancing our understanding of sperm whale vocal identity.

      Strengths:

      A key finding of this research is the correlation between the similarity of clan vocal styles for non-ID codas and spatial overlap (while no change occurs for ID codas), suggesting that social learning plays a crucial role in shaping symbolic cultural boundaries among sperm whale populations. This work holds great appeal for researchers interested in animal cultures and communication. It is poised to attract a broad audience, including scholars studying animal communication and social learning processes across diverse species, particularly cetaceans.

      Weaknesses:

      In terms of terminology, while the authors use the term ”saying” to describe whale vocalizations, it may be more conservative to employ terms like ”vocalize” or ”whale speech” throughout the manuscript. This approach aligns with the distinction between human speech and other forms of animal communication, as outlined in prior research (Hockett, 1960; Cheney & Seyfarth, 1998; Hauser et al., 2002; Pinker & Jackendoff, 2005; Tomasello, 2010).

      We thank the Reviewer for recognizing the importance of our findings and their appeal to broader audiences interested in animal cultures and communication. In response to the suggestion regarding terminology, we have adopted a more conservative language to align with distinctions between human and non-human communication systems. For example, terms like “vocalize” and “vocal repertoire” are used in place of anthropomorphic terms such as “saying”. This ensures consistency with established conventions while maintaining clarity for a broad readership.

      Reviewer #1 (Recommendations):

      Comment 1

      Lines 11-13: As mentioned above, the implications for comparing communication systems and cultural transmission in other species isn’t really discussed much and I think it’s a really interesting component of the study’s broader implications.

      Thank you for the comment.

      Action - We added a few more sentences to the discussion regarding this.

      Comment 2

      Figure 1: More information on the figure of these trees would help. What do the connecting lines represent? What do the plain black dots and the black dot with the white dot represent? Especially since the ”distance between trees” is a key result, it’s important that someone unfamiliar with Markov chains can understand the basics of how this is calculated and what it represents. It is explained in the methods, but a brief explanation here would make the results and the figure a lot clearer since the methods are the last section of the manuscript.

      These were omitted as we believed that attempting to introduce the mathematical structure and the methodology to compare two instances, in a figure caption, would have caused more ambiguity than necessary.

      Action - Added an informal introduction to these concepts on the figure caption. Also added a pointer to the Supplementary Materials.

      Comment 3

      Table 1: A definition of dICIs should be included here.

      Added the definition of discrete ICI to the table.

      Comment 4

      Figure 2: The placement of the figures is a bit confusing because they are quite far from the text that references them.

      We thank the reviewer for pointing this out, we tried to edit the manuscript to improve this issue, but this part of the editing is more within the journal’s powers than our own.

      Action - Moved images closes to the corresponding text in manuscript.

      Comment 5

      Line 117: Probabilistic distance needs to be briefly explained earlier when you first mention distance (see Lines 11-13 comments).

      Action - Clarifications added in the caption of figure 1. as per comment on Lines 11-13

      Comment 6

      Figure 4: Is order considered in these pairwise comparisons? It looks like there are two dots for each pairwise comparison. Additionally, why is the overlap different in these two comparisons? For example, short:four-plus has an overlap of 0.6, while four-plus:short has an overlap of 0.95.

      The x-axis of the plots in Figure 4 is geographical clan overlap. This is calculated as per (Hersh et al., 2022) and is described in our Methods (see “Measuring clan overlap” section). Given two clans—for example, the Four-Plus and the Short clan—spatial overlap is calculated twice: as the proportion of the Four-Plus clan’s repertoires that were recorded within 1,000 km of at least one of the Short clan’s repertoires, and as the proportion of the Short clan’s repertoires that were recorded within 1,000 km of at least one of the Four-Plus clan’s repertoires.

      Order is important in these pairwise comparisons and generates an asymmetric matrix because the clans have different spatial extents. A clan found in only one small region might overlap completely with a clan that spans the Pacific Ocean, while the opposite is not true. For example, the Short clan spans the Pacific Ocean while the Four-Plus clan has been documented over a smaller area (but that smaller area overlaps extensively with the Short clan range). That is why the value is smaller (0.6) when considering how much of the Short clan’s range is shared with the Four-Plus clan, and larger ( 0.95) when considering how much of the Four-Plus clan’s range is shared with the Short clan.

      Action - We have now added a reference to that section of the Methods in our Figure 4 caption and include the clan spatial overlap matrix as a supplemental table (Table S5).

      Comment 7

      Figure 4: I think the reference should be Hersh et al. [11].

      Thank you for catching this.

      Action - Reference corrected

      Comment 8

      Line 227: What aspect of your analysis looked at how often codas were produced? You mention coda frequency, but it is unclear how this was incorporated into your analysis. If this is included in the methods, the language is a bit too technical to easily parse it out.

      Indeed here we are referencing the results of the paper mentioned in the previous line. We do not look at coda production frequency.

      Action - Added citation to paper that actually performs this analysis.

      Comment 9

      Lines 253-255: I think you could dig into this a little more, as ”there is currently no evidence” is not the most convincing argument that something is not a driver. Perhaps expanding on the latter sentence that clans are recognizable across oceans basins would be helpful. Does this suggest that clans with similar geographic overlap experience diverse environmental conditions across ocean basins? If so, this might better strengthen your argument against environmental drivers.

      Thank you for pointing this out. We feel that the next sentence highlights that clans are recognizable across environmental variation from one side to the other of the ocean basin, which supports the inductive reasoning that codas do not vary systematically with environment. However, we have edited these sentences for clarity.

      Comment 10

      Lines 311-314: It would also be interesting to look at vocal style across non-ID coda types. Are some more similar to each other across clans than others? Perhaps vocal style can further distinguish types of non-ID codas.

      In supplementary Materials 3.4.2 and 3.5 we highlight our results when the codas are separated by coda type summarized in Table S4. We do compare the vocal style across non-ID coda types across clans and within the same clan. The results however are aggregated to highlight the differences in style between the clans and a a coda type-only comparison is not shown.

      Comment 11

      Lines 390-392: I’m assuming this is why pairwise comparisons were directional (i.e., there was both an A:B and a B:A comparison)? Can you speak to why A:B and B:A comparisons can have such different overlap values?

      Given two clans—for example, the Four-Plus and the Short clan—spatial overlap is calculated twice: as the proportion of the Four-Plus clan’s repertoires that were recorded within 1,000 km of at least one of the Short clan’s repertoires, and as the proportion of the Short clan’s repertoires that were recorded within 1,000 km of at least one of the Four-Plus clan’s repertoires.

      Order is important in these pairwise comparisons and generates an asymmetric matrix because the clans have different spatial extents. A clan found in only one small region might overlap completely with a clan that spans the Pacific Ocean, while the opposite is not true. For example, the Short clan spans the Pacific Ocean while the Four-Plus clan has been documented over a smaller area (but that smaller area overlaps extensively with the Short clan range). That is why the value is smaller (0.6) when considering how much of the Short clan’s range is shared with the Four-Plus clan, and larger (0.95) when considering how much of the Four-Plus clan’s range is shared with the Short clan.

      Action - We now include the clan spatial overlap matrix as a supplemental table (Table S5).

      Comment 13

      Line 56: Can you briefly explain what memory means in the context of Markov chains?

      We provide an explanation of the meaning of memory in the Methods section on ”Variable length Markov Chains”. Briefly, the memory in this case means how many states in the past of the Markov chain’s current state are required to predict the next transition of the chain itself. Standard Markov chains “look” back only one time step, while k-th order Markov chains look back k steps. In our case, there was no reason to assume that the memory required to predict different sequences of states (interclick intervals) should be the same across all sequences, and thus we adopted the formalism of variable length Markov chains, that allow for different levels of memory across the system.

      Comment 14

      Supplementary Figure S3: Like in the main manuscript, briefly explain or remind us what the blank nodes and the yellow nodes are.

      Action - Clarified that the orange node represents the root of the tree in the figures.

      Comment 15

      Supplementary Figure S7: Put the letters before the dataset name.

      Action - Done.

      Comment 16

      Supplementary Figure S10: Unclear what ’inner vs outer’ means.

      One specifies comparisons across clans (outer) and the other within the same clan (inner)

      Action - Added clarification on the caption of Figure S10

      Comment 17

      Supplementary Figure S14: Include a-c labels in the figure itself.

      Action - Labels added to figure

      Comment 18

      Supplementary Figure S14: The information about the nodes is what needs to be included earlier and in the main body when discussing the trees.

      Action - Added the explanation earlier in the text and in the main body

      Reviewer #2 (Recommendations):

      Comment 19

      Line 22: ”Symbolic” and ”Arbitrary” are not synonyms. Please see the comment above.

      We agree. Here, we make the point that the evolution of symbolic markers of group identity can be explained from what are initially arbitrary, and meaningless, signals (see [L1, L2]). Our point being that any vocalization, any coda, could have become selected for as an identity coda, and to become symbolic, and evolve to play a key role in cultural group formation and in-group favoritism because they enable a community of individuals to solve the problem of with whom to collaborate. The specific coda itself does not affect collaborative pay offs, but group specific differences in behavior can, as such the coda is arguably symbolic; as it is observable and recognizable, and can serve as a means for social assortment even when the behavioural differences are not. This can explain the means by which the social segregation which is observed among behaviorally distinct clans of sperm whales. However, in this manuscript, we do not extend this discussion of existing literature and have attempted to concisely describe this in a couple of lines, which clearly do a disservice to the large body of literature on the evolution of symbolic markers and human ethnic groups. We have added some citations to this section so that the reader may follow up should they disagree with out brief introductory statements.

      Action - Added citations and pointers to the literature.

      Comment 20

      Line 24: The authors’ terminology around ”markers”, ”arbitrary”, ”symbolic” is unnecessarily confusing and mystifying, giving the impression these terms are interchangeable. They are not. These terms are an integral and long-established part of key definitions in signal theory. Term use should be followed accordingly. The observation that whale vocal signals vary per population does not necessarily mean that they function as a social tag. The word ”dog” varies per population but its use relates to an animal, not the population that utters the word. ”Dog” is not ”symbolic” of England, English-speaking populations or the English language. Furthermore, the function of whale vocal signals is extremely challenging to determine. In the best conditions, researchers can pin the signal’s context, this is distinct from signal’s function and further even for the signal’s meaning. How exactly the authors determine that whale vocal signals are arbitrary is, thus, perplexing given that this would require a detailed description and understanding of who is producing the song, when, towards whom, and how the receivers react, none of which the authors have and without which no claim on the signals’ function can be made. This terminological laxness and the sensu latu in extremis to various terms in an unjustified, unnecessary and unhelpful.

      We use these terms as established in Hersh et al 2022 and the works leading up to it over the last 20 years in the study of sperm whales. These are often derived from definitions by Boyd and Richerson’s work on culture in humans and animals along with evolution of symbolic markers both in theory and in humans. We agree with the reviewer that these are difficult to establish in non-humans, whales or otherwise, but feel strongly that the accumulating evidence provides strong support for the function of these signals as symbolic markers of cultural groups, and that they likely evolved from initially arbitrary calls which were a part of the vocal repertoire (similar to the process and selective environment in Efferson et al. [L1] and McElreath et al. [L2]). We feel that we do not use these terms interchangeably here, and have inherited their use from definitions from anthropology. The work presented here uses terminology built across two decades of work in cetacean, and sperm whale, culture. And do not feel that these terms should be omitted here.

      Comment 21

      Lines 21-27: Overly broad and hazy paragraph.

      We hope the replies above and our changes satisfy this comment and clarify the text.

      Comment 22

      Figure 1 legend: What are ”memory structures”? Unjustified descriptor.

      The phrase was chosen to make draw some intuition on the variation of context length in variable length markov models.

      Action - Re-worded from memory structures to statistical properties

      Comment 23

      Line 30: Omit ”finite”.

      Action - Omitted.

      Comment 24

      Line 31: Please define and distinguish ”rhythm” and ”tempo”. Also see comment above, rhythm and tempo definitions require the use of IOIs.

      We disagree with the reviewer’s claims here. In our research specifically, and for sperm whale research generally, coda inter-click intervals (ICIs) are calculated as the time between the start of the first click and the start of the subsequent click. This makes ICIs identical to inter-onset intervals (IOIs) under all definitions we are aware of. For example, Burchardt and Knornschild [L3] define IOIs as such: “In a sequence of acoustic signals, the time span between the start of an element and the next element, comprising the element duration and the following gap duration”. We now include a sentence making this point.

      Regardless, we disagree on a more fundamental level with the statement that unless researchers quantify inter-onset intervals (IOIs), they cannot make any claims about rhythm. There are many studies that investigate rhythmic aspects of human and animal vocalizations without using IOIs [L4–L7]. If the duration of sound elements of interest is relatively constant (as is the case for sperm whale clicks), then rhythm analyses can still be meaningfully conducted on inter-call intervals (the silent intervals between calls).

      For sperm whales, coda rhythm is defined by the relative ICIs standardized by their total duration. These can be clustered into discrete, defined rhythm types based on characteristic ICI patterns. Coda tempo is relative to the total duration of the coda itself. This can also be clustered into discrete tempo types across all coda durations as well (see [L8]).

      Action - We added a sentence specifying that in this case we can use both ICIs and IOIs because of the standardized length of a single click.

      Comment 25

      Line 36: Are there non-vocalized codas to require the disambiguation here?

      No, we have omitted for clarity.

      Comment 26

      Line 44: ”Higher” than which other social group class?

      Sperm whales live in a multi-level social organization. Clans are a “higher” level of social organization than the social “units” which we define in line 40. Clans are made up of all units which share similar production repertoire of codas.

      Action - We have added ’above social units’ on line 44 to make this clear.

      Comment 27

      Line 47: The use of “symbolic” continues to be enigmatic, even if authors are taking in this classification from other researchers. In signal theory (semiotics), not all biomarkers are necessarily symbols. I advise the authors to avoid the use of the term colloquially and instead adopt the definition used in the research field within which the study falls in.

      There is ample examples of the use of ”symbolic” when referring to markers of in-group membership both in human and non-human cultures.Our choice to use the term “symbolic” is based on a previous study [L9] that found quantitative evidence that sperm whale identity codas function as symbolic markers of cultural identity, at least for Pacific Ocean clans. The full reasoning behind why the authors used the term “symbolic markers” is given in that paper, but briefly, they found evidence that identity coda usage becomes more distinct as clan overlap increases, while non-identity coda usage does not change. This matches theoretical and empirical work on human symbolic markers[L1, L2, L10, L11].

      Action - We retain the use of the term here, as defined in the works cited, and based on its prior usage in the study of both human and non-human cultures.

      Comment 28

      Line 50: This statement is not technically accurate. The use of a signal as a marker by individuals can only be determined by how individuals ”interpret” and react to that signal - e.g., via playback experiments - it cannot be determined by how different populations use and produce the signals.

      We respectfully disagree. While we agree that the optimal situation would be that of playback, the contextual use can provide insight into the functional use of signals; as can expected patterns of use and variation, as was tested in the papers we cite. However, this argument is not the scope nor the synthesis of this paper. These statements are supported by existing published works, as cited, and we encourage the reviewer to take exception with those papers.

      Comment 29

      Line 69: ”Meaningful speech characteristics”??? These terms do not logically or technically follow the previous statement. Why not stay faithful to the results and state that the method used seems to be valid and reliable because it confirms former studies and methods?

      Action - Reworded to better underline the method’s results with previous studies

      Comment 30

      Lines 72-74: This statement doesn’t seem to accurately capture/explain/resume the difference between ID and non-ID codas.

      We are not sure what the reviewer is referring to in this case. The sentence in this case was meant to explain the different relations that ID/non-ID codas have with clan sympatry.

      Comment 31

      Line 75: The information provided in the few previous sentences does not allow the reader to understand why these results support the notion that cultural transmission and social learning occurs between clans.

      We conclude out introduction with a brief summary of our overall findings, which we then use the rest of the manuscript to support these statements.

      Comment 32

      Table 1: So far, the authors refer to their analyses as capturing the ”rhythm” of whale clicks. Consequently, it is not readily clear at this point why the authors rely on ”ICIs” (inter click intervals) instead of the ”universal” measure used across taxa to capture the rhythm of signal sequences - IOIs (inter onset intervals). If ICIs are the same measure as IOIs, why not use the common term, instead of creating a new term name? Alternatively, if ICIs are not equivalent to IOIs, then arguably the analyses do not capture the ”rhythm” of whale clicks, as claimed by the authors. Any rhythmic claim will need to be based on IOI measures. In animal behaviour, stereotyped is primarily used to describe pathological, dysfunctional behaviour. I suggest the use of other adjective, such as ”regular”, ”repetitive”, ”recurring”, ”predictable”. Another deviation from typical terminology: ”usage frequency” -¿ ”production rate”. Why is a clan a ”higher-order” level of social organization? This requires explanation, at least a mention, of what are the ”lower-order” levels. To the non-expert reader, there is a logical circularity/gap here: Clans are said to produce clan-specific codas, and then, it is said that codas are used to delineate clans. Either one deduces, or one infers, but not both. This raises the question, are clans confirmed by any other means than codas?

      We are not creating a “new term name”: inter-click interval (ICI) is the standard terminology used in odontocete (toothed whale) research. We take the reviewer’s point that some readers will not be coming to our paper with that background, however, and now explicitly point out that ICI is synonymous with IOI for sperm whales. Please see our response to your earlier comment for more on this point.

      Comment 33

      Line 92: Unclear term, ”sub-sequence”. Fig. 1B doesn’t seem to readily help disambiguate the meaning of the term.

      In fact reference to Fig. 1B is misplaced as it does not refer to the text. A sub-sequence is simply a contiguous subset of a coda, a subset of it.

      Action - Removed ambiguous reference to Fig. 1B

      Comment 34

      Line 94: How does the use of ”sequence” compare here with ”sub-sequence” above?

      In fact its the same situation although the previous comment highlighted a source of ambiguity.

      Action - Reworded the sentence to be less confusing.

      Comment 35

      Line 95: Signal sequences don’t ”contain” memory, they require memory for processing.

      Action - Rephrased from “sequences contain memory” to “states depend on previous sequences of varying length”.

      Comment 36

      Lines 95-97: The analogy with human language seems forced, combinatorics in any given species are expected to entail different transitions between unit/unit-sequences.

      Thank you for the comment. Indeed, the purpose of the analogy is to illustrate how variable length Markov Chains work (which have been shown to be good at discerning even accents of the same language). We used human language as an analogy to provide the readers’ with a more intuitive understanding of the results.

      Action - Revised paragraph to read: “Despite we do not have direct evidence of unitary blocks in sperm whale communication, on can imagine this effect similarly to what happens with words (e.g., a word beginning with “re” can continue in more ways than one starting with “zy”).”

      Comment 37

      Line 97: Unclear which possibility is this.

      Action - Made the wording clearer.

      Comment 38

      Line 99: Invocation of memory, although common in the use of Markov chains, in inadequate here given that the research did not study how individuals perceived or processed click sequences, only how individual produced click sequences. If the authors are referring to the cognitive load imposed by producing clicks sequences, terms such as ”sequence planning” will be more accurate.

      Here, we use the term “fixed-memory” in relation to the definition of a variable length Markov model. We feel that, in this section of the manuscript, the context is clear that it is a mathematical definition and in no way invokes the biological idea of memory or cognition. It is rather standard to use memory to describe the order of Markov chains. Swapping words in the definition of mathematical objects when the context is clear seems to cause unnecessary ambiguity.

      Action - We clarified this in the manuscript (see comments above).

      Reviewer #3 (Recommendations):

      Comment 39

      Line 16: Add ”broadly defined” as there are many other more restricted definitions (see for example Tomasello 1999; 2009). Tomasello M (1999) The cultural origins of human cognition. Harvard University Press, Cambridge Tomasello M (2009) The question of chimpanzee culture, plus postscript (chimpanzee culture 2009). In: Laland KN, Galef BG (eds) The question of animal culture. Harvard University Press, Cambridge, pp 198-221.

      Thanks for the clarification.

      Action - We added the term “broadly” and added the last reference.

      Comment 40

      Line 22: Is all stable social learned behavior that becomes idiosyncratic and ”distinguishable” considered symbolic markers? If not, consider adding ”potentially.”

      No, but the evolution of cultural groups with differing behavior can reorganize the selective environment in such a way that it can favour an in-group bias that was not initially advantageous to individuals and lead to a preference towards others who share an overt symbolic marker that initially had no meaning and a random frequency in both populations. That is to say, even randomly assigned trivial groups can evolve arbitrary symbolic markers through in-group favouritism once behavioural differences exist even in the absence of any history of rivalry, conflict, or competition between groups. See for example [L1, L2].

      Comment 41

      Table 1: Identity codas are defined as a ”Subset of coda types most frequently used by a sperm whale clan; canonically used to define vocal clans.” Therefore, I infer that an identity coda is not exclusively used by a specific clan and may be utilized by other clans, albeit less frequently. If this is the case, what criteria determine the frequency of usage for a coda to be categorized as an identity or non-identity coda? Does the criteria used to differentiate between ID and non-ID codas reflect the observed differences in micro changes between the two and within clans?

      The methods for this categorization are defined, discussed, and justified in previous work in [L9, L12]. We feel its outside the scope of this paper to review these details here in this manuscript. However, the differences between vocal styles discussed here and the frequency production repertoires which allow for the definition of identity codas are on different scales. The differences between identity and non-identity codas are not the observed differences in vocal style reported here.

      Comment 42

      Table 1: The definition of vocal style states that it ”Encodes the rhythmic variations within codas.” However, if rhythm changes, does the type of coda change as well? Typically, in musical terms, the component that maintains the structure of a rhythm is ”tempo,” not ”rhythm.” How much microvariation is acceptable to maintain the same rhythm, and when do these variations constitute a new rhythm?

      Thank you for raising this important point about the relationship between rhythmic variations and coda categorization. In our definition, ”vocal style” refers to subtle, micro-level variations in the rhythmic structure of codas that do not alter their overarching categorical identity. These microvariations are akin to ”tempo” changes in musical terms, which can modify the expression of a rhythm without fundamentally altering its structure.

      The threshold at which microvariations constitute a new rhythm, and thus a new coda type, remains an open question and is a limitation of current analytical approaches. In our study, we used established classification methods to group codas into types, treating variations within these groups as part of the same rhythm. Future work could refine these thresholds to better distinguish between meaningful rhythmic variation and the emergence of new coda types.

      Comment 43

      Table 1: Change ”say” to ”vocalize” (similarly as used in line 273 for humpback whales ”vocalizations”).

      Thanks.

      Action - Done.

      Comment 44

      Lines 33-35 and Figure 1-C: Can a lay listener discern the microvariations within each coda type by ear? Consider including sound samples of individual rhythmic microvariations for the same coda type pattern (e.g., Four plus, Palindrome, Plus One, Regular) to provide readers/listeners with an impression of their detectability. If authors considered too much or redundant Supplemental material at least give a sound sample for each the 4 subcodas modeled structures examples of 4R2 coda variations depicted in Figure 1-C so the reader can have an acoustic impression of them.

      We do not think that human listeners would be able to all of the variation detected here. However, this does not mean that it is not important variation for the whales. Human observers being able to classify call variation aurally shouldn’t be seen as a bar representing important biological variation for non-human species, given that their hearing and vocal production systems have evolved independently. Importantly, ’Four Plus’,’Palindrome’, etc are names of Clans; sympatric, but socially segregated, communities of whale families, which share a distinct vocal dialect of coda types. These clans each have have distinguishable coda dialects made up of dozens of coda types (and delineated based on identity codas), these are not names/categorical coda types themselves.

      Action - We now provide audio samples of all coda types listed in Figure 1B in the paper’s Github repository.

      Comment 45

      Line 69: As stated above, it may be confusing to refer to it as ”speech.” I suggest adding something like: ”Our method does capture one essential characteristic of human speech: phonology.” Reply 45.—Thank you for drawing our attention to this.

      Action - We removed the word “speech” from the manuscript, using “communication” and/or “vocalization” depending on the context.

      Comment 46

      Line 111-112: Consider adding a sound sample of the variation of the 4R2 coda type that can be vocalized as BCC but also as CBB as supplementary data.

      What the reviewer has correctly observed is that the traditional categorical coda type ’names’ do not capture the variation within a type by rhythm nor by tempo.

      Action - We have added samples of all coda types listed in Figure 1B in the paper’s Github repo.

      Comment 47

      Figure 3: Include a sound sample for each of the 7 coda types in Figure 1B (”specific vocal repertoires”) to illustrate the set of coda types used and their associated usage frequencies, or at least for each of the 7 coda types in Figure 3 and tables S1 and S2.

      Sperm whales in the Eastern Caribbean produce dozens of rhythm types across at least five categorical tempo types [L8, L13]. The coda types represented in Figure 1B do not demonstrate all the variability inherent in the sperm whales’ vocal dialect. Importantly, Figure 3, as well as table S1 and S2, refer to clan-level dialects not specific individual coda types.

      Action - We added sound samples for each coda rhythm type listed in Figure 1B to the Github repository.

      Comment 48

      Lines 184-190: It is unclear what human analogy term is used for ID codas. This needs clarification.

      We are not making an analogy in humans for the role of ID vs non-ID codas, but only providing the example of accents as changes in vocalization (style) without a change in the actual words used (repertoire).

      Action - We tried to make it clearer in the manuscript.

      Comment 49

      Line 190: Change ”whale speech” to ”whale vocalizations.”

      Thanks.

      Action - Done.

      Comment 50

      Figure 4: Correct citation number Hersh ”10” to Hersh ”11.”

      Thanks.

      Action - Fixed the reference.

      Comment 51

      Lines 224-232: Clarify whether the reference to how spatial overlap affects the frequency of ID codas refers to shared ID codas between clans or the production frequency of each coda within the total repertoire of codas.

      The similarity between ID coda repertoires we are referring to there is based on the ID codas of both clans.

      More details on the comparison can be found in [L9].

      Action - We added a sentence explaining the comparison is made using the joint set of ID codas.

      Comment 52

      Lines 240-241: What are non-ID codas vocal cues for?

      Non-ID codas likely serve as flexible, context-dependent signals that facilitate group coordination, convey environmental or social context, and promote social learning, especially in mixed-clan or overlapping habitats. Their variability suggests multifunctional roles shaped by ecological and social pressures.

      Comment 53

      Lines 267-268: It’s unclear whether non-ID coda vocal styles are genetically inherited or not, as argued in lines 257-258.

      We did not intend to argue that non-ID coda vocal styles are genetically inherited. Instead, we aimed to present a hypothetical consideration: if non-ID coda vocal styles were genetically inherited, one would expect a direct correlation between vocal style similarity and genetic relatedness. This hypothetical framework was introduced to strengthen our argument that the observed patterns are unlikely to be explained by genetic inheritance, as such correlations have not been observed. While we acknowledge that we lack definitive proof to rule out genetic influences entirely, the evidence available strongly suggests that social learning, rather than genetic transmission, is the more plausible mechanism.

      Action - Clarified in manuscript.

      Comment 54

      Line 277: Can males mate with females from different clans?

      Yes, genetic evidence shows that males may even switch ocean basins.

      Action - We have clarified that we mean the female members of units from different clans have only rarely been observed to interact at sea between clans.

      Comment 55

      Lines 287-292: Consider discussing the difference between controlled/voluntary and automatic/involuntary imitation and their implications for cultural selection and social learning (see Heyes 2011; 2012). Heyes, C. (2011). Automatic imitation. Psychological bulletin, 137(3), 463. Heyes, C. (2012). What’s social about social learning?. Journal of comparative psychology, 126(2), 193.

      Thank you for your insightful comment regarding this. The distinction between controlled/voluntary and automatic/involuntary imitation, as highlighted by Heyes [L14, L15], provides a potentially valuable framework for interpreting social learning mechanisms in sperm whales. Automatic imitation refers to reflexive, often unconscious mimicry driven by perceptual or motor coupling, while controlled imitation involves deliberate and goal-directed efforts to replicate behaviors. Both forms likely play complementary roles in the cultural transmission observed in sperm whales.

      This dual-process perspective highlights the potential for cultural selection to act at different levels. Automatic imitation may drive convergence in shared environments, promoting acoustic homogeneity and facilitating inter-clan communication. In contrast, controlled imitation ensures the preservation of clan-specific vocal traditions, maintaining cultural diversity. This interplay between automatic and controlled processes could reflect a balancing act between cultural assimilation and differentiation, underscoring the adaptive value of these mechanisms in dynamic social and ecological contexts.

      Action - We have incorporated a short discussion of this distinction and its implications for our findings in the Discussion. Additionally, we have cited [L14, L15] to provide theoretical grounding for this interpretation.

      Comment 56

      Methods: Consider integrating the paragraph from lines 319-321 into lines 28-35 and eliminate redundant information.

      Thanks.

      Action - We implemented the suggestion, removing the first paragraph of the Dataset description and integrating the information when we introduce the concepts of codas and clicks.

      [L1] C. Efferson, R. Lalive, and E. Fehr, Science 321, 1844 (2008).

      [L2] R. McElreath, R. Boyd, and P. Richerson, Curr. Anthropol. 44, 122 (2003).

      [L3] L. S. Burchardt and M. Knornschild, PLoS Computational Biology 16, e1007755 (2020).

      [L4] A. Ravignani and K. de Reus, Evolutionary Bioinformatics 15, 1176934318823558 (2019).

      [L5] C. T. Kello, S. D. Bella, B. Med´ e, and R. Balasubramaniam, Journal of the Royal Society Interface 14, 20170231 (2017).

      [L6] D. Gerhard, Canadian Acoustics 31, 22 (2003).

      [L7] N. Mathevon, C. Casey, C. Reichmuth, and I. Charrier, Current Biology 27, 2352 (2017).

      [L8] P. Sharma, S. Gero, R. Payne, D. F. Gruber, D. Rus, A. Torralba, and J. Andreas, Nature Communications 15, 3617 (2024).

      [L9] T. A. Hersh, S. Gero, L. Rendell, M. Cantor, L. Weilgart, M. Amano, S. M. Dawson, E. Slooten, C. M. Johnson, I. Kerr, et al., Proc. Natl. Acad. Sci. 119, e2201692119 (2022).

      [L10] R. Boyd and P. J. Richerson, Cult Anthropol 2, 65 (1987). [L11] E. Cohen, Curr. Anthropol. 53, 588 (2012).

      [L12] T. A. Hersh, S. Gero, L. Rendell, and H. Whitehead, Methods Ecol. Evol. 12, 1668 (2021), ISSN 2041-210X, 2041-210X.

      [L13] S. Gero, A. Bøttcher, H. Whitehead, and P. T. Madsen, R. Soc. Open Sci. 3, 160061 (2016).

      [L14] C. Heyes, Psychological Bulletin 137, 463 (2011).

      [L15] C. Heyes, Journal of Comparative Psychology 126, 193 (2012).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Cao et al. examines an important but understudied question of how chronic exposure to heat drives changes in affective and social behaviors. It has long been known that temperature can be a potent driver of behaviors and can lead to anxiety and aggression. However, the neural circuitry that mediates these changes is not known. Cao et al. take on this question by integrating optical tools of systems neuroscience to record and manipulate bulk activity in neural circuits, in combination with a creative battery of behavior assays. They demonstrate that chronic daily exposure to heat leads to changes in anxiety, locomotion, social approach, and aggression. They identify a circuit from the preoptic area (POA) to the posterior paraventricular thalamus (pPVT) in mediating these behavior changes. The POA-PVT circuit increases activity during heat exposure. Further, manipulation of this circuit can drive affective and social behavioral phenotypes even in the absence of heat exposure. Moreover, silencing this circuit during heat exposure prevents the development of negative phenotypes. Overall the manuscript makes an important contribution to the understudied area of how ambient temperature shapes motivated behaviors.

      Strengths:

      The use of state-of-the-art systems neuroscience tools (in vivo optogenetics and fiber photometry, slice electrophysiology), chronic temperature-controlled experiments, and a rigorous battery of behavioral assays to determine affective phenotypes. The optogenetic gain of function of affective phenotypes in the absence of heat, and loss of function in the presence of heat are very convincing manipulation data. Overall a significant contribution to the circuit-level instantiation of temperature-induced changes in motivated behavior, and creative experiments.

      Weaknesses:

      (1) There is no quantification of cFos/rabies overlap shown in Figure 2, and no report of whether the POA-PVT circuit has a higher percentage of Fos+ cells than the general POA population. Similarly, there is no quantification of cFos in POA recipient PVT cells for Figure 2 Supplement 2.

      Thanks for the comment. The quantification results of c-Fos signal have been provided in the main text and figures.  

      (2) The authors do not address whether stimulation of POA-PVT also increases core body temperature in Figure 3 or its relevant supplements. This seems like an important phenotype to make note of and could be addressed with a thermal camera or telemetry.

      Thanks for raising this point. We did indeed monitor the core body temperature during stimulation of POA-PVT pathway, but we did not observe any significant changes. We have included this finding in the revised manuscript.

      (3) In Figure 3G: is Day 1 vs Day 22 "pre-heat" significant? The statistics are not shown, but this would be the most conclusive comparison to show that POA-PVT cells develop persistent activity after chronic heat exposure, which is one of the main claims the authors make in the text. This analysis is necessary in order to make the claim of persistent circuit activity after chronic heat exposure.

      Figure 3G does compare the Day 1 preheat to Day22 preheat, and the difference was significant. The wording has been corrected to avoid confusion. Also, we have modified Figure 3D to 3H in our revised manuscript to improve the clarity of these plots.

      (4) In Figure 4, the control virus (AAV1-EYFP) is a different serotype and reporter than the ChR2 virus (AAV9-ChR2-mCherry). This discrepancy could lead to somewhat different baseline behaviors.

      Thanks for bringing out this issue. We acknowledge that using AA1-EGFP (a different serotype and reporter compared to the AAV9-ChR2-mCherry) as our control virus is not ideal. But based on our own prior experiments, we observed no significant differences in baseline behaviors between animals injected with AAV1 and AAV9 EYFP as well as control mice without virus injection. Therefore, we believe that the baseline behaviors of the animals were unaffected.

      (5) In Figure 5G, N for the photometry data: the authors assess the maximum z-score as a measure of the strength of calcium response, however the area under the curve (AUC) is a more robust and useful readout than the maximum z score for this. Maximum z-score can simply identify brief peaks in amplitude, but the overall area under the curve seems quite similar, especially for Figure 5N.

      Thanks for the comment. We agree with the reviewer that the area under the curve (AUC) is an alternative readout for measurement of the strength of calcium response. However, the reason why we chose the maximum z-score is based on the observation that we found POA recipient pPVT neurons after chronic heat treatment exhibited a higher calcium peak corresponding to certain behavioral performances when compared to pre-heat conditions. We thus applied the maximum z-score as a representative way to describe the neuronal activity changes of mice during certain behaviors before and after chronic heat treatment. The other consideration is that we want to reflect that POA recipient pPVT neurons become more sensitive and easier to be activated after chronic heat exposure under the same stressful situations compared to control mice. The maximum z score represented by peak in combination with particular behavioral performances is considered more suitable to highlight our findings in this study.

      (6) For Fig 5V: the authors run the statistics on behavior bouts pooled from many animals, but it is better to do this analysis as an animal average, not by compiling bouts. Compiling bouts over-inflates the power and can yield significant p values that would not exist if the analysis were carried out with each animal as an n of 1.

      Thanks for the comment and suggestion. We had tried both methods and the statistical results were similar. As suggested, we have updated Fig 5V, as well as Fig. 5H and 5O by comparing animal average in our revised manuscript.

      (7) In general this is an excellent analysis of circuit function but leaves out the question of whether there may be other inputs to pPVT that also mediate the same behavioral effect. Future experiments that use activity-dependent Fos-TRAP labeling in combination with rabies can identify other inputs to heat-sensitive pPVT cells, which may have convergent or divergent functions compared to the POA inputs.

      Thanks for the valuable suggestion, which would enhance the conclusion. We will consider adopting this approach in future investigations into this question.

      Reviewer #2 (Public review):

      Summary

      The study by Cao et al. highlights an interesting and important aspect of heat- and thermal biology: the effect of repetitive, long-term heat exposure and its impact on brain function.

      Even though peripheral, sensory temperature sensors and afferent neuronal pathways conveying acute temperature information to the CNS have been well established, it is largely unknown how persistent, long-term temperature stimuli interact with and shape CNS function, and how these thermally-induced CNS alterations modulate efferent pathways to change physiology and behavior. This study is therefore not only novel but, given global warming, also timely.

      The authors provide compelling evidence that neurons of the paraventricular thalamus change plastically over three weeks of episodic heat stimulation and they convincingly show that these changes affect behavioral outputs such as social interactions, and anxiety-related behaviors.

      Strengths

      (1) It is impressive that the assessed behaviors can be (i) recruited by optogenetic fiber activation and (ii) inhibited by optogenetic fiber inhibition when mice are exposed to heat. Technically, when/how long is the fiber inhibition performed? It says in the text "3 min on and 3 min off". Is this only during the 20-minute heat stimulation or also at other times?

      Thanks for pointing out the need for clarification. Our optogenetic inhibition had been conducted for 21 days during the heat exposure period (90 mins) for each mouse. And to avoid the light-induced heating effect, we applied the cyclical mode of 3 minutes’ light on and 3 minutes’ light off only during the process of heat exposure but not other time. The detailed description has been supplemented in the Method part of our revised manuscript.

      (2) It is interesting that the frequency of activity in pPVT neurons, as assessed by fiber photometry, stays increased after long-term heat exposure (day 22) when mice are back at normal room temperature. This appears similar to a previous study that found long-term heat exposure to transform POA neurons plastically to become tonically active (https://www.biorxiv.org/content/10.1101/2024.08.06.606929v1). Interestingly, the POA neurons that become tonically active by persistent heat exposure described in the above study are largely excitatory, and thus these could drive the activity of the pPVT neurons analyzed in this study.

      Thanks for pointing out this study that suggests similar plasticity of POA neurons under long-term heat exposure serving a different purpose. We have included this information in our discussion as well.  

      (3) How can it be reconciled that the majority of the inputs from the POA are found to be largely inhibitory (Fig. 2H)? Is it possible that this result stems from the fact that non-selective POA-to-pPVT projections are labelled by the approach used in this study and not only those pathways activated by heat? These points would be nice to discuss.

      Thanks for raising these important questions. Although it is not our primary focus, we are aware of the substantial inhibitory inputs from POA to pPVT which suggests an important function. However, we do not think that this pathway, which would exert an opposite effect on POA-recipient pPVT neurons compared to the excitatory input, contributes to the long-term effect of chronic heat exposure. This is due to the increased, rather than decreased, excitability of the neurons. There is a possibility that this inhibitory input serves as a short-term inhibitory control for other purpose. Further work is needed to fully address this question.

      (4) It is very interesting that no LTP can be induced after chronic heat exposure (Figures K-M); the authors suggest that "the pathway in these mice were already saturated" (line 375). Could this hypothesis be tested in slices by employing a protocol to extinguish pre-existing (chronic heat exposure-induced) LTP? This would provide further strength to the findings/suggestion that an important synaptic plasticity mechanism is at play that conveys behavioral changes upon chronic heat stimulation.

      We agree with the reviewer that the results of the suggested experiment would further strengthen our hypothesis. We will try to confirm this in future studies.

      (5) It is interesting that long-term heat does not increase parameters associated with depression (Figure 1N-Q), how is it with acute heat stress, are those depression parameters increased acutely? It would be interesting to learn if "depression indicators" increase acutely but then adapt (as a consequence of heat acclimation) or if they are not changed at all and are also low during acute heat exposure.

      Based on our observations, we did not find increased depression parameters after acute heat stress in our experiments (data not shown), which was consistent with other two previous studies (Beas et al., 2018; Zhang et al., 2021). It appears that acute heat stress is more associated with anxiety-like behavior and may not be sufficient to induce depression-like phenotypes in rodents, aligning with our observation during experiments.

      Beas BS, Wright BJ, Skirzewski M, Leng Y, Hyun JH, Koita O, Ringelberg N, Kwon HB, Buonanno A, Penzo MA (2018) The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism Nat Neurosci 21:963-973.

      Zhang GW, Shen L, Tao C, Jung AH, Peng B, Li Z, Zhang LI, Whit Tao HZ (2021) Medial preoptic area antagonistically mediates stress-induced anxiety and parental behavior Nat Neurosci 24:516-528.

      Weaknesses/suggestions for improvement.

      (1) The introduction and general tenet of the study is, to us, a bit too one-sided/biased: generally, repetitive heat exposure --heat acclimation-- paradigms are known to not only be detrimental to animals and humans but also convey beneficial effects in allowing the animals and humans to gain heat tolerance (by strengthening the cardiovascular system, reducing energy metabolism and weight, etc.).

      Thanks for the suggestion. We have modified the introduction in our revised manuscript to make it more balanced.

      (2) The point is well taken that these authors here want to correlate their model (90 minutes of heat exposure per day) to heat waves. Nevertheless, and to more fully appreciate the entire biology of repetitive/chronic/persistent heat exposure (heat acclimation), it would be helpful to the general readership if the authors would also include these other aspects in their introduction (and/or discussion) and compare their 90-minute heat exposure paradigm to other heat acclimation paradigms. For example, many past studies (using mice or rats)m have used more subtle temperatures but permanently (and not only for 90 minutes) stimulated them over several days and weeks (for example see PMID: 35413138). This can have several beneficial effects related to cardiovascular fitness, energy metabolism, and other aspects. In this regard: 38{degree sign}C used in this study is a very high temperature for mice, in particular when they are placed there without acclimating slowly to this temperature but are directly placed there from normal ambient temperatures (22{degree sign}C-24{degree sign}C) which is cold/coolish for mice. Since the accuracy of temperature measurement is given as +/- 2{degree sign}C, it could also be 40{degree sign}C -- this temperature, 40{degree sign}C, non-heat acclimated C57bl/6 mice will not survive for long.

      The authors could consider discussing that this very strong, short episodic heat-stress model used here in this study may emphasize detrimental effects of heat, while more subtle long-term persistent exposure may be able to make animals adapt to heat, become more tolerant, and perhaps even prevent the detrimental cognitive effects observed in this study (which would be interesting to assess in a follow-up study).

      Thanks for pointing out the important aspect regarding the different heat exposure paradigms and their potential impacts. We have incorporated these points into both the Introduction and Discussion sections of the revised manuscript.

      (3) Line 140: It would help to be clear in the text that the behaviors are measured 1 day after the acute heat exposure - this is mentioned in the legend to the figure, but we believe it is important to stress this point also in the text. Similarly, this is also relevant for chronic heat stimulation: it needs to be made very clear that the behavior is measured 1 day after the last heat stimulus. If the behaviors had been measured during the heat stimulus, the results would likely be very different.

      Thanks for the suggestion, and we have clarified the procedure in the revised manuscript.

      (4) Figure 2 D and Figure 2- Figure Supplement 1: since there is quite some baseline cFos activity in the pPVT region we believe it is important to include some control (room temperature) mice with anterograde labelling; in our view, it is difficult/not possible to conclude, based on Fig 2 supplement 2C, that nearly 100% of the cfos positive cells are contacted by POA fibre terminals (line 168). By eye there are several green cells that don't have any red label on (or next to) them; additionally, even if there is a little bit of red signal next to a green cell: this is not definitive proof that this is a synaptic contact. It is therefore advisable to revisit the quantification and also revisit the interpretation/wording about synaptic contacts.

      In relation to the above: Figure 2h suggests that all neurons are connected (the majority receiving inhibitory inputs), is this really the case, is there not a single neuron out of the 63 recorded pPVT neurons that does not receive direct synaptic input from the POA?

      Thanks for the comments. For Figure 2-figure supplement 1, the baseline c-Fos activity in pPVT were indeed measured from mouse under room temperature. Observed activity may be attributed to the diverse functions that the pPVT is responsible for. Compared to the heat-exposed group, we observed significant increases in c-Fos signals, suggesting the effect of heat exposure.

      For Figure 2-figure supplement 2, through targeted injection of AAV1-Cre into the POA, we achieved selective expression of Cre-dependent ChR2-mCherry in pPVT neurons receiving POA inputs. Following heat exposure, we observed substantial colocalization between heat-induced c-Fos expression (green signal) and ChR2-mCherry-labeled neurons (red signal) in the pPVT. This extensive overlap indicates that POA-recipient pPVT neurons are predominantly heat-responsive and likely mediate the behavioral alterations induced by chronic heat exposure. We have validated these signals and included updated quantification in our revised manuscript.

      For Fig 2H, we specifically patched those neurons that were surrounded by red fluorescence under the microscope, ensuring that the patched neurons had a high likelihood of being innervated from POA. This is why all 63 recorded pPVT neurons were found to receive direct synaptic input from the POA.

      (5) It would be nice to characterize the POA population that connects to the pPVT, it is possible/likely that not only warm-responsive POA neurons connect to that region but also others. The current POA-to-pPVT optogenetic fibre stimulations (Figure 4) are not selective for preoptic warm responsive neurons; since the POA subserves many different functions, this optogenetic strategy will likely activate other pathways. The referees acknowledge that molecular analysis of the POA population would be a major undertaking. Instead, this could be acknowledged in the discussion, for example in a section like "limitation of this study".

      Thanks for the suggestion. We have supplemented this part in our revised manuscript.

      (6) Figure 3a the strategy to express Gcamp in a Cre-dependent manner: it seems that the Gcamp8f signal would be polluted by EGFP (coming from the Cre virus injected into the POA): The excitation peak for both is close to 490nm and emission spectra/peaks of GCaMP8f (510-520 nm) and EGFP (507-510 nm) are also highly overlapping. We presume that the high background (EGFP) fluorescence signal would preclude sensitive calcium detection via Gcamp8f, how did the authors tackle this problem?

      Thank you for pointing out this issue. We acknowledge that we included AAV1-EGFP when recording the GCaMP8F signal to assist in the post-verification of the accuracy of the injection site. But we also collected recording data from mice with AAV1-Cre without EGFP injected into POA and Cre-dependent GCaMP8F in pPVT, albert in a smaller number. We did not observe any obvious differences in the change in calcium signal between these two virus strategies, suggesting that the sensitivity of the GCaMP signals was not significantly affected by the increased baseline fluorescence due to EGFP.

      (7) How did the authors perform the social interaction test (Figures 1F, G)? Was the intruder mouse male or female? If it was a male mouse would the interaction with the female mouse be a form of mating behavior? If so, the interpretation of the results (Figures 1F, G) could be "episodic heat exposure over the course of 3 weeks reduces mating behavior".

      Thanks for the comment. For this female encounter test, we strictly followed the protocol by Ago Y, et al., (2015). During this test, both the strange male and female mice were placed into a wired cup (which is made up of mental wire entanglement and the size for each hole is 0.5 cm [L] x 0.5 cm [W]), which successfully prevented large body contact and the mating behavior but only innate sex-motivated moving around the cup. We have supplemented the details in the method part of our revised manuscript.

      Ago Y, Hasebe S, Nishiyama S, Oka S, Onaka Y, Hashimoto H, Takuma K, Matsuda T (2015) The Female Encounter Test: A Novel Method for Evaluating Reward-Seeking Behavior or Motivation in Mice Int J Neuropsychopharmacol 18: pyv062.

      Reviewer #3 (Public review):

      In this study, Cao et al. explore the neural mechanisms by which chronic heat exposure induces negative valence and hyperarousal in mice, focusing on the role of the posterior paraventricular nucleus (pPVT) neurons that receive projections from the preoptic area (POA). The authors show that chronic heat exposure leads to heightened activity of the POA projection-receiving pPVT neurons, potentially contributing to behavioral changes such as increased anxiety level and reduced sociability, along with heightened startle responses. In addition, using electrophysiological methods, the authors suggest that increased membrane excitability of pPVT neurons may underlie these behavioral changes. The use of a variety of behavioral assays enhances the robustness of their claim. Moreover, while previous research on thermoregulation has predominantly focused on physiological responses to thermal stress, this study adds a unique and valuable perspective by exploring how thermal stress impacts affective states and behaviors, thereby broadening the field of thermoregulation. However, a few points warrant further consideration to enhance the clarity and impact of the findings.

      (1) The authors claim that behavior changes induced by chronic heat exposure are mediated by the POA-pPVT circuit. However, it remains unclear whether these changes are unique to heat exposure or if this circuit represents a more general response to chronic stress. It would be valuable to include control experiments with other forms of chronic stress, such as chronic pain, social defeat, or restraint stress, to determine if the observed changes in the POA-pPVT circuit are indeed specific to thermal stress or indicative of a more universal stress response mechanism.

      We also share similar considerations as the reviewer and indeed have conducted experiments to explore this possibility. Our findings suggest that the POA-pPVT pathway may also mediate behavioral changes induced by other chronic stress, e.g. chronic restraint stress. Nevertheless, given the well-known prominent role of POA neurons in heat perception, we do believe that the POA-pPVT has a specialized role in mediating chronic heat induced changes. The role of this pathway in other stress-related responses will need a more comprehensive study in the future.

      (2) The authors use the term "negative emotion and hyperarousal" to interpret behavioral changes induced by chronic heat (consistently throughout the manuscript, including the title and lines 33-34). However, the term "emotion" is broad and inherently difficult to quantify, as it encompasses various factors, including both valence and arousal (Tye, 2018; Barrett, L. F. 1999; Schachter, S. 1962). Therefore, the reviewer suggests the authors use a more precise term to describe these behaviors, such as valence. Additionally, in lines 117 and 137-139, replacing "emotion" with "stress responses," a term that aligns more closely with the physiological observations, would provide greater specificity and clarity in interpreting the findings.

      Thanks for the suggestion. We have modified the description of “emotion” to “emotional valence” in various places throughout the revised manuscript.

      (3) Related to the role of POA input to pPVT,

      a) The authors showed increased activity in pPVT neurons that receive projections from the POA (Figure 3), and these neurons are necessary for heat-induced behavioral changes (Figures 4N-W). However, is the POA input to the pPVT circuit truly critical? Since recipient pPVT neurons can receive inputs from various brain regions, the reviewer suggests that experiments directly inhibiting the POA-to-pPVT projection itself are needed to confirm the role of POA input. Alternatively, the authors could show that the increased activity of pPVT neurons due to chronic heat exposure is not observed when the POA is blocked. If these experiments are not feasible, the reviewer suggests that the authors consider toning down the emphasis on the role of the POA throughout the manuscript and discuss this as a limitation.<br /> b) In the electrophysiology experiments shown in Figures 6A-I, the authors conducted in vitro slice recordings on pPVT neurons. However, the interpretation of these results (e.g., "The increase in presynaptic excitability of the POA to pPVT excitatory pathway suggested plastic changes induced by the chronic heat treatment.", lines 349-350) appears to be an overclaim. It is difficult to conclude that the increased excitability of pPVT neurons due to heat exposure is specifically caused by inputs from the POA. To clarify this, the reviewer suggests the authors conduct experiments targeting recipient neurons in the pPVT, with anterograde labeling from the POA to validate the source of excitatory inputs.

      For point (a), we acknowledge that pPVT neurons receiving POA inputs may also receive projections from other brain regions. While these additional inputs warrant investigation, they fall beyond the scope of our current study and represent promising directions for future research. Notably, compared to other well-characterized regions such as the amygdala and ventral hippocampus, the pPVT receives particularly robust projections from hypothalamic nuclei (Beas et al., 2018). Our optogenetic inhibition of POA-recipient pPVT neurons during chronic heat exposure effectively prevented the influence of POA excitatory projections on pPVT neurons. Furthermore, selective optogenetic activation of POA excitatory terminals within the pPVT was sufficient to induce similar behavioral abnormalities in mice, strongly supporting the causal role of POA inputs in mediating chronic heat exposure-induced behavioral alterations.

      Beas BS, Wright BJ, Skirzewski M, Leng Y, Hyun JH, Koita O, Ringelberg N, Kwon HB, Buonanno A, Penzo MA (2018) The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism Nat Neurosci 21:963-973.

      Regarding point (b), we acknowledge certain limitations in our in vitro patch-clamp recordings when attributing increased pPVT neuronal excitability to enhanced presynaptic POA inputs. Nevertheless, our brain slice recordings clearly demonstrated heightened excitability of pPVT neurons following chronic heat exposure. This finding was further corroborated by our in vivo fiber photometry recordings specifically targeting POA-recipient pPVT neurons, which confirmed that the increased pPVT neuronal activity was indeed modulated by POA inputs. The causal relationship was strengthened by our observation that optogenetic activation of POA excitatory terminals within the pPVT reproduced behavioral abnormalities similar to those observed in chronic heat-exposed mice. Additionally, our inability to induce circuit-specific LTP in the POA-pPVT pathway suggests that these synapses were already potentiated and saturated, reflecting enhanced excitatory inputs from the POA to pPVT. Collectively, these findings support our conclusion that increased excitatory projections from the POA to pPVT likely represent a key mechanism underlying chronic heat exposure-induced behavioral alterations in mice.

      (4) The authors focus on the excitatory connection between the POA and pPVT (e.g., "Together, our results indicate that most of the pPVT-projecting POA neurons responded to heat treatment, which would then recruit their downstream neurons in the pPVT by exerting a net excitatory influence.", lines 169-171). However, are the POA neurons projecting to the pPVT indeed excitatory? This is surprising, considering i) the electrophysiological data shown in Figures 2E-K that inhibitory current was recorded in 52.4% of pPVT neurons by stimulation of POA terminal, and ii) POA projection neurons involved in modulating thermoregulatory responses to other brain regions are primarily GABAergic (Tan et al., 2016; Morrison and Nakamura, 2019). The reviewer suggests showing whether the heat-responsive POA neurons projecting to the pPVT are indeed excitatory (This could be achieved by retrogradely labeling POA neurons that project to the pPVT and conducting fluorescence in situ hybridization (FISH) assays against Slc32a1, Slc17a6, and Fos to label neurons activated by warmth). Alternatively, demonstrate, at least, that pPVT-projecting POA neurons are a distinct population from the GABAergic POA neurons that project to thermoregulatory regions such as DMH or rRPa. This would clarify how the POA-pPVT circuit integrates with the previously established thermoregulatory pathways.

      Thanks for the comment and suggestion. We acknowledge that there are both excitatory and inhibitory projections from POA to pPVT. Although it is not our primary focus, we are aware of the substantial inhibitory inputs from POA to pPVT which suggests an important function. However, we do not think that this pathway, which would exert an opposite effect on POA-recipient pPVT neurons compared to the excitatory input, contributes to the long-term effect of chronic heat exposure. This is due to the increased, rather than decreased, excitability of the neurons. There is a possibility that this inhibitory input serves as a short-term inhibitory control for other purpose. Further work is needed to fully address this question.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I have a number of suggested minor edits that would improve the readability and interpretation of figures for the reader. In many figures, there are places where it is unclear what is being tested, and making minor changes would make the manuscript flow more easily for the reader:

      (1) The authors could add additional details about the behavior paradigms in the Figures, especially Figure 1. How long was the chronic heat exposure for? At what temperature? What is the length of time between the end of heat exposure and the start of behaviors? What was the schedule of testing for EPM and social behaviors? Was it all on the same day or on different days? These details will make it easier for the reader to understand the behavior tests.

      We have revised our experimental scheme, especially Figure 1, and added more detailed descriptions in the method section. The modifications have also been applied to the other figures.

      (2) In Figures 1J and 1K, it is a bit unclear what is being shown in the right panel, since there are no axes or labels to interpret what is being plotted.

      We have added body kinetics (purple dot) in the left panel of Figure 1J and 1K to align with the right panels, and we have updated our descriptions in the figure legend.

      (3) In general, Figure 1 would benefit from more headers/labels or schematics to demonstrate what is being tested (for example, it's unclear that forced swim, tail suspension, open field, aggression, sucrose preference, or acoustic startle are being studied unless the reader looks at the figure legend in depth. Simple schematics or titles for each panel would help.

      We have added the abbreviated titles for each panel of Figure 1 to help readers to better understand what was being tested.

      (4) Figure 2A would benefit from edits to the schematic so that it is clear that heat exposure is being done before the animal is sacrificed and cFos is stained.

      We have revised the text to clarify that heat exposure occurred before the animal was sacrificed and c-Fos was stained.

      (5) Figure 2D: would help if the quantification of overlap of cFos and rabies was shown in the figure in addition to reporting it in the text (84%).

      We have added quantification in Figure 2D.

      (6) The supplemental data in Figure 2 - Supplemental Figure 1 showing increased Fos in PVT and POA after heat exposure would actually help if it was in main Figure 2 so that the reader can more clearly see the rationale for choosing the POA-PVT circuit. But this is a matter of preference and up to the author where they want to show this data.

      Thanks for the suggestion. But considering the layout and space, we will prefer to retain this part in Figure 2-supplemental figure 1.

      (7) Figure 3 would benefit from a behavior schematic illustrating the time course of the experiment and what the heat exposure protocol is for each day (how many minutes heat 'on' vs 'off', the temperature of heat, etc). Also, what is different about day 22 that makes it chronic heat vs day 21? Currently, it is a bit hard to understand the protocol.

      We have added the temperature and time of chronic heat exposure in the schematic of Figure 3. The “day 22” represented the time point after chronic heat exposure. And we measured the calcium activity of POA recipient pPVT neurons on day 22 to compare with day 1 to demonstrate that the activity changes of POA recipient pPVT neurons after chronic heat exposure.

      (8) Figure 3D, it is unclear what the difference is between the Day 1 data on the left and Day 1 data on the right. Same with Figure 3H, unclear what the difference is between the left and the right.

      The left panel and right panel reflect different parameters: frequency /min (left) and amplitude (△F/F) for Figure 3D-3H. By doing this, we want to reflect the dynamic activity changes of POA recipient pPVT neurons throughout chronic heat exposure process. Now, all figures in panel 3D to 3H have been revised to make them clearer in meaning.

      (9) Figure 4A would benefit from schematics showing the stimulation protocol for chronic optogenetics (how many days? Frequency? Duration of time? Etc)

      We have added detailed schematics in our Figure 4A.

      Reviewer #2 (Recommendations for the authors)

      (1) It is interesting that social behavior appears to be reduced upon long-term heat exposure but not after acute heat exposure. Interaction of animals, such as huddling, can be used by animals as a form of behavioral thermoregulation in cold environments and heat may drive animals apart to allow for better heat dissipation. The social interaction measured here is not huddling (because, I assume, the animals are separated by a divider?) but is this form of behavior measured here related to huddling/"social thermoregulation"? This could be discussed.

      Our behavioral tests were performed at room temperature. Even though huddling is a type of social behavior, based on our observation, the tested mouse was actively revolving around the mental cap, suggesting this type of behavior is not related to huddling/social thermoregulation type of social behavior.

      (2) Line 113: The statement "Chronic treatment did not change body temperature" should be clarified/rephrased because 90 minutes of 38 degrees centigrade exposure to heat will increase the body temperature of mice. It would be helpful if the authors made clear that they measure body temperature before the heat stimulus (and not during the heat stimulus), which is now only obvious if one digs into the methods section.

      We have revised the text and clarified that body temperature was measured before the heat stimulus in the revised manuscript.

      (3) Figure 1J and K: for the non-experts, these graphs are difficult to interpret, some more explanation is needed (what exactly is measured ?). We believe that the term "arousal" may not be justified in this context because the authors have not measured sleep patterns (EEG and EMG) to show that the mice arouse from a sleep (or sleep-like) stage; the authors may consider changing the terminology, e.g. something along the lines of "agitation" or "activity".

      We have further elaborated the meaning of Figure 1J and K in our revised manuscript. The acoustic startle response is a well-recognized behavioral parameter reflecting arousal levels in rodent model. The more agitation in response to stimulus, the higher the arousal levels in mice. We have used the term “agitation” to describe mice’s performance in the acoustic startle response test.

      Reviewer #3 (Recommendations for the authors):

      (1) The authors suggest in the introduction of the manuscript that the HPA axis and other multifaceted factors may influence emotional changes caused by heat stress (lines 63-78). However, there are no experiments or discussions on how the POA-pPVT circuit interacts with these factors. In line with the study's proposed direction in the introduction section, it would be valuable to explore, or at least discuss, whether and how the POA-pPVT circuit interacts with the HPA axis or other neural circuits known to regulate emotional and stress responses. Alternatively, the reviewer suggests revising the content of the introduction to align with the focus of the study.

      Although POA is known to possibly interact with the HPA axis via its connection with the paraventricular nucleus of the hypothalamus, there is hardly any evidence for the pPVT. Thus, we prefer not to speculate this question, which remains open, in our current manuscript.

      (2) In Figure 5, the authors report that pPVT neurons that receive projections from the POA exhibited increased responses to stressful situations following chronic heat exposure. However, considering the long pre- and post-recording time gap of approximately three weeks, the additional expression of GCaMP protein over time could potentially account for the increased signal. Therefore, the reviewer recommends including a control group without heat exposure to rule out this possibility.

      We have included Figure 3-figure supplement 1 in our manuscript to exclude the effect of expression of GCaMP protein over time on the recording of calcium signal.

      (3) Related to Figure 2, a) Please include quantification data of the overlap between retrogradely labeled and c-Fos-expressing POA neurons, which can be presented as a bar graph in Figure 2. This would be beneficial for readers to estimate how many warm-activated POA neurons connected to the pPVT are actively engaged under these conditions.

      In the revised manuscript, we have included the quantification analysis in Figure 2.

      b) The images in Figure 2 - Figure Supplement 1 seem to degrade in quality when magnified, making it difficult to discern finer details. Higher-resolution images would greatly improve the clarity and help in accurately visualizing the c-Fos expression patterns in the POA and pPVT regions.

      We have changed our images of Figure 2-figure supplement 1 to higher-resolution in the revised manuscript.

      c) The c-Fos images in Figure 2D and Figure 2 - Figure Supplement 2C appear unusual in that the c-Fos signal seems to fill the entire cell, whereas c-Fos protein is localized to the nucleus. Could the authors clarify whether this image accurately represents c-Fos staining or if there might be an issue with the staining or imaging process?

      We are confident that the green signals in both Figure 2D and Figure 2-figure supplement 2C, which did not occupy the whole cell body, have already accurately reflected the c-Fos and that they were nucleus staining. We have updated the amplified picture in Figure 2D.

      d) In Supplemental Figure 2B, the square marking the region of interest should be clearly explained in the figure legend to ensure that readers can fully understand the context and focus of the image.

      We have further modified our figure legend in Figure 2-figure supplement 1 in our revised manuscript.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):  

      Summary:  

      Satoshi Yamashita et al., investigate the physical mechanisms driving tissue bending using the cellular Potts Model, starting from a planar cellular monolayer. They argue that apical length-independent tension control alone cannot explain bending phenomena in the cellular Potts Model, contrasting with previous works, particularly Vertex Models. They conclude that an apical elastic term, with zero rest value (due to endocytosis/exocytosis), is necessary to achieve apical constriction, and that tissue bending can be enhanced by adding a supracellular myosin cable. Additionally, a very high apical elastic constant promotes planar tissue configurations, opposing bending.  

      Strengths:  

      - The finding of the required mechanisms for tissue bending in the cellular Potts Model provides a natural alternative for studying bending processes in situations with highly curved cells. 

      - Despite viewing cellular delamination as an undesired outcome in this particular manuscript, the model's capability to naturally allow T1 events might prove useful for studying cell mechanics during out-of-plane extrusion. 

      We thank the reviewer for the careful comments and suggestions.

      Weaknesses: 

      - The authors claim that the cellular Potts Model (CPM) is unable to achieve the results of the vertex model (VM) simulations due to naturally non-straight cellular junctions in the CPM versus the VM. The lack of a substantial comparison undermines this assertion. None of the references mentioned in the manuscript are from a work using vertex model with straight cellular junctions, simulating apical constriction purely by a enhancing a length-independent apical tension. Sherrard et al and Pérez-González et al. use 2D and 3D Vertex Models, respectively, with a "contractility" force driving apical constriction. However, their models allow cell curvature. Both references suggest that the cell side flexibility of the CPM shouldn't be the main issue of the "contractility model" for apical constriction. 

      We appreciate the comment.

      For the reports by Sherrard et al and Pérez-Gonález et al, lack of the cell rearrangement (T1 transition) might have caused the difference. Other than these, Muñoz et al. (doi:10.1016/j.jbiomech.2006.05.006), Polyakov et al. (doi:10.1016/j.bpj.2014.07.013), Inoue et al.

      (doi:10.1007/s10237-016-0794-1), Sui et al.

      (doi:10.1038/s41467-018-06497-3), and Guo et al. (doi:10.7554/eLife.69082) used simulation models with the straight lateral surface.

      We updated an explanation about the difference between the vertex model and the cellular Potts model in the discussion.

      P12L318 “An edge in the vertex model can be bent by interpolating vertices or can be represented with an arc of circle (Brakke, 1992). Even in cases where vertex models were extended to allow bent lateral surfaces, the model still limited cell rearrangement and neighbor changes (Pérez-González et al., 2021), limiting the cell delamination. Thus the difference in simulation results between the models could be due to whether the cell rearrangement was included or not. However, it is not clear how the absence of the cell rearrangement affected cell behaviors in the simulation, and it shall be studied in future. In contrast to the vertex model, the cellular Potts model included the curved cell surface and the cell rearrangement innately, it elucidated the importance of those factors.”

      - The myosin cable is assumed to encircle the invaginated cells. Therefore, it is not clear why the force acts over the entire system (even when decreasing towards the center), and not locally in the contour of the group of cells under constriction. The specific form of the associated potential is missing. It is unclear how dependent the results of the manuscript are on these not-well-motivated and model-specific rules for the myosin cable.

      A circle radius decreases when the circle perimeter shrinks, and this was simulated with the myosin cable moving toward the midline in the cross section.

      We added an explanation in the introduction and the results.

      P2L74 “In the same way with the contracting circumferential myosin belt in a cell decreasing the cell apical surface, the circular supracellular myosin cable contraction decreases the perimeter, the radius of the circle, and an area inside the circle.”

      P6L197 “In the cross section, the shrinkage of the circular supracellular myosin cable was simulated with a move of adherens junction under the myosin cable toward the midline.”

      - The authors are using different names than the conventional ones for the energy terms. Their current attempt to clarify what is usually done in other works might lead to further confusion. 

      The reviewer is correct. However we named the energy terms differently because the conventional naming would be misleading in our simulation model.

      We added an explanation in the results.

      P4L140 “Note that the naming for the energy terms differs from preceding studies. For example, Farhadifar et al. (2007) named a surface energy term expressed by a proportional function "line tensions" and a term expressed by a quadratic function "contractility of the cell perimeter". In this study, however, calling the quadratic term "contractility" would be misleading since it prevents the contraction when  < _0. Therefore we renamed the terms accordingly.”

      Reviewer #2 (Public Review): 

      Summary: 

      In their work, the Authors study local mechanics in an invaginating epithelial tissue. The work, which is mostly computational, relies on the Cellular Potts model. The main result shows that an increased apical "contractility" is not sufficient to properly drive apical constriction and subsequent tissue invagination. The Authors propose an alternative model, where they consider an alternative driver, namely the "apical surface elasticity". 

      Strengths: 

      It is surprising that despite the fact that apical constriction and tissue invagination are probably most studied processes in tissue morphogenesis, the underlying physical mechanisms are still not entirely understood. This work supports this notion by showing that simply increasing apical tension is perhaps not sufficient to locally constrict and invaginate a tissue. 

      We thank the reviewer for the careful comments.

      Weaknesses: 

      Although the Authors have improved and clarified certain aspects of their results as suggested by the Reviewers, the presentation still mostly relies on showing simulation snapshots. Snapshots can be useful, but when there are too many, the results are hard to read. The manuscript would benefit from more quantitative plots like phase diagrams etc. 

      We agree with the comment.

      However, we could not make the qualitative measurement for the phase diagram since 1) the measurement must be applicable to all simulation results, and 2) measured values must match with the interpretation of the results. To do so, the measurement must distinguish a bent tissue, delaminated cells, a tissue with curved basal surface and flat apical surface, and a tissue with closed invagination. Such measurement is hardly designed.

      Recommendations for the authors: 

      Reviewing Editor (Recommendations For The Authors): 

      I see that the authors have worked on improving their paper in the revision. However, I agree with both reviewer #1 and reviewer #2 that the presentation and discussion of findings could be clearer. 

      Concrete recommendations for improvement: 

      (1) I find the observation by reviewer #1 on cell rearrangement very illuminating: It is indeed another key difference between the Cellular Potts Model that the authors use compared to typical Vertex Models, and could very well explain the different model outcomes. The authors could expand on the discussion of this point. 

      We updated an explanation about the difference between the vertex model and the cellular Potts model in the discussion.

      P12L318 “An edge in the vertex model can be bent by interpolating vertices or can be represented with an arc of circle (Brakke, 1992). Even in cases where vertex models were extended to allow bent lateral surfaces, the model still limited cell rearrangement and neighbor changes (Pérez-González et al., 2021), limiting the cell delamination. Thus the difference in simulation results between the models could be due to whether the cell rearrangement was included or not. However, it is not clear how the absence of the cell rearrangement affected cell behaviors in the simulation, and it shall be studied in future. In contrast to the vertex model, the cellular Potts model included the curved cell surface and the cell rearrangement innately, it elucidated the importance of those factors.”

      (2) In lines 161-164, the authors write "Some preceding studies assumed that the apical myosin generated the contractile force (Sherrard et al, 2010: Conte et al., 2012; Perez-Mockus et al., 2017; Perez-Gonzalez et al., 2021), while others assumed the elastic force (Polyakov et al., 2014; Inoue et al. 2016; Nematbakhsh et al., 2020)." 

      Similarly, in lines 316-319 the authors write "In the preceding studies, the apically localized myosin was assumed to generate either the contractile force (Sherrard et al, 2010: Conte et al., 2012; Perez-Mockus et al., 2017; Perez-Gonzalez et al., 2021), or the elastic force (Polyakov et al., 2014; Inoue et al. 2016; Nematbakhsh et al., 2020)." 

      The phrasing here is poor, as it suggests that the latter three studies (Polyakov et al., 2014; Inoue et al. 2016; Nematbakhsh et al., 2020) do not use the assumption that apical myosin generated contractile forces. This is wrong. All three of these studies do in fact assume apical surface contractility mediated by myosin. In addition, they also include other factors such as elastic restoring forces from the cell membrane (but not mediated by myosin as far as I understand). 

      These statements should be corrected. 

      We named the energy term expressed with the proportional function “contractility” and the energy term expressed with the quadratic function “elasticity”. Here we did not define what biological molecules correspond with the contractility or the elasticity.

      For the three studies, the effect of myosin was expressed by the quadratic function, and Polyakov et al. (2014) named it “springlike elastic properties”, Inoue et al. (2016) named it “Apical circumference elasticity”, and Nematbakhsh et al. (2020) named it “Actomyosin contractility”. To explain that the for generated by myosin was expressed with the quadratic function in these studies, we wrote that they “assumed the elastic force”.

      We assumed the myosin activity to be approximated with the proportional function in later parts and proposed that the membrane might be expressed with the quadratic function and responsible for the apical constriction based on other studies.

      To clarify this, we added it to the results.

      P4L175 “Some preceding studies assumed that the apical myosin generated the contractile force (Sherrard et al., 2010; Conte et al., 2012; Perez-Mockus et al., 2017; Pérez-González et al., 2021), while the others assumed the myosin to generate the elastic force (Polyakov et al., 2014; Inoue et al., 2016; Nematbakhsh et al., 2020).”

      (3) Lines 294-296: The phrasing suggests that the "alternative driving mechanism" consists of apical surface elasticity remodelling alone. This is not true, it's an additional mechanism, not an alternative. The authors' model works by the combined action of increased apical surface contractility and apical surface elasticity remodelling (and the effect can be strengthened by including a supracellular actomyosin cable). 

      We agree with the comment that the surface remodeling is not solely driving the apical constriction but with myosin activity. However, if we wrote it as an additional mechanism, it might look like that both the myosin activity alone and the surface remodeling alone could drive the apical constriction, and they would drive it better when combined together. So we replaced “mechanism” with “model”.

      P12L311 “In this study, we demonstrated that the increased apical surface contractility could not drive the apical constriction, and proposed the alternative driving model with the apical surface elasticity remodeling.”

      (4) In general, the part of the results section encompassing equations 1-5 should more explicitly state which equations were used in all simulations (Eqs1+5), and which ones were used only for certain conditions (Eqs2+3+4). 

      We added it as follows.

      P4L153 “While the terms Equation 1 and Equation 5 were included in all simulations since they were fundamental and designed in the original cellular Potts model (Graner and Glazier, 1992), the other terms Equation 2-Equation 4 were optional and employed only for certain conditions.”

      (5) Lines 150-152: Please state which parameters were examined. I assume Equation 4 was also left out of this initial simulation, as it is the potential energy of the actomyosin cable that was only included in some simulations. 

      We added it as follows.

      P4L163 “The term Equation 4 was not included either. For a cell, its compression was determined by a balance between the pressure and the surface tension, i.e., the heigher surface tension would compress the cell more. The bulk modulus 𝜆 was set 1, the lateral cell-cell junction contractility 𝐽_𝑙 was varied for different cell compressions, and the apical and basal surface contractilities 𝐽_𝑎 and 𝐽_𝑏 were varied proportional to 𝐽_𝑙.”

      (6) Lines 118-122: The sentence is very long and hard to parse. I suggest the following rephrasing: 

      “In this study, we assumed that the cell surface tension consisted of contractility and elasticity. We modelled the contractility as constant to decrease the surface, but not dependent on surface width or strain. We modelled the elasticity as proportional to the surface strain, working to return the surface to its original width." 

      We updated the explanation as follows.

      P3L121 “In this study, we assumed that the cell surface tension consisted of contractility and elasticity. We modeled the contractility as a constant force to decrease the surface, but not dependent on surface width or strain. We modeled the elasticity as a force proportional to the surface strain, working to return the surface to its original width.”

      (7) Lines 270-274: Another long sentence that is difficult to understand.

      Suggested rephrasing: 

      "Note that the supracellular myosin cable alone could not reproduce the apical constriction (Figure 2c), and cell surface elasticity in isolation caused the tissue to stay almost flat. However, combining both the supracellular myosin cable and the cell surface elasticity was sufficient to bend the tissue when a high enough pulling force acted on the adherens junctions." 

      We updated the sentence as follows.

      P9L287 “Note that the supracellular myosin cable alone could not reproduce the apical constriction (Figure 2c), and that with some parameters the modified cell surface elasticity kept the tissue almost flat (Figure 4). However, combining both the supracellular myosin cable and the cell surface elasticity made a sharp bending when the pulling force acting on the adherens junction was sufficiently high.”

      (8) Lines 434-435: Unclear what is meant with sentence starting with "Rest of sites" 

      We update the sentence as follows.

      P17L456 “At the initial configuration and during the simulation, sites adjacent to medium and not marked as apical are marked as basal.”

      (9) Fixing typos and other minor grammar and wording changes would improve readability. Following is a list in order of appearance in the text with suggestions for improvement. 

      We greatly appreciate the careful editing, and corrected the manuscript accordingly.

      Line 14: "a" is not needed in the phrase "increased a pressure" 

      Line 15: "cell into not the wedge shape" --"cell not into the wedge shape"  In fact it might be better to flip the sentence around to say, e.g. "making the cells adopt a drop shape instead of the expected wedge shape". 

      Line 24: "cells decrease its apical surface" --"cells decrease their apical surface" 

      Line 25: instead of "turn into wedge shape", a more natural-sounding expression could be "adopt a wedge shape" 

      Line 28: "which crosslink and contract" --because the subject is the singular "motor protein", the verb tense needs to be changed to "crosslinks and contracts" 

      Line 29: I suggest to use the definite article "the" before "actin filament network" as this is expected to be a known concept to the reader. 

      Line 31: "adherens junction and tight junction" --use the plural, because there are many per cell: "adherens junctions and tight junctions" 

      Line 42: "In vertebrate" --"In vertebrates" 

      Line 46: "Since the interruption to" --"Since the interruption of" 

      Line 56: "the surface tension of the invaginated cells were" --since the subject is "the surface tension", the verb "were" needs to be changed to "was"  Line 63: "extra cellular matrix" --generally written as "extracellular matrix" without the first space 

      Line 66: "many epithelial tissues" --"in many epithelial tissues" 

      Line 70: "This supracellular cables" --"These supracellular cables" 

      Line 72: "encircling salivary gland" --either "encircling the salivary gland" or "encircling salivary glands" 

      Lines 76-77: "investigated a cell physical property required" --"investigated what cell physical properties were required" 

      Line 78: "was another framework" --"is another framework" (it is a generally and currently valid true statement, so use the present tense) 

      Line 79: "simulated an effect of the apically localized myosin" --for clarity, I suggest rephrasing as "simulated the effect of increased apical contractility mediated by apically localized myosin" 

      Similarly, in Line 80: "did not reproduce the apical constriction" --"did not reproduce tissue invagination by apical constriction", as technically the cells in the model do reduce their apical area, but fail to invaginate as a tissue. 

      Line 82: "we found that a force" --"we found that the force" 

      Line 101: "apico-basaly" --"apico-basally" 

      Lines 107-108: "in order to save a computational cost" --"in order to save on computational cost" 

      Line 114: "Therefore an area of the cell" --"Therefore the interior area of the cell" 

      Line 139: "formed along adherens junction" --"formed along adherens junctions" 

      Line 166: "we ignored an effect" --"we ignored the effect" 

      Line 167: "and discussed it later" --"and discuss it later" 

      Lines 167-168: "an experiment with a cell cultured on a micro pattern showed that the myosin activity was well corresponded by the contractility" --"an experiment with cells cultured on a micro pattern showed that the myosin activity corresponded well to the contractility" 

      Line 172: "success of failure" --"success or failure" 

      Figure 1 caption: "none-polar" --"non-polarized"; "reg" --"red" 

      Line 179: "To prevented the surface" --"To prevent the surface" 

      Line 180: "It kept the cells surface" --"It kept the cells' surface" (apostrophe missing) 

      Line 181: "cells were delaminated and resulted in similar shapes" --"cells were delaminated and adopted similar shapes" 

      Line 190: "To investigate what made the difference" --"To investigate the origin of the difference" 

      Line 203: For clarity, I would suggest to add more specific wording. "the pressure, and a difference in the pressure between the cells resulted in" --"the internal pressure due to cell volume conservation, and a difference in the pressure between the contracting and non-contracting cells resulted in" 

      Line 206: "by analyzing the energy with respect to a cell shape" --"by analyzing the energy with respect to cell shape" 

      Line 220: "indicating that cell could shrink" --"indicating that a cell could shrink" 

      Line 224: For clarity, I would suggest more specific wording "lateral surface, while it seems not natural for the epithelial cells" --"lateral surface imposed on the vertex model, a restriction that seems not natural for epithelial cells" 

      Line 244: "succeeded in invaginating" --"succeeding in invaginating" 

      Line 247: "were checked whether the cells" --"were checked to assess whether the cells" 

      Line 250: "cells became the wedge shape" --"cells adopted the wedge shape" 

      Line 286: "there were no obvious change in a distribution pattern" --"there was no obvious change in the distribution pattern" 

      Lines 296-297: "When the cells were assigned the high apical surface contractility, the cells were rounded" --"When the cells were assigned a high apical surface contractility, the cells became rounded" 

      Line 298: "This simulation results" --"These simulation results" 

      Lines 301-302: I suggest to increase clarity by somewhat rephrasing.  "Even when the vertex model allowed the curved lateral surface, the model did not assume the cells to be rearranged and change neighbors" --"Even in cases where vertex models were extended to allow curved lateral surfaces, the model still limited cell rearrangement and neighbor changes" 

      Line 326: "high surface tension tried to keep" --"high surface tension will keep" 

      Line 334: "In many tissue" --"In many tissues" 

      Line 345: "turned back to its original shape" --"turned back to their original shape" (subject is the plural "cells") 

      Lines 348-349: "resembles the result of simulation" --"resembles the result of simulations" 

      Line 352: "how the myosin" --"how do the myosin" 

      Line 356: "it bears the surface tension when extended and its magnitude" What does the last "its" refer to? The surface tension? 

      Line 365: "the endocytosis decrease" --"the endocytosis decreases" 

      Line 371: "activatoin" --"activation" 

      Line 374 "the cells undergoes" --"the cells undergo" 

      Line 378: "entier" --"entire" 

      Line 389: "individual tissue accomplish" --"individual tissues accomplish" 

      Line 423: "is determined" --"are determined" (subject is the plural "labels") 

      Line 430: "phyisical" --"physical" 

      Table 6 caption: "cell-ECN" --cell-ECM 

      Line 557: "do not confused" --"should not be confused" 

      Reviewer #1 (Recommendations For The Authors): 

      - The phrase "In addition, the encircling supracellular myosin cable largely promoted the invagination by the apical constriction, suggesting that too high apical surface tension may keep the epithelium apical surface flat." is not clear to me. It sounds contradictory. 

      This finding was unexpected and surprising for us too. However, it is actually not contradictory since stronger surface tension will make the surface flatter in general. Figure 4 shows the flat apical surface with the wedge shape cells for the too strong apical surface tension. On the other hand, the supracellular myosin cable promoted the cell shape changes without raising the surface tension, and thus it could make a sharp bending (Figure 5).

      We updated the explanation for the effect of the supracellular myosin cable as follows.

      P2L74 “In the same way as the contracting circumferential myosin belt in a cell decreasing the cell apical surface, the circular supracellular myosin cable contraction decreases the perimeter, the radius of the circle, and an area inside the circle.”

      P6L197 “In the cross section, the shrinkage of the circular supracellular myosin cable was simulated with a move of adherens junction under the myosin cable toward the midline.”

      - Even when the authors now avoid to say "in contrast to vertex model simulations" in pg.4, in the next section there is still the intention to compare VM to CPM. Idem in the Discussion section. The conclusion in that section is that the difference between the results arising with VM (achieving the constriction) and the CPM (not achieving the constriction, and leading to cell delamination) are due to the straight lateral surfaces. However, Sherrard et at could achieve the constriction with an enhanced apical surface contractility using a 2D VM that allows curvatures. Therefore, I don't think the main difference is given by the deformability of the lateral surfaces. Instead, it might be due to the facility of the CPM to drive cellular rearrangements, coupled to specific modeling rules such as the permanent lost of the "apical side" once a delamination occurs and the boundary conditions. A clear example is the observation of loss of cell-cell adherence when all the tensions are set the same. Instead, in a VM cells conserve their lateral neighbors in the uniform tension regime (Sherrard et at). Is it noteworthy that the two mentioned works using vertex models to achieve apical constriction (Sherrard et at. (2D) and Pérez-González (3D) et al.) seem to neglect T1 transitions. I specifically think the added discussion on the impact of the T1 events (fundamental for cell delamination) is quite poor. A more detailed description would help justify the differences between model outcomes. 

      We updated an explanation about the difference between the vertex model and the cellular Potts model in the discussion.

      P12L318 “ An edge in the vertex model can be bent by interpolating vertices or can be represented with an arc of circle (Brakke, 1992). Even in cases where vertex models were extended to allow bent lateral surfaces, the model still limited cell rearrangement and neighbor changes (Pérez-González et al., 2021), limiting the cell delamination. Thus the difference in simulation results between the models could be due to whether the cell rearrangement was included or not. However, it is not clear how the absence of the cell rearrangement affected cell behaviors in the simulation, and it shall be studied in future. In contrast to the vertex model, the cellular Potts model included the curved cell surface and the cell rearrangement innately, it elucidated the importance of those factors.”

      - Fig6c: cell boundary colors are quite difficult to see. 

      The images were drawn by custom scripts, and those scripts do not implement a method to draw wide lines.

      - Title Table 1: "epitherila". 

      We corrected the typo.

      Reviewer #2 (Recommendations For The Authors): 

      The Authors have addressed most of my initial comments. In my opinion, the results could be better represented. Overall, the manuscript contains too many snapshots that are hard to read. I am sure the Authors could come up with a parameter that would tell the overall shape of the tissue and distinguish between a proper invagination and delamination. Then they could plot this parameter in a phase diagram using color plots to show how varying values of model parameters affects the shape. Presentation aside, I believe the manuscript will be a valuable piece of work that will be very useful for the community of computational tissue mechanics. 

      We agree with the comment.

      However, we could not make a suitable qualitative measurement method. For the phase diagrams, the measurement must be applicable to simulation results, otherwise each figure introduce a new measurement and a color representation would just redraw the snapshots but no comparison between the figures. So the different measurements would make the figures more difficult to read.

      The single measurement must distinguish the cell delamination by the increased surface contractility from the invagination by the modified surface elasticity and the supracellular contractile ring, even though the center cells were covered by the surrounding cells and lost contact with apical side extracellular medium in both cases.

      With the center of mass, the delaminated cells would return large values because they were moved basally. With the tissue basal surface curvature, it would not measure if the tissue apical surface was also curved or kept flat. If the phase diagram and interpretation of the simulation results do not match with each other, it would be misleading.

      A measurement meeting all these conditions was hardly designed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This important study proposes a framework to understand and predict generalization in visual perceptual learning in humans based on form invariants. Using behavioral experiments in humans and by training deep networks, the authors offer evidence that the presence of stable invariants in a task leads to faster learning. However, this interpretation is promising but incomplete. It can be strengthened through clearer theoretical justification, additional experiments, and by rejecting alternate explanations.

      We sincerely thank the editors and reviewers for their thoughtful feedback and constructive comments on our study. We have taken significant steps to address the points raised, particularly the concern regarding the incomplete interpretation of our findings.

      In response to Reviewer #1, we have included long-term learning curves from the human experiments to provide a clearer demonstration of the differences in learning rates across invariants, and have incorporated a new experiment to investigate location generalization within each invariant stability level. These new findings have shifted the focus of our interpretation from learning rates to the generalization patterns both within and across invariants, which, alongside the observed weight changes across DNN layers, support our proposed framework based on the Klein hierarchy of geometries and the Reverse Hierarchy Theory (RHT).

      We have also worked to clarify the conceptual foundation of our study and strengthen the theoretical interpretation of our results in light of the concerns raised by Reviewers #1 and #2. We have further expanded the discussion linking our findings to previous work on VPL generalization, and addressed alternative explanations raised by Reviewers #1.

      Reviewer #1 (Public Review):

      Summary:

      Visual Perceptual Learning (VPL) results in varying degrees of generalization to tasks or stimuli not seen during training. The question of which stimulus or task features predict whether learning will transfer to a different perceptual task has long been central in the field of perceptual learning, with numerous theories proposed to address it. This paper introduces a novel framework for understanding generalization in VPL, focusing on the form invariants of the training stimulus. Contrary to a previously proposed theory that task difficulty predicts the extent of generalization - suggesting that more challenging tasks yield less transfer to other tasks or stimuli - this paper offers an alternative perspective. It introduces the concept of task invariants and investigates how the structural stability of these invariants affects VPL and its generalization. The study finds that tasks with high-stability invariants are learned more quickly. However, training with low-stability invariants leads to greater generalization to tasks with higher stability, but not the reverse. This indicates that, at least based on the experiments in this paper, an easier training task results in less generalization, challenging previous theories that focus on task difficulty (or precision). Instead, this paper posits that the structural stability of stimulus or task invariants is the key factor in explaining VPL generalization across different tasks

      Strengths:

      - The paper effectively demonstrates that the difficulty of a perceptual task does not necessarily correlate with its learning generalization to other tasks, challenging previous theories in the field of Visual Perceptual Learning. Instead, it proposes a significant and novel approach, suggesting that the form invariants of training stimuli are more reliable predictors of learning generalization. The results consistently bolster this theory, underlining the role of invariant stability in forecasting the extent of VPL generalization across different tasks.

      - The experiments conducted in the study are thoughtfully designed and provide robust support for the central claim about the significance of form invariants in VPL generalization.

      Weaknesses:

      - The paper assumes a considerable familiarity with the Erlangen program and the definitions of invariants and their structural stability, potentially alienating readers who are not versed in these concepts. This assumption may hinder the understanding of the paper's theoretical rationale and the selection of stimuli for the experiments, particularly for those unfamiliar with the Erlangen program's application in psychophysics. A brief introduction to these key concepts would greatly enhance the paper's accessibility. The justification for the chosen stimuli and the design of the three experiments could be more thoroughly articulated.

      We appreciate your feedback regarding the accessibility of our paper, particularly concerning the Erlangen Program and its associated concepts. We have revised the manuscript to include a more detailed introduction to Klein’s Erlangen Program in the second paragraph of Introduction section. It provides clear descriptions and illustrative examples for the three invariants within the Klein hierarchy of geometries, as well as the nested relationships among them (see revised Figure 1). We believe this addition will enhance the accessibility of the theoretical framework for readers who may not be familiar with these concepts.

      In the revised manuscript, we have also expanded the descriptions of the stimuli and experimental design for psychophysics experiments. These additions aim to clarify the rationale behind our choices, ensuring that readers can fully understand the connection between our theoretical framework and experimental approach.

      - The paper does not clearly articulate how its proposed theory can be integrated with existing observations in the field of VPL. While it acknowledges previous theories on VPL generalization, the paper falls short in explaining how its framework might apply to classical tasks and stimuli that have been widely used in the VPL literature, such as orientation or motion discrimination with Gabors, vernier acuity, etc. It also does not provide insight into the application of this framework to more naturalistic tasks or stimuli. If the stability of invariants is a key factor in predicting a task's generalization potential, the paper should elucidate how to define the stability of new stimuli or tasks. This issue ties back to the earlier mentioned weakness: namely, the absence of a clear explanation of the Erlangen program and its relevant concepts.

      We thank you for highlighting the necessary to integrate our proposed framework with existing observations in VPL research.

      Prior VPL studies have not concurrently examined multiple geometrical invariants with varying stability levels, making direct comparisons challenging. However, we have identified tasks from the literature that align with specific invariants. For example, orientation discrimination with Gabors (e.g., Dosher & Lu, 2005) and texture discrimination task (e.g., Wang et al., 2016) involve Euclidean invariants, and circle versus square discrimination (e.g., Kraft et al., 2010) involves affine invariants. On the other hand, our framework does not apply to studies using stimuli that are unrelated to geometric transformations, such as motion discrimination with Gabors or random dots, depth discrimination, vernier acuity, spatial frequency discrimination, contrast detection or discrimination.

      By focusing on geometrical properties of stimuli, our work addresses a gap in the field and introduces a novel approach to studying VPL through the lens of invariant extraction, echoing Gibson’s ecological approach to perceptual learning.

      In the revised manuscript, we have added a clearer explanation of Klein’s Erlangen Program, including the definition of geometrical invariants and their stability (the second paragraph in Introduction section). Additionally, we have expanded the Discussion section to draw more explicit comparisons between our results and previous studies on VPL generalization, highlighting both similarities and differences, as well as potential shared mechanisms.

      - The paper does not convincingly establish the necessity of its introduced concept of invariant stability for interpreting the presented data. For instance, consider an alternative explanation: performing in the collinearity task requires orientation invariance. Therefore, it's straightforward that learning the collinearity task doesn't aid in performing the other two tasks (parallelism and orientation), which do require orientation estimation. Interestingly, orientation invariance is more characteristic of higher visual areas, which, consistent with the Reverse Hierarchy Theory, are engaged more rapidly in learning compared to lower visual areas. This simpler explanation, grounded in established concepts of VPL and the tuning properties of neurons across the visual cortex, can account for the observed effects, at least in one scenario. This approach has previously been used/proposed to explain VPL generalization, as seen in (Chowdhury and DeAngelis, Neuron, 2008), (Liu and Pack, Neuron, 2017), and (Bakhtiari et al., JoV, 2020). The question then is: how does the concept of invariant stability provide additional insights beyond this simpler explanation?

      We appreciate your thoughtful alternative explanation. While this explanation accounts for why learning the collinearity task does not transfer to the orientation task—which requires orientation estimation—it does not explain why learning the collinearity task fails to transfer to the parallelism task, which requires orientation invariance rather than orientation estimation. Instead, the asymmetric transfer observed in our study could be perfectly explained by incorporating the framework of the Klein hierarchy of geometries.

      According to the Klein hierarchy, invariants with higher stability are more perceptually salient and detectable, and they are nested hierarchically, with higher-stability invariants encompassing lower-stability invariants (as clarified in the revised Introduction). In our invariant discrimination tasks, participants need only extract and utilize the most stable invariant to differentiate stimuli, optimizing their ability to discriminate that invariant while leaving the less stable invariants unoptimized.

      For example:

      • In the collinearity task, participants extract the most stable invariant, collinearity, to perform the task. Although the stimuli also contain differences in parallelism and orientation, these lower-stability invariants are not utilized or optimized during the task.

      • In the parallelism task, participants optimize their sensitivity to parallelism, the highest-stability invariant available in this task, while orientation, a lower-stability invariant, remains irrelevant and unoptimized.

      • In the orientation task, participants can only rely on differences in orientation to complete the task. Thus, the least stable invariant, orientation, is extracted and optimized.

      This hierarchical process explains why training on a higher-stability invariant (e.g., collinearity) does not transfer to tasks involving lower-stability invariants (e.g., parallelism or orientation). Conversely, tasks involving lower-stability invariants (e.g., orientation) can aid in tasks requiring higher-stability invariants, as these higher-stability invariants inherently encompass the lower ones, resulting in a low-to-high-stability transfer effect.

      This unique perspective underscores the importance of invariant stability in understanding generalization in VPL, complementing and extending existing theories such as the Reverse Hierarchy Theory. To help the reader understand our proposed theory, we revised the Introduction and Discussion section.

      - While the paper discusses the transfer of learning between tasks with varying levels of invariant stability, the mechanism of this transfer within each invariant condition remains unclear. A more detailed analysis would involve keeping the invariant's stability constant while altering a feature of the stimulus in the test condition. For example, in the VPL literature, one of the primary methods for testing generalization is examining transfer to a new stimulus location. The paper does not address the expected outcomes of location transfer in relation to the stability of the invariant. Moreover, in the affine and Euclidean conditions one could maintain consistent orientations for the distractors and targets during training, then switch them in the testing phase to assess transfer within the same level of invariant structural stability.

      We thank you for this good suggestion. Using one of the primary methods for test generalization, we performed a new psychophysics experiment to specifically examine how VPL generalizes to a new test location within a single invariant stability level (see Experiment 3 in the revised manuscript). The results show that the collinearity task exhibits greater location generalization compared to the parallelism task. This finding suggests the involvement of higher-order visual areas during high-stability invariant training, aligning with our theoretical framework based on the Reverse Hierarchy Theory (RHT). We attribute the unexpected location generalization observed in the orientation task to an additional requirement for spatial integration in its specific experimental design (as explained in the revised Results section “Location generalization within each invariant”). Moreover, based on previous VPL studies that have reported location specificity in orientation discrimination (Fiorentini and Berardi, 1980; Schoups et al., 1995; Shiu and Pashler, 1992), along with the substantial weight changes observed in lower layers of DNNs trained on the orientation task (Figure 9B, C), we infer that under a more controlled experimental design—such as the two-interval, two-alternative forced choice (2I2AFC) task employed in DNN simulations, where spatial integration is not required for any of the three invariants—the plasticity for orientation tasks would more likely occur in lower-order areas.

      In the revised manuscript, we have discussed how these findings, together with the observed asymmetric transfer across invariants and the distribution of learning across DNN layers, collectively reveal the neural mechanisms underlying VPL of geometrical invariants.

      - In the section detailing the modeling experiment using deep neural networks (DNN), the takeaway was unclear. While it was interesting to observe that the DNN exhibited a generalization pattern across conditions similar to that seen in the human experiments, the claim made in the abstract and introduction that the model provides a 'mechanistic' explanation for the phenomenon seems overstated. The pattern of weight changes across layers, as depicted in Figure 7, does not conclusively explain the observed variability in generalizations. Furthermore, the substantial weight change observed in the first two layers during the orientation discrimination task is somewhat counterintuitive. Given that neurons in early layers typically have smaller receptive fields and narrower tunings, one would expect this to result in less transfer, not more.

      We appreciate your suggestion regarding the clarity of DNN modeling. While the DNN employed in our study recapitulates several known behavioral and physiological VPL effects (Manenti et al., 2023; Wenliang and Seitz, 2018), we acknowledge that the claim in the abstract and introduction suggesting the model provides a ‘mechanistic’ explanation for the phenomenon may have been overstated. The DNN serves primarily as a tool to generate important predictions about the underlying neural substrates and provides a promising testbed for investigating learning-related plasticity in the visual hierarchy.

      In the revised manuscript, we have made significant improvements in explaining the weight change across DNN layers and its implication for understanding “when” and “where” learning occurs in the visual hierarchy. Specifically, in the Results ("Distribution of learning across layers") and Discussion sections, we have provided a more explicit explanation of the weight change across layers, emphasizing its implications for understanding the observed variability in generalizations and the underlying neural mechanisms.

      Regarding the substantial weight change observed in the first two layers during the orientation discrimination task, we interpret this as evidence that VPL of this least stable invariant relies more on the plasticity of lower-level brain areas, which may explain the poorer generalization performance to new locations or features observed in the previous literature (Fiorentini and Berardi, 1980; Schoups et al., 1995; Shiu and Pashler, 1992). However, this does not imply that learning effects of this least stable invariant cannot transfer to more stable invariants. From the perspective of Klein’s Erlangen program, the extraction of more stable invariants is implicitly required when processing less stable ones, which leads to their automatic learning. Additionally, within the framework of the Reverse Hierarchy Theory (RHT), plasticity in lower-level visual areas affects higher-level areas that receive the same low-level input, due to the feedforward anatomical hierarchy of the visual system (Ahissar and Hochstein, 2004, 1997; Markov et al., 2013; McGovern et al., 2012). Therefore, the improved signal from lower-level plasticity resulted from training on less stable invariants can enhance higher-level representations of more stable invariants, facilitating the transfer effect from low- to high-stability invariants.

      Reviewer #2 (Public Review):

      The strengths of this paper are clear: The authors are asking a novel question about geometric representation that would be relevant to a broad audience. Their question has a clear grounding in pre-existing mathematical concepts, that, to my knowledge, have been only minimally explored in cognitive science. Moreover, the data themselves are quite striking, such that my only concern would be that the data seem almost *too* clean. It is hard to know what to make of that, however. From one perspective, this is even more reason the results should be publicly available. Yet I am of the (perhaps unorthodox) opinion that reviewers should voice these gut reactions, even if it does not influence the evaluation otherwise. Below I offer some more concrete comments:

      (1) The justification for the designs is not well explained. The authors simply tell the audience in a single sentence that they test projective, affine, and Euclidean geometry. But despite my familiarity with these terms -- familiarity that many readers may not have -- I still had to pause for a very long time to make sense of how these considerations led to the stimuli that were created. I think the authors must, for a point that is so central to the paper, thoroughly explain exactly why the stimuli were designed the way that they were and how these designs map onto the theoretical constructs being tested.

      We thank you for reminding us to better justify our experimental designs. In response, we have provided a detailed introduction to Klein’s Erlangen Program, describing projective, affine, and Euclidean geometries, their associated invariants, and the hierarchical relationships among them (see revised Introduction and Figure 1).

      All experiments in our study employed stimuli with varying structural stability (collinearity, parallelism, orientation, see revised Figure 2, 4), enabling us to investigate the impact of invariant stability on visual perceptual learning. Experiment 1 was adapted from paradigms studying the "configural superiority effect," commonly used to assess the salience of geometric invariants. This paradigm was chosen to align with and build upon related research, thereby enhancing comparability across studies. To address the limitations of Experiment 1 (as detailed in our Results section), Experiments 2, 3, and 4 employed a 2AFC (two-alternative forced choice)-like paradigm, which is more common in visual perceptual learning research. Additionally, we have expanded descriptions of our stimuli and designs. aiming to ensure clarity and accessibility for all readers.

      (2) I wondered if the design in Experiment 1 was flawed in one small but critical way. The goal of the parallelism stimuli, I gathered, was to have a set of items that is not parallel to the other set of items. But in doing that, isn't the manipulation effectively the same as the manipulation in the orientation stimuli? Both functionally involve just rotating one set by a fixed amount. (Note: This does not seem to be a problem in Experiment 2, in which the conditions are more clearly delineated.)

      We appreciate your insightful observation regarding the design of Experiment 1 and the potential similarity between the manipulations of the parallelism and orientation stimuli.

      The parallelism and orientation stimuli in Experiment 1 were originally introduced by Olson and Attneave (1970) to support line-based models of shape coding and were later adapted by Chen (1986) to measure the relative salience of different geometric properties. In the parallelism stimuli, the odd quadrant differs from the others in line slope, while in the orientation stimuli, the odd quadrant contains identical line segments but differs in the direction pointed by their angles. The faster detection of the odd quadrant in the parallelism stimuli compared to the orientation stimuli has traditionally been interpreted as evidence supporting line-based models of shape coding. However, as Chen (1986, 2005) proposed, the concept of invariants over transformations offers a different interpretation: in the parallelism stimuli, the fact that line segments share the same slope essentially implies that they are parallel, and the discrimination may be actually based on parallelism. This reinterpretation suggests that the superior performance with parallelism stimuli reflects the relative perceptual salience of parallelism (an affine invariant property) compared to the orientation of angles (a Euclidean invariant property).

      In the collinearity and orientation tasks, the odd quadrant and the other quadrants differ in their corresponding geometries, such as being collinear versus non-collinear. However, in the parallelism task, participants could rely either on the non-parallel relationship between the odd quadrant and the other quadrants or on the difference in line slope to complete the task, which can be seen as effectively similar to the manipulation in the orientation stimuli, as you pointed out. Nonetheless, this set of stimuli and the associated paradigm have been used in prior studies to address questions about Klein’s hierarchy of geometries (Chen, 2005; Wang et al., 2007; Meng et al., 2019). Given its historical significance and the importance of ensuring comparability with previous research, we adopted this set of stimuli despite its imperfections. Other limitations of this paradigm are discussed in the Results section (“The paradigm of ‘configural superiority effects’ with reaction time measures”), and optimized experimental designs were implemented in Experiment 2, 3, and 4 to produce more reliable results.

      (3) I wondered if the results would hold up for stimuli that were more diverse. It seems that a determined experimenter could easily design an "adversarial" version of these experiments for which the results would be unlikely to replicate. For instance: In the orientation group in Experiment 1, what if the odd-one-out was rotated 90 degrees instead of 180 degrees? Intuitively, it seems like this trial type would now be much easier, and the pattern observed here would not hold up. If it did hold up, that would provide stronger support for the authors' theory.

      It is not enough, in my opinion, to simply have some confirmatory evidence of this theory. One would have to have thoroughly tested many possible ways that theory could fail. I'm unsure that enough has been done here to convince me that these ideas would hold up across a more diverse set of stimuli.

      Thanks for your nice suggestion to validate our results using more diverse stimuli. However, the limitations of Experiment 1 make it less suitable for rigorous testing of diverse or "adversarial" stimuli. In addition to the limitation discussed in response to (2), another issue is that participants may rely on grouping effects among shapes in the quadrants, rather than solely extracting the geometrical invariants that are the focus of our study. As a result, the reaction times measured in this paradigm may not exclusively reflect the extraction time of geometrical invariants but could also be influenced by these grouping effects.

      Therefore, we have shifted our focus to the improved design used in Experiment 2 to provide stronger evidence for our theory. Building on this more robust design, we have extended our investigations to study location generalization (revised Experiment 3) and long-term learning effects (revised Figure 6—figure supplement 2). These enhancements allow us to provide stronger evidence for our theory while addressing potential confounds present in Experiment 1.

      While we did not explicitly test the 90-degree rotation scenario in Experiment 1, future studies could employ more diverse set of stimuli within the Experiment 2 framework to better understand the limits and applicability of our theoretical predictions. We appreciate this suggestion, as it offers a valuable direction for further research.

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      - A concise introduction to the Erlangen program, geometric invariants, and their structural stability would greatly enhance the paper. This would not only clarify these concepts for readers unfamiliar with them but also provide a more intuitive explanation for the choice of tasks and stimuli used in the study.

      - I recommend adding a section that discusses how this new framework aligns with previous observations in VPL, especially those involving more classical stimuli like Gabors, random dot kinematograms, etc. This would help in contextualizing the framework within the broader spectrum of VPL research.

      - Exploring how each level of invariant stability transfers within itself would be an intriguing addition. Previous theories often consider transfer within a condition. For instance, in an orientation discrimination task, a challenging training condition might transfer less to a new stimulus test location (e.g., a different visual quadrant). Applying a similar approach to examine how VPL generalizes to a new test location within a single invariant stability level could provide insightful contrasts between the proposed theory and existing ones. This would be particularly relevant in the context of Experiment 2, which could be adapted for such a test.

      - I suggest including some example learning curves from the human experiment for a more clear demonstration of the differences in the learning rates across conditions. Easier conditions are expected to be learned faster (i.e. plateau faster to a higher accuracy level). The learning speed is reported for the DNN but not for the human subjects.

      - In the modeling section, it would be beneficial to focus on offering an explanation for the observed generalization as a function of the stability of the invariants. As it stands, the neural network model primarily demonstrates that DNNs replicate the same generalization pattern observed in human experiments. While this finding is indeed interesting, the model currently falls short of providing deeper insights or explanations. A more detailed analysis of how the DNN model contributes to our understanding of the relationship between invariant stability and generalization would significantly enhance this section of the paper.

      Minor comments:

      - Line 46: "it is remains" --> "it remains"

      - Larger font sizes for the vertical axis in Figure 6B would be helpful.

      We thank your detailed and constructive comments, which have significantly helped us improve the clarity and rigor of our manuscript. Below, we provide a response to each point raised.

      Major Comments

      (1) A concise introduction to the Erlangen program, geometric invariants, and their structural stability:

      We appreciate your suggestion to provide a clearer introduction to these foundational concepts. In the revised manuscript, we have added a dedicated section in the Introduction that offers a concise explanation of Klein’s Erlangen Program, including the concept of geometric invariants and their structural stability. This addition aims to make the theoretical framework more accessible to readers unfamiliar with these concepts and to better justify the choice of tasks and stimuli used in the study.

      (2) Contextualizing the framework within the broader spectrum of VPL research:

      We have expanded the Discussion section to better integrate our framework with previous VPL studies that reported generalization, including those using classical stimuli such as Gabors (Dosher and Lu, 2005; Hung and Seitz, 2014; Jeter et al., 2009; Liu and Pack, 2017; Manenti et al., 2023) and random dot kinematograms (Chang et al., 2013; Chen et al., 2016; Huang et al., 2007; Liu and Pack, 2017). In particular, we now discuss the similarities and differences between our findings and these earlier studies, exploring potential shared mechanisms underlying VPL generalization across different types of stimuli. These additions aim to contextualize our framework within the broader field of VPL research and highlight its relevance to existing literature.

      (3) Exploring transfer within each invariant stability level:

      In response to this insightful suggestion, we have added a new psychophysics experiment in the revised manuscript (Experiment 3) to examine how VPL generalizes to a new test location within the same invariant stability level. This experiment provides an opportunity to further explore the neural substrates underlying VPL of geometrical invariants, offering a contrast to existing theories and strengthening the connection between our framework and location generalization findings in the VPL literature.

      (4) Including example learning curves from the human experiments:

      We appreciate your suggestion to include learning curves for human subjects. In the revised manuscript, we have added learning curves of long-term VPL (see revised Figure 6—figure supplement 2) to track the temporal learning processes across invariant conditions. Interestingly, and in contrast to the results reported in the DNN simulations, these curves show that less stable invariants are learned faster and exhibit greater magnitudes of learning. We interpret this discrepancy as a result of differences in initial performance levels between humans and DNNs, as discussed in the revised Discussion section.

      (5) Offering a deeper explanation of the DNN model's findings:

      We acknowledge your concern that the modeling section primarily demonstrates that DNNs replicate human generalization patterns without offering deeper mechanistic insights. To address this, we have expanded the Results and Discussion sections to more explicitly interpret the weight change patterns observed across DNN layers in relation to invariant stability and generalization. We discuss how the model contributes to understanding the observed generalization within and across invariants with different stability, focusing on the neural network's role in generating predictions about the neural mechanisms underlying these effects.

      Minor Comments

      (1) Line 46: Correction of “it is remains” to “it remains”:

      We have corrected this typo in the revised manuscript.

      (2) Vertical axis font size in Figure 6B:

      We have increased the font size of the vertical axis labels in revised Figure 8B for improved readability.

      Reviewer #2 (Recommendations For The Authors):

      (1) There are many details throughout the paper that are confusing, such as the caption for Figure 4, which does not appear to correspond to what is shown (and is perhaps a copy-paste of the caption for Experiment 1?). Similarly, I wasn't sure about many methodological details, like: How participants made their second response in Experiment 2? It says somewhere that they pressed the corresponding key to indicate which one was the target, but I didn't see anything explaining what that meant. Also, I couldn't tell if the items in the figures were representative of all trials; the stimuli were described minimally in the paper.

      (2) The language in the paper felt slightly off at times, in minor but noticeable ways. Consider the abstract. The word "could" in the first sentence is confusing, and, more generally, that first sentence is actually quite vague (i.e., it just states something that would appear to be true of any perceptual system). In the following sentence, I wasn't sure what was meant by "prior to be perceived in the visual system". Though I was able to discern what the authors were intending to say most times, I was required to "read between the lines" a bit. This is not to fault the authors. But these issues need to be addressed, I think.

      (1) We sincerely apologize for the oversight regarding the caption for (original) Figure 4, and thank you for pointing out this error. In the revised manuscript, we have corrected the caption for Figure 4 (revised Figure 5) and ensured it accurately describes the content of the figure. Additionally, we have strengthened the descriptions of the stimuli and tasks in both the Materials and Methods section and the captions for (revised) Figures 4 and 5 to provide a clearer and more comprehensive explanation of Experiment 2. These revisions aim to help readers fully understand the experimental design and methodology.

      (2) We appreciate your feedback regarding the clarity and precision of the language in the manuscript. We acknowledge that some expressions, particularly in the abstract, were unclear or imprecise. In the revised manuscript, we have rewritten the abstract to improve clarity and ensure that the statements are concise and accurately convey our intended meaning. Additionally, we have thoroughly reviewed the entire manuscript to address any other instances of ambiguous language, aiming to eliminate the need for readers to "read between the lines." We are grateful for your suggestions, which have helped us enhance the overall readability of the paper.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1(Public review):

      Strengths:

      Utilization of both human placental samples and multiple mouse models to explore the mechanisms linking inflammatory macrophages and T cells to preeclampsia (PE).<br /> Incorporation of advanced techniques such as CyTOF, scRNA-seq, bulk RNA-seq, and flow cytometry.

      Identification of specific immune cell populations and their roles in PE, including the IGF1-IGF1R ligand-receptor pair in macrophage-mediated Th17 cell differentiation.<br /> Demonstration of the adverse effects of pro-inflammatory macrophages and T cells on pregnancy outcomes through transfer experiments.

      Weaknesses:

      Comment 1. Inconsistent use of uterine and placental cells, which are distinct tissues with different macrophage populations, potentially confounding results.

      Response1: We thank the reviewers' comments. We have done the green fluorescent protein (GFP) pregnant mice-related animal experiment, which was not shown in this manuscript. The wild-type (WT) female mice were mated with either transgenic male mice, genetically modified to express GFP, or with WT male mice, in order to generate either GFP-expressing pups (GFP-pups) or their genetically unmodified counterparts (WT-pups), respectively. Mice were euthanized on day 18.5 of gestation, and the uteri of the pregnant females and the placentas of the offspring were analyzed using flow cytometry. The majority of macrophages in the uterus and placenta are of maternal origin, which was defined by GFP negative. In contrast, fetal-derived macrophages, distinguished by their expression of GFP, represent a mere fraction of the total macrophage population. We have added the GFP pregnant mice-related data in uterine and placental cells (Line204-212).

      Comment 2. Missing observational data for the initial experiment transferring RUPP-derived macrophages to normal pregnant mice.

      Response 2: We thank the reviewers' comments. We have added the observational data (Figure 4-figure supplement 1D, 1E) and a corresponding description of the data (Line 198-203).

      Comment 3. Unclear mechanisms of anti-macrophage compounds and their effects on placental/fetal macrophages.

      Response 3: We thank the reviewers' comments. PLX3397, the inhibitor of CSF1R, which is needed for macrophage development (Nature. 2023, PMID: 36890231; Cell Mol Immunol. 2022, PMID: 36220994), we have stated that on Line 227-230. However, PLX3397 is a small molecule compound that possesses the potential to cross the placental barrier and affect fetal macrophages. We have discussed the impact of this factor on the experiment in the Discussion section (Line457-459).

      Comment 4. Difficulty in distinguishing donor cells from recipient cells in murine single-cell data complicates interpretation.

      Response 4: We thank the reviewers' comments. Upon analysis, we observed a notable elevation in the frequency of total macrophages within the CD45<sup>+</sup> cell population. Then we subsequently performed macrophage clustering and uncovered a marked increase in the frequency of Cluster 0, implying a potential correlation between Cluster 0 and donor-derived cells. RNA sequencing revealed that the F480<sup>+</sup>CD206<sup>-</sup> pro-inflammatory donor macrophages exhibited a Folr2<sup>+</sup>Ccl7<sup>+</sup>Ccl8<sup>+</sup>C1qa<sup>+</sup>C1qb<sup>+</sup>C1qc<sup>+</sup> phenotype, which is consistent with the phenotype of cluster 0 in macrophages observed in single-cell RNA sequencing (Figure 4D and Figure 5E). Therefore, we believe that the donor cells should be cluster 0 in macrophages.

      Comment 5. Limitation of using the LPS model in the final experiments, as it more closely resembles systemic inflammation seen in endotoxemia rather than the specific pathology of PE.

      Response 5: We thank the reviewers' comments. Firstly, our other animal experiments in this manuscript used the Reduction in Uterine Perfusion Pressure (RUPP) mouse model to simulate the pathology of PE. However, the RUPP model requires ligation of the uterine arteries in pregnant mice on day 12.5 of gestation, which hinders T cells returning from the tail vein from reaching the maternal-fetal interface. In addition, this experiment aims to prove that CD4<sup>+</sup> T cells are differentiated into memory-like Th17 cells through IGF-1R receptor signaling to affect pregnancy by clearing CD4<sup>+</sup> T cells in vivo with an anti-CD4 antibody followed by injecting IGF-1R inhibitor-treated CD4<sup>+</sup> T cells. And we proved that injection of RUPP-derived memory-like CD4<sup>+</sup> T cells into pregnant mice induces PE-like symptoms (Figure 6F-6H). In summary, the application of the LPS model in the final experiments does not affect the conclusions.

      Reviewer #2 (Public review):

      Strengths:

      (1) This study combines human and mouse analyses and allows for some amount of mechanistic insight into the role of pro-inflammatory and anti-inflammatory macrophages in the pathogenesis of pre-eclampsia (PE), and their interaction with Th17 cells.

      (2) Importantly, they do this using matched cohorts across normal pregnancy and common PE comorbidities like gestation diabetes (GDM).

      (3) The authors have developed clear translational opportunities from these "big data" studies by moving to pursue potential IGF1-based interventions.

      Weaknesses:

      (1) Clearly the authors generated vast amounts of multi-omic data using CyTOF and single-cell RNA-seq (scRNA-seq), but their central message becomes muddled very quickly. The reader has to do a lot of work to follow the authors' multiple lines of inquiry rather than smoothly following along with their unified rationale. The title description tells fairly little about the substance of the study. The manuscript is very challenging to follow. The paper would benefit from substantial reorganizations and editing for grammatical and spelling errors. For example, RUPP is introduced in Figure 4 but in the text not defined or even talked about what it is until Figure 6. (The figure comparing pro- and anti-inflammatory macrophages does not add much to the manuscript as this is an expected finding).

      Response 1: We thank the reviewers' comments. According to the reviewer's suggestion, we have made the necessary revisions. Firstly, the title of the article has been modified to be more specific. We also introduce the RUPP mouse model when interpreted Figure 4-figure supplement 1. Thirdly, We have moved the images of Figure 7 to the Figure 6-figure supplement 2 make them easier to follow. Finally, we diligently corrected the grammatical and spelling errors in the article. As for the figure comparing pro- and anti-inflammatory macrophages, the Editor requested a more comprehensive description of the macrophage phenotype during the initial submission. As a result, we conducted the transcriptome RNA-seq of both uterine-derived pro-inflammatory and anti-inflammatory macrophages and conducted a detailed analysis of macrophages in scRNA-seq.

      Comment 2. The methods lack critical detail about how human placenta samples were processed. The maternal-fetal interface is a highly heterogeneous tissue environment and care must be taken to ensure proper focus on maternal or fetal cells of origin. Lacking this detail in the present manuscript, there are many unanswered questions about the nature of the immune cells analyzed. It is impossible to figure out which part of the placental unit is analyzed for the human or mouse data. Is this the decidua, the placental villi, or the fetal membranes? This is of key importance to the central findings of the manuscript as the immune makeup of these compartments is very different. Or is this analyzed as the entirety of the placenta, which would be a mix of these compartments and significantly less exciting?

      Response 2: We thank the reviewers' comments. Placental villi rather than fetal membranes and decidua were used for CyToF in this study. This detail about how human placenta samples were processed have been added to the Materials and Methods section (Line564-576).

      Comment 3. Similarly, methods lack any detail about the analysis of the CyTOF and scRNAseq data, much more detail needs to be added here. How were these clustered, what was the QC for scRNAseq data, etc? The two small paragraphs lack any detail.

      Response 3: We thank the reviewers' comments. The details about the analysis of the CyTOF (Line577-586) and scRNAseq (Line600-615) data have been added in the Materials and Methods section.

      Comment 4. There is also insufficient detail presented about the quantities or proportions of various cell populations. For example, gdT cells represent very small proportions of the CyTOF plots shown in Figures 1B, 1C, & 1E, yet in Figures 2I, 2K, & 2K there are many gdT cells shown in subcluster analysis without a description of how many cells are actually represented, and where they came from. How were biological replicates normalized for fair statistical comparison between groups?

      Response 4: We thank the reviewers' comments. In our study, approximately 8×10^<sup>5</sup> cells were collected per group for analysis using CyTOF. Of these, about 10% (8×10^<sup>4</sup> cells per group) were utilized to generate Figure 1B. As depicted in Figure 1B, gdT cells constitute roughly 1% of each group, with specific percentages as follows: NP group (1.23%), PE group (0.97%), GDM group (0.94%), and GDM&PE group (1.26%), which equates to approximately 800 cells per group. For the subsequent gdT cell analysis presented in Figure 2I, we employed data from all cells within each group to construct the tSNE maps, comprising approximately 8000 cells per group. Consequently, it may initially appear that the number of gdT cells is significantly higher than what is shown in Figure 1B. To clarify this, we have included pertinent explanations in the figure legend. Given the relatively low proportions of gdT cells, we did not pursue further investigations of these cells in subsequent experiments. Following your suggestion, we have relocated this result to the supplementary materials, where it is now presented as Figure 2-figure supplement 1D-E.

      The number of biological replicates (samples) is consistent with Figure 1, and this information has been added to the figure legend.

      Comment 5. The figures themselves are very tricky to follow. The clusters are numbered rather than identified by what the authors think they are, the numbers are so small, that they are challenging to read. The paper would be significantly improved if the clusters were clearly labeled and identified. All the heatmaps and the abundance of clusters should be in separate supplementary figures.

      Response 5: We thank the reviewers' comments. Based on your suggestions, we have labeled and defined the Clusters (Figure 2A, 2F, Figure 3A, Figure 5C and Figure 6A). Additionally, we have moved most of the heatmaps to the supplementary materials.

      Comment 6. The authors should take additional care when constructing figures that their biological replicates (and all replicates) are accurately represented. Figure 2H-2K shows N=10 data points for the normal pregnant (NP) samples when clearly their Table 1 and test denote they only studied N=9 normal subjects.

      Response 6: We thank the reviewers' careful checking. During our verification, we found that one sample in the NP group had pregnancy complications other than PE and GDM. The data in Figure 2H-2K was not updated in a timely manner. We have promptly updated this data and reanalyze it.

      Comment 7. There is little to no evaluation of regulatory T cells (Tregs) which are well known to undergird maternal tolerance of the fetus, and which are well known to have overlapping developmental trajectory with RORgt+ Th17 cells. We recommend the authors evaluate whether the loss of Treg function, quantity, or quality leaves CD4+ effector T cells more unrestrained in their effect on PE phenotypes. References should include, accordingly: PMCID: PMC6448013 / DOI: 10.3389/fimmu.2019.00478; PMC4700932 / DOI: 10.1126/science.aaa9420.

      Response 7: We thank the reviewers' comments. We have done the Treg-related animal experiment, which was not shown in this manuscript. We have added the Treg-related data in Figure 6F-6H. The injection of CD4<sup>+</sup>CD44<sup>+</sup> T cells derived from RUPP mouse, characterized by a reduced frequency of Tregs, could induce PE-like symptoms in pregnant mice (Line297-304). Additionally, we have added a necessary discussion about Tregs and cited the literature you mentioned (Line433-439).

      Comment 8. In discussing gMDSCs in Figure 3, the authors have missed key opportunities to evaluate bona fide Neutrophils. We recommend they conduct FACS or CyTOF staining including CD66b if they have additional tissues or cells available. Please refer to this helpful review article that highlights key points of distinguishing human MDSC from neutrophils: https://doi.org/10.1038/s41577-024-01062-0. This will both help the evaluation of potentially regulatory myeloid cells that may suppress effector T cells as well as aid in understanding at the end of the study if IL-17 produced by CD4+ Th17 cells might recruit neutrophils to the placenta and cause ROS immunopathology and fetal resorption.

      Response 8: We thank the reviewers' comments. Although we do not have additional tissues or cells available to conduct FACS or CyTOF staining, including for CD66b, we have utilized CD15 and CD66b antibodies for immunofluorescence stain of placental tissue, and our findings revealed a pronounced increase in the proportion of neutrophils among PE patients, fostering the hypothesis that IL-17A produced by Th17 cells might orchestrate the migration of neutrophils towards the placental milieu (Figure 6-figure supplement 2F; Line 325-328). We have cited these references and discussed them in the Discussion section (Line 459-465).

      Comment 9. Depletion of macrophages using several different methodologies (PLX3397, or clodronate liposomes) should be accompanied by supplementary data showing the efficiency of depletion, especially within tissue compartments of interest (uterine horns, placenta). The clodronate piece is not at all discussed in the main text. Both should be addressed in much more detail.

      Response 9: We thank the reviewers' comments. We already have the additional data on the efficiency of macrophage depletion involving PLX3397 and clodronate liposomes, which were not present in this manuscript, and we'll add it to the Figure 4-figure supplement 2A,2B. The clodronate piece is mentioned in the main text (Line236-239), but only briefly described, because the results using clodronate we obtained were similar to those using PLX3397.

      Comment 10. There are many heatmaps and tSNE / UMAP plots with unhelpful labels and no statistical tests applied. Many of these plots (e.g. Figure 7) could be moved to supplemental figures or pared down and combined with existing main figures to help the authors streamline and unify their message.

      Response 10: We thank the reviewers' comments. We have moved the images of Figure 7 to the Figure 6-figure supplement 2. We also have moved most of the heatmaps to the supplementary materials.

      Comment 11. There are claims that this study fills a gap that "only one report has provided an overall analysis of immune cells in the human placental villi in the presence and absence of spontaneous labor at term by scRNA-seq (Miller 2022)" (lines 362-364), yet this study itself does not exhaustively study all immune cell subsets...that's a monumental task, even with the two multi-omic methods used in this paper. There are several other datasets that have performed similar analyses and should be referenced.

      Response 11: We thank the reviewers' comments. We have search for more literature and reference additional studies that have conducted similar analyses (Line382-393).

      Comment 12. Inappropriate statistical tests are used in many of the analyses. Figures 1-2 use the Shapiro-Wilk test, which is a test of "goodness of fit", to compare unpaired groups. A Kruskal-Wallis or other nonparametric t-test is much more appropriate. In other instances, there is no mention of statistical tests (Figures 6-7) at all. Appropriate tests should be added throughout.

      Response 12: We thank the reviewers' comments. As stated in the Statistical Analysis section (lines 672-676), the Kruskal-Wallis test was used to compare the results of experiments with multiple groups. Comparisons between the two groups in Figures 5 were conducted using Student's t-test. The aforementioned statistical methods have been included in the figure legends.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Overall, the study has several strengths, including the use of human samples and animal models, as well as the incorporation of multiple cutting-edge techniques. However, there are some significant issues with the murine model experiments that need to be addressed:

      Comment 1. The authors are not consistent in their use of or focus on uterine and placental cells. These are distinct tissues, and numerous prior reports have indicated differences in the macrophage populations of these tissues, due in part to the predominantly maternal origin of macrophages in the uterus and the largely fetal origin of those in the placenta. The rationale for switching between uterine and placental cells in different experiments is not clear, and the inclusion of cells from both (such as in the bulk RNAseq experiments) could be potentially confounding.

      Response 1: We thank the reviewers' comments. We have done the green fluorescent protein (GFP) pregnant mice-related animal experiment, which was not shown in this manuscript. The wild-type (WT) female mice were mated with either transgenic male mice, genetically modified to express GFP, or with WT male mice, in order to generate either GFP-expressing pups (GFP-pups) or their genetically unmodified counterparts (WT-pups), respectively. Mice were euthanized on day 18.5 of gestation, and the uteri of the pregnant females and the placentas of the offspring were analyzed using flow cytometry. The majority of macrophages in the uterus and placenta are of maternal origin, which was defined by GFP negative. In contrast, fetal-derived macrophages, distinguished by their expression of GFP, represent a mere fraction of the total macrophage population, signifying their inconsequential or restricted presence amidst the broader cellular landscape. We have added the GPF pregnant mice-related data in Figure 4-figure supplement 1D-1E to explain the different macrophage populations in the uterine and placental cells.

      Comment 2. The observational data for the initial experiment transferring RUPP-derived macrophages to normal pregnant mice (without any other manipulations) seems to be missing. They do not seem to be presented in Figure 4 where they are expected based on the results text.

      Response 2: We thank the reviewers' comments. We thank the reviewers' comments. We have added the observational data (Figure 4-figure supplement 1D, 1E) and a corresponding description of the data (Line 198-203).

      Comment 3. The action of the anti-macrophage compounds is not well explained, nor are their mechanisms validated as affecting or not affecting the placental/fetal macrophage populations. It is important to clarify whether the macrophages are depleted or merely inhibited by these treatments, and it is absolutely critical to determine whether these treatments are affecting placental/fetal macrophage populations (the latter indicative of placental transfer), given the focus on placental macrophages.

      Response 3: We thank the reviewers' comments. PLX3397, the inhibitor of CSF1R, which is needed for macrophage development (Nature. 2023, PMID: 36890231; Cell Mol Immunol. 2022, PMID: 36220994), we have stated that on Line227-230. However, PLX3397 is a small molecule compound that possesses the potential to cross the placental barrier and affect fetal macrophages. We will discuss the impact of this factor on the experiment in the Discussion section (Line457-459).

      Comment 4. The interpretation of the murine single-cell data is hampered by the lack of means for distinguishing donor cells from recipient cells, which is important when seeking to identify the influence of the donor cells.

      Response 4: We thank the reviewers' comments. Upon analysis, we observed a notable elevation in the frequency of total macrophages within the CD45<sup>+</sup> cell population. Then we subsequently per formed macrophage clustering and uncovered a marked increase in the frequency of Cluster 0, implying a potential correlation between Cluster 0 and donor-derived cells. RNA sequencing revealed that the F480<sup>+</sup>CD206<sup>-</sup> pro-inflammatory donor macrophages exhibited a Folr2<sup>+</sup>Ccl7<sup>+</sup>Ccl8<sup>+</sup>C1qa<sup>+</sup>C1qb<sup>+</sup>C1qc<sup>+</sup> phenotype, which is consistent with the phenotype of cluster 0 in macrophages observed in single-cell RNA sequencing (Figure 4D and Figure 5E). Therefore, the donor cells should be in cluster 0 in macrophages.

      Comment 5. The switch to the LPS model in the final experiments is a limitation, as this model more closely resembles the systemic inflammation seen in endotoxemia rather than the specific pathology of preeclampsia (PE). While this is not an exhaustive list, the number of weaknesses in the experimental design makes it difficult to evaluate the findings comprehensively.

      Response 5: We thank the reviewers' comments. Firstly, our other animal experiments in this manuscript used the RUPP mouse model to simulate the pathology of PE. However, the RUPP model requires ligation of the uterine arteries in pregnant mice on day 12.5 of gestation, which hinders T cells returning from the tail vein from reaching the maternal-fetal interface. In addition, this experiment aims to prove that CD4<sup>+</sup> T cells are differentiated into memory-like Th17 cells through IGF-1R receptor signaling to affect pregnancy by clearing CD4<sup>+</sup> T cells in vivo with an anti-CD4 antibody followed by injecting IGF-1R inhibitor-treated CD4<sup>+</sup> T cells. We proved that injection of RUPP-derived memory-like CD4<sup>+</sup> T cells into pregnant rats induces PE-like symptoms (Figure 6F-6H). In summary, applying the LPS model in the final experiments does not affect the conclusions.

      Minor comments:

      Comment 1. Introduction, Lines 67-74: The phrasing here is unclear as to the roles that each mentioned immune cell subset is playing in preeclampsia. Given the statement "Elevated levels of maternal inflammation...", does this imply that the numbers of all mentioned immune cell subsets are increased in the maternal circulation? If not, please consider rewording this.

      Response 1: We thank the reviewers' comments. We have revised the manuscript as follows: Currently, the pivotal mechanism underpinning the pathogenesis of preeclampsia is widely acknowledged to involve an increased frequency of pro-inflammatory M1-like maternal macrophages, along with an elevation in Granulocytes capable of superoxide generation, CD56<sup>+</sup> CD94<sup>+</sup> natural killer (NK) cells, CD19<sup>+</sup>CD5<sup>+</sup> B1 lymphocytes, and activated γδ T cells. Conversely, this pathological process is accompanied by a notable decrease in the frequency of anti-inflammatory M2-like macrophages and NKp46<sup>+</sup> NK cells (Line67-77).

      Comment 2. Introduction, Lines 67-80: Is the involvement of the described immune cell subsets largely ubiquitous to preeclampsia? Recent multi-omic studies suggest that preeclampsia is a heterogeneous condition with different subsets, some more biased towards systemic immune activation than others. Thus, it is important to clarify whether the involvement of specific immune subsets is generally observed or more specific.

      Response 2: We thank the reviewers' comments. We have added a new paragraph as follows: Moreover, as PE can be subdivided into early- and late-onset PE diagnosed before 34 weeks or from 34 weeks of gestation, respectively. Research has revealed that among the myriad of cellular alterations in PE, pro-inflammatory M1-like macrophages and intrauterine B1 cells display an augmented presence at the maternal-fetal interface of both early-onset and late-onset PE patients. Decidual natural killer (dNK) cells and neutrophils emerge as paramount contributors, playing a more crucial role in the pathogenesis of early-onset PE than late-onset PE (Front Immunol. 2020. PMID: 33013837) (Line83-89).

      Comment 3. Introduction, Lines 81-86: The point of this short paragraph is not clear; the authors mention two very specific cellular interactions without explaining why.

      Response 3: In the previous paragraph, we uncovered a heightened inflammatory response among multiple immune cells in patients with PE, yet the intricate interplay between these individual immune cells has been seldom elucidated in the context of PE patient. This is precisely why we delve into the realm of specific immune cellular interactions in relation to other pregnancy complications in this paragraph (Line91-98).

      Comment 4. Methods: What placental tissues (e.g., villous tree, chorionic plate, extraplacental membranes) were included for CyTOF analysis? Was any decidual tissue (e.g., basal plate) included? Please clarify.

      Response 4: Placental villi rather than chorionic plate and extraplacental membranes were used for CyToF in this study. The relevant content has been incorporated into the "Materials and Methods" section (Line564-576).

      Comment 5. Results, Table 1: The authors should clarify that all PE samples were not full term (i.e., were less than 37 weeks of gestation), which is to be expected. In addition, were the PE cases all late-onset PE?

      Response 5: All PE samples enumerated in Table 1 demonstrate a late-onset preeclampsia, with placental specimens being procured from patients more than 35 weeks of gestation and less than the 38 weeks of pregnancy. The relevant content has been incorporated into the "Materials and Methods" section (Line574-576).

      Comment 6. Results, Figure 1: Are the authors considering the identified Macrophage cluster as being largely fetal (e.g., Hofbauer cells)? This also depends on whether any decidual tissue was included in the placental samples for CyTOF.

      Response 6: Firstly, the specimens subjected to CyToF analysis were devoid of decidual tissue and exclusively comprised placental villi. Secondly, the Macrophage cluster in Figure 1 undeniably encompasses Hofbauer cells, and we considering fetal-derived macrophages likely constituting the substantial proportion of the cellular population. However, a limitation of the CyToF technique lies in its inability to discern between maternal and fetal origins of these cells, thereby precluding a definitive distinction.

      Comment 7. Results, Figure 2C: Did the authors validate other T-cell subset markers (e.g., Th1, Th2, Th9, etc.)?

      Response 7: In this study, we did not validate additional T-cell subset markers presented in Figure 2C, recognizing the potential for deeper insights. As we embark on our subsequent research endeavors, we aim to meticulously explore and characterize the intricate changes in diverse T-cell populations at the maternal-fetal interface, with a particular focus on preeclampsia patients, thereby advancing our understanding of this complex condition.

      Comment 8. Results, Figure 2D: Where were the detected memory-like T cells located in the placenta? Did they cluster in certain areas or were they widely distributed?

      Response 8: Upon a thorough re-evaluation of the immunofluorescence images specific to the placenta, we observed a notable preponderance of memory-like T cells residing within the placental sinusoids (Line135-139).

      Comment 9. Results, Figure 2E: I would suggest separating the two plots so that the Y-axis can be expanded for TIM3, as it is impossible to view the medians currently.

      Response 9: We thank the reviewers' comments. We have made the adjustment to Figure 2E according to the reviewers' suggestions.

      Comment 10. Results, Lines 138-140: Do the authors consider that the altered T-cells are largely resident cells of the placenta or newly invading/recruited cells? The clarification of distribution within the placental tissues as mentioned above would help answer this.

      Response 10: Our analysis revealed the presence of memory-like T cells within the placental sinusoids, as evident from the immunofluorescence examination of placental tissues. Consequently, these T cells may represent recently recruited cellular entities, traversing the placental vasculature and integrating into this unique maternal-fetal microenvironment (Line135-139).

      Comment 11. Results, Figure 3C: Has a reduction of gMDSCs (or MDSCs in general) been previously reported in PE?

      Response 11: Myeloid-derived suppressor cells (MDSCs) constitute a diverse population of myeloid-derived cells that exhibit immunosuppressive functions under various conditions. Previous reports have documented a decrease in the levels of gMDSCs from peripheral blood or umbilical cord blood among patients with preeclampsia (Am J Reprod Immunol. 2020, PMID: 32418253; J Reprod Immunol. 2018, PMID: 29763854; Biol Reprod. 2023, PMID: 36504233). Nevertheless, there was no documented reports thus far on the alterations and specific characteristics in gMDSCs within the placenta of PE patients.

      Comment 12. Results, Figure 3D-E: It is not clear what new information is added by the correlations, as the increase of both cluster 23 in CD11b+ cells and cluster 8 in CD4+ T cells in PE cases was already apparent. Are these simply to confirm what was shown from the quantification data?

      Response 12: Despite the evident increase in both cluster 23 within CD11b<sup>+</sup> cells and cluster 8 within CD4<sup>+</sup> T cells in PE cases, the existence of a potential correlation between these two clusters remains elusive. To gain insight into this question, we conducted a Pearson correlation analysis, which is presented in Figure 3D-E, revealing a positive correlation between the two clusters.

      Comment 13. Results, Figure 4A: Please clarify in the results text that the RNA-seq of macrophages from RUPP mice was performed prior to their injection into normal pregnant mice.

      Response 13: We thank the reviewers' comments. We have updated Figure 4A according to the reviewers' suggestions.

      Comment 14. Results / Methods, Figure 4: For the transfer of macrophages from RUPP mice into normal mice, why were the uterine tissues included to isolate cells? The uterine macrophages will be almost completely maternal, as opposed to the largely fetal placental macrophages, and despite the sorting for specific markers these are likely distinct subsets that have been combined for injection. This could potentially impact the differential gene expression analysis and should be accounted for. In addition, did murine placental samples include decidua? This should be clarified.

      Response 14: We thank the reviewers' comments. For our experimental design involving human samples, we meticulously selected placental tissue as the primary focus. Initially, we aimed for uniformity by contemplating the utilization of mouse placenta. However, a pivotal revelation emerged from the GFP pregnant mice-related data in Figure 4-figure supplement 1D,1E: the uterus and placenta of mice are predominantly populated by maternal macrophages, with fetal macrophages virtually absent, marking a notable divergence from the human scenario. Furthermore, the uterine milieu exhibits a macrophage concentration exceeding 20% of total cellular composition, whereas in the placenta, this proportion dwindles to less than 5%, underscoring a distinct distribution pattern. Given these discrepancies and considerations, we incorporated mouse uterine tissues into our protocol to isolate cells, ensuring a more comprehensive and informative exploration that acknowledges the inherent differences between human and mouse placental biology.

      Comment 15. Results, Lines 186-187: I think the figure citation should be Figure 4D here.

      Response 15: We thank the reviewers' careful checking. We have revised and updated Figure 4 accordingly.

      Comment 16. Results, Figure 4: Where are the results of the injection of anti-inflammatory and pro-inflammatory macrophages into normal mice? This experiment is mentioned in Figure 4A, but the only results shown in Figure 4 are with the PLX3397 depletion.

      Response 16: The aim of this experiment in figure 4 is to conclusively ascertain the influence of pro-inflammatory and anti-inflammatory macrophages on the other immune cells within the maternal-fetal interface, as well as their implications for pregnancy outcomes. To achieve this, we employed a strategic approach involving the administration of PLX3397, a compound capable of eliminating the preexisting macrophages in mice. Subsequently, anti-inflam or pro-inflam macrophages were injected to these mice, thereby eliminating the confounding influence of the native macrophage population. This methodology allows for a more discernible observation of the specific effects these two types of macrophages exert on the immune landscape at the maternal-fetal interface and their ultimate impact on pregnancy outcomes.

      Comment 17. Results, Lines 189-190: Does PLX3397 inhibit macrophage development/signaling/etc. or result in macrophage depletion? This is an important distinction. If depletion is induced, does this affect placental/fetal macrophages or just maternal macrophages?

      Response 17: We thank the reviewers' comments. We have updated the additional data on the efficiency of macrophage depletion involving PLX3397 in Figure 4-figure supplement 2A. PLX3397 is a small molecule compound that possesses the potential to cross the placental barrier and affect fetal macrophages. We have discussed the impact of this factor on the experiment in the Discussion section (Line457-459).

      Comment 18. Results, Lines 197-198: Similarly, does clodronate liposome administration affect only maternal macrophages, or also placental/fetal macrophages?

      Response 18: We thank the reviewers' comments. We have updated the additional data on the efficiency of macrophage depletion involving Clodronate Liposomes in Figure 4-figure supplement 2B. Clodronate Liposomes, which are intricate vesicles encapsulating diverse substances, while only small molecule compounds possess the potential to cross the placental barrier. Consequently, we hold the view that the influence of these liposomes is likely confined to the maternal macrophages (Artif Cells Nanomed Biotechnol. 2023. PMID: 37594208).  

      Comment 19. Results, Line 206: A minor point, but consider continuing to refer to the preeclampsia model mice as RUPP mice rather than PE mice.

      Response 19: We thank the reviewers' comments. We have revised and updated this section accordingly.

      Comment 20. Results / Methods, Figure 5: For these experiments, why did the authors focus on the mouse uterus?

      Response 20: We have previously addressed this query in our Response 14. We incorporated mouse uterine tissues for cell isolation due to the profound differences in placental biology between humans and mice.

      Comment 21. Results, Figure 5: Did the authors have a means of distinguishing the transferred donor cells from the recipient cells for their single-cell analysis? If the goal is to separate the effects of the macrophage transfer on other uterine immune cells, then it would be important to identify and separate the donor cells.

      Response 21: We thank the reviewers' comments. Upon analysis, we observed a notable elevation in the frequency of total macrophages within the CD45<sup>+</sup> cell population. Then we subsequently performed macrophage clustering and uncovered a marked increase in the frequency of Cluster 0, implying a potential correlation between Cluster 0 and donor-derived cells. RNA sequencing revealed that the F480<sup>+</sup>CD206<sup>-</sup> pro-inflammatory donor macrophages exhibited a Folr2<sup>+</sup>Ccl7<sup>+</sup>Ccl8<sup>+</sup>C1qa<sup>+</sup>C1qb<sup>+</sup>C1qc<sup>+</sup> phenotype, which is consistent with the phenotype of cluster 0 in macrophages observed in single-cell RNA sequencing (Figure 4D and Figure 5E). Therefore, the donor cells should be in cluster 0 in macrophages.

      Comment 22. Results, Lines 247-248: While the authors have prudently noted that the observed T-cell phenotypes are merely suggestive of immunosuppression, any claims regarding changes in the immunosuppressive function after macrophage transfer would require functional studies of the T cells.

      Response 22: We thank the reviewers' comments. Upon revisiting and meticulously reviewing the pertinent literature, we have refined our terminology, transitioning from 'immunosuppression' to 'immunomodulation', thereby enhancing the accuracy and precision of our Results (Line285-287).

      Comment 23. Results, Figure 6G: The observation of worsened outcomes and PE-like symptoms after T-cell transfer is interesting, but other models of PE induced by the administration of Th1-like cells have already been reported. Are the authors' findings consistent with these reports? These findings are strengthened by the evaluation of second-pregnancy outcomes following the transfer of T cells in the first pregnancy.

      Response 23: We thank the reviewers' comments. As we verified in Figure 6F-6H, the injection of CD4<sup>+</sup>CD44<sup>+</sup> T cells derived from RUPP mouse, characterized by a reduced frequency of Tregs and an increased frequency of Th17 cells, could induce PE-like symptoms in pregnant mice. In line with other studies, which have implicated Th1-like cells in the manifestation of PE-like symptoms, we posit a novel hypothesis: beyond Th1 cells, Th17 cells also have the potential to induce PE-like symptoms.

      Comment 24. Results, Lines 327-337: The disease model implied by the authors here is not clear. Given that the authors' human findings are in the placental macrophages, are the authors proposing that placental macrophages are induced to an M1 phenotype by placenta-derived EVs? Please elaborate on and clarify the proposed model.

      Response 24 In the article authored by our team, titled "Trophoblast-Derived Extracellular Vesicles Promote Preeclampsia by Regulating Macrophage Polarization" published in Hypertension (Hypertension. 2022, PMID: 35993233), we employed trophoblast-derived extracellular vesicles isolated from PE patients as a means to induce an M1-like macrophage phenotype in macrophages from human peripheral blood in vitro. Consequently, in the present study, we have directly leveraged this established methodology to induce pro-inflammatory macrophages.

      Comment 25. Results / Methods, Figure 8E-H: What is the reasoning for switching to an LPS model in this experiment? LPS is less specific to PE than the RUPP model.

      Response 25: We thank the reviewers' comments. Firstly, our other animal experiments in this manuscript used the RUPP mouse model to simulate the pathology of PE. However, the RUPP model requires ligation of the uterine arteries in pregnant mice on day 12.5 of gestation, which hinders T cells returning from the tail vein from reaching the maternal-fetal interface. In addition, this experiment aims to prove that CD4<sup>+</sup> T cells are differentiated into memory-like Th17 cells through IGF-1R receptor signaling to affect pregnancy by clearing CD4<sup>+</sup> T cells in vivo with an anti-CD4 antibody followed by injecting IGF-1R inhibitor-treated CD4<sup>+</sup> T cells. And we proved that injection of RUPP-derived memory-like CD4<sup>+</sup> T cells into pregnant mice induces PE-like symptoms (Figure 6). In summary, the application of the LPS model in the final experiments does not affect the conclusions.

      Comment 26. Discussion: What do the authors consider to be the origins of the inflammatory cells associated with PE onset? Are these maternal cells invading the placental tissues, or are these placental resident (likely fetal) cells?

      Response 26: We thank the reviewers' comments. Numerous reports have consistently observed the presence of inflammatory cells and factors in the maternal peripheral blood and placenta tissues of PE patients, fostering the prevailing notion that the progression of PE is intricately linked to the maternal immune system's inflammatory response towards the fetus. Nevertheless, intriguing findings from single-cell RNA sequencing, analyzed through bioinformatic methods, have challenged this perspective (Elife. 2019. PMID: 31829938;Proc Natl Acad Sci U S A. 2017.PMID: 28830992). These studies reveal that the placenta harbors not just immune cells of maternal origin but also those of fetal origin, raising questions about whether these are maternal cells infiltrating placental tissues or resident (possibly fetal) placental cells. Further investigation is imperative to elucidate this complex interplay.

      Comment 27. Discussion: Given the observed lack of changes in the GDM or GDM+PE groups, do the authors consider that GDM represents a distinct pathology that can lead to secondary PE, and thus is different from primary PE without GDM?

      Response 27: It's possible. Though previous studies reported GDM is associated with aberrant maternal immune cell adaption the findings remained controversial. It seems that GDM does not induce significant alterations in placental immune cell profile in our study, which made us pay more attention to the immune mechanism in PE. However, it is confusing for the reasons why individuals with GDM&PE were protected from the immune alterations at the maternal fetal interface. Limited placental samples in the GDM&PE group can partly explain it, for it is hard to collect clean samples excluding confounding factors. A study reported that macrophages in human placenta maintained anti-inflammatory properties despite GDM (Front Immunol, 2017, PMID: 28824621).Barke et al. also found that more CD163<sup>+</sup> cells were observed in GDM placentas compared to normal controls (PLoS One, 2014, PMID: 24983948). Thus, GDM is likely to have a protective property in the placental immune environment when the individuals are complicated with PE.

      Reviewer #2 (Recommendations for the authors):

      Comment 1. IF images need to be quantified.

      Response 1: We thank the reviewers' comments. We have quantified and calculated the fluorescence intensity and added it in Figure 2D.

      Comment 2. Cluster 12 in Figure 3 is labeled as granulocytes but listed under macrophages.

      Response 2: We thank the reviewers' careful checking. We have revised and updated Figure 3A.

      Comment 3. Figure 4 labels in the text and figure do not match, no 4G in the figure.

      Response 3: We thank the reviewers' careful checking. The figure labels of Figure 4 have been revised and updated.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This study identified three independent components of glucose dynamics-"value," "variability," and "autocorrelation", and reported important findings indicating that they play an important role in predicting coronary plaque vulnerability. Although the generalizability of the results needs further investigation due to the limited sample size and validation cohort limitations, this study makes several notable contributions: validation of autocorrelation as a new clinical indicator, theoretical support through mathematical modeling, and development of a web application for practical implementation. These contributions are likely to attract broad interest from researchers in both diabetology and cardiology and may suggest the potential for a new approach to glucose monitoring that goes beyond conventional glycemic control indicators in clinical practice.

      Strengths:

      The most notable strength of this study is the identification of three independent elements in glycemic dynamics: value, variability, and autocorrelation. In particular, the metric of autocorrelation, which has not been captured by conventional glycemic control indices, may bring a new perspective for understanding glycemic dynamics. In terms of methodological aspects, the study uses an analytical approach combining various statistical methods such as factor analysis, LASSO, and PLS regression, and enhances the reliability of results through theoretical validation using mathematical models and validation in other cohorts. In addition, the practical aspect of the research results, such as the development of a Web application, is also an important contribution to clinical implementation.

      We appreciate reviewer #1 for the positive assessment and for the valuable and constructive comments on our manuscript.

      Weaknesses:

      The most significant weakness of this study is the relatively small sample size of 53 study subjects. This sample size limitation leads to a lack of statistical power, especially in subgroup analyses, and to limitations in the assessment of rare events.

      We appreciate the reviewer’s concern regarding the sample size. We acknowledge that a larger sample size would increase statistical power, especially for subgroup analyses and the assessment of rare events.

      We would like to clarify several points regarding the statistical power and validation of our findings. Our sample size determination followed established methodological frameworks, including the guidelines outlined by Muyembe Asenahabi, Bostely, and Peters Anselemo Ikoha. “Scientific research sample size determination.” (2023). These guidelines balance the risks of inadequate sample size with the challenges of unnecessarily large samples. For our primary analysis examining the correlation between CGM-derived measures and %NC, power calculations (a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4) indicated that a minimum of 47 participants was required. Our sample size of 53 exceeded this threshold and allowed us to detect statistically significant correlations, as described in the Methods section. Moreover, to provide transparency about the precision of our estimates, we have included confidence intervals for all coefficients.

      Furthermore, our sample size aligns with previous studies investigating the associations between glucose profiles and clinical parameters, including Torimoto, Keiichi, et al. “Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus.” Cardiovascular Diabetology 12 (2013): 1-7. (n=57), Hall, Heather, et al. “Glucotypes reveal new patterns of glucose dysregulation.” PLoS biology 16.7 (2018): e2005143. (n=57), and Metwally, Ahmed A., et al. “Prediction of metabolic subphenotypes of type 2 diabetes via continuous glucose monitoring and machine learning.” Nature Biomedical Engineering (2024): 1-18. (n=32).

      Furthermore, the primary objective of our study was not to assess rare events, but rather to demonstrate that glucose dynamics can be decomposed into three main factors - mean, variance and autocorrelation - whereas traditional measures have primarily captured mean and variance without adequately reflecting autocorrelation. We believe that our current sample size effectively addresses this objective.

      Regarding the classification of glucose dynamics components, we have conducted additional validation across diverse populations including 64 Japanese, 53 American, and 100 Chinese individuals. These validation efforts have consistently supported our identification of three independent glucose dynamics components.

      However, we acknowledge the importance of further validation on a larger scale. To address this, we conducted a large follow-up study of over 8,000 individuals (Sugimoto, Hikaru, et al. “Stratification of individuals without prior diagnosis of diabetes using continuous glucose monitoring” medRxiv (2025)), which confirmed our main finding that glucose dynamics consist of mean, variance, and autocorrelation. As this large study was beyond the scope of the present manuscript due to differences in primary objectives and analytical approaches, it was not included in this paper; however, it provides further support for the clinical relevance and generalizability of our findings.

      To address the sample size considerations, we will add the following sentences in the Discussion section:

      Although our analysis included four datasets with a total of 270 individuals, and our sample size of 53 met the required threshold based on power calculations with a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4, we acknowledge that the sample size may still be considered relatively small for a comprehensive assessment of these relationships. To further validate these findings, larger prospective studies with diverse populations are needed to improve the predictive utility and generalizability of our findings.

      We appreciate the reviewer’s feedback and believe that these clarifications will strengthen the manuscript.

      In terms of validation, several challenges exist, including geographical and ethnic biases in the validation cohorts, lack of long-term follow-up data, and insufficient validation across different clinical settings. In terms of data representativeness, limiting factors include the inclusion of only subjects with well-controlled serum cholesterol and blood pressure and the use of only short-term measurement data.

      We appreciate the reviewer’s comment regarding the challenges associated with validation. In terms of geographic and ethnic diversity, our study includes validation cohorts from diverse populations, including 64 Japanese, 53 American and 100 Chinese individuals. These cohorts include a wide range of metabolic states, from healthy individuals to those with diabetes, ensuring validation across different clinical conditions. In addition, we recognize the limited availability of publicly available datasets with sufficient sample sizes for factor decomposition that include both healthy individuals and those with type 2 diabetes (Zhao, Qinpei, et al. “Chinese diabetes datasets for data-driven machine learning.” Scientific Data 10.1 (2023): 35.). The main publicly available datasets with relevant clinical characteristics have already been analyzed in this study using unbiased approaches.

      However, we fully agree with the reviewer that expanding the geographic and ethnic scope, including long-term follow-up data, and validation in different clinical settings would further strengthen the robustness and generalizability of our findings. To address this, we conducted a large follow-up study of over 8,000 individuals with two years of follow-up (Sugimoto, Hikaru, et al. “Stratification of individuals without prior diagnosis of diabetes using continuous glucose monitoring” medRxiv (2025)), which confirmed our main finding that glucose dynamics consist of mean, variance, and autocorrelation. As this large study was beyond the scope of the present manuscript due to differences in primary objectives and analytical approaches, it was not included in this paper; however, it provides further support for the clinical relevance and generalizability of our findings.

      Regarding the validation considerations, we will add the following sentences to the Discussion section:

      Although our analysis included four datasets with a total of 270 individuals, and our sample size of 53 met the required threshold based on power calculations with a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4, we acknowledge that the sample size may still be considered relatively small for a comprehensive assessment of these relationships. To further validate these findings, larger prospective studies with diverse populations are needed to improve the predictive utility and generalizability of our findings.

      Although our LASSO and factor analysis indicated that CGM-derived measures were strong predictors of %NC, this does not mean that other clinical parameters, such as lipids and blood pressure, are irrelevant in T2DM complications. Our study specifically focused on characterizing glucose dynamics, and we analyzed individuals with well-controlled serum cholesterol and blood pressure to reduce confounding effects. While we anticipate that inclusion of a more diverse population would not alter our primary findings regarding glucose dynamics, it is likely that a broader data set would reveal additional predictive contributions from lipid and blood pressure parameters.

      In terms of elucidation of physical mechanisms, the study is not sufficient to elucidate the mechanisms linking autocorrelation and clinical outcomes or to verify them at the cellular or molecular level.

      We appreciate the reviewer’s point regarding the need for further elucidation of the physical mechanisms linking glucose autocorrelation to clinical outcomes. We fully agree with the reviewer that the detailed molecular and cellular mechanisms underlying this relationship are not yet fully understood, as noted in our Discussion section.

      However, we would like to emphasize the theoretical basis that supports the clinical relevance of autocorrelation. Our results show that glucose profiles with identical mean and variability can exhibit different autocorrelation patterns, highlighting that conventional measures such as mean or variance alone may not fully capture inter-individual metabolic differences. Incorporating autocorrelation analysis provides a more comprehensive characterization of metabolic states. Consequently, incorporating autocorrelation measures alongside traditional diabetes diagnostic criteria - such as fasting glucose, HbA1c and PG120, which primarily reflect only the “mean” component - can improve predictive accuracy for various clinical outcomes. While further research at the cellular and molecular level is needed to fully validate these findings, it is important to note that the primary goal of this study was to analyze the characteristics of glucose dynamics and gain new insights into metabolism, rather than to perform molecular biology experiments.

      Furthermore, our previous research has shown that glucose autocorrelation reflects changes in insulin clearance (Sugimoto, Hikaru, et al. “Improved Detection of Decreased Glucose Handling Capacities via Novel Continuous Glucose Monitoring-Derived Indices: AC_Mean and AC_Var.” medRxiv (2023): 2023-09.). The relationship between insulin clearance and cardiovascular disease has been well documented (Randrianarisoa, Elko, et al. “Reduced insulin clearance is linked to subclinical atherosclerosis in individuals at risk for type 2 diabetes mellitus.” Scientific reports 10.1 (2020): 22453.), and the mechanisms described in this prior work may potentially explain the association between glucose autocorrelation and clinical outcomes observed in the present study.

      Rather than a limitation, we view these currently unexplored associations as an opportunity for further research. The identification of autocorrelation as a key glycemic feature introduces a new dimension to metabolic regulation that could serve as the basis for future investigations exploring the molecular mechanisms underlying these patterns.

      While we agree that further research at the cellular and molecular level is needed to fully validate these findings, we believe that our study provides a strong theoretical framework to support the clinical utility of autocorrelation analysis in glucose monitoring, and that this could serve as the basis for future investigations exploring the molecular mechanisms underlying these autocorrelation patterns, which adds to the broad interest of this study. Regarding the physical mechanisms linking autocorrelation and clinical outcomes, we will add the following sentences in the Discussion section:

      This study also provided evidence that autocorrelation can vary independently from the mean and variance components using simulated data. In addition, simulated glucose dynamics indicated that even individuals with high AC_Var did not necessarily have high maximum and minimum blood glucose levels. This study also indicated that these three components qualitatively corresponded to the four distinct glucose patterns observed after glucose administration, which were identified in a previous study (Hulman et al., 2018). Thus, the inclusion of autocorrelation in addition to mean and variance may improve the characterization of inter-individual differences in glucose regulation and improve the predictive accuracy of various clinical outcomes.

      Despite increasing evidence linking glycemic variability to oxidative stress and endothelial dysfunction in T2DM complications (Ceriello et al., 2008; Monnier et al., 2008), the biological mechanisms underlying the independent predictive value of autocorrelation remain to be elucidated. Our previous work has shown that glucose autocorrelation is influenced by insulin clearance (Sugimoto et al., 2023), a process known to be associated with cardiovascular disease risk (Randrianarisoa et al., 2020). Therefore, the molecular pathways linking glucose autocorrelation to cardiovascular disease may share common mechanisms with those linking insulin clearance to cardiovascular disease. Although previous studies have primarily focused on investigating the molecular mechanisms associated with mean glucose levels and glycemic variability, our findings open new avenues for exploring the molecular basis of glucose autocorrelation, potentially revealing novel therapeutic targets for preventing diabetic complications.

      Reviewer #2 (Public review):

      Sugimoto et al. explore the relationship between glucose dynamics - specifically value, variability, and autocorrelation - and coronary plaque vulnerability in patients with varying glucose tolerance levels. The study identifies three independent predictive factors for %NC and emphasizes the use of continuous glucose monitoring (CGM)-derived indices for coronary artery disease (CAD) risk assessment. By employing robust statistical methods and validating findings across datasets from Japan, America, and China, the authors highlight the limitations of conventional markers while proposing CGM as a novel approach for risk prediction. The study has the potential to reshape CAD risk assessment by emphasizing CGM-derived indices, aligning well with personalized medicine trends.

      Strengths:

      (1) The introduction of autocorrelation as a predictive factor for plaque vulnerability adds a novel dimension to glucose dynamic analysis.

      (2) Inclusion of datasets from diverse regions enhances generalizability.

      (3) The use of a well-characterized cohort with controlled cholesterol and blood pressure levels strengthens the findings.

      (4) The focus on CGM-derived indices aligns with personalized medicine trends, showcasing the potential for CAD risk stratification.

      We appreciate reviewer #2 for the positive assessment and for the valuable and constructive comments on our manuscript.

      Weaknesses:

      (1) The link between autocorrelation and plaque vulnerability remains speculative without a proposed biological explanation.

      We appreciate the reviewer’s point about the need for a clearer biological explanation linking glucose autocorrelation to plaque vulnerability. We fully agree with the reviewer that the detailed biological mechanisms underlying this relationship are not yet fully understood, as noted in our Discussion section.

      However, we would like to emphasize the theoretical basis that supports the clinical relevance of autocorrelation. Our results show that glucose profiles with identical mean and variability can exhibit different autocorrelation patterns, highlighting that conventional measures such as mean or variance alone may not fully capture inter-individual metabolic differences. Incorporating autocorrelation analysis provides a more comprehensive characterization of metabolic states. Consequently, incorporating autocorrelation measures alongside traditional diabetes diagnostic criteria - such as fasting glucose, HbA1c and PG120, which primarily reflect only the “mean” component - can improve predictive accuracy for various clinical outcomes.

      Furthermore, our previous research has shown that glucose autocorrelation reflects changes in insulin clearance (Sugimoto, Hikaru, et al. “Improved Detection of Decreased Glucose Handling Capacities via Novel Continuous Glucose Monitoring-Derived Indices: AC_Mean and AC_Var.” medRxiv (2023): 2023-09.). The relationship between insulin clearance and cardiovascular disease has been well documented (Randrianarisoa, Elko, et al. “Reduced insulin clearance is linked to subclinical atherosclerosis in individuals at risk for type 2 diabetes mellitus.” Scientific reports 10.1 (2020): 22453.), and the mechanisms described in this prior work may potentially explain the association between glucose autocorrelation and clinical outcomes observed in the present study.

      Rather than a limitation, we view these currently unexplored associations as an opportunity for further research. The identification of autocorrelation as a key glycemic feature introduces a new dimension to metabolic regulation that could serve as the basis for future investigations exploring the molecular mechanisms underlying these patterns.

      While we agree that further research at the cellular and molecular level is needed to fully validate these findings, we believe that our study provides a strong theoretical framework to support the clinical utility of autocorrelation analysis in glucose monitoring, and that this could serve as the basis for future investigations exploring the molecular mechanisms underlying these autocorrelation patterns, which adds to the broad interest of this study. Regarding the physical mechanisms linking autocorrelation and clinical outcomes, we will add the following sentences in the Discussion section:

      This study also provided evidence that autocorrelation can vary independently from the mean and variance components using simulated data. In addition, simulated glucose dynamics indicated that even individuals with high AC_Var did not necessarily have high maximum and minimum blood glucose levels. This study also indicated that these three components qualitatively corresponded to the four distinct glucose patterns observed after glucose administration, which were identified in a previous study (Hulman et al., 2018). Thus, the inclusion of autocorrelation in addition to mean and variance may improve the characterization of inter-individual differences in glucose regulation and improve the predictive accuracy of various clinical outcomes.

      Despite increasing evidence linking glycemic variability to oxidative stress and endothelial dysfunction in T2DM complications (Ceriello et al., 2008; Monnier et al., 2008), the biological mechanisms underlying the independent predictive value of autocorrelation remain to be elucidated. Our previous work has shown that glucose autocorrelation is influenced by insulin clearance (Sugimoto et al., 2023), a process known to be associated with cardiovascular disease risk (Randrianarisoa et al., 2020). Therefore, the molecular pathways linking glucose autocorrelation to cardiovascular disease may share common mechanisms with those linking insulin clearance to cardiovascular disease. Although previous studies have primarily focused on investigating the molecular mechanisms associated with mean glucose levels and glycemic variability, our findings open new avenues for exploring the molecular basis of glucose autocorrelation, potentially revealing novel therapeutic targets for preventing diabetic complications.

      (2) The relatively small sample size (n=270) limits statistical power, especially when stratified by glucose tolerance levels.

      We appreciate the reviewer’s concern regarding sample size and its potential impact on statistical power, especially when stratified by glucose tolerance level. We fully agree that a larger sample size would increase statistical power, especially for subgroup analyses.

      We would like to clarify several points regarding the statistical power and validation of our findings. Our sample size determination followed established methodological frameworks, including the guidelines outlined by Muyembe Asenahabi, Bostely, and Peters Anselemo Ikoha. “Scientific research sample size determination.” (2023). These guidelines balance the risks of inadequate sample size with the challenges of unnecessarily large samples. For our primary analysis examining the correlation between CGM-derived measures and %NC, power calculations (a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4) indicated that a minimum of 47 participants was required. Our sample size of 53 exceeded this threshold and allowed us to detect statistically significant correlations, as described in the Methods section. Moreover, to provide transparency about the precision of our estimates, we have included confidence intervals for all coefficients.

      Furthermore, our sample size aligns with previous studies investigating the associations between glucose profiles and clinical parameters, including Torimoto, Keiichi, et al. “Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus.” Cardiovascular Diabetology 12 (2013): 1-7. (n=57), Hall, Heather, et al. “Glucotypes reveal new patterns of glucose dysregulation.” PLoS biology 16.7 (2018): e2005143. (n=57), and Metwally, Ahmed A., et al. “Prediction of metabolic subphenotypes of type 2 diabetes via continuous glucose monitoring and machine learning.” Nature Biomedical Engineering (2024): 1-18. (n=32).

      Regarding the classification of glucose dynamics components, we have conducted additional validation across diverse populations including 64 Japanese, 53 American, and 100 Chinese individuals. These validation efforts have consistently supported our identification of three independent glucose dynamics components.

      However, we acknowledge the importance of further validation on a larger scale. To address this, we conducted a large follow-up study of over 8,000 individuals with two years of follow-up (Sugimoto, Hikaru, et al. “Stratification of individuals without prior diagnosis of diabetes using continuous glucose monitoring” medRxiv (2025)), which confirmed our main finding that glucose dynamics consist of mean, variance, and autocorrelation. As this large study was beyond the scope of the present manuscript due to differences in primary objectives and analytical approaches, it was not included in this paper; however, it provides further support for the clinical relevance and generalizability of our findings.

      To address the sample size considerations, we will add the following sentences in the Discussion section:

      Although our analysis included four datasets with a total of 270 individuals, and our sample size of 53 met the required threshold based on power calculations with a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4, we acknowledge that the sample size may still be considered relatively small for a comprehensive assessment of these relationships. To further validate these findings, larger prospective studies with diverse populations are needed to improve the predictive utility and generalizability of our findings.

      (3) Strict participant selection criteria may reduce applicability to broader populations.

      We appreciate the reviewer’s comment regarding the potential impact of strict participant selection criteria on the broader applicability of our findings. We acknowledge that extending validation to more diverse populations would improve the generalizability of our findings.

      Our study includes validation cohorts from diverse populations, including 64 Japanese, 53 American and 100 Chinese individuals. These cohorts include a wide range of metabolic states, from healthy individuals to those with diabetes, ensuring validation across different clinical conditions. However, we acknowledge that further validation in additional populations and clinical settings would strengthen our conclusions. To address this, we conducted a large follow-up study of over 8,000 individuals (Sugimoto, Hikaru, et al. “Stratification of individuals without prior diagnosis of diabetes using continuous glucose monitoring” medRxiv (2025)), which confirmed our main finding that glucose dynamics consist of mean, variance, and autocorrelation. As this large study was beyond the scope of the present manuscript due to differences in primary objectives and analytical approaches, it was not included in this paper; however, it provides further support for the clinical relevance and generalizability of our findings.

      We will add the following text to the Discussion section to address these considerations:

      Although our analysis included four datasets with a total of 270 individuals, and our sample size of 53 met the required threshold based on power calculations with a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4, we acknowledge that the sample size may still be considered relatively small for a comprehensive assessment of these relationships. To further validate these findings, larger prospective studies with diverse populations are needed to improve the predictive utility and generalizability of our findings.

      Although our LASSO and factor analysis indicated that CGM-derived measures were strong predictors of %NC, this does not mean that other clinical parameters, such as lipids and blood pressure, are irrelevant in T2DM complications. Our study specifically focused on characterizing glucose dynamics, and we analyzed individuals with well-controlled serum cholesterol and blood pressure to reduce confounding effects. While we anticipate that inclusion of a more diverse population would not alter our primary findings regarding glucose dynamics, it is likely that a broader data set would reveal additional predictive contributions from lipid and blood pressure parameters.

      (4) CGM-derived indices like AC_Var and ADRR may be too complex for routine clinical use without simplified models or guidelines.

      We appreciate the reviewer’s concern about the complexity of CGM-derived indices such as AC_Var and ADRR for routine clinical use. We acknowledge that for these indices to be of practical use, they must be both interpretable and easily accessible to healthcare providers.

      To address this concern, we have developed an easy-to-use web application that automatically calculates these measures, including AC_Var, mean glucose levels, and glucose variability. This tool eliminates the need for manual calculations, making these indices more practical for clinical implementation.

      Regarding interpretability, we acknowledge that establishing specific clinical guidelines would enhance the practical utility of these measures. For example, defining a cut-off value for AC_Var above which the risk of diabetes complications increases significantly would provide clearer clinical guidance. However, given our current sample size limitations and our predefined objective of investigating correlations among indices, we have taken a conservative approach by focusing on the correlation between AC_Var and %NC rather than establishing definitive cutoffs. This approach intentionally avoids problematic statistical practices like p-hacking. It is not realistic to expect a single study to accomplish everything from proposing a new concept to conducting large-scale clinical trials to establishing clinical guidelines. Establishing clinical guidelines typically requires the accumulation of multiple studies over many years. Recognizing this reality, we have been careful in our manuscript to make modest claims about the discovery of new “correlations” rather than exaggerated claims about immediate routine clinical use.

      To address this limitation, we conducted a large follow-up study of over 8,000 individuals in the next study (Sugimoto, Hikaru, et al. “Stratification of individuals without prior diagnosis of diabetes using continuous glucose monitoring” medRxiv (2025)), which proposed clinically relevant cutoffs and reference ranges for AC_Var and other CGM-derived indices. As this large study was beyond the scope of the present manuscript due to differences in primary objectives and analytical approaches, it was not included in this paper; however, by integrating automated calculation tools with clear clinical thresholds, we expect to make these measures more accessible for clinical use.

      We will add the following text to the Discussion section to address these considerations:

      While CGM-derived indices such as AC_Var and ADRR hold promise for CAD risk assessment, their complexity may present challenges for routine clinical implementation. To improve usability, we have developed a web-based calculator that automates these calculations. However, the definition of clinically relevant thresholds and reference ranges requires further validation in larger cohorts.

      (5) The study does not compare CGM-derived indices to existing advanced CAD risk models, limiting the ability to assess their true predictive superiority.

      We appreciate the reviewer’s comment regarding the comparison of CGM-derived indices with existing CAD risk models. Given that our study population consisted of individuals with well-controlled total cholesterol and blood pressure levels, a direct comparison with the Framingham Risk Score for Hard Coronary Heart Disease (Wilson, Peter WF, et al. “Prediction of coronary heart disease using risk factor categories.” Circulation 97.18 (1998): 1837-1847.) may introduce inherent bias, as these factors are key components of the score.

      Nevertheless, to further assess the predictive value of the CGM-derived indices, we performed additional analyses using linear regression to predict %NC. Using the Framingham Risk Score, we obtained an R² of 0.04 and an Akaike Information Criterion (AIC) of 330. In contrast, our proposed model incorporating the three glycemic parameters - CGM_Mean, CGM_Std, and AC_Var - achieved a significantly improved R² of 0.36 and a lower AIC of 321, indicating superior predictive accuracy.

      We will add the following text to the Result section:

      The regression model including CGM_Mean, CGM_Std and AC_Var to predict %NC achieved an R² of 0.36 and an Akaike Information Criterion (AIC) of 321. Each of these indices showed statistically significant independent positive correlations with %NC. In contrast, the model using conventional glycemic markers (FBG, HbA1c, and PG120) yielded an R<sup>2</sup> of only 0.05 and an AIC of 340. Similarly, the model using the Framingham Risk Score for Hard Coronary Heart Disease (Wilson et al., 1998) showed limited predictive value, with an R<sup>2</sup> of 0.04 and an AIC of 330.

      (6) Varying CGM sampling intervals (5-minute vs. 15-minute) were not thoroughly analyzed for impact on results.

      We appreciate the reviewer’s comment regarding the potential impact of different CGM sampling intervals on our results. To assess the robustness of our findings across different sampling frequencies, we performed a down sampling analysis by converting our 5-minute interval data to 15-minute intervals. The AC_Var value calculated from 15-minute intervals was significantly correlated with that calculated from 5-minute intervals (R = 0.99, 95% CI: 0.97-1.00). Furthermore, the regression model using CGM_Mean, CGM_Std, and AC_Var from 15-minute intervals to predict %NC achieved an R<sup>2</sup> of 0.36 and an AIC of 321, identical to the model using 5-minute intervals. These results indicate that our results are robust to variations in CGM sampling frequency.

      We will add this analysis to the Result section:

      The AC_Var value calculated from 15-minute intervals was significantly correlated with that calculated from 5-minute intervals (R = 0.99, 95% CI: 0.97-1.00). Consequently, the regression model including CGM_Mean, CGM_Std and AC_Var from 15-minute intervals to predict %NC achieved an R² of 0.36 and an AIC of 321.

      Reviewer #3 (Public review):

      Summary:

      This is a retrospective analysis of 53 individuals over 26 features (12 clinical phenotypes, 12 CGM features, and 2 autocorrelation features) to examine which features were most informative in predicting percent necrotic core (%NC) as a parameter for coronary plaque vulnerability. Multiple regression analysis demonstrated a better ability to predict %NC from 3 selected CGM-derived features than 3 selected clinical phenotypes. LASSO regularization and partial least squares (PLS) with VIP scores were used to identify 4 CGM features that most contribute to the precision of %NC. Using factor analysis they identify 3 components that have CGM-related features: value (relating to the value of blood glucose), variability (relating to glucose variability), and autocorrelation (composed of the two autocorrelation features). These three groupings appeared in the 3 validation cohorts and when performing hierarchical clustering. To demonstrate how these three features change, a simulation was created to allow the user to examine these features under different conditions.

      We appreciate reviewer #3 for the valuable and constructive comments on our manuscript.

      Review:

      The goal of this study was to identify CGM features that relate to %NC. Through multiple feature selection methods, they arrive at 3 components: value, variability, and autocorrelation. While the feature list is highly correlated, the authors take steps to ensure feature selection is robust. There is a lack of clarity of what each component (value, variability, and autocorrelation) includes as while similar CGM indices fall within each component, there appear to be some indices that appear as relevant to value in one dataset and to variability in the validation.

      We appreciate the reviewer’s comment regarding the classification of CGM-derived measures into the three components: value, variability, and autocorrelation. As the reviewer correctly points out, some measures may load differently between the value and variability components in different datasets. However, we believe that this variability reflects the inherent mathematical properties of these measures rather than a limitation of our study.

      For example, the HBGI clusters differently across datasets due to its dependence on the number of glucose readings above a threshold. In populations where mean glucose levels are predominantly below this threshold, the HBGI is more sensitive to glucose variability (Fig. S7A). Conversely, in populations with a wider range of mean glucose levels, HBGI correlates more strongly with mean glucose levels (Fig. 3A). This context-dependent behavior is expected given the mathematical properties of these measures and does not indicate an inconsistency in our classification approach.

      Importantly, our main findings remain robust: CGM-derived measures systematically fall into three components-value, variability, and autocorrelation. Traditional CGM-derived measures primarily reflect either value or variability, and this categorization is consistently observed across datasets. While specific indices such as HBGI may shift classification depending on population characteristics, the overall structure of CGM data remains stable.

      To address these considerations, we will add the following text to the Discussion section:

      Some indices, such as HBGI, showed variation in classification across datasets, with some populations showing higher factor loadings in the “value” component and others in the “variability” component. This variation occurs because HBGI calculations depend on the number of glucose readings above a threshold. In populations where mean glucose levels are predominantly below this threshold, the HBGI is more sensitive to glucose variability (Fig. S7A). Conversely, in populations with a wider range of mean glucose levels, the HBGI correlates more strongly with mean glucose levels (Fig. 3A). Despite these differences, our validation analyses confirm that CGM-derived indices consistently cluster into three components: value, variability, and autocorrelation.

      We are sceptical about statements of significance without documentation of p-values.

      We appreciate the reviewer’s concern regarding statistical significance and the documentation of p values.

      First, given the multiple comparisons in our study, we used q values rather than p values, as shown in Figure S1. Q values provide a more rigorous statistical framework for controlling the false discovery rate in multiple testing scenarios, thereby reducing the likelihood of false positives.

      Second, our statistical reporting follows established guidelines, including those of the New England Journal of Medicine (Harrington, David, et al. “New guidelines for statistical reporting in the journal.” New England Journal of Medicine 381.3 (2019): 285-286.), which recommend that “reporting of exploratory end points should be limited to point estimates of effects with 95% confidence intervals” and that “replace p values with estimates of effects or association and 95% confidence intervals”. According to these guidelines, p values should not be reported in this type of study. We determined significance based on whether these 95% confidence intervals excluded zero - a statistical method for determining whether an association is significantly different from zero (Tan, Sze Huey, and Say Beng Tan. "The correct interpretation of confidence intervals." Proceedings of Singapore Healthcare 19.3 (2010): 276-278.).

      For the sake of transparency, we provide p values for readers who may be interested, although we emphasize that they should not be the basis for interpretation, as discussed in the referenced guidelines. Specifically, in Figure 1, the p values for CGM_Mean, CGM_Std, and AC_Var were 0.02, 0.02, and <0.01, respectively, while those for FBG, HbA1c, and PG120 were 0.83, 0.91, and 0.25, respectively. In Figure 3C, the p values for factors 1–5 were 0.03, 0.03, 0.03, 0.24, and 0.87, respectively, and in Figure S10B, the p values for factors 1–3 were <0.01, <0.01, and 0.20, respectively.

      We appreciate the opportunity to clarify our statistical methodology and are happy to provide additional details if needed.

      While hesitations remain, the ability of these authors to find groupings of these many CGM metrics in relation to %NC is of interest. The believability of the associations is impeded by an obtuse presentation of the results with core data (i.e. correlation plots between CGM metrics and %NC) buried in the supplement while main figures contain plots of numerical estimates from models which would be more usefully presented in supplementary tables.

      We appreciate the reviewer’s comment regarding the presentation of our results and recognize the importance of ensuring clarity and accessibility of the core data.

      The central finding of our study is twofold: first, that the numerous CGM-derived measures can be systematically classified into three distinct components-mean, variance, and autocorrelation-and second, that each of these components is independently associated with %NC. This insight cannot be derived simply from examining scatter plots of individual correlations, which are provided in the Supplementary Figures. Instead, it emerges from our statistical analyses in the main figures, including multiple regression models that reveal the independent contributions of these components to %NC.

      However, we acknowledge the reviewer’s concern regarding the accessibility of key data. To improve clarity, we will move several scatter plots from the Supplementary Figures to the main figures to allow readers to more directly visualize the relationships between CGM-derived measures and %NC. We believe this revision will improve the transparency and readability of our results while maintaining the rigor of our analytical approach.

      Given the small sample size in the primary analysis, there is a lot of modeling done with parameters estimated where simpler measures would serve and be more convincing as they require less data manipulation. A major example of this is that the pairwise correlation/covariance between CGM_mean, CGM_std, and AC_var is not shown and would be much more compelling in the claim that these are independent factors.

      We appreciate the reviewer’s feedback on our statistical analysis and data presentation. The correlations between CGM_Mean, CGM_Std, and AC_Var are documented in Figure S1B. However, to improve accessibility and clarity, we will move these correlation analyses to the main figures. Regarding our modeling approach, we chose LASSO and PLS methods because they are well-established techniques that are particularly suited to scenarios with many input variables and a relatively small sample size. These methods have been extensively validated in the literature as robust approaches for variable selection under such conditions (Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J R Stat Soc 58:267–288. Wold S, Sjöström M, Eriksson L. 2001. PLS-regression: a basic tool of chemometrics. Chemometrics Intellig Lab Syst 58:109–130. Pei X, Qi D, Liu J, Si H, Huang S, Zou S, Lu D, Li Z. 2023. Screening marker genes of type 2 diabetes mellitus in mouse lacrimal gland by LASSO regression. Sci Rep 13:6862. Wang C, Kong H, Guan Y, Yang J, Gu J, Yang S, Xu G. 2005. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem 77:4108–4116.).

      Lack of methodological detail is another challenge. For example, the time period of CGM metrics or CGM placement in the primary study in relation to the IVUS-derived measurements of coronary plaques is unclear. Are they temporally distant or proximal/ concurrent with the PCI?

      We appreciate the reviewer’s important question regarding the temporal relationship between CGM measurements and IVUS-derived plaque assessments. As described in our previous work (Otowa‐Suematsu, Natsu, et al. “Comparison of the relationship between multiple parameters of glycemic variability and coronary plaque vulnerability assessed by virtual histology–intravascular ultrasound.” Journal of Diabetes Investigation 9.3 (2018): 610-615.), all individuals underwent continuous glucose monitoring for at least three consecutive days within the seven-day period prior to the PCI procedure. To improve clarity for readers, we will include this methodological detail in the revised manuscript.

      A patient undergoing PCI for coronary intervention would be expected to have physiological and iatrogenic glycemic disturbances that do not reflect their baseline state. This is not considered or discussed.

      We appreciate the reviewer’s concern regarding potential glycemic disturbances associated with PCI. As described in our previous work (Otowa‐Suematsu, Natsu, et al. “Comparison of the relationship between multiple parameters of glycemic variability and coronary plaque vulnerability assessed by virtual histology–intravascular ultrasound.” Journal of Diabetes Investigation 9.3 (2018): 610-615.), all CGM measurements were performed before the PCI procedure. This temporal separation ensures that the glycemic patterns analyzed in our study reflect the baseline metabolic state of the patients, rather than any physiological or iatrogenic effects of PCI. To avoid any misunderstanding, we will clarify this temporal relationship in the revised manuscript.

      The attempts at validation in external cohorts, Japanese, American, and Chinese are very poorly detailed. We could only find even an attempt to examine cardiovascular parameters in the Chinese data set but the outcome variables are unspecified with regard to what macrovascular events are included, their temporal relation to the CGM metrics, etc. Notably macrovascular event diagnoses are very different from the coronary plaque necrosis quantification. This could be a source of strength in the findings if carefully investigated and detailed but due to the lack of detail seems like an apples-to-oranges comparison.

      We appreciate the reviewer’s comment regarding the validation cohorts and the need for greater clarity, particularly in the Chinese dataset. We acknowledge that our initial description lacked sufficient methodological detail, and we will expand the Methods section to provide a more comprehensive explanation.

      For the Chinese dataset, the data collection protocol was previously documented (Zhao, Qinpei, et al. “Chinese diabetes datasets for data-driven machine learning.” Scientific Data 10.1 (2023): 35.). Briefly, trained research staff used standardized questionnaires to collect demographic and clinical information, including diabetes diagnosis, treatment history, comorbidities, and medication use. Physical examinations included anthropometric measurements, and body mass index was calculated using standard protocols. CGM monitoring was performed using the FreeStyle Libre H device (Abbott Diabetes Care, UK), which records interstitial glucose levels at 15-minute intervals for up to 14 days. Laboratory measurements, including metabolic panels, lipid profiles, and renal function tests, were obtained within six months of CGM placement. While previous studies have linked necrotic core to macrovascular events (Xie, Yong, et al. “Clinical outcome of nonculprit plaque ruptures in patients with acute coronary syndrome in the PROSPECT study.” JACC: Cardiovascular Imaging 7.4 (2014): 397-405.), we acknowledge the limitations of the cardiovascular outcomes in the Chinese data set. These outcomes were extracted from medical records rather than standardized diagnostic procedures or imaging studies. To address these concerns, we will expand the Discussion section to clarify the differences in outcome definitions and methodological approaches between the data sets.

      Finally, the simulations at the end are not relevant to the main claims of the paper and we would recommend removing them for the coherence of this manuscript.

      We appreciate the reviewer’s feedback regarding the relevance of the simulation component of our manuscript. The primary contribution of our study goes beyond demonstrating correlations between CGM-derived measures and %NC; it highlights three fundamental components of glycemic patterns-mean, variability, and autocorrelation-and their independent relationships with coronary plaque characteristics.

      The simulations are included to illustrate how glycemic patterns with identical means and variability can have different autocorrelation structures. Because temporal autocorrelation can be conceptually difficult to interpret, these visualizations were intended to provide intuitive examples for the readers.

      However, we recognize the reviewer’s concern about the coherence of the manuscript. In response, we will streamline the simulation section by removing technical simulations that do not directly support our primary conclusions, while retaining only those that enhance understanding of the three glycemic components.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this study, Bu et al examined the dynamics of TRPV4 channel in cell overcrowding in carcinoma conditions. They investigated how cell crowding (or high cell confluence) triggers a mechano-transduction pathway involving TRPV4 channels in high-grade ductal carcinoma in situ (DCIS) cells that leads to large cell volume reduction (or cell volume plasticity) and proinvasive phenotype.

      In vitro, this pathway is highly selective for highly malignant invasive cell lines derived from a normal breast epithelial cell line (MCF10CA) compared to the parent cell line, but not present in another triple-negative invasive breast epithelial cell line (MDA-MB-231). The authors convincingly showed that enhanced TRPV4 plasmamembrane localization correlates with highgrade DCIS cells in patient tissue samples. Specifically in invasive MCF10DCIS.com cells they showed that overcrowding or over-confluence leads to a decrease in cell volume and intracellular calcium levels. This condition also triggers the trafficking of TRPV4 channels from intracellular stores (nucleus and potentially endosomes), to the plasma membrane (PM). When these over-confluent cells are incubated with a TRPV4 activator, there is an acute and substantial influx of calcium, attesting the fact that there are high number of TRPV4 channels present on the PM. Long-term incubation of these over-confluent cells with the TRPV4 activator results in the internalization of the PM-localized TRPV4 channels.

      In contrast, cells plated at lower confluence primarily have TRPV4 channels localized in the nucleus and cytosol. Long-term incubation of these cells at lower confluence with a TRPV4 inhibitor leads to the relocation of TRPV4 channels to the plasma membrane from intracellular stores and a subsequent reduction in cell volume. Similarly, incubation of these cells at low confluence with PEG 3000 (a hyperosmotic agent) promotes the trafficking of TRPV4 channels from intracellular stores to the plasma membrane.

      Strengths:

      The study is elegantly designed and the findings are novel. Their findings on this mechanotransduction pathway involving TRPV4 channels, calcium homeostasis, cell volume plasticity, motility and invasiveness will have a great impact in the cancer field and potentially applicable to other fields as well. Experiments are well-planned and executed, and the data is convincing. Authors investigated TRVP4 dynamics using multiple different strategies- overcrowding, hyperosmotic stress, pharmacological and genetic means, and showed a good correlation between different phenomena.

      All of my previous concerns have been addressed. The quality of the manuscript has improved significantly.

      We are deeply grateful to the reviewer for their thoughtful assessment and invaluable suggestions, including crucial additional experiments and more effective presentation and description of our findings, which have greatly enhanced the quality of our manuscript.

      Reviewer #2 (Public review):

      Summary:

      The metastasis poses a significant challenge in cancer treatment. During the transition from non-invasive cells to invasive metastasis cells, cancer cells usually experience mechanical stress due to a crowded cellular environment. The molecular mechanisms underlying mechanical signaling during this transition remain largely elusive. In this work, the authors utilize an in vitro cell culture system and advanced imaging techniques to investigate how non-invasive and invasive cells respond to cell crowding, respectively.

      The results clearly show that pre-malignant cells exhibit a more pronounced reduction in cell volume and are more prone to spreading compared to non-invasive cells. Furthermore, the study identifies that TRPV4, a calcium channel, relocates to the plasma membrane both in vitro and in vivo (patient's samples). Activation and inhibition of TRPV4 channel can modulate the cell volume and cell mobility. These results unveil a novel mechanism of mechanical sensing in cancer cells, potentially offering new avenues for therapeutic intervention targeting cancer metastasis by modulating TRPV4 activity. This is a very comprehensive study, and the data presented in the paper are clear and convincing. The study represents a very important advance in our understanding of the mechanical biology of cancer.

      We sincerely appreciate the reviewer’s insightful evaluation and invaluable recommendations for key additional experiments, which have significantly strengthened our manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study by Jena et al. addresses important questions on the fundamental mechanisms of genetic adaptation, specifically, does adaptation proceed via changes of copy number (gene duplication and amplification "GDA") or by point mutation. While this question has been worked on (for example by Tomanek and Guet) the authors add several important aspects relating to resistance against antibiotics and they clarify the ability of Lon protease to reduce duplication formation (previous work was more indirect).

      A key finding Jena et al. present is that point mutations after significant competition displace GDA. A second one is that alternative GDA constantly arise and displace each other (see work on GDA-2 in Figure 3). Finally, the authors found epistasis between resistance alleles that was contingent on lon. Together this shows an intricate interplay of lon proteolysis for the evolution and maintenance of antibiotic resistance by gene duplication.

      Strengths:

      The study has several important strengths: (i) the work on GDA stability and competition of GDA with point mutations is a very promising area of research and the authors contribute new aspects to it, (ii) rigorous experimentation, (iii) very clearly written introduction and discussion sections. To me, the best part of the data is that deletion of lon stimulates GDA, which has not been shown with such clarity until now.

      Weaknesses:

      The minor weaknesses of the manuscript are a lack of clarity in parts of the results section (Point 1) and the methods (Point 2).

      We thank the reviewer for their comments and suggestions on our manuscript. We also appreciate the succinct summary of primary findings that the Reviewer has taken cognisance of in their assessment, in particular the association of the Lon protease with the propensity for GDAs as well as its impact on their eventual fate. We have now revised the manuscript for greater clarity as suggested by Reviewer #1.

      Reviewer #2 (Public review):

      Summary:

      In this strong study, the authors provide robust evidence for the role of proteostasis genes in the evolution of antimicrobial resistance, and moreover, for stabilizing the proteome in light of gene duplication events.

      Strengths:

      This strong study offers an important interaction between findings involving GDA, proteostasis, experimental evolution, protein evolution, and antimicrobial resistance. Overall, I found the study to be relatively well-grounded in each of these literatures, with experiments that spoke to potential concerns from each arena. For example, the literature on proteostasis and evolution is a growing one that includes organisms (even micro-organisms) of various sorts. One of my initial concerns involved whether the authors properly tested the mechanistic bases for the rule of Lon in promoting duplication events. The authors assuaged my concern with a set of assays (Figure 8).

      More broadly, the study does a nice job of demonstrating the agility of molecular evolution, with responsible explanations for the findings: gene duplications are a quick-fix, but can be out-competed relative to their mutational counterparts. Without Lon protease to keep the proteome stable, the cell allows for less stable solutions to the problem of antibiotic resistance.

      The study does what any bold and ambitious study should: it contains large claims and uses multiple sorts of evidence to test those claims.

      Weaknesses:

      While the general argument and conclusion are clear, this paper is written for a bacterial genetics audience that is familiar with the manner of bacterial experimental evolution. From the language to the visuals, the paper is written in a boutique fashion. The figures are even difficult for me - someone very familiar with proteostasis - to understand. I don't know if this is the fault of the authors or the modern culture of publishing (where figures are increasingly packed with information and hard to decipher), but I found the figures hard to follow with the captions. But let me also consider that the problem might be mine, and so I do not want to unfairly criticize the authors.

      For a generalist journal, more could be done to make this study clear, and in particular, to connect to the greater community of proteostasis researchers. I think this study needs a schematic diagram that outlines exactly what was accomplished here, at the beginning. Diagrams like this are especially important for studies like this one that offer a clear and direct set of findings, but conduct many different sorts of tests to get there. I recommend developing a visual abstract that would orient the readers to the work that has been done.

      The reviewer’s comments regarding data presentation are well-taken. Since we already had a diagrammatic model that sums up the chief findings of our study (Figure 9), we have now provided schematics in Figures 1, 3, 5 and 8 to clarify the workflow of smaller sections of the study. We hope that these diagrams provide greater clarity with regards to the experiments we have conducted.

      Next, I will make some more specific suggestions. In general, this study is well done and rigorous, but doesn't adequately address a growing literature that examines how proteostasis machinery influences molecular evolution in bacteria.

      While this paper might properly test the authors' claims about protein quality control and evolution, the paper does not engage a growing literature in this arena and is generally not very strong on the use of evolutionary theory. I recognize that this is not the aim of the paper, however, and I do not question the authors' authority on the topic. My thoughts here are less about the invocation of theory in evolution (which can be verbose and not relevant), and more about engagement with a growing literature in this very area.

      The authors mention Rodrigues 2016, but there are many other studies that should be engaged when discussing the interaction between protein quality control and evolution.

      A 2015 study demonstrated how proteostasis machinery can act as a barrier to the usage of novel genes: Bershtein, S., Serohijos, A. W., Bhattacharyya, S., Manhart, M., Choi, J. M., Mu, W., ... & Shakhnovich, E. I. (2015). Protein homeostasis imposes a barrier to functional integration of horizontally transferred genes in bacteria. PLoS genetics, 11(10), e1005612

      A 2019 study examined how Lon deletion influenced resistance mutations in DHFR specifically: Guerrero RF, Scarpino SV, Rodrigues JV, Hartl DL, Ogbunugafor CB. The proteostasis environment shapes higher-order epistasis operating on antibiotic resistance. Genetics. 2019 Jun 1;212(2):565-75.

      A 2020 study did something similar: Thompson, Samuel, et al. "Altered expression of a quality control protease in E. coli reshapes the in vivo mutational landscape of a model enzyme." Elife 9 (2020): e53476.

      And there's a new review (preprint) on this very topic that speaks directly to the various ways proteostasis shapes molecular evolution:

      Arenas, Carolina Diaz, Maristella Alvarez, Robert H. Wilson, Eugene I. Shakhnovich, C. Brandon Ogbunugafor, and C. Brandon Ogbunugafor. "Proteostasis is a master modulator of molecular evolution in bacteria."

      I am not simply attempting to list studies that should be cited, but rather, this study needs to be better situated in the contemporary discussion on how protein quality control is shaping evolution. This study adds to this list and is a unique and important contribution. However, the findings can be better summarized within the context of the current state of the field. This should be relatively easy to implement.

      We thank the reviewer for their encouraging assessment of our manuscript as well as this important critique regarding the context of other published work that relates proteostasis and molecular evolution. Indeed, this was a particularly difficult aspect for us given the different kinds of literature that were needed to make sense of our study. We have now added the references suggested by the reviewer as well as others to the manuscript. We have also added a paragraph in the discussion section (Lines 463-476) that address this aspect and hopefully fill the lacuna that the reviewer points out in this comment.

      Reviewer #3 (Public review):

      Summary:

      This paper investigates the relationship between the proteolytic stability of an antibiotic target enzyme and the evolution of antibiotic resistance via increased gene copy number. The target of the antibiotic trimethoprim is dihydrofolate reductase (DHFR). In Escherichia coli, DHFR is encoded by folA and the major proteolysis housekeeping protease is Lon (lon). In this manuscript, the authors report the results of the experimental evolution of a lon mutant strain of E. coli in response to sub-inhibitory concentrations of the antibiotic trimethoprim and then investigate the relationship between proteolytic stability of DHFR mutants and the evolution of folA gene duplication. After 25 generations of serial passaging in a fixed concentration of trimethoprim, the authors found that folA duplication events were more common during the evolution of the lon strain, than the wt strain. However, with continued passaging, some folA duplications were replaced by a single copy of folA containing a trimethoprim resistance-conferring point mutation. Interestingly, the evolution of the lon strain in the setting of increasing concentrations of trimethoprim resulted in evolved strains with different levels of DHFR expression. In particular, some strains maintained two copies of a mutant folA that encoded an unstable DHFR. In a lon+ background, this mutant folA did not express well and did not confer trimethoprim resistance. However, in the lon- background, it displayed higher expression and conferred high-level trimethoprim resistance. The authors concluded that maintenance of the gene duplication event (and the absence of Lon) compensated for the proteolytic instability of this mutant DHFR. In summary, they provide evidence that the proteolytic stability of an antibiotic target protein is an important determinant of the evolution of target gene copy number in the setting of antibiotic selection.

      Strengths:

      The major strength of this paper is identifying an example of antibiotic resistance evolution that illustrates the interplay between the proteolytic stability and copy number of an antibiotic target in the setting of antibiotic selection. If the weaknesses are addressed, then this paper will be of interest to microbiologists who study the evolution of antibiotic resistance.

      Weaknesses:

      Although the proposed mechanism is highly plausible and consistent with the data presented, the analysis of the experiments supporting the claim is incomplete and requires more rigor and reproducibility. The impact of this finding is somewhat limited given that it is a single example that occurred in a lon strain and compensatory mutations for evolved antibiotic resistance mechanisms are described. In this case, it is not clear that there is a functional difference between the evolution of copy number versus any other mechanism that meets a requirement for increased "expression demand" (e.g. promoter mutations that increase expression and protein stabilizing mutations).

      We thank the reviewer for their in-depth assessment of our work and appreciate their concerns regarding reproducibility and rigor in analysis of our data. We have now incorporated this feedback and provided necessary clarifications/corrections in the revised version of our manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Major Points:

      (1) The authors show that a deletion of lon increases the ability for GDA and they argue that this is adaptive during TMP treatment because it increases the dosage of folA (L. 129). However, the highest frequency of GDA occurred in drug-free conditions (see Figure 1C). This indicates either that GDA is selected in drug-free media and potentially selected against by certain antibiotics. It would help for the authors to discuss this possibility more clearly.

      We thank the reviewer for this astute observation. It is indeed striking that the GDA mutation (i.e. the GDA-2 mutation) selected in a lon-deficient background does not come up in presence of antibiotics. To probe this further, we have now measured the relative fitness of a representative population of lon-knockout from short-term evolution in drug-free LB (population #3) that harbours GDA-2 against its ancestor (marked with DlacZ). These competition experiments were performed in LB (in which GDA-2 emerged spontaneously), as well as in LB supplemented with antibiotics at the concentrations used during the short term evolution.

      Values of relative fitness, w (mean ± SD from 3 measurements), are provided below:

      LB: 1.4 ± 0.2

      LB + Trimethoprim: 1.6 ± 0.2

      LB + Spectinomycin: 0.9 ± 0.2

      LB + Erythromycin: 1.3 ± 0.3

      LB + Nalidixic acid: 1.5 ± 0.2

      LB + Rifampicin: 1.4 ± 0.2

      These data show an increase in relative fitness in drug-free LB as would be expected. Interestingly, we also observe an increase in relative fitness in LB supplemented with antibiotics, except spectinomycin. This result supports the idea that GDA-2 is a “media adaptation” and provides a general fitness advantage to the lon knockout. However, as the reviewer pointed out, we should expect to see GDA-2 emerge spontaneously in antibiotic-supplemented media as well. We think that this does not happen as the fitness advantage of drug-specific mutations (GDAs or point mutations) far exceed the advantage of a media adaptation GDA. As a result, we only see the specific mutations that provide high benefit against the antibiotic at least over the relatively short duration of 20-25 generations. It is noteworthy the GDA-2 mutation does come up in LTMPR1 when it is passaged over >200 generations in drug-free media, but shows fluctuating frequency over time. We expect, therefore, that given enough time we may detect the GDA-2 mutations even in antibiotic-supplemented media.  

      We note, however, that a major caveat in the above fitness calculations is that we cannot be sure that the competing ancestor has no GDA-2 mutations during the course of the experiment. Thus, the above fitness values are only indicative and not definitive. We have therefore not included these data in the revised manuscript.

      (2) It is unclear if the isolates WTMPR1 - 5 and LTMPR1 - 5 were pure clones. The authors write in L.488 "Colonies were randomly picked, cultured overnight in drug-free LB and frozen in 50% glycerol at -80C until further use." And in L. 492 "For long-term evolution, trimethoprim-resistant isolates LTMPR1, WTMPR4 and WTMPR5 were first revived from frozen stocks in drug-free LB overnight." From these descriptions, it is possible that the isolates contained a fraction of cells of other genotypes since colonies are often formed by more than one cell and thus, unless pure-streaked, a subpopulation is present and would in drug-free media be maintained. The possibility of pre-existing subpopulations is important for all statements relating to "reversal".

      This is indeed a valid concern. As far as we can tell all our initial isolates (i.e. WTMPR1-5 and LTMPR1-5) are pure clones at least as far as SNPs are concerned. This is based on whole genome sequencing data that we have reported earlier in Patel and Matange, eLife (2021), where we described the evolution and isolation of WTMPR1-5 and the present study for LTMPR1-5. All SNPs detected were present at a frequency of 100%. For clones with GDAs, however, there is no way to eliminate a sub-population that has a lower or higher gene copy number than average from an isolate. This is because of the inherent instability of GDAs that will inevitably result in heterogeneous gene copy number during standard growth. In this sense, there is most certainly a possibility of a pre-existing subpopulation within each of the clones that may have reversed the GDA. Indeed, we believe that it is this inherent instability that contributes to their rapid loss during growth in drug-free media.

      Minor Points:

      (1) L. 406. "allowing accumulation of IS transposases in E. coli" Please specify that it is the accumulation of transposase proteins (and not genes).

      We have made this change.

      (2) L. 221 typo. Known "to" stabilize.

      We have made this change.

      Reviewer #2 (Recommendations for the authors):

      Most of my suggestions are found in the public review. I believe this to be a strong study, and some slight fixes can solidify its presence in the literature.

      We have attempted to address the two main critiques by Reviewer 2. To simplify the understanding of our data, we have provided small schematics at various points in the paper to clarify the experimental pipelines used by us. We have also provided additional discussion situating our study in the emerging area of proteostasis and molecular evolution. We hope that our revisions have addressed these lacunae in our manuscript.

      Reviewer #3 (Recommendations for the authors):

      Major Points:

      (1) The manuscript is generally a bit difficult to follow. The writing is overly complicated and lacks clarity at times. It should be simplified and improved.

      We have made several revisions to the text, as well as provided schematics in some of our figures which hopefully make our paper easier to understand.

      (2) I cannot find the raw variant summary data for the lon strain evolution experiment in trimethoprim (after 25 generations). Were there any other mutations identified? If not, this should be explicitly stated in the text and the variant output summary from sequencing included as supplemental data.

      We apologise for this oversight. We have now provided these data as Table 1.

      (3) What is the trimethoprim IC50 of the starting (pre-evolution) strains (i.e. wt and lon)? I can't find this information, but it is critical to interpretation.

      We had reported these values earlier in Matange N., J Bact (2020). Wild type and lon-knockout have similar MIC values for trimethoprim, though the lon mutant shows a higher IC50 value. We have now mentioned this in the results section (Line 100-101) and also provided the reference for these data.

      (4) What was the average depth of coverage for WGS? This information is necessary to assess the quality of the variant calling, especially for the population WGS.

      All genome sequencing data has a coverage at least 100x. We have added this detail to the methods section (Line 580-581).

      (5) Five replicate evolution experiments (25 generations, or 7x 10% daily batch transfers) were performed in trimethoprim for the wt and lon strains. Duplication of the folA locus occurred in 1/5 and 4/5 experiments, respectively. It is not entirely clear what type of sampling was actually done to arrive at these numbers (this needs to be stated more clearly), but presumably 1 random colony was chosen at the end of the passaging protocol for each replicate. Based on this result, the authors conclude that folA duplication occurred more frequently in the lon strain, however, this is not rigorously supported by a statistical evaluation. With N=5, one cannot rigorously conclude that a 20% frequency and 80% frequency are significantly different. Furthermore, it's not entirely clear what the mechanism of resistance is for these strains. For example, in one colony sequenced (LTMPR5), it appears no known resistance mechanism (or mutations?) were identified, and yet the IC50 = 900 nM, which is also similar to other strains.

      Indeed, we agree with the reviewer that we don’t have the statistical power to rigorously make this claim. However, since the lon-knockout showed us a greater frequency of GDA across 3 different environments we are fairly confident that loss of lon enhances the overall frequency for GDA mutations. This idea in also supported by a number of previous papers that related GDAs and IS-element transpositions with Lon, viz. Nicoloff et al, Antimicrob Agent Chemother (2007), Derbyshire et al. PNAS (1990), Derbyshire and Grindley, Mol Microbiol (1996). We have therefore not provided further justification in the revised manuscript.

      We had indeed sampled a random isolate from each of the 5 populations and have added a schematic to figure 1 that provides greater clarity.

      Having relooked at the sequencing data for LTMPR1-5 isolates (Table 1), we realised that both LTMPR4 and LTMPR5 harbour mutations in the pitA gene. We had missed this locus during the previous iteration of this manuscript and misidentified an mgrB mutations in LTMPR4. PitA codes for a metal-phosphate symporter. We have observed mutations in pitA in earlier evolution experiments with trimethoprim as well (Vinchhi and Yelpure et al. mBio 2023). Interestingly, in LTMPR5 there was a deletion of pitA, along with 17 other contiguous genes mediated by IS5. To test if loss of pitA is beneficial in trimethoprim, we tested the ability of a pitA knockout to grow on trimethoprim supplemented plates. Indeed, loss of pitA conferred a growth advantage to E. coli on trimethoprim, comparable to loss of mgrB, indicating that the mechanism of resistance of LTMPR5 may be due to loss of pitA. We have added these data to the Supplementary Figure 1 of the revised manuscript and provided a brief description in Lines 103-108. How pitA deficiency confers trimethoprim resistance is yet to be investigated. The mechanism is likely to be by activating some intrinsic resistance mechanism as loss of pitA also conferred a fitness benefit against other antibiotics. This work is currently underway in our lab and hence we do not provide any further mechanism in the present manuscript.

      (6) Although measurement error/variance is reported, statistical tests were not performed for any of the experiments. This is critical to support the rigor and reproducibility of the conclusions.

      We have added statistical testing wherever appropriate to the revised manuscript.

      (7) Lines 150-155 and Figure 2E: Putting a wt copy of mgrB back into the WTMPR4 and LTMPR1 strains would be a better experiment to dissect out the role of mgrB versus the other gene duplications in these strains on fitness. Without this experiment, you cannot confidently attribute the fitness costs of these strains to the inactivation of mgrB alone.

      We agree with the reviewer that our claim was based on a correlation alone. We have now added some new data to confirm our model (Figure 2 E, F). The costs of mgrB mutations come from hyperactivation of PhoQP. In earlier work we have shown that the costs (and benefit) of mgrB mutations can be abrogated in media supplemented with Mg<sup>2+</sup>, which turns off the PhoQ receptor (Vinchhi and Yelpure et al. mBio, 2023). We use this strategy to show that like the mgrB-knockout, the costs of WTMPR4, WTMPR5 and LTMPR1 can be almost completely alleviated by adding Mg<sup>2+</sup> to growth media. These results confirm that the source of fitness cost of TMP-resistant bacteria was not linked to GDA mutations, but to hyperactivation of PhoQP.

      (8) Figure 3F and G: Does the top symbol refer to the starting strain for the 'long-term' evolution? If so, why does WTMPR4 not have the mgrB mutation (it does in Figure 1)? Based on your prior findings, it seems odd that this strain would evolve an mgrB loss of function mutation in the absence of trimethoprim exposure.

      We thank the reviewer for pointing this error out. We have made the correction in the revised manuscript.

      (9) Figure 6A: If the marker is neutral, it should be maintained at 0.1% throughout the 'neutrality' experiment. In both plots, the proportion of some marked strains goes up and then down. This suggests either ongoing evolution (these competitions take place over 105 generations), or noisy data. I suspect these data are just inherently noisy. I don't see error bars in the plots. Were these experiments ever replicated? It seems that replicating the experiments might be able to separate out noise from signal and perhaps clarify this point and better confirm the hypothesis that the point mutants are more fit.

      These experiments were indeed noisy and the apparent enrichment is most likely a measurement error rather than a real change in frequency of competing genotypes. We have now provided individual traces for each of the competing pairs with mean and SD from triplicate observations at each time point.

      (10) Figure 6A: Please indicate which plotted line refers to which 'point mutant' using different colors. These mutants have different trimethoprim IC50s and doubling times, so it would be nice to be able to connect each mutant to its specific data plot.

      We thank the reviewer for this suggestion. We have now colour coded the different strain combinations as suggested.

      (11) Lines 284-285: I disagree that the IC50s are similar. The C-35T mutant has IC50 that is 2x that of LTMPR1. Perhaps more telling is that, compared to the folA duplication strain from the same time-point (which also carries the rpoS mutation), all of the point mutants have greater IC50s (~2x greater). 2-fold changes in IC50 are significant. It would seem that the point-mutants were likely not competing against LTMPR1 at the time they arose, so LTMPR1 might not be the best comparator if it was extinguished from the population early. I'm assuming this is why you chose a contemporary isolate (and, also, rpoS mutant) for the competition experiments. This should be explained more clearly.

      We thank the reviewer for this comment. Indeed, the reviewer is correct about the rationale behind the use of a contemporary isolate and we have provided this clarification in the revised manuscript (Line 287-289). Also, the reviewer is correct in pointing out that a two-fold difference in IC50 cannot be ignored. However, the key point here would be in assessing the differences in growth rates at the antibiotic concentration used during competition (i.e. 300 ng/mL). We are unable to see a direct correlation between the growth rates and enrichment in culture indicating that the observed trends are unlikely to be driven by ‘level of resistance’ alone. We have added these clarifications to the modified manuscript (Lines 299-301)

      Minor Points:

      (1) Line 13: Add a comma before 'Escherichia'

      We have made this change.

      (2) Line 14: Consider changing "mutations...were beneficial in trimethoprim" to "mutations...were beneficial under trimethoprim exposure"

      We have made this change.

      (3) Line 32: Is gene dosage really only "relative to the genome"? Is it not simply its relative copy number generally? Consider changing to "The dosage of a gene, or its relative copy number, can impact its level of expression..."

      We have made this change.

      (4) Line 38: The idea that GDAs are 1000x more frequent than point mutations seems an overgeneralization.

      We agree with the reviewer and have softened our claim.

      (5) Line 50: The term "hard-wired" is confusing. Please be more specific.

      We have modified this statement to “…GDAs are less stable than point mutations….”.

      (6) Line 52-53: What do you mean by "there is also evidence to suggest that...more common in bacteria than appreciated"? Are you implying the field is naïve to this fact? If there is "evidence" of this, then a reference should be included. However, it's not clear why this is important to state in the article. I would consider simply removing this sentence. Less is more in this case.

      We have removed this statement.

      (7) Lines 59-60: Enzymes catalyze reactions. Please also state the substrates for DHFR. Consider, "It catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate, and important co-factor for..."

      We have made this change.

      (8) Line 72: Please change to, "In E. coli, DHFR is encoded by folA." You do not need to state this is a gene, as it is implicit with lowercase italics.

      We have made this change.

      (9) Lines 72-86: This paragraph is a bit confusing to read, as it has several different ideas in it. Consider breaking it into two paragraphs at Line 80, "In this study,...". The first paragraph could just review the trimethoprim resistance mechanisms in E. coli and so would change the first sentence (Line 72) to reflect this topic: "In E. coli, DHFR is encoded by folA and several different resistance mechanisms have been characterized." Then, just describe each mechanism in turn. Also, by "hot spots" it would seem you are referring to "point mutations" in the gene that alter the protein sequence and cluster onto the 3D protein structure when mapped? Please be more specific with this sentence for clarity.

      We have made these changes.

      (10) Lines 92-93: Please also state the MIC value of the strain to specifically define "sub-MIC". Alternatively, you could also state the fraction MIC (e.g. 0.1 x MIC).

      We have modified this statement to “…in 300 ng/mL of trimethoprim (corresponding to ~0.3 x MIC) for 25 generations.”

      (11) Lines 95-96. Remove, "These sequencing have been reported earlier, ...(2021)". You just need to cite the reference.

      We have made this change.

      (12) Line 96: Remove the word "gene".

      We have made this change.

      (13) Figure 1 and Figure 4C: The color scheme is tough for those with the most common type of color blindness. Red/green color deficiency causes a lot of difficulty with Red/gray, red/green, green/gray. Consider changing.

      We thank the reviewer for bringing this to our notice. We have modified the colour scheme throughout the manuscript.

      (14) Figure 1: Was there a trimethoprim resistance mechanism identified for LTMPR5?

      As stated by us in response to major comment #7, LTMPR5’s resistance seems to come from a novel mechanism involving loss of the pitA gene.

      (15) Line 349-351: Please briefly define "lower proteolytic stability" as a relative susceptibility to proteolytic degradation and make sure it is clear to the reader that this causes less DHFR. This needs to be clarified because it is confusing how a mutation that causes DHFR proteolytic instability would lead to an increase in trimethoprim IC50. So, you also need to mention that some mutations can cause both increased trimethoprim inhibition and lower proteolytic stability simultaneously. It seems the Trp30Arg mutation is an example of this, as this mutation is associated with a net increase in trimethoprim resistance despite the competing effects of the mutation on enzyme inhibition and DHFR levels.

      We thank the reviewer for this comment and agree that the text in the original manuscript did not fully convey the message. We have made modifications to this section (Lines 359-363) in the revised manuscript in agreement with the reviewer’s suggestions.

    1. Author response:

      We would like to sincerely thank the editors and reviewers for their thoughtful comments, which provide valuable insights, and will help us enhance the overall quality of our manuscript. We will address all comments comprehensively in our revised submission.

      It appears to us that two major concerns were raised by the reviewers and highlighted by the editor, regarding statistical methodology and manuscript readability.

      As a provisional response, we would like to summarize our approach for addressing them in our revised manuscript:

      (1) Statistical Methodology

      Two specific concerns were raised regarding the statistical methods:

      First, regarding FDR versus FWE correction in our voxelwise (searchlight) analyses. We recognize that our methods section might have created some confusion on this point. While we stated that "all analyses are FDR-corrected unless noted otherwise", this was meant to refer only to ROI-based analyses. For all voxel-wise analyses, including searchlight RSA analyses, we actually employed FWE correction. This was briefly mentioned in the section on univariate analyses. However, we did not emphasize this information in the searchlight section of the methods, and it is to our understanding that this might have created some confusion.

      To clarify: we used (1) FWE correction for all voxel-based analyses and (2) FDR correction for ROI-based analyses (which could thus be considered exploratory). However, to fully address the concerns raised by the reviewers, and avoid potential confusion for the future readers, we will use exclusively FWE correction methods in the revised version of the manuscript. If some category of ROI-based analysis only yields not-significant results when corrected with FWE, we plan to report the uncorrected p-values, and pinpoint the exploratory nature of these results.

      Second, regarding the alpha threshold adjustment for searchlight analyses involving multiple comparisons within the same experimental phase: We acknowledge this concern and will address it thoroughly in our revision.

      (2) Manuscript Readability

      We agree that readability should be improved despite the paradigm's inherent complexity. In our revision, we will:

      - Replace non-essential technical terminology with clearer descriptions

      - Improve writing quality in particularly dense or conceptually complex sections

      - Enhance the overall structure to better guide readers through our methods and findings

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The paper is well-organized, with clearly defined sections. The systematic review methodology is thorough, with clear eligibility criteria, search strategy, and data collection methods. The risk of bias assessment is also detailed and useful for evaluating the strength of evidence. The involvement of a patient panel is noticeable and positive, ensuring the research addresses real-world concerns and aligning scientific inquiry with patient perspectives. The statistical approach used for analyzing seems appropriate.

      The authors are encouraged to take into account the following points:

      As the authors have acknowledged, there is a high risk of bias across all included studies, particularly in randomization, selective outcome reporting, and incomplete data, which could be highlighted more explicitly in the paper's discussion section, particularly the potential implications for the generalizability of the results. The authors can also suggest mitigation strategies for future studies (e.g., better randomization, blinding, reporting standards, etc.).

      We agree that it is important to highlight mitigation strategies that will allow preclinical researchers to more transparently report future studies. We have directed readers to ensure reporting in alignment with the ARRIVE 2.0 guidelines for further details on reporting of preclinical studies, as follows in paragraph two of the Discussion, “Future studies should carefully incorporate all elements of the ARRIVE 2.0 guidelines to help ensure that all results are transparently reported and improve confidence in the findings.(41)”

      None of the studies include female animals, and the use of young adult animals (instead of aged models) limits the applicability of the findings to the human stroke population, where stroke incidence is higher in older adults and perhaps the gender issue must be included to reflect the translational aspects. The authors can add to the paper's discussion section that perhaps future preclinical studies should include both sexes and aged animals to align better with the clinical population and improve the translation of findings. Another point is the comorbidity. Comorbidities such as diabetes and hypertension are prevalent in stroke patients. How can these be considered in preclinical designs? The authors should emphasize the importance of future research incorporating such comorbid models to enhance clinical relevance. None of the studies had independent replication of their findings, which is a key limitation, especially for a field with high translational expectations. This should be highlighted as a critical next step for validating the efficacy of CCR5 antagonists.

      We agree that these are important evidence gaps to address. Although we highlighted these gaps in paragraph 3 of the Discussion, we have now added a more explicit call to action for researchers to address these gaps at the end of the relevant paragraph as follows, “Future preclinical research should aim to address these evidence gaps to further increase the clinical relevance and comprehensiveness of evidence for CCR5 antagonists in stroke.”

      The studies accessed limited cognitive outcomes (only one reported a cognitive outcome). Given the importance of cognitive recovery post-stroke, this is a gap to highlight in the discussion. Future studies should include more diverse and comprehensive behavioral assessments, including cognitive and emotional domains, to fully evaluate the therapeutic potential.

      We have expanded on this important point in paragraph four of the Discussion, which explores the alignment of the preclinical literature to the CAMAROS trial, as follows, “Finally, clinically relevant secondary outcomes in the CAMAROS trial, such as cognitive and emotional domains as measured by the Montreal Cognitive Assessment (MoCA) and Stroke Aphasia Depression Questionnaire (SADQ) were not modelled in the preclinical literature. Although one study included a cognitive outcome, the other treatment parameters of this study were not aligned to the CAMAROS trial. Future preclinical studies should assess a more diverse and comprehensive battery of clinically relevant behavioural tasks, which could be based on the range of outcomes employed in the CAMAROS trial, or those found in the SRRR recommendations.(9)”

      This addition highlights the lack of supporting preclinical evidence for cognitive recovery post-stroke. We also offer recommendations on discrete ways to address this gap in future preclinical studies by taking inspiration from the outcomes used in CAMAROS as well as the SRRR guidelines used throughout our assessment of the CCR5 literature.  

      The timing of CCR5 administration across studies varies widely (from pre-stroke to several days post-stroke) complicating the interpretation and comparison of results. The authors are encouraged to add that future preclinical studies could focus on narrowing the therapeutic window to more clinically relevant time points.

      We agree with the review and feel that this recommendation is currently captured in paragraph three of our Discussion -  “However, demonstration of efficacy under a wider range of conditions, such as in aged animals, females, animals with stroke-related comorbidities, more clinically relevant timing of dose administrations, or in conjunction with rehabilitative therapies are necessary to provide further confidence in these findings.” As mentioned above, we added a new sentence to the end of this paragraph to make it more explicit that these are gaps that should be addressed by future preclinical research. “Future preclinical research should aim to address these evidence gaps to further increase the clinical relevance and comprehensiveness of evidence for CCR5 antagonists in stroke.” We also added the word “clinically” to the original sentence mentioned above to more explicitly align with the reviewer’s recommendation.

      The paper identifies some alignment with clinical trials, but there are several gaps, too, particularly in the types of behavioral tests used in preclinical studies versus those in clinical trials. If this systematic review and meta-analysis aim to formulate a set of recommendations for future studies, it is important that the authors also propose specific preclinical behavioral tasks that could better align with clinical measures used in trials, like functional assessments related to human stroke outcomes.

      As mentioned above, we added a sentence to Discussion paragraph four, the comparison to the CAMAROS trial, that provides recommendations as to the behavioural tasks that would be useful to employ in future studies. Namely, “Future preclinical studies should assess a more diverse and comprehensive battery of clinically relevant behavioural tasks, which could be modelled after the range of outcomes employed in the CAMAROS trial, or those found in the SRRR recommendations.(9)” The SRRR recommendations that we reference here provide discrete consensus recommendations for interested readers on behavioural task selection, as well as priority rankings based on rodent species, to better align with clinical measures used in trials.

      The discussion needs some revisions. It could benefit from an expanded explanation of CCR5's mechanistic role in neuroplasticity and stroke recovery. For instance, linking CCR5 antagonism more closely with molecular pathways related to synaptic repair and remyelination would enhance the quality of the discussion and understanding of the drugs' potential.

      We have provided a synthesis of CCR5’s proposed mechanistic roles in the Supplementary Materials, Figure S1 (for a summary pathway diagram), and Table S3 (for a list of potential mechanistic pathways and supporting evidence presented in each paper). Given our focus on study quality and alignment with translational recommendations, we felt that it was more appropriate to not focus on mechanistic elements in the Discussion.  Indeed, the appraisal of the quality of support for each potential mechanism was beyond the scope of our present analysis.  

      While the tool is used to assess the risk of bias, it might be helpful to integrate a broader framework for evaluating the quality of included studies. This could include sample size justifications, statistical power analysis, or the use of pre-registration in animal studies. These elements can also introduce bias or minimize those if in place.

      We agree these are important and the SYRCLE risk of bias tool we used addresses many major domains of bias mentioned by the reviewer (e.g., selection bias, performance bias, detection bias, attrition bias, reporting bias). For example, the SYRCLE item of  “selective outcome reporting” domain address pre-registration by asking “Was the study protocol available and were all of the study’s pre-specified primary and secondary outcomes reported in the current manuscript?”. The SYRCLE Risk of Bias tool represents the current state of the art for risk of bias assessment in preclinical systematic reviews and aligns well with similar tools used clinically, such as the Cochrane Risk of Bias tool. Although the tool does not assess statistical power, we would note that this is considered to be a separate issue from internal validity, and it is the reason this is not even assessed by the Cochrane risk of bias tool used in clinical systematic reviews. 

      Please also highlight confounding factors that might have influenced the results in the included studies, such as variation in stroke models, dosing regimens, or behavioral assessment methods.

      We agree that exploring potential confounding factors is an important element of the assessment. We highlight potential confounding factors in several parts of the Results and Discussion, such as in our Synthesis of Behavioural Outcomes section, “…equivalent infarct volumes were not demonstrated between the treated and control groups in this cohort, which could potentially lead to confounding effects.” and Comprehensiveness of Preclinical Evidence section, “All studies tested both behavioral and histological outcomes and demonstrated neuroprotective effects, but most studies failed to measure and control post-stroke temperature, which could potentially confound the observed neuroprotection (Table S4).(32) Most histological measurements were also assessed at <72 hours, which could confound the observed neuroprotective effects if cell death was merely delayed.(32) For CCR5 antagonists as a post-stroke recovery-inducing treatment, one experiment assessed the effects of initiating CCR5 administration in a similar post-stroke phase as the CAMAROS trial. This experiment (Joy et al.)(6) did not demonstrate that each treatment group had equivalent baseline stroke volumes, which may potentially confound observed behavioral effects.”

      Although there are many factors that could potentially confound the observed results, we believe that we have addressed some of the most prominent examples that are known in the preclinical stroke literature. We expanded our statement in the final sentence of the Results to highlight this, “Overall, our assessments highlight a variety of knowledge gaps, potential confounding factors, and areas of misalignment between the preclinical evidence and clinical trial parameters that could be improved with further preclinical experimentation.

      There is some discussion of the meta-analysis' limitations due to the few studies, but this point could be more thoroughly addressed. Please consider including a more critical discussion of the limitations of pooling data from heterogeneous study designs, stroke models, and outcome measures. What can this lead to? Is it reliable to do so, or does it lack scientific rigor? The authors are encouraged to formulate a balanced discussion adding, positive and negative aspects.

      We appreciate the reviewer’s insightful comment regarding the limitations related to pooling data from heterogeneous study designs, stroke models, and outcome measures. We have added to the original limitations described in the first paragraph of our Discussion with additional text to provide a better balance about the potential risks and benefits of the meta-analysis strategy that we undertook in the present study.

      “Pooling data across heterogenous experimental designs, animal/stroke models, and treatment parameters, as we have done with the infarct volume analysis in the present study, can introduce variability that increases the risk of overestimating or underestimating the true effect of the intervention.(38) Treatment effects observed across model systems and therapeutic compounds may represent different biological mechanisms. Despite this potential limitation, meta-analysis can provide valuable insights, especially in preclinical settings where the sample sizes of individual studies may be too small to detect significant effects on their own. In these cases, pooling data across studies can help identify overarching estimates of benefits and harm, highlight subgroups of interest, and help guide areas of future research. As described in the results above, we attempted to mitigate the risks of inappropriate data pooling through careful investigation of heterogeneity, subgroup analyses, and differentiation between outcomes where we felt that meta-analytic pooling was (infarct volume) and was not (behavioural outcomes) appropriate. Overall, we believe that our results indicate that further investigation is warranted to determine the optimal timing of administration and behavioral domains under which CCR5 antagonists exhibit the strongest post-stroke neuroprotective and recovery-inducing effects.”

      The conclusion should more explicitly acknowledge that while CCR5 antagonists show potential, the findings are still preliminary due to the limitations in the preclinical studies (high bias risk, lack of diverse animal models). Overall, the conclusion can end with a call for rigorous, well-controlled, and replicated studies with improved alignment to clinical populations and trials to show that the conclusion remains inconclusive, considering what has been analyzed here.

      We modified our concluding paragraph to highlight that the current evidence should be considered preliminary, as follows, “In conclusion, CCR5 antagonists show promise in preclinical studies for stroke neuroprotection, corresponding reduction in impairment, as well as improved functional recovery related to neural repair in the late sub-acute/early chronic phase. However, high risk of bias and the limited (or no) evidence in clinically relevant domains underscore the need for more rigorous and transparent preclinical research to further strengthen the current preliminary evidence available in the literature.”

      Reviewer #2 (Public review):

      Summary:

      This is an interesting, timely, and high-quality study on the potential neuroprotective capabilities of C-C chemokine receptor type 5 (CCR5) antagonists in ischemic stroke. The focus is on preclinical investigations.

      Strengths:

      The results are timely and interesting. An outstanding feature is that stroke patient representatives have directly participated in the work. Although this is often called for, it is hardly realized in research practice, so the work goes beyond established standards.

      The included studies were assessed regarding the therapeutic impact and their adherence to current quality assurance guidelines such as STAIR and SRRR, another important feature of this work. While overall results were promising, there were some shortcomings regarding guideline adherence.

      The paper is very well written and concise yet provides much highly useful information. It also has very good illustrations and extremely detailed and transparent supplements.

      Weaknesses:

      Although the paper is of very high quality, a couple of items that may require the authors' attention to increase the impact of this exciting work further. Specifically:

      Major aspects:

      (1) I hope I did not miss that (apologies if I did), but when exactly was the search conducted? Is it possible to screen the recent literature (maybe up to 12/2024) to see whether any additional studies were published?

      We added the following statements to the “Information sources and search strategy” section of Materials and Methods to clarify the timing and intention of our search strategy, “The search was conducted October 25, 2022, to align with the listed launch date of the CAMAROS trial (September 15, 2022). Our intention in doing so was to collate and assess all preclinical evidence that could have feasibly informed the clinical trial. We sought to assess the comprehensiveness of evidence and readiness for translation of CCR5 antagonist drugs at the time of their actual translation into human clinical trials, as well as the alignment of the CAMAROS trial design to the existing preclinical evidence base.”

      Although we agree that an update of the search provides valuable information for the field, we believe that the studies entering the literature after the launch of the CAMAROS trial fill a different conceptual niche than those prior to trial launch (since newer preclinical studies explicitly did not inform decisions to move to clinical trials or clinical trial design). It is our view that newer studies should be assessed from a lens of how effectively they close knowledge gaps that were present at trial launch and emulate the conditions of clinical trial populations and design parameters (which represent the de facto most “clinically relevant” conditions). Such an analysis would require a different approach that is outside the scope and aims of the present study. The present study provides an assessment of the preclinical literature up to the date of the translation of CCR5 antagonist drugs into human clinical trials (via the CAMAROS trial), which we believe will serve as a valuable prospective benchmark for evaluating the predictiveness of preclinical evidence after the results of the CAMAROS trial emerge.

      (2) Please clearly define the difference between "study" and "experiment," as this is not entirely clear. Is an "experiment" a distinct investigation within a particular publication (=study) that can describe more than one such "experiment"? Thanks for clarifying.

      We have now added definitions for “studies” and “experiments” immediately after the first time they are mentioned in paragraph one of the Study Selection section of Results, as follows: “Herein, “studies” refer to the published articles as a unit, while “experiments” refer to distinct investigations within each published article used to test various hypotheses (i.e., a subunit of “studies” comprised of a select cohort of animals).”

      (3) Is there an opportunity to conduct a correlation analysis between the quality of a study (for instance, after transforming the ROB assessment into a kind of score) and reported effect sizes for particular experiments or studies? This might be highly interesting.

      This is an interesting suggestion, which under different circumstances could provide insights into potential associations between study quality and effect size, as have been observed in the literature (e.g., Macleod et al., 2008; PMID:18635842). However, we are unable to assess this relationship in the present dataset as all studies were scored as “high risk of bias”, meaning that there was no variability in terms of observed study quality.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      Minor aspects:

      (1) The scope of the work is perfectly in line with very recent STAIR recommendations, which strongly suggest assessing potential interventions that may augment impact and improve outcomes in recanalization procedures (Wechsler et al., doi: 10.1161/STROKEAHA.123.044279; PMID 37886850). The authors may to discuss their work in light of these recent recommendations.

      We thank the reviewer for highlighting the more recent STAIR recommendation document, as well as its focus on assessing interventions in conjunction with recanalization procedures. An item related to the importance of combining novel interventions with established recanalization procedures was included as part of Table S4 but was not highlighted in the main text. We have added to the final paragraph of the Results section “Comprehensiveness of preclinical evidence” to highlight that no studies tested CCR5 antagonist drugs in conjunction with recanalization procedures as follows, “…no studies assessed behavioural effects on upper extremity skilled reaching / grasping or potential interactions of CCR5 antagonists with rehabilitative therapies or established recanalization procedures (Table S4).(35–38)” The Weschler reference provided by the reviewer has now been cited as well.

      (2) The authors may wish to consider the term "cerebroprotective" rather than "neuroprotective" unless neurons are the only cells to which a respective statement applies.

      We agree that “cerebroprotective” is the more appropriate term and have thus substituted it wherever we previously used “neuroprotective”.

      (3) The paper features a mixture between American (e.g.," hemorrhagic") and British English (e.g., "favours"). Although this is not untypical for Canadian English, deciding on one or the other may be an option.

      Given eLife’s basis in the UK, we have modified the language used throughout to be consistent with British English style.

  2. Feb 2025
    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      […] Weaknesses:

      Unfortunately, the revised manuscript does not show significant improvement. While the identification of the receptors is highly convincing, important issues about the biological relevance remain unaddressed. First, the main point I raised about the first version of this article is that the redundancy and/or specificity of the two receptors should be clarified, even though I understand that it cannot be deeply investigated here. I believe that this point, shared by all reviewers, is highly relevant for the scope of this work. In this revised version, it is still unclear how to reconcile gain and loss-of-function experiments and the different expression profiles of the receptors. Second, the newly added explanations and pieces of discussion provided about the mild in vivo phenotypes of early pupation upon Cad96ca or Fgfr1 knock-out do not clarify the issue but instead put emphasis on methodological issues. Indeed, it is not clear whether the mild phenotypes reflect the biological role of Cad96ca and Fgfr1, or the redundancy of these two RTKs (and/or others), or some issue with the knock-out strategy (partial efficiency, mosaicism...). Finally, parts of the updated discussion and the modifications to the figures are confusing.

      Thank you for asking the questions. We performed additional experiments, including editing Met1 individually (single knockout), Cad96ca and Fgfr1 together (double knockout), and Met1, Cad96ca and Fgfr1 together (triple knockout) using CRISPR/Cas9. The results showed that single mutation of Cad96ca or Fgfr1 caused precocious pupation, respectively. The double mutation of Cad96ca and Fgfr1 caused earlier pupation and death compared to the single mutation of Cad96ca or Fgfr1. The triple mutation of Met1, Cad96ca and Fgfr1 caused most serious effect on pupation time and death. These data suggested that both CAD96CA and FGFR1 can transmit JH signal to prevent pupation independently and cooperatively, and the JH exert a complete regulatory role through cell membrane receptors and intracellular receptor of JH. We increased the results in Lines 242-263 and discussion in Lines 328-375.

      CAD96CA and FGFR1 have similar functions in JH signaling, including transmitting JH signal for Kr-h1 expression, larval status maintaining, rapid intracellular calcium increase, phosphorylation of transcription factors MET1 and TAI, and high affinity to JH III. CAD96CA and FGFR1 are essential in the JH signal pathway, and the loss-of-function of each is sufficient to trigger strong effects on pupation, suggesting they can transmit JH signal individually. The difference is that CAD96CA expression has no tissue specificity, and the Fgfr1 gene is highly expressed in the midgut. A possibility is that CAD96CA and FGFR1 play roles by forming homodimer or heterodimer with each other or with other RTKs in tissues, which needs to be addressed in future studies. CAD96CA and FGFR1 transmit JH III signals in three different insect cell lines, suggesting their conserved roles in other insects.

      The mild phenotypes shown in the previous picture, Fig 4E, were counted from all the surviving individuals injected with gRNA, including mutated and non-mutated individuals. In fact, there is no phenotype of pupation on time in the mutants. According to the first round of reviewers' comments, we found that it was inappropriate to count all the surviving individuals injected with gRNA, so we replaced the picture by counting the phenotypes of all successfully mutated individuals in the second version to avoid the confusion of the phenotypes.

      Reviewer #2 (Public review):

      […] Weaknesses:

      Results of their in vivo experiments, particularly those of their loss-of-function analyses using CRISPR mutants are still preliminary, and the results rather indicate that these membrane receptors do not have any physiologically significant roles in vivo. More specifically, previous studies in lepidopteran species have clearly and repeatedly shown that precocious metamorphosis is the hallmark phenotype for all JH signaling-deficient larvae. In contrast, the present study showed that Cad96ca and Fgfr1 G0 mutants only showed slight acceleration in their pupation timing, which is not a typical phenotype one would expect from JH signaling deficiency. This is inconsistent with their working model provided in Figure 6, which indicates that these cell membrane JH receptors promote the canonical JH signaling by phosphorylating Met/Tai. If the authors argue that this slight acceleration of pupation is indeed a major JH signaling-deficient phenotype in Helicoverpa, they need to provide more data to support their claim by analyzing CRISPR mutants of other genes involved in JH signaling, such as Jhamt and Met. An alternative explanation is that there is functional redundancy between CAD96CA and FGFR1 in mediating phosphorylation of Met/Tai. This possibility can be tested by analyzing double knockouts of these two receptors. Currently, the validity of their calcium imaging analysis in Figure 5 is also questionable. When performing calcium imaging in cultured cells, it is critically important to treat all the cells at the end of each experiment with a hormone or other chemical reagents that universally induce calcium increase in each particular cell line. Without such positive control, the validity of calcium imaging data remains unknown, and readers cannot properly evaluate their results.

      Thank you for the comments. We took your suggestions and performed additional experiments, editing Met1 individually (single knockout), Cad96ca and Fgfr1 together (double knockout), and Met1, Cad96ca and Fgfr1 together (triple knockout) using CRISPR/Cas9. We increased the results in Lines 242-263 and discussion in Lines 328-375.

      About the calcium imaging in cultured cells (now Fig 6), our goal is to examine the roles of CAD96CA and FGFR1 in JH trigged cellular responses. The experiment was well designed and controlled and the results were validated. For examples: JH III induced intracellular Ca<sup>2+</sup> release and extracellular Ca<sup>2+</sup> influx in Sf9 and S2 cells, but DMSO could not. However, knockdown of Cad96ca and Fgfr1 significantly decreased JH III-induced intracellular Ca<sup>2+</sup> release and extracellular Ca<sup>2+</sup> influx (Figure 6A, B), and Kr-h1 expression (Figure 6—figure supplement 1A and B), suggesting that CAD96CA and FGFR1 had a general function to transmit JH signal in S. frugiperda and D. melanogaster.

      Wild mammalian HEK-293T cells had no significant changes in calcium ion levels under JH III induction, because there is no CAD96CA and FGFR1 in mammal cells (Figure 6C). However, when HEK-293T cells were overexpressed insect CAD96CA or FGFR1, respectively, JH III triggered rapid cytosolic Ca<sup>2+</sup> release and influx (Figure 6D).

      An increase in Ca<sup>2+</sup> was not detected in mutants of CAD96CA-M3 and CAD96CA-M4 under JH III induction (Figure 6E) and nor in FGFR1-M4 (Figure 6F). These results confirmed that CAD96CA and FGFR1 play roles in transmitting JH III signal.

      We carefully revised the description of the results and methods to help people understand the study.

      Reviewer #3 (Public review):

      […] Weaknesses:

      The authors have provided evidences that the Cad96Ca and FGF1 RTK receptors contribute to JH signaling through CRISPR/Cas9, inducing precocious metamorphosis, although not to the same extent as absence of JH. Therefore, it still remains unclear whether these RTKs are completely required for pathway activation or only necessary for high activation levels during the last larval stage. While the authors have included some additional data, the mechanism by which different RTKs function in transducing JH signaling in a tissue specific manner is still unclear. As the authors note in the discussion, it is possible that other RTKs may also play a role in facilitating the transduction of JH signaling. Lastly, the study does not yet explain how RTKs with known ligands could also bind JH and contribute to JH signaling activation. Although receptor promiscuity has been suggested as a possible mechanism, future studies could explore whether activation of RTK pathways by their known ligands induces certain levels of JH transducer phosphorylation, which, in the presence of JH, could contribute to full pathway activation without the need for direct JH-RTK binding.

      Thank you for your comments. To address your questions, we carried out additional experiments. The relevant results have been incorporated into Lines 242-263, and the corresponding discussion has been added to Lines 328-375.

      We agree with your suggestions that the future studies should resolve the questions such as how different RTKs function in transducing JH signaling in a tissue specific manner; whether other RTKs can transduce JH signal; how RTKs with known ligands could also bind JH and contribute to JH signaling activation; and how the RTK pathways are activated by their ligands.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) First, some of the new paragraphs, repeatedly used in the point-by-point answer to the reviewers, are highly confusing and need proofreading (i.e. 225-230; 320-340)

      Thank you for your advice. We have carefully revised the manuscript and the point-by-point answer to avoid repetition.

      (2) While the double knock-down or knock-out of Cad96ca and Fgfr1 is expected to provide valuable information regarding their respective functions, the authors indicated that they wouldn't provide experiments in that direction. It is not clear to me if they have tried or not. The Crispr/Cas9 approach might be difficult to put in place to test this interaction. However, couldn't the authors try the double knock-down compared to single knock-downs using dsRNA? This method gave convincing results to test the role of the putative receptors in mediating JH-induced developmental delay in vivo (Figure 1).

      Thank you for your suggestion. We added experiments, editing Met1 individually (single knockout), Cad96ca and Fgfr1 together (double knockout), and Met1, Cad96ca and Fgfr1 together (triple knockout) using CRISPR/Cas9, the new evidence fully defined the physiological roles of these receptors in JH signaling in vivo. We increased the results in Lines 242-263 and discussion in Lines 328-375.

      (3) Concerning the effect of Crispr knock-out on pupation timing, this paragraph was added: "The low death rate after Cad96ca and Fgfr1 knockout might be because of following reasons, including the editing efficiency (67% and 61% for Cad96ca mutant and Fgfr1 mutant, respectively), the chimera of the gene knockout at the G0 generation, and the redundant RTKs that play similar roles in JH signaling". A similar explanation applies to the pupation phenotype itself... I am therefore wondering whether the Crispr/Cas9 approach (at the G0 generation) is the best strategy. Since the dsRNA knock-down gave efficient (and probably more reproducible) results according to Figure 1B-C, why not using the same approach for analyzing loss-of-function phenotypes?

      (4) Similarly, this new paragraph regarding the knock-out strategy by Crispr is problematic: "However, in the Cad96ca mutant, 86% of the larvae (an editing efficiency of 67% by TA clone analysis) had a shortened feeding stage in the sixth instar and entered the metamorphic molting stage earlier, showing early pupation, with the pupation time being 24 h earlier. In the Fgfr1 mutant, 91% of the larvae (an editing efficiency of 61%) had a shortened feeding stage in the sixth instar and entered the metamorphic molting stage earlier, showing early pupation, with the pupation time being 23 h earlier" (lines 225-230).

      - How does the editing efficiency relate to the mutation efficiency few lines earlier (not clearly explained in the methods)? Were the animals homozygous or heterozygous for the mutations? - A shortened feeding stage can only be invoked if previous developmental transitions are unaffected. Such statement should be supported by a better description of the developmental timing phenotype (as suggested already by reviewer 2).

      Thank you for your questions in (3) and (4). The editing rates of 67% and 61% for Cad96ca and Fgfr1 in individuals were calculated from the PCR products, indicating that the cells were mosaics by CRISPR/Cas9 editing. The mutants produced by CRISPR/Cas9 are mosaics. We removed the content to the methods section and increased the detail methods, Lines 705-717.

      We increased discussion: "The phenotypes of gene mutation in H. armigera are somehow different from those obtained by homozygous mutation in other animals, due to the mosaic mutation by CRISPR/Cas9. In addition, RNAi of Cad96ca and Fgfr1 was observed precocious pupation as was the case in CRISPR/Cas9, suggesting the RNAi can be used for the study of gene function in insect, especially when the gene editing is embryonic lethal". Lines 367-380.

      We removed the improper description of the phenotypes in the results, such as that of the feeding stage. By increasing experiments of editing Met1 individually (single knockout), Cad96ca and Fgfr1 together (double knockout), and Met1, Cad96ca and Fgfr1 together (triple knockout) to define the physiological roles of these receptors in JH signaling in vivo.

      (5) Importantly, I don't understand where the new version of the figure 4E stems from. The « pupation on time » (blue) category present in the first version of the figure has now disappeared for mutant animals. Why? In the first, my understanding was that, among the mutant animals, around 50% had precocious pupation. In the new version of the figure 4E, the "pupation on time" category is missing, and the percentages of early pupation are therefore strongly increased... The explanations provided in the text are not clear regarding the reanalysis of the mutant phenotypes. In the first version of the manuscript, the following explanation was given: "In 61 survivors of Cas9 protein and Cad96ca-gRNA injection, 30 mutants were identified by the earlier pupation and sequencing (an editing efficiency of 49.2%)". Were all animals sequenced, or only the 30 displaying earlier pupation? Were the 31 others not sequenced or did they have no mutation? Could it be, as suggested by the first version of the figure, that some mutant animals did not display early pupation? It was indeed stated in the text that: "CRISPR/Cas9 editing by Cad96ca-gRNA or Fgfr1-gRNA injection resulted in earlier pupation (Figure 4D) for about 23-24 h by comparison with normal pupation in 46% and 54% of larvae, respectively". This new version of the figure should be explained.

      Thank you for your reminder. The phenotype of pupation on time appeared in the first version, because we counted the phenotypes of all the surviving individuals injected with gRNA, that is, the survivors in Figure 4C, which including mutated and non-mutated individuals. According to the comments from first round of reviewers, we realized that it was inappropriate to count all the surviving individuals injected with gRNA, since there is no phenotype of pupation on time in the mutants. Therefore, in the second version, we replaced the picture by counting the phenotypes of all successfully mutated individuals, namely the mutants in Figure 4C.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      Juvenile Hormone (JH) plays a key role in insect development and physiology. Although the intracellular receptor for JH was identified long ago, a number of studies have shown that part of JH functions should be fulfilled through binding to an unknown membrane receptor, which was proposed to belong to the RTK family. In this study, the authors screened all RTKs from the H. armigera genome for their ability to mediate responses to JH III treatment both in cultured cells and in developing animals. They also present convincing evidence that CAD96CA and FGFR1 directly bind JH III, and that their role might be conserved in other insect species.

      Strengths:

      Altogether, the experimental approach is very complete and elegant, providing evidence for the role of CAD96CA and FGFR1 in JH signalling using different techniques and in different contexts. I believe that this work will open new perspectives to study the role of JH and better understand what is the contribution of signalling through membrane receptors for JH-dependent developmental processes.

      Weaknesses:

      I don't see major weaknesses in this study. However, I think that the manuscript would benefit from further information or discussion regarding the relationship between the two newly identified receptors. Experiments (especially in HEK-293T cells) suggest that CAD96CA and FGFR1 are sufficient on their own to transduce JH signalling. However, they are also necessary since loss-of-function conditions for each of them are sufficient to trigger strong effects (while the other is supposed to be still present).

      Thank you for the suggestion. We have added the discussion in the text: "CAD96CA and FGFR1 have similar functions in JH signaling, including transmitting JH signal for Kr-h1 expression, larval status maintaining, rapid intracellular calcium increase, phosphorylation of transcription factors MET1 and TAI, and high affinity to JH III. CAD96CA and FGFR1 are essential in the JH signal pathway, and loss-of-function for each is sufficient to trigger strong effects on pupation. The difference is that CAD96CA expression has no tissue specificity, and the Fgfr1 gene is highly expressed in the midgut; possibly, it plays a significant role in the midgut. Other possibility is that they play roles by forming heterodimer with each other or other RTKs, which needs to be addressed in future study. CAD96CA and FGFR1 transmit JH III signals in three different insect cell lines, suggesting their conserved roles in other insects.".

      In addition, despite showing different expression patterns, the two receptors seem to display similar developmental functions according to loss-of-function phenotypes. It is therefore unclear how to draw a model for membrane receptor-mediated JH signalling that includes both CAD96CA and FGFR1.

      Thank you for your question. We have modified the figure and the legends to make the conception clear.

      Reviewer #2 (Public Review):

      Summary:

      Juvenile hormone (JH) is a pleiotropic terpenoid hormone in insects that mainly regulates their development and reproduction. In particular, its developmental functions are described as the "status quo" action, as its presence in the hemolymph (the insect blood) prevents metamorphosis-initiating effects of ecdysone, another important hormone in insect development, and maintains the juvenile status of insects. While such canonical functions of JH are known to be mediated by its intracellular receptor complex composed of Met and Tai, there have been multiple reports suggesting the presence of cell membrane receptor(s) for JH, which mediate non-genomic effects of this terpenoid hormone. In particular, the presence of receptor tyrosine kinase(s) that phosphorylate Met/Tai in response to JH and thus indirectly affect the canonical JH signaling pathway has been strongly suggested. Given the importance of JH in insect physiology and the fact that the JH signaling pathway is a major target of insect growth regulators, elucidating the identification and functions of putative JH membrane receptors is of great significance from both basic and applied perspectives. In the present study, the authors identified candidate receptors for such cell membrane JH receptors, CAD96CA and FGFR1, in the cotton bollworm Helicoverpa armigera.

      Strengths:

      Their in vitro analyses are conducted thoroughly using multiple methods, which overall supports their claim that these receptors can bind to JH and mediate their non-genomic effects.

      Weaknesses:

      Results of their in vivo experiments, particularly those of their loss-of-function analyses using CRISPR mutants are still preliminary, and the results rather indicate that these membrane receptors do not have any physiologically significant roles in vivo. More specifically, previous studies in lepidopteran species have clearly and repeatedly shown that precocious metamorphosis is the hallmark phenotype for all JH signaling-deficient larvae. In contrast, the present study showed that Cad96ca and Fgfr1 G0 mutants only showed a slight acceleration in their pupation timing, which is not a typical phenotype one would expect from JH signaling deficiency. This is inconsistent with their working model provided in Figure 6, which indicates that these cell membrane JH receptors promote the canonical JH signaling by phosphorylating Met/Tai.

      If the authors argue that this slight acceleration of pupation is indeed a major JH signaling-deficient phenotype in Helicoverpa, they need to provide more data to support their claim by analyzing CRISPR mutants of other genes involved in JH signaling, such as Jhamt and Met. An alternative explanation is that there is functional redundancy between CAD96CA and FGFR1 in mediating phosphorylation of Met/Tai. This possibility can be tested by analyzing double knockouts of these two receptors.

      Thank you for your question and suggestion. The cadherin 96ca (CAD96CA) and fibroblast growth factor receptor 1 (FGFR1) were finally determined as JH cell membrane receptors by their roles in JH regulated-gene expression, maintaining larval status, JH induced-rapid increase of intracellular calcium levels, JH induced-phosphorylation of MET and TAI, and their JH-binding affinity. Their roles as JH cell membrane receptors were further determined by knockdown and knockout of them in vivo and in cell lines, and overexpression of them in mammal HEK-293T heterogeneously. Figure 6 is drafted by these solidate evidences.

      Cad96ca and Fgfr1 G0 mutants caused slight acceleration of pupation is one of the types of evidence of JH signaling-deficient. Othe evidences include a set of gene expression and the block of JH induced-rapid intracellular calcium increase.

      Kr-h1 is a typical indicator gene at the downstream of Jhamt and in JH signaling, so we used it as an indicator to examine JH signaling. Jhamt and Met or other genes might be affected in Cad96ca and Fgfr1 G0 mutants, which can be examined in future study.

      We have discussed the question that Cad96ca and Fgfr1 G0 mutants only showed a slight acceleration in their pupation timing: "Homozygous Cad96ca null Drosophila die at late pupal stages (Wang et al., 2009). However, we found that 86% of the larvae of the Cad96ca mutant successfully pupated in G0 generation, although earlier than the control. Similarly, null mutation of Fgfr1 or Fgfr2 in mouse is embryonic lethal (Arman et al., 1998; Deng et al., 1994; Yamaguchi et al., 1994). In D. melanogaster, homozygous Htl (Fgfr) mutant embryos die during late embryogenesis, too (Beati et al., 2020; Beiman et al., 1996; Gisselbrecht et al., 1996). However, in H. armigera, 91% of larvae successfully pupated in G0 generation after Fgfr1 knockout. The low death rate after Cad96ca and Fgfr1 knockout might be because of following reasons, including the editing efficiency (67% and 61% for Cad96ca mutant and Fgfr1 mutant, respectively), the chimera of the gene knockout at the G0 generation, and the redundant RTKs that play similar roles in JH signaling, similar to the redundant roles of MET and Germ-cell expressed bHLH-PAS (GCE) in JH signaling (Liu et al., 2009), which needs to obtain alive G1 homozygote mutants and double knockout of these two receptors in future study. We indeed observed that the eggs did not hatch successfully after mixed-mating of G0 Cad96ca mutant or Fgfr1 mutant, respectively, but the reason was not addressed further due to the embryonic death. By the similar reasons, most of the Cad96ca and Fgfr1 mutants showed a slight acceleration of pupation (about one day) without the typical precocious metamorphosis (at least one instar earlier) phenotype caused by JH signaling defects (Daimon et al., 2012; Fukuda, 1944; Riddiford et al., 2010) and JH pathway gene deletions (Abdou et al., 2011; Liu et al., 2009). On other side, JH can regulate gene transcription by diffusing into cells and binding to the intracellular receptor MET to conduct JH signal, which might affect the results of gene knockdown and knockout.".

      Currently, the validity of their calcium imaging analysis in Figure 5 is also questionable. When performing calcium imaging in cultured cells, it is critically important to treat all the cells at the end of each experiment with a hormone or other chemical reagents that universally induce calcium increase in each particular cell line. Without such positive control, the validity of calcium imaging data remains unknown, and readers cannot properly evaluate their results.

      Thank you for your question. For Figure 5, our goal was to demonstrate that JH can induce calcium mobilization through CAD96CA and FGFR1. Controls have been established between different experimental groups within the same cell, as well as between different cells. Increasing the positive experimental group would make the results more complex.

      Reviewer #3 (Public Review):

      Summary:

      In this study, Li et al. identified CAD96CA and FGF1 among 20 receptor tyrosine kinase receptors as mediators of JH signaling. By performing a screen in HaEpi cells with overactivated JH signaling, the authors pinpointed two main RTKs that contribute to the transduction of JH. Using the CRISPR/Cas9 system to generate mutants, the authors confirmed that these RTKs are required for normal JH activation, as precocious pupariation was observed in their absence. Additionally, the authors demonstrated that both CAD96CA and FGF1 exhibit a high affinity for JH, and their activation is necessary for the proper phosphorylation of Tai and Met, transcription factors that promote the transcriptional response. Finally, the authors provided evidence suggesting that the function of CAD96CA and FGF1 as JH receptors is conserved across insects.

      Strengths:

      The data provided by the authors are convincing and support the main conclusions of the study, providing ample evidence to demonstrate that phosphorylation of the transducers Met and Tai mainly depends on the activity of two RTKs. Additionally, the binding assays conducted by the authors support the function of CAD96CA and FGF1 as membrane receptors of JH. The study's results validate, at least in H. amigera, the predicted existence of membrane receptors for JH.

      Weaknesses:

      The study has several weaknesses that need to be addressed. Firstly, it is not clear what criteria were used by the authors to discard several other RTKs that were identified as repressors of JH signaling. For example, while NRK and Wsck may not fulfill all the requirements to become JH receptors, other evidence, such as depletion analysis and target gene expression, suggests they are involved in proper JH signaling activation.

      Thank you for your question. We screened the RTKs sequentially, including examining the roles of 20 RTKs identified in the H. armigera genome in JH regulated-gene expression to obtain primary candidates, followed by screening of the candidates by their roles in maintaining larval status, JH induced-rapid increase of intracellular calcium levels, JH induced-phosphorylation of MET and TAI, and affinity to JH. WSCK was not involved in the phosphorylation of MET and TAI and was discarded during subsequent screening. NRK did not bind to JH III, did not meet the screening strategy, and was discarded.

      We increased the information in the Introduction: "We screened the RTKs sequentially, including examining the roles of 20 RTKs identified in the H. armigera genome in JH regulated-gene expression to obtain primary candidates, followed by screening of the candidates by their roles in maintaining larval status, JH induced-rapid increase of intracellular calcium levels, JH induced-phosphorylation of MET and TAI, and affinity to JH. The cadherin 96ca (CAD96CA) and fibroblast growth factor receptor 1 (FGFR1) were finally determined as JH cell membrane receptors by their roles in JH regulated-gene expression, maintaining larval status, JH induced-rapid increase of intracellular calcium levels, JH induced-phosphorylation of MET and TAI, and their JH-binding affinity. Their roles as JH cell membrane receptors were further determined by knockdown and knockout of them in vivo and cell lines, and overexpression of them in mammal HEK-293T heterogeneously.".

      We increased discussion: "This study found six RTKs that respond to JH induction by participating in JH induced-gene expression and intracellular calcium increase, however; they exert different functions in JH signaling, and finally CAD96CA and FGFR1 are determined as JH cell membrane receptors by their roles in JH induced-phosphorylation of MET and TAI and binding to JH III. We screen the RTKs transmitting JH signal primarily by examining some of JH induced-gene expression. By examining other genes or by other strategies to screen the RTKs might find new RTKs functioning as JH cell membrane receptors; however, the key evaluation indicators, such as the binding affinity of the RTKs to JH and the function in transmitting JH signal to maintain larval status are essential.".

      Secondly, the expression of the six RTKs, which, when knocked down, were able to revert JH signaling activation, was mainly detected in the last larval stage of H. amigera. However, since JH signaling is active throughout larval development, it is unclear whether these RTKs are completely required for pathway activation or only needed for high activation levels at the last larval stage.

      Thank you for the question. We knocked down the genes at last larval stage to observe pupation, which is a relatively simple and easily to be observed target to examine the role of the gene in JH-maintained larval status. The results from CRISPR/Cas9 experiments showed: "Most wild-type larvae showed a phenotype of pupation on time. However, in the Cad96ca mutant, 86% of the larvae (an editing efficiency of 67% by TA clone analysis) had a shortened feeding stage in the sixth instar and entered the metamorphic molting stage earlier, showing early pupation, with the pupation time being 24 h earlier. In the Fgfr1 mutant, 91% of the larvae (an editing efficiency of 61%) had a shortened feeding stage in the sixth instar and entered the metamorphic molting stage earlier, showing early pupation, with the pupation time being 23 h earlier (Figure 4D and E). The data suggested that CAD96CA and FGFR1 support larval growth and prevent pupation in vivo.".

      Additionally, the mechanism by which different RTKs exert their functions in a specific manner is not clear. According to the expression profile of the different RTKs, one might expect some redundant role of those receptors. In fact the no reversion of phosphorilation of tai and met upon depletion of Wsck in cells with overactivated JH signalling seems to support this idea.

      Nevertheless, and despite the overlapping expression of the different receptors, all RTKs seem to be required for proper pathway activation, even in the case of FGF1 which seems to be only expressed in the midgut. This is an intriguing point unresolved in the study.

      Thank you for your comments. Yes, from our study, different RTKs exert their functions in a specific manner. We have increased discussion: "This study found six RTKs that respond to JH induction by participating in JH induced-gene expression and intracellular calcium increase, however; they exert different functions in JH signaling, and finally CAD96CA and FGFR1 are determined as JH cell membrane receptors by their roles in JH induced-phosphorylation of MET and TAI and binding to JH III. We screen the RTKs transmitting JH signal primarily by examining some of JH induced-gene expression. By examining other genes or by other strategies to screen the RTKs might find new RTKs functioning as JH cell membrane receptors; however, the key evaluation indicators, such as the binding affinity of the RTKs to JH and the function in transmitting JH signal to maintain larval status are essential.".

      Finally, the study does not explain how RTKs with known ligands could also bind JH and contribute to JH signaling activation. in Drosophila, FGF1 is activated by pyramus and thisbe for mesoderm development, while CAD96CA is activated by collagen during wound healing. Now the authors claim that in addition to these ligands, the receptors also bind to JH. However, it is unclear whether these RTKs are activated by JH independently of their known ligands, suggesting a specific binding site for JH, or if they are only induced by JH activation when those ligands are present in a synergistic manner. Alternatively, another explanation could be that the RTK pathways by their known ligands activation may induce certain levels of JH transducer phosphorylation, which, in the presence of JH, contributes to the full pathway activation without JH-RTK binding being necessary.

      Thank you for your professional questions. It is an exciting and challenging to explore the molecular mechanism by which multiple ligands transmit signals through the same receptor. It requires a long-term research plan and in-depth studies. We added discussion in the text: "CAD96CA (also known as Stitcher, Ret-like receptor tyrosine kinase) activates upon epidermal wounding in Drosophila embryos (Tsarouhas et al., 2014) and promotes growth and suppresses autophagy in the Drosophila epithelial imaginal wing discs (O'Farrell et al., 2013). There is a CAD96CA in the genome of the H. armigera, which is without function study. Here, we reported that CAD96CA prevents pupation by transmitting JH signal as a JH cell membrane receptor. We also showed that CAD96CA of other insects has a universal function of transmitting JH signal to trigger Ca2+ mobilization, as demonstrated by the study in Sf9 cell lines of S. frugiperda and S2 cell lines of D. melanogaster.

      FGFRs control cell migration and differentiation in the developing embryo of D. melanogaster (Muha and Muller, 2013). The ligand of FGFR is FGF in D. melanogaste_r (Du et al., 2018_). FGF binds FGFR and triggers cell proliferation, differentiation, migration, and survival (Beenken and Mohammadi, 2009; Lemmon and Schlessinger, 2010). Three FGF ligands and two FGF receptors (FGFRs) are identified in Drosophila (Huang and Stern, 2005). The Drosophila FGF-FGFR interaction is specific. Different ligands have different functions. The activation of FGFRs by specific ligands can affect specific biological processes (Kadam et al., 2009). The FGFR in the membrane of Sf9 cells can bind to Vip3Aa (Jiang et al., 2018). One FGF and one FGFR are in the H. armigera genome, which has yet to be studied functionally. The study found that FGFR prevents insect pupation by transmitting JH signal as a JH cell membrane receptor. Exploring the molecular mechanism and output by which multiple ligands transmit signals through the same receptor is exciting and challenging.".

      Reviewer #1 (Recommendations For The Authors):

      As an experimental suggestion, I will only propose that authors test the double knock-down/knock-out or overexpression of CAD96CA and FGFR1 to give some hints into how redundant/independent the two receptors are.

      Thank you very much for your professional advice. We agree with your point of view that double knockout of CAD96CA and FGFR1 is very important to resolve the redundant/independent of the two receptors, which can make our research more complete. Unfortunately, due to experimental difficulty and time constraints, we did not provide supplementary experiments. In this study, we aim to screen the cell membrane receptors of JH. Therefore, we focused on which RTKs can function as receptors. This article is a preliminary study to identify the cell membrane receptors of JH. To further understand the relationship between the two membrane receptors, we will conduct in-depth research in future work.

      Apart from that, here are some minor points about the manuscript:

      Figure 2A: changing the scale on the y-axis would help to better see the different genotypes (similar to the way it is presented in Figure 5).

      Thanks for your reminding, we have changed the scale in Figure 2A.

      Figure 4J: image settings could be improved to better highlight the green fluorescence.

      Thank you for your advice, we have improved the imaged in Figure 4J.

      In general, the manuscript would benefit from some proofreading since a number of sentences are incorrect.

      Thanks for your reminding, we have carefully revised the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      (1) Although the authors note that there are 21 RTK genes in Drosophila (line 55), I can only see 16 Drosophila RTKs in Figure 1 - Figure Supplement 1. Some important Drosophila RTKs such as breathless are missing. The authors need to redraw the phylogenetic tree.

      Thanks for your reminding, we have presented the new phylogenetic tree in Figure 1-figure supplement 1.

      (2) The accelerated pupation phenotype in Cad96ca and Fgfr1 G0 mutants needs to be better described. In particular, it is critical to examine which developmental stage(s) are shortened in these mutant larvae. Refer to a similar study on a JH biosynthetic enzyme in Bombyx (PMID: 22412378) regarding how to describe the developmental timing phenotype.

      Thank you for your advice. We have re-shown Figure 4E and added the explanation in the text: "In 61 survivors of Cas9 protein plus Cad96ca-gRNA injection, 30 mutants were sequenced, and a mutation efficiency was 49.2%. Similarly, in the 65 survivors of Cas9 protein plus Fgfr1-gRNA injection, 35 mutants were sequenced, and a mutation efficiency was 53.8% (Figure 4C). The DNA sequences, deduced amino acids and off–target were analyzed (Figure 4—figure supplement 1). Most wild-type larvae showed a phenotype of pupation on time. However, in the Cad96ca mutant, 86% of the larvae (an editing efficiency of 67% by TA clone analysis) had a shortened feeding stage in the sixth instar and entered the metamorphic molting stage earlier, showing early pupation, with the pupation time being 24 h earlier. In the Fgfr1 mutant, 91% of the larvae (an editing efficiency of 61%) had a shortened feeding stage in the sixth instar and entered the metamorphic molting stage earlier, showing early pupation, with the pupation time being 23 h earlier (Figure 4D and E). The data suggested that CAD96CA and FGFR1 support larval growth and prevent pupation in vivo.".

      (3) The editing efficiency described in lines 211-213 is obscure. Does this indicate the percentage of animals with noisy sequencing spectra or the percentage of mutation rates analyzed by TA cloning?

      Thanks for your reminder. We have revised the description in the text: "In 61 survivors of Cas9 protein plus Cad96ca-gRNA injection, 30 mutants were sequenced, and a mutation efficiency was 49.2%. Similarly, in the 65 survivors of Cas9 protein plus Fgfr1-gRNA injection, 35 mutants were sequenced, and a mutation efficiency was 53.8% (Figure 4C). The DNA sequences, deduced amino acids and off–target were analyzed (Figure 4—figure supplement 1). Most wild-type larvae showed a phenotype of pupation on time. However, in the Cad96ca mutant, 86% of the larvae (an editing efficiency of 67% by TA clone analysis) had a shortened feeding stage in the sixth instar and entered the metamorphic molting stage earlier, showing early pupation, with the pupation time being 24 h earlier. In the Fgfr1 mutant, 91% of the larvae (an editing efficiency of 61%) had a shortened feeding stage in the sixth instar and entered the metamorphic molting stage earlier, showing early pupation, with the pupation time being 23 h earlier (Figure 4D and E). The data suggested that CAD96CA and FGFR1 support larval growth and prevent pupation in vivo.".

      (4) In Figures 4F and G, the authors examined expression levels of some JH/ecdysone responsive genes only at 0 hr-old 6th instar larvae. This single developmental stage is not enough for this analysis. In particular, the expression level of Fgfr1 only goes up in the mid-6th instar according to their own data (Figure 1-Figure Supplement 4), so it is critical to examine expression levels of these genes at least throughout the 6th larval instar.

      Thank you for your advice. Indeed, it is essential to detect the expression levels of JH/ecdysone response genes in the whole sixth instar larvae. Because we observed that the mutation has a shorter feeding stage at the sixth instar, we examined the expression level of the JH/ecdysone response gene at the early sixth instar. Due to the number of mutants obtained in the experiment was small and non-destructive sampling could not be performed in sixth instar period, there were no enough samples to test. In the future, we will generate Cad96ca Fgfr1 double mutations to carry out studies and detect the expression level of JH/ecdysone response genes in the whole sixth instar.

      (5) As mentioned above, some important Drosophila RTKs such as breathless are missing in their analyses. As breathless is a close paralog of heartless (Htl), I am sure that Drosophila breathless is also orthologous to Helicoverpa FGFR1. The authors therefore need to analyze breathless in Figure 5B in addition to Htl.

      Thank you for your advice. We added experiments and the results are shown in Figure 5B and Figure 5—figure supplement 1.

      (6) More discussion about the reason why dsNrk and dsWsck can provide resistance to JHIII in Figure 1 is required.

      Thank you for your advice. We added explanation in the discussion: "It is generally believed that the primary role of JH is to antagonize 20E during larval molting (Riddiford, 2008). The knockdown of Cad96ca, Nrk, Fgfr1, and Wsck showed phenotypes resistant to JH III induction and the decrease of Kr-h1 and increase of Br-z7 expression, but knockdown of Vegfr and Drl only decrease Kr-h1, without increase of Br-z7. Br-z7 is involved in 20E-induced metamorphosis in H. armigera (Cai et al., 2014), whereas, Kr-h1 is a JH early response gene that mediates JH action (Minakuchi et al., 2009) and represses Br expression (Riddiford et al., 2010). The high expression of Br-z7 is possible due to the down-regulation of Kr-h1 in Cad96ca, Nrk, Fgfr1 and Wsck knockdown larvae. The different expression profiles of Br-z7 in Vegfr and Drl knockdown larvae suggest other roles of Vegfr and Drl in JH signaling, which need further study."

      Reviewer #3 (Recommendations For The Authors):

      (1) The authors should consider optimizing their experimental approach by depleting the six candidate RTKs in an early larval stage rather than using a sensitized background with JH application in the last larval stage.

      Thank you for your precious suggestion. We knocked down the genes at last larval stage to observe pupation, which is a relatively simple and easily to be observed target to examine the role of the gene in JH-maintained larval status. The results from CRISPR/Cas9 experiments showed: "Most wild-type larvae showed a phenotype of pupation on time. However, in the Cad96ca mutant, 86% of the larvae (an editing efficiency of 67% by TA clone analysis) had a shortened feeding stage in the sixth instar and entered the metamorphic molting stage earlier, showing early pupation, with the pupation time being 24 h earlier. In the Fgfr1 mutant, 91% of the larvae (an editing efficiency of 61%) had a shortened feeding stage in the sixth instar and entered the metamorphic molting stage earlier, showing early pupation, with the pupation time being 23 h earlier (Figure 4D and E). The data suggested that CAD96CA and FGFR1 support larval growth and prevent pupation in vivo.". To know the roles of other RTKs in the whole larval development needs future work since a lot of experiments are needed.

      (2) Including a positive control for JH signaling, such as met or tai, would strengthen the assays and provide a benchmark for evaluating the downregulation of target genes and phenotype reversion upon JH application. This addition, especially in Figure 1, would enhance the interpretability of the results.

      Thank you for your suggestion. We agree with your point of view that adding the detection of Met or Tai as a positive control. Our laboratory has reported in previous studies that knockdown of Met leads to decreased expression of genes in the JH signaling pathway and precocious pupation (PMID: 24872508), so we did not repeat this related experiment in this study. In the future, when performg Cad96ca and Fgfr1 double mutant experiments, Met mutant can be generated as a control to provide more references for the interpretation of the results.

      (3) I recommend revising the manuscript to improve readability, particularly in the Results section, where descriptions of the binding part are particularly dense.

      Thank you for your advice. We have carefully revised the manuscript.

      (4) In line 122, please add the reference Wang et al., 2016.

      Thank you for your reminding, we have added the reference in line 125 of the new manuscript.

      (5) The authors should clarify why they chose to test the possible binding to JH of only Cad96CA, FGFR1, and NRK after conducting various assays while including OTK in the study as a negative control. This explanation should be included in the text.

      Thank you for the suggestion. We added the explanation, as described in the text: "We screened the RTKs sequentially, including examining the roles of 20 RTKs identified in the H. armigera genome in JH regulated-gene expression to obtain primary candidates, followed by screening of the candidates by their roles in maintaining larval status, JH induced-rapid increase of intracellular calcium levels, JH induced-phosphorylation of MET and TAI, and affinity to JH. The cadherin 96ca (CAD96CA) and fibroblast growth factor receptor 1 (FGFR1) were finally determined as JH cell membrane receptors by their roles in JH regulated-gene expression, maintaining larval status, JH induced-rapid increase of intracellular calcium levels, JH induced-phosphorylation of MET and TAI, and their JH-binding affinity. Their roles as JH cell membrane receptors were further determined by knockdown and knockout of them in vivo and cell lines, and overexpression of them in mammal HEK-293T heterogeneously.".

      "Since Cad96CA, FGFR1, and NRK were not only involved in JH-regulated Kr-h1 expression, JH III-induced delayed pupation, and calcium levels increase, but also involved in MET and TAI phosphorylation, we further analyzed their binding affinity to JH III. OTK did not respond to JH III, so we used it as a control protein on the cell membrane to exclude the possibility of nonspecific binding.".

      (6) The observed embryonic lethality of cad96ca and FGF1 mutants in Drosophila contrasts with the ability of the respective mutants in H. armigera to reach the pupal stage. The authors should discuss this significant difference.

      Thank you for the suggestion. We added the explanation in the discussion, as described in the text: "Homozygous Cad96ca null Drosophila die at late pupal stages (Wang et al., 2009). However, we found that 86% of the larvae of the Cad96ca mutant successfully pupated in G0 generation, although earlier than the control. Similarly, null mutation of Fgfr1 or Fgfr2 in mouse is embryonic lethal (Arman et al., 1998; Deng et al., 1994; Yamaguchi et al., 1994). In D. melanogaster, homozygous Htl (Fgfr) mutant embryos die during late embryogenesis, too (Beati et al., 2020; Beiman et al., 1996; Gisselbrecht et al., 1996). However, in H. armigera, 91% of larvae successfully pupated in G0 generation after Fgfr1 knockout. The low death rate after Cad96ca and Fgfr1 knockout might be because of following reasons, including the editing efficiency (67% and 61% for Cad96ca mutant and Fgfr1 mutant, respectively), the chimera of the gene knockout at the G0 generation, and the redundant RTKs that play similar roles in JH signaling, similar to the redundant roles of MET and Germ-cell expressed bHLH-PAS (GCE) in JH signaling (Liu et al., 2009), which needs to obtain alive G1 homozygote mutants and double knockout of these two receptors in future study. We indeed observed that the eggs did not hatch successfully after mixed-mating of G0 Cad96ca mutant or Fgfr1 mutant, respectively, but the reason was not addressed further due to the embryonic death. By the similar reasons, most of the Cad96ca and Fgfr1 mutants showed a slight acceleration of pupation (about one day) without the typical precocious metamorphosis (at least one instar earlier) phenotype caused by JH signaling defects (Daimon et al., 2012; Fukuda, 1944; Riddiford et al., 2010) and JH pathway gene deletions (Abdou et al., 2011; Liu et al., 2009). On other side, JH can regulate gene transcription by diffusing into cells and binding to the intracellular receptor MET to conduct JH signal, which might affect the results of gene knockdown and knockout.".

      (7) Building upon the previous point, it is noteworthy that the cad96ca and FGF1 mutants exhibit only a 24-hour early pupation phenotype, contrasting with the 48-hour early pupation induced by Kr-h1 depletion. This discrepancy suggests that while the function of these RTKs is necessary, it may not be sufficient to fully activate JH signaling. The expression profile of these receptors, primarily observed in the last larval stage, supports this hypothesis.

      Thank you for your suggestion. We added the explanation in the discussion, as described in the text: "Homozygous Cad96ca null Drosophila die at late pupal stages (Wang et al., 2009). However, we found that 86% of the larvae of the Cad96ca mutant successfully pupated in G0 generation, although earlier than the control. Similarly, null mutation of Fgfr1 or Fgfr2 in mouse is embryonic lethal (Arman et al., 1998; Deng et al., 1994; Yamaguchi et al., 1994). In D. melanogaster, homozygous Htl (Fgfr) mutant embryos die during late embryogenesis, too (Beati et al., 2020; Beiman et al., 1996; Gisselbrecht et al., 1996). However, in H. armigera, 91% of larvae successfully pupated in G0 generation after Fgfr1 knockout. The low death rate after Cad96ca and Fgfr1 knockout might be because of following reasons, including the editing efficiency (67% and 61% for Cad96ca mutant and Fgfr1 mutant, respectively), the chimera of the gene knockout at the G0 generation, and the redundant RTKs that play similar roles in JH signaling, similar to the redundant roles of MET and Germ-cell expressed bHLH-PAS (GCE) in JH signaling (Liu et al., 2009), which needs to obtain alive G1 homozygote mutants and double knockout of these two receptors in future study. We indeed observed that the eggs did not hatch successfully after mixed-mating of G0 Cad96ca mutant or Fgfr1 mutant, respectively, but the reason was not addressed further due to the embryonic death. By the similar reasons, most of the Cad96ca and Fgfr1 mutants showed a slight acceleration of pupation (about one day) without the typical precocious metamorphosis (at least one instar earlier) phenotype caused by JH signaling defects (Daimon et al., 2012; Fukuda, 1944; Riddiford et al., 2010) and JH pathway gene deletions (Abdou et al., 2011; Liu et al., 2009). On other side, JH can regulate gene transcription by diffusing into cells and binding to the intracellular receptor MET to conduct JH signal, which might affect the results of gene knockdown and knockout.".

      (8) The expression profile of the RTK hits described in Supplementary Figure 4A appears to be limited to the last larval stage until pupation. The authors should clarify whether these receptors are expressed earlier, and the meaning of the letters in the plot should be described in the figure legend.

      Thank you for the suggestion. We added the explanation in the Figure 1—figure supplement 4 legend, as described in the text: "The expression profiles of Vegfr1, Drl, Cad96ca, Nrk, Fgfr1, and Wsck during development. 5F: fifth instar feeding larvae; 5M: fifth instar molting larvae; 6th-6 h to 6th-120 h: sixth instar at 6 h to sixth instar 120 h larvae; P0 d to P8 d: pupal stage at 0-day to pupal stage at 8-day F: feeding stage; M: molting stage; MM: metamorphic molting stage; P: pupae.".

      We are very sorry, but due to time limitations, we will investigate the expression profile of RTK throughout the larval stage in future work.

      (9) In Figure 4, panels F and G, the levels of Kr-h1 are shown in cad96ca and FGF1 mutants in the last larval stage. The authors should indicate whether Kr-h1 levels are also low in earlier larval stages or only detected in the last larval stage, as this would imply that these RTKs are only required at this stage.

      Thank you for your suggestion. In this study, the Cad96ca and Fgfr1 mutants' feeding stage was shortened in the sixth instar, and they entered the metamorphic molting stage earlier. So, we detected the expression of Kr-h1 in the sixth instar. It is an excellent idea to detect the expression of Kr-h1 at various larvae stages to analyze the stages in which CAD96CA and FGFR1 play a role and to study the relationship between CAD96CA and FGFR1 in future.

      (10) While Figure 5 demonstrates JH-triggered calcium ion mobilization in Sf9 cells and S2 cells, the authors should also include data on JH signaling target genes, such as Kr-h1, for a more comprehensive analysis.

      Thank you for your advice. We added experiments, as described in the text: "To demonstrate the universality of CAD96CA and FGFR1 in JH signaling in different insect cells, we investigated JH-triggered calcium ion mobilization and Kr-h1 expression in Sf9 cells developed from S. frugiperda and S2 cells developed from D. melanogaster. Knockdown of Cad96ca and Fgfr1 (named Htl or Btl in D. melanogaster), respectively, significantly decreased JH III-induced intracellular Ca2+ release and extracellular Ca2+ influx, and Kr-h1 expression (Figure 5A, B, Figure 5—figure supplement 1A and B). The efficacy of RNAi of Cad96ca and Fgfr1 was confirmed in the cells (Figure 5—figure supplement 1C and D), suggesting that CAD96CA and FGFR1 had a general function to transmit JH signal in S. frugiperda and D. melanogaster.".

      (11) The authors should consider improving the quality of images and some plots, particularly enlarging panels showing larval and pupal phenotypes, such as Figure 1B and Supplementary Figure C. Additionally, adding a plot showing the statistical analysis of the phenotype in Supplementary Figure C would enhance clarity. Some plots are overly busy and difficult to read due to small size, such as Figure 1C, Figure 2A, and all the plots in Figure 3. Figure 4E also requires improvement for better readability.

      Thank you for your suggestion. We have adjusted Figure 1B, Figure 1C, Figure 1—figure supplement 1C, Figure 2A and Figure 4E. However, for Figure 3, we have not found a better way to arrange and adapt them, considering the overall arrangement of the results and the page space, so we keep them in their original state.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This work is meant to help create a foundation for future studies of the Central Complex, which is a critical integrative center in the fly brain. The authors present a systematic description of cellular elements, cell type classifications, behavioral evaluations and genetic resources available to the Drosophila neuroscience community.

      Strengths:

      The work contributes new, useful and systematic technical information in compelling fashion to support future studies of the fly brain. It also continues to set a high and transparent standard by which large-scale resources can be defined and shared.

      Weaknesses:

      manuscript p. 1

      "The central complex (CX) of the adult Drosophila melanogaster brain consists of approximately 2,800 cells that have been divided into 257 cell types based on morphology and connectivity (Scheer et al., 2020; Hulse et al. 2021; Wolff et al., 2015)."

      The 257 accumulated cell types have informational names (e.g., PBG2‐9.s‐FBl2.b‐NO3A.b) in addition to their associations with specific Gal4 lines and specific EM Body IDs. All this is very useful. I have one suggestion to help a reader trying to get a "bird's eye view" of such a large amount of detailed and multi-layered information. Give each of the 257 CX cell types an arbitrary number: 1 to 257. In fact, Supplemental File 2 lists ~277 cell types each with a number in sequence, so perhaps in principle, it is there. This could expedite the search function when a reader is trying to cross-reference CX cell type information from the text, to the Figures and/or to the Supplemental Figures. Also, the use of (arbitrary) cell type numbers could expedite the explanation of which cell types are included in any compilation of information (e.g., which ones were tested for specific NT expression).

      In this report we adhered to the nomenclature introduced in Hulse et al. 2021. We agree that the nomenclature of cell types in the CX is imperfect. There are inherent limitations to what can be done with present data. Even between the hemibrain and FAFB/Flywire EM datasets, it was not possible to derive a one-to-one correspondence in many cases, largely because we do not yet have enough information to distinguish between natural variation within a cell type and distinct cell types (see Schlegel et al. 2024).  Moreover, many cell type distinctions depend on connectivity differences that are observable only in EM datasets but not in LM images. Several research groups are currently engaged in a comprehensive and collaborative effort to update the CX nomenclature that will extend over the next few months as additional connectomes become available. This work will require hundreds of hours of effort from anatomical and computational experts in multiple laboratories who have a strong interest in the CX. Since the correspondence between the established Hulse et al nomenclature we use and this new nomenclature will be made clear, it will be easy to transfer our data to that new nomenclature. For all these reasons, we believe we should not unilaterally introduce any new naming systems at this time.

      manuscript p 2

      "Figure 2 and Figure 2-figure supplements 1-4 show the expression of 52 new split-GAL4 lines with strong GAL4 expression that is largely limited to the cell type of interest. .... We also generated lines of lesser quality for other cell types that in total bring overall coverage to more than three quarters of CX cell types."

      This section describes the generation and identification of specific split Gal4 lines, and the presentation is generally excellent. It represents an outstanding compendium of information. My reading of the text suggests ~200 cell types have Gal4 lines that are of immediate use (having high specificity or v close-to-high). Use of an arbitrary number system (mentioned above) could augment that description for the reasons stated. For example, which of the 257 cell types are represented by split Gal4 lines that constitute the ~1/3 representing "high-quality lines "? A second comment relates to this study 's functional analysis of the contributions of CX cell types to sleep physiology. The recent literature contains renewed interest in the specific expression patterns of Gal4 lines that can promote sleep-like behaviors. In particular Gal4 line expression outside the brain (in the VNC and outside the CNS) have been raised as important elements that need be included for interpretation interpretation of sleep regulation. This present study offers useful information about a large number of expression patterns, as well as a basis with which to seek additional information., including mention of VNC expression in many cases However, perhaps I missed it, but I could not find a short description of the over-all strategy used to describe the expression patterns and feel that could be helpful. Were all Gal4 lines studied for expression in the VNC? and in the peripheral NS? It is probably published elsewhere, but even a short reprise would still be useful.

      We added a couple of sentences to clarify that the lines were imaged in the adult female brain and VNC and many were also imaged in males. These data, including the ability to download the original confocal stacks, are contained in an on-line web source cited in the text. We also make clear that we did not assay expression outside of the brain, optic lobes and VNC. Therefore, we cannot rule out expression in the peripheral nervous system (other than detected in the axons of sensory neurons in the CNS) or in muscle or other non-neuronal cell types.

      manuscript p 9

      Neurotransmitter expression in CX cell types

      "To determine what neurotransmitters are used by the CX cell types, we carried out fluorescent in situ hybridization using EASI-FISH (Eddison and Irkhe, 2022; Close et al., 2024) on brains that also expressed GFP driven from a cell-type-specific split GAL4 line. In this way, we could determine what neurotransmitters were expressed in over 100 different CX cell types based on ...."

      Reading this description, I was uncertain whether the >100 cell types mentioned were tested with all the NT markers by EASI-FISH? Also, assigning arbitrary numbers to the cell types (same suggestion as above) could help the reader more readily ascertain which were the ~100 cell types classified in this context.

      The specific probes used for each cell type are indicated in Figure 9 and in Supplemental File 1.

      manuscript p 10

      "Our full results are summarized below, together with our analysis of neuropeptide expression in the same cell types."

      I recommend specifying which Figures and Tables contain the "full results" indicated.

      We changed the wording to read:

      “Our full results are summarized, together with our analysis of neuropeptide expression in the same cell types, in Figures 5 -9 and in Supplemental File 1.”

      NP expression in CX cell types

      Similar to the comments regarding studies of NT expression: were all ~100 cell types tested with each of the 17 selected NPs? Arbitrary numerical identifies could be useful for the reader to determine which cell types/ lines were tested and which were not yet tested.

      We expanded the description in Methods to now read:

      “For neurotransmitters, the specific probes used for each cell type are indicated in Figure 9 and in Supplemental File 1. For neuropeptides, each of the 17 selected NP probes shown in Figure 5—figure supplement 1 was used on all cell types in Figure 9 except those marked by “—” in the neuropeptide column.”

      manuscript p. 11

      "The neuropeptide expression patterns we observed fell into two broad categories."

      This section presents information that is extensive and extremely useful. It supports consideration of peptidergic cell signaling at a circuits level and in a systematic fashion that will promote future progress in this field. I have two comments. First, regarding the categorization of two NP expression patterns, discernible by differences in cell number: this idea mirrors one present in prior literature. Recently the classification of the transcription factor DIMM summarizes this same two-way categorization (e.g., doi: 10.1371/journal.pone.0001896). That included the fact that a single NP can be utilized by cell of either category.

      We inserted a sentence to acknowledge this earlier work:

      “Such large neurosecretory cells often express the transcription factor DIMM (Park et al. 2008).”

      Second, regarding this comment:

      "In contrast, neuropeptides like those shown in Figure 6 appear to be expressed in dozens to hundreds of cells and appear poised to function by local volume transmission in multiple distinct circuits."

      Signaling by NPs in this second category (many small cells) suggests more local diffusion, a smaller geographic expanse compared to "volume" signaling by the sparser larger peptidergic cells. Given this, I suggest re-consideration in using the term "volume" in this instance, perhaps in favor of "local" or "paracrine". This is only a suggestion and in fact rests almost entirely on speculation/ interpretation, as the field lacks a strong empirical basis to say how far NPs diffuse and act. A recent study in the fly brain of peptide co-transmitters (doi: 10.1016/j.cub.2020.04.025) provides an instructive example in which differences between the spatial extents of long-range (peptide 1) versus short-range (peptide 2) NP signaling may be inferred in vivo.

      We have modified the text to now read:

      “those shown in Figure 6 are expressed in dozens to hundreds of cells and appear poised to function by transmission to nearby cells in multiple distinct circuits.”  

      Spab was mentioned (Figure 6 legend) but discarded as a candidate NP to include based on a personal communication, as was Nplp1. The manuscript did not include reasons to do so, nor include a reference to spab peptide. I suggest including explicit reasons to discard candidate NPs.

      While there is strong supportive evidence for many NPs in Drosophila, the fact that other transcripts express NPs is more circumstantial often relying simply on sequence analysis and without convincing evidence for a specific cognate receptor. We note that Spab is not listed as a neuropeptide in the current release of FlyBase. In these cases, we relied on the opinion of individuals with extensive experience in studying Drosophila NPs. The results obtained with the probes for Spab and Nplp1 are still available in Supplemental File 1.

      In Fig 9-supplement 1, neurotransmitter biosynthetic enzymes were measured by RNA-seq for given CX cell types to augment the cell type classification. The same methods could be used to support cell type classification regarding putative peptidergic character (in Figure 9 supplement 2) by measuring expression levels of critical, canonical neuropeptide biosynthetic enzymes. These include the proprotein convertase dPC2 (amon); the carboxypeptidase dCPD/E (silver); and the amidating enzymes dPHM; dPal1; dPal2. PHM is most related to DBM (dopamine beta monooxygenase), the rate limiting enzyme for DA production, and greater than 90% of Drosophila neuropeptides are amidated. If the authors are correct in surmising widespread use of NPs by CX cell types (and I expect they are), there could be diagnostic value to report expression levels of this enzyme set across many/most CX cell types.

      In our admittedly limited experience, most cells express these enzymes and the level we observed in confirmed NP expressing cell types was not reproducibly higher.  (The complete data for all genes for the cell types we assayed are available from our deposition in the NCBI Gene Expression Omnibus with accession number GSE271123.) Given our small sample size we chose not to comment on this in the paper.

      Comment #6

      Screen of effects on Sleep behavior

      This work is large in scope and as suggested likely presents excellent starting points for many follow-up studies. I again suggest assigning stable number identities to the elements described. In this case, not cell types, but split Gal4 lines. This would expedite the cross-referencing of results across the four Supplemental Files 3-6. For example, line SS00273 is entry line #27 in S Files 3 and 4, but line entry #18 in S Files 5 and 6.

      We believe the interested reader can make this correspondence by searching the supplemental files which are excel spreadsheets. We note that both driver lines and cell types have stable identifiers that are used across Figures and Tables: the line numbers (for example, SS00273) for driver lines and the Hulse et al cell type names for cell types.

      manuscript p 26

      Clock to CX

      "Not surprisingly, the connectome reveals that many of the intrinsic CX cell types with sleep phenotypes are connected by wired pathways (Figure 12 and Figure 12-figure supplement 1)."

      Do intrinsic CX cells with sleep phenotypes also connect by wired pathways to CX cells that do not have sleep phenotypes?

      Yes, but we do not have high confidence that negative sleep phenotypes in our assays indicate no role in sleep.

      "The connectome also suggested pathways from the circadian clock to the CX. Links between clock output DN1 neurons to the ExR1 have been described in Lamaze et al. (2018) and Guo et al. (2018), and Liang et al. (2019) described a connection from the clock to ExR2 (PPM3) dopaminergic neurons."

      The introduction to this section indicates a focus on connectome-defined synaptic contacts. Whereas the first two studies cited featured both physiological and anatomic evidence to support connectivity from clock cells to CX, the third did not describe any anatomical connections, and that connection may in fact be due to diffuse not synaptic signaling

      I could not easily discern the difference between Figs 12 and 12-S1? These appear to be highly-related circuit models, wherein the second features more elements. Perhaps spell out the basis for the differences between the two models to avoid ambiguity.

      We clarify the supplemental diagram differs from the one in the main text by the inclusion of additional connections:

      “The strongest of these connections are diagrammed in Figure 12, with Figure 12—figure supplement 1 also showing additional weaker connections.”

      "...the cellular targets of Dh31 released from ER5 are unknown, however previous work (Goda et al., 2017; Mertens et al., 2005; Shafer et al., 2008) has shown that Dh31 can activate the PDF receptor raising the possibility of autocrine signaling."

      Regarding pharmacological evidence for Dh31 activation of Pdfr: strong in vivo evidence was developed in doi: 10.1016/j.neuron.2008.02.018: a strong pdfr mutation greatly reduces response to synthetic dh31 in neurons that normally express Pdfr

      We added the Shafer et al., 2008 reference. 

      manuscript p 30

      "Unexpectedly, we found that all neuropeptide-expressing cell types also expressed a small neurotransmitter."

      Did this conclusion apply only to CX cell types? - or was it also true for large peptidergic neurons? Prior evidence suggests the latter may not express small transmitters (doi: 10.1016/j.cub.2009.11.065). The question pertains to the broader biology of peptidergic neurons, and is therefore outside the strict scope of the main focus area - the CX. However, the text did initially consider peptidergic neurons outside the CX, so the information may be pertinent to many readers.

      We did not look at other cell types in the current study and so cannot provide an answer.

      Reviewer #2 (Public review):

      Summary:

      In this paper, Wolff et al. describe an impressive collection of newly created split-GAL4 lines targeting specific cell types within the central complex (CX) of Drosophila. The CX is an important area in the brain that has been involved in the regulation of many behaviors including navigation and sleep/wake. The authors advocate that to fully understand how the CX functions, cell-specific driver lines need to be created. In that respect, this manuscript will be of very important value to all neuroscientists trying to elucidate complex behaviors using the fly model. In addition, and providing a further very important finding, the authors went on to assess neurotransmitter/neuropeptides and their receptors expression in different cells of the CX. These findings will also be of great interest to many and will help further studies aimed at understanding the CX circuitries. The authors then investigated how different CX cell types influence sleep and wake. While the description of the new lines and their neurochemical identity is excellent, the behavioral screen seems to be limited.

      Strengths:

      (1) The description of dozens of cell-specific split-GAL4 lines is extremely valuable to the fly community. The strength of the fly system relies on the ability to manipulate specific neurons to investigate their involvement in a specific behavior. Recently, the need to use extremely specific tools has been highlighted by the identification of sleep-promoting neurons located in the VNC of the fly as part of the expression pattern of the most widely used dorsal-Fan Shaped Body (dFB) GAL4 driver. These findings should serve as a warning to every neurobiologist, make sure that your tool is clean. In that respect, the novel lines described in this manuscript are fantastic tools that will help the fly community.

      (2) The description of neurotransmitter/neuropeptides expression pattern in the CX is of remarkable importance and will help design experiments aimed at understanding how the CX functions.

      Weaknesses:

      (1) I find the behavioral (sleep) screen of this manuscript to be limited. It appears to me that this part of the paper is not as developed as it could be. The authors have performed neuronal activation using thermogenetic and/or optogenetic approaches. For some cell types, only thermogenetic activation is shown. There is no silencing data and/or assessment of sleep homeostasis or arousal threshold. The authors find that many CX cell types modulate sleep and wake but it's difficult to understand how these findings fit one with the other. It seems that each CX cell type is worthy of its own independent study and paper. I am fully aware that a thorough investigation of every CX neuronal type in sleep and wake regulation is a herculean task. So, altogether I think that this manuscript will pave the way for further studies on the role of CX neurons in sleep regulation.

      (2) Linked to point 1, it is possible that the activation protocols used in this study are insufficient for some neuronal types. The authors have used 29{degree sign} for thermogenetic activation (instead of the most widely used 31{degree sign}) and a 2Hz optogenetic activation protocol. The authors should comment on the fact that they may have missed some phenotypes by using these mild activation protocols.

      Our primary goal was to test the feasibility of using these tools in assessing sleep and wake function of neurons within the CX. In the process we uncovered several new neurons within the DFB-EB network that control sleep and make connections with previously identified sleep regulating neurons. For all single cell type lines and lines with sparse patterns and no VNC expression we present both optogenetics and thermogenetic data. The lines for which we only have thermogenetic but no optogenetic data are those which have multiple cell types or VNC expression. We felt that optogenetic data for these non-specific or contaminated lines would not reliably indicate a role for individual cell types in sleep regulation.

      Many previous studies that have used 31 degrees have done so for shorter durations and often using different times of the day for manipulations. The lack of consistency between studies using this temperature may be due in part to the fact that 31 degrees alters behaviors of flies (including controls) and, for this reason, is usually not used for 24-hour activation durations.

      To keep the screen consistent and ensure we capture changes in both daytime and nighttime sleep we used 29 degrees. The behavior of control flies is not as disrupted or altered at this temperature, and 29 degrees for activation is routinely used in behavioral experiments.

      We similarly selected an optogenetic stimulation protocol that minimizes the response of flies to the red-light pulses. We chose this protocol because we found, in earlier experiments in a different project, that this level of stimulation was able to elicit activation phenotypes across a range of cell types (including several known clock neurons). However, we cannot rule out false negatives in both the TrpA and optogenetic experiments and agree that we might have missed some phenotypes.

      Finally, as the reviewer rightfully points out, a thorough, detailed investigation of each cell type is a herculean task. We screened in both genders with very sparse, and often cell-type-specific, driver lines while using two distinct modes of activation and different methods for assessing sleep. For these reasons, we believe the GAL4 lines we identified provide excellent starting points for the additional investigations that will be required to better understand the roles of specific cell types.

      (3) There are multiple spelling errors in the manuscript that need to be addressed.

      Reviewer #3 (Public review):

      Summary:

      The authors created and characterized genetic tools that allow for precise manipulation of individual or small subsets of central complex (CX) cell types in the Drosophila brain. They developed split-GAL4 driver lines and integrated this with a detailed survey of neurotransmitter and neuropeptide expression and receptor localization in the central brain. The manuscript also explores the functional relevance of CX cell types by evaluating their roles in sleep regulation and linking circadian clock signals to the CX. This work represents an ambitious and comprehensive effort to provide both molecular and functional insights into the CX, offering tools and data that will serve as a critical resource for researchers.

      Strengths:

      (1) The extensive collection of split-GAL4 lines targeting specific CX cell types fills a critical gap in the genetic toolkit for the Drosophila neuroscience community.

      (2) By combining anatomical, molecular, and functional analyses, the authors provide a holistic view of CX cell types that is both informative and immediately useful for researchers across diverse disciplines.

      (3) The identification of CX cell types involved in sleep regulation and their connection to circadian clock mechanisms highlights the functional importance of the CX and its integrative role in regulating behavior and physiological states.

      (4) The authors' decision to present this work as a single, comprehensive manuscript rather than fragmenting it into smaller publications each focusing on separate central complex components is commendable. This decision prioritizes accessibility and utility for the broader neuroscience community, which will enable researchers to approach CX-related questions with a ready-made toolkit.

      Weaknesses:

      While the manuscript is an outstanding resource, it leaves room for more detailed mechanistic exploration in some areas. Nonetheless, this does not diminish the immediate value of the tools and data provided.

      Appraisal:

      The authors have succeeded in achieving their aims of creating well-characterized genetic tools and providing a detailed survey of neurochemical and functional properties in the CX. The results strongly support their conclusions and open numerous avenues for future research. The work effectively bridges the gap between genetic manipulation, molecular characterization, and functional assessment, enabling a deeper understanding of the CX's diverse roles.

      Impact and Utility

      This manuscript will have a significant and lasting impact on the field, providing tools and data that facilitate new discoveries in the study of the CX, sleep regulation, circadian biology, and beyond. The genetic tools developed here are likely to become a standard resource for Drosophila researchers, and the comprehensive dataset on neurotransmitter and neuropeptide expression will inspire investigations into the interplay between neuromodulation and classical neurotransmission.

      Additional Context

      The breadth and depth of the resources presented in this manuscript justify its publication without further modification. By delivering an integrated dataset that spans anatomy, molecular properties, and functional relevance, the authors have created a resource that will serve the neuroscience community for years to come.

      Recommendations for the authors:

      Reviewing Editor:

      The reviewers suggest that a nomenclature, perhaps a numbering system, be adopted for different cell types and Gal4 drivers in order to facilitate reading of the manuscript and cross-referencing.

      We agree that a comprehensive reanalysis of the CX nomenclature is in order, but it is premature for us to attempt that as part of this study. This is best done after additional connectomes are generated to help resolve the degree of variation in morphology and connectivity between the same cell in multiple animals.

      Reviewer #3 (Recommendations for the authors):

      The authors have characterized a large number of split-GAL4 drivers targeting individual or small subsets of CX cell types. This manuscript delivers a detailed anatomical, molecular, and functional mapping of the CX.

      By integrating data on neurotransmitters, neuropeptides, and their receptors, the authors provide a holistic view of CX cell types that will undoubtedly serve as a foundation for future studies.

      The use of these genetic tools to identify CX cell types affecting sleep, as well as those linking the circadian clock to the CX, represents a significant advance. These findings hint at the diverse and integrative roles of the CX in regulating both behavior and physiological states.

      The authors' decision to present this work as a single, comprehensive manuscript rather than fragmenting it into smaller publications each focusing on separate central complex components is commendable. This decision prioritizes accessibility and utility for the broader neuroscience community, which will enable researchers to approach CX-related questions with a ready-made toolkit.

      While the manuscript leaves room for further exploration and mechanistic studies, the breadth and depth of the resources presented are more than sufficient to justify publication in their current form.

      The data on neuropeptide and receptor expression patterns, especially the observation that all examined CX cell types co-express a small neurotransmitter, opens intriguing new avenues of inquiry into the interplay between classical neurotransmission and neuromodulation in this region.

      This manuscript has provided a much-needed resource for the Drosophila neuroscience community and beyond. This work will facilitate important discoveries in CX function, sleep regulation, circadian biology, and more.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #4 (Public review):

      We would like to thank the reviewer for their careful consideration of our manuscript. The suggestions have been useful in improving our manuscript. Please see our responses to the specific comments below.

      Summary:

      This is an important study that underscores that reproduction-survival trade-offs are not manifested (contrary to what generally accepted theory predicts) across a range of studies on birds. This has been studied by a meta-analytical approach, gathering data from a set of 46 papers (30 bird species). The overall conclusion is that there are no trade-offs apparent unless experimental manipulations push the natural variability to extreme values. In the wild, the general pattern for within-species variation is that birds with (naturally) larger clutches survive better.

      Strengths:

      I agree this study highlights important issues and provides good evidence of what it claims, using appropriate methods.

      Weaknesses:

      I also think, however, that it would benefit from broadening its horizon beyond bird studies. The conclusions can be reinforced through insights from other taxa. General reasoning is that there is positive pleiotropy (i.e. individuals vary in quality and therefore some are more fit (perform better) than others. Of course, this is within their current environment (biotic, abiotic, social. ...), with consequences of maintaining genetic variation across generations - outlined in Maklakov et al. 2015 (https://doi.org/10.1002/bies.201500025). This explains the outcomes of this study very well and would come to less controversy and surprise for a more general audience.

      I have two fish examples in my mind where this trade-off is also discounted. Of course, given that it is beyond brood-caring birds, the wording in those studies is slightly different, but the evolutionary insight is the same. First, within species but across populations, Reznick et al. (2004, DOI: 10.1038/nature02936) demonstrated a positive correlation between reproduction and parental survival in guppies. Second, an annual killifish study (2021, DOI: 10.1111/1365-2656.13382) showed, within a population, a positive association between reproduction and (reproductive) aging.

      In fruit flies, there is also a strong experimental study demonstrating the absence of reproduction-lifespan trade-offs (DOI: 10.1016/j.cub.2013.09.049).

      I suggest that incorporating insights from those studies would broaden the scope and reach of the current manuscript.

      We would like to thank the reviewer for this useful insight and for highlighting these studies. We have added detail in our discussion around positive correlations observed in the wild, and how positive pleiotropy has been presented as an explanation. We have also added the suggested studies as references to demonstrate the reproduction-lifespan trade-off has been shown to be absent. See lines 257-260.

      Likely impact:

      I think this is an important contribution to a slow shift in how we perceive the importance of trade-offs in ecology and evolution in general. While the current view still is that one individual excelling in one measure of its life history (i.e. receiving benefits) must struggle (i.e. pay costs) in another part. However, a positive correlation between all aspects of life history traits is possible within an individual (such as due to developmental conditions or fitting to a particular environment). Simply, some individuals can perform generally better (be of good quality than others).

      We would like to thank the reviewer for highlighting the importance of our study. We hope our study will help the research community reflect on the importance of trade-offs between life-history traits and consider other possible explanations as to why variation in life-history traits is maintained within species.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The authors have performed extensive work generating reporter mice and performing single-cell analysis combined with in situ hybridization to arrive at 14 clusters of enterochromaffin (EC) cells. Then, they focus on Piezo channel expression in distal EC cells and find that these channels might play a role in regulating colonic motility. Overall, this is an informative study that comprehensively classifies EC cells in different regions of the small and large intestine. From a functional point of view, however, the authors seem to ignore the fact that the expression of Piezo-2-IRES-Cre is broad, which would raise concerns regarding their physiological conclusions.

      The authors may wish to consider the following specific points: 

      It is surprising that the number of ileal EC cells is less than that of the distal colon, and it would be interesting to know whether the authors can comment about ileal EC cells. It is unclear why ileal ECs were not included in the study, even though they are mentioned in the diagram (Fig. 2c).

      We have discussed the rationale for excluding ileal ECs in the methods section under “Elimination of ileal GFP+ cells”. In our initial scRNA-seq experiment, our yield of epithelial cells and GFP positive cells was low, and a large proportion of these cells appeared to not have fully committed to the EC lineage. Also to note, we have previously seen fewer ECs in the distal ileum than upper small intestine and colon (PMID: 26803512). Given the low yield, and some uncertainty regarding the nature of the ileal EC population sorted by our methods, we considered that data from ileal ECs may not be an accurate representation of ileal EC cell diversity. Thus, we did not use ileal ECs in our second scRNA-seq experiment.

      Based on their analysis, there are 10 EC cell clusters in SI while there are only 4 clusters in the colon. The authors should comment on whether this is reflective of lesser diversity among colonic ECs or due to the smaller number of colonic ECs collected.

      The 4 clusters identified in the colon are consistent with previous a previous publication (Glass et al., Mol. Metab. 2017, PMID: 29031728), supporting the idea that these clusters are representative of the major clusters of colonic ECs. Nonetheless, we anticipate that with greater sample sizes (in any region) further resolution of subtypes could be resolved. 

      The authors previously described that distal colonic EC cells exhibit various morphologies (Kuramoto et al., 2021). Do Ascl1(+) EC cells particularly co-localize with EC cells with long basal processes? Also, to validate the RNA seq data, the authors might show co-localization between Piezo2/Ascl1/Tph1 in distal EC cells. It would be interesting to see whether Ascl1-CreER (which is available in Jax) specifically labels distal colonic EC cells as this could provide a good genetic tool to specifically manipulate distal colonic EC cells.

      We have shown co-localization between Piezo2/Ascl1/Tph1 in Supplementary Figure 6a. Unfortunately we did not study cell morphology in the Ascl1 smRNA-FISH experiments as these used thin cryosections, whereas morphological assessment of EC processes is best performed with thick (>60 µm) sections. It would be interesting if neuronal-like expression profiles correlate with neuronal-like morphology, which could be addressed in future studies with spatial transcriptomics. 

      The authors used Piezo2-IRES-Cre mice, whose expression is rather broad. They might examine the distribution of Chrm3-mCitrine in the intestine (IF/IHC would be straightforward). And if the expression is in other cell types (which is most likely the case), they should justify that the observed phenotype derives from Piezo2-expressing EC cells. Alternatively, they could use Piezo2-Cre;ePetFlp (or Vil-Flp);Chrm3 to specifically express DREADD receptors in distal colonic EC cells. Also, what does 5HT release look like in jejunal EC cells in Piezo-CHRM3 mice?

      Unfortunately we no longer have access to the animals to do these experiments.

      For the same reasons as above, DTR experiments may also be non-specific. For example, based on the IF staining (Fig. 6b,d), there seems to be a loss of Tph1+ cells in the proximal colon of Piezo2-DTR mice, so the effects of the Piezo2-DTR likely extend beyond the distal colon. 

      Figures 6b and d show distal colon, not proximal colon. Our Tph1<sup>+</sup> cell counts indicate there was no loss of Tph1 cells in the proximal colon following intraluminal administrations of DT. 

      It is unclear why the localized loss of Piezo2 in Piezo2-DTR mice alters small intestinal transit (Fig. 6g,h). The authors should discuss the functional differences observed between Piezo2-DTR (intraluminal app) and Vil1Piezo2 KO mice i.e., small intestinal transit, 5HT release, etc. Are these differences due to the residual Piezo2 expression in Piezo2 KO mice? In this context, the authors may want to discuss their findings in the context of recent papers, such as those from the Patapoutian and Ginty groups. 

      We have made the following amendment to speculate on the reason for delayed small intestinal transit in the DTR experiments:

      “There are a several possible explanations for this. Some Piezo2+ cells in the small intestine could have been depleted. Alternatively, 5-HT released from Piezo2+Tph1+ cells in the distal colon may provide feedback to the small intestine to accelerate motility, and thus depletion of these cells would result in slower intestinal transit.” 

      We have also added a comment speculating on why we did not see similar slowing of small intestinal transit in the Villlin-Cre Piezo2 KO:

      “No difference was observed in small intestine transit… in contrast to the DTR experiments, in which small intestinal transit was delayed. This could be due to the depletion of EC cells in the DTR experiments, whereas they are retained in the Villin-Cre Piezo2 KO mice. 5-HT secretion from ECs can be induced by other stimulants (even when Piezo2 is knocked out), and thus colonic 5-HT could be providing feedback to the small intestine to accelerate motility in the Villin-Cre Piezo2 KO mice. Residual Piezo2 expression in these mice could also be contributing to this effect.”

      We have added a comment on neural Piezo2 in the discussion:

      “However, in contrast to Piezo2 signalling in ECs which results in accelerated gut transit, Piezo2 signalling in DRG neurons appears to slow transit (refs: Wolfson et al., Cell 2023; PMID: 37541195; Servin-Venves et al., Cell 2023, PMID: 37541196).”

      Reviewer #2 (Public Review):

      Summary:

      The authors investigated the expression profile of enterochromaffin (EC) cells after creating a new tryptophan hydroxylase 1 (Tph1) GFP-reporter mouse using scRNAseq and confirmative RNAscope analysis. They distinguish 14 clusters of Tph1+ cells found along the gut axis. The manuscript focuses on two of these, (i) a multihormonal cell type shown to express markers of pathogen/toxin and nutrient detection in the proximal small intestine, and (ii) on a EC-cluster in the distal colon, which expresses Piezo2, rendering these cells mechanosensitive. In- and ex- vivo data explore the role of the mechanosensitive EC population for intestinal/colonic transit, using chemogenetic activation, diptheria-toxin receptor dependent cell ablation and conditional gut epithelial specific Piezo2 knock-out. Whilst some of these data are confirmative of previous reports - Piezo2 has been implicated in mechanosensitive serotonin release previously, as referred to by the authors - the data are solid and emphasize the importance of mechanosensitive serotonin release for colonic propulsion. The transcriptomic data will guide future research.

      Strengths:

      The transcriptomic data, whilst confirmative, is more granular than previous data sets. Employing new tools to establish a role of mechanosensitive EC cells for colonic and thus total intestinal transit. 

      Weaknesses: 

      (1) The proposed villus/crypt distribution of the 14 cell types is not verified adequately. The RNAscope and immunohistochemistry samples presented do not allow assessment of whether this interpretation is correct - spatial transcriptomics, now approaching single-cell resolution, would be likely to help verify this claim.

      Spatial transcriptomics would be excellent in validating the spatial distribution of the EC cell types in future studies. In our work, although the villus/crypt cluster annotations are assumptions (based on the differential expression of Neurog3, Tac1, and Sct, which is well supported by the literature), we have validated the spatial segregation of key markers. We quantified the crypt/villus location of Cartpt, Ucn3, and Trpm2 overlap with Tph1 (Figure 2d), Oc3, Cck, and Tph1 (Figure 3d), and TK/5-HT (Supplementary Fig 2d). This work supports our predictions on the spatial distribution of these clusters.

      (2) The physiological function and/or functionality of most of the transcriptomically enriched gene products has not been assessed. Whilst a role for Piezo2 expressing cells for colonic transit is convincingly demonstrated, the nature of the mechanical stimulus or the stimulus-secretion coupling downstream of Piezo2 activation is not clear.

      While we have not investigated the mechanical forces involved in activating Piezo2, we can at least say that physiological mechanical stimulation activates Piezo2, as we measured fecal pellet output in the DTR experiments. 

      Reviewer #2 (Recommendations For The Authors):

      (1) Please state (even more) clearly if/that the apparently GFP+/Tph1+ cells which clustered with the GFP- cells (Suppl. Fig1d/e) were excluded from the subsequent analysis. The detectable Chg-a/b expression in the GFP- cells in Suppl. Fig1f seems to suggest that these (if they have been included in the GFP- group here) are genuine ECs. How do these cells relate to the non-EC cells in Fig1d, which seem to lack Tph1 expression? And given the information in the methods, what %age of these cells derived from the ileum?

      To clarify, data shown in Suppl. Fig 1d/e/f was from our first single cell profiling experiment whereas our subsequent clustering analysis utilizes data from a second (independent) single cell profiling experiment (e.g. Fig1d). 

      In the first profiling experiment, 23% of GFP<sup>+</sup> cells clustered with GFP<sup>-</sup> cells, and for the purposes of Suppl. Figures 1d/e/f, we called these “non-ECs”. In the second profiling experiment (e.g. shown in Fig 1d) we performed a more detailed cluster analysis focusing on only GFP<sup>+</sup> cells. In this second experiment, 19% of GFP<sup>+</sup> cells were identified as “non-EC cells” based on the presence of markers for stem cells, transit amplifying cells (TACs), immature enterocytes, mature enterocytes, colonocytes, T lymphocytes and mucosal mast cells (see Fig 1d and Suppl. Fig 1g). Similar to the first profiling dataset, many of the GFP<sup>+</sup> “non-EC cells” in the second dataset express Tph1, Chga, and Chgb, generally at lower levels than the “EC cells” (Suppl. Fig1i). It is possible that the stem cell and transit amplifying cell clusters are cells that are differentiating into EC cells. However, given that they have not fully committed to the lineage yet, we do not consider it appropriate to classify them as “EC cells”. With regards to the other “non-EC” clusters, we do not think that the expression of EC cell marker genes (Tph1, Chga, and Chgb) is evidence enough to call them genuine “EC cells” given the concurrent expression of markers of other lineages (e.g. enterocyte and mast cell markers Suppl. Fig 1g). The expression of Tph1 in murine mast cells is known, however the expression in enterocytes is unexpected and could be a result of imperfect/incomplete differentiation. Since the ileum was not included in the second profiling experiment we do not think the GFP<sup>+</sup> “non-EC cells” are an artifact from the ileum. 

      We have made some adjustments in the first section of the results to clarify some thoughts on this matter:

      “It is possible that some GFP is expressed in cells that have not yet fully committed to the EC lineage, or that there is some expression in cells outside this lineage, for example, in mast cells. Given the small sample size, we did not further investigate these cells in this dataset. In Supplementary Figures 1 d and f we refer to the GFP<sup>+</sup> cells that clustered with the GFP<sup>-</sup> cells as “non-EC cells”.”

      “It is possible that the stem cell and transit amplifying cell clusters include cells that are in the process of differentiating into EC cells. However, given that they have not fully committed to the lineage, we do not consider it appropriate to classify them as “EC cells” for the purposes of analyzing EC cell types in this study.”

      (2) The authors state: "Notably, OSR2 and HOXB13 were restricted to the ileum and rectum respectively in humans (Fig. 1f)." - the statement regarding OSR2 seems too strong, given that only the ileal part of the human small intestine was examined and that there is a small signal in the proximal colon in Figure 1f.

      Thanks, we have made the following amendment:

      "Notably, OSR2 and HOXB13 were preferentially enriched in the ileum and rectum respectively in these human samples (Fig. 1f)."

      (3) Please clarify Suppl Fig2g/h labelling as villus and crypt enrichment ("...enrichment in villus clusters (g) or crypt clusters (h)."), when enrichment for some genes in cluster 4 is shown in both g and h. Why was duodenal cluster 6 excluded from this subset of data?

      We suspect (although have not proven) that cluster 4 is at a later stage in maturation/migration than cluster, as indicated by a somewhat ‘middle ground’ level of Sct expression, and generally being ‘in between’ the villus clusters and cluster 5 in expression levels of differentially expressed genes shown in Suppl Fig 2g/h. We have added the following comment to the figure legend to clarify this. We have not included cluster 6 as it is transcriptionally quite distinct from the other clusters:

      “Note that cluster 4 shares some features in common with crypt and villus clusters and may represent cells at an intermediate stage of development.”

      (4) "Using smRNA-FISH, we further mapped Olfr558 and Il12a transcripts to a separate subset of EC cells expressing Cpb2 (Fig. 4b,c), confirming the presence of two subpopulations of EC cells associated with different physiological roles in the proximal colon." - Claiming populations with different physiological functionality seems a strong statement given the relatively weak Cpb2 signals observed and that mRNA detection necessarily is a transcriptomic time limited snap-shot. Please reformulate.

      We have made the following revision:

      “Using smRNA-FISH, we further mapped Olfr558 and Il12a transcripts to a separate subset of EC cells expressing Cpb2 (Fig. 4b,c), supporting the idea that there are subpopulations of EC cells in the proximal colon with gene transcripts associated with different physiological roles.”

      (5) What are the white signals in the overlay in Fig5a, given that the Piezo1 probe (white) apparently did not give any staining by itself? Please consider a positive control for the Piezo1 probe.

      The white signals in the overlay are Piezo1 staining that we do observe at what we consider background levels (also visible in the single-channel image).

      (6) "Systematic administration of DT led to lethality in the Piezo2-DTR mice within 12 hours, but not in the Rosa26LSL-DTR or Piezo2-cre mice (data not shown), likely due to the essential function of Piezo2 in respiration" - presumably this should be corrected to "Systemic administration ...".

      Thanks, this has been corrected to "Systemic administration ...".

      (7) "Although gastric emptying (GE) was not affected in the Piezo2-DTR animals after DT treatment, small intestine transit (SIT) time, a measurement to assess the motility of small intestine, presented a small but statistically significant slowdown in the former group (Fig. 6g,h), suggesting that some Piezo2+ cells in the small intestine were depleted." - alternatively there could, of course, be a slowing of SIT in response to slower colonic transit independent of small intestinal epithelial Piezo2 or 5HT - to me this seems more likely given that even proximal colonic cells are spared in Fig6c and this should be discussed.

      Thanks, that is a good point. We have made an amendment, which is shown in response to reviewer 1.

      (8) In the context of the Villin-Cre experiments it should be discussed that other colonic EECs although express Piezo2, which might contribute to the observed phenotypes.

      In our study, 97.7% of Piezo2+ cells in the distal colon had detectable Tph1 expression, suggesting that there is not a significant degree of overlap with other EEC types.

      (9) MC4R is several times referred to as a nutrient-sensing moeity (e.g. in the discussion: "...and receptors associated with nutrient sensing (Casr and Mc4r), ...") - whilst the melanocortin system is important for nutrient homeostasis, MC4R is itself not a "nutrient sensor", a term usually reserved for the detection of macronutrients, such as amino acids, fatty acids, and monosaccharides; please reformulate. 

      We have amended this to “nutrient sensing and homeostasis”.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The objective of this study was to infer the population dynamics (rates of differentiation, division, and loss) and lineage relationships of clonally expanding NK cell subsets during an acute immune response.

      Strengths:

      A rich dataset and thorough analysis of a particular class of stochastic models.

      Weaknesses:

      The stochastic models used are quite simple; each population is considered homogeneous with first-order rates of division, death, and differentiation. In Markov process models such as these, there is no dependence of cellular behavior on its history of divisions. In recent years models of clonal expansion and diversification, in the settings of T and B cells, have progressed beyond this picture. So I was a little surprised that there was no mention of the literature exploring the role of replicative history in differentiation (e.g. Bresser Nat Imm 2022), nor of the notion of family 'division destinies' (either in division number or the time spent proliferating, as described by the Cyton and Cyton2 models developed by Hodgkin and collaborators; e.g. Heinzel Nat Imm 2017). The emerging view is that variability in clone (family) size may arise predominantly from the signals delivered at activation, which dictate each precursor's subsequent degree of expansion, rather than from the fluctuations deriving from division and death modeled as Poisson processes.

      As you pointed out, the Gerlach and Buchholz Science papers showed evidence for highly skewed distributions of family sizes and correlations between family size and phenotypic composition. Is it possible that your observed correlations could arise if the propensity for immature CD27+ cells to differentiate into mature CD27- cells increases with division number? The relative frequency of the two populations would then also be impacted by differences in the division rates of each subset - one would need to explore this. But depending on the dependence of the differentiation rate on division number, there may be parameter regimes (and time points) at which the more differentiated cells can predominate within large clones even if they divide more slowly than their immature precursors. One might not then be able to rule out the two-state model. I would like to see a discussion or rebuttal of these issues.

      We thank the reviewer for the insightful comment. We are currently in the process of developing alternate models based on the above comment and the references (Bresser Nat Imm 2022 and Heinzel Nat Imm 2017). We plan to include the results from the analysis in the revised version.

      Reviewer #2 (Public review):

      Summary:

      Wethington et al. investigated the mechanistic principles underlying antigen-specific proliferation and memory formation in mouse natural killer (NK) cells following exposure to mouse cytomegalovirus (MCMV), a phenomenon predominantly associated with CD8+ T cells. Using a rigorous stochastic modeling approach, the authors aimed to develop a quantitative model of NK cell clonal dynamics during MCMV infection.

      Initially, they proposed a two-state linear model to explain the composition of NK cell clones originating from a single immature Ly49+CD27+ NK cell at 8 days post-infection (dpi). Through stochastic simulations and analytical investigations, they demonstrated that a variant of the two-state model incorporating NK cell death could explain the observed negative correlation between NK clone sizes at 8 dpi and the percentage of immature (CD27+) NK cells (Page 8, Figure 1e, Supplementary Text 1). However, this two-state model failed to accurately reproduce the first (mean) and second (variance and covariance) moments of the measured CD27+ and CD27- NK cell populations within clones at 8 dpi (Figure 1g).

      To address this limitation, the authors increased the model's complexity by introducing an intermediate maturation state, resulting in a three-stage model with the transition scheme: CD27+Ly6C- → CD27-Ly6C- → CD27-Ly6C+. This three-stage model quantitatively fits the first and second moments under two key constraints: (i) immature CD27+ NK cells exhibit faster proliferation than CD27- NK cells, and (ii) there is a negative correlation (upper bound: -0.2) between clone size and the fraction of CD27+ cells. The model predicted a high proliferation rate for the intermediate stage and a high death rate for the mature CD27-Ly6C+ cells.

      Using NK cell reporter mice data from Adams et al. (2021), which tracked CD27+/- cell population dynamics following tamoxifen treatment, the authors validated the three-stage model. This dataset allowed discrimination between NK cells originating from the bone marrow and those pre-existing in peripheral blood at the onset of infection. To test the prediction that mature CD27- NK cells have a higher death rate, the authors measured Ly49H+ NK cell viability in the mice spleen at different time points post-MCMV infection. Experimental data confirmed that mature (CD27-) NK cells exhibited lower viability compared to immature (CD27+) NK cells during the expansion phase (days 4-8 post-infection).

      Further mathematical analyses using a variant of the three-stage model supported the hypothesis that the higher death rate of mature CD27- cells contributes to a larger proportion of CD27- cells in the dead cell compartment, as introduced in the new variant model.

      Altogether, the authors proposed a three-stage quantitative model of antigen-specific expansion and maturation of naïve Ly49H+ NK cells in mice. This model delineates a maturation trajectory: (i) CD27+Ly6C- (immature) → (ii) CD27-Ly6C- (mature I) → (iii) CD27-Ly6C+ (mature II). The findings highlight the highly proliferative nature of the mature I (CD27-Ly6C-) phenotype and the increased cell death rate characteristic of the mature II (CD27-Ly6C+) phenotype.

      Strengths:

      By designing models capable of explaining correlations, first and second moments, and employing analytical investigations, stochastic simulations, and model selection, the authors identified the key processes underlying antigen-specific expansion and maturation of NK cells. This model distinguishes the processes of antigen-specific expansion, contraction, and memory formation in NK cells from those observed in CD8+ T cells. Understanding these differences is crucial not only for elucidating the distinct biology of NK cells compared to CD8+ T cells but also for advancing the development of NK cell therapies currently under investigation.

      Weaknesses:

      The conclusions of this paper are largely supported by the available data. However, a comparative analysis of model predictions with more recent works in the field would be desirable. Moreover, certain aspects of the simulations, parameter inference, and modeling require further clarification and expansion, as outlined below:

      (1) Initial Conditions and Grassmann Data: The Grassmann data is used solely as a constraint, while the simulated values of CD27+/CD27- cells could have been directly fitted to the Grassmann data, which assumes a 1:1 ratio of CD27+/CD27- at t = 0. This approach would allow for an alternative initial condition rather than starting from a single CD27+ cell, potentially improving model applicability.

      We thank the reviewer for this comment. We are working on performing the above analysis and plan to include results from the analysis in the revised manuscript.

      (2) Correlation Coefficients in the Three-State Model: Although the parameter scan of the three-state model (Figure 2) demonstrates the potential for achieving negative correlations between colony size and the fraction of CD27+ cells, the authors did not present the calculated correlation coefficients using the estimated parameter values from fitting the three-state model to the data. Including these simulations would provide additional insight into the parameter space that supports negative correlations and further validate the model.

      We will include the above calculation in the revised manuscript.

      (3) Viability Dynamics and Adaptive Response: The authors measured the time evolution of CD27+/- dynamics and viability over 30 days post-infection (Figure 4). It would be valuable to test whether the three-state model can reproduce the adaptive response of CD27- cells to MCMV infection, particularly the observed drop in CD27- viability at 5 dpi (prior to the 8 dpi used in the study) and its subsequent rebound at 8 dpi. Reproducing this aspect of the experiment is critical to determine whether the model can simultaneously explain viability dynamics and moment dynamics. Furthermore, this analysis could enable sensitivity analysis of CD27- viability with respect to various model parameters.

      We will include some discussion of potential mechanisms of cell viability in this experiment.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study introduces a novel therapeutic strategy for patients with high-risk HER2-positive breast cancer and demonstrates that the incorporation of pyrotinib into adjuvant trastuzumab therapy can improve invasive disease-free survival.

      Strengths:

      The study features robust logic and high-quality data. Data from 141 patients across 23 centers were analyzed, thereby effectively mitigating regional biases and endowing the research findings with high applicability.

      Weaknesses:

      (1) Introduction and Discussion: Update the literature regarding the efficacy of pyrotinib combined with trastuzumab in treating HER2-positive advanced breast cancer.

      Thank you for this helpful suggestion. The literature regarding the efficacy of pyrotinib combined with trastuzumab in treating HER2-positive advanced breast cancer referenced in our manuscript was the PHILA study, but we mistakenly cited its corrections (reference 14). We revised this reference as suggested.

      Changes in the text: Page 6, line 347-353.

      (2) Did all the data have a normal distribution? Expand the description of statistical analysis.

      As the sample size increases, the sampling distribution of the mean follows a normal distribution even when the underlying distribution of the original variable is non-normal, allowing the use of a normal distribution to calculate their confidence interval. We believe it is unnecessary to specifically describe whether the data followed a normal distribution in this study. Therefore, we did not revise the statistical section.

      (3) The novelty and innovative potential of your manuscript compared to the published literature should be described in more detail in the abstract and discussion section.

      Thank you for your suggestion. The word count for abstracts recommended by eLife is around 250 words. Therefore, we did not compare the present study with published literature in detail in the abstract, as this might exceed the recommended word limit. We revised the discussion section to provide a more detailed comparison between published literature and our study, and to analyze the novelty of our findings accordingly.

      Changes in the text: Page 11, line 177-180.

      (4) Figure legend should provide a bit more detail about what readers should focus on.

      Thank you for this suggestion. We did not revise the figure legend of Figure 1, as it provides a common description. For the figure legend of Figure 2, we added the method used to estimate the invasive disease-free survival curve. For the figure legend of Figure 3, we added more details regarding methods and numbers of patients in different subgroups.

      Changes in the text: Page 7, line 463-472.

      (5) P-values should be clarified for the analysis.

      Thank you for this comment. All subgroup analyses were post-hoc and lacked predefined hypotheses. Kaplan-Meier curves were used to present the subgroup results with the aim of performing descriptive statistics rather than inferential statistics. Therefore, we did not calculate their p-values.

      (6) The order (A, B, and C) in Figure 3 should be labeled in the upper left corner of the Figure.

      Thanks for this comment. We revised Figure 3 accordingly.

      Changes in the text: Figure 3.

      Reviewer #2 (Public review):

      In this manuscript, Cao et al. evaluated the efficacy and safety of 12 months pyrotinib after trastuzumab-based adjuvant therapy in patients with high-risk, HER2-positive early or locally advanced breast cancer. Notably, the 2-year iDFS rate reached 94.59% (95% CI: 88.97-97.38) in all patients, and 94.90% (95% CI: 86.97-98.06) in patients who completed 1-year treatment of pyrotinib. This is an interesting and uplifting results, given that in ExteNET study, the 2-year iDFS rate was 93.9% (95% CI 92·4-95·2) in the 1-year neratinib group, and the 5-year iDFS survival was 90.2%, and 1-year treatment of neratinib in ExteNET study did not translate into OS benefit after 8-year follow-up. In this case, readers will be eagerly anticipating the long-term follow-up results of the current PERSIST study, as well as the results of the phase III clinical trial (NCT03980054).

      I have the following comments:

      (1) The introduction of the differences between pyrotinib and neratinib in terms of mechanism, efficacy, resistance, etc. is supposed to be included in the text so that authors could better highlight the clinical significance of the current trial.

      Thanks for this comment.

      In terms of mechanism, pyrotinib and neratinib are both irreversible pan-HER tyrosine kinase inhibitors that target HER1, HER2 and HER4 by covalently binding to ATP binding sites. Overall, the similarities between them far outweigh the differences. This is the reason why we referenced the ExteNET study, which used neratinib as extended adjuvant therapy, for the sample size calculation.

      Regarding efficacy, currently, no head-to-head studies comparing efficacy of pyrotinib and neratinib have been reported, and the comparison of the efficacy between them using historical data from different studies have inevitable bias due to differences in treatment regimens, study populations, assessment criteria, etc.

      Regarding resistance, only a few studies with small sample size and case reports have investigated their mechanisms of resistance, and the underlying mechanisms have not been fully understood.

      Collectively, we believe that the similarities in the mechanisms of these two drugs far outweigh their differences, and their efficacy and resistance cannot be reasonably compared. Moreover, the sample size calculation was conducted based on the premise that the two drugs are similar. After careful consideration, we believe that overanalyzing the differences between neratinib and pyrotinib would shift the focus of this manuscript. Therefore, we did not discuss their differences in the article.

      (2) Please make sure that a total of 141 patients were enrolled in the study, 38 patients had a treatment duration of less than or equal to 6 months, and a total of 92 and 31 patients completed 1-year and 6-month treatment of extended adjuvant pyrotinib, respectively, which means 7 patients had a treatment duration of fewer than 6 months.

      Thank you for raising this relevant question. There were 141 patients enrolled in the study and received study treatment, and a total of 92 and 31 patients completed 1-year and 6-month treatment of extended adjuvant pyrotinib. Of the remaining 18 patients, 16 patients had a treatment duration of fewer than 6 months, and 2 patients had a treatment duration longer than 6 months but less than 1 year.

      (3) The previous surgery history should be provided, and how many patients received lumpectomy, and mastectomy.

      Thank you for your suggestion. All patients in the present study underwent breast cancer surgery. Unfortunately, we did not collect data on the specific types of surgeries performed.

      Recommendations for the authors:

      Reviewing Editor:

      I have carefully reviewed the content and findings of your study, and while I recognize the potential impact of your research, there are several critical aspects that need to be addressed to fully appreciate the contribution of your work.

      Significance of Findings:

      Your study provides valuable insights into the efficacy and safety of pyrotinib as an extended adjuvant therapy following trastuzumab-based treatment in patients with high-risk HER2-positive breast cancer. The 2-year invasive disease-free survival (iDFS) rate of 94.59% is notably high and suggests that pyrotinib could be a promising option for patients who have completed trastuzumab therapy. This is particularly significant given the unmet need for effective therapies that can extend disease-free survival in this patient population.

      Strength of Evidence:

      The strength of the evidence presented is supported by the multicenter phase II trial design, which included a substantial number of patients across 23 centers in China. The rigorous methodology, including the use of the Kaplan-Meier method for estimating iDFS and the application of the Brookmeyer-Crowley method for confidence intervals, adds to the credibility of your findings. However, the single-arm study design without a control group limits the ability to draw definitive conclusions about the comparative effectiveness of pyrotinib.

      In conclusion, your study presents intriguing findings that contribute to the field of breast cancer therapy. However, the current evidence, while suggestive of pyrotinib's potential, requires further validation in controlled trials to confirm its efficacy and optimal use in clinical practice. I encourage you to address the issues raised and consider resubmitting a revised version of your work.

      Thank you for your comments. We acknowledge the limitation of our single-arm study design without a control group and agree that it restricts definitive conclusions about the comparative effectiveness of pyrotinib. This limitation was noted in our manuscript. Furthermore, we have revised our manuscript in response to the issues raised by the reviewers.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewing Editor Note:

      The two reviewers have provided thoughtful and constructive feedback that we hope will be of use to the authors to improve their manuscript.

      Reviewer #1 (Recommendations For The Authors):

      The section on "Circuit evolution by duplication and divergence" (starting on line 622) should cite:

      Chakraborty, Mukta, and Erich D. Jarvis. "Brain evolution by brain pathway duplication." Philosophical Transactions of the Royal Society B: Biological Sciences 370, no. 1684 (2015): 20150056.

      and

      Roberts, Ruairí JV, Sinziana Pop, and Lucia L. Prieto-Godino. "Evolution of central neural circuits: state of the art and perspectives." Nature Reviews Neuroscience 23, no. 12 (2022): 725-743.

      It should also reference that the concept originated from genetics:

      Ohno, Susumu. Evolution by gene duplication. Springer Science & Business Media, 1970

      These papers have now been cited: “Duplication and divergence of circuits was also proposed as a possible mechanism for the evolution of brain pathways for vocal learning in song-learning birds, spoken language in humans [@chakraborty2015brain] and other circuits [@roberts2022evolution].”

      and: Our reconstructions identified a potential case for circuit evolution by duplication and divergence [@tosches2017developmental; @roberts2022evolution], a concept that originated from genetics [@ohno1970evolution].

      The terms outgoing and incoming synapses were confusing. The more common terminology is pre and postsynaptic elements. For example, in Fig 1, the label Sensory neuron outgoing and incoming was confusing because I mistakenly thought it was referring to the neurons and I could not figure out what an outgoing sensory neuron was.

      We have now changed ‘incoming’ to ‘postsynaptic’ and ‘outgoing’ to ‘presynaptic’.

      In L-O, there should be an indicator on the figures that they refer to the locations of synaptic sites, as it does in F.

      We have now replaced the labels ‘incoming’ and ‘outgoing’ with ‘presyn’ and ‘postsyn’ for Figure 1 panels L-O to make it clear that these are synaptic sites.

      Figure 2. - last panel of muscle motor - it would be helpful to have names of muscles instead of just having 5 'muscle motor' of different colors

      Each muscle-motor module contains a large number and type of muscles and motor neurons. Labelling them by the name of individual muscle types is therefore not practical at this resolution. The three-day-old Platynereis larvae has 53 different muscle cell types. Their anatomy and classification, together with the details of motoneuron innervation have been described in detail elsewhere (Jasek et al 2022 https://doi.org/10.7554/eLife.71231).

      Figure 3. D and E are hard to understand from the figure; The shading is the number of neurons; that scale should be shown somewhere.

      We are not sure we understand the comment. These plots are histograms that show the distribution of the number of cells across categories. The y axis is the number of neuronal or non-neuronal cell types in each bin.

      PageRank is an algorithm that Google uses. In Figure 4, it seems to be used to indicate centrality. A brief explanation in the text would be useful.

      We have now added an explanation of the centrality measures used. “PageRank is an algorithm used by Google to rank webpages and scores the number and quality of the incoming links of a node [@page1999pagerank], betweenness centrality measures the number of shortest paths that pass through a node in a graph [@freeman1977set],  and authority measures the extent of inputs to a node by hubs in a network [@kleinberg1999authoritative].”

      Figure 5. The labels on some images are not clear. They are on top of each other and elements of the figure

      We have now moved the position of the labels to minimise overlap. We have also added an interactive html file with the network shown in Figure 5 panel A to help the exploration of the network. Added: “Figure 5—source data 1. Interactive html file with the network shown in panel A.”

      There are differences in line thickness in several figures, such as Figure 9 (A and B) and Figure 12 (D and I and N) that presumably means numbers of synaptic contacts. It would be useful to know what the scale is.

      We have now added labels of line thickness to the networks in Figure 4, Figure 5 – figure supplement 2, Figure 9, Figure 12, Figure 7 – figure supplement 1, Figure 15 and Figure 16.

      Reviewer #2 (Recommendations For The Authors):

      (1) Suggestions for improved or additional experiments, data, or analyses.

      (2) Recommendations for improving the writing and presentation.

      Perhaps we require a comprehensive inventory detailing all the innovations compared to previous, more limited publications, particularly in relation to the 2017 publication and 2020 preprint.

      We have provided this detail in Supplementary table 1 that lists all cell types. We included the reference for previously published cell types in the ‘reference’ column except for those that were also described in the 2020 preprint. The current manuscript is a greatly revised and extended version of the original 2020 preprint. In addition, in the online connectome database (https://catmaid.jekelylab.ex.ac.uk), all cell types that were previously published are annotated with the notation ‘FirstAuthor_et_al_year’.

      It is a bit frustrating given the huge amount of graphs, analyses, tables, and networks that are presented in the manuscript, we do not see much of the original EM pictures except for a few examples of cell type blow-ups. It would be useful for future workers in the field to have eventually a sort of compendium of how the authors actually recognized each cell type, without having to connect to the original CATMAID annotation.

      Most neuronal cell types (with the exception of some characteristic sensory neurons such as photoreceptor cells and mechanosensory cells) were not classified based on ultrastructural features, but on features of neurite morphology, body position and synaptic connectivity. It would be therefore not possible to represent most of the cell types with a single layer of an original EM picture. However, in order to make the morphological skeleton characteristics more accessible to the reader, we have now added a comprehensive website ( https://jekelylab.github.io/Platynereis_connectome/)  including all cell types together with their interactive 3D rendering.

      “Interactive 3D morphological renderings of each cell type together with their main annotations can also be explored on a webpage (https://jekelylab.github.io/Platynereis_celltype_compendium.html).”

      The Platynereis 3-day larva is obviously only one transient stage in the developmental cycle of the animal, and it is a very specialized stage (called metatrochophore in annelid jargon), during which the animal does not yet feed, relying instead on its copious yolk. Moreover, it is a stage whose purpose is limited to dispersion, with no complex behavior or social interaction that later stages are going to display. While this work represents a substantial leap forward in understanding neural integration in a whole animal, it must be kept in mind that compared to an adult or growing juvenile, there are likely a considerable number of cells, cell types, and neural modules missing in this larva. This is clearly not a weakness of this study per se, but readers may find it interesting to be presented with this perspective and therefore more biological details about the Platynereis life cycle and associated behaviors.

      Obviously, understanding how the constantly developing nervous system of a worm-like Platynereis gets reshuffled in time will be a great subject to investigate. The authors mention that the 3-day larva displays more than 4000 neuronal cells not yet differentiated. Readers may be interested in their location. Are there niches of neural stem cells? A description of what may be missing from the larva in terms of cell types compared to the adult may be useful.

      We have now added further explanation into the Introduction about the early nectochaete larval stage: “The early nectochaete larva represents a transient dispersing stage in the life cycle of Platynereis. During this stage the larvae do not feed yet but rely on maternally provided yolk. Compared to the juvenile and adult stages it is expected that a considerable number of cell types will be only developing or completely missing at this stage. Three-day-old larvae do not yet have sensory palps and other sensory appendages (cirri), they do not crawl or feed and lack visceral muscles and an enteric nervous system.”

      The location of developing neurons is shown in Figure 3—figure supplement 1 panel I.

      Juvenile or adult cell types have not yet been described in any detail that is close to the level of detail we now provide for the nectochaete larva, therefore a meaningful comparison of cell-type complements across stages is not yet feasible.

      (3) Minor corrections to the text and figures.

      Figure 1: "outgoing" not "outgoung" in panels M, O, Q.

      Corrected

      Line 128: We may need a precise definition of "cable length".

      We have included a definition of cable length in the Methods section under a new subheading ‘Quantitative analysis of neuron morphologies’.

      In all Figures: information on the orientation of the worm's view is sometimes missing in figures, which could make interpretation difficult for the reader, especially for anterior views with no D/V indication. The authors should indicate the orientation for each panel or provide a general orientation in the figure if all panels are oriented the same.

      We have now added D/V or A/P indication to all figures.

      Figure 23: "right view, left side" is confusing.

      We have changed this to “ Each panel shows a ventral (left panel) and a left-side view (right panel).”

      Line 406 : the first mention of the Platynereis cryptic segment, as far as I know, is Saudemont et al, 2008.

      Thank you for pointing this out. We added the citation.

      Figure 45: descending and decussating, 2nd and 3rd line of the legend.

      Corrected

      The format of data source tables is not homogeneized with some files in Excel format and others in plain comma format.

      We have homogeneized the file formats of the supplements and source data. We have .csv files or .rds (R data format) files for the more complex data, such as tibble graphs that cannot be represented in a simple .csv format.

    1. Author Response:

      Reviewer #1 (Public review):

      […] Strengths:

      The strategies used for increasing PCR sensitivity offer the potential for enhancing treatment monitoring and understanding the dynamics of parasite-host interactions in chronic Chagas disease.

      Weaknesses:

      While the study offers valuable insights for research in T.cruzi infection dynamics and monitoring of trypanocidal drugs efficacy, its broader adoption depends on the development of cost-effective and scalable alternatives to labor-intensive techniques such as sonication, currently required for DNA fragmentation. Additionally, the reliance on blood cell pellets and the DNA fragmentation protocol introduces extra processing steps, which may not be feasible for many clinical laboratories, particularly in resource-limited endemic areas that require simpler and more streamlined procedures.

      We agree that this methodology is likely to be used primarily as a research tool and for selective use in the field (e.g. drug trials) and unlikely to be standard in many clinical labs, irrespective of resources. We note the protocol does not require cell pellets (although that fraction provides the highest sensitivity) and that the fragmentation step is not at all labor-intensive. But to achieve consistent detection across the range of parasite burden known to occur in chronic T. cruzi infection, appropriately processed DNA from higher volumes of blood than are now routinely used for detection of T. cruzi, will be required.

      Reviewer #2 (Public review):

      […] Strengths:

      The primary strength of this study lies in its methodological novelty, particularly the combination of multiple parallel PCR reactions and DNA fragmentation to enhance sensitivity. It is a sort of brute-force method for detecting the parasite. This approach promises the detection of parasitic DNA at levels significantly lower than those achievable with standard qPCR methods. Additionally, the authors demonstrate the utility of this method in tracking parasitemia dynamics and post-treatment responses in macaques and dogs, providing valuable insights for both research and clinical applications.

      Weaknesses:

      (1) Methodological Concerns on detection and quantification limits

      Some methodological inconsistencies and limitations were observed that merit consideration. In Figure 1, there is a clear lack of consistency with theoretical expectations and with the trends observed in Figure 4A. Based on approximate calculations, having 10^-7 parasite equivalents with 100,000 target copies per parasite implies an average of 0.01 target copies per reaction. This would suggest an amplification rate of approximately 1 in 100 reactions, yet the observed 30% amplification appears disproportionately high. In addition, Figure 4A (not fragmented) shows lower values of positivity than Figure 1 for 10^-5 and 10^-6 dilutions showing this inconsistency among experiments. Some possible explanations could account for this inconsistency: (1) an inaccurate quantification of the starting number of parasites used for serial dilutions, or (2) random contamination not detected by negative controls, potentially due to a low number of template molecules.

      Similarly, Figure 5B presents another inconsistency in theoretical expectations for amplification. The authors report detecting amplification in reactions containing 10^-9 parasites after DNA fragmentation. Based on the figure, at least 3 positives (as I can see because raw data is not available) out of 388 PCRs are observed at this dilution. Assuming 100,000 copies of satellite DNA per parasite, the probability of a single copy being present in a 10^-9 dilution is approximately 1/10,000. If we assume this as the probability of amplification of a PCR (an approximation), by using a simple binomial calculation, the probability of at least 3 positive reactions out of 388 is approximately 9.39 x 10^-6 (in ideal conditions, likely lower in real-world scenarios). This translates to a probability of about 1 in 100,000 to observe such frequency of positives, which is highly improbable and suggests either inaccuracies in the initial parasite quantification or issues with contamination. In addition, at 10^-6 PE/reactions (the proposed limit of quantification) it is observed that 40% of repetitions are amplified. The number of repetitions is not specified but probably more than 50 according to the graph. Such dilution implies 0.1 targets per reaction (assuming 100.000 copies divided by 10^6), which means a total of 5 target molecules to distribute among the reactions (0.1 targets multiplied by 50 reactions). It seems highly improbable that 40% of the reactions (20/50) would amplify under the described conditions. Even considering 200.000 target copies per parasite implies 0.2 targets per reaction and an average of 10 molecules to distribute among 50 reactions. The approximate probability of the observation of at least 20/50 positives can be calculated by determining the probability of a reaction to receive targets by assuming a random distribution of the targets among the tubes, p= 1 - (1 - 1/50)^10, and then by using a binomial distribution to determine the probability that at least 20 reactions receive at least one target copy. The probability of at least 20/50 positive reactions in a dilution of 10^-6 parasites (200.000 target copies per parasite) is 0.00028. Consequently, the observed result is highly unlikely.

      We disagree with the reviewer on both of these points. 

      First, the mean (S.D.) Cq values of the 10-3 PE unfragmented dataset in Figure 1 (40 replicates) and Figure 4a (88 replicates) are nearly identical at 30.02 (0.5813) and 30.21 (1.071), respectively, demonstrating a highly accurate initial quantification of parasites to make these 2 separate dilution series (reviewer’s point 1.1).  At this concentration of parasites in blood, and with unfragmented DNA, each aliquot for PCR has an equal chance of receiving some parasite DNA (hence all reactions are positive) and a reasonably good chance of receiving similar amounts of parasite DNA (the Cq values cluster with relatively low S.D.).  However further dilutions from this parasite input result in some aliquots that receive no parasite DNA and a much wider variation in the amount of parasite DNA/aliquot in samples that are positive (Cq mean (SD) of 34.47 (2.732) for 10-4 in Figure 1).  This result demonstrates that these dilution series do not follow binomial distribution as suggested by the reviewer. This is likely because each template for amplification is not independently distributed. Instead, they are known to be clustered (on individual chromosomes or chromosome fragments) in the DNA. Indeed, this observation of widely varying Cq values in dilutions below 10-3 strongly suggested this clustering and was the impetus for fragmenting the DNA (see manuscript line 209).  The impact of declustering achieved by DNA fragmentation supports this conclusion (when the DNA is fragmented, 100% of aliquots are positive at 10-4 PE, 10X less than in unfragmented samples, and the Cq values are tightly grouped (mean 33.47, S.D. 0.3358), indicating the unequal distribution of targets upon dilution, rather than counting, pipetting errors or contamination as responsible for the lack of a binomial distribution of targets with increasing dilution. Thus, when entities are clustered and can’t be fully declustered, a simple binomial (or Poisson) distribution of counts cannot be assumed in the serial dilutions.  Clustering results in more complicated distribution patterns, and it becomes difficult to predict precisely how these clusters will distribute from one dilution to the next (and thus differences in proportions of positives in different dilution series, as observed herein).

      This clustering and unequal distribution of amplification targets also addresses the reviewer’s second comment with respect to the unlikelihood of detecting at least one positive at a high dilution.  If we accept the reviewer’s estimate of 100,000 copies of target per parasite, then at 10-4 PE/aliquot - a dilution at which all aliquots are PCR positive in the fragmented samples (Figures 4a and 5b) – each aliquot would be expected to have on average 10 target sequences and the chances of detecting at least one positive reaction from 400 aliquots would be respectively 98% for the 10-7 dilution, 33% for 10-8 and 4% for 10-9 PE per aliquot. These percentages would change (increase) with a higher copy number of targets per genome, and if the targets are still clustered to some degree (which we would expect they would be even in the fragmented DNA).  Thus, the chances of detecting positive PCRs at 10-9 PE is low, but it is not “highly improbable”. 

      Taking the reviewer’s second example of the frequency of positive reactions at 10-6 PE and the assumption of 200,000 target copies per genome (referring to Fig 5B, we believe), the mean template copies per aliquot would be 0.2 at this dilution. Assuming a negative binomial distribution of the still clustered templates (although mechanically fragmented, it would be highly unlikely that they would be completely declustered), then the probability of an aliquot being positive at the 10-6 PE dilution would be 16.7%.  Our results in Figure 4A (26%) and Figure 5B (37.5%) are slightly higher but not “highly unlikely” as suggested.

      We do not know the target copy number in the parasites used to make these serial dilution profiles herein but that is certainly different from the copy number in the parasites infecting each of the hosts from which we have analyzed blood.  Thus, we do not propose that this assay can quantify the absolute parasite burden in a host nor do we see a benefit in trying to do so (see paragraph beginning line 384). Such quantification requires assumptions about not only the target copy number in the parasites in a host, but also that fragmentation is 100% efficient, and particularly, that a single or multiple blood samples accurately reflects the whole host parasite burden (clearly shown not to be the case with the data from serial bleeds presented in Figures 3 and 5). But we standby the conclusion that deep-sampling PCR when employed as presented herein, gives an accurate assessment of the presence of infection and relative parasite burden differences between hosts, and in the same hosts over time or under treatment and that the results presented are not compromised by inaccuracies in quantifying parasites for spiked samples or by sample contamination.

      (2) Lack of details on contamination detection

      Additionally, the manuscript does not provide enough details on how cross-contamination was detected or managed. It is unclear how the negative controls (NTCs) and no-template controls were distributed across plates, in terms of both quantity and placement. This omission is critical, as the low detection thresholds targeted in this study increase the risk of false positives by contamination. To ensure reliability and reproducibility, future uses of the technique would benefit from more standardized and clearly documented protocols for control placement and handling.

      We present a section in the Materials and Methods on preventing contamination and a case example when these precautions failed when preparing the dilution standards containing very high numbers of parasites. Directly responding to the reviewer, sixteen no template controls were included in every 384 well assay plate and we never obtained amplification products from those reactions. Additionally, as noted in the manuscript, uninfected macaques were negative on a collective >15,000 PCR reactions.

      We understand the concern about contamination but we believe that we have taken the appropriate precautions and our data fully support that the positives we detect are real positives, not contaminations. It would be reckless to depend on a single positive PCR reaction out of hundreds to conclude that a host is infected; multiple samples must be obtained and analyzed to be certain in such cases, as we show exhaustively with the NHP samples here.

      Rather than adding additional technical protocols such as plate layouts to this manuscript, we believe publishing a STAR Protocol or a similar detailed, step-by-step method paper would be more useful and that is our plan.

      (3) Unclear relevance for treatment monitoring in Humans

      In Figure 7A, the results suggest that the deep-sampling PCR method does not provide a clearly significant improvement over conventional qPCR in humans. Of the 9 samples tested, 6 (56%) were consistently amplified in all or nearly all reactions, indicating these samples could also be reliably detected with standard PCR protocols. Two additional samples were detected only with the deep-sampling approach, increasing sensitivity to 78%; however, these detections might be attributable to random chance given the limited sample size. While the authors acknowledge the small sample size in the discussion, they do not address the fact that a similar increase in sensitivity was reported in citation 5, where only 3 samples were tested with 3 replicates each. This raises an important question: how many PCR reactions are needed in human samples to reach a plateau in detection rates? This issue should be further discussed to contextualize the results and their implications.

      We disagree with the reviewer’s conclusion here.  First, it is not known how the “conventional” PCR would have performed in the human samples used herein as this was not done.  However, it is very likely that it would have performed significantly worse for the following reasons.  “Conventional” PCR for T. cruzi has a number of variations, but the most common approach is to mix whole blood 1:1 with a guanidine:EDTA solution, and then extract DNA for PCR from 100-300 ul of this mix.  Thus, at best, one has the equivalent of 150 ul of blood that is being analyzed for the presence of T. cruzi DNA.  In contrast, in the protocol described herein, we extract DNA from ~5 ml of blood and use aliquots from that DNA for PCR.  Thus, even before fragmenting or deep-sampling, the approach described herein is sampling 33X more blood that the conventional protocol, thus likely increasing by over 30-fold the chances of detecting parasite DNA in blood from an infected subject. The smaller the volume of blood sampled as well as the number of samples obtained greatly impact the ability to detect T. cruzi infection in some hosts.  This is clearly demonstrated in the extensive screening done in NHPs in this study and there is no reason to believe that the situation will be different in humans and dogs.  So the relevance of these enhancements are clear for any host with T. cruzi infection; humans are not unique in this regard.

      We don’t believe there will be a “plateau in detection rates”; individuals are either infected or not and the ability to detect that infection (whether with T. cruzi or any other pathogen) depends on the sensitivity of the test and the quantity of the sample available to be screened.    Perhaps what is being asked is ‘how many PCR reactions have to be performed to be sure that someone is NOT infected?’.  There is not a discrete answer to this and related questions, but by making some assumptions, one can make some estimates.  The approach described herein is approaching single copy target detection and if this is true then one would need to PCR amplify ALL of the DNA from a blood sample to assure detection of that single template copy (so for a 200ug of DNA one might obtain from 5-10 ml of blood, 1600 PCR reactions of 125 ng each; 95% and 99% confidence could be obtained with 1520 and 1584 PCRs, respectively). But any conclusion from this testing applies only to that individual blood sample and we show clearly in the NHP studies that multiple samples have to be analyzed to detect parasite DNA in hosts with very low parasite burden – some samples contain parasite DNA and others do not. Thus hundreds of negative PCRs from a single or even multiple samples is unfortunately not definitive. 

      Such limitations exist for detection of any pathogen.  A more important question for the future may be ‘is there a level of infection below which the risk of disease development is sufficiently low as to not be of concern clinically?’.  Such is the standard in drug-controlled HIV infections, for example. The improvements we document in this work provides the means to answer such questions and additional improvements may be possible as well. But to be absolutely certain that a host is not infected by T. cruzi, one would have to sample some subjects (likely a small minority of the entire pool) multiple times and perform 1000’s of PCR reactions – as we done for the most difficult to detect macaques in this study.

      Despite these limitations, this work represents a promising step forward in the development of highly sensitive diagnostic tools for T. cruzi. It offers a novel foundation for advancing the detection and monitoring of parasitemia, which could significantly benefit Chagas disease research community and clinicians focused on neglected tropical diseases. While addressing the methodological inconsistencies and improving robustness will be critical, this study provides valuable insights and data that could lead to future innovations in parasitological research and diagnostics.

      As discussed in detail above, we do not agree that this study has any methodological inconsistencies nor that it lacks robustness.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Major concerns:

      For studies investigating capsaicin binding to KEAP1, the authors used capsaicin concentrations that are toxic to cells (Figures S1D and 4F, G). In vivo studies were performed only in 3 rats per group. The T-test was used for the comparison of more than two groups. Given the well-known issues with the specificity of the NRF2 antibody, the authors should provide appropriate controls, especially for IF and IHC staining.

      We sincerely appreciate your valuable comments. We repeated the experiments about CCK8 (Figure S1d) and Pull-down (Figure 4g), and then updated the results. In September 2022, GES-1 cells were more sensitive to capsaicin (CAP) because Gibco serum from North America was used. Later, in 2024, we changed the serum from Australia(Gibco: 10099-141), and we found that such GES-1 cells raised better, so we re-ran the test, and the IC50 was seen to be 304.8 μM, so concentrations used in this paper has no obvious toxicity to cells. What’s more, we repeated the Pull-down experiment with more reasonable concentrations of 32 μM and 100 μM, and the results were still in line with expectations. In summary, we concluded that the effect of CAP on GES-1 cells is closely related to the cell state, and that treatments of CAP from 32 to 100 μM can hinder the interaction between NRF2 and the Kelch domain of KEPA1. What’s more, at the cellular level, the experimental concentration of CAP was not more than 32 μM, which is a relatively safe concentration for cells.

      Thank you very much for your comments. We also pay attention to using more repetitions to increase the reliability of the experimental results in animal experiments. Therefore, recently we supplemented the experiment of Nfe2l2Knockout mice in Figure 9 (6 mice per group). Additionally, thank you very much for your comments on the use of T-test analysis, we reviewed the statistics and changed them by one-way ANOVA.

      Finally, thanks to your concern about the specificity of NRF2 antibody, we used commercialized NRF2 antibody which have been KO/KD validated (Cat No. 16396-1-AP, Proteintech) and can be used for IF and IHC staining. Each of our fluorescence result was equipped with Western Blotting in its active form at the size of 105-110 KDa for statistical analysis, the trend was consistent with the experimental results of IF and IHC, which fully proves the correctness of the results presented (Figure 2c and Figure S8j).

      Reviewer #2 (Public Review):

      Weaknesses:

      One major weakness of the study is that plausibility is taken as proof for causality. The finding that capsaicin directly binds to Keap1 and releases Nrf2 from its fate of degradation (in vitro) is taken for granted as the sole explanation for the observed improved gastric health upon alcohol exposure (in vivo). There is no consideration or exclusion of any potential unrelated off-target effect of capsaicin, or proteins other than Nrf2 that are also controlled by Keap1. 

      Another point that hampers full appreciation of the capsaicin effect in cells is that capsaicin is not investigated alone, but mostly in combination with alcohol only.

      Thank you very much for this comment. In the introduction, we clarified as follows: “Currently, experiments conducted in rats have demonstrated that red pepper/capsaicin (CAP) had significant protective effects on ethanol-induced gastric mucosal damage, and the mechanism may be related to the promotion of vasodilation(6,7), increased mucus secretion(8) and the release of calcitonin gene-related peptide (CGRP)(9,10). However, it is noteworthy that whether the antioxidant activity of CAP works has not been fully investigated.” Therefore, we also recognize that CAP does not exert its effects through the KEAP1-NRF2 pathway alone. Your advice is very useful. We further explored the TRPV1 and DPP3 to detect the potential off-target effects of CAP respectively. Capsazepine (CAPZ), which is TRPV1 receptor antagonist did not affect the protection of CAP against GES-1 (Fig S4f and S4g), which may indicate that CAP activation of NRF2 does not have to depend on TRPV1. The binding of CAP with DPP3, containing an ETGE motif and can bind to KEPA1, was detected by BLI, and we found that the K<sub>D</sub> between CAP and DPP3 was 1.653 mM(>100 μM), which may indicate the potential off-target effect of CAP is low because CAP had a strong binding force with KEAP1 about 31.45 μM (Fig S4h and S4i).

      Thank you very much for the comment of another point. Multiple experiments have shown that CAP significantly up-regulates NRF2 in the presence of additional stimuli such as EtOH (Figure 1i),  H<sub>2</sub>O<sub>2</sub> (Figure 1l), PS-341(Figure 2e) and DTT (Figure 4d), which pattern is consistent with our understanding of allosteric regulation and as expected. Especially for the experiments of PS-341 and DTT, we had a group that only adds CAP, and it can be seen that the addition of CAP alone did not significantly up-regulate NRF2, which is completely different from traditional NRF2 activators (especially artificially designed covalent binding peptides which have serious side effects).  

      Reviewer #3 (Public Review):

      Weaknesses:

      While the study provides valuable insights into the molecular mechanisms and in vivo effects of CAP, further clinical studies are needed to validate its efficacy and safety in human subjects. The study primarily focuses on the acute effects of CAP on ethanol-induced gastric mucosa damage. Long-term studies are necessary to assess the sustained therapeutic effects and potential side effects of CAP treatment.

      Furthermore, the study primarily focuses on the interaction between CAP and the KEAP1-NRF2 axis in the context of ethanol-induced gastric mucosa damage. It may be beneficial to explore the broader effects of CAP on other pathways or conditions related to oxidative stress. CAP has been known for its interaction with the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel and subsequent NRF2 signaling pathway activation. Those receptors are also expressed within the gastric mucosa and could potentially cross-react with CAP leading to the observed outcome. Including experiments to investigate this route of activation could strengthen the present study.

      While the design of CAP nanoparticles is innovative, further research is needed to optimize the nanoparticle formulation for enhanced efficacy and targeted delivery to specific tissues.

      Addressing these weaknesses through additional research and clinical trials can strengthen the validity and applicability of CAP as a therapeutic agent for oxidative stress-related conditions.

      Thank you very much for these suggestions. We also believe that CAP is very valuable and promising for protecting EtOH induced gastric mucosal injury, and actively promote patent applications and if conditions permit, longer drug research for biosecurity is essential. Because of the inherently new discovery of the binding of CAP and KEAP1, and the important role of NRF2 in various oxidative stress-related diseases, we used Human umbilical cord mesenchymal stem cells (HUC-MSCs) and  H<sub>2</sub>O<sub>2</sub> to explore the potential broader effects of CAP related to oxidative stress in cells (Figure 1l and 1m). At the same time, we also explored TRPV1 related experiments, and we were surprised to find that inhibiting TRPV1 did not affect the effect of CAP (Supplementary Figure 4f and 4g). We hope that more people can read this article and do more interesting research together.

      Recommendations for the authors:

      Reviewing Editor (Recommendations For The Authors):

      Although this study has been conducted in rats, a direct proof that albumin-coated capsaicin nanoparticles act through activation of Nrf2 in protecting gastric mucosa against alcohol toxicity could be well conducted in commercially available Nrf2-deficient mice.

      Thank you very much for your suggestion and the comment is very constructive for us to improve this paper. We purchased Nrf2-deficient mice (Cat. NO. NM-KO-190433) and performed experiments, and the results showed that knockout mice with Nrf2 were more sensitive to EtOH and the effects of CAP were partially eliminated (Figure 9), which further validated the role of Nrf2-related signaling pathway in EtOH-induced gastric mucosal injury and the therapeutic effect of CAP.

      Reviewer #1 (Recommendations For The Authors):

      Minor concerns include proofreading the paper. Actinomycin is not an inhibitor of translation.

      Thank you for your comment. We have revised “Actinomycin” to “Cycloheximide”.

      Reviewer #2 (Recommendations For The Authors):

      - Please have a careful look at your conclusions: just because two effects happen at the same time and may be plausible explanations for each other, it does not mean that they are really in a causative relationship in your given test system (unless unambiguously proven by additional experiments).

      Your suggestions are very constructive for us to improve this paper.

      We further discussed the role of capsaicin with TRPV1, DPP3 and Nrf2deficient mice, hoping to make our conclusions more credible to some extent. 

      - You may want to frankly discuss other targets of capsaicin (e.g. the TrpV1 receptor) that possibly could also account for your observations, and that binding to Keap1 not only releases Nrf2 from proteasomal degradation.

      Thank you for your comment. As a result, we further explored the TRPV1 and DPP3 to detect the potential off-target effects of CAP respectively. Capsazepine (CAPZ), which is TRPV1 receptor antagonist does not affect the protection of CAP against GES-1 (Fig S4f and S4g). DPP3 with an ETGE motif was detected by BLI, and we found that the K<sub>D</sub> between CAP and DPP3 was 1.653 mM, which may indicate the potential off-target effect of CAP is low (Fig S4h and S4i). At the same time, the activation of NRF2 by non-classical pathways such as CAP regulation of DPP3 or other proteins also deserves more discussion and experimental verification.

      - For Figure 1G it does not become entirely clear what has been done (and thus deduction of conclusions is hampered).

      Thank you for your comment. Network targets analysis (Figure 1g) was performed to obtain the potential mechanism of effects of CAP on ROS. Biological effect profile of CAP was predicted based our previous networkbased algorithm:drug CIPHER. Enrichment analysis was conducted based on R package ClusterProfiler v4.9.1 and pathways or biological processes enriched with significant P value less than 0.05 (Benjamini-Hochberg adjustment) were remained for further studies. Then pathways or biological processes related to ROS and significantly enriched were filtered and classified into three modules, including ROS, inflammation and immune expression. Network targets of CAP against ROS were constructed based on above analyses, and finally we combined proteomics to determine the research idea of this paper

      -  Figure 1L: is there a reason/explanation why UC.MSC needs a comparably very high concentration of capsaicin.

      Thank you for your comment. Because the experimental results of 8 μM and 32 μM on this cell were more stable, and the activation effect of NRF2 downstream was more obvious.

      -  Figure 2C: it is surprising that naïve (unstressed /untreated cells) already show a rather high nuclear abundance of Nrf2 (shouldn´t Nrf2 be continuously tagged for degradation by Keap1).

      Thank you for your comment. This is a real experimental result, and we have found in many experiments that the untreated group can also show NRF2 when immunoblotting. We think that this phenomenon may be related to the cell state at that time.

      -  Figure 2E: the claim of synergy between CAP and the proteasome inhibitor is not justified with this single figure.

      Thank you for your comment. Multiple experiments have shown that CAP significantly up-regulates NRF2 in the presence of additional stimuli such as EtOH (Figure 1i),  H<sub>2</sub>O<sub>2</sub> (Figure 1l), PS-341 (Figure 2e) and DTT (Figure 4d), which pattern is consistent with our understanding of allosteric regulation and as expected. However, this synergy does warrant more research.

      -  CHX is cycloheximide (in the main text it is referred to as actinomycin).

      Thank you very much for your comment. We have revised “Actinomycin” to “Cycloheximide”.

      -  Figures 2G-H: why switch to rather high concentrations? Is it due to the overexpression of Keap1?

      Thank you for your comment. At the time of this part of the experiment, we had obtained in vitro data on the interaction of CAP and the Kelch domain of KEAP1 (about 32 μM). To keep the results uniform and valid, we chose a relatively higher concentration.

      -  Figure 2I: in the pics of mitochondria the control mitochondria look way more punctuated (likely fissed) than the ones treated with EtOH or EtOH + CAP. Wouldn´t one expect that EtOH leads to mitochondrial fission and CAP can prevent it?

      Thank you for your comment. MitoTracker® Red CMXRos (M9940, Solarbio, China) is a cell-permeable X-rosamine derivative containing weakly sulfhydryl reactive chloromethyl functional groups that label mitochondria. This product is an oxidized red fluorescent stain (Ex=579 nm, Em=599 nm) that simply incubates the cell and can be passively transported across the cell membrane and directly aggregated on the active mitochondria. Therefore, red does not represent broken mitochondria, but active mitochondria. Quantitative analysis of the mean branch length of mitochondria was calculated using MiNA software (https://github.com/ScienceToolkit/MiNA) developed by ImageJ.

      -  Figure 3C: figure legend is somewhat poor.

      Thank you for your comment. We have revised: “KEAP1-NRF2 interaction was detected with Surface plasmon resonance (SPR) in vitro.”

      -  Figure 3E: given that CAP disrupts Nrf2/Keap1- PPI, why is there no Nrf2 stabilization seen in the fourth lane (input/lysate)?

      Thank you for your comment. The fourth lane may promote the degradation of NRF2 due to overexpression of KEAP1.

      -  Figure 3H: high basal Nrf2 levels in unstressed/untreated HEK WT cells, why?

      Thank you for your comment. This is a real experimental result, and we have found in many experiments that the untreated group can also show NRF2 when immunoblotting in 293T cells. We think that this phenomenon may be related to the cell state at that time.

      -  Figure 3G/I: this data suggests to me that the alcohol-mediated toxicity is Keap1-dependent (rather than the protection by CAP), doesn´t it?

      Thank you for your comment. We can see that KEAP1-KO cells had a high expression of NRF2, which was also in line with our expectations, and EtOH-induced GES-1 damage may be closely related to oxidative stress.

      -  Figure 4a: the inclusion of an additional Keap1 binding protein (one with an ETGE motif) would have been desirable (to get information on specificity/risks of off-target (unwanted) effects of CAP). 

      Thank you for your comment. DPP3 with an ETGE motif was detected by BLI, and we found that the K<sub>D</sub> between CAP and DPP3 was 1.653 mM, which may indicate the potential off-target effect of CAP is low (Fig S4h and S4i).

      -  Figure 4D: why is there no stabilization of Nrf2 by CAP in lane 2 ? How can the DTT-mediated boost on Nrf2 levels be explained?

      Thank you for your comment. Multiple experiments have shown that CAP significantly up-regulates NRF2 in the presence of additional stimuli such as EtOH (Figure 1i),  H<sub>2</sub>O<sub>2</sub> (Figure 1l), PS-341 (Figure 2e) and DTT (Figure 4d), which pattern is consistent with our understanding of allosteric regulation and as expected. However, this synergy does warrant more research.

      -  Figure 4f: 5% DMSO is a rather high solvent concentration, why so high (the solvent alone seems to have quite marked effects).

      Thank you for your comment. Because our maximum concentration was set relatively high, we have also recognized relevant problems and resupplemented the more critical Pull-down experiment (Figure 4g). The current DMSO of 0.2% had no effect on the experimental results.

      -  Figure 5: it should be described in the figure legend which mutant is used. Based on the previous data, I would expect an investigation of mutants carrying amino acid exchanges at the newly identified allosteric site.

      Thank you for your comment. The mutated version involved substitutions at residues Y334A, R380A, N382A, N414A, R415A, Y572A, and S602A (the orthostatic site), which are residues reported to engage NRF2 and classic Keap1 inhibitors. The exploration of newly discovered allosteric sites is worthy of further study.

      -  Figure 6/7: I am not expert enough to judge formulations and histology scores. However, the benefit of the encapsulated capsaicin does not become entirely clear to me, as CAP and IRHSA@CAP mostly do not significantly differ in their elicited response.

      Thank you for your comment. On the one hand, nanomedicine improves the safety of administration: it helps to reduce the intense spicy irritation of CAP itself when administered in the stomach; On the other hand, the dosage of drugs is reduced to a certain extent to achieve better therapeutic effect.

      -  Figure 7: rebamipide was introduced as positive control in the text with an activating effect on Nrf2, but there is no induction of hmox and nqo in Figure 7f, why?

      Thank you for your comment. The effect of addition of positive control drug (Rebamipide) on NRF2 activation is not the focus of this paper. We speculate that the transcription and translation of related genes may not be completely synchronized when Rebamipide was taken at the same time.

      -  Figure 8: the CAP effect on inflammation is visible, however, a clear causal connection between ROS/Nrf2/KEap1 is not given in the presented experiments.

      Thank you for your comment. The simple mechanics of this paper are illustrated in the Graphic diagram. The activation of NRF2 exerts both antiinflammatory and antioxidant functions, which has been reported in many articles, but the causal relationship is still open to exploration.

      Points related to presentation:  

      -  The data with the encapsulated CAP appear a little as a sidearm that does not bolster your main message (maybe take out and elaborate on this topic more extensively in another manuscript).

      -  Revise the introduction on the Nrf2 signaling pathway as it is written at the moment, someone outside the Nrf2 field might have trouble understanding it.

      -  The use of language requires proofreading and revision.

      Thank you for your comment. We rearranged and proofread it.

      Reviewer #3 (Recommendations For The Authors):

      Overall, the manuscript is well-written and the results are presented in a concise and comprehensible manner.

      Some recommendations on the experimental evidence and further suggestions:

      • The authors should state how they assessed the distribution of the data. Description of data with mean and standard deviation as well as comparisons between different groups with t-test assumes that the underlying data is normally distributed.

      Your suggestions are very constructive for us to improve the paper.  The differences in the mean values between the two groups were analyzed using the student’s t-test, while the differences among multiple groups were analyzed using a one-way ANOVA test in the GraphPad Prism software.

      Therefore, we checked and proofread the statistical analysis.

      • Additional experiments further characterising and validating the activation of CAP via direct KELCH1-binding could include parallel experiments with similar agonists like dimethyl fumarate. It would be interesting to know how CAP activation compares to DMF activation.

      Thank you very much for your comment. We believe that the activation of NRF2 by DMF has been widely reported and well-studied, so we did not purchase this drug for comparative study here. If it can be promoted clinically in the future, we may consider comparing with DMF.

      • Also, the knock-down of NRF2 would be a suggested experiment to do because it rules out that the benefit of CAP is independent of KEAP1-NRF2 binding and activation.

      Thank you very much for your suggestions. We purchased Nrf2-deficient mice and performed experiments, and the results showed that knockout mice with Nrf2 were more sensitive to ethanol and the effects of CAP were partially eliminated (Figure 9), which further validated the role of Nrf2-related signaling pathway in alcohol-induced gastric mucosal injury and the therapeutic effect of CAP.

      Some corrections on text and figures:

      • Figure 1b: incorrect spelling of DNA stain. Should be Hoechst33324.

      Thank you very much for your comment. We have revised.

      • Figure 1c: don't put the label inside the plot.

      Thank you very much for your comment. We have revised.

      • Figure 1d: choose less verbose axes titles (this also applies to other figures).

      Thank you very much for your comment. We have revised.

      • Figures 1e and 1f: please state the units.

      Thank you very much for your comment. The enzyme activity of SOD and the content of MDA were compared with that of the control group.

      • Heading 2.2: NRF2-ARE instead of NRF-ARE.

      Thank you very much for your comment. We have revised.

      • Line 118: missing expression after immune.

      Thank you very much for your comment. We have revised.

      • Figure 1g: names of proteins are not readable.

      Thank you very much for your comment. We have revised.

      • Line 120: You performed transcriptomic analyses to identify differentially expressed GENES not proteomic.

      Thank you very much for your comment. This part of the work we do is proteomics.

      • Line 122: Fold change should be stated in both directions, i.e. absolute FC like |FC| > 1. Or did you select only upregulated DEGs? Is it not log2 FC?

      Thank you very much for your comment. We have revised.

      • Figure 1h (and Supplementary Figure 1a): Missing heatmap legend for FC.

      What do the colors show? Sample (column) description missing.

      Thank you very much for your comment. We used red to indicate up-regulation, blue to indicate down-regulation, and the vertical coordinate on the right side were antioxidant genes such as GSS and SOD1, respectively, and the proportion between the treatment group and the model group (CAP + EtOH/EtOH) had been calculated and labeled.

      • Line 145: A Western blot is not a proteomic analysis.

      Thank you very much for your comment. We have revised: “Concurrently, the elevated expression levels of GSS and Trx proteins, which were also downstream targets of NRF2, further validated by western blotting (Figure 1j).”

      • Supplementary Figure 2e-j: expression fold change is not the right quantity. The signal of the actual protein was quantified. And what are you comparing to with the statistics? The stars on one bar are not clear.

      Thank you very much for your comment. The expression level of this part was normalized compared with that of the control group. The significance differentiation analysis is compared with the model group.

      • What was the concentration of  H<sub>2</sub>O<sub>2</sub> used?

      Thank you very much for your comment. 200 μM  H<sub>2</sub>O<sub>2</sub> was used.

      • Figure 2d: use a more precise y-axis label.

      Thank you very much for your comment. We do want to compare the amount of NRF2 entering the nucleus, so the relative expression is compared to the internal reference

      • Figure 2g: missing molecular weight markers.

      Thank you very much for your comment. Since the ubiquitination modification is a whole membrane, and only marking the size of HA and GAPDH is not beautiful enough here.

      • Line 221: lactate is the endproduct of the anaerobic glycolytic pathway.

      Thank you very much for your comment. We have revised.

      • Supplementary Figure 3d: should it be PKM2 (instead of PKM) and LDHA (instead of LDH). Should fit with the text in the manuscript.

      Thank you very much for your comment. We have revised.

      • Supplementary Figures 3 e-f: brackets in y-axis labels are too bold.

      Thank you very much for your comment. We have revised.

      • Figures 3a and b. Brackets should only be used if two conditions are being compared statistically. Remove the one line with ns as it could imply that you have compared the first with the last condition only.

      Thank you very much for your comment. We have revised.

      • Consistent labeling of kDa in figures (no capital K in KDa).

      Thank you very much for your comment. We have revised.

      • Figure 4a. Move kDa on top of 70.

      Thank you very much for your comment. We have revised.

      • Figure 3 g-h: Why 2% EtOH. Used 5% previously?

      Thank you very much for your comment. Because here we changed the 293T cell line, 5% EtOH concentration is too high on this cell.

      • Supplementary Figure b-e: correct typo in y-axis label: expression.

      Thank you very much for your comment. We have revised.

      • Figure 4a: correct x-axis label for temperature unit. Too bold. Not readable.

      Add a clear label and unit for y-axis.

      Thank you very much for your comment. We have revised.

      • Figure 4 b-c: should have a legend explaining colors.

      Thank you very much for your comment. Our Figure legend already contains the meaning of colors: “(b) Computational docking of CAP molecule to KEAP1 surface pockets. The Keap1 protein is represented in gray, while the CAP molecule is shown in yellow. The seven key amino acids predicted to be crucial for the interaction are highlighted in blue. (c) Partial overlap of CAPbinding pocket with KEAP1-NRF2 interface. The KEAP1-NRF2 interaction interface is represented in purple.”

      • Supplementary Figure 5a. Add axis units.

      Thank you very much for your comment. We have revised.

      • Figure 4e: Missing b ions value for number 19.

      Thank you very much for your comment. This part is not missing, but corresponds to 19 of y ions.

      • Figure 7f: adjust brackets - they are too bold.

      Thank you very much for your comment. We have revised.

      • Supplementary Figure 8b-i: labels not readable. c should be spleen.

      Thank you very much for your comment. We have revised.

      • Line 787: specify BH adjustment to Benjamini-Hochberg.

      Thank you very much for your comment. We have revised.

      • Check spelling of µl throughout the Methods section e.g. line 854 - shouldn't be "ul".

      Thank you very much for your comment. We have revised.

      • Line 974: correct spelling of species names: E. coli should be in italics.

      Thank you very much for your comment. We have revised all of these corrections on text and figures. For me, the writing of papers will be more rigorous and careful in the future.

    1. Author response:

      We sincerely thank the reviewers for their thorough and constructive evaluation of our manuscript. We particularly appreciate their recognition of our comprehensive characterization approach, which integrates immunohistochemistry, transcriptomics, morphological assessments, and electrophysiology to understand psilocin's effects on human neurons. The reviewers highlighted that our findings closely align with and validate prior work on rat cortical neurons, while importantly extending these insights to human cells. We are encouraged by their acknowledgment that our study demonstrates the value of using iPSC-derived human cortical neurons for testing potentially translatable effects of psychedelic compounds. Their positive assessment of our work's implications for psychedelic drug development is particularly valuable, as it supports our goal of advancing the understanding of these compounds' therapeutic potential and their possible application in treating neuropsychiatric disorders.

      We are also very grateful for the reviewers' constructive criticism which will help strengthen our manuscript significantly. Based on their detailed feedback, we plan to perform several additional experiments for inclusion in the revised manuscript.

      The most important concern raised by both reviewers is about the specificity of the antibody used to detect the expression pattern and abundance of 5-HT2A receptors at the cells' surface. We acknowledge that GPCR antibodies, including those targeting 5-HT2A receptors, can be challenging in terms of specificity and reliability, particularly given the structural similarities within this receptor family. To address these concerns comprehensively, we propose the following systematic validation strategy:

      (1) Cell-Type Specific Expression Analysis: We will systematically evaluate the antibody across different developmental stages and cell lines. The results from the stainings will be correlated with RNA sequencing data to provide quantitative validation of expression patterns. Cell types to be included will be:

      · iPSCs (expected negative)

      · Neural progenitors (expected positive)

      · Mature neurons (expected positive)

      · HEK cells (expected negative) This multi-stage analysis will allow us to track receptor expression through development and verify antibody specificity across distinct cellular contexts.

      (2) Peptide Competition Study: We will perform blocking experiments using the specific peptide sequence against which the antibody was raised. By pre-incubating the antibody with its cognate peptide at established working concentration, followed by detailed documentation of signal reduction in peptide-blocked condition versus standard staining, we can demonstrate binding specificity. This approach will provide direct evidence of antibody selectivity for its intended target.

      (3) Sequence Analysis and Specificity: We will perform a comprehensive protein BLAST analysis of the antigenic peptide sequence, assess potential cross-reactivity with related receptors, and evaluate species conservation and specificity. This in silico approach will complement our experimental validation and help identify any potential off-target binding sites.

      (4) Additional Validation: While technically challenging, we will attempt knockdown studies using siRNA/shRNA approaches to provide additional validation of antibody specificity. This molecular intervention will offer another layer of validation through targeted reduction of the receptor.

      We plan to present these results in a new supplementary figure that will provide a comprehensive overview of our validation efforts. Should we not be able to convincingly demonstrate the specificity of the antibody, we will discuss with the editors and reviewers to modify Figure 1 and exclude critical parts from the manuscript. While we find the results interesting and important to communicate, an omission would not critically impact the key message of the manuscript, which is the structural and molecular changes elicited by psilocin on human neurons. The strength of our multi-modal approach means that our core findings are supported by several independent lines of evidence beyond antibody-based detection.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors aimed to quantify feral pig interactions in eastern Australia to inform disease transmission networks. They used GPS tracking data from 146 feral pigs across multiple locations to construct proximity-based social networks and analyse contact rates within and between pig social units.

      Strengths:

      (1) Addresses a critical knowledge gap in feral pig social dynamics in Australia.

      (2) Uses robust methodology combining GPS tracking and network analysis.

      (3) Provides valuable insights into sex-based and seasonal variations in contact rates.

      (4) Effectively contextualizes findings for disease transmission modeling and management.

      (5) Includes comprehensive ethical approval for animal research.

      (6) Utilizes data from multiple locations across eastern Australia, enhancing generalizability.

      Weaknesses:

      (1) Limited discussion of potential biases from varying sample sizes across populations

      This is a really good comment, and we will address this in the discussion as one of the limitations of the study

      (2) Some key figures are in supplementary materials rather than the main text.

      We will move some of our supplementary material to the main text as suggested.

      (3) Economic impact figures are from the US rather than Australia-specific data.

      We included the impact figures that are available for Australia (for FDM), and we will include the estimated impact of ASF in Australia in the introduction.

      (4) Rationale for spatial and temporal thresholds for defining contacts could be clearer.

      We will improve the explanation of why we chose the spatial and temporal thresholds based on literature, the size of animals and GPS errors.

      (5) Limited discussion of ethical considerations beyond basic animal ethics approval.

      This research was conducted under an ethics committee's approval for collaring the feral pigs. This research is part of an ongoing pest management activity, and all the ethics approvals have been highlighted in the main manuscript.

      The authors largely achieved their aims, with the results supporting their conclusions about the importance of sex and seasonality in feral pig contact networks. This work is likely to have a significant impact on feral pig management and disease control strategies in Australia, providing crucial data for refining disease transmission models.

      Reviewer #2 (Public review):

      Summary:

      The paper attempts to elucidate how feral (wild) pigs cause distortion of the environment in over 54 countries of the world, particularly Australia.

      The paper displays proof that over $120 billion worth of facilities were destroyed annually in the United States of America.

      The authors have tried to infer that the findings of their work were important and possess a convincing strength of evidence.

      Strengths:

      (1) Clearly stating feral (wild) pigs as a problem in the environment.

      (2) Stating how 54 countries were affected by the feral pigs.

      (3) Mentioning how $120 billion was lost in the US, annually, as a result of the activities of the feral pigs.

      (4) Amplifying the fact that 14 species of animals were being driven into extinction by the feral pigs.

      (5) Feral pigs possessing zoonotic abilities.

      (6) Feral pigs acting as reservoirs for endemic diseases like brucellosis and leptospirosis.

      (7) Understanding disease patterns by the social dynamics of feral pig interactions.

      (8) The use of 146 GPS-monitored feral pigs to establish their social interaction among themselves.

      Weaknesses:

      (1) Unclear explanation of the association of either the female or male feral pigs with each other, seasonally.

      This will be better explained in the methods.

      (2) The "abstract paragraph" was not justified.

      We have justified the abstract paragraph as requested by the reviewer.

      (3) Typographical errors in the abstract.

      Typographical errors have been corrected in the Abstract.

      Reviewer #3 (Public review):

      Summary:

      The authors sought to understand social interactions both within and between groups of feral pigs, with the intent of applying their findings to models of disease transmission. The authors analyzed GPS tracking data from across various populations to determine patterns of contact that could support the transmission of a range of zoonotic and livestock diseases. The analysis then focused on the effects of sex, group dynamics, and seasonal changes on contact rates that could be used to base targeted disease control strategies that would prioritize the removal of adult males for reducing intergroup disease transmission.

      Strengths:

      It utilized GPS tracking data from 146 feral pigs over several years, effectively capturing seasonal and spatial variation in the social behaviors of interest. Using proximity-based social network analysis, this work provides a highly resolved snapshot of contact rates and interactions both within and between groups, substantially improving research in wildlife disease transmission. Results were highly useful and provided practical guidance for disease management, showing that control targeted at adult males could reduce intergroup disease transmission, hence providing an approach for the control of zoonotic and livestock diseases.

      Weaknesses:

      Despite their reliability, populations can be skewed by small sample sizes and limited generalizability due to specific environmental and demographic characteristics. Further validation is needed to account for additional environmental factors influencing social dynamics and contact rates.

      This is a really good point, and we thank the reviewer for pointing out this issue. We will discuss the potential biases due to sample size in our discussion. We agree that environmental factors need to be incorporated and tested for their influence on social dynamics, and this will be added to the discussion as we have plans to expand this research and conduct, the analysis to determine if environmental factors are influencing social dynamics.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Consider moving some key figures from supplementary materials to the main text to strengthen the presentation of results.

      We included a new figure to strengthen the presentation of results (Figure 3a-b), which shows the node level measures by sex and for direct and indirect networks.

      (2) Expand discussion of limitations, particularly addressing potential biases from varying sample sizes across populations.

      We added more detail and clarity about this potential bias into the limitation section within the discussion: “Different populations in our study had varying numbers of collared individuals, with some populations having only two individuals at certain times. This variability in sample size across populations is a limitation when interpreting the results. Small populations are often the result of a few individuals being trapped and collared, and this does not necessarily reflect the actual number of individuals in those groups.” Moreover, while reviewing the effect of the potential bias, we found that a General Linear Mixed Effect Model (Table 1) was not optimal for analysing the effect of sex on the network measures, and therefore this analysis has been done again using a non-parametric test (Wilcoxon rank-sum test)  for direct and indirect networks based on a 5 metres threshold (Table 1).

      (3) If available, include Australia-specific economic impact data in the introduction.

      We included the impact figures that are available for Australia (for FDM) in the introduction.

      (4) Clarify the rationale for chosen spatial and temporal thresholds for defining contacts.

      This has been added in the methodology: “Direct contact was defined when two individuals interacted either at 2, 5, or 350-metre buffers within a five-minute interval [36]. A previous study used 350 metres as a spatial threshold [16], while others use the approximate average body length of an individual [36]”

      (5) Consider adding a brief discussion of ethical considerations beyond basic animal ethics approval, addressing aspects like animal welfare during collaring and potential environmental impacts.

      Feral pigs are an invasive species in Australia, and managing their population is crucial to protecting native ecosystems. The trapping and collaring of these animals have been conducted following the stringent animal welfare requirements necessary to obtain animal ethics approval in Australia. However, it is important to consider the broader ethical implications. Animal welfare during collaring is a critical aspect and involves minimising stress and physical harm to the animals. The collars used are lightweight and properly fitted only on adults due to welfare issues collaring juveniles.

      (6) Add a statement about data availability/accessibility.

      The GPS data cannot be shared; however, the R codes will be deposited in GitHub (https://github.com/Tatianaproboste/Feral-Pig-Interactions) and the link has been added in the final version.

      (7) Expand on the implications of seasonal variation in contact rates for disease management strategies in the discussion.

      We have added this information in the discussion: “For example, controlling an outbreak during summer would potentially require more resources than an outbreak in other seasons due to the higher number of contact between individuals during summer.”

      Reviewer #2 (Recommendations for the authors):

      The typographical errors in the abstract to be corrected are:

      (1) Line 22: Remove the "are" before "threaten".

      This has been corrected.

      (2) Line 24: Replace the "to" before "extinction" with "into".

      This has been corrected.

      (3) Line 28: Rephrase the sentence.

      ‘Yet social dynamics are known to vary enormously from place to place, so knowledge generated for example in USA and Europe might not easily transfer to locations such as Australia.’

      (3) Line 29: Insert a "comma" after "Here".

      This has been corrected.

      (4) Lines 33 -34: Explain, clearly, the contact rates; is it between females to females or females to males?

      We have improved this phrase and now it reads: “…. with females demonstrating higher group cohesion (female-female) and males acting as crucial connectors between independent groups.”

      (5) Line 36: Make yourselves clear about what you mean by "targeting adult male".

      We believe “targeting adult males” is correct in this context.

      Reviewer #3 (Recommendations for the authors):

      (1) Line 22 and 44, I think are threaten "are" should be removed for better clarity.

      This has been corrected.

      (2) Line 71, the source and not "force" of infection.

      The force of infection is correct here.

      (3) Line 72, population "of".

      This has been corrected.

      (4) Under statistical analysis, the software version should be included.

      R has changed to multiple versions since we started this analysis.

      (5) Terminological consistency: as far as possible try to be consistent with the terms used in the text, such as using "contact rate" instead of "interaction rate" in order not to puzzle the readers.

      We have changed most of the “interactions” to “contact” instead as suggested.

      (6) Correct Typos: Identify typos and grammatical inconsistencies of any kind, especially in those complex sentences that may be hard to follow.

      The typos have been checked.

      (7) Under the methodology, briefly describe why specific thresholds were chosen and any limitations.

      We added the following into the method: “Direct contact was defined when two individuals interacted either at 2, 5, or 350-metre buffers within a five-minute interval [36]. A previous study used 350 metres as a spatial threshold [16], while others use the approximate average body length of an individual [36]”

      (8) The discussion should be strengthened by drawing clear links between the findings and actionable management strategies.

      We have strengthened the discussion by adding more specific actionable management strategies. For example, controlling an outbreak during summer would potentially require more resources than an outbreak in other seasons due to the higher number of contacts between individuals during summer.

      (9) Did you consider additional environmental factors, such as rainfall, food availability, or habitat features, to better understand how these influence seasonal variations in pig interactions and contact rates?

      This is something that we have in mind and will explore in future research. This has been partially explored but is based on how environmental factors and seasons affect the home range (Wilson et al 2023).

      (10) Figure Legends: Add more detailed descriptions in figure legends, especially for those figures showing network metrics or contact rates.

      More information has been added to the figure legends.

      (11) The paper includes too many figures, and thus, it is recommended to simplify or merge some figures where appropriate. In particular, this is recommended for those figures that plot more network measures across thresholds. Adding clear, summarized captions with interpretation on threshold and measure significance would be a great help in interpreting complicated visualizations.

      The figure that shows the comparison between global network measures, including average local transitivity, edge density, global transitivity, mean distance and number of edges for direct and indirect networks has been moved to supplementary material (Figure S3). We also included direct and indirect model-level measures by sex as in Figure 3 and improved the captions of the figures presented in the main document.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this valuable study, the authors found that the macrolide drug rapamycin, which is an important pharmacological tool in the clinic and the research lab, is less specific than previously thought. They provide solid functional evidence that rapamycin activates TRPM8 and develop an NMR method to measure the specific binding of a ligand to a membrane protein.

      Strengths:

      The authors use a variety of complementary experimental techniques in several different systems, and their results support the conclusions drawn.

      Weaknesses:

      Controls are not shown in all cases, and a lack of unity across the figures makes the flow of the paper disjointed. The proposed location of the rapamycin binding pocket within the membrane means that molecular docking approaches designed for soluble proteins alone do not provide solid evidence for a rapamycin binding pocket location in TRPM8, but the authors are appropriately careful in stating that the model is consistent with their functional experiments.

      Impact:

      This work provides still more evidence for the polymodality of TRP channels, reminding both TRP channel researchers and those who use rapamycin in other contexts that the adjective "specific" is only meaningful in the context of what else has been explicitly tested.

      Reviewer #2 (Public Review):

      Summary:

      Tóth and Bazeli et al. find rapamycin activates heterologously-expressed TRPM8 and dissociated sensory neurons in a TRPM8-dependent way with Ca2+-imaging. With electrophysiology and STTD-NMR, they confirmed the activation is through direct interaction with TRPM8. Using mutants and computational modeling, the authored localized the binding site to the groove between S4 and S5, different than the binding pocket of cooling agents such as menthol. The hydroxyl group on carbon 40 within the cyclohexane ring in rapamycin is indispensable for activation, while other rapalogs with its replacement, such as everolimus, still bind but cannot activate TRPM8. Overall, the findings provide new insights into TRPM8 functions and may indicate previously unknown physiological effects or therapeutic mechanisms of rapamycin.

      Strengths:

      The authors spent extensive effort on demonstrating that the interaction between TRPM8 and rapamycin is direct. The evidence is solid. In probing the binding site and the structural-function relationship, the authors combined computational simulation and functional experiments. It is very impressive to see that "within" a rapamycin molecule, the portion shared with everolimus is for "binding", while the hydroxyl group in the cyclohexane ring is for activation. Such detailed dissection represents a successful trial in the computational biology-facilitated, functional experiment-validated study of TRP channel structuralactivity relationship. The research draws the attention of scientists, including those outside the TRP channel field, to previously neglected effects of rapamycin, and therefore the manuscript deserves broad readership.

      Weaknesses:

      The significance of the research could be improved by showing or discussing whether a similar binding pocket is present in other TRP channels, and hence rapalogs might bind to or activate these TRP channels. Additionally, while the finding on TRPM8 is novel, it is worthwhile to perform more comprehensive pharmacological characterization, including single-channel recording and a few more mutant studies to offer further insight into the mechanism of rapamycin binding to S4~S5 pocket driving channel opening. It is also necessary to know if rapalogs have independent or synergistic effects on top of other activators, including cooling agents and lower temperature, and their dependence on regulators such as PIP2.

      Additional discussion that might be helpful:

      The authors did confirm that rapamycin does not activate TRPV1, TRPA1 and TRPM3. But other TRP channels, particularly other structurally similar TRPM channels, should be discussed or tested. Alignment of the amino acid sequences or structures at the predicted binding pocket might predict some possible outcomes. In particular, rapamycin is known to activate TRPML1 in a PI(3,5)P2-dependent manner, which should be highlighted in comparison among TRP channels (PMID: 35131932, 31112550).

      Reviewer #3 (Public Review):

      Summary:

      Rapamycin is a macrolide of immunologic therapeutic importance, proposed as a ligand of mTOR. It is also employed as in essays to probe protein-protein interactions.

      The authors serendipitously found that the drug rapamycin and some related compounds, potently activate the cationic channel TRPM8, which is the main mediator of cold sensation in mammals. The authors show that rapamycin might bind to a novel binding site that is different from the binding site for menthol, the prototypical activator of TRPM8. These solid results are important to a wide audience since rapamycin is a widely used drug and is also employed in essays to probe protein-protein interactions, which could be affected by potential specific interactions of rapamycin with other membrane proteins, as illustrated herein.

      Strengths:

      The authors employ several experimental approaches to convincingly show that rapamycin activates directly the TRPM8 cation channel and not an accessory protein or the surrounding membrane. In general, the electrophysiological, mutational and fluorescence imaging experiments are adequately carried out and cautiously interpreted, presenting a clear picture of the direct interaction with TRPM8. In particular, the authors convincingly show that the interactions of rapamycin with TRPM8 are distinct from interactions of menthol with the same ion channel.

      Weaknesses:

      The main weakness of the manuscript is the NMR method employed to show that rapamycin binds to TRPM8. The authors developed and deployed a novel signal processing approach based on subtraction of several independent NMR spectra to show that rapamycin binds to the TRPM8 protein and not to the surrounding membrane or other proteins. While interesting and potentially useful, the method is not well developed (several positive controls are missing) and is not presented in a clear manner, such that the quality of data can be assessed and the reliability and pertinence of the subtraction procedure evaluated.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major points

      (1) Given the novelty of the STTD NMR approach, please provide more details and data for the reader.

      • I would like to see all of the collected spectra so that readers can see and judge the effect sizes for themselves, perhaps as an additional supplementary figure.

      We agree with the reviewer that the data transparency of the NMR measurements should be improved. We changed panel C of Figure 2 in the main text and provided all the STD and the computed STDD and STTD spectra recorded on one set of experiments. We carried out additional experimental replicas on new samples and addressed the variability of cell samples by rescaling the STD effects based on reference <sup>1</sup>H measurements. We provided supplementary spectra of the reference experiments without saturation (Figure S5) and the obtained STTD spectra from the three parallel NMR sessions (Figure S6).

      • I appreciate the labels for STDD-1, STDD-2, and STTD on the lower two spectra of Figure 2C. Is the top spectrum from STD-1 or is it prior to saturation? In Figure 2C, what do the x1 and x2 notations on the right-hand side of the spectra indicate?

      We showed the top spectrum as an overview and a demonstration of the spectral complexity of the samples. <sup>1</sup>H experiments were run before the STD measurements to assess the sample quality and stability. The demonstrated spectrum on sample 1 (TRPM8 with rapamycin in HEK cells) was recorded with more transients than the corresponding STDs, thus it is only visually comparable with the difference spectra after scaling (2x). Figure 2 was changed and all the spectra were replaced as mentioned before. All the recorded <sup>1</sup>H-experiments without saturation including the one removed are now available in the supplementary information (Figure S5).

      • The STTD NMR results with WT TRPM8 are consistent with rapamycin binding directly to the channel. Testing whether rapamycin binding observed with STTD NMR is disrupted by one of the most compelling mutations (D796A, D802A, G805A, or Q861A) would be a further test of this direct interaction.

      We thank the reviewer for the suggestion and agree that testing the most compelling mutants would be a promising next step. These mutations were generated in plasmid vectors and only transiently transfected into HEK cells. For NMR analysis we would need a high amount of cells stably overexpressing the mutant channels which were not available for experimentation.

      • Given that this is not a methods paper, it is probably outside the scope to further validate the STTD NMR measurements by performing parallel ITC, SPR, MST, or radiolabeled ligand experiments. Nevertheless, I would be excited to see such a comparison since STTD NMR appears to have promise as an experimental technique for assessing ligand binding to membrane proteins that does not require large amounts of purified protein or radioactive isotopes.

      We agree with the reviewer that additional independent biophysical measurements on the interactions are necessary to further validate the STTD methodology. This paper is a preliminary demonstration of the STTD concept and our group is currently working on the challenges of on-cell NMR (e.g., sample and spectral complexity) and the standardization of the proposed workflow.     

      (2) Please clarify the methods used to model of rapamycin binding. Docking can be imprecise in TRP channels, even with a sophisticated docking scheme (Hughes et al., 2019, doi: https://doi.org/10.7554/eLife.49572.001).  

      Thank you for mentioning this point and providing the reference. We have further clarified our methods and included the reference in our discussion, indicating the limitations of our approach.

      • As a positive control, does the docking strategy accurately predict binding of known compounds (menthol, icilin, etc.) to TRPM8 consistent with cryo-EM structures?  

      Yes, the binding site for menthol, based on a similar docking strategy as for rapamycin, is also presented, and matches with predictions from other publications. This is now clarified in the revised manuscript.

      • Why was homology modeling to the human sequence used with the mouse structure but not the avian structure?  

      At this onset of the project, only the avian structure was available, and it was used in the primary docking. Later, to get more precise docking relevant for human TRPM8 pharmacology, we did revert to the then available structure of the mouse ortholog.  

      • How many rapamycin structural clusters were built, and how many structures were there in each cluster? How many were used? "most populated" is unspecific.  

      Thank you for your comment. We have added the following highlighted information to the methods section to address your comment:

      “Representative conformations of rapamycin were identified by clustering of the 1000-membered pools, having the macrocycle backbone atoms compared with 1.0 Å RMSD cut-off. Middle structures of the ten most populated clusters, accounting for more than 90% of the total conformational ensemble generated by simulated annealing, were used for further docking studies. To refine initial docking results and to identify plausible binding sites, the above selected rapamycin structures were docked again, following the same protocol as above, except for the grid spacing which was set to 0.375 Å in the second pass. The resultant rapamycin-TRPM8 complexes were, again, clustered and ranked according to the corresponding binding free energies. Selected binding poses were subjected to further refinement. The three most populated and plausible binding poses were further refined by a third pass of docking, where amino acid side chains of TRPM8, identified in the previous pass to be in close contact with rapamycin (< 4 Å), were kept flexible. Grid volumes were reduced to these putative binding sites including all flexible amino acid side chains (21.0-26.2 Å x 26.2-31.5 Å x 24.8-29.2 Å).”

      However, it is important to clarify that the clusters are not built and their number is not specified by the user. The number of clusters found depends on how similar the structures are in the structural ensemble analyzed by clustering. A high number of clusters indicates a diverse, whereas a low number suggests a uniform structural ensemble. Furthermore, it is arbitrarily controlled by the similarity cutoff specified by the user. If the cutoff is selected well, then the number of structures is different in each cluster. There are some highly populated clusters and a few which only have one structure. The selection of how many cluster representatives are used is usually based on the decision of whether or not the sum of the population of selected clusters sufficiently covers the mapped conformational space.

      • Additionally, the rapamycin poses were generated using a continuum solvent model that is unlikely to replicate the conditions existing in the lipid bilayer or in a lipid-exposed binding pocket as is predicted here. It is therefore possible that the rapamycin poses chosen for docking do not represent the physiological rapamycin binding pose, hampering the ability of the docking algorithm to find an appropriate docking pocket.  

      • Furthermore, accurately docking that may bind to membrane-exposed pockets is a challenging problem, particularly because many scoring algorithms, including those employed by Autodock, do not distinguish between solvent-exposed and membrane-exposed faces of the protein. This affects the predicted binding energies.  

      We appreciate the reviewer's insightful comments. We add a note in discussion part, mentioning these important limitations.  

      • In Figure 4, it appears that the proposed rapamycin binding pocket is located at the interface between two subunits, but only one is shown. Is there any contact with residues in the neighboring subunit? Based on Figure S4, I assume not, but am unsure.

      Based on the estimated distances, we do not think that there are any relevant interactions with residues from neighboring subunits. This is now indicated in the results section.

      • Consider uploading the rapamycin-docked model to a public repository such as Zenodo for readers to examine and manipulate themselves  

      As suggested, the model will be uploaded in a public repository. A link to the file on Zenodo is now included.

      (3) Please discuss the spatial location of the proposed rapamycin binding pocket relative to the vanilloid binding pocket in TRPV1.

      • The mutagenesis indicates that D745, D802, G805, and Q861 are most important for rapamycin sensitivity in TRPM8. Interestingly, the proposed rapamycin binding pocket appears to overlap spatially with the vanilloid binding pocket in TRPV1. Consistent with this, Q861 aligns with E570 in TRPV1, which is a critical residue for resiniferatoxin sensitivity. Indeed, similar to Q861's modeled proximity to the cyclohexyl ring, the hydroxyl group of the vanillyl moity of capsaicin (4DY in 7LR0, for example) is in proximity to E750 in TRPV1. Additionally, searching PubChem by structural similarity suggests that vanillyl head group of the TRP channel modulators capsaicin and eugenol are similar structurally to the trans-2Methoxycyclohexan-1-ol ring. Without overlaying the two structures myself, it is difficult to say more than that, but I encourage the authors to comment on any similarities and differences they observe.

      • If the proposed rapamycin pocket is indeed similar to the location of the vanilloid binding site, the authors may wish to discuss other TRPM channel structures that show ligands and lipids bound to this pocket because this provides evidence that this pocket influences TRPM channel function. For example, how does the proposed rapamycin binding pocket compare to TRPM8 bound to agonist AITC (PDBID 8e4l), TRPM5 bound to inhibitor NDNA (7mbv), and TRPM2 bound to phosphatidylcholine (6co7)?

      • Other TRP channel structures with ligands or lipids modeled in this region include TRPV1 bound to resiniferatoxin, capsaicin, or phosphatidylinositol (7l2j, 7l24, 7l2s, 7l2t, 7l2u, 7lp9, 7lpc, 7lqy, 7mz6, 7mz9, 7mza); TRPV3 bound to phosphatidylcholine (7mij, 7mik, 7mim, 7min, 7ugg); TRPV5 bound to econazole (6b5v) or ZINC9155 (6pbf); TRPV6 bound to piperazine (7d2k, 7k4b, 7k4c, 7k4d, 7k4e, 7k4f) or cholesterol hemisuccinate (7s8c); TRPC6 bound to BTDM (7dxf) or phosphatidylcholine (6uza); and TRP1 bound to PIP2 (6pw5).

      We thank the reviewer for these valuable insights. We have included some additional discussion highlighting the similarities between the proposed rapamycin binding site and some of the other ligandchannel interactions in the TRP superfamily, in particular the well-known vanilloid binding site in TRPV1. However, to keep the discussion focused, we have not fully discussed all the indicated interactions, to best serve the clarity and scope of the manuscript.  

      (4) I would like to see negative control calcium imaging and electrophysiology data with untransfected HEK cells to confirm that the observed activation is mediated by TRPM8 to parallel the TRPM8 KO sensory neuron experiments.  

      This important information is now included in the revised manuscript (Figure S2).

      (5) The DM-nitrophen Ca uncaging experiments are an interesting method to test Ca sensitivity of rapamycin, but the results make these experiments more complex to interpret. Ca has been shown to be an obligate cofactor for icilin sensitivity in TRPM8 under conditions where both the internal and external Ca concentrations are tightly controlled (Kuhn et al., 2009, doi: https://doi.org/10.1074/jbc.M806651200), which is necessary because TRPM8 allows Ca permeation through the pore when open. The large icilin-evoked currents in Figure 5A and 5B indicate that the effective intracellular calcium concentration is not zero prior to calcium uncaging, which may be high enough to mask any Ca-dependence of rapamycin that occurs at low Ca concentrations. Given this ambiguity, the inside-out patch clamp configuration would provide more control over the internal and external Ca concentration than is achieved in the Ca uncaging experiments. Because the authors have already demonstrated their ability to perform such experiments (Figure 2 panel B), it would be nice to see tests of Ca dependence using inside-out patch clamp.

      As was already shown in Figure 2, Rapamycin activates TRPM8 in inside-out patches, and these experiments were performed using calcium-free cytosolic and extracellular solutions. Note that earlier studies have already shown that icilin activates outward TRPM8 currents in the full absence of calcium: see e.g. Janssens et al. eLife, 2016. Chuang et al. 2004. In the case of Icilin, increased calcium further potentiates the current, which is more prominent for the inward current.

      In the Ca uncaging experiments, considering the Kd of DM-nitrophen of 5 nM, we expect that the intracellular calcium concentration before the UV flash would be approximately 15 nM. Taken together, both the inside-out experiments and the flash uncaging experiments confirm that rapamycin responses are not directly regulated by intracellular calcium, contrary to icilin.

      (6) Sequence conservation within TRPM channels could be used in combination with the binding pocket model and mutagenesis to predict rapamycin selectivity for TRPM8 over other TRPMs. For example, some important residues, specifically G805 and Q861, are not conserved in TRPM3, which agrees with the lack of rapamycin sensitivity observed in TRPM3 (Figure S1). Further sequence comparison would provide testable hypotheses for future exploration of rapamycin sensitivity in other TRPMs that could validate the proposed binding pocket.

      Thank you for the suggestion. We now indicate in the discussion that only some of the key residues are conserved and make suggestions for future studies.  

      (7) Please unify the color scheme across the figures to improve clarity.

      • The authors frequently use the colors blue, red, and green to represent menthol and rapamycin in the figures, but they are inconsistent in which one represents menthol and which represents rapamycin. It would be clearer for the audience if, for example, rapamycin is always represented with red and menthol is always represented with blue.  

      Thank you for pointing this out. We have made the coloring schemes more uniform.

      • In Figure 1, panel E, the coloring for Menthol and Pregnenolone Sulfate changes between the TRPM8+/+ and TRPM8-/- panels.  

      Thank you for pointing this out. We have updated the coloring schemes to ensure consistency between the TRPM8+/+ and TRPM8-/- panels.

      • Figure 3 B and E, perhaps color the plot background as a 3-color gradient (blue to white to red) rather than yellow and aqua. Center the white at the WT ratio, keeping the dashed line, with diverging gradients to, for example, blue for mutations that selectively affect menthol sensitivity and red for rapamycin.

      Thank you for the suggestion – we have changed the figure accordingly.  

      • Figure 4 panels A and B use the same color (green) to show two different things (menthol molecule and mutated residues that affect rapamycin sensitivity). It would be clearer for readers to change these colors to agree with a unified color scheme such that, for example, the menthol molecule is colored blue and the rapamycin-neighboring residues are colored red.

      Thank you for the suggestion. We have updated the figure to use a unified color scheme, with the menthol molecule now colored green and the rapamycin-neighboring residues colored cyan, to enhance clarity for readers.

      • I recommend adding a figure or panel that shows side chains for all mutations, colored by menthol/rapamycin selectivity, as indicated by the functional data in Figure 3B and 3E. This will highlight spatial patterns of the selective residues that are discussed in the text.

      Thank you for your suggestion, we added all the side residues in Figure S10.

      Minor points

      (1) It would be nice to have one more concentration data point in the middle of the dose response curve shown in Figure 1 panel B. The response is not saturating at the top or foot of the curve in Figure 1 panel D, precluding a confident fit to a two-state Boltzmann function.

      Instead of adding a single data point to this figure, we performed independent measurements on a plate reader system, comparing concentration responses at room temperature and 37 degrees. These data are now included as Figure S1.   

      (2) The cartoon in Figure 2 panel B should be made more accurate. For example, only the transmembrane helices should be depicted embedded in the membrane, not the whole protein including the intracellular domain. Because the experiment was performed with cells, change the orientation of TRPM8 in the cartoon to show the intracellular domain of the protein facing away from the extracellular side of the membrane where the rapamycin is applied.

      Thank you for this comment. We have corrected the cartoon accordingly

      (3) Perhaps put the yellow circles under or around the carbon atoms to which the identified hydrogen atoms belong in Figure 2 panel E and Figure 4 panel C. I found it difficult to visualize and compare the STTD NMR results with the predicted binding pocket.

      Thank you for the feedback. We have added yellow circles around the carbon atoms corresponding to the identified hydrogen atoms in Figure S9.  

      (4) Regarding the sentence on p. 12 beginning "In agreement with this notion..."

      • Include icilin, Cooling Agent-10, and WS-3 as other cooling agents whose sensitivity has been modulated by mutation of Y745

      • Cryosim-3 responses were not tested in either of the two papers cited; please add citation to Yin et al., 2022, doi: https://doi.org/10.1126/science.add1268 .

      • Other relevant papers include:

      – Malkia et al., 2009, doi: https://doi.org/10.1186/1744-8069-5-62 which includes molecular docking showing the hydroxyl group of menthol interacting with Y745

      – Beccari et al., 2017, doi: https://doi.org/10.1038/s41598-017-11194-0 Figure 5 shows disruption of icilin and Cooling Agent-10 sensitivity by Y745A

      – Palchevskyi et al., 2023, doi: https://doi.org/10.1038/s42003-023-05425-6 Figure 3 shows disruption of icilin, cooling agent-10, WS-3, and menthol sensitivity by Y745A o Plaza-Cayon et al., 2022, https://doi.org/10.1002%2Fmed.21920 Review of TRPM8 mutations

      • typo: Y754H should be Y745H

      Thank you for these suggestions. We have added the above references to the text and corrected the typo.

      (5) The authors use the competitive action of everolimus on rapamycin activation as evidence that the different macrolides are binding to the same binding pocket. In addition, prior work showed that Y745H and N799A mutations (which render TRPM8 insensitive to menthol and icilin, respectively) do not affect TRPM8 sensitivity to the structurally-related compound tacrolimus (Arcas et al., 2019). This is consistent with the docking and mutagenesis results presented here.

      Thank you for this valuable suggestion. We discuss these data in the revised version.

      (6) Rapamycin sensitivity has also been observed in TRPML1 (Zhang et al. 2019, doi: https://doi.org/10.1371/journal.pbio.3000252).

      We added a short reference to this interesting finding in the discussion.

      (7) The whole-cell currents are very large in several of the electrophysiology experiments (for example Figure 3 panel D and Figure S1), which could lead to artifacts of voltage errors as well as ion accumulation/depletion. However, because this paper is not relying on reversal potential measurements or trying to quantify V1/2, these errors are unlikely to affect the qualitative conclusions drawn.

      This is a fair point, but indeed unlikely to affect our main conclusions. Note that we compensated between 70 and 90% of the series resistance, so we don’t expect voltage errors exceeding ~10 mV.

      (8) Ligand sensitivity is frequently species-dependent in TRP channels, so it is interesting that multiple species were used here and that both human and mouse isoforms exhibit rapamycin sensitivity. It should be emphasized that human TRPM8 was used in the calcium imaging and electrophysiology experiments, as well as some docking models, while the mouse isoform was used in the sensory neuron experiments and a mutated avian isoform was used for some docking models.

      This information is available in the Methods and we believe it is clear for the readers.

      (9) Perhaps discuss the unclear mechanism of G805A action in icilin (but not menthol, cold, or praziquantel) sensitivity because it is not in direct contact with the ligand. For example, Yin et al., 2019 propose flexibility allowing Ca binding site and larger binding site for icilin.

      Yin et al. (2019) suggests that the G805A mutation impacts icilin sensitivity by influencing the flexibility of the binding site and possibly affecting calcium binding. In our study, we found that G805A significantly reduces rapamycin sensitivity, likely due to its direct role in the rapamycin binding pocket rather than affecting calcium binding. This is now briefly mentioned in the results section.

      (10) The Figure S1 legend indicates that n=5 for all panels, so please show normalized population IV curves rather than individual examples. Additionally, it would be interesting to see what happens when each agonist is co-applied with rapamycin. Does rapamycin potentiate or inhibit agonist activation in these channels and/or TRPM8?

      We believe that normalized population IVs are not ideal for representing whole-cell currents, considering the substantial variation in current densities. We therefore prefer to show example traces in Figure S3 of the revised version but include mean values of current densities for all tested cells in the text.

      While the effects of co-application of rapamycin with activating ligands could be of interest, we consider this somewhat outside the scope of the present manuscript. The combination of HEK293 cell experiments, along with results obtained in WT and TRPM8-deficient mice does, in our opinion, sufficiently describe the selectivity of rapamycin towards TRPM8 compared to other sensory TRP channels.

      (11) Figure S1 panel A does not contain units for Rapamycin or AITC concentrations.

      Thank you for pointing this out. The units were added to the figure.  

      (12) It would be nice if the authors characterized the different mutations as predicted to contribute to site 1 (D796, H845, Q861, based on Figure S4), site 2 (D796, M801, F847, and R851), and/or site 3 (F847, V849, and R851).

      The indicated mutants were all tested, as shown in Figure 3.

      (13) The numbering scheme in Figure S4 does not appear to match the residue numbers in the rest of the paper for certain residues (HIS-844 rather than H845, PHE-846 rather than F847, VAL-848 rather than V849, ARG-850 rather than R851, and GLN-860 rather than Q861), and labels are often overlapping and difficult to see. I also find the transparent spheres very difficult to distinguish from the transparent background, which makes it difficult to appreciate the STTD NMR data overlay.

      We apologize for the confusing numbering scheme. The lower numbers refer to the initial docking that was done using the avian TRPM8 ortholog. We have made a newer, clearer version of Figure S4 and inserted as Figure S9.  

      (14) Please superpose the Ligplots in Figure S5 panels E and F as described in the LigPlus manual (https://www.ebi.ac.uk/thornton-srv/software/LigPlus/manual/manual.html) to facilitate easier comparison.

      Thank you for the suggestion. We followed the suggestion to superpose the Ligplots as described but found that the result was visually cluttered and difficult to interpret. To avoid confusion, we instead decided to remove panels E and F from Figure S5, as we believe that the visualization in panels A-D is clear and informative.

      (15) Some n values are missing in figure legends.

      We checked all legends, and added n numbers were missing.

      (16) There is an inconsistent specification of error bars as SEM in the figure legends, though it is specified in methods.

      A question for my own edification: Here, you have looked at ligand interactions with the protein by saturating the protein resonances and observing transfer to the ligand. Would it be possible to instead saturate lipid or solute resonances and observe transfer to a ligand? I am curious whether this would be one way to measure equilibrium partitioning of ligand into a membrane and/or determine the effective concentration of a ligand in the membrane. Additionally, could one determine whether the compound is fully partitioned into the center of the membrane or just sitting on the surface?

      The reviewer highlights an interesting aspect. The widely used WaterLOGSY NMR experiment (doi: 10.1023/a:1013302231549) saturates water molecules then the magnetization is transferred to the ligand of interest. Characteristic changes in ligand resonances are observed in the case of a binding event with proteins. On the other hand, the selective saturation of lipids is -while theoretically possible –technically challenging mainly because of the inherent low signal-dispersion of lipids and peak overlapping with ligand resonances. Additionally, lipid systems are more dynamic compared to proteins and ligand-lipid interactions could be weaker and less specific, significantly affecting the sensitivity of STD experiments.

      Reviewer #2 (Recommendations For The Authors):

      Major:

      • Is it feasible to test rapamycin on TRPM8 with single-channel recording? This will allow us to better probe the mechanism of rapamycin activation and compare it with menthol, with parameters of singlechannel conductance and maximal open probability.

      In our experience, it is very difficult to obtain single-channel recordings from TRPM8. The channel expresses at high densities, typically leading to patches contain multiple channels, making a proper analysis of mean open and closed times very difficult. Therefore, we have decided not to include such measurements in the manuscript.

      • The authors classified rapamycin as a type I agonist, the type that stabilizes the open conformation, same as menthol but more prominent. Does that indicate that rapamycin work synergistically (rather than independently) with menthol, because co-application of them can allow them to add to each other in stabilizing the open conformation? I wonder if the authors agree that this could be tested with experiments as in Figure S3, by showing a much more prolonged deactivation with co-application of menthol and rapamycin than applying each alone.

      Thank you for the insightful suggestion. We conducted co-application experiments, and our results show that the deactivation time is indeed significantly prolonged when both compounds are applied together compared to each alone. In fact, very little deactivation is seen when both compounds are co-applied, which made it virtually impossible to perform reliable fits to the deactivation time course for the Menthol+Rapamycin condition. Instead, we have now included summary results showing the percentage of deactivation after 100 ms. We included these findings in FigureS8.  

      • It could be tested whether rapamycin activation of TRPM8 requires or overrides the requirement of PIP2 with inside-out patch by briefly exposing the patch to poly-lysine to sequester PIP2.

      This is certainly a good suggestion for further follow-up studies. However, we considered that examination of the (potential) interaction between ligands and PIP2 was outside the scope of the current manuscript.

      • Figure 1C suggests that the authors test rapamycin when there is a relatively high baseline TRPM8 activation (prior to rapamycin) activation. This raises the possibility that rapamycin is more a potentiator than an activator. I wonder if the following two experiments could address it: (1) perfuse rapamycin while holding at different membrane potentials, wash-off rapamycin in the solution and quickly (in a few seconds) test the activated current magnitude (before rapamycin dissociation), to compare whether a more depolarized membrane potential (high baseline open probability) allows rapamycin to potentiate more. (2) Perform the experiment at a higher temperature (low baseline open probability) and test whether rapamycin EC50 shifts to the right.

      Thank you for the thoughtful suggestion. Overall, we are not really in favor of making a distinction between a potentiator and an activator since it is not really feasible to create a situation where TRPM8 activity is zero. As suggested, we performed the dose response experiment at a higher temperature (37 °C) and observed that rapamycin’s EC<sub>50</sub> shifts to the right FigureS2. This is similar to what has been observed for menthol on TRPM8 and for many other ligands on other temperature-sensitive TRP channels.

      Minor:

      (1) The author should report hill coefficient together with EC50 when showing dose-responses.

      We have added Hill coefficients for all the fits.

      (2) In Figure 1 (E, F), it might be clearer to use Venn-diagram to show whether there is overlapping among rapamycin-, menthol-, and cinnamaldehyde-responsive neurons. According to the authors' explanation, we can predict that rapamycin-insensitive, menthol-sensitive neurons should predominantly be cinnamaldehyde-responsive.

      Thank you for your suggestion. In these experiments, we applied several agonists and the combination of them would result in a visually crowded Venn diagram difficult to interpret. However, we agree, with the reviewer’s suggestion, and discuss the percentage of the cinnamaldehyde+ neurons in the rapa- menthol+ population in Trpm8<sup>-/-</sup> neurons.

      (3) In Figure 3(C), since F847 does not respond to either menthol or rapamycin, it should be excluded from (B). Otherwise it is misleading.

      Thank you for pointing this out. To clarify, we have included a calcium imaging trace for the F847 mutant, demonstrating a clear response to rapamycin in FigureS9. This additional data highlights that F847 does respond to rapamycin, albeit with a more modest response amplitude. This is now also clarified in the results section.  

      (4) The word "potency" in pharmacology usually refers to a smaller EC50 number in dose-dependent experiments. In "Effect of rapamycin analogs on TRPM8" session, the authors use "potency" to refer to response to a single-dose experiment of different compounds. The experiment does not measure potency.

      Thank you for pointing out this mistake. We have corrected the text and replaced “potency” with “efficacy”.

      (5)  "2-methoxyl-" is misspelled in the text body.

      We have corrected the typo.

      (6) It will be nice to include "vehicle" in Figure 6B, or alternatively normalize all individual traces to vehicle. In Figure 6C and D, everolimus has almost no effect with compared to vehicle, and should not be shown as if it had ~8% in Figure 6B.

      We have added the vehicle values to Figure 6B from the same experiments.

      Reviewer #3 (Recommendations For The Authors):

      (1) The NMR method presented here as novel and employed to identify a proposed molecule bound to a membrane protein (TRPM8 in this case) is not well explained and presented. Since several spectra need to be subtracted, the authors should present the raw data and the results of the subtractions step by step. Also, it seems that the height of the peaks in each spectra will be highly variable and thus a reliable criterion employed to scale spectra before subtraction. None of these problems are discussed of described.

      The reviewer is right, that the data transparency should be improved and due to the high molecular complexity of the samples the size of the STD effects should be carefully scaled. We carried out additional experimental replicas on new samples and addressed the inherent sample/peak height variability by rescaling the STD effects based on reference <sup>1</sup>H measurements. We provided supplementary spectra of the reference experiments without saturation (Figure S5) and the computed STTD spectra from three parallel NMR sessions (Figure S6). We changed panel C of Figure 2 in the main text and provided all the STD and the computed STDD and STTD spectra recorded on one set of NMR experiments. We added the following paragraph to the main text: “To address the effect of the inherent variability of cellular samples on peak heights, STD effects were normalized based on the comparison of independent <sup>1</sup>H experiments (Figure S5). Three STTD replicates were computed, unambiguously confirming direct binding to TRPM8 in two datasets (Figure S6 A,B)”.

      Importantly since this signal subtraction method is proposed as a new development, control experiments employing well-established pairs of ligand and membrane protein receptor should be performed to demonstrate the reliability of the method.

      We agree with the reviewer, that the STTD experiment as a new development needs further validation, however, this paper is a preliminary demonstration of a new strategy building on the well-established STD and STDD NMR methodologies. Our group is actively engaged in studying additional biological samples to enhance our understanding of the applicability of STTD NMR. These efforts also aim to address challenges such as sample and spectral complexity by refining and standardizing the proposed workflow.

      (2) The tail currents shown in supplementary figure 3 are clearly not monoexponential. The fit to a single exponential can be seen to be inadequate and thus the comparison of kinetics of control, rapamycin and menthol is incorrect. At least two exponentials should be fitted and their values compared.

      We agree that the decay in the (combined) presence of agonists deviates from a simple monoexponential behavior. While we agree that fitting with two (or more) exponentials would provide a better fit, this also comes with greater variations/uncertainties in the fit parameters. This is particularly the case when inactivation is very slow and incomplete, or when the difference between slow and fast exponential time constants is <5, as seen with rapamycin and rapamycin +menthol. Therefore, we decided to provide monoexponential time constants as a proxy to describe the clear slowing down of activation and deactivation time courses in the presence of Type I agonists.   

      Also related to this aspect, recordings of TRPM8 currents can not be leak subtracted with a p/n protocol, thus a large fraction of the initial tail current must be the capacitive transient. There is no indication in the methods of how was this dealt with for the fitting of tail currents.

      As explained in the methods, capacitive transients and series resistance were maximally compensated. Therefore, we do not agree that a large fraction of the initial tail current must be capacitive. This can also be clearly seen in experiment such as Figure 1C, where the inward tail current is fully abolished in the presence of a TRPM8 antagonist. Likewise, very small and rapidly inactivating tail currents can be seen during voltage steps under control conditions (e.g. Figure S7  and S8 in the revised version).  

      (3) The docking procedure employed, as the authors show, is not appropriate for membrane proteins since it does not include a lipid membrane. It is not clear in the methods section if the MD minimization described applies only to the rapamycin molecule or to rapamycin bound to TRPM8.  

      It is also not clear if the important residue Q861 (and other residues that are identified as interacting with rapamycin) were identified from dockings or proposed based on other evidence.

      (4) Identifying amino acid residues that diminish the response to a ligand, does not uniquely imply that they form a binding site or even interact with said ligand. It is entirely possible that they can be involved in the allosteric networks involved in the activating conformational change. This caveat should be clearly posited by the authors when discussing their results.

      In our study, we identified several residues that significantly reduce the response to rapamycin when mutated, while retaining robust responses to menthol, which indicates that these mutations do not affect crucial conformational changes leading to channel gating. While our cumulative data suggest that these residues may be involved in direct interaction with rapamycin, we recognize the alternative possibility that they allosterically affect rapamycin-induced channel gating. This is now clearly stated in the first paragraph of the discussion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1 (Public Review):

      • While the title is fair with respect to the data shown, in the summary and the rest of the paper, the comparison between anesthetized and awake conditions is systematically stated, while more caution should be used.

      First, isoflurane is one of the (many) anesthetics commonly used in pre-clinical research, and its effect on the brain vasculature cannot be generalized to all the anesthetics. Indeed, other anesthesia approaches do not produce evident vasodilation; see ketamine + medetomidine mixtures. Second, the imaged awake state is head-fixed and body-constrained in mice. A condition that can generate substantial stress in the animals. In this study, there is no evaluation of the stress level of the mice. In addition, the awake imaging sessions were performed a few minutes after the mouse woke up from isoflurane induction, which is necessary to inject the MB bolus. It is known that the vasodilator effects of isoflurane last a long time after its withdrawal. This aspect would have influenced the results, eventually underestimating the difference with respect to the awake state.

      These limitations should be clearly described in the Discussion.

      Looking at Figure 2e, it takes more than 5' to reach the 5 Millions MB count useful for good imaging. However, the MB count per pixel drops to a few % at that time. This information tells me that (i) repeated measurements are feasible but with limited brain coverage since a single 'wake up' is needed to acquire a single brain section and (ii) this approach cannot fit the requirements of functional ULM that requires to merge the responses to multiple stimuli to get a complete functional image. Of course, a chronic i.v. catheter would fix the issue, but this configuration is not trivial to test in the experimental setup proposed by the authors, hindering the extension of the approach to fULM.

      Thank you for highlighting these limitations, as they address aspects that were not fully considered during the experimental design and manuscript writing. In response, we have added the following paragraphs to the discussion section, addressing these limitations of our study:

      (Line 310) “Although isoflurane is widely used in ultrasound imaging because it provides long-lasting and stable anesthetic effects, it is important to note that the vasodilation observed with isoflurane is not representative of all anesthetics. Some anesthesia protocols, such as ketamine combined with medetomidine, do not produce significant vasodilation and are therefore preferred in experiments where vascular stability is essential, such as functional ultrasound imaging(47). Therefore, in future studies, it would be valuable to design more rigorous control experiments with larger sample sizes to systematically compare the effects of isoflurane anesthesia, awake states, and other anesthetics that do not induce vasodilation on cerebral blood flow.

      Our proposed method enabled repeatable longitudinal brain imaging over a three-week period, addressing a key limitation of conventional ULM imaging and offering potential for various preclinical applications. However, there are still some limitations in this study. 

      One of the limitations is the lack of objective measures to assess the effectiveness of head-fix habituation in reducing anxiety. This may introduce variability in stress levels among mice. Recent studies suggest that tracking physiological parameters such as heart rate, respiratory rate, and corticosterone levels during habituation can confirm that mice reach a low stress state prior to imaging(48). This approach would be highly beneficial for future awake imaging studies. Furthermore, alternative head-fixation setups, such as air-floated balls or treadmills, which allow the free movement of limbs, have been shown to reduce anxiety and facilitate natural behaviors during imaging(30). Adopting these approaches in future studies could enhance the reliability of awake imaging data by minimizing stress-related confounds.

      Another limitation of this study is the potential residual vasodilatory effect of isoflurane anesthesia on awake imaging sessions. The awake imaging sessions were conducted shortly after the mice had emerged from isoflurane anesthesia, required for the MB bolus injections. The lasting vasodilatory effects of isoflurane may have influenced vascular responses, potentially contributing to an underestimation of differences in vascular dynamics between anesthetized and awake state. Future applications of awake ULM in functional imaging using an indwelling jugular vein catheter presents a promising alternative to enable more accurate functional imaging in awake animals, addressing current limitations associated with anesthesia-induced vascular effects.”

      • Statistics are often poor or not properly described. 

      The legend and the text referring to Figure 2 do not report any indication of the number of animals analyzed. I assume it is only one, which makes the findings strongly dependent on the imaging quality of THAT mouse in THAT experiment. Three mice have been displayed in Figure 3, as reported in the text, but it is not clear whether it is a mouse for each shown brain section. Figure 5 reports quantitative data on blood vessels in awake VS isoflurane states but: no indication about the number of tested mice is provided, nor the number of measured blood vessels per type and if statistics have been done on mice or with a multivariate method.

      Also, a T-test is inappropriate when the goal is to compare different brain regions and blood vessel types.

      Similar issues partially apply to Figure 6, too.

      Thank you for bringing this to our attention. 

      We acknowledge that the statistical analyses were not clearly explained in the original version. In the revised manuscript, we have ensured that the statistical methods are clearly described. 

      (Fig.4 caption) “b,c, Comparisons of vessel diameter (b) and flow velocity (c) for the selected arterial and venous segments. Statistical analysis was conducted using t-test at each measurement point along the segments.”

      (Fig.6 caption) “b,c, Comparisons of vessel diameter (b) and flow velocity (c) for the selected arterial and venous segments. Statistical analysis was conducted using the two one-sided test (TOST) procedure, which evaluates the null hypothesis that the difference between the two weeks is larger than three times the standard deviation of one week.”

      Additionally, we corrected an error in the previous comparison of the violin plots on flow velocities, where a t-test was incorrectly applied; this has now been removed.

      We acknowledge that the original version did not clearly indicate the numbers of animals in the statistical analysis. In the revised manuscript, we have added Supplementary Figure 1 to specify the mice used, and we have labeled each mouse accordingly in the figures or captions. In the revised Figures 4 and 6, we have ensured that each quantitative analysis figure or its caption clearly indicate the specific mice.

      For original Figures 1 and 2, these are presented as case studies to illustrate the methodology. Since the anesthesia time required for tail vein injection for each animal varies slightly, it is challenging to have the consistent time taken for each mouse to recover from anesthesia across all mice. For instance, in Figure 1, the mouse took nearly 500 seconds to recover from anesthesia, but this duration is not consistent across all animals, which is a limitation of the bolus injection technique. We have noted this point in the discussion (discussion on the limitation of bolus injection), and we have also clarified in the results section and figure captions that these figures represent a case study of a single mouse rather than a standardized recovery time for all animals.

      We further clarified this point in the end of the Figure 2 caption:

      (Fig.2 caption) “This figure presents a case study based on the same mouse shown in Fig 1. The x-axis for d-f begins at 500 seconds because, at this point, the mouse’s pupil size stabilized, indicating it had recovered to an awake state. Consequently, ULM images were accumulated starting from this time. It is important to note that not every mouse requires 500 seconds to fully awaken; the time to reach a stable awake state varies across individual mice.” We added the following statement before introducing Figure 1e:

      (Line 93) “Due to differences in tail vein injection timing and anesthesia depth, the time required for each mouse to fully awaken varied. Although it was not feasible to get pupil size stabilized just after 500 seconds for each animal, ULM reconstruction only used the data that acquired after the animal reached full pupillary dilation, to ensure that ULM accurately captures the cerebrovascular characteristics in the awake state.”

      We added the following statement before introducing Figure 2d:

      (Line 139) “To further verify that the proposed MB bolus injection method can help to achieve ULM image saturation shortly after mice awaken from anesthesia, an analysis on the change in MB concentration over time was conducted once pupil size had stabilized (T = 500s).”

      For Figures 3, 4, and 5 (in the revised version, Figures 4 and 5 have been combined into a single Figure 4), the data represents results from three individual mice, with each coronal plane corresponding to a different mouse. In the revised version, we have added labels to indicate the specific mouse in each image to improve clarity. We also recognize that some analyses in the original submission (original Figure 5) may have lacked sufficient statistical power due to the small sample size. Therefore, in the revised version, we have focused only on findings that were consistently observed across the three mice to ensure robust conclusions.

      Reviewer 1 (Recommendations For the Authors):

      • If the study's main goal is to compare awake vs anesthetized ULM, the authors should test at least another anesthetic with no evident vasodilator effect.

      Thank you for this valuable suggestion. We would like to clarify that the primary aim of our study is not to comprehensively compare the effects of anesthesia versus the awake state, as a rigorous comparison would indeed require a more controlled experimental design, including additional anesthetics, a larger cohort of mice, and broader controls to ensure sufficient statistical power. We also add the following statement in the Discussion to clarify this point:

      (Line 314) “Therefore, in future studies, it would be valuable to design more rigorous control experiments with larger sample sizes to systematically compare the effects of isoflurane anesthesia, awake states, and other anesthetics that do not induce vasodilation on cerebral blood flow.”

      We acknowledge that the initial organization of Figures 3–5 placed excessive emphasis on comparisons between the awake and anesthetized states, but without yielding consistently significant findings. Meanwhile, our longitudinal observations in original Figure 6 were underrepresented, despite their potential importance.

      In the revised version, we shifted our focus toward the main goal of awake longitudinal imaging. By consolidating the previous Figures 4 and 5 into the new Figure 4, we emphasize conclusions that are both more consistent and broadly applicable, avoiding areas that may lack sufficient rigor or consensus. Additionally, we expanded the quantitative analysis related to longitudinal imaging, highlighting its role as the ultimate objective of this study. The awake vs. anesthetized ULM comparison was intended to demonstrate the value of awake imaging and introduce the importance of awake longitudinal imaging. In the revised text, we have reframed this comparison to emphasize the specific response to isoflurane rather than a general response to anesthesia. For example, in Figures 3 and 4, we have replaced the original term "Anesthetized" with "Isoflurane". We have also added a discussion noting that isoflurane may induces more vasodilation than other anesthetic agents.

      (Line 310) “Although isoflurane is widely used in ultrasound imaging because it provides long-lasting and stable anesthetic effects, it is important to note that the vasodilation observed with isoflurane is not representative of all anesthetics. Some anesthesia protocols, such as ketamine combined with medetomidine, do not produce significant vasodilation and are therefore preferred in experiments where vascular stability is essential, such as functional ultrasound imaging(47).”

      • The claims made about the proposed experimental protocol to be suitable for the "long-term" (line 255) are not supported by the data and should be modified according to the presented evidence.

      Thank you for your valuable feedback. We agree that our current three-week experimental results do not yet fulfill the requirements for extended longitudinal imaging that may span several months. We have revised the relevant text accordingly. For instance, the phrase “Our proposed method enabled long-term, repeatable longitudinal brain imaging” has been modified to “Our proposed method enabled repeatable longitudinal brain imaging over a threeweek period.” (Similar changes also in Line 67, Line 318, and Line 337) Additionally, we have added the following paragraph in the discussion section to indicate that extending the monitoring period to several months is a meaningful direction for future exploration:

      (Line 337) “In our longitudinal study, consistent imaging results were obtained over a three-week period, demonstrating the feasibility of awake ULM imaging for this duration. However, for certain research applications, a monitoring period of several months would be valuable. Extending the duration of longitudinal awake ULM imaging to enable such long-term studies is a potential direction for future development.”

      Recommendations for improving the writing and presentation:

      • Reporting the number of mice and blood vessels and statistics for each quantitative figure.

      Thank you for highlighting this issue. We acknowledge that the quantitative figures in the previous version lacked clarity in specifying the number of mice, vessels, and associated statistics. In the revised version, we have ensured that each quantitative figure or its caption clearly indicate the specific mice, vessels, and statistical methods used. To further minimize any potential confusion, we have also added Supplementary Figure 1 to clearly label and reference each individual mouse included in the study.

      Minor corrections to the text and figures.

      • Line 22: "vascularity reduction from anesthesia" is not clear, nor it is a codified property of brain vasculature. Explain or rephrase.

      Thank you for your comment. We apologize for any confusion caused by the phrase “vascularity reduction from anesthesia” in the abstract. We agree that this phrasing was unclear without context. To improve clarity, we have revised this statement in the abstract to make it more straightforward and easier to understand. 

      (Line 24) “Vasodilation induced by isoflurane was observed by ULM. Upon recovery to the awake state, reductions in vessel density and flow velocity were observed across different brain regions.” 

      Additionally, we have added a section in the Methods titled Quantitative Analysis of ULM Images to provide a clear definition of vascularity. This section outlines how vascularity is quantified in our study, ensuring that our terminology is well-defined. 

      The following sentence shows the definition of vascularity:

      (Line 547) “Vascularity was defined as the proportion of the pixel count occupied by blood vessels within each ROI, obtained by binarizing the ULM vessel density maps and calculating the percentage of the pixels with MB signal.”

      We have also added an instant definition when it was firstly used in Results part:

      (Line 161) “When comparing vessel density maps, ULM images that are acquired in the awake state demonstrate a global reduction of vascularity, which refers to percentage of pixels that occupied by blood vessels.”

      • Line 76: putting the mice in a tube is also intended "To further reduce animal anxiety and minimize tissue motion" I agree with tissue motion, not with animal anxiety, which, indeed, I expect to be higher than if it could, for example, run on a ball or a treadmill.

      Thank you for pointing this out. We acknowledge the limitations of our setup regarding reducing animal anxiety. We have replaced the original phrase “to further reduce animal anxiety and minimize tissue motion” with “to further minimize tissue motion.” (Line 78) Additionally, we have added the following paragraph in Discussion section to address the limitations of our setup in reducing anxiety.

      (Line 321) “One of the limitations is the lack of objective measures to assess the effectiveness of head-fix habituation in reducing anxiety. This may introduce variability in stress levels among mice. Recent studies suggest that tracking physiological parameters such as heart rate, respiratory rate, and corticosterone levels during habituation can confirm that mice reach a low stress state prior to imaging(48). This approach would be highly beneficial for future awake imaging studies. Furthermore, alternative head-fixation setups, such as air-floated balls or treadmills, which allow the free movement of limbs, have been shown to reduce anxiety and facilitate natural behaviors during imaging(30). Adopting these approaches in future studies could enhance the reliability of awake imaging data by minimizing stress-related confounds.”

      • Line 79: PMP has been used by Sieu et al., Nat Methods, 2015; it should be acknowledged.

      Thank you for highlighting this. We have now included the reference to Sieu et al. Nat Methods, 2015 to appropriately acknowledge their use of PMP. (Line 81)

      • Figure: is there a reason why the plots start at 500 sec? What happened before that time?

      Thank you for your question regarding the starting time in the plots. Figures 1 and 2 are case studies using a single mouse to demonstrate the feasibility of our method. The “zero” timepoint was defined as the moment when anesthesia was stopped, and the microbubble injection began. However, the mouse does not fully recover immediately after anesthesia is stopped. As shown in Figure 1e, there is a period of approximately 500 seconds during which the pupil gradually dilates, indicating recovery. Only after this period does the mouse reach a relatively stable physiological state suitable for ULM imaging, which is why the plots in Figure 2 begin at T = 500 seconds.

      We recognize that this was not sufficiently explained in the main text and figure captions. In the revised manuscript, we have clarified this timing rationale in both the results section and the figure captions. We added the following sentence to the result section to introduce Fig.2d:

      (Line 139) “To further verify that the proposed MB bolus injection method can help to achieve ULM image saturation shortly after mice awaken from anesthesia, an analysis on the change in MB concentration over time was conducted once pupil size had stabilized (T = 500s).”

      We also added the following statement to note that this recover time varies across individual mice:

      (Line 154, Fig.2 caption) “This figure presents a case study based on the same mouse shown in Fig 1. The x-axis for d-f begins at 500 seconds because, at this point, the mouse’s pupil size stabilized, indicating it had recovered to an awake state. Consequently, ULM images were accumulated starting from this time. It is important to note that not every mouse requires 500 seconds to fully awaken; the time to reach a stable awake state varies across individual mice.”

      Reviewer 2 (Public Review):

      • The only major comment (calling for further work) I would like to make is the relative weakness of the manuscript regarding longitudinal imaging (mostly Figure 6), compared to the exhaustive review of the effect of isoflurane on the vasculature (3 rats, 3 imaging planes, quantification on a large number of vessels, in 9 different brain regions). The 6 cortical vessels evaluated in Figure 6 feel really disappointing. As longitudinal imaging is supposed to be the salient element of this manuscript (first word appearing in the title), it should be as good and trustworthy as the first part of the paper. Figure 6c. is of major importance, and should be supported by a more extensive vessel analysis, including various brain areas, and validated on several animals to validate the robustness of longitudinal positioning with several instances of the surgical procedure. Figure 6d estimates the reliability of flow measurements on 3 vessels only. Therefore I recommend showing something similar to what is done in Figures 4 and 5: 3 animals, and more extensive quantification in different brain regions.

      We thank the reviewer for pointing out this issue. We acknowledge that the first version of the manuscript lacked in-depth quantitative analysis in the section on the longitudinal study, which should have been a focal point. It also did not provide a sufficient number of animals to demonstrate the reproducibility of the technique. In this revised version, we have included results from more animals and conducted a more comprehensive quantitative analysis, with the corresponding text updated accordingly. Specifically, we combined the previous Figures 4 and 5 into the current Figure 4 (corresponding revised text from Line 169 to Line 207). The revised Figures 5 and 6

      compare the results of the longitudinal study, presenting data from three mice (corresponding revised text from

      Line 224 to Line 258). Detailed information about the mice used has been added to Supplementary Figure 1, and Supplementary Figure 4 further provides a detailed display of the results for the three mice in longitudinal study. We hope that these adjustments will provide a more thorough validation of the longitudinal imaging.

      Reviewer 2 (Recommendations For The Authors):

      Minor comments:

      • The statistical analyses are not always explained: could they be stated briefly in the legends of each figure, or gathered in a statistical methods section with details for each figure? Be sure to use the appropriate test (e.g. student t-test is used in Fig 5 k whereas normality of distribution is not guaranteed.)

      Thank you for pointing this out. We acknowledge that the statistical analyses were not clearly explained in the original version. In the revised manuscript, we have ensured that the statistical methods are clearly described. 

      (Fig.4 caption) “b,c, Comparisons of vessel diameter (b) and flow velocity (c) for the selected arterial and venous segments. Statistical analysis was conducted using t-test at each measurement point along the segments.”

      (Fig.6 caption) “b,c, Comparisons of vessel diameter (b) and flow velocity (c) for the selected arterial and venous segments. Statistical analysis was conducted using the two one-sided test (TOST) procedure, which evaluates the null hypothesis that the difference between the two weeks is larger than three times the standard deviation of one week.”

      Additionally, we corrected an error in the previous comparison of the violin plots on flow velocities, where a t-test was incorrectly applied; this has now been removed.

      • The authors use early in the manuscript the term vascularity, e.g. in "vascularity reduction", it is not exactly clear what they mean by vascularity, and would require a proper definition at that moment. If I am correct, a quantification of that "vascularity reduction" (page 5 line 132), is then done in Figures 5 d e f and j.

      Thank you for highlighting this issue. We acknowledge that our initial use of the term “vascularity” may have been unclear and potentially confusing. In the revised manuscript, we have included a clear definition of “vascularity” in the Methods section under Quantitative Analysis of ULM Images (Line 534). 

      The following sentence shows the definition of vascularity:

      (Line 547) “Vascularity was defined as the proportion of the pixel count occupied by blood vessels within each ROI, obtained by binarizing the ULM vessel density maps and calculating the percentage of the pixels with MB signal.”

      We have also added an instant definition when it was firstly used in Results part:

      (Line 161) “When comparing vessel density maps, ULM images that are acquired in the awake state demonstrate a global reduction of vascularity, which refers to percentage of pixels that occupied by blood vessels.”

      • There is very little motion in the images presented, except for the awake "Bregma -4.2 mm" (Figure 3, directional maps), especially in the area including colliculi and mesencephalon, while the cortical vessels do not move. Can you comment on that?

      Thank you for highlighting this important aspect of motion in awake animal imaging. Motion correction is indeed a critical factor in such studies. In the original version of our discussion, we briefly addressed this issue (from Line 342 to Line 346), but we agree that a more detailed discussion is needed.

      To minimize motion artifacts, we conducted habituation to acclimate the animals to the head-fixation setup, which helps reduce anxiety during imaging. With thorough head-fixed habituation, the imaging quality is generally well-preserved. We also applied correlation-based motion correction techniques based on ULM images, which can partially correct for overall brain motion, as stated in the previous version. However, this ULM-images-based correction is limited to addressing only rigid motion.

      In the revised discussion, we have expanded on the limitations of our current motion correction approach and referenced recent work about more advanced motion correction methods:

      (Line 346) “While rigid motion correction is often effective in anesthetized animals, awake animal imaging presents greater challenges due to the more prominent non-rigid motion, particularly in deeper brain regions. This is evidenced in Supplementary Fig. 1 (Mouse 7), where cortical vessels remain relatively stable, but regions around the colliculi and mesencephalon exhibit more noticeable motion artifacts, indicating that displacement is more pronounced in deeper areas. To address these deeper, non-rigid motions, recent studies suggest estimating nonrigid transformations from unfiltered tissue signals before applying corrections to ULM vascular images(16,50). Such advanced motion correction strategies may be more effective for awake ULM imaging, which experiences higher motion variability. The development of more robust and effective motion correction techniques will be crucial to reduce motion artifacts in future awake ULM applications.”

      • Figure 1f maybe flip the color bar to have an upward up and downward down.

      Thank you for your suggestion. This display method indeed makes the images more intuitive. In the revised manuscript, all directional flow color bars have been flipped to ensure that upward flow is displayed as ‘up’ and downward flow as ‘down.’

      • Figure 2b the figure is a bit confusing in what is displayed between dashed lines, solid lines, dots... maybe it would be easier to read with

      - bigger dots and dashed lines in color for each of the 4 series

      - and so in the legend, thin solid lines in the corresponding color for the fit, but no solid line in the legend (to distinguish data/fit)

      - no lines for FWHM as they are not very visible, and the FWHM values are not mentioned for these examples.

      Thank you for your detailed suggestions. We agree that the original Fig. 2b appeared messy and confusing. Based on this feedback and other comments, we decided to replace the FWHM-based vessel diameter measurement with a more stable binarization-based approach. In the revised version, we selected a specific segment of each vessel and measured the diameter by calculating the distance from the vessel’s centerline to both side after binarization. Each point on the centerline of this segment provides a diameter measurement, which can be further used to calculate the mean and standard error. This updated method is more stable and reproducible, providing reliable measurements even for vessels that are not fully saturated. It also facilitates comparison across more vessels, helping to further demonstrate the generalizability of our saturation standard. We believe these adjustments make the revised Fig. 2b clearer and more readable.

      • Page 7, lines 144-147. This passage is not really clear when linking going up or down and going from the stem to the branches that it is specific to Figure 4a (and therefore to this particular location).

      Thank you for your insightful comments on our vessel classification method. We recognize the limitations of the previous approach and, in order to enhance the rigor of the study, we have opted not to continue using this method in the revised manuscript. We have removed all content related to vessel classification based on branchin and branch-out criteria. This includes the original Classification of Cerebral Vessels section in the Methods, the relevant descriptions in the Results section under “ULM reveals detailed cerebral vascular changes from anesthetized to awake for the full depth of the brain”, limitation of this classification method in Discussion section, as well as related content in the original Figures 4 and 5.

      In the revised analysis, for the comparison between arteries and veins, we focus solely on penetrating vessels in the cortex. For these vessels, it is generally accepted that downward-flowing vessels are arterioles, while upwardflowing vessels are venules. Accordingly, in the revised Figures 4 and 6, we analyze arterioles and venules exclusively in the cortex, without relying on the previous classification method that could be considered controversial.

      • Page 11 line 222 "higher vascular density" seems unprecise.

      Thank you for pointing this out. We have revised the sentence to more precisely convey our observations regarding changes in vascular diameter and vascularity within the ROI. We present these findings as evidence of the vasodilation effect under isoflurane, in alignment with existing research. The revised statement is as follows:

      (Line 275) “Statistical analysis from Fig. 4 shows that certain vessels exhibit a larger diameter under isoflurane anesthesia, and the vascularity, calculated as the percentage of vascular area within selected brain region ROIs, is also higher in the anesthetized state. These findings suggest a vasodilation effect induced by isoflurane, consistent with existing research(20,40,41,43,44).

      • Discussion: page 12, lines 257-267: it is not exactly clear how 3D imaging will help for the differentiation of veins/arteries. However, some methods have already been proposed to discriminate between arteries and veins using pulsatility (Bourquin et al., 2022) or 3D positioning when vessels are overlapped (Renaudin et al., 2023). The latter can also help estimate the out-of-plane positioning during longitudinal imaging.

      Bourquin, C., Poree, J., Lesage, F., Provost, J., 2022. In Vivo Pulsatility Measurement of Cerebral Microcirculation in Rodents Using Dynamic Ultrasound Localization Microscopy. IEEE Trans. Med. Imaging 41, 782-792. https://doi.org/10.1109/TMI.2021.3123912

      Renaudin, N., Pezet, S., Ialy-Radio, N., Demene, C., Tanter, M., 2023. Backscattering amplitude in ultrasound localization microscopy. Sci. Rep. 13, 11477. https://doi.org/10.1038/s41598-023-38531-w

      Thank you for pointing this out. We have revised the relevant paragraph in the discussion to clarify the potential advantages of advances in ULM imaging methods, such as those based on pulsatility (as described by Bourquin et al., 2022) or backscattering amplitude (as demonstrated by Renaudin et al., 2023). These established methods could be helpful for longitudinal imaging. Below is the revised text in the discussion section:

      (Line 370) “Advances in ULM imaging methods can benefit longitudinal awake imaging. For instance, dynamic ULM can differentiate between arteries and veins by leveraging pulsatility features(51). 3D ULM, with volumetric imaging array(52,53), enables the reconstruction of whole-brain vascular network, providing a more comprehensive understanding of vessel branching patterns. Meanwhile, 3D ULM also helps to mitigate the challenge of aligning the identical coronal plane for longitudinal imaging, a process that requires precise manual alignment in 2D ULM to ensure consistency. Additionally, this alignment issue can also be alleviated in 2D imaging using backscattering amplitude method, which may assist in estimating out-of-plane positioning during longitudinal imaging(54).”

      Reviewer 3 (Public Review):

      • It is unclear whether multiple animals were used in the statistical analysis.

      Thank you for bringing this to our attention. We acknowledge that the original version did not clearly indicate the use of animals in the statistical analysis. In the revised manuscript, we have added Supplementary Figure 1 to specify the mice used, and we have labeled each mouse accordingly in the figures or captions. In the revised Figures 4 and 6, we have ensured that each quantitative analysis figure or its caption clearly indicate the specific mice.

      • Generalizations are sometimes drawn from what seems to be the analysis of a single vessel.

      Thank you for pointing this out. To enhance the generalizability of our conclusions, we have expanded our analysis beyond single vessels in several parts of the study. For instance, in Figure 2, we analyzed three vessels at different depths within the same brain region of a single mouse, and we have included additional results in the Supplementary Figure 2 to further support these findings. Additionally, we have revised the language in the manuscript to ensure that conclusions are appropriately qualified and avoid overgeneralization.

      In Figures 4 and 6, we extended the analysis from single vessels to larger region-of-interest (ROI) analyses across entire brain regions. Unlike single-vessel measurements, which are susceptible to bias based on specific measurement locations, ROI-based analyses are less influenced by the operator and provide more objective, generalizable insights.

      • The description of the statistical analysis is mostly qualitative.

      We recognize that some aspects of the original statistical analysis (Figures 4 and 5 in the previous version) lacked rigor and description is more qualitative. The revised version of statistical analysis (Figure 4 and Figure 6) presents our findings from multiple dimensions, ranging from individual vessels to individual cortical ROI of arteries and veins, and ultimately to broader brain regions. For instance, as illustrated in the revised Figure 4f, the average cortical arterial flow speed decreases by approximately 20% from anesthesia to wakefulness, while venous flow speed decreases by an average of 40%, with the reduction in venous flow speed being significantly greater than that of arterial flow. We believe that this kind of description offers more quantitative analysis.

      For more examples, please refer to the Results section where Figure 4 (Line 169 to Line 207) and Figure 6 (Line 224 to Line 258) are described. These sections have been extensively rewritten to emphasize quantitative interpretation of the data. Each part of the analysis now focuses more heavily on quantitative analyses that consistently show similar trends across all animals.

      • Some terms used are insufficiently defined.

      • Additional limitations should be included in the discussion.

      • Some technical details are lacking. 

      Thank you for highlighting these issues. In response, we have made several improvements in the revised manuscript to address these issues. We have clarified terms such as “vascularity” (Line 547) and “saturation point” (Line 112) to ensure precision and prevent ambiguity. We have expanded the discussion (Line 310 to Line 377) to include limitations such as motion correction challenges and advances in ULM imaging methods, including dynamic ULM and backscattering amplitude techniques. We have added further details on interleaved sampling (Line 494 to Line 497), ULM tracking (Line 517 to Line 529), and quantitative analysis (Line 535 to Line 551) in the Methods section to provide a clearer understanding of our approach. 

      Please refer to our other responses for more specific adjustments.

      • Without information about whether the results obtained come from multiple animals, it is difficult to conclude that the authors generally achieved their aim. They do achieve it in a single animal. The results that are shown are interesting and could have an impact on the ULM community and beyond. In particular, the experimental setup they used along with the high reproducibility they report could become very important for the use of ULM in larger animal cohorts.

      We thank the reviewer for recognizing the impact of our work. We also acknowledge that there were some issues—specifically, we did not provide sufficient proof of reproducibility. In the revised version, we have included additional animal experiment results to ensure that the conclusions were not drawn from a single animal but are generally representative of our aim. (See supplementary figure 1 for detailed use of the animals) 

      Reviewer 3 (Recommendations For The Authors):

      • The manuscript would be more convincing by removing some of the superlatives used in the text. For instance, shouldn't "super-resolution ultrasound localization microscopy" simply be "ultrasound localization microscopy"? Expressions such as "first study", "essential", and "invaluable", etc could be replaced by more factual terms. The word "significant" is also used sometimes with statistics to back it up and sometimes without.

      Thank you for highlighting this issue. We have removed the superlatives throughout the manuscript to make the language more precise. For instance, we have simplified “super-resolution ultrasound localization microscopy” to “ultrasound localization microscopy” throughout the main text and removed expressions such as “first study” and “invaluable”. We also reviewed all uses of “essential” and “significant,” replacing “essential” with more modest alternatives where it does not indicate a strict requirement. Similarly, where “significant” does not refer to statistical significance, we have used other terms to avoid any ambiguity.

      • The section "Microbubble count serves as a quantitative metric for awake ULM image reconstruction" had several issues that I think should be addressed. Mainly, the authors make the case that after detecting 5 million microbubbles, there is no clear gain in detecting more. The argument is not very convincing as we know many vessels will not have had a microbubble circulate in them within that timeframe, which will be especially true in smaller vessels. While the analysis in Figure 2 shows nicely that the diameter estimate for vessels in the 20-30 um range is stable at 5 million microbubbles, it is not necessarily the case for smaller vessels. A better approach here might be to select, e.g., a total of 5 million detected microbubbles for practical reasons and then to determine which vessel parameters estimation (e.g., diameter, flow velocity) remain stable. In addition:

      a. Terms such as 'complete ULM reconstruction', 'no obvious change', 'ULM image saturation' are not well defined within the manuscript.

      Thank you for pointing out these issues and for offering a more rigorous approach. We completely agree with your suggestion. While our analysis demonstrated stable diameter estimates for vessels with diameter around 20 µm at 5 million microbubbles, this does not necessarily ensure stability for smaller vessels. Therefore, the choice of 5 million microbubbles was primarily for practical reasons. In the revised version, we have provided a more objective description and clarification of this limitation. We also recognize that terms such as “complete ULM reconstruction,” “no obvious change,” and “ULM image saturation” were not well defined and may have caused confusion, reducing the rigor of this manuscript. Based on your feedback, we have clearly defined “ULM image saturation” within the context of our study, removed absolute and ambiguous terms like “complete ULM reconstruction” and “no obvious change”. We revised the entire section accordingly:

      (Line 109) “To facilitate equitable comparison of brain perfusion at different states, a practical saturation point enabling stable quantification of most vessels needs to be established. Our observations indicated that when the cumulative MB count reached 5 million, ULM images achieved a relatively stable state. Accordingly, in this study, the saturation point was defined as a cumulative MB count of 5 million. There are also possible alternatives for ULM image normalization. For example, different ULM images can be normalized to have the same saturation rate. However, the proposed method of using the same number of cumulative MB count for normalization enables the analysis of blood flow distribution across different brain regions from a probabilistic perspective. The following analysis substantiates this criterion.

      Fig. 2a compares ULM directional vessel density maps and flow speed maps generated with 1, 3, 5, and 6 million MBs, using the same animal as shown in Fig. 1. To quantitatively confirm saturation, multiple vessel segments were selected for further analysis. Fig. 2b presents the measured vessel diameter for a specific segment at various MB counts. After binarizing the ULM map, the vessel diameter was measured by calculating the distance from the vessel centerline to the edge. Each point along the centerline of the segment provided a diameter measurement, enabling calculation of the mean and standard error. At low MB counts, vessels appeared incompletely filled, leading to inaccurate estimation of vessel diameter due to incomplete profiles. For example, at 1–2 million MBs, the binarized ULM map displayed a width of only one or two pixels along the segment. As a result, the measurements always yielded the same diameter values (two pixels, ~10um) with a consistently low standard error of the mean across the entire segment. With increased MB counts, the measured vessel diameter gradually rose, ultimately reaching saturation. The plots in Fig. 2b show that vessel diameter stabilized at 5 million MB count. Additionally, Fig. 2c illustrates the changes in flow velocity measured at different cumulative MB counts. The violin plots display the distribution of flow speed estimates for all valid centerline pixels within the selected segment. At low MB counts (1–3 million), flow velocity estimates fluctuated, but they stabilized as the MB count increased (4–6 million MBs). At 5 million MBs, flow velocity estimates were nearly identical to those at 6 million MBs, corroborating previous findings that vessel velocity measurements stabilize as MB count grows(39). To assess the generalizability of the 5 million MB saturation condition, vessel segments from three different mice across various brain regions were examined. The results, shown in Supplementary Fig. 2, confirm that this saturation criterion applies broadly. Although the 5 million MB threshold may not ensure absolute saturation for all vessels, it is generally effective for vessels larger than 15 μm. This MB count threshold was therefore adopted as a practical criterion.” 

      b. The choice of 10 consecutive tracking frames is arbitrary and should be described as such unless a quantitative optimization study was conducted. Was there a gap-filling parameter? What was the maximum linking distance and what is its impact on velocity estimation?

      Thank you for your comment. We acknowledge that the choice of 10 consecutive tracking frames was based on our common practice rather than a specific quantitative optimization. Additionally, with the uTrack algorithm, we set both the gap-filling parameter and maximum linking distance to 10 pixels. Setting these parameters too high could potentially overestimate velocity. These details have now been added to the Methods section for clarity:

      (Line 517) “The choice of 10 consecutive frames (10 ms) was based on established practice but can be adjusted as needed. For the uTrack algorithm, two additional key parameters were specified: the maximum linking distance and the gap-filling distance, both set to 10 pixels (~50 microns). This configuration means that only bubble centroids within 10 pixels of each other across consecutive frames are considered part of the same bubble trajectory. Additionally, when the start and end points of two tracks fall within this threshold, the gap-filling parameter merges them into a single, continuous track. It is important to select these parameters carefully, as overly large values could lead to an overestimation of flow velocity. By setting the maximum linking distance to 10 pixels, we effectively limited the measurable velocity to 50 mm/s, under the assumption that no bubble would exceed a 50-micron displacement within the 1 ms interval between frames. After determining bubble tracks with the specified parameters for uTrack algorithm, accumulating the MB tracks resulted in the flow intensity map. Considering the velocity distribution across the mouse brain, this 50 mm/s limit ensures that the vast majority of blood flow is captured accurately.”

      c. 'The plots (Figure 2b) clearly indicate that the vessel diameter stabilized beyond 5 million MB count.' This is true for one vessel. To generalize that claim, the analysis should be performed quantitatively on a larger sample of vessels in various areas of the brain, across multiple animals.

      Thank you for pointing out this limitation. We agree that conclusions drawn from a single vessel cannot be generalized across all regions. Following your suggestion, we have added Supplementary Figure 2, where we analyzed multiple vessels from different brain regions across three mice. This expanded analysis further confirms that a 5 million MB count is sufficient to stabilize vessel diameter measurements across various samples.

      (Line 133) “To assess the generalizability of the 5 million MB saturation condition, vessel segments from three different mice across various brain regions were examined. The results, shown in Supplementary Fig. 2, confirm that this saturation criterion applies broadly. Although the 5 million MB threshold may not ensure absolute saturation for all vessels, it is generally effective for vessels larger than 15 μm. This MB count threshold was therefore adopted as a practical criterion.” 

      • "Statistical analysis validates the increase in blood flow induced by anesthesia" is a very interesting section but even though a quantitative analysis was conducted in Figure 5, the language used remains mostly qualitative. I think this section should include quantitative conclusions from the statistical analysis to increase the impact of this work.

      Thank you for your valuable feedback. We recognize that some aspects of the original quantitative analysis (Figures 4 and 5 in the previous version) lacked rigor, such as the classification of arteries, veins, and capillaries, and that the data presented in each row of Figure 5 represented only one mouse per coronal section, limiting the generalizability of statistical conclusions.

      In response to the reviewers’ feedback, the revised version incorporates a new approach by merging the previous Figure 4 and Figure 5 into a single, consolidated figure (now Figure 4). This updated figure aims to present our findings from multiple dimensions, ranging from individual vessels to individual cortical ROI of arteries and veins, and ultimately to broader brain regions. We have focused on quantitative analyses that consistently show similar trends across all animals. For instance, as illustrated in the revised Figure 4f, the average cortical arterial flow speed decreases by approximately 20% from anesthesia to wakefulness, while venous flow speed decreases by an average of 40%, with the reduction in venous flow speed being significantly greater than that of arterial flow. We believe that this approach offers more insightful analysis and enhances the overall impact of the study.

      For more examples, please refer to the revised Results section where Figure 4 are described (from Line 169 to Line 212). These sections have been extensively rewritten to emphasize quantitative interpretation of the data. Each part of the analysis now focuses more heavily on quantitative analyses that consistently show similar trends across all animals.

      • In the methods, it is claimed that 6 healthy female C57 mice were used in the study, but it is hard to tell whether more than one animal is shown in the figures. It is also unclear whether the statistics were performed within or across animals. Since one of the major strengths of the manuscript is that it shows the feasibility of performing reproducible measurements using ULM, most figures should be repeated for each individual animal and provided in supplementary data and statistics should be performed across animals.

      Thank you for bringing this to our attention. We acknowledge that the original version did not clearly indicate the use of individual animals. In the revised manuscript, we have added Supplementary Figure 1 to specify the mice used, and we have labeled each mouse accordingly in the figures or captions. Additionally, we included statistics across animals in the revised Figures 4 and 6, and detailed data for each individual mouse are now provided in Supplementary Figures 3 and 4.

      • The effect of aliasing should be discussed given that 1) a high-frequency probe is used along with a correspondingly relatively low frame rate (1000 fps) and 2) Doppler filtering is used to separate upward from downward-moving microbubbles. There will be microbubbles that circulate faster than the Nyquist limit, which will thus appear as moving in the opposite direction in the Doppler spectrum. It would be important to double-check that the effect is not too important and to report this as a limitation in the discussion.

      Thank you for highlighting this important point. Aliasing is indeed a relevant issue to consider, especially for higher flow velocities in large vessels. We have added a discussion on this limitation in the revised manuscript:

      (Line 359) “Based on the maximum linking distance and gap closing parameters outlined in the Methods section, blood flow with velocities below 50 mm/s can be detected. However, the use of a directional filter to estimate flow direction may introduce aliasing. MBs moving at higher velocities may be subject to incorrect flow direction estimation due to aliasing effects. Given that the compounded frame rate is 1000 Hz, with an ultrasound center frequency of 20 MHz and a sound speed of 1540 m/s, the relationship between Doppler frequency and the axial blood flow velocity(12) indicates that aliasing will not occur for axial flow velocities below 19.25 mm/s. In all flow velocity maps presented in this study, the range is limited to a maximum of 15 mm/s, remaining below the critical threshold for aliasing. Additionally, all vessels analyzed in the violin plots for arteriovenous flow comparisons fall within this range. While cortical arterioles and venules generally exhibit moderate flow speeds, aliasing remains a factor to consider when combining directional filtering with velocity analysis.”

      • The method used to classify vessels may be incorrect and may not be needed. I would recommend the authors not use it and describe the vessels as vessels that branch in or out, etc. Applying an arbitrary threshold of 2 to detect capillaries is also not very convincing. I understand that the authors might decide to maintain this nomenclature, in which case I would recommend clearly explaining it at the beginning of the manuscript along with some of the caveats that are already reported in the discussion.

      Thank you for your comments on our vessel classification method. We recognize the limitations of the previous approach and, in order to enhance the rigor of the study, we have opted not to continue using this method in the revised manuscript.

      In the revised analysis regarding artery and vein, we focus solely on penetrating vessels in the cortex. For these vessels, it is generally accepted that downward-flowing vessels are arterioles, while upward-flowing vessels are venules. Accordingly, in the revised Figures 4 and 6, we analyze arterioles and venules exclusively in the cortex, without relying on the previous classification method that could be considered controversial.

      Additionally, we agree that classifying vessels with values below 2 as capillaries was not a robust approach. Thus, we have removed all related analyses from the revised manuscript.

      Minor comments:

      • Line 16: "resolves capillary-scale ..."; it is not clear that the resolution that is achieved in this work is at the capillary scale.

      Thank you for your valuable feedback. We understand that “capillary-scale” may overstate the achieved resolution in our work. To clarify, we have revised the sentence as follows:

      (Line 18) “Ultrasound localization microscopy (ULM) is an emerging imaging modality that resolves microvasculature in deep tissues with high spatial resolution.” 

      This adjustment more accurately reflects the resolution capabilities of ULM as used in our study.

      • Line 22: 'vascularity' is not well defined in the manuscript. Consider defining or using another term.

      Thank you for pointing out the need for clarification on vascularity. We acknowledge that our initial use of the term “vascularity” may have been unclear and potentially confusing. In the revised manuscript, we have included a clear definition of “vascularity” in the Methods section under Quantitative Analysis of ULM Images (Line 534). 

      The following sentence shows the definition of vascularity:

      (Line 547) “Vascularity was defined as the proportion of the pixel count occupied by blood vessels within each ROI, obtained by binarizing the ULM vessel density maps and calculating the percentage of the pixels with MB signal.”

      We have also added an instant definition when it was firstly used in Results part:

      (Line 161) “When comparing vessel density maps, ULM images that are acquired in the awake state demonstrate a global reduction of vascularity, which refers to percentage of pixels that occupied by blood vessels.”

      • Line 30: I'm not convinced the first two sentences are useful.

      Thank you for pointing out this issue. The opening sentence of the article lacked focus and was too broad. We have rewritten the sentence as follows:

      (Line 34) “Sensitive imaging of correlates of activity in the awake brain is fundamental for advancing our understanding of neural function and neurological diseases.”

      • Line 37: 'micron-scale capillaries': this expression is unclear. Capillaries are typically micron-scaled, so it gives the impression that ULM can image ULM at the one-micron scale, which is not the case.

      Thank you for your helpful comment. We agree that “micron-scale capillaries” could be misleading, as it might imply a resolution at the single-micron level. To clarify, we have revised the sentence as follows:

      (Line 40) “ULM is uniquely capable of imaging microvasculature situated in deep tissue (e.g., at a depth of several centimeters).”

      This revised wording more accurately describes ULM’s capability without implying single-micron level resolution.

      • Line 74: I don't think motion-free imaging is possible in the context of awake animals. Consider 'limiting motion' instead.

      Thank you for pointing out the potential issue with the term “motion-free”. We agree that achieving entirely motion-free imaging is challenging, especially in the context of awake animals. In response to your suggestion, we have revised the sentence to better reflect this limitation:

      (Line 76) “To achieve consistent ULM brain imaging while allowing limited movement in awake animals, a headfixed imaging platform with a chronic cranial window was used in this study.”

      This revised wording more accurately conveys our approach to minimizing motion without implying that motion is completely eliminated.

      • Line 134:'clearly reveals decreased vessel diameter' How was that demonstrated?

      • Line 153: 'significant' according to which statistical test?

      • Line 167: 'slight increase', by how much, is it significant?

      • Line 183: 'smaller vessels' the center of the distribution is not at 10mm/s, and velocity is not necessarily correlated with diameter.

      • Line 184: 'more large vessels', see above. What is a large vessel, and how was this measured?

      • Line 205: 'significantly lower', according to which statistical test?

      We acknowledge that the original version did not properly use the terms of statistical analysis. In the revised manuscript, we have deleted the related points, and rewritten the statistical analysis part to ensure the terms are used correctly. Please refer to the revised part of “ULM reveals an increase in blood flow induced by isoflurane anesthesia” (From Line 169 to Line 209). In the revised Figures 4 and 6, we have also ensured that each quantitative analysis figure or its caption is clearly explained.

      •    Line 398: the interleaved sampling scheme should be described in more detail.

      Thank you for pointing out this issue. The previous version did not clearly explain the details of interleaved sampling. We have now added the following paragraph to the Ultrasound imaging sequence section in Methods:

      (Line 494) “Interleaved sampling is employed to capture high-frequency echoes more effectively. With the system’s sampling rate limited to 62.5 MHz, the upper limit of the center frequency of the transducer passband is 15.625 MHz. To mitigate aliasing, two transmissions are sent per angle, staggered in time. This approach effectively doubles the sampling rate, ensuring more accurate image reconstruction.”

      • Figure 1: Which mouse is it? Are these results consistent across all animals?

      • Figure 2: Which mouse is it? Are these results consistent across all animals?

      • Figure 3: Which mouse is it? Are these results consistent across all animals?

      • Figure 4: Which mouse is it? Are these results consistent across all animals?

      • Figure 5: Is it a single mouse or multiple mice? Are these results consistent across all animals?

      We acknowledge that the original version did not clearly indicate the numbers of animals in the statistical analysis. In the revised manuscript, we have added Supplementary Figure 1 to specify the mice used, and we have labeled each mouse accordingly in the figures or captions. In the revised Figures 4 and 6, we have ensured that each quantitative analysis figure or its caption clearly indicate the specific mice.

      For original Figures 1 and 2, these are presented as case studies to illustrate the methodology. Since the anesthesia time required for tail vein injection for each animal varies slightly, it is challenging to have the consistent time taken for each mouse to recover from anesthesia across all mice. For instance, in Figure 1, the mouse took nearly 500 seconds to recover from anesthesia, but this duration is not consistent across all animals, which is a limitation of the bolus injection technique. We have noted this point in the discussion (discussion on the limitation of bolus injection), and we have also clarified in the results section and figure captions that these figures represent a case study of a single mouse rather than a standardized recovery time for all animals.

      We further clarified this point in the end of the Figure 2 caption:

      (Fig.2 caption) “This figure presents a case study based on the same mouse shown in Fig 1. The x-axis for d-f begins at 500 seconds because, at this point, the mouse’s pupil size stabilized, indicating it had recovered to an awake state. Consequently, ULM images were accumulated starting from this time. It is important to note that not every mouse requires 500 seconds to fully awaken; the time to reach a stable awake state varies across individual mice.” We added the following statement before introducing Figure 1e:

      (Line 93) “Due to differences in tail vein injection timing and anesthesia depth, the time required for each mouse to fully awaken varied. Although it was not feasible to get pupil size stabilized just after 500 seconds for each animal, ULM reconstruction only used the data that acquired after the animal reached full pupillary dilation, to ensure that ULM accurately captures the cerebrovascular characteristics in the awake state.”

      We added the following statement before introducing Figure 2d:

      (Line 139) “To further verify that the proposed MB bolus injection method can help to achieve ULM image saturation shortly after mice awaken from anesthesia, an analysis on the change in MB concentration over time was conducted once pupil size had stabilized (T = 500s).”

      For Figures 3, 4, and 5 (in the revised version, Figures 4 and 5 have been combined into a single Figure 4), the data represents results from three individual mice, with each coronal plane corresponding to a different mouse. In the revised version, we have added labels to indicate the specific mouse in each image to improve clarity. We also recognize that some analyses in the original submission (original Figure 5) may have lacked sufficient statistical power due to the small sample size. Therefore, in the revised version, we have focused only on findings that were consistently observed across the three mice to ensure robust conclusions.

      Minor corrections and typos from all reviewers:

      We would like to sincerely thank the reviewers for their careful reading of our manuscript. We appreciate the time and effort taken to point out the minor typographical errors. We have carefully addressed and corrected all the identified typos, as listed below:

      From Reviewer #1:

      • Line 316: "insensate": correct, please.

      (Line 409) “After confirming that the mouse was anesthetized, the head of the animal was fixed in the stereotaxic frame.”

      From Reviewer #3:

      • Line 15: Super-resolution ultrasound localization microscopy -- consider removing super-resolution as it gives the impression that it is different from standard ULM.

      (Line 18) “Ultrasound localization microscopy (ULM) is an emerging imaging modality that resolves microvasculature in deep tissues with high spatial resolution.”

      • Line 39: typo: activities should be activity.

      (Line 41) “ULM can also be combined with the principles of functional ultrasound (fUS) to image whole-brain neural activity at a microscopic scale.”

      • Line 47: typo: over under.

      (Line 50) “Therefore, in neuroscience research, brain imaging in the awake state is often preferred over imaging under anesthesia.”

      Once again, we are grateful for the reviewers’ thorough review and valuable input, which have helped us improve the clarity and precision of the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study reports that spatial frequency representation can predict category coding in the inferior temporal cortex.

      Thank you for taking the time to review our manuscript. We greatly appreciate your valuable feedback and constructive comments, which have been instrumental in improving the quality and clarity of our work.

      The original conclusion was based on likely problematic stimulus timing (33 ms which was too brief). Now the authors claim that they also have a different set of data on the basis of longer stimulus duration (200 ms).

      One big issue in the original report was that the experiments used a stimulus duration that was too brief and could have weakened the effects of high spatial frequencies and confounded the conclusions. Now the authors provided a new set of data on the basis of a longer stimulus duration and made the claim that the conclusions are unchanged. These new data and the data in the original report were collected at the same time as the authors report.

      The authors may provide an explanation why they performed the same experiments using two stimulus durations and only reported one data set with the brief duration. They may also explain why they opted not to mention in the original report the existence of another data set with a different stimulus duration, which would otherwise have certainly strengthened their main conclusions.

      Thank you for your comments regarding the stimulus duration used in our experiments. We appreciate the opportunity to clarify and provide further details on our methodology and decisions.

      In our original report, we focused on the early phase of the neuronal response, which is less affected by the duration of the stimulus. Observations from our data showed that certain neurons exhibited high firing rates even with the brief 33 ms stimulus duration, and the results we obtained were consistent across different durations. To avoid redundancy, we initially chose not to include the results from the 200 ms stimulus duration, as they reiterated the findings of the 33 ms duration.

      However, we acknowledge that the brief stimulus duration could raise concerns regarding the robustness of our conclusions, particularly concerning the effects of high spatial frequencies. Upon reflecting on the reviewer’s comments during the first revision, we recognized the importance of addressing these potential concerns directly. Therefore, we have included the data from the 200 ms stimulus duration in our revised manuscript.

      Furthermore, Our team is actively investigating the differences between fast (33 ms) and slow (200 ms) presentations in terms of SF processing. Our preliminary observations suggest similar processing of HSF in the early phase of the response for both fast and slow presentations, but different processing of HSF in the late phase. This was another reason we initially opted to publish the results from the brief stimulus duration separately, as we intended to explore the different aspects of SF processing in fast and slow presentations in subsequent studies.

      I suggest the authors upload both data sets and analyzing codes, so that the claim could be easily examined by interested readers.

      Thank you for your suggestion to make both data sets and the analyzing codes available for examination by interested readers.

      We have created a repository that includes a sample of the dataset along with the necessary codes to output the main results. While we cannot provide the entire dataset at this time due to ongoing investigations by our team, we are committed to ensuring transparency and reproducibility. The data and code samples we have provided should enable interested readers to verify our claims and understand our analysis process.

      Repository: https://github.com/ramintoosi/spatial-frequency-selectivity

      Reviewer #2 (Public Review):

      Summary:

      This paper aimed to examine the spatial frequency selectivity of macaque inferotemporal (IT) neurons and its relation to category selectivity. The authors suggest in the present study that some IT neurons show a sensitivity for the spatial frequency of scrambled images. Their report suggests a shift in preferred spatial frequency during the response, from low to high spatial frequencies. This agrees with a coarse-to-fine processing strategy, which is in line with multiple studies in the early visual cortex. In addition, they report that the selectivity for faces and objects, relative to scrambled stimuli, depends on the spatial frequency tuning of the neurons.

      Strengths:

      Previous studies using human fMRI and psychophysics studied the contribution of different spatial frequency bands to object recognition, but as pointed out by the authors little is known about the spatial frequency selectivity of single IT neurons. This study addresses this gap and shows spatial frequency selectivity in IT for scrambled stimuli that drive the neurons poorly. They related this weak spatial frequency selectivity to category selectivity, but these findings are premature given the low number of stimuli they employed to assess category selectivity.

      Thank you for your thorough review and insightful feedback on our manuscript. We greatly appreciate your time and effort in providing valuable comments and suggestions, which have significantly contributed to enhancing the quality of our work.

      The authors revised their manuscript and provided some clarifications regarding their experimental design and data analysis. They responded to most of my comments but I find that some issues were not fully or poorly addressed. The new data they provided confirmed my concern about low responses to their scrambled stimuli. Thus, this paper shows spatial frequency selectivity in IT for scrambled stimuli that drive the neurons poorly (see main comments below). They related this (weak) spatial frequency selectivity to category selectivity, but these findings are premature given the low number of stimuli to assess category selectivity.

      While we acknowledge that the number of instances per condition is relatively low, the overall dataset is substantial. Specifically, our study includes a total of 180 stimuli (6 spatial frequencies × 2 scrambled/non-scrambled conditions × 15 instances, including 9 fixed and 6 non-fixed) and 5400 trials (180 stimuli × 2 durations × 15 repetitions). Conducting these trials requires approximately one hour of experimental time per session.

      Extending the number of stimuli, while potentially addressing this limitation, would significantly compromise the quality of the experiment by increasing the duration and introducing potential fatigue effects in the subjects. Despite this limitation, our findings lay important groundwork by offering novel insights into object recognition through the lens of spatial frequency. We believe this work can serve as a foundation for future experiments designed to further explore and validate these theories with expanded stimulus sets.

      Main points.

      (1) They have provided now the responses of their neurons in spikes/s and present a distribution of the raw responses in a new Figure. These data suggest that their scrambled stimuli were driving the neurons rather poorly and thus it is unclear how well their findings will generalize to more effective stimuli. Indeed, the mean net firing rate to their scrambled stimuli was very low: about 3 spikes/s. How much can one conclude when the stimuli are driving the recorded neurons that poorly? Also, the new Figure 2- Appendix 1 shows that the mean modulation by spatial frequency is about 2 spikes/s, which is a rather small modulation. Thus, the spatial frequency selectivity the authors describe in this paper is rather small compared to the stimulus selectivity one typically observes in IT (stimulus-driven modulations can be at least 20 spikes/s).

      To address the concerns regarding the firing rates and the modulation of neuronal responses by spatial frequency (SF), we emphasize several key points:

      (1) Significance of Firing Rate Differences: While it is true that the mean net firing rate to our scrambled stimuli was relatively low, the firing rate differences observed were statistically significant, with p-values approximately at 1e-5. This indicates that despite the low firing rates, the observed differences are reliable and unlikely to have occurred by chance.

      (2) Classification Rate and Modulation by SF: Our analysis showed that the difference between various SF responses led to a classification rate of 44.68%, which is 24.68% higher than the chance level. This substantial increase above the chance level demonstrates that SF significantly modulates IT responses, even if the overall firing rates are modest.

      (3) Effect Size and SF Modulation: While the effect size in terms of firing rate differences may be small, it is significant. The significant modulation of IT responses by SF, as evidenced by our statistical analyses and classification rate, supports our conclusions regarding the role of SF in driving IT responses.

      (4) Expectations for Noise-like Pure SF Stimuli: We acknowledge that IT responses are typically higher for various object stimuli. Given the nature of our pure SF stimuli, which resemble noise-like patterns, we did not anticipate high responses in terms of spikes per second. The low firing rates are consistent with the expectation for such stimuli and do not undermine the significance of the observed modulation by SF.

      We believe that these points collectively support the validity of our findings and the significance of SF modulation in IT responses, despite the low firing rates. We appreciate your insights and hope this clarifies our stance on the data and its implications.

      We added the following description to the Appendix 1 - “Strength of SF selectivity” section:

      “While the firing rates and net responses to scrambled stimuli were modest (e.g., 2.9 Hz in T1), the differences across spatial frequency (SF) bands were statistically significant (p ≈ 1e-5) and led to a classification accuracy 24.68\% above chance. This demonstrates the robustness of SF modulation in IT neurons despite low firing rates. The modest responses align with expectations for noise-like stimuli, which are less effective in driving IT neurons, yet the observed SF selectivity highlights a fundamental property of IT encoding.”

      (2) Their new Figure 2-Appendix 1 does not show net firing rates (baseline-subtracted; as I requested) and thus is not very informative. Please provide distributions of net responses so that the readers can evaluate the responses to the stimuli of the recorded neurons.

      We understand the reviewer’s concern about the presentation of net firing rates. In T2 (the late time interval), the average response rate falls below the baseline, resulting in negative net firing rates, which might confuse readers. To address this, we have added the net responses to the text for clarity. Additionally, we have included the average baseline response in the figure to provide a more comprehensive view of the data.

      “To check the SF response strength, the histogram of IT neuron responses to scrambled, face, and non-face stimuli is illustrated in this figure. A Gamma distribution is also fitted to each histogram. To calculate the histogram, the neuron response to each unique stimulus is calculated for each neuron in spike/seconds (Hz). In the early phase, T1, the average firing rate to scrambled stimuli is 26.3 Hz which is significantly higher than the response in -50 to 50ms which is 23.4 Hz. In comparison, the mean response to intact face stimuli is 30.5 Hz, while non-face stimuli elicit an average response of 28.8 Hz. The average net responses to the scrambled, face, and non-face stimuli are 2.9 Hz, 7.1 Hz, and 5.4 Hz, respectively. Moving to the late phase, T2, the responses to scrambled, face, and object stimuli are 19.5 Hz, 19.4 Hz, and 22.4 Hz, respectively. The corresponding average net responses are 3.9 Hz, 4.0 Hz, and 1.0 Hz below the baseline response.”

      (3) The poor responses might be due to the short stimulus duration. The authors report now new data using a 200 ms duration which supported their classification and latency data obtained with their brief duration. It would be very informative if the authors could also provide the mean net responses for the 200 ms durations to their stimuli. Were these responses as low as those for the brief duration? If so, the concern of generalization to effective stimuli that drive IT neurons well remains.

      The firing rates for the 200 ms stimulus duration are as follows: 27.7 Hz, 30.7 Hz, and 30.4 Hz for scrambled, face, and object stimuli in T1), respectively; and 26.2 Hz, 29.1 Hz, and 33.9 Hz in T2. The average baseline firing rate (−50 to 50 ms) is 23.4 Hz. Therefore, the net responses are 4.3 Hz, 7.3 Hz, and 7.0 Hz for T1; and 2.8 Hz, 5.7 Hz, and 10.5 Hz for T2 for scrambled, face, and object stimuli, respectively.

      Notably, the impact of stimulus duration is more pronounced in T2, which is consistent with the time interval of the T2 compared to T1. However, the firing rates in T1 do not show substantial changes with the longer duration. As we discussed in our response to the first comment, it is important to note that high net responses are not typically expected for scrambled or noise-like stimuli in IT neurons. Instead, the key findings of this study lie in the statistical significance of these responses and their meaningful relationship to category selectivity. These results highlight the broader implications for understanding the role of spatial frequency in object recognition.

      We added the firing rates to the, Appendix 1, “Extended stimulus duration supports LSF-preferred tuning” part as follows.

      “For the 200 ms stimulus duration, the firing rates were 27.7 Hz, 30.7 Hz, and 30.4 Hz for scrambled, face, and object stimuli in T1, respectively, and 26.2 Hz, 29.1 Hz, and 33.9 Hz in T2. The corresponding net responses were 4.3 Hz, 7.3 Hz, and 7.0 Hz in T1, and 2.8 Hz, 5.7 Hz, and 10.5 Hz in T2. While the longer stimulus duration did not substantially increase firing rates in T1, its impact was more pronounced in T2.”

      (4) I still do not understand why the analyses of Figures 3 and 4 provide different outcomes on the relationship between spatial frequency and category selectivity. I believe they refer to this finding in the Discussion: "Our results show a direct relationship between the population's category coding capability and the SF coding capability of individual neurons. While we observed a relation between SF and category coding, we have found uncorrelated representations. Unlike category coding, SF relies more on sparse, individual neuron representations.". I believe more clarification is necessary regarding the analyses of Figures 3 and 4, and why they can show different outcomes.

      Figure 3 explores the relationship between SF coding and category coding at both the single-neuron and population levels.

      ● Figures 3(a) and 3(b) examine the relationship between a single neuron’s response pattern and object decoding in the population.

      ● Figure 3(c) investigates the relationship between a single neuron’s SF decoding capabilities and object decoding in the population.

      ● Figure 3(d) assesses the relationship between a single neuron’s object decoding capabilities and SF decoding in the population.

      In summary, Figure 3 demonstrates a relation between SF coding/response pattern at the single level and category coding at the population level.

      Figure 4, on the other hand, addresses the uncorrelated nature of SF and category coding.

      ● Figure 4(a) shows the uncorrelated relation between a single neuron’s SF decoding capability and its object decoding capability. This suggests that a neuron's ability to decode SF does not predict its ability to decode object categories.

      ● Figure 4(b) illustrates that the contribution of a neuron to the population decoding of SF is uncorrelated with its contribution to the population decoding of object categories. This further supports the idea that the mechanisms behind SF coding and object coding are uncorrelated.

      In summary, Figure 4 suggests that while there is a relation between SF coding and category coding as illustrated in Figure 3, the mechanisms underlying SF coding and object coding operate independently (in terms of correlation), highlighting the distinct nature of these processes.

      We hope this explanation clarifies why the analyses in Figures 3 and 4 present different outcomes. Figure 3 provides insight into the relationship between SF and category coding, while Figure 4 emphasizes the uncorrelated nature of these processes. We also added the following explanation in the “Uncorrelated mechanisms for SF and category coding” section.

      Based on your command, to clarify the presentation of the work, we added the following description to the “Uncorrelated mechanisms for SF and category coding” section:

      “Figures 3 and 4 examine different aspects of the relationship between SF and category coding. Figure 3 highlights a relationship between SF coding at the single-neuron level and category coding at the population level. Conversely, Figure 4 demonstrates the uncorrelated mechanisms underlying SF and category coding, showing that a neuron’s ability to decode SF is not predictive of its ability to decode object categories. This distinction underscores that while SF and category coding are related at broader levels, their underlying mechanisms are independent, emphasizing the distinct processes driving each form of coding.”

      (5) The authors found a higher separability for faces (versus scrambled patterns) for neurons preferring high spatial frequencies. This is consistent for the two monkeys but we are dealing here with a small amount of neurons. Only 6% of their neurons (16 neurons) belonged to this high spatial frequency group when pooling the two monkeys. Thus, although both monkeys show this effect I wonder how robust it is given the small number of neurons per monkey that belong to this spatial frequency profile. Furthermore, the higher separability for faces for the low-frequency profiles is not consistent across monkeys which should be pointed out.

      We appreciate the reviewer’s concern regarding the relatively small number of neurons in the high spatial frequency group (16 neurons, 6% of the total sample across the two monkeys) and the consistency of the results. While we acknowledge this limitation, it is important to note that findings involving sparse subsets of neurons can still be meaningful. For example, Dalgleish et al. (2020) demonstrated that perception can arise from the activity of as few as ~14 neurons in the mouse cortex, supporting the sparse coding hypothesis. This underscores the potential robustness of results derived from small neuronal populations when the activity is statistically significant and functionally relevant.

      Regarding the higher separability for faces among neurons preferring high spatial frequencies, the consistency of this finding across both monkeys suggests that this effect is robust within this subgroup. For neurons preferring low spatial frequencies, we agree that the lack of consistency across monkeys should be explicitly noted. These differences may reflect individual variability or differences in sampling across subjects and merit further investigation in future studies.

      To address this concern, we have updated the text to explicitly discuss the small size of the high spatial frequency group, its implications, and the observed inconsistency in the low spatial frequency profiles between monkeys. We have added the following description to the discussion.

      “Next, according to Figure 3(a), 6% of the neurons are HSF-preferred and their firing rate in HSF is comparable to the LSF firing rate in the LSF-preferred group. This analysis is carried out in the early phase of the response (70-170ms). While most of the neurons prefer LSF, this observation shows that there is an HSF input that excites a small group of neurons. Importantly, findings involving small neuronal populations can still be meaningful, as studies like Dalgleish et al. (2020) have demonstrated that perception can arise from the activity of as few as ~14 neurons in the mouse cortex, emphasizing the robustness of sparse coding.”

      Regarding the separability of faces for the low-frequency profiles, we added the following to the appendix section,

      “For neurons preferring LSF, LP profile, it is important to note the lack of consistency in responses across monkeys. This variability may reflect individual differences in neural processing or variations in sampling between subjects.”

      And in the discussion:

      “Our results are based on grouping the neurons of the two monkeys; however, the results remain consistent when looking at the data from individual monkeys as illustrated in Appendix 2. However, for neurons preferring LSF, we observed inconsistency across monkeys, which may reflect individual differences or sampling variability. These findings highlight the complexity of SF processing in the IT cortex and suggest the need for further research to explore these variations.”

      * Henry WP Dalgleish, Lloyd E Russel, lAdam M Packer, Arnd Roth, Oliver M Gauld, Francesca Greenstreet, Emmett J Thompson, Michael Häusser (2020) How many neurons are sufficient for perception of cortical activity? eLife 9:e58889.

      (6) I agree that CNNs are useful models for ventral stream processing but that is not relevant to the point I was making before regarding the comparison of the classification scores between neurons and the model. Because the number of features and trial-to-trial variability differs between neural nets and neurons, the classification scores are difficult to compare. One can compare the trends but not the raw classification scores between CNN and neurons without equating these variables.

      We appreciate the reviewer’s follow-up comment and agree that differences in the number of features and trial-to-trial variability between IT neurons and CNN units make direct comparisons of raw classification scores challenging. As the reviewer suggests, it is more appropriate to focus on comparing trends rather than absolute scores when analyzing the similarities and differences between these systems. In light of this, we have revised the text to clarify that our intention was not to equate raw classification scores but to highlight the qualitative patterns and trends observed in spatial frequency encoding between IT and CNN units.

      “SF representation in the artificial neural networks

      We conducted a thorough analysis to compare our findings with CNNs. To assess the SF coding capabilities and trends of CNNs, we utilized popular architectures, including ResNet18, ResNet34, VGG11, VGG16, InceptionV3, EfficientNetb0, CORNet-S, CORTNet-RT, and CORNet-z, with both pre-trained on ImageNet and randomly initialized weights. Employing feature maps from the four last layers of each CNN, we trained an LDA model to classify the SF content of input images. Figure 5(a) shows the SF decoding accuracy of the CNNs on our dataset (SF decoding accuracy with random (R) and pre-trained (P) weights, ResNet18: P=0.96±0.01 / R=0.94±0.01, ResNet34 P=0.95±0.01 / R=0.86±0.01, VGG11: P=0.94±0.01 / R=0.93±0.01, VGG16: P=0.92±0.02 / R=0.90±0.02, InceptionV3: P=0.89±0.01 / R=0.67±0.03, EfficientNetb0: P=0.94±0.01 / R=0.30±0.01, CORNet-S: P=0.77±0.02 / R=0.36±0.02, CORTNet-RT: P=0.31±0.02 / R=0.33±0.02, and CORNet-z: P=0.94±0.01 / R=0.97±0.01). Except for CORNet-z, object recognition training increases the network's capacity for SF coding, with an improvement as significant as 64\% in EfficientNetb0. Furthermore, except for the CORNet family, LSF content exhibits higher recall values than HSF content, as observed in the IT cortex (p-value with random (R) and pre-trained (P) weights, ResNet18: P=0.39 / R=0.06, ResNet34 P=0.01 / R=0.01, VGG11: P=0.13 / R=0.07, VGG16: P=0.03 / R=0.05, InceptionV3: P=<0.001 / R=0.05, EfficientNetb0: P=0.07 / R=0.01). The recall values of CORNet-Z and ResNet18 are illustrated in Figure 5(b). However, while the CNNs exhibited some similarities in SF representation with the IT cortex, they did not replicate the SF-based profiles that predict neuron category selectivity. As depicted in Figure 5(c) although neurons formed similar profiles, these profiles were not associated with the category decoding performances of the neurons sharing the same profile.”

      Discussion:

      “Finally, we compared SF's representation trends and findings within the IT cortex and the current state-of-the-art networks in deep neural networks.”

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      The mean baseline firing rate of their neurons (23.4 Hz) was rather high for single IT neurons (typically around 10 spikes/s or lower). Were these well-isolated units or mainly multiunit activity?

      We confirm that the recordings in our study were from both well-isolated single units and multi-unit activities (remaining after isolation neurons) sorted based on our spike sorting toolbox. The higher baseline firing rate is likely due to the experimental design, particularly the inclusion of the responsive neurons from the selectivity phase. We added the following statement to the methods section.

      “In our analysis, we utilized both well-isolated single units and multi-unit activities (which represent neural activities that could not be further sorted into single units), ensuring a comprehensive representation of neural responses across the recorded population.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thoughtful comments.

      Based on their suggestions we will:

      (1) Use more accurate language to describe the hypothalamus regions under investigation in this study. While we aimed to primarily investigate the medial preoptic area (MPOA), our dissections and sequencing data in fact capture several regions of the anterior hypothalamus including the anteroventral periventricular (AVPV), paraventricular (PVN), supraoptic (SON), suprachiasmatic nuclei (SCN), and more. We will revise the language in our manuscript to reflect that our study in fact investigates the cellular evolution of the anterior hypothalamus across behaviorally divergent deer mice.

      (2) Revise our language to clarify that while our study provides a rich dataset for generating hypotheses about which cell types may contribute to behavioral differences, it does not provide any evidence of causal relationships. We hope to investigate this further in future work.

      (3) Clarify specific methodological choices for which reviewers had questions, especially about the hypothalamic regions for which we did histology to validate cell abundance differences and methodological choices related to mapping our cell clusters to Mus cell types.

      Our responses to each reviewer’s specific comments are below.

      Reviewer #1:

      The major limitation of the study is the absence of causal experiments linking the observed changes in MPOA cell types to species-specific social behaviors. While the study provides valuable correlational data, it lacks functional experiments that would demonstrate a direct relationship between the neuronal differences and behavior. For instance, manipulating these cell types or gene expressions in vivo and observing their effects on behavior would have strengthened the conclusions, although I certainly appreciate the difficulty in this, especially in non-musculus mice. Without such experiments, the study remains speculative about how these neuronal differences contribute to the evolution of social behaviors.

      Yes, we agree the study lacks functional experiments. We hope that the dataset is of value for generating hypotheses about how hypothalamic neuronal cell types may govern species-specific social behaviors, and for these hypotheses to be functionally tested by us and others in future work.

      Reviewer #2:

      Some methodology could be further explained, like the decision of a 15% cutoff value for cell type assignment per cluster, or the necessity of a multi-step analysis pipeline for gene enrichment studies.

      A 15% cutoff value for cell type assignment was chosen to include all known homology correspondences between our dataset and the Mus atlas. For example, i14:Avp/Cck cells from the Mus atlas represent Avp cells from the suprachiasmatic nuclei (SCN). Though only 17.3% of cluster 15 maps to i14:Avp/Cck, we know these two clusters correspond based on the expression of Avp and additional SCN marker genes in cluster 15 (Supp Fig 6). We will further explain this cutoff in the revised manuscript.

      Our gene enrichment study includes a multi-step analysis pipeline because we wanted to control for confounders that may be introduced because of gene expression level. Genes that are more highly expressed are more accurately quantified and thus more likely to be identified as differentially expressed. Therefore, we wanted to test for gene enrichments in our set of DE genes against a background of genes with similar expression levels. We will clarify this motivation in the revised manuscript.

      The authors should exercise strong caution in making inferences about these differences being the basis of parental behavior. It is possible, given connections to relevant research, but without direct intervention, direct claims should be avoided. There should be clear distinctions of what to conclude and what to propose as possibilities for future research.

      Yes, we agree that we are unable to make direct claims about neuronal differences being the basis of parental behavior. We will revise our language to be clearer about which relationships we are hypothesizing and what we propose as possibilities for future research.

      Histology is not performed on all regions included in the sequencing analysis.

      We apologize that our language describing the hypothalamic regions included in the sequencing analysis and those included in the histology is unclear. We aimed to dissect the medial preoptic region for the sequencing analysis, but additionally captured parts of the anterior hypothalamus including the paraventricular (PVN), supraoptic (SON), and suprachiasmatic nuclei (SCN), and more.  Our histology was performed across the entire hypothalamus and includes all regions included in the sequencing data. We will revise the manuscript to more accurately describe the hypothalamic regions for which we investigated.

      Reviewer #3:

      My primary concern is that the dataset is limited: 52,121 neuronal nuclei across 24 samples, which does not provide many cells per cluster to analyze comparatively across sex and species, particularly given the heterogeneity of the region dissected. The Supplementary table reports lower UMIs/genes per cell than is typically seen as well. Perhaps additional information could be obtained from the data by not restricting the analyses to cells that can be assigned to Mus types. A direct comparison of the two Peromyscus species could be valuable as would a more complete Peromyscus POA atlas.

      Our dataset reports ~1,500 genes and ~1,000 UMIs per nuclei which is indeed lower than is typically reported in other single nuclei datasets. Some of this discrepancy is due to a lower quality genome and annotated transcriptome available for Peromyscus compared to Mus musculus, which results in a lower mapping rate than is typically reported in Mus studies. However, our dataset was sufficient to identify known peptidergic cell types (Supp Fig 6) and to map homology to Mus cell types for 34 (64%) of our 53 clusters. Additionally, although some of our clusters contain small numbers of cells, our differential abundance analysis accounts for the variance in cell numbers observed across samples and should be robust against any increase in variance due to small numbers. In fact, even differential abundance of very small cell clusters such as oxytocin neurons (cell type 40) was validated by histology.

      We would like to clarify that all analyses were performed on all cell clusters, regardless of whether or not they could be assigned homology to a Mus cell type. All the cell types that we identified as differentially abundant or contained significant sex differences happened to be cell types for which homology to a Mus cell type could be defined. This may arise for a relatively uninteresting reason: cell types that have more distinct transcriptional signatures will be more accurately clustered, leading to more accurate identification of homology as well as more accurate measurements of differential abundance / expression. We will revise language to make this more clear in our manuscript.

      In Supplement 7, it appears that most neurons can be assigned as excitatory or inhibitory, but then so many of these cells remain in the unassigned "gray blob" seen in panel 1E. Clustering of excitatory and inhibitory neurons separately, as in prior cited work in Mus POA (refs 31 and 57) may boost statistical power to detect sex and species differences in cell types. Perhaps the cells that cannot be assigned to Mus contain too few reads to be useful, in which case they should be filtered out in the QC. The technical challenges of a comparative single-cell approach are considerable, so it benefits the scientific community to provide transparency about them.

      We are not certain about why we are unable to cluster and assign homology to many of our cells (i.e. cells in the unassigned “gray blob”). However, we note that even in the Mus atlas, many cells did not belong to obvious clusters by UMAP visualization and that several clusters lacked notable marker genes and were designated simply as “Gaba” and “Glut” clusters. Therefore, it is unsurprising that our own dataset also contains cells that lack the transcriptional signatures needed to be clustered and/or mapped to Mus cell types. We do know, however, that the median number of reads/nuclei is uniform across cell clusters and does not explain why some clusters could not be assigned to Mus. We will add this information to our revised manuscript.

      We do not think that a two-stage clustering (i.e. clustering first by excitatory vs. inhibitory neurons) is expected to gain power to resolve cell types in this case. Excitatory vs. inhibitory neurons are clearly separable on our UMAP (Supp Fig 7) so that information is already being used by our clustering procedure. However, we will explore this further in our revised manuscript to see if doing so will boost statistical power.

      The Calb1 dimorphism as observed by immunostaining, appears much more extensive in P. maniculatus compared to P. polionotus (Figures 3 E and F). This finding is not reflected in the counts of the i20:Gal/Moxd1 cluster. The use of Calb1 staining as a proxy for the Gal/Moxd1 cluster would be strengthened if the number of POA Calb1+ neurons that are found in each cluster was apparent. There may be additional Calb+ neurons in the cells that are not annotated to a Mus cluster. This clarification would add support to the overall conclusion that there is reduced sexual dimorphism in P. polionotus.

      From the Mus MPOA atlas (which includes both single-cell sequencing data and imaging-based spatial information), it is known that the i20:Gal/Moxd1 cluster comprises sexually dimorphic cells that make up both the BNST and the SDN-POA. These sexually dimorphic cells are well-studied and known to be marked by Calb1, which we used in immunostaining as a proxy for i20:Gal/Moxd1.

      However, we would like to clarify that in our study, the immunostaining of Calb1+ neurons and the sequencing counts of the i20:Gal/Moxd1 cluster are not completely reflective of each other because our sequencing dataset only captured the ventral portion of the BNST. Therefore our i20:Gal/Moxd1 counts contain a combination of some Calb1+ BNST cells and likely all Calb1+ SDN-POA cells and is difficult to interpret on its own. Our histology, however, covers the entire hypothalamus and is more reliable for identifying sex and species differences in each region. We will clarify this in the revised manuscript.

      The relationship between the sex steroid receptor expression and the sex bias in gene expression would be improved if the sex bias in sex steroid receptor expression was included in Supplementary Figure 10.

      We will include this in the revised manuscript.

      There is no explanation for the finding that there is a female bias in gene expression across all cell types in P. polionotus.

      We also find this observation interesting but don’t have a good explanation for why at this point. We plan to follow this up in future work.

    1. Author Response:

      We appreciate the reviewers' detailed feedback, which has highlighted several areas where our study could be strengthened. Although we acknowledge the relatively limited scope of our CRISPR-based gene-deletion screen, we successfully demonstrated the immunogenic role of Pccb in our syngenetic pancreatic cancer mouse model. Specifically, loss of PCCB in our mutant KRAS/p53 PIK3CA-null (αKO) cells blocked host T cell killing of tumor cells.

      Furthermore, blocking the PD1/PD-L1 interaction reverses this anti-tumor immunogenic effect. We agree with the reviewers regarding the limitations of our study, such as the sample size in our scTCR sequencing and the lack of direct cytotoxicity assays to confirm tumor-specific T cell clones. However, our results are consistent across multiple experimental approaches that strongly suggest meaningful differences in host T cell response to the three implanted tumor types, KPC, αKO and p-αKO. We agree that future mechanistic studies will be important to determine how PCCB is involved in this immunogenic response. We also agree with the reviewers that future additional studies with other KPC cell lines will strength our conclusion regarding PCCB. Finally, we acknowledge the inherent limitations of IHC techniques to assess the involvement of other T cell checkpoints that might also be involved in this anti-tumor immunogenic effect. In summary, despite these limitations, our findings provide novel insight into the role of PCCB in pancreatic tumor immunogenicity and contribute to the ongoing discussion of how to improve therapeutic strategies for this deadly cancer.

      Reviewer 1:

      Weaknesses:

      (1) Clonal expansion of cytotoxic T cells infiltrating the pancreatic αKO tumors

      a. Only two tumor-bearing hosts were evaluated by single-cell TCR sequencing, thus limiting conclusions that may be drawn regarding repertoire diversity and expansion.

      We agree with the reviewer that possible repertoire diversity and expansion could be observed by sequencing more tumor-bearing hosts. However, our current data reveal a marked consistency in the transcriptional expression within the two tumors analyzed per group. Importantly, these features are significantly divergent between the αKO and p-αKO groups. While recognizing the limited sample size, the observed within-group consistency and the clear distinction between groups strongly support the validity of the reported trends.

      b. High abundance clones in the TME do not necessarily have tumor specificity, nor are they necessarily clonally expanded. They may be clones which are tissue-resident or highly chemokine-responsive and accumulate in larger numbers independent of clonal expansion. Please consider softening language to clonal enrichment or refer to clone size as clonal abundance throughout the paper.

      We agree with the reviewer that it’s possible that the high abundance clones are not necessarily tumor specific. Our previous work (N. Sivaram 2019) demonstrated the critical role of increased pancreatic CD8+ T cells in αKO tumor regression within B6 mice. Therefore, antigen specific CD8+ T cell clonal expansion within the pancreas is an anticipated observation. However, as the reviewer pointed out, a portion of this expansion may be attributable to factors independent of tumor antigens. While the low T cell infiltration observed in KPC-implanted mice argues against a purely tissue-resident explanation, further investigation is required to definitively establish the tumor specificity of individual clones. We have revised the manuscript to reflect this nuance, replacing "clonal expansion" with "clonal enrichment".

      c. The whole story would be greatly strengthened by cytotoxicity assays of abundant TCR clones to show tumor antigen specificity.

      As mentioned above, we agree with the reviewer that future studies are needed to investigate each of the specific clones. Due to the extended timeframe required, it’s beyond the scope of the present study.

      (2) A genome-wide CRISPR gene-deletion screen to identify molecules contributing to Pik3camediated pancreatic tumor immune evasion"

      a. CRISPR mutagenesis yielded outgrowth of only 2/8 tumors. A more complete screen with an increased total number of tumors would yield much stronger gene candidates with better statistical power. It is unsurprising that candidates were observed in only one of the two tumors. Nevertheless, the authors moved forward successfully with Pccb.

      We agree that by including more mice in the CRISPR screen, it’s possible that we could have identified more candidates. Regardless, we have successfully demonstrated PCCB’s role in pancreatic tumorgenicity with our mouse model.

      (3) T cells infiltrate p-αKO tumors with increased expression of immune checkpoint

      *a. In Figure 4D, cell counts are not normalized to totalCD8+ T cell counts making it difficult to directly compare aKO to p-aKO tumors. Based on quantifications from Figure 4D, I suspect normalization will strengthen the conclusion that CD8+ infiltrate is more exhausted in p-aKO tumors. *

      Due to the use of distinct tumor sections for quantifying CD8+ cells and T cell checkpoint inhibitory receptor expression, direct normalization of these counts is challenging. However, we observed comparable CD8+ cell numbers between αKO and p-αKO tumors, with p-αKO tumors exhibiting nearly double the expression of immune checkpoint receptors. Therefore, even accounting for potential normalization discrepancies, we anticipate that p-αKO tumors would still demonstrate a significantly higher percentage of immune checkpoint receptorpositive cells compared to αKO tumors.

      b. Flow cytometric analysis to further characterize the myeloid compartment is incomplete (single replicate) and does not strengthen the argument that p-aKO TME is more immunosuppressive. It could, however, strengthen the argument that TIL has less anti-tumor potential if effector molecule expression in CD8+ infiltrating cells were quantified.

      We agree that including more tumor samples will strengthen the argument that p-αKO TME is more immunosuppressive. Future studies need to be done to characterize CD8+ T cells.

      (4) Inhibition of PD1/PD-L1 checkpoint leads to elimination of most p-αKO tumors

      a. It is reasonable to conclude that p-aKO tumors are responsive to immune checkpoint blockade. However, there is no data presented to support the statement that checkpoint blockade reactivates an existing anti-tumor CD8+ T cell response and does not induce a de novo response

      We agree that future studies exploring the clonotypes of T cells infiltrating tumors in PD-1treated mice are necessary to determine whether observed T cell response represents reactivation of existing clones, a de novo response, or a combination of both.

      b. The discussion of these data implies that anti-PD-1 would not improve aKO tumor control, but these data are not included. As such, it is difficult to compare the therapeutic response in aKO versus p-aKO. Further, these data are at best an indirect comparison of the T cell responsiveness against tumor, as the only direct comparison is infiltrating cell count in Figure 4 and there are no public TCR clones with confirmed anti-tumor specificity to follow in the aKO versus p-aKO response.

      Since αKO tumors completely regress with 100% animal survival, we deemed anti-PD1 treatment in this group unnecessary. While we did assess anti-PD1 treatment in KPCimplanted mice, no survival benefit was observed (data not shown). The p-αKO tumor model was the only one in which anti-PD1 treatment improved survival. The complexity of the in vivo tumor microenvironment likely contributes to the lack of shared TCR clones between αKO and p-αKO tumors, even within the same tumor group. Future studies aimed at identifying tumorspecific clones may involve transferring in vivo models to in vitro assays or the generation of novel mouse strains expressing identified TCRs. However, these approaches require substantial time and resources and are beyond the scope of the present study.

      Reviewer 2:

      Weaknesses:

      (1) A major issue is that it seems these data are based on the use of a single tumor cell clone with PIK3CA deleted. Therefore, there could be other changes in this clone in addition to the deletion of PIK3CA that could contribute to the phenotype.

      We have previously tested a different KPC cell line (DT10022) with genetically downregulated PIK3CA and found mice implanted with αKO cells also showed tumor regression. However, we have not tested if deletion of Pccb in the DT10022-aKO cell line will have the same effect.

      2) The conclusion that the change in the PCCB-deficient tumor cell line is unrelated to mitochondrial metabolic changes may be incorrect based on the data provided. While it is true that in the experiments performed, there was no statistically significant change in the oxygen consumption rate or metabolite levels, this could be due to experimental error. There is a trend in the OCR being higher in the PCCB-deficient cells, although due to a high standard deviation, the change is not statistically significant. There is also a trend for there being more aKG in this cell line, but because there were only 3 samples per cell line, there is no statistically significant difference.

      Although PCCB is known to cause metabolic changes, in the context of this study, we are comparing PCCB-deficient to PCCB & PIK3CA double-deficient cells. We did not address if PCCB loss alone would cause metabolic alteration. We suspect that is the case.

      (3) More data are required to make the authors' conclusion that there are myeloid changes in the PCCB-deficient tumor cells. There is only flow data from shown from one tumor of each type.

      We agree that including more tumor samples will strengthen the argument that p-αKO TME is more immunosuppressive.

      (4) The previous published study demonstrated increased MHC and CD80 expression in the PIK3CA-deficient tumors and these differences were suggested to be the reason the tumors were rejected. However, no data concerning the levels of these proteins were provided in the current manuscript.

      Our previous hypothesis for altered MHC and CD80 levels is based on the observation that there is a dramatic increase in the number of infiltrating T cells upon Pik3ca deletion. In this study, similar levels of infiltrating T cells were observed when Pccb was deleted in αKO cells, therefore we do not expect any changes in MHC and CD80 levels since these tumors appears to be still recognized by the T cells. Indeed, we are able detect clonal enrichment in p-αKO tumors.

      Reviewer 3:

      Weaknesses:

      The IHC technique that was used to stain and characterize the exhaustion status of the tumorinfiltrating T cells.

      We agree with the reviewer that incorporating multi-color IHC or flow cytometry to characterize the exhaustion status of specific T cell subtypes would provide more comprehensive information. Unfortunately, we do not have the resources to perform these studies currently.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This manuscript by Guo and Uusisaari describes a series of experiments that employ a novel approach to address long-standing questions on the inferior olive in general and the role of the nucleoolivary projection specifically. For the first time, they optimized the ventral approach to the inferior olive to facilitate imaging in this area that is notoriously difficult to reach. Using this approach, they are able to compare activity in two olivary regions, the PO and DAO, during different types of stimulation. They demonstrate the difference between the two regions, linked to Aldoc-identities of downstream Purkinje cells, and that there is co-activation resulting in larger events when they are clustered. Periocular stimulation also drives larger events, related to co-activation. Using optogenetic stimulation they activate the nucleoolivary (N-O) tract and observe a wide range of responses, from excitation to inhibition. Zooming in on inhibition they test the assumption that N-O activation can be responsible for suppression of sensoryevoked events. Instead, they suggest that the N-O input can function to suppress background activity while preserving the sensory-driven responses.

      Strengths:

      This is an important study, tackling the long-standing issue of the impossibility to do imaging in the inferior olive and using that novel method to address the most relevant questions. The experiments are technically very challenging, the results are presented clearly and the analysis is quite rigorous. There is quite a lot of room for interpretation, see weaknesses, but the authors make an effort to cover many options.

      Weaknesses:

      The heavy anesthesia that is required during the experiment could severely impact the findings. Because of the anesthesia, the firing rate of IO neurons is found to be 0.1 Hz, significantly lower than the 1 Hz found in non-anesthetized mice. This is mentioned and discussed, but what the consequences could be cannot be understated and should be addressed more. Although the methods and results are described in sufficient detail, there are a few points that, when addressed, would improve the manuscript.

      We sincerely thank the reviewer for their encouraging comments and recognition of our study’s significance. We fully acknowledge the confounding effects of the deep anesthesia used in our experiments, which was necessary to ensure the animals’ welfare while establishing this technically demanding methodology. We elaborate on these effects below and will further clarify them in the revised manuscript.

      Ultimately, the full resolution of this issue will require recordings in awake animals, as we consider our approach an advancement from acute slice preparations but not yet a complete representation of in vivo IO function. However, key findings from our study—such as amplitude modulation with co-activation and the potential role of IO refractoriness in complex spike generation—could be further explored in existing cerebellar cortical recordings from awake, behaving animals. We hope our work will motivate re-examination of such datasets to assess whether these mechanisms contribute to overall cerebellar function.

      Reviewer #1 (Recommendations for the authors):

      On page 10 the authors indicate that 2084 events were included for DAO and 1176 for PO. Is that the total number of events? What was the average and the range per neuron and the average recording duration?

      Thank you for pointing out lack of clarity. The sentence should say "in total, 2084 and 1176 detected events from DAO and PO were included in the study". We will add the averages and ranges of events detected per neuron in different categories, as well as the durations of the recordings (ranging from 120s to 270s) to the tables.

      On page 10 it is also stated that: "events in PO reached larger values than those in DAO even though the average values did not differ". Please clarify that statement. Which parameter + p-value in the table indicates this difference?

      Apologies for omission. Currently the observation is only visible in the longer tail to the right in the PO data in Figure 2B2. We will add the range of values (3.0-75.2 vs 3.1-39.6 for PO and DAO amplitudes, respectively) in text and the tables in the revision.

      Abbreviating airpuff to AP is confusing, I would suggest not abbreviating it.

      Understood. We will change AP to airpuff in the text. In figure labels, at least in some panels, the abbreviation will be necessary due to space constraints.

      What type of pulse was used to drive ChrimsonR? Could it be that the pulse caused a rebound-like phenomenon with the pulse duration that drove the excitation?

      As described on line 229 and in the Methods, we used 5-second trains of 5-ms LED light pulses. Importantly, these stimulation parameters were informed by our extensive in vitro examination of various stimulation patterns (Lefler et al., 2014), which consistently produced stable postsynaptic responses without inducing depolarization or rebound effects. Additionally, Loyola et al. (2024) reported no evidence of rebound activity in IO cells following optogenetic activation of N-O axons in the absence of direct neuronal depolarization. We will incorporate these considerations into the discussion, while also acknowledging that unequivocal confirmation of “direct” rebound excitation would require intracellular recordings, such as patch clamp experiments.

      The authors indicate that the excitatory activity was indistinguishable in shape from other calcium activity, but can anything be said about the timing (the scale bar in Figure 4A2 has no value, is it the same 2s pulse)?

      Apologies for oversight in labeling the scale bar in Figure 4A2 (it is 2s). While we deliberately refrain from making strong claims regarding the origin of the NO-evoked spikes, their timing can be examined in more detail in Figure 4 - Supplement 1, panels C and D. We will make sure this is clearly stated in the revised text.

      Did the authors check for accidental sparse transfection with ChrimsonR of olivary neurons in the post-mortem analysis?

      Good point! However, we have never seen this AAV9-based viral construct to drive trans-synaptic expression in the IO, nor is this version of AAV known to have the capacity for transsynaptic expression in general.

      No sign of retrograde labeling (via the CF collaterals in the cerebellar nuclei) was seen either. Notably, the hSyn promoter used to drive ChrimsonR expression is extremely ineffective in the IO. Thus, we doubt that such accidental labeling could underlie the excitatory events seen upon N-O stimulation. We will add these mentions with relevant references to the discussion of the revised manuscript.

      On page 18 the authors state that: "The lower SS rate was attributed to intrinsic factors of PNs, while the reduced frequency of CSs was speculated to result from increased inhibition of the IO via the nucleo-olivary (N-O) pathway targeting the same microzone." I think I understand what you mean to say, but this is a bit confusing.

      Agreed. We will rephrase this sentence to clarify that a lower SS rate in a given microzone may lead to increased activation of inhibitory N-O axons that target the region of IO that sends CF to the same microzone.

      Is airpuff stimulation not more likely to activate PO dan DAO because of the related modalities (more face vs. more trunk/limbs?), and thereby also more likely to drive event co-activation (as it is stated in the abstract).

      We agree that the specific innervation patterns of different IO regions likely explain the discrepancy between previous reports of airpuff-evoked complex spikes in cerebellar cortical regions targeted by DAO and the absence of airpuff responses in the particular region of DAO accessible via our surgical approach. As in the present dataset virtually no airpuff-evoked events were seen in DAO regions, we are unable to directly compare airpuff-evoked event co-activation between PO and DAO. The higher co-activation for PO was observed for "spontaneous" activity.

      The Discussion addresses the question of why N-O pathway activation does not remove the airpuff response.

      Given the potentially profound effect, I would propose to expand the discussion on the role of aneasthesia, including longer refractory periods but also potential disruption of normal network interactions (even though individually the stimulations work). Briefly indicating what is known about alpha-chloralose would help interpret the results as well.

      We fully agree that the anesthetic state introduces confounding factors that must be considered when interpreting our results. We will expand the discussion to address how anesthesia, particularly alphachloralose as well as tissue cooling, may contribute to prolonged refractory periods and potential disruptions in normal network interactions. However, we recognize that certain aspects cannot be fully resolved without recordings in awake animals. For this reason, we characterize our preparation as an "upgraded" in vitro approach rather than a fully representative in vivo model.

      Please clearly indicate that the age range of P35-45 is for the moment of virus injection and specify the age range for the imaging experiment.

      Apologies for the oversight. We will indicate these age ranges in the results (as they are currently only specified in Methods). The P35-45 range refers to moment of virus injection.

      The methods indicate that a low-pass filter of 1Hz was used. I am sure this helps with smoothing, but does it not remove a lot of potentially interesting information. How would a higher low-pass filter affect the analysis and results?

      We acknowledge that applying a 1 Hz low-pass filter inevitably removes high-frequency components, including potential IO oscillations and fine details such as spike "doublets." However, given the temporal resolution constraints of our recording approach, we prioritized capturing robust, interpretable events over attempting to extract finer features that might be obscured by both the indicator kinetics and imaging speed.

      While a higher cut-off frequency could, in principle, allow more precise measurement of rise times and peak timings, it would also amplify high-frequency noise, complicating automated event detection and reducing confidence in distinguishing genuine neural signals from artifacts. Given these trade-offs, we opted for a conservative filtering approach to ensure stable event detection. Future work, particularly with faster imaging rates and improved sensors (GCaMP8s) will be used to explore the finer temporal structure of IO activity. We will deliberate on these matters more extensively in the revised discussion.

      Reviewer #2 (Public review):

      The authors developed a strategy to image inferior olive somata via viral GCaMP6s expression, an implanted GRIN lens, and a one-photon head-mounted microscope, providing the first in vivo somatic recordings from these neurons. The main new findings relate to the activation of the nucleoolivary pathway, specifically that: this manipulation does not produce a spiking rebound in the IO; it exerts a larger effect on spontaneous IO spiking than stimulus (airpuff)-evoked spiking. In addition, several findings previously demonstrated in vivo in Purkinje cell complex spikes or inferior olivary axons are confirmed here in olivary somata: differences in event sizes from single cells versus co-activated cells; reduced coactivation when activating the NO pathway; more coactivation within a single zebrin compartment.

      The study presents some interesting findings, and for the most part, the analyses are appropriate. My two principal critiques are that the study does not acknowledge major technical limitations and their impact on the claims; and the study does not accurately represent prior work with respect to the current findings.

      We thank the reviewer for recognising the value of the findings in our "reduced" in vivo preparation, and apologize for omissions in the work that led to critique. We will elaborate on these matters below and prepare a revised manuscript.

      The authors use GCaMP6s, which has a tau1/2 of >1 s for a normal spike, and probably closer to 2 s (10.1038/nature12354) for the unique and long type of olivary spikes that give rise to axonal bursts (10.1016/j.neuron.2009.03.023). Indeed, the authors demonstrate as much (Fig. 2B1). This affects at least several claims:

      a. The authors report spontaneous spike rates of 0.1 Hz. They attribute this to anesthesia, yet other studies under anesthesia recording Purkinje complex spikes via either imaging or electrophysiology report spike rates as high as 1.5 Hz (10.1523/JNEUROSCI.2525-10.2011). This discrepancy is not acknowledged and a plausible explanation is not given. Citations are not provided that demonstrate such low anesthetized spike rates, nor are citations provided for the claim that spike rates drop increasingly with increasing levels of anesthesia when compared to awake resting conditions.

      We fully acknowledge that anesthesia is a major confounding factor in our study. Given the unusually invasive nature of our surgical preparation, we prioritized deep anesthesia to ensure the animals’ welfare. This, along with potential cooling effects from tissue removal and GRIN lens contact, likely contributed to the observed suppression of IO activity.

      We recognize that reported complex spike rates under anesthesia vary considerably across studies, and we will expand our discussion to provide a more comprehensive comparison with prior literature. Notably, different anesthetic protocols, levels of anesthesia, and recording methodologies can lead to widely different estimates of firing rates. While we cannot resolve this issue without recordings in awake animals, we will clarify that our observed rates likely reflect both the effects of anesthesia and specific methodological constraints. We will also incorporate additional references to studies examining cerebellar activity under different anesthetic conditions.

      More likely, this discrepancy reflects spikes that are missed due to a combination of the indicator kinetics and low imaging sensitivity (see (2)), neither of which are presented as possible plausible alternative explanations.

      We acknowledge that the combination of slow indicator kinetics and limited optical power in our miniature microscope setup constrains the temporal resolution of our recordings. However, we are confident that we can reliably detect events occurring at intervals of 1 second or longer. This confidence is based on data from another preparation using the same viral vector and optical system, where we observed spike rates an order of magnitude higher.

      That said, we do not make claims regarding the presence or absence of somatic events occurring at very short intervals (e.g., 100-ms "doublets," as described by Titley et al., 2019), as these would likely fall below our temporal resolution. We will clarify this limitation in the revised manuscript to ensure that the constraints of our approach are fully acknowledged.

      While GCaMP6s is not as sensitive as more recent variants (Zhang et al., 2023, PMID 36922596), our previous work (Dorgans et al., 2022) demonstrated that its dynamic range and sensitivity are sufficient to detect both spikes and subthreshold activity in vitro. Although the experimental conditions differ in the current miniscope experiments, we took measures to optimize signal quality, including excluding recordings with a low signal-to-noise ratio (see Methods). This need for high signal fidelity also informed our decision to limit the sampling rate to 20 fps. In future work, we plan to adopt newer GCaMP variants that were not available at the start of this project, which should further improve sensitivity and temporal resolution.

      Many claims are made throughout about co-activation ("clustering"), but with the GCaMP6s rise time to peak (0.5 s), there is little technical possibility to resolve co-activation. This limitation is not acknowledged as a caveat and the implications for the claims are not engaged with in the text.

      As noted in the manuscript (L492-), "interpreting fluorescence signals relative to underlying voltage changes is challenging, particularly in IO neurons with unusual calcium dynamics." We acknowledge that the slow rise time of GCaMP6s ( 0.5 s) limits our ability to precisely resolve the timing of co-activation at very short intervals. However, given the relatively slow timescales of IO event clustering and the inherent synchrony in olivary network dynamics, we believe that the observed co-activation patterns remain meaningful, even if finer temporal details cannot be fully resolved.

      To ensure clarity, we will expand this section to explicitly acknowledge the temporal resolution limitations of our approach and discuss their implications for interpreting co-activation. While the precise timing of individual spikes within a cluster may not be resolvable, the observed increase in event magnitude with coarse co-activation suggests that clustering effects remain functionally relevant even when exact spike synchrony is not detectable at millisecond resolution.

      This finding is consistent with the idea that co-activation enhances calcium influx, leading to larger amplitude events — a relationship that does not require perfect temporal resolution to be observed. The fact that this effect persists across a broad range of clustering windows (as shown in Figure 2 Supplement 2) further supports its robustness. While we cannot make strong claims about precise spike timing within these clusters nor about the mechanism underlying enhanced calcium signal, our results demonstrate that co-activation may influence IO activity in a quantifiable way. We will clarify these points in the revised manuscript to ensure that our findings are appropriately framed given the temporal constraints of our imaging approach.

      The study reports an ultralong "refractory period" (L422-etc) in the IO, but this again must be tempered by the possibility that spikes are simply being missed due to very slow indicator kinetics and limited sensitivity. Indeed, the headline numeric estimate of 1.5 s (L445) is suspiciously close to the underlying indicator kinetic limitation of 1-2 s.

      Our findings suggest a potential refractory period limiting the frequency of events in the inferior olive under our recording conditions. This interpretation is supported by the observed inter-event interval distribution, the inability of N-O stimulation to suppress airpuff-evoked events, and lower bounds reported in earlier literature on complex spike intervals recorded in awake animals under various behavioral contexts. Taking into account the likely cooling of tissue, a refractory period of 1.5s is not unreasonable. Of course, we recognize that the slow decay kinetics of GCaMP6s may cause overlapping fluorescence signals, potentially obscuring closely spaced events. This is in line with data presented in the Chen et al 2013 manuscript describing GCaMp6s (PMID: 36922596; Figure 3b showing events detected with intervals less than 500 ms).

      The consideration of refractoriness only arose late in the project while we were investigating the explanations for lack of inhibition of airpuff-evoked spikes. Future experiments, particularly in awake animals, will be instrumental in validating this interpretation. To ensure that the refractory period is understood as one possible mechanism rather than a definitive explanation, we will rephrase the discussion to clarify that while our data are compatible with a refractory period, they do not establish it conclusively.

      The study uses endoscopic one-photon miniaturized microscope imaging. Realistically, this is expected to permit an axial point spread function (z-PSF) on the order of 40um, which must substantially reduce resolution and sensitivity. This means that if there *is* local coactivation, the data in this study will very likely have individual ROIs that integrate signals from multiple neighboring cells. The study reports relationships between event magnitude and clustering, etc; but a fluorescence signal that contains photons contributed by multiple neighboring neurons will be larger than a single neuron, regardless of the underlying physiology - the text does not acknowledge this possibility or limitation.

      We acknowledge that the use of one-photon endoscopic imaging imposes limitations on axial resolution, potentially leading to signal contributions from neighboring neurons. To mitigate this, we applied CNMFe processing, which allows for the deconvolution of overlapping signals and the differentiation of multiple neuronal sources within shared pixels. However, as the reviewer points out, if two neurons are perfectly overlapping in space, they may be treated as a single unit.

      To clarify this limitation, we will expand the discussion to explicitly acknowledge the impact of one-photon imaging on signal separation and to emphasize that, while CNMFe helps resolve some overlaps, perfect separation is not always possible. As already noted in the manuscript (L495-), "the absence of optical sectioning in the whole-field imaging method can lead to confounding artifacts in densely labeled structures such as the IO’s tortuous neuropil." We will further elaborate on how this factor was considered in our analysis and interpretation.

      Second, the text makes several claims for the first multicellular in vivo olivary recordings. (L11; L324, etc).

      I am aware of at least two studies that have recorded populations of single olivary axons using two-photon Ca2+ imaging up to 6 years ago (10.1016/j.neuron.2019.03.010; 10.7554/eLife.61593). This technique is not acknowledged or discussed, and one of these studies is not cited. No argument is presented for why axonal imaging should not "count" as multicellular in vivo olivary recording: axonal Ca2+ reflects somatic spiking.

      We appreciate the reviewer’s point and acknowledge the important prior work using two-photon imaging to record olivary axonal activity in the cerebellar cortex. However, while axonal calcium signals do reflect somatic spiking, these recordings inherently lack information about the local network interactions within the inferior olive itself.

      A key motivation for our study was to observe neuronal activity within the IO at the level of its gap-junctioncoupled local circuits, rather than at the level of its divergent axonal outputs. The fan-like spread of climbing fibers across rostrocaudal microzones in the cerebellar cortex makes them relatively easy to record in vivo, but it also means that individual imaging fields contain axons from neurons that may be distributed across different IO microdomains. As a result, while previous work has provided valuable insight into olivary output patterns, it has not allowed for the examination of coordinated somatic activity within localized IO neuron clusters.

      With apologies, we recognize that this distinction was not sufficiently emphasized in our introduction. We will clarify this key point and ensure that the important climbing fiber imaging studies are properly cited and contextualized in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      The authors state: "we found no reports that examined coactivation levels between Z+ and Z- microzones in cerebellar complex spike recordings" (L359). Multiple papers (that are not cited) using AldolaceC-tdTomato mice with two photon Purkinje dendritic calcium imaging showed synchronization (at similar levels) within but not across z+/z- bands. (2015 10.1523/JNEUROSCI.2170-14.2015, 2023 https://doi.org/10.7554/eLife.86340).

      We apologize for the misleading phrasing. We will rephrase this statement to: "While complex spike coactivation within individual zebrin zones has been extensively studied (references), we found no reports directly comparing the levels of intra-zone co-activation between Z+ and Z microzones."

      Additionally, we will ensure that the relevant studies demonstrating synchronization within zebrin zones, as well as (lack of) interactions between neighboring zones, are properly cited and discussed in the revised manuscript.

      The figures could use more proofreading, and several decisions should be reconsidered:

      Normalizing the amplitude to maximum is not a good strategy, as it can overemphasize noise or extremely small-magnitude signals, and should instead follow standard convention and present in fixed units (3A2, 4B2, and even 2C).

      As noted earlier, we have excluded recordings and cells with high noise or a low signal-to-noise ratio for event amplitudes, ensuring that such data do not influence the color-coded panels. Importantly, all quantitative analyses and traces presented in the manuscript are normalized to baseline noise level, not to maximal amplitude, ensuring that noise or low-magnitude signals do not skew the analysis.

      The decision to use max-amplitude normalization in color-coded panels was made specifically to aid visualization of temporal structure across recordings. This approach allows for clearer comparisons without the distraction of inter-cell variability in absolute signal strength. However, we recognize the potential for confusion and will revise the Results text to explicitly clarify that the color-coded visualizations use a different scaling method than the quantitative analyses.

      x axes with no units: Figures 2B2, 2E1, 3B2, 3C2, 5B2, 5C2, 5D2.

      No colorbar units: 5A3 (and should be shown in real not normalized units).

      No y axis units: 5D1.

      No x axis label or units: 5E1.

      5E3 says "stim/baseline" for the y-axis units and then the first-panel title says "absolute frequencies" meaning it’s *not* normalized and needs a separate (accurate) y-axis with units.

      Illegibly tiny fonts: 2E1, 3E1, etc.

      We will correct all these in the revised manuscript. Thank you for careful reading.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      This study provides a thorough analysis of Nup107's role in Drosophila metamorphosis, demonstrating that its depletion leads to developmental arrest at the third larval instar stage due to disruptions in ecdysone biosynthesis and EcR signaling. Importantly, the authors establish a novel connection between Nup107 and Torso receptor expression, linking it to the hormonal cascade regulating pupariation.

      However, some contradictory results weaken the conclusions of the study. The authors claim that Nup107 is involved in the translocation of EcR from the cytoplasm to the nucleus. However, the evidence provided in the paper suggests it more likely regulates EcR expression positively, as EcR is undetectable in Nup107-depleted animals, even below background levels.

      We appreciate the concern raised in this public review. However, we must clarify that we do not claim that Nup107 regulates the translocation of EcR from the cytoplasm. It is important to note that we posited this hypothesis if Nup107 will regulate EcR nuclear translocation (9<sup>th</sup> line of 2<sup>nd</sup> paragraph on page 6). We have spelled this out more clearly as the 3<sup>rd</sup> sub-section title of the Results section, and in the discussion (8<sup>th</sup> line of 2<sup>nd</sup> paragraph on page 11). Overall, we have expressed surprise that Nup107 is not directly involved in the nuclear translocation of EcR.

      Ecdysone hormone acts through the EcR to induce the transcription of EcR also and creates a positive autoregulatory loop that enhances the EcR level through ecdysone signaling (1). Since Nup107 depletion leads to a reduction in ecdysone levels, it disrupts the transcription autoregulatory EcR expression loop. This can contribute to the reduced EcR levels seen in Nup107-depleted animals.

      Additionally, the link between Nup107 and Torso is not fully substantiated. While overexpression of Torso appears to rescue the lack of 20E production in the prothoracic gland, the distinct phenotypes of Torso and Nup107 depletion-developmental delay in the former versus complete larval arrest in the latter complicate understanding of Nup107's precise role.

      We understand that there are differences in the developmental delay when Tosro and Nup107 depletion is analyzed. However, the two molecules being compared here are very different, and the extent of Torso depletion is not evident in other studies (2). Even if the extent of depletion of Torso and Nup107 is similar, we believe that Nup107, being a more widely expressed protein, induces stronger defects owing to its importance in cellular physiology. We think that RNAi-mediated depletion of Nup107 causes a defect in 20E biosynthesis through the Halloween genes, inducing a developmental arrest.

      To clarify these discrepancies, further investigation into whether Nup107 interacts with other critical signaling pathways related to the regulation of ecdysone biosynthesis, such as EGFR or TGF-β, would be beneficial and could strengthen the findings.

      In summary, although the study presents some intriguing observations, several conclusions are not well-supported by the experimental data.

      We agree with the reviewer’s suggestion. As noted in the literature, five RTKs-torso, InR, EGFR, Alk, and Pvr-stimulate the PI3K/Akt pathway, which plays a crucial role in the PG functioning and controlling pupariation and body size (3). We have checked the torso and EGFR signaling. We rescued Nup107 defects with the torso overexpression, however, constitutively active EGFR (BL-59843) did not rescue the phenotype (data was not shown). Nonetheless, we plan to examine the EGFR pathway activation by measuring the pERK levels in Nup107-depleted PGs.

      Reviewer #2 (Public review):

      Summary:

      The manuscript by Kawadkar et al investigates the role of Nup107 in developmental progression via the regulation of ecdysone signaling. The authors identify an interesting phenotype of Nup107 whole-body RNAi depletion in Drosophila development - developmental arrest at the late larval stage. Nup107-depleted larvae exhibit mis-localization of the Ecdysone receptor (EcR) from the nucleus to the cytoplasm and reduced expression of EcR target genes in salivary glands, indicative of compromised ecdysone signaling. This mis-localization of EcR in salivary glands was phenocopied when Nup107 was depleted only in the prothoracic gland (PG), suggesting that it is not nuclear transport of EcR but the presence of ecdysone (normally secreted from PG) that is affected. Consistently, whole-body levels of ecdysone were shown to be reduced in Nup107 KD, particularly at the late third instar stage when a spike in ecdysone normally occurs. Importantly, the authors could rescue the developmental arrest and EcR mislocalization phenotypes of Nup107 KD by adding exogenous ecdysone, supporting the notion that Nup107 depletion disrupts biosynthesis of ecdysone, which arrests normal development. Additionally, they found that rescue of the Nup107 KD phenotype can also be achieved by over-expression of the receptor tyrosine kinase torso, which is thought to be the upstream regulator of ecdysone synthesis in the PG. Transcript levels of the torso are also shown to be downregulated in the Nup107KD, as are transcript levels of multiple ecdysone biosynthesis genes. Together, these experiments reveal a new role of Nup107 or nuclear pore levels in hormone-driven developmental progression, likely via regulation of levels of torso and torso-stimulated ecdysone biosynthesis.

      Strengths:

      The developmental phenotypes of an NPC component presented in the manuscript are striking and novel, and the data appears to be of high quality. The rescue experiments are particularly significant, providing strong evidence that Nup107 functions upstream of torso and ecdysone levels in the regulation of developmental timing and progression.

      Weaknesses:

      The underlying mechanism is however not clear, and any insight into how Nup107 may regulate these pathways would greatly strengthen the manuscript. Some suggestions to address this are detailed below.

      Major questions:

      (1) Determining how specific this phenotype is to Nup107 vs. to reduced NPC levels overall would give some mechanistic insight. Does knocking down other components of the Nup107 subcomplex (the Y-complex) lead to similar phenotypes? Given the published gene regulatory function of Nup107, do other gene regulatory Nups such as Nup98 or Nup153 produce these phenotypes?

      We thank this public review to raise this concern. Working with a Nup-complex like the Nup107 complex, this concern is anticipated but difficult to address as many Nups function beyond their complex identity. Our observations with all other members of the Nup107-complex, including dELYS, suggest that except Nup107, none of the other Nup107-complex members could induce larval developmental arrest.

      In this study, we primarily focused on the Nup107 complex (outer ring complex) of the NPC. We have not examined other nucleoporins outside of this complex, such as Nup98 and Nup153. However, previous studies have reported that Nup98 and Nup153 interact with chromatin, with these investigations conducted in Drosophila S2 cells (4, 5, 6). In the future, we may check whether Nup98 and Nup153 depletion can produce the arrest phenotype.

      (2) In a related issue, does this level of Nup107 KD produce lower NPC levels? It is expected to, but actual quantification of nuclear pores in Nup107-depleted tissues should be added. These and the above experiments would help address a key mechanistic question - is this phenotype the result of lower numbers of nuclear pores or specifically of Nup107?

      We agree with the concern raised here, and we plan to assess nucleoporin intensity using mAb414 antibody (exclusively FG-repeat Nup recognizing antibody) in the Nup107 depletion background. Our past observations suggest that Nup107-depletion does not affect the overall nuclear pore complex assembly in Drosophila salivary glands (Data is not shown).

      (3) Additional experiments on how Nup107 regulates the torso would provide further insight. Does Nup107 regulate transcription of the torso or perhaps its mRNA export? Looking at nascent levels of the torso transcript and the localization of its mRNA can help answer this question. Or alternatively, does Nup107 physically bind the torso?

      While the concern regarding torso transcript level is genuine, we have already reported in the manuscript that Nup107 levels directly regulate torso expression. When Nup107 is depleted torso levels go down, which in turn controls ecdysone production and subsequent EcR signaling (Figure 6B of the manuscript). However, the exact nature of Nup107 regulation on torso expression is still unclear. Since the Nup107 is known to interact with chromatin (7), it may affect torso transcription. The possibility of a physiologically relevant interaction between Nup107 and the torso in a cellular context is unlikely due to their distinct sub-cellular localizations. If we investigate this further, it will require a significant amount of time for having reagents and experimentation, and currently stands beyond the scope of this manuscript.

      (4) The depletion level of Nup107 RNAi specifically in the salivary gland vs. the prothoracic gland should be compared by RT-qPCR or western blotting.

      Although we know that the Nup107 protein signal is reduced in SG upon knockdown (Figure 3B), we have not compared the Nup107 transcript level in these two tissues (SG and PG). As suggested here, we will knock down Nup107 using SG and PG-specific drivers and quantify the Nup107 depletion level by RT-qPCR.

      (5) The UAS-torso rescue experiment should also include the control of an additional UAS construct - so Nup107; UAS-control vs Nup107; UAS-torso should be compared in the context of rescue to make sure the Gal4 driver is functioning at similar levels in the rescue experiment.

      This is a very valid point, and we took this into account while planning the experiment. To maintain the GAL4 function, we used the Nup107<sup>KK</sup>;UAS-GFP as control alongside the Nup107<sup>KK</sup>;UAS-torso. This approach ensures that GAL4 dilution does not affect observations made in the experiments. It can be noticed in Figure S7 that the presence of GFP signal in prothoracic glands and their reduced size indicates genes downstream to both UAS sequences are transcribed, and GAL4 dilution does not play a role here.

      Minor:

      (6) Figures and figure legends can stand to be more explicit and detailed, respectively.

      We will revisit all figures and their corresponding legends to ensure appropriate and explicit details are provided.

      Reviewer #3 (Public review):

      Summary:

      In this study by Kawadkar et al, the authors investigate the developmental role of Nup107, a nucleoporin, in regulating the larval-to-pupal transition in Drosophila through RNAi knockdown and CRISPR-Cas9-mediated gene editing. They demonstrate that Nup107, an essential component of the nuclear pore complex (NPC), is crucial for regulating ecdysone signaling during developmental transitions. The authors show that the depletion of Nup107 disrupts these processes, offering valuable insights into its role in development.

      Specifically, they find that:

      (1) Nup107 depletion impairs pupariation during the larval-to-pupal transition.

      (2) RNAi knockdown of Nup107 results in defects in EcR nuclear translocation, a key regulator of ecdysone signaling.

      (3) Exogenous 20-hydroxyecdysone (20E) rescues pupariation blocks, but rescued pupae fail to close.

      (4) Nup107 RNAi-induced defects can be rescued by activation of the MAP kinase pathway.

      Strengths:

      The manuscript provides strong evidence that Nup107, a component of the nuclear pore complex (NPC), plays a crucial role in regulating the larval-to-pupal transition in Drosophila, particularly in ecdysone signaling.

      The authors employ a combination of RNAi knockdown, CRISPR-Cas9 gene editing, and rescue experiments, offering a comprehensive approach to studying Nup107's developmental function.

      The study effectively connects Nup107 to ecdysone signaling, a key regulator of developmental transitions, offering novel insights into the molecular mechanisms controlling metamorphosis.

      The use of exogenous 20-hydroxyecdysone (20E) and activation of the MAP kinase pathway provides a strong mechanistic perspective, suggesting that Nup107 may influence EcR signaling and ecdysone biosynthesis.

      Weaknesses:

      The authors do not sufficiently address the potential off-target effects of RNAi, which could impact the validity of their findings. Alternative approaches, such as heterozygous or clonal studies, could help confirm the specificity of the observed phenotypes.

      This is a very valid point raised, and we are aware of the consequences of the off-target effects of RNAi. To assert the effects of authentic RNAi and reduce the off-target effects, we have used two RNAi lines (Nup107<sup>GD</sup> and Nup107<sup>KK</sup>) against Nup107. Both RNAi induced comparable levels of Nup107 reduction, and using these lines, ubiquitous and PG specific knockdown produced similar phenotypes. Although the Nup107<sup>GD</sup> line exhibited a relatively stronger knockdown compared to the Nup107<sup>KK</sup> line, we preferentially used the Nup107<sup>KK</sup> line because the Nup107<sup>GD</sup> line is based on the P-element insertion, and the exact landing site is unknown. Furthermore, there is an off-target predicted for the Nup107<sup>GD</sup> line, where a 19bp sequence aligns with the bifocal (bif) sequence. The bif-encoded protein is involved in axon guidance and regulation of axon extension. However, the Nup107<sup>KK</sup> line does not have a predicted off-target molecule, and we know its precise landing site on the second chromosome. Thus, the Nup107<sup>KK</sup> line was ultimately used in experimentation for its clearer and more reliable genetic background.

      We are also investigating Nup107 knockdown in the prothoracic gland, which exhibits polyteny. Additionally, the number of cells in the prothoracic gland is quite limited, approximately 50-60 cells (8). Given this, there is a possibility that a clonal study may not yield the phenotype. However, we will consider moving forward with this approach also.

      NPC Complex Specificity: While the authors focus on Nup107, it remains unclear whether the observed defects are specific to this nucleoporin or if other NPC components also contribute to similar defects. Demonstrating similar results with other NPC components would strengthen their claims.

      We thank this public review to raise this concern. Working with a Nup-complex like the Nup107 complex, this concern is anticipated but difficult to address as many Nups function beyond their complex identity. Our observations with all other members of the Nup107-complex, including dELYS, suggest that except Nup107, none of the other Nup107-complex members could induce larval developmental arrest. Since the study is primarily focused on the Nup107 complex (outer ring complex) of the NPC, we have not examined other nucleoporins outside of this complex.

      Although the authors show that Nup107 depletion disrupts EcR signaling, the precise molecular mechanism by which Nup107 influences this process is not fully explored. Further investigation into how Nup107 regulates EcR nuclear translocation or ecdysone biosynthesis would improve the clarity of the findings.

      We appreciate the concern raised. Through our observation, we have proposed the upstream effect of Nup107 on the PTTH-torso-20E-EcR axis regulating developmental transitions. We know that Nup107 regulates torso levels, but we do not know if Nup107 directly interacts with torso. We would like to address whether Nup107 exerts control on PTTH levels also.

      We must emphasize that Nup107 does not directly regulate the translocation of EcR. On the contrary, we have demonstrated that EcR translocation is 20E dependent and Nup107 independent. Through our observations, we have argued that Nup107 regulates the expression of Halloween genes required for ecdysone biosynthesis. We are interested in identifying if Nup107 associates directly or through some protein to chromatin to bring about the changes in gene expression required for normal development.

      There are some typographical errors and overly strong phrases, such as "unequivocally demonstrate," which could be softened. Additionally, the presentation of redundant data in different tissues could be streamlined to enhance clarity and flow.

      We thank the reviewer for this observation. We will remove all typographical errors and make reasonable statements based on our conclusions.

      References:

      (1) Varghese, Jishy, and Stephen M Cohen. “microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila.” Genes & development vol. 21,18 (2007): 2277-82. doi:10.1101/gad.439807

      (2) Rewitz, Kim F et al. “The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis.” Science (New York, N.Y.) vol. 326,5958 (2009): 1403-5. doi:10.1126/science.1176450

      (3) Pan, Xueyang, and Michael B O'Connor. “Coordination among multiple receptor tyrosine kinase signals controls Drosophila developmental timing and body size.” Cell reports vol. 36,9 (2021): 109644. doi:10.1016/j.celrep.2021.109644

      (4) Pascual-Garcia, Pau et al. “Metazoan Nuclear Pores Provide a Scaffold for Poised Genes and Mediate Induced Enhancer-Promoter Contacts.” Molecular cell vol. 66,1 (2017): 63-76.e6. doi:10.1016/j.molcel.2017.02.020

      (5) Pascual-Garcia, Pau et al. “Nup98-dependent transcriptional memory is established independently of transcription.” eLife vol. 11 e63404. 15 Mar. 2022, doi:10.7554/eLife.63404

      (6) Kadota, Shinichi et al. “Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding.” Nature communications vol. 11,1 2606. 25 May. 2020, doi:10.1038/s41467-020-16394-3

      (7) Gozalo, Alejandro et al. “Core Components of the Nuclear Pore Bind Distinct States of Chromatin and Contribute to Polycomb Repression.” Molecular cell vol. 77,1 (2020): 67-81.e7. doi:10.1016/j.molcel.2019.10.017

      (8) Shimell, MaryJane, and Michael B O'Connor. “Endoreplication in the Drosophila melanogaster prothoracic gland is dispensable for the critical weight checkpoint.” microPublication biology vol. 2023 10.17912/micropub.biology.000741. 21 Feb. 2023, doi:10.17912/micropub.biology.000741

    1. Author response:

      Reviewer #1:

      Summary:

      In this study, the authors propose a "unifying method to evaluate inter-areal interactions in different types of neuronal recordings, timescales, and species". The method consists of computing the variance explained by a linear decoder that attempts to predict individual neural responses (firing rates) in one area based on neural responses in another area.

      The authors apply the method to previously published calcium imaging data from layer 4 and layers 2/3 of 4 mice over 7 days, and simultaneously recorded Utah array spiking data from areas V1 and V4 of 1 monkey over 5 days of recording. They report distributions over "variance explained" numbers for several combinations: from mouse V1 L4 to mouse V1 L2/3, from L2/3 to L4, from monkey V1 to monkey V4, and from V4 to V1. For their monkey data, they also report the corresponding results for different temporal shifts. Overall, they find the expected results: responses in each of the two neural populations are predictive of responses in the other, more so when the stimulus is not controlled than when it is, and with sometimes different results for different stimulus classes (e.g., gratings vs. natural images).

      Strengths:

      (1) Use of existing data.

      (2) Addresses an interesting question.

      Unfortunately, the method falls short of the state of the art: both generalized linear models (GLMs), which have been used in similar contexts for at least 20 years (see the many papers, both theoretical and applied to neural population data, by e.g. Simoncelli, Paninsky, Pillow, Schwartz, and many colleagues dating back to 2004), and the extension of Granger causality to point processes (e.g. Kim et al. PLoS CB 2011). Both approaches are substantially superior to what is proposed in the manuscript, since they enforce non-negativity for spike rates (the importance of which can be seen in Figure 2AB), and do not require unnecessary coarse-graining of the data by binning spikes (the 200 ms time bins are very long compared to the time scale on which communication between closely connected neuronal populations within an area, or between related areas, takes place).

      We thank the reviewer for this suggestion. Our goal was to use a simple and unified linear ridge regression framework that can be applied to both calcium imaging (mouse) and MUAe (monkey) data.

      We will perform a GLM-based analysis enforcing non-negativity as suggested, including in the GLM any additional available variables that may contribute to the neuronal responses.

      We also would like to note that:

      ● Macaque data: Our MUAe data are binned at 25 ms, not 200 ms. We used the envelope

      of multi-unit activity as reported in the original study [1]. We did not perform spike sorting on these data and therefore, strictly speaking, this is not a point process and methods developed for point processes are not directly applicable.

      ● Mouse data: The Stringer et al. dataset [2,3] uses two-photon calcium imaging sampled at 2.5 or 3 Hz. Additionally, responses were computed by averaging two frames per stimulus (yielding an effective bin size of 666 ms or 800 ms), dictated by acquisition constraints. We will emphasize the low temporal resolution of these signals as a limitation in the discussion section, but we cannot improve the temporal resolution with our analyses. These signals are not point processes either (although there is a correlation between two-photon calcium signals and spike rates).

      Regardless of these considerations, the reviewer’s points are well taken, and we will conduct additional analyses as described above.

      In terms of analysis results, the work in the manuscript presents some expected and some less expected results. However, because the monkey data are based on only one monkey (misleadingly, the manuscript consistently uses the plural ‘monkeys’), none of the results specific to that monkey, nor the comparison of that one monkey to mice, are supported by robust data.

      We will add data from at least two more monkeys, as suggested by the reviewer:

      ● First, we will include a second monkey from the same dataset [1]. The reason this monkey was not included in the original submission is that the dataset for this second monkey consisted of much less data than the original. For example, for the lights-off condition, the number of V4 channels with signal-to-noise ratio greater than 2 (recommended electrodes to use by dataset authors) is 9-12 in this second monkey, compared to 68-74 in the first monkey [1]. However, we will still add results for this second monkey.

      ● Additionally, we will include data from a new monkey by collaborating with the Ponce lab who will collect new data for this study.

      One of the main results for mice (bimodality of explained variance values, mentioned in the abstract) does not appear to be quantified or supported by a statistical test.

      We appreciate this point. We will conduct statistical tests to quantify the degree of bimodality and clarify these findings in the results.

      Moreover, the two data sets differ in too many aspects to allow for any conclusions about whether the comparisons reflect differences in species (mouse vs. monkey), anatomy (L2/3-L4 vs. V1-V4), or recording technique (calcium imaging vs. extracellular spiking).

      We agree that the methodological and anatomical differences between the mouse and monkey datasets make any direct cross-species comparisons hard to interpret. We explicitly discuss this point in the Discussion section. We will add a section within the Discussion entitled “Limitations of this study”. We will further emphasize that our goal is not to attempt a direct quantitative comparison across species. We will further emphasize that the two experiments differ in terms of: (i) differences in recording modalities (calcium vs. electrophysiology) and associated differences in temporal resolution, neuronal types, and SNR, (ii) cortical targets (layers vs. areas), (iii) sample size, (iv) stimuli, (v) task conditions. In the revised manuscript, we will further highlight that our primary aim is to investigate inter-areal interactions within each species rather than to draw comparisons across species.

      Reviewer #2:

      Summary:

      In this work, the authors investigated the extent of shared variability in cortical population activity in the visual cortex in mice and macaques under conditions of spontaneous activity and visual stimulation. They argue that by studying the average response to repeated presentations of sensory stimuli, investigators are discounting the contribution of variable population responses that can have a significant impact at the single trial level. They hypothesized that, because these fluctuations are to some degree shared across cortical populations depending on the sources of these fluctuations and the relative connectivity between cortical populations within a network, one should be able to predict the response in one cortical population given the response of another cortical population on a single trial, and the degree of predictability should vary with factors such as retinotopic overlap, visual stimulation, and the directionality of canonical cortical circuits.

      To test this, the authors analyzed previously collected and publicly available datasets. These include calcium imaging of the primary visual cortex in mice and electrophysiology recordings in V1 and V4 of macaques under different conditions of visual stimulation. The strength of this data is that it includes simultaneous recordings of hundreds of neurons across cortical layers or areas. However, the weaknesses of calcium dynamics (which has lower temporal resolution and misses some non-linear dynamics in cortical activity) and multi-unit envelope activity (which reflects fluctuations in population activity rather than the variance in individual unit spike trains), underestimate the variability of individual neurons. The authors deploy a regression model that is appropriate for addressing their hypothesis, and their analytic approach appears rigorous and well-controlled.

      We agree that both calcium imaging and multi-unit envelope recordings have inherent limitations in capturing the variability of individual neuron spiking. Among other factors, the slower temporal resolution of calcium signals can blur fast spiking events, and multi-unit envelopes can mask single-unit heterogeneity. In the Discussion, we will explicitly mention these modality-specific caveats and note that our approach is meant to capture shared variability at the population level rather than the fine temporal structure of individual neurons and individual spikes.

      From their analysis, they found that there was significant predictability of activity between layer II/III and layer IV responses in mice and V1 and V4 activity in macaques, although the specific degree of predictability varied somewhat with the condition of the comparison with some minor differences between the datasets. The authors deployed a variety of analytic controls and explored a variety of comparisons that are both appropriate and convincing that there is a significant degree of predictability in population responses at the single trial level consistent with their hypothesis. This demonstrates that a significant fraction of cortical responses to stimuli is not due solely to the feedforward response to sensory input, and if we are to understand the computations that take place in the cortex, we must also understand how sensory responses interact with other sources of activity in cortical networks. However, the source of these predictive signals and their impact on function is only explored in a limited fashion, largely due to limitations in the datasets. Overall, this work highlights that, beyond the traditionally studied average evoked responses considered in systems neuroscience, there is a significant contribution of shared variability in cortical populations that may contextualize sensory representations depending on a host of factors that may be independent of the sensory signals being studied.

      We will include a section within the Discussion to emphasize the limitations in the datasets used in this study. We also agree and appreciate the reviewer’s description and will borrow some of the reviewer’s terminology to provide context in the Discussion section.

      The different recording modalities and comparisons (within vs. across cortical areas) limit the interpretability of the inter-species comparisons.

      We agree that the methodological and anatomical differences between the mouse and monkey datasets make any direct cross-species comparisons hard to interpret. We explicitly discuss this point in the Discussion section. We will add a section within the Discussion entitled “Limitations of this study”. We will further emphasize that our goal is not to attempt a direct quantitative comparison across species. We will further emphasize that the two experiments differ in terms of: (i) differences in recording modalities (calcium vs. electrophysiology) and associated differences in temporal resolution, neuronal types, and SNR, (ii) cortical targets (layers vs. areas), (iii) sample size, (iv) stimuli, (v) task conditions. In the revised manuscript, we will further highlight that our primary aim is to investigate inter-areal interactions within each species rather than to draw comparisons across species.

      Strengths:

      This work considers a variety of conditions that may influence the relative predictability between cortical populations, including receptive field overlap, latency that may reflect feed-forward or feedback delays, and stimulus type and sensory condition. Their analytic approach is well-designed and statistically rigorous. They acknowledge the limitations of the data and do not over-interpret their findings.

      Weaknesses:

      The different recording modalities and comparisons (within vs. across cortical areas) limit the interpretability of the inter-species comparisons.The mechanistic contribution of known sources or correlates of shared variability (eye movements, pupil fluctuations, locomotion, whisking behaviors) were not considered, and these could be driving or a reflection of much of the predictability observed and explain differences in spontaneous and visual activity predictions.

      We also appreciate this important point. We agree that multiple behavioral factors may significantly contribute to shared variability. In our analyses of the mouse data, we addressed non-visual influences by projecting out “non-visual ongoing neuronal activity” (as shown in Figure 6C, following the approach in Stringer et al. 2019). Additionally, we will further evaluate the contribution of behavioral measures available in the open dataset—such as running speed, whisking, pupil area, and “eigenface” components– to predictivity of neuronal responses.

      For the macaque data, the head-fixed and eye-fixation conditions help minimize some of these other potential behavioral contributions. Moreover, we have performed comparisons of eyes-open versus eyes-closed conditions (see Figure 5D). We will also analyze pupil size specifically for the lights-off condition. We do not have access to any other behavioral data from monkeys.

      Previous work has explored correlations in activity between areas on various timescales, but this work only considered a narrow scope of timescales.

      We appreciate this suggestion. We will perform additional analyses to evaluate predictivity at different temporal scales, as suggested.

      The observation that there is some degree of predictability is not surprising, and it is unclear whether changes in observed predictability with analysis conditions are informative of a particular mechanism or just due to differences in the variance of activity under those conditions. Some of these issues could be addressed with further analysis, but some may be due to limitations in the experimental scope of the datasets and would require new experiments to resolve.

      Our initial analyses in Fig.6A examined the effect of variance in activity and predictability in mice. As the reviewer intuited, there is a correlation between variance and predictability, at least when presenting a stimulus. Importantly, however, this is not the case when predicting activity in the absence of any stimulus. In the macaque, we cannot compute the variance across stimuli in the checkerboard case (single stimulus), but we will compute it for the conditions of the 4 moving bars. In addition, inspired by the reviewer’s question, we will perform an analysis where we further normalize the variance in activity.

      We would like to note that our key contribution is not to merely show that some degree of predictability is possible (which we agree is not surprising) but rather: (i) to use a simple approach to quantify this predictability, (ii) to assess directional differences in predictability, (iii) to evaluate how this predictability depends on neuronal properties and receptive field overlap, (iv) how it depends on the stimuli, and, importantly, (v) to compare predictability during visual stimulation versus absence of visual input.

      We agree with the limitations in the datasets. We will include a section within the Discussion to emphasize these limitations.

      Reviewer #3:

      Neural activity in the visual cortex has primarily been studied in terms of responses to external visual stimuli. While the noisiness of inputs to a visual area is known to also influence visual responses, the contribution of this noisy component to overall visual responses has not been well characterized.

      In this study, the authors reanalyze two previously published datasets - a Ca++ imaging study from mouse V1 and a large-scale electrophysiological study from monkey V1-V4. Using regression models, they examine how neural activity in one layer (in mice) or one cortical area (in monkeys) predicts activity in another layer or area. Their main finding is that significant predictions are possible even in the absence of visual input, highlighting the influence of non-stimulus-related downstream activity on neural responses. These findings can inform future modeling work of neural responses in the visual cortex to account for such non-visual influences.

      A major weakness of the study is that the analysis includes data from only a single monkey. This makes it hard to interpret the data as the results could be due to experimental conditions specific to this monkey, such as the relative placement of electrode arrays in V1 and V4.

      We will add data from at least two more monkeys, as suggested by the reviewer:

      ● First, we will include a second monkey from the same dataset [1]. The reason this monkey was not included in the original submission is that the dataset for this second monkey consisted of much less data than the original. For example, for the lights-off condition, the number of V4 channels with signal-to-noise ratio greater than 2 (recommended electrodes to use by dataset authors) is 9-12 in this second monkey, compared to 68-74 in the first monkey [1]. However, we will still add results for this second monkey.

      ● Additionally, we will include data from a new monkey by collaborating with the Ponce lab who will collect new data for this study.

      The authors perform a thorough analysis comparing regression-based predictions for a wide variety of combinations of stimulus conditions and directions of influence. However, the comparison of stimulus types (Figure 4) raises a potential concern. It is not clear if the differences reported reflect an actual change in predictive influence across the two conditions or if they stem from fundamental differences in the responses of the predictor population, which could in turn affect the ability to measure predictive relationships. The authors do control for some potential confounds such as the number of neurons and self-consistency of the predictor population. However, the predictability seems to closely track the responsiveness of neurons to a particular stimulus. For instance, in the monkey data, the V1 neuronal population will likely be more responsive to checkerboards than to single bars. Moreover, neurons that don't have the bars in their RFs may remain largely silent. Could the difference in predictability be just due to this? Controlling for overall neuronal responsiveness across the two conditions would make this comparison more interpretable.

      This is also a valid concern. As the reviewer noted, we controlled for the number of neurons and degree of self-consistency (Fig. 3A, 3C), and this was always done within their respective stimulus type.

      As the reviewer intuits, in Fig. 6A in mice, we show that predictability correlates with neuronal responsiveness. This observation only held during the stimulus condition and not during the gray screen condition. We also showed correlations with self-consistency metrics as a proxy for responsiveness in Fig. 6A and 6C. However, we will directly assess the impact of responsiveness in two ways: (i) by correlating predictability directly with neuronal responsiveness and (ii) by following the same subsampling approach in Fig. 3 to normalize the degree of responsiveness and recompute the predictability metrics.

      REFERENCES

      (1) Chen, X., Morales-Gregorio, A., Sprenger, J., Kleinjohann, A., Sridhar, S., van Albada, S.J., Grün, S., and Roelfsema, P.R. (2022). 1024-channel electrophysiological recordings in macaque V1 and V4 during resting state. Sci Data 9, 77. https://doi.org/10.1038/s41597-022-01180-1.

      (2) Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M., and Harris, K.D. (2019). High-dimensional geometry of population responses in visual cortex. Nature 571, 361–365. https://doi.org/10.1038/s41586-019-1346-5.

      (3) Stringer, C., Pachitariu, M., Carandini, M., and Harris, K. (2018). Recordings of 10,000 neurons in visual cortex in response to 2,800 natural images. (Janelia Research Campus). https://doi.org/10.25378/janelia.6845348.v4 https://doi.org/10.25378/janelia.6845348.v4.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Fuchs describes a novel method of enzymatic protein-protein conjugation using the enzyme Connectase. The author is able to make this process irreversible by screening different Connectase recognition sites to find an alternative sequence that is also accepted by the enzyme. They are then able to selectively render the byproduct of the reaction inactive, preventing the reverse reaction, and add the desired conjugate with the alternative recognition sequence to achieve near-complete conversion. I agree with the authors that this novel enzymatic protein fusion method has several applications in the field of bioconjugation, ranging from biophysical assay conduction to therapeutic development. Previously the author has published on the discovery of the Connectase enzymes and has shown its utility in tagging proteins and detecting them by in-gel fluorescence. They now extend their work to include the application of Connectase in creating protein-protein fusions, antibody-protein conjugates, and cyclic/polymerized proteins. As mentioned by the author, enzymatic protein conjugation methods can provide several benefits over other non-specific and click chemistry labeling methods. Connectase specifically can provide some benefits over the more widely used Sortase, depending on the nature of the species that is desired to be conjugated. However, due to a similar lengthy sequence between conjugation partners, the method described in this paper does not provide clear benefits over the existing SpyTag-SpyCatcher conjugation system.  Additionally, specific disadvantages of the method described are not thoroughly investigated, such as difficulty in purifying and separating the desired product from the multiple proteins used. Overall, this method provides a novel, reproducible way to enzymatically create protein-protein conjugates.

      The manuscript is well-written and will be of interest to those who are specifically working on chemical protein modifications and bioconjugation.

      I'd like to comment on two points.

      (1) The benefits over the SpyTag-SpyCatcher system. Here, the conjugation partners are fused via the 12.3 kDa SpyCatcher protein, which is considerably larger than the Connectase fusion sequence (19 aa). This is mentioned in the introduction (p. 1 ln 24-26). Furthermore, SpyTag-SpyCatcher fusions are truly irreversible, while Connectase/BcPAP fusions may be reversed (p. 8, ln 265-273). For example, target proteins (e.g., AGAFDADPLVVEI-Protein) may be covalently fused to functionalized magnetic beads (e.g., Bead-ELASKDPGAFDADPLVVEI) in order to perform a pulldown assay. After the assay, the target protein and any bound interactors could be released from the beads by the addition of a Connectase / peptide (AGAFDAPLVVEI) mixture.

      In a related technology, the SpyTag-SpyCatcher system was split into three components, SpyLigase, SpyTag and KTag  (Fierer et al., PNAS 2014). The resulting method introduces a sequence between the fusion partners (SpyTag (13aa) + KTag (10aa)), which is similar in length to the Connectase fusion sequence (p. 8, ln 297 - 298). Compared to the original method, however, this approach seems to require longer incubation times, while yielding less fusion product (Fierer et al., Figure 2).

      (2) Purification of the fusion product. The method is actually advantageous in this respect, as described in the discussion (p. 8, ln 258-264). Examples are now provided in Figure 6.

      Reviewer #2 (Public review):

      Summary:

      Unlike previous traditional protein fusion protocols, the author claims their proposed new method is fast, simple, specific, reversible, and results in a complete 1:1 fusion. A multi-disciplinary approach from cloning and purification, biochemical analyses, and proteomic mass spec confirmation revealed fusion products were achieved.

      Strengths:

      The author provides convincing evidence that an alternative to traditional protein fusion synthesis is more efficient with 100% yields using connectase. The author optimized the protocol's efficiency with assays replacing a single amino acid and identification of a proline aminopeptidase, Bacilius coagulans (BcPAP), as a usable enzyme to use in the fusion reaction. Multiple examples including Ubiquitin, GST, and antibody fusion/conjugations reveal how this method can be applied to a diverse range of biological processes.

      Weaknesses:

      Though the ~100% ligation efficiency is an advancement, the long recognition linker may be the biggest drawback. For large native proteins that are challenging/cannot be synthesized and require multiple connectase ligation reactions to yield a complete continuous product, the multiple interruptions with long linkers will likely interfere with protein folding, resulting in non-native protein structures. This method will be a good alternative to traditional approaches as the author mentioned but limited to generating epitope/peptide/protein tagged proteins, and not for synthetic protein biology aimed at examining native/endogenous protein function in vitro.

      The assessment is fair, and I have no further comments to add.

      Reviewer #1 (Recommendations for the authors):

      Major/Experimental Suggestions:

      (1) Throughout the paper only one reaction shown via gels had 100% conversion to desired product (Figure 3C). It is misleading to title a paper with absolutes such as "100% product yield", when the majority of reactions show >95% product yield, without any purification. Please change the title of the manuscript to something along the lines of "Novel Irreversible Enzymatic Protein Fusions with Near-Complete Product Yield".

      The conjugation reaction is thermodynamically favored. It is driven by the hydrolysis of a peptide bond (P|GADFDADPLVVEI), which typically releases 8 - 16 kJ/mol energy. This should result in a >99.99% complete reaction (DG° = -RT ln (Product/Educt)). In line with this, 99% - 100% of the less abundant educts (LysS, Figure 3A; MBP, Figure 3B; Ub-Strep, Figure 3C) are converted in the time courses (Figure 3D-F show different reaction conditions, which slow down conjugate formation). 100% conversion are also shown in Figure 5, Figure 6, and Figure S4. Likewise, 99.6% relative fusion product signal intensity in an LCMS analysis (Figure S2) after 4h reaction time (0.13% and 0.25% educts). In this experiment, the proline had been removed from 99.8% of the peptide byproducts (P|GADFDADPLVVEI). It is clear that this reaction is still ongoing and that >99.99% of the prolines will be removed from the peptides in time. These findings suggest that the conjugation reaction gradually slows down the less educt is available, but eventually reaches completion.

      For some experiments, lower product yields (e.g. 97% in Figure 3B) are reported in the paper. These were calculated with Yield = 100% x Product / (Educt1 + Educt 2 + Product). With this formula, 100% conjugation can only be achieved with exactly equimolar educt quantities, because both educt 1 and educt 2 need to be converted entirely. If one educt 1 is available in excess, for example because of protein concentration measurement inaccuracies or pipetting errors, some of it will be left without fusion partner. In case of Figure 3B, 3% more GST seemed to have been in the mixture. These are methodological inaccuracies.

      (2) Please provide at least one example of a purified desired product, and mention the difficulties involved as a disadvantage to this particular method. Separating BcPAP, Connectase, and the desired protein-protein conjugate may prove to be quite difficult, especially when Connectase cleaves off affinity tags.

      Examples are now provided in Figure 6. As described in the discussion (p. 8, ln 258-264), the simple product purification is one of the advantages of the method.

      (3) For the antibody conjugate, please provide an example of conjugating an edduct that would prove to be more useful in the context of antibodies. For example, as you mention in the introduction, conjugation of fluorophores, immobilization tags such as biotin, and small molecule linker/drugs are useful bioconjugates to antibodies.

      Antibody-biotinylation is now shown in Figure S6; Antibody-fluorophore conjugates are part of Figures S5 and S7.

      (4) Please assess the stability of these protein-protein conjugates under various conditions (temperature, pH, time) to ensure that the ligation via Connectase is stable over a broad array of conditions. In particular, a relevant antibody-conjugate stability assay should be done over the period of 1-week in both buffer and plasma to show applicability for potential therapeutics.

      The stability of an antibody-biotin conjugate in blood plasma over 7 days at different temperatures is now shown in Figure S7.

      Generally, Connectase introduces a regular peptide bond (Asp-Ala) with a high chemical and physical stability (e.g. 10 min incubation at 95°C in SDS-PAGE loading buffer; H2O-formic acid / acetonitrile gradients for LC-MS). The sequence may be susceptible to proteases, although this is not the case in HEK293 cells (antibody expression), E. coli, or blood plasma (Figure S7).

      (5) Please conduct functional assays with the antibody-protein/peptide conjugates to show that the antibody retains binding capabilities to the HER-2 antigen and the modification was site-selective, not interfering with the binding paratope or binding ability of the antibody in any way. This can be done through bio-layer interferometry, surface plasmon resonance, ELISA, etc.

      We plan the immobilization of the HER2 antibody on microplates and its use in an ELISA. However, this experiment requires significant testing and optimizations. It will be part of a future paper on the use of Connectase for protein immobilization.

      For now, the mass spectrometry data provide clear evidence of a single site-selective conjugation, as the C-terminal ELASKDPGAFDADPLVVEI-Strep sequence is replaced by ELASKDAGAFDADPLVVEI(-Ub). Given that the conjugation sites at the C-termini are far from the antigen binding sites, and have already been used in a number of other approaches (e.g., SpyTag, SnapTag, Sortase), it appears unlikely that these conjugations interfere with antigen binding.

      (6) Please include gels of all proteins used in ligation reactions after purification steps in the SI to show that each species was pure.

      The pure proteins are now shown in Figure S9.

      (7) Please provide the figures (not just tables) of LC/MS deconvoluted mass spectra graphs for all conjugates, either in the main text or the SI.

      Please specify which spectra you are missing. I believe all relevant spectra are shown in Figures 4, 5, and S3. The primary data can be found in Dataset S2.

      (8) Please provide more information in the methods section on exactly how the densitometry quantification of gel bands was performed with ImageJ.

      Details on the quantification with Image Studio Lite 5.2 were added in the method section (p. 17, ln 461-463).

      Minor Suggestions:

      (1) Page 1, line 19: can include one sentence on what assays these particular bioconjugations are usefule for (e.g. internalization cell studies, binding assays, etc.)

      I prefer not to provide additional details here to keep the text concise and focused.

      (2) Page 1, line 22: "three to ten equivalents" instead of 3x-10x.

      Done.

      (3) Page 1, line 23: While NHS labeling is widely considered non-specific, maleimide conjugation to free cysteines is generally considered specific for engineered free cysteine residues, since native proteins often do not have free cysteine residues available for conjugation. If you are referring to the potential of maleimides to label lysines as well, that should be specifically stated.

      I modified the sentence, now stating that these methods are "can be" unspecific.

      As pointed out, it is possible to achieve specificity by eliminating all other free cysteines and/or engineering a cysteine in an appropriate position. In many other cases, however (e.g., natural antibodies), several cysteines are available, or the sample contains other proteins/peptides. I did not want to go into more detail here and refer to the cited review.

      (4) Page 1, line 31: "and an oligoglycine G(1-5)-B"

      Done.

      (5) Page 1, line 34: It is not clear where in the source these specific Km values are coming from, considering these are variable based on specific conditions/substrates and tend to be reaction-specific.

      I cited another review, which lists the same values, along with a few other measurements (Jacobitz et al., Adv Protein Chem Struct Biol 2017, Table 2). It is clear that each of these measurements differs somewhat, but they are generally comparable (K<sub>M</sub>(LPETG) = 5500 - 8760 µM; K<sub>M</sub>(GGGGG) = 140 - 196 µM). I chose the cited study (Frankel et al., Biochemistry 2005), because it also investigated hydrolysis rates. In this study, the measurements are derived from the plots in Figure 2.

      (6) Page 1, line 47: the comparison to western blots feels a little like apples to oranges, even though this comparison was made in previous literature. Engineering an expressed protein to have this tag and then using the tag to detect and quantify it, feels more akin to a tagging/pull down assay than a western blot in which unmodified proteins are easily detected.

      It is akin to a frequently used type of western blots with tag-specific antiboies, e.g. Anti-His<sub>6</sub>, -Streptavidin, -His<sub>6</sub>, -HA ,-cMyc, -Flag. I modified the sentence to clarify this.

      (7) Page 2, line 51: "Connectase cleaves between the first D and P amino acids in the recognition sequence, resulting in an N-terminal A-ELASKD-Connectase intermediate and a C-terminal PGAFDADPLVVEI peptide."

      I prefer the current sentence, because we assume that a bond between the aspartate and Connectase is formed before PGAFDADPLVVEI is cleaved off.

      (8) Page 3, line 94: "Exact determination is not possible due to reversibility of the reaction", the way it is stated now sounds like it is a flaw in the methods. Also, update Figure 2 to read "Estimated relative ligation rate".

      Done.

      (9) Page 3, lines 101-107: This is worded in a confusing way. It can either be X<sub>1</sub> or X<sub>2</sub> that is inactivated depending on if the altered amino acid is on the original protein sequence or on the desired edduct to conjugate. You first give examples of how to render other amino acids inactive, but then ultimately state that proline made inactive, so separate the two distinct possibilities a bit more clearly.

      The reaction requires the inactivation of X<sub>1</sub>, without affecting X<sub>2</sub> (ln 100 - 102). This is true, no matter whether it is X<sub>1</sub> = A, C, S, or P that is inactivated. I added a sentence to clarify this (ln 102 – 103).

      (10) Page 4, line 118: Give a one-sentence justification for why these proteins were chosen to work with (easy to express, stable, etc).

      Done.

      (11) Page 5, line 167: "payload molecules".

      Done.

      (12) Page 5, lines 170-173: Word this more clearly- "full conversion with many of these methods is difficult on antibodies due to each heavy and light chain being modified separately, resulting in only a total yield of 66% DAR4 even when 90% of each chain is conjugated."

      I rephrased the section.

      (13) Page 8, line 290: Discuss other disadvantages of this method including difficulties purifying and in incorporating such a long sequence into proteins of interest.

      Product purification is shown in the new Figure 6. As stated above, I consider the simple purification process an advantage of the method.  The genetic incorporation of the sequence into proteins is a routine process and should not make any difficulties. The disadvantages of long linker sequences between fusion partners are now discussed (p.8 – 9, ln 300-302).

      (14) Page 10, line 341: 'The experiment is described and discussed in detail in a previously published paper.31"

      Done.

      Reviewer #2 (Recommendations for the authors):

      Minor Points:

      (1) It's unclear how the author derived 100% ligation rate with X = Proline in Figure 2 when there is still residual unligated UB-Strep at 96h. Please provide an expanded explanation for those not familiar with the protocol. Is the assumption made that there will be no UB-Strep if the assay was carried out beyond 96h?

      I clarified the figure legend. The assay shows the formation of an equilibrium between educts and products. Therefore, only ~50% Ub-Strep is used with X = Proline (see p. 2, ln 79 - 81). The "relative ligation rate" refers to the relative speed with which this equilibrium is established. The highest rate is seen with X = Proline, and it is set to 100%. The other rates are given relative to the product formation with X = Proline.

      (2) Though the qualitative depiction of the data in Figure 3 is appreciated, an accompanying graphical representation of the data in the same figure will greatly enhance reception and better comprehension of several of the author's conclusions.

      Graphs are now shown in Figure S1.

      (3) Figure 3 panel E is misaligned. Please align it with panel B above it.

      Done, thank you.

      (4) The author refers to 'The resulting circular assemblies (37% UB2...)' in the text but identifies it as UB-C2 in Figure 5B. Is this a mistake or does UB2 refer to another assembly not mentioned in the Figures? Please check for inconsistencies.

      All circular assemblies are now labeled Ub-C <sub>1-6</sub>.

      (5) Finishing with a graphical schematic that depicts the entire protocol in a simple image would be much appreciated and well-received by readers. Including the scheme with A and B proteins, the recognition linkers, the addition of connectase and BcPAP, etc. to the final resulting protein with connected linker.

      A graphical summary of the reaction is now included in Figure 6.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Fuchsberger et al. demonstrate a set of experiments that ultimately identifies the de novo synthesis of GluA1-, but not GluA2-containing Ca2+ permeable AMPA receptors as a key driver of dopamine-dependent LTP (DA-LTP) during conventional post-before-pre spike-timing dependent (t-LTD) induction. The authors further identify adenylate cyclase 1/8, cAMP, and PKA as the crucial mitigators of these actions. While some comments have been identified below, the experiments presented are thorough and address the aims of the manuscript, figures are presented clearly (with minor comments), and experimental sample sizes and statistical analyses are suitable. Suitable controls have been utilized to confirm the role of Ca2+ permeable AMPAR. This work provides a valuable step forward built on convincing data toward understanding the underlying mechanisms of spike-timing-dependent plasticity and dopamine.

      Strengths:

      Appropriate controls were used.

      The flow of data presented is logical and easy to follow.

      The quality of the data, except for a few minor issues, is solid.

      Weaknesses:

      The drug treatment duration of anisomycin is longer than the standard 30-45 minute duration (as is the 500uM vs 40uM concentration) typically used in the field. Given the toxicity of these kinds of drugs long term it's unclear why the authors used such a long and intense drug treatment.

      In an initial set of control experiments (Figure S 1C-D) we wanted to ensure that protein synthesis was definitely blocked and therefore used a relatively high concentration of anisomycin and a relatively long pre-incubation period. We agree with the Reviewer that we cannot exclude the possibility that this treatment could compromise cell health in addition to the protein synthesis block. Therefore, we carried out an additional experiment with an alternative protein synthesis inhibitor cycloheximide at a lower standard concentration (10 µM) which confirmed a significant reduction in the puromycin signal (Figure S 1A-B). Together these results support the conclusion that puromycin signal is specific to protein synthesis in our labelling assay.

      Furthermore, in the electrophysiology experiments, we used 500 μM anisomycin in the patch pipette solution. Under these conditions, we recorded a stable EPSP baseline for 60 minutes, indicating that the treatment did not cause toxic effects to the cell (Figure S1F). This high concentration would ensure an effective block of local translation at dendritic sites. Nevertheless, we also carried out this experiment with cycloheximide at a lower standard concentration (10 µM) and observed a similar result with both protein synthesis inhibitors (Figure 1F).

      With some of the normalizations (such as those in S1) there are dramatic differences in the baseline "untreated" puromycin intensities - raising some questions about the overall health of slices used in the experiments.

      We agree with the Reviewer that there is a large variability in the normalised puromycin signal which might be due to variability in the health of slices. However, we assume that the same variability would be present in the treated slices, which showed, despite the variability, a significant inhibition of protein synthesis. To avoid any bias by excluding slices with low puromycin signal in the control condition, we present the full dataset.

      The large set of electrophysiology experiments carried out in our study (all recorded cells were evaluated for healthy resting membrane potential, action potential firing, and synaptic responses) confirmed that, generally, the vast majority of our slices were indeed healthy. 

      Reviewer #2 (Public Review):

      Summary:

      The aim was to identify the mechanisms that underlie a form of long-term potentiation (LTP) that requires the activation of dopamine (DA).

      Strengths:

      The authors have provided multiple lines of evidence that support their conclusions; namely that this pathway involves the activation of a cAMP / PKA pathway that leads to the insertion of calcium-permeable AMPA receptors.

      Weaknesses:

      Some of the experiments could have been conducted in a more convincing manner.

      We carried out additional control experiments and analyses to address the specific points that were raised.

      Reviewer #3 (Public Review):

      The manuscript of Fuchsberger et al. investigates the cellular mechanisms underlying dopamine-dependent long-term potentiation (DA-LTP) in mouse hippocampal CA1 neurons. The authors conducted a series of experiments to measure the effect of dopamine on the protein synthesis rate in hippocampal neurons and its role in enabling DA-LTP. The key results indicate that protein synthesis is increased in response to dopamine and neuronal activity in the pyramidal neurons of the CA1 hippocampal area, mediated via the activation of adenylate cyclases subtypes 1 and 8 (AC1/8) and the cAMP-dependent protein kinase (PKA) pathway. Additionally, the authors show that postsynaptic DA-induced increases in protein synthesis are required to express DA-LTP, while not required for conventional t-LTP.

      The increased expression of the newly synthesized GluA1 receptor subunit in response to DA supports the formation of homomeric calcium-permeable AMPA receptors (CP-AMPARs). This evidence aligns well with data showing that DA-LTP expression requires the GluA1 AMPA subunit and CP-AMPARs, as DA-LTP is absent in the hippocampus of a GluA1 genetic knock-out mouse model. Overall, the study is solid, and the evidence provided is compelling. The authors clearly and concisely explain the research objectives, methodologies, and findings. The study is scientifically robust, and the writing is engaging. The authors' conclusions and interpretation of the results are insightful and align well with the literature. The discussion effectively places the findings in a meaningful context, highlighting a possible mechanism for dopamine's role in the modulation of protein-synthesis-dependent hippocampal synaptic plasticity and its implications for the field. Although the study expands on previous works from the same laboratory, the findings are novel and provide valuable insights into the dynamics governing hippocampal synaptic plasticity.

      The claim that GluA1 homomeric CP-AMPA receptors mediate the expression of DA-LTP is fascinating, and although the electrophysiology data on GluA1 knock-out mice are convincing, more evidence is needed to support this hypothesis. Western blotting provides useful information on the expression level of GluA1, which is not necessarily associated with cell surface expression of GluA1 and therefore CP-AMPARs. Validating this hypothesis by localizing the protein using immunofluorescence and confocal microscopy detection could strengthen the claim. The authors should briefly discuss the limitations of the study.

      Although it would be possible to quantify the surface expression of GluA1 using immunofluorescence, it would not be possible to distinguish  between GluA1 homomers and GluA1-containing heteromers. It would therefore not be informative as to whether these are indeed CP-AMPARs. This is an interesting problem, which we have briefly discussed in the Discussion section.

      Additional comments to address:

      (1) In Figure 2A, the representative image with PMY alone shows a very weak PMY signal. Consequently, the image with TTX alone seems to potentiate the PMY signal, suggesting a counterintuitive increase in protein synthesis.

      We agree with the Reviewer that the original image was not representative and have replaced it with a more representative image.

      (2) In Figures 3A-B, the Western blotting representative images have poor quality, especially regarding GluA1 and α-actin in Figure 3A. The quantification graph (Figure 3B) raises some concerns about a potential outlier in both the DA alone and DA+CHX groups. The authors should consider running a statistical test to detect outlier data. Full blot images, including ladder lines, should be added to the supplementary data.

      We have replaced the western blot image in Figure 3A and have also presented full blot images including ladder lines in supplementary Figure S3.

      Using the ROUT method (Q=1%) we identified one outlier in the DA+CHX group of the western blot quantification. The quantification for this blot was then removed from the dataset and the experiment was repeated to ensure a sufficient number of repeats.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) How the authors perform these experiments with puromycin, these are puromycilation experiments - not SuNSET. The SuNSET protocol (surface sensing of translation) specifically refers to the detection of newly synthesized proteins externally at the plasma membrane. I'd advise to update the terminology used.

      We thank the Reviewer for pointing this out. We have updated this to ‘puromycin-based labelling assay’.

      (2) The legend presented in Figure 2F suggests WT is green and ACKO is orange, however, in Figure 2G the WT LTP trace is orange, consider changing this to green for consistency.

      We thank the Reviewer for this suggestion and agree that a matching colour scheme makes the Figure clearer. This has been updated.

      (3) In the results section, it is recommended to include units for the values presented at the first instance and only again when the units change thereafter.

      The units of the electrophysiology data were [%], this is included in the Results section. Results of western blots and IHC images were presented as [a.u.]. While we included this in the Figures, we have not specifically added this to the text of individual results. 

      (4) Two hours pre-treatment with anisomycin vs 30 minutes pretreatment with cycloheximide seems hard to directly compare - as the pharmokinetics of translational inhibition should be similar for both drugs. What was the rationale for the extremely long anisomycin pretreatment? What controls were taken to assess slice health either prior to or following fixation? This is relevant to the below point (5).

      In an initial set of control experiments (Figure S 1C-D) we wanted to ensure that protein synthesis was definitely blocked and therefore used a relatively high concentration of anisomycin and a relatively long pre-incubation period. We agree with the Reviewer that we cannot exclude the possibility that this treatment could compromise cell health in addition to the protein synthesis block. Therefore, we carried out an additional experiment with an alternative protein synthesis inhibitor cycloheximide at a lower standard concentration (10 µM) which confirmed a significant reduction in the puromycin signal (Figure S1A-B). Together these results support the conclusion that puromycin signal is specific to protein synthesis in our labelling assay.

      IHC slices were visually assessed for health. The large set of electrophysiology experiments carried out in our study (all recorded cells were evaluated for healthy resting membrane potential, action potential firing, and synaptic responses) also confirmed that, generally, the vast majority of our slices were indeed healthy. 

      (5) In Supplementary Figure 1, there is a dramatic difference in the a.u. intensities across CHX (B) and AM (D), please explain the reason for this. It is understood these are normalised values to nuclear staining, please clarify if this is a nuclear area.

      We agree with the Reviewer that there is a large variability in normalised puromycin signal which may be due to variability in the health of the slices. However, we assume that the same variability would be present in the treated slices, which showed, despite the variability, a significant effect of protein synthesis inhibition. To prevent introducing bias by excluding slices with low puromycin signal in the control condition, we present the full dataset.

      The CA1 region of the hippocampus contains of a dense layer of neuronal somata (pyramidal cell layer). We normalized against the nuclear area as it provides a reliable estimate of the number of neurons present in the image. This approach minimizes bias by accounting for variation in the number of neurons within the visual field, ensuring consistency and accuracy in our analysis.

      (6) Please clarify the decision to average both the last 5 minutes of baseline recordings and the last 5 minutes of the recording for the normalisation of EPSP slopes.

      The baseline usually stabilises after a few minutes of recording, thus the last 5 minutes were used for baseline measurement, which are the most relevant datapoints to compare synaptic weight change to. After induction of STDP, potentiation or depression of synaptic weights develops gradually. Based on previous results, evaluating the EPSP slopes at 30-40 minutes after the induction protocol gives a reliable estimate of the amount of plasticity.

      Reviewer #2 (Recommendations For The Authors):

      The concentration of anisomycin used (0.5 mM) is very high.

      As described above, in an initial set of control experiments (Figure S 1C-D) we wanted to ensure that protein synthesis was definitely blocked and therefore used a relatively high concentration of anisomycin and a relatively long pre-incubation period. We agree with the Reviewer that this is higher than the standard concentration used for this drug and we cannot exclude the possibility that this treatment could compromise cell health in addition to the protein synthesis block. Therefore, we carried out an additional experiment with an alternative protein synthesis inhibitor cycloheximide at a lower standard concentration (10 µM) which confirmed a significant reduction in the puromycin signal (Figure S1A-B). Together these results support the conclusion that puromycin signal is specific to protein synthesis in our labelling assay.

      Furthermore, in the electrophysiology experiments, we also used 500 µM anisomycin in the patch pipette solution. Under these conditions, we recorded a stable EPSP baseline for 60 minutes, indicating that the treatment did not cause toxic effects to the cell (Figure S1F). This high concentration would ensure an effective block of local translation at dendritic sites. Nevertheless, we also carried out this experiment with cycloheximide at a lower standard concentration (10 µM) and observed a similar result with both protein synthesis inhibitors (Figure 1F).

      The authors conclude that the effect of DA is mediated via D1/5 receptors, which based on previous work seems likely. But they cannot conclude this from their current study which used a combination of a D1/D5 and a D2 antagonist.

      We thank the Reviewer for pointing this out. We agree and have updated this in the Discussion section to ‘dopamine receptors’, without specifying subtypes.

      There is no mention that I can see that the KO experiments were conducted in a blinded manner (which I believe should be standard practice). Did they verify the KOs using Westerns?

      Only a subset of the experiments was conducted in a blinded manner. However, the results were collected by two independent experimenters, who both observed significant effects in KO mice compared to WTs (TF and ZB).

      We received the DKO mice from a former collaborator, who verified expression levels of the KO mice (Wang et al., 2003). We verified DKO upon arrival in our facility using genotyping.

      Maybe I'm misunderstanding but it appears to me that in Figure 1F there is LTP prior to the addition of DA. (The first point after pairing is already elevated). I think the control of pairing without DA should be added.

      We thank the Reviewer for pointing this out. Based on previous results (Brzosko et al., 2015) we would expect potentiation to develop over time once DA is added after pairing, however, it indeed appears in the Figure here as if there was an immediate increase in synaptic weights after pairing. It should be noted, however, that when comparing the first 5 minutes after pairing to the baseline, this increase was not significant (t(9)=1.810, p =0.1037). Nevertheless, we rechecked our data and noticed that this initial potentiation was biased by one cell with an increasing baseline, which had both the test and control pathway strongly elevated. We had mistakenly included this cell in the dataset, despite the unstable conditions (as stated in the Methods section, the unpaired control pathway served as a stability control). We apologise for the error and this has now been corrected (Figure 1F). In addition, we present the control pathway in Figure S1G and I.

      We have also now included the control for post-before-pre pairing (Δt = -20 ms) without dopamine in a supplemental figure (Figure S1E and F).

      The Westerns (Figure 3A) are fairly messy. Also, it is better to quantify with total protein. Surface biotinylation of GluA1 and GluA2 would be more informative.

      We carried out more repeats of Western blots and have exchanged blots in Figure 3A.

      We observed that DA increases protein synthesis, we therefore cannot exclude the possibility that application of DA could also affect total protein levels. Thus quantifying with total protein may not be the best choice here. Quantification with actin is standard practice.

      While we agree with the Reviewer that surface biotinylation of GluA1 and GluA2 could in principle be more informative, we do not think it would work well in our experimental setup using acute slice preparation, as it strictly requires intact cells. Slicing generates damaged cells, which would take up the surface biotin reagents. This would cause unspecific biotinylation of the damaged cells, leading to a strong background signal in the assay.

      In Figure 4 panels D and E the baselines are increasing substantially prior to induction. I appreciate that long stable baselines with timing-dependent plasticity may not be possible but it's hard to conclude what happened tens of minutes later when the baseline only appears stable for a minute or two. Panels A and B show that relatively stable baselines are achievable.

      We agree with the Reviewer that the baselines are increasing, however, when looking at the baseline for 5 minutes prior to induction (5 last datapoints of the baseline), which is what we used for quantification, the baselines appeared stable. Unfortunately, longer baselines are not suitable for timing-dependent plasticity. In addition, all experiments were carried out with a control pathway which showed stable conditions throughout the recording.

      In general, the discussion could be better integrated with the current literature. Their experiments are in line with a substantial body of literature that has identified two forms of LTP, based on these signalling cascades, using more conventional induction patterns.

      We thank the Reviewer for this suggestion and have added more discussion of the two forms of LTP in the Discussion section.

      It would be helpful to include the drug concentrations when first described in the results.

      Drug concentration have now been included in the Results section.

      It is now more common to include absolute t values (not just <0.05 etc).

      While we indicate significance in Figures using asterisks when p values are below the indicated significance levels, we report absolute values of p and t values in the Results section.

      Similarly full blots should be added to an appendix / made available.

      We have now included full blot images in Supplementary Figure S3.

      A 30% tolerance for series resistance seems generous to me. (10-20% would be more typical).

      We thank the Reviewer for their suggestion, and will keep this in mind for future studies. However, the error introduced by the higher tolerance level is likely to be small and would not influence any of the qualitative conclusions of the manuscript.

      Whereas series resistance is of course extremely important in voltage-clamp experiments, changes in series resistance would be less of a concern in current-clamp recordings of synaptic events. We use the amplifier as a voltage follower, and there are two problems with changes in the electrode, or access, resistance. First, there is the voltage drop across the electrode resistance. Clearly this error is zero if no current is injected and is also negligible for the currents we use in our experiments to maintain the membrane voltage at -70 mV. For example, the voltage drop would be 0.2 mV for 20 pA current through a typical 10 MOhm electrode resistance, and a change in resistance of 30% would give less than 0.1 mV voltage change even if the resistance were not compensated. The second problem is distortion of the EPSP shape due to the low-pass filtering properties of the electrode set up by the pipette capacitance and series resistance (RC). This can be a significant problem for fast events, such as action potentials, but less of a problem for the relatively slow EPSPs recorded in pyramidal cells. Nevertheless, we take on board the advice provided by the Reviewer and will use the conventional tolerance of 20% in future experiments.

      Reviewer #3 (Recommendations For The Authors):

      In the references, the entry for Burnashev N et al. has a different font size. Please ensure that all references are formatted consistently.

      We thank the Reviewer for spotting this and have updated the font size of this reference.

    1. Author response:

      eLife Assessment

      Birdsong production depends on precise neural sequences in a vocal motor nucleus HVC. In this useful biophysical model, Daou and colleagues identify specific biophysical parameters that result in sparse neural sequences observed in vivo. While the model is presently incomplete because it is overfit to produce sequences and therefore not robust to real biological variation, the model has the potential to address some outstanding issues in HVC function.

      We are grateful for the extensive supportive comments from the reviewers, including broad, strong appreciation of the novel aspects of our manuscript. We believe these will be only strengthened in the next submission.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The paper presents a model for sequence generation in the zebra finch HVC, which adheres to cellular properties measured experimentally. However, the model is fine-tuned and exhibits limited robustness to noise inherent in the inhibitory interneurons within the HVC, as well as to fluctuations in connectivity between neurons. Although the proposed microcircuits are introduced as units for sub-syllabic segments (SSS), the backbone of the network remains a feedforward chain of HVC_RA neurons, similar to previous models.

      Strengths:

      The model incorporates all three of the major types of HVC neurons. The ion channels used and their kinetics are based on experimental measurements. The connection patterns of the neurons are also constrained by the experiments.

      Weaknesses:

      The model is described as consisting of micro-circuits corresponding to SSS. This presentation gives the impression that the model's structure is distinct from previous models, which connected HVC_RA neurons in feedforward chain networks (Jin et al 2007, Li & Greenside, 2006; Long et al 2010; Egger et al 2020). However, the authors implement single HVC_RA neurons into chain networks within each micro-circuit and then connect the end of the chain to the start of the chain in the subsequent micro-circuit. Thus, the HVC_RA neuron in their model forms a single-neuron chain. This structure is essentially a simplified version of earlier models.

      In the model of the paper, the chain network drives the HVC_I and HVC_X neurons. The role of the micro-circuits is more significant in organizing the connections: specifically, from HVC_RA neurons to HVC_I neurons, and from HVC_I neurons to both HVC_X and HVC_RA neurons.

      We thank Reviewer 1 for their thoughtful comments.

      While the reviewer is correct about the fact that the propagation of sequential activity in this model is primarily carried by HVC<sub>RA</sub> neurons in a feed-forward manner, we need to emphasize that this is true only if there is no intrinsic or synaptic perturbation to the HVC network. For example, we showed in Figures 10 and 12 how altering the intrinsic properties of HVC<sub>X</sub> neurons or for interneurons disrupts sequence propagation. In other words, while HVC<sub>RA</sub> neurons are the key forces to carry the chain forward, the interplay between excitation and inhibition in our network as well as the intrinsic parameters for all classes of HVC neurons are equally important forces in carrying the chain of activity forward. Thus, the stability of activity propagation necessary for song production depend on a finely balanced network of HVC neurons, with all classes contributing to the overall dynamics. Moreover, all existing models that describe premotor sequence generation in the HVC either assume a distributed model (Elmaleh et al., 2021) that dictates that local HVC circuitry is not sufficient to advance the sequence but rather depends upon momentto-moment feedback through Uva (Hamaguchi et al., 2016), or assume models that rely on intrinsic connections within HVC to propagate sequential activity. In the latter case, some models assume that HVC is composed of multiple discrete subnetworks that encode individual song elements (Glaze & Troyer, 2013; Long & Fee, 2008; Wang et al., 2008), but lacks the local connectivity to link the subnetworks, while other models assume that HVC may have sufficient information in its intrinsic connections to form a single continuous network sequence (Long et al. 2010). The HVC model we present extends the concept of a feedforward network by incorporating additional neuronal classes that influence the propagation of activity (interneurons and HVC<sub>X</sub> neurons). We have shown that any disturbance of the intrinsic or synaptic conductances of these latter neurons will disrupt activity in the circuit even when HVC<sub>RA</sub> neurons properties are maintained.

      In regard to the similarities between our model and earlier models, several aspects of our model distinguish it from prior work. In short, while several models of how sequence is generated within HVC have been proposed (Cannon et al., 2015; Drew & Abbott, 2003; Egger et al., 2020; Elmaleh et al., 2021; Galvis et al., 2018; Gibb et al., 2009a, 2009b; Hamaguchi et al., 2016; Jin, 2009; Long & Fee, 2008; Markowitz et al., 2015), all the models proposed either rely on intrinsic HVC circuitry to propagate sequential activity, rely on extrinsic feedback to advance the sequence or rely on both. These models do not capture the complex details of spike morphology, do not include the right ionic currents, do not incorporate all classes of HVC neurons, or do not generate realistic firing patterns as seen in vivo. Our model is the first biophysically realistic model that incorporates all classes of HVC neurons and their intrinsic properties. We tuned the intrinsic and the synaptic properties bases on the traces collected by Daou et al. (2013) and Mooney and Prather (2005) as shown in Figure 3. The three classes of model neurons incorporated to our network as well as the synaptic currents that connect them are based on HodgkinHuxley formalisms that contain ion channels and synaptic currents which had been pharmacologically identified. This is an advancement over prior models that primarily focused on the role of synaptic interactions or external inputs. The model is based on a feedforward chain of microcircuits that encode for the different sub-syllabic segments and that interact with each other through structured feedback inhibition, defining an ordered sequence of cell firing. Moreover, while several models highlight the critical role of inhibitory interneurons in shaping the timing and propagation of bursts of activity in HVC<sub>RA</sub> neurons, our work offers an intricate and comprehensive model that help understand this critical role played by inhibition in shaping song dynamics and ensuring sequence propagation.

      How useful is this concept of micro-circuits? HVC neurons fire continuously even during the silent gaps. There are no SSS during these silent gaps.

      Regarding the concern about the usefulness of the 'microcircuit' concept in our study, we appreciate the comment and we are glad to clarify its relevance in our network. While we acknowledge that HVC<sub>RA</sub> neurons interconnect microcircuits, our model's dynamics are still best described within the framework of microcircuitry particularly due to the firing behavior of HVC<sub>X</sub> neurons and interneurons. Here, we are referring to microcircuits in a more functional sense, rather than rigid, isolated spatial divisions (Cannon et al. 2015). A microcircuit in our model reflects the local rules that govern the interaction between all HVC neuron classes within the broader network, and that are essential for proper activity propagation. For example, HVC<sub>INT</sub> neurons belonging to any microcircuit burst densely and at times other than the moments when the corresponding encoded SSS is being “sung”. What makes a particular interneuron belong to this microcircuit or the other is merely the fact that it cannot inhibit HVC<sub>RA</sub> neurons that are housed in the microcircuit it belongs to. In particular, if HVC<sub>INT</sub> inhibits HVC<sub>RA</sub> in the same microcircuit, some of the HVC<sub>RA</sub> bursts in the microcircuit might be silenced by the dense and strong HVC<sub>INT</sub> inhibition breaking the chain of activity again. Similarly, HVC<sub>X</sub> neurons were selected to be housed within microcircuits due to the following reason: if an HVC<sub>X</sub> neuron belonging to microcircuit i sends excitatory input to an HVC<sub>INT</sub> neuron in microcircuit j, and that interneuron happens to select an HVC<sub>RA</sub> neuron from microcircuit i, then the propagation of sequential activity will halt, and we’ll be in a scenario similar to what was described earlier for HVC<sub>INT</sub> neurons inhibiting HVC<sub>RA</sub> neurons in the same microcircuit.

      We agree that there are no sub-syllabic segments described during the silent gaps and we thank the reviewer to pointing this out. Although silent gaps are integral to the overall process of song production, we have not elaborated on them in this model due to the lack of a clear, biophysically grounded representation for the gaps themselves at the level of HVC. Our primary focus has been on modeling the active, syllable-producing phases of the song, where the HVC network’s sequential dynamics are critical for song. However, one can think the encoding of silent gaps via similar mechanisms that encode SSSs, where each gap is encoded by similar microcircuits comprised of the three classes of HVC neurons (let’s called them GAP rather than SSS) that are active only during the silent gaps. In this case, the propagation of sequential activity is carried throughout the GAPs from the last SSS of the previous syllable to the first SSS of the subsequent syllable. We’ll make sure to emphasize this mechanism more in the revised version of the manuscript.

      A significant issue of the current model is that the HVC_RA to HVC_RA connections require fine-tuning, with the network functioning only within a narrow range of g_AMPA (Figure 2B). Similarly, the connections from HVC_I neurons to HVC_RA neurons also require fine-tuning. This sensitivity arises because the somatic properties of HVC_RA neurons are insufficient to produce the stereotypical bursts of spikes observed in recordings from singing birds, as demonstrated in previous studies (Jin et al 2007; Long et al 2010). In these previous works, to address this limitation, a dendritic spike mechanism was introduced to generate an intrinsic bursting capability, which is absent in the somatic compartment of HVC_RA neurons. This dendritic mechanism significantly enhances the robustness of the chain network, eliminating the need to fine-tune any synaptic conductances, including those from HVC_I neurons (Long et al 2010).

      Why is it important that the model should NOT be sensitive to the connection strengths?

      We thank the reviewer for the comment. While mathematical models designed for highly complex nonlinear biological processes tangentially touch the biological realism, the current network as is right now is the first biologically realistic-enough network model designed for HVC that explains sequence propagation. We do not include dendritic processes in our network although that increases the realistic dynamics for various reasons. 1) The ion channels we integrated into the somatic compartment are known pharmacologically (Daou et al. 2013), but we don’t know about the dendritic compartment’s intrinsic properties of HVC neurons and the cocktail of ion channels that are expressed there. 2) We are able to generate realistic bursting in HVC<sub>RA</sub> neurons despite the single compartment, and the main emphasis in this network is on the interactions between excitation and inhibition, the effects of ion channels in modulating sequence propagation, etc. 3) The network model already incorporates thousands of ODEs that govern the dynamics of each of the HVC neurons, so we did not want to add more complexity to the network especially that we don’t know the biophysical properties of the dendritic compartments.

      Therefore, our present focus is on somatic dynamics and the interaction between HVC<sub>RA</sub> and HVC<sub>INT</sub> neurons, but we acknowledge the importance of these processes in enhancing network resiliency. Although we agree that adding dendritic processes improves robustness, we still think that somatic processes alone can offer insightful information on the sequential dynamics of the HVC network. While the network should be robust across a wide range of parameters, it is also essential that certain parameters are designed to filter out weaker signals, ensuring that only reliable, precise patterns of activity propagate. Hence, we specifically chose to make the HVC<sub>RA</sub>-to-HVC<sub>RA</sub> excitatory connections more sensitive (narrow range of values) such that only strong, precise and meaningful stimuli can propagate through the network representing the high stereotypy and precision seen in song production.

      First, the firing of HVC_I neurons is highly noisy and unreliable. HVC_I neurons fire spontaneous, random spikes under baseline conditions. During singing, their spike timing is imprecise and can vary significantly from trial to trial, with spikes appearing or disappearing across different trials. As a result, their inputs to HVC_RA neurons are inherently noisy. If the model relies on precisely tuned inputs from HVC_I neurons, the natural fluctuations in HVC_I firing would render the model non-functional. The authors should incorporate noisy HVC_I neurons into their model to evaluate whether this noise would render the model non-functional.

      We acknowledge that under baseline and singing settings, interneurons fire in an extremely noisy and inaccurate manner, although they exhibit time locked episodes in their activity (Hahnloser et al 2002, Kozhinikov and Fee 2007). In order to mimic the biological variability of these neurons, our model does, in fact, include a stochastic current to reflect the intrinsic noise and random variations in interneuron firing shown in vivo (and we highlight this in the Methods). If necessary and to make sure the network is resilient to this randomness in interneuron firing, we will investigate different approaches to enhance the noise representation even further and check its effect on sequence propagation.

      Second, Kosche et al. (2015) demonstrated that reducing inhibition by suppressing HVC_I neuron activity makes HVC_RA firing less sparse but does not compromise the temporal precision of the bursts. In this experiment, the local application of gabazine should have severely disrupted HVC_I activity. However, it did not affect the timing precision of HVC_RA neuron firing, emphasizing the robustness of the HVC timing circuit. This robustness is inconsistent with the predictions of the current model, which depends on finely tuned inputs and should, therefore, be vulnerable to such disruptions.

      We thank the reviewer for the comment. The differences between the Kosche et al. (2015) findings and the predictions of our model arise from differences in the aspect of HVC function we are modeling. Our model is more sensitive to inhibition, which is a designed mechanism for achieving precise song patterning. This is a modeling simplification we adopted to capture specific characteristics of HVC function. Hence, Kosche et al. (2015) findings do not invalidate the approach of our model, but highlights that HVC likely operates with several, redundant mechanisms that overall ensure temporal precision.Nevertheless, we will investigate further the effects of the degree of inhibition on song patterning.

      Third, the reliance on fine-tuning of HVC_RA connections becomes problematic if the model is scaled up to include groups of HVC_RA neurons forming a chain network, rather than the single HVC_RA neurons used in the current work. With groups of HVC_RA neurons, the summation of presynaptic inputs to each HVC_RA neuron would need to be precisely maintained for the model to function. However, experimental evidence shows that the HVC circuit remains functional despite perturbations, such as a few degrees of cooling, micro-lesions, or turnover of HVC_RA neurons. Such robustness cannot be accounted for by a model that depends on finely tuned connections, as seen in the current implementation.

      Our model of individual HVC<sub>RA</sub> neurons and as stated previously is reductive model that focuses on understanding the mechanisms that govern sequential neural activity. We agree that scaling the model to include many of HVC<sub>RA</sub> neurons poses challenges, specifically concerning the summation of presynaptic inputs. However, our model can still be adapted to a larger network without requiring the level of fine-tuning currently needed. In fact, the current fine-tuning of synaptic connections in the model is a reflection of fundamental network mechanisms rather than a limitation when scaling to a larger network. Besides, one important feature of this neural network is redundancy. Even if some neurons or synaptic connections are impaired, other neurons or pathways can compensate for these changes, allowing the activity propagation to remain intact.

      The authors examined how altering the channel properties of neurons affects the activity in their model. While this approach is valid, many of the observed effects may stem from the delicate balancing required in their model for proper function.

      In the current model, HVC_X neurons burst as a result of rebound activity driven by the I_H current. Rebound bursts mediated by the I_H current typically require a highly hyperpolarized membrane potential. However, this mechanism would fail if the reversal potential of inhibition is higher than the required level of hyperpolarization. Furthermore, Mooney (2000) demonstrated that depolarizing the membrane potential of HVC_X neurons did not prevent bursts of these neurons during forward playback of the bird's own song, suggesting that these bursts (at least under anesthesia, which may be a different state altogether) are not necessarily caused by rebound activity. This discrepancy should be addressed or considered in the model.

      In our HVC network model, one goal with HVC<sub>X</sub> neurons is to generate bursts in their underlying neuron population. Since HVC<sub>X</sub> neurons in our model receive only inhibitory inputs from interneurons, we rely on inhibition followed by rebound bursts orchestrated by the IH and the I<sub>CaT</sub> currents to achieve this goal. The interplay between the T-type Ca<sup>++</sup> current and the H current in our model is fundamental to generate their corresponding bursts, as they are sufficient for producing the desired behavior in the network. Due to this interplay, we do not need significant inhibition to generate rebound bursts, because the T-type Ca<sup>++</sup> current’s conductance can be stronger leading to robust rebound bursting even when the degree of inhibition is not very strong. We will highlight this with more clarity in the revised version.

      Some figures contain direct copies of figures from published papers. It is perhaps a better practice to replace them with schematics if possible.

      We will replace the relevant figures with schematic representations where possible.

      Reviewer #2 (Public review):

      Summary:

      In this paper, the authors use numerical simulations to try to understand better a major experimental discovery in songbird neuroscience from 2002 by Richard Hahnloser and collaborators. The 2002 paper found that a certain class of projection neurons in the premotor nucleus HVC of adult male zebra finch songbirds, the neurons that project to another premotor nucleus RA, fired sparsely (once per song motif) and precisely (to about 1 ms accuracy) during singing.

      The experimental discovery is important to understand since it initially suggested that the sparsely firing RA-projecting neurons acted as a simple clock that was localized to HVC and that controlled all details of the temporal hierarchy of singing: notes, syllables, gaps, and motifs. Later experiments suggested that the initial interpretation might be incomplete: that the temporal structure of adult male zebra finch songs instead emerged in a more complicated and distributed way, still not well understood, from the interaction of HVC with multiple other nuclei, including auditory and brainstem areas. So at least two major questions remain unanswered more than two decades after the 2002 experiment: What is the neurobiological mechanism that produces the sparse precise bursting: is it a local circuit in HVC or is it some combination of external input to HVC and local circuitry?

      And how is the sparse precise bursting in HVC related to a songbird's vocalizations?

      The authors only investigate part of the first question, whether the mechanism for sparse precise bursts is local to HVC. They do so indirectly, by using conductance-based Hodgkin-Huxley-like equations to simulate the spiking dynamics of a simplified network that includes three known major classes of HVC neurons and such that all neurons within a class are assumed to be identical. A strength of the calculations is that the authors include known biophysically deduced details of the different conductances of the three major classes of HVC neurons, and they take into account what is known, based on sparse paired recordings in slices, about how the three classes connect to one another. One weakness of the paper is that the authors make arbitrary and not well-motivated assumptions about the network geometry, and they do not use the flexibility of their simulations to study how their results depend on their network assumptions. A second weakness is that they ignore many known experimental details such as projections into HVC from other nuclei, dendritic computations (the somas and dendrites are treated by the authors as point-like isopotential objects), the role of neuromodulators, and known heterogeneity of the interneurons. These weaknesses make it difficult for readers to know the relevance of the simulations for experiments and for advancing theoretical understanding.

      Strengths:

      The authors use conductance-based Hodgkin-Huxley-like equations to simulate spiking activity in a network of neurons intended to model more accurately songbird nucleus HVC of adult male zebra finches. Spiking models are much closer to experiments than models based on firing rates or on 2-state neurons.

      The authors include information deduced from modeling experimental current-clamp data such as the types and properties of conductances. They also take into account how neurons in one class connect to neurons in other classes via excitatory or inhibitory synapses, based on sparse paired recordings in slices by other researchers.

      The authors obtain some new results of modest interest such as how changes in the maximum conductances of four key channels (e.g., A-type K<sup>+</sup> currents or Ca-dependent K<sup>+</sup> currents) influence the structure and propagation of bursts, while simultaneously being able to mimic accurately current-clamp voltage measurements.

      Weaknesses:

      One weakness of this paper is the lack of a clearly stated, interesting, and relevant scientific question to try to answer. In the introduction, the authors do not discuss adequately which questions recent experimental and theoretical work have failed to explain adequately, concerning HVC neural dynamics and its role in producing vocalizations. The authors do not discuss adequately why they chose the approach of their paper and how their results address some of these questions.

      For example, the authors need to explain in more detail how their calculations relate to the works of Daou et al, J. Neurophys. 2013 (which already fitted spiking models to neuronal data and identified certain conductances), to Jin et al J. Comput. Neurosci. 2007 (which already discussed how to get bursts using some experimental details), and to the rather similar paper by E. Armstrong and H. Abarbanel, J. Neurophys 2016, which already postulated and studied sequences of microcircuits in HVC. This last paper is not even cited by the authors.

      We thank the reviewer for this valuable comment, and we agree that we did not clarify enough throughout the paper the utility of our model or how it advanced our understanding of the HVC dynamics and circuitry. To that end, we will revise several places of the manuscript and make sure to cite and highlight the relevance and relatedness of the mentioned papers.

      In short, and as mentioned to Reviewer 1, while several models of how sequence is generated within HVC have been proposed (Cannon et al., 2015; Drew & Abbott, 2003; Egger et al., 2020; Elmaleh et al., 2021; Galvis et al., 2018; Gibb et al., 2009a, 2009b; Hamaguchi et al., 2016; Jin, 2009; Long & Fee, 2008; Markowitz et al., 2015; Jin et al., 2007), all the models proposed either rely on intrinsic HVC circuitry to propagate sequential activity, rely on extrinsic feedback to advance the sequence or rely on both. These models do not capture the complex details of spike morphology, do not include the right ionic currents, do not incorporate all classes of HVC neurons, or do not generate realistic firing patterns as seen in vivo. Our model is the first biophysically realistic model that incorporates all classes of HVC neurons and their intrinsic properties.

      No existing hypothesis had been challenged with our model, rather; our model is a distillation of the various models that’s been proposed for the HVC network. We go over this in detail in the Discussion. We believe that the network model we developed provide a step forward in describing the biophysics of HVC circuitry, and may throw a new light on certain dynamics in the mammalian brain, particularly the motor cortex and the hippocampus regions where precisely-timed sequential activity is crucial. We suggest that temporally-precise sequential activity may be a manifestation of neural networks comprised of chain of microcircuits, each containing pools of excitatory and inhibitory neurons, with local interplay among neurons of the same microcircuit and global interplays across the various microcircuits, and with structured inhibition as well as intrinsic properties synchronizing the neuronal pools and stabilizing timing within a firing sequence.

      The authors' main achievement is to show that simulations of a certain simplified and idealized network of spiking neurons, which includes some experimental details but ignores many others, match some experimental results like current-clamp-derived voltage time series for the three classes of HVC neurons (although this was already reported in earlier work by Daou and collaborators in 2013), and simultaneously the robust propagation of bursts with properties similar to those observed in experiments. The authors also present results about how certain neuronal details and burst propagation change when certain key maximum conductances are varied.

      However, these are weak conclusions for two reasons. First, the authors did not do enough calculations to allow the reader to understand how many parameters were needed to obtain these fits and whether simpler circuits, say with fewer parameters and simpler network topology, could do just as well. Second, many previous researchers have demonstrated robust burst propagation in a variety of feed-forward models. So what is new and important about the authors' results compared to the previous computational papers?

      A major novelty of our work is the incorporation of experimental data with detailed network models. While earlier works have established robust burst propagation, our model uses realistic ion channel kinetics and feedback inhibition not only to reproduce experimental neural activity patterns but also to suggest prospective mechanisms for song sequence production in the most biophysical way possible. This aspect that distinguishes our work from other feed-forward models. We go over this in detail in the Discussion. However, the reviewer is right regarding the details of the calculations conducted for the fits, we will make sure to highlight this in the Methods and throughout the manuscript with more details.

      We believe that the network model we developed provide a step forward in describing the biophysics of HVC circuitry, and may throw a new light on certain dynamics in the mammalian brain, particularly the motor cortex and the hippocampus regions where precisely-timed sequential activity is crucial. We suggest that temporally-precise sequential activity may be a manifestation of neural networks comprised of chain of microcircuits, each containing pools of excitatory and inhibitory neurons, with local interplay among neurons of the same microcircuit and global interplays across the various microcircuits, and with structured inhibition as well as intrinsic properties synchronizing the neuronal pools and stabilizing timing within a firing sequence.

      Also missing is a discussion, or at least an acknowledgment, of the fact that not all of the fine experimental details of undershoots, latencies, spike structure, spike accommodation, etc may be relevant for understanding vocalization. While it is nice to know that some models can match these experimental details and produce realistic bursts, that does not mean that all of these details are relevant for the function of producing precise vocalizations. Scientific insights in biology often require exploring which of the many observed details can be ignored and especially identifying the few that are essential for answering some questions. As one example, if HVC-X neurons are completely removed from the authors' model, does one still get robust and reasonable burst propagation of HVC-RA neurons? While part of the nucleus HVC acts as a premotor circuit that drives the nucleus RA, part of HVC is also related to learning. It is not clear that HVC-X neurons, which carry out some unknown calculation and transmit information to area X in a learning pathway, are relevant for burst production and propagation of HVC<sub>RA</sub> neurons, and so relevant for vocalization. Simulations provide a convenient and direct way to explore questions of this kind.

      One key question to answer is whether the bursting of HVC-RA projection neurons is based on a mechanism local to HVC or is some combination of external driving (say from auditory nuclei) and local circuitry. The authors do not contribute to answering this question because they ignore external driving and assume that the mechanism is some kind of intrinsic feed-forward circuit, which they put in by hand in a rather arbitrary and poorly justified way, by assuming the existence of small microcircuits consisting of a few HVC-RA, HVC-X, and HVC-I neurons that somehow correspond to "sub-syllabic segments". To my knowledge, experiments do not suggest the existence of such microcircuits nor does theory suggest the need for such microcircuits.

      Recent results showed a tight correlation between the intrinsic properties of neurons and features of song (Daou and Margoliash 2020, Medina and Margoliash 2024), where adult birds that exhibit similar songs tend to have similar intrinsic properties. While this is relevant, we acknowledge that not all details may be necessary for every aspect of vocalization, and future models could simplify concentrate on core dynamics and exclude certain features while still providing insights into the primary mechanisms.

      The question of whether HVC<sub>X</sub> neurons are relevant for burst propagation given that our model includes these neurons as part of the network for completeness, the reviewer is correct, the propagation of sequential activity in this model is primarily carried by HVC<sub>RA</sub> neurons in a feed-forward manner, but only if there is no perturbation to the HVC network. For example, we have shown how altering the intrinsic properties of HVC<sub>X</sub> neurons or for interneurons disrupts sequence propagation. In other words, while HVC neurons are the key forces to carry the chain forward, the interplay between excitation and inhibition in our network as well as the intrinsic parameters for all classes of HVC neurons are equally important forces in carrying the chain of activity forward. Thus, the stability of activity propagation necessary for song production depend on a finely balanced network of HVC neurons, with all classes contributing to the overall dynamics.

      We agree with the reviewer however that a potential drawback of our model is that its sole focus is on local excitatory connectivity within the HVC (Kornfeld et al., 2017; Long et al., 2010), while HVC neurons receive afferent excitatory connections (Akutagawa & Konishi, 2010; Nottebohm et al., 1982) that plays significant roles in their local dynamics. For example, the excitatory inputs that HVC neurons receive from Uvaeformis may be crucial in initiating (Andalman et al., 2011; Danish et al., 2017; Galvis et al., 2018) or sustaining (Hamaguchi et al., 2016) the sequential activity. While we acknowledge this limitation, our main contribution in this work is the biophysical insights onto how the patterning activity in HVC is largely shaped by the intrinsic properties of the individual neurons as well as the synaptic properties where excitation and inhibition play a major role in enabling neurons to generate their characteristic bursts during singing. This is true and holds irrespective of whether an external drive is injected onto the microcircuits or not. We will however elaborate on and investigate this more during the next submission.

      Another weakness of this paper is an unsatisfactory discussion of how the model was obtained, validated, and simulated. The authors should state as clearly as possible, in one location such as an appendix, what is the total number of independent parameters for the entire network and how parameter values were deduced from data or assigned by hand. With enough parameters and variables, many details can be fit arbitrarily accurately so researchers have to be careful to avoid overfitting. If parameter values were obtained by fitting to data, the authors should state clearly what the fitting algorithm was (some iterative nonlinear method, whose results can depend on the initial choice of parameters), what the error function used for fitting (sum of least squares?) was, and what data were used for the fitting.

      The authors should also state clearly the dynamical state of the network, the vector of quantities that evolve over time. (What is the dimension of that vector, which is also the number of ordinary differential equations that have to be integrated?) The authors do not mention what initial state was used to start the numerical integrations, whether transient dynamics were observed and what were their properties, or how the results depended on the choice of the initial state. The authors do not discuss how they determined that their model was programmed correctly (it is difficult to avoid typing errors when writing several pages or more of a code in any language) or how they determined the accuracy of the numerical integration method beyond fitting to experimental data, say by varying the time step size over some range or by comparing two different integration algorithms.

      We thank the reviewer again. The fitting process in our model occurred only at the first stage where the synaptic parameters were fit to the Mooney and Prather as well as the Kosche results. There was no data shared and we merely looked at the figures in those papers and checked the amplitude of the elicited currents, the magnitudes of DC-evoked excitations etc, and we replicated that in our model. While this is suboptimal, it was better for us to start with it rather than simply using equations for synaptic currents from the literature for other types of neurons (that are not even HVC’s or in the songbird) and integrate them into our network model. However, we will certainly highlight the details of this fitting process in the new submission. We will also highlight more technical details in the Methods regarding the exact number of ODEs, the initial conditions to run them, etc.

      Also disappointing is that the authors do not make any predictions to test, except rather weak ones such as that varying a maximum conductance sufficiently (which might be possible by using dynamic clamps) might cause burst propagation to stop or change its properties. Based on their results, the authors do not make suggestions for further experiments or calculations, but they should.

      We agree that making experimental testable predictions is crucial for the advancement of the model. Our predictions include testing whether eradication of a class of neurons such as HVC<sub>X</sub> neurons disrupts activity propagation which can be done through targeted neuron elimination. This also can be done through preventing rebound bursting in HVC<sub>X</sub> by pharmacologically blocking the I<sub>h</sub> channels. Others include down regulation of certain ion channels (pharmacologically done through ion blockers) and testing which current is fundamental for song production (and there a plenty of test based our results, like the SK current, the T-type Ca<sup>++</sup> current, the A-type K<sup>+</sup> current, etc). We will incorporate these into the revised manuscript to better demonstrate the model's applicability and to guide future research directions.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Structural colors (SC) are based on nanostructures reflecting and scattering light and producing optical wave interference. All kinds of living organisms exhibit SC. However, understanding the molecular mechanisms and genes involved may be complicated due to the complexity of these organisms. Hence, bacteria that exhibit SC in colonies, such as Flavobacterium IR1, can be good models.

      Based on previous genomic mining and co-occurrence with SC in flavobacterial strains, this article focuses on the role of a specific gene, moeA, in SC of Flavobacterium IR1 strain colonies on an agar plate. moeA is involved in the synthesis of the molybdenum cofactor, which is necessary for the activity of key metabolic enzymes in diverse pathways.

      The authors clearly showed that the absence of moeA shifts SC properties in a way that depends on the nutritional conditions. They further bring evidence that this effect was related to several properties of the colony, all impacted by the moeA mutant: cell-cell organization, cell motility and colony spreading, and metabolism of complex carbohydrates. Hence, by linking SC to a single gene in appearance, this work points to cellular organization (as a result of cell-cell arrangement and motility) and metabolism of polysaccharides as key factors for SC in a gliding bacterium. This may prove useful for designing molecular strategies to control SC in bacterial-based biomaterials.

      Strengths:

      The topic is very interesting from a fundamental viewpoint and has great potential in the field of biomaterials.

      Thank you for your comments.

      The article is easy to read. It builds on previous studies with already established tools to characterize SC at the level of the flavobacterial colony. Experiments are well described and well executed. In addition, the SIBR-Cas method for chromosome engineering in Flavobacteria is the most recent and is a leap forward for future studies in this model, even beyond SC.

      We appreciate these comments.

      Weaknesses:

      The paper appears a bit too descriptive and could be better organized. Some of the results, in particular the proteomic comparison, are not well exploited (not explored experimentally). In my opinion, the problem originates from the difficulty in explaining the link between the absence of moeA and the alterations observed at the level of colony spreading and polysaccharide utilization, and the variation in proteomic content.

      We will look at the organisation of the manuscript carefully in the coming, detailed revision, as suggested. In terms of the proteomics, there are clearly a large number of proteins affected by the moeA deletion. In terms of experimental exploration, we chose spreading, structural colour formation and starch degradation to test phenotypically, as the most relevant. For example, in L615-617, we discuss the downregulation of GldL (which is known to be involved Flavobacterial gliding motility [Shrivastava et al., 2013]) in the _moe_A KO as a possible explanation for the reduced colony spreading of moeA mutant. Changes in polysaccharide (starch) utilization were seen on solid medium, as well as in the proteomic profile where we observed the upregulation of carbohydrate metabolism proteins linked to PUL (polysaccharide utilisation locus) operons (Terrapon et al., 2015), such as PAM95095-90 (Figure 8), and other carbohydrate metabolism-related proteins, including a pectate lyase (Table S7) which is involved in starch degradation (Aspeborg et al., 2012). And as noted in L555-566 and Figure 9, starch metabolism was tested experimentally.

      First, the effect of moeA deletion on molybdenum cofactor synthesis should be addressed.

      MoeA is the last enzyme in the MoCo synthesis pathway, thus if only MoeA is absent the cell would accumulate MPT-AMP (molybdopterin-adenosine monophosphatase) (Iobbi-Nivol & Leimkühler, 2013), and the expressed molybdoenzymes would not be functional. In L582-585, we commented how the lack of molybdenum cofactor may affect the synthesis of molybdoenzymes. However, if you meant to analyse the presence of the small molecules, the cofactors, involved in these pathways, that was an assay we were not able to perform. Moreover, in L585-587, we addressed how the deletion of _moe_A affected the proteins encoded by the rest of genes in the operon.

      Second, as I was reading the entire manuscript, I kept asking myself if moeA (and by extension molybdenum cofactor) was really involved in SC or it was an indirect effect. For example, what if the absence of moeA alters the cell envelope because the synthesis of its building blocks is perturbed, then subsequently perturbates all related processes, including gliding motility and protein secretion? It would help to know if the effects on colony spreading and polysaccharide metabolism can be uncoupled. I don't think the authors discussed that clearly.

      The message of the paper is that the moeA gene, as predicted from a previous genomics analysis, is important in SC. This is based on the representation of the _moe_A gene in genomes of bacteria that display SC. This analysis does not predict the mechanism. When knocked out, a significant change in structural colour occurred, supporting this hypothesis. Whether this effect is direct or indirect is difficult to assess, as this referee rightly suggests. In order to follow up this central result, we performed proteomics (both intra- and extracellular). As we observed, the deletion of a single gene generated many changes in the proteomic profile, thus in the biological processes. Based on the known functions of molybdenum cofactor, we could only hypothesize that pterin metabolism is important for SC, not exactly how.

      We intend to discuss the links between gliding/spreading and polysaccharide metabolism more clearly, with reference to the literature, as quite a bit is known here including possible links to SC.

      Reviewer #2 (Public review):

      Summary:

      The authors constructed an in-frame deletion of moeA gene, which is involved in molybdopterin cofactor (MoCo) biosynthesis, and investigated its role in structural colors in Flavobacterium IR1. The deletion of moeA shifted colony color from green to blue, reduced colony spreading, and increased starch degradation, which was attributed to the upregulation of various proteins in polysaccharide utilization loci. This study lays the ground for developing new colorants by modifying genes involved in structural colors.

      Major strengths and weaknesses:

      The authors conducted well-designed experiments with appropriate controls and the results in the paper are presented in a logical manner, which supports their conclusions.

      We appreciate your comment.

      Using statistical tests to compare the differences between the wild type and moeA mutant, and adding a significance bar in Figure 4B, would strengthen their claims on differences in cell motility regarding differences in cell motility.

      Thank you. Figure 4B contains the significance bars that represent the standard deviation of the mean value of the three replicates, but we will modify it to make them more clear.

      Additionally, in the result section (Figure 6), the authors suggest that the shift in blue color is "caused by cells which are still highly ordered but narrower", which to my knowledge is not backed up by any experimental evidence.

      Thanks. We mentioned that the mutant cells are narrower than the wild type based on the estimated periodicity resulting from the goniometry analysis (L427-430). We will now say “likely to be narrower based on the estimated periodicity from the optical analysis” rather than just “narrower” in the revision.

      Overall, this is a well-written paper in which the authors effectively address their research questions through proper experimentation. This work will help us understand the genetic basis of structural colors in Flavobacterium and open new avenues to study the roles of additional genes and proteins in structural colors.

      Much appreciated.

      REFERENCES

      Aspeborg, Henrik, Pedro M. Coutinho, Yang Wang, Harry Brumer, and Bernard Henrissat. "Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5)." BMC evolutionary biology 12 (2012): 1-16.

      lobbi-Nivol, Chantal, and Silke Leimkühler. "Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli." Biochimica et Biophysica Acta (BBA)-Bioenergetics 1827, no. 8-9 (2013): 1086-1101.

      Shrivastava, Abhishek, Joseph J. Johnston, Jessica M. Van Baaren, and Mark J. McBride. "Flavobacterium johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell surface gliding motility adhesins SprB and RemA." Journal of bacteriology 195, no. 14 (2013): 3201-3212.

      Terrapon, Nicolas, Vincent Lombard, Harry J. Gilbert, and Bernard Henrissat. "Automatic prediction of polysaccharide utilization loci in Bacteroidetes species." Bioinformatics 31, no. 5 (2015): 647-655.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study explored a molecular comparison of smooth muscle and neighboring fibroblast cells found in lung blood vessels afflicted by a disease called pulmonary arterial hypertension. In doing so, the authors described distinct disease-associated states of each of these cell types with further insights into the cellular communication and crosstalk between them. The strength of evidence was convincing through the use of complementary and sophisticated tools, accompanied by rare isolation of human diseased lung blood vessel cells that were source-matched to the same donor for direct comparison.

      We thank the editors and reviewers in their highly positive and encouraging assessment of our manuscript detailing the cell state changes of arterial smooth muscle cells and fibroblasts in the pulmonary bed. We addressed reviewers’ major comments in the revised manuscript by providing validation of key in vitro findings, such as preserved marker localization and increased GAG deposition in IPAH pulmonary arteries. We additionally provide comparison of transcriptomic profiles spanning fresh, very early and late passage cells. Finally, we present expanded experimental data in support of cellular crosstalk, including testing of additional PAAF ligands on donor PASMC and influence of PTX3/HGF on IPAH PASMC.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors isolated and cultured pulmonary artery smooth muscle cells (PASMC) and pulmonary artery adventitial fibroblasts (PAAF) of the lung samples derived from the patients with idiopathic pulmonary arterial hypertension (PAH) and the healthy volunteers. They performed RNA-seq and proteomics analyses to detail the cellular communication between PASMC and PAAF, which are the main target cells of pulmonary vascular remodeling during the pathogenesis of PAH. The authors revealed that PASMC and PAAF retained their original cellular identity and acquired different states associated with the pathogenesis of PAH, respectively.

      Strengths:

      Although previous studies have shown that PASMC and PAAF cells each have an important role in the pathogenesis of PAH, there have been scarce reports focusing on the interactions between PASMC and PAAF. These findings may provide valuable information for elucidating the pathogenesis of pulmonary arterial hypertension.

      We appreciate the reviewer’s positive view of our study.

      Weaknesses:

      The results of proteome analysis using primary culture cells in this paper seem a bit insufficient to draw conclusions. In particular, the authors described "We elucidated the involvement of cellular crosstalk in regulating cell state dynamics and identified pentraxin-3 and hepatocyte growth factor as modulators of PASMC phenotypic transition orchestrated by PAAF." However, the presented data are considered limited and insufficient.

      We thank the reviewer for drawing our attention to this point and have accordingly modified the conclusion section to read: “We investigated the involvement of cellular crosstalk….” Moreover, we provide further experimental evidence demonstrating the effect of both PTX3 and HGF on cell state marker expression in IPAH-PASMC cells (Figure 7H). In addition, we clarify the selection strategy applied to investigate particular PAAF-secreted ligands and test three additional ligands on donor PASMC (Figure S8), supporting the original focus on PTX3 and HGF.

      Reviewer #2 (Public Review):

      Summary:

      Utilizing a combination of transcriptomic and proteomic profiling as well as cellular phenotyping from source-matched PASMC and PAAFs in IPAH, this study sought to explore a molecular comparison of these cells in order to track distinct cell fate trajectories and acquisition of their IPAH-associated cellular states. The authors also aimed to identify cell-cell communication axes in order to infer mechanisms by which these two cells interact and depend upon external cues. This study will be of interest to the scientific and clinical communities of those interested in pulmonary vascular biology and disease. It also will appeal to those interested in lung and vascular development as well as multi-omic analytic procedures.

      We thank the reviewer for overall highly positive assessment of our study.

      Strengths:

      (1) This is one of the first studies using orthogonal sequencing and phenotyping for the characterization of source-matched neighboring mesenchymal PASMC and PAAF cells in healthy and diseased IPAH patients. This is a major strength that allows for direct comparison of neighboring cell types and the ability to address an unanswered question regarding the nature of these mesenchymal "mural" cells at a precise molecular level.

      We value the reviewer’s kind and objective summary of our study.

      (2) Unlike a number of multi-omic sequencing papers that read more as an atlas of findings without structure, the inherent comparative organization of the study and presentation of the data were valuable in aiding the reader in understanding how to discern the distinct IPAH-associated cell states. As a result, the reader not only gleans greater insight into these two interacting cell types in disease but also now can leverage these datasets more easily for future research questions in this space.

      We thank the reviewer for this highly positive comment.

      (3) There are interesting and surprising findings in the cellular characterizations, including the low proliferative state of IPAH-PASMCs as compared to the hyperproliferative state in IPAH-PAAFs. Furthermore, the cell-cell communication axes involving ECM components and soluble ligands provided by PAAFs that direct cell state dynamics of PASMCs offer some of the first and foundational descriptions of what are likely complex cellular interactions that await discovery.

      We agree with the reviewer’s assessment that some of the novel data in our study helps to formulate testable hypothesis that can be followed through with more focused follow-up research.

      (4) Technical rigor is quite high in the -omics methodology and in vitro phenotyping tools used.

      We are grateful for reviewer’s assessment of our work and positive recognition.

      Weaknesses:

      There are some weaknesses in the methodology that should temper the conclusions:

      (1) The number of donors sampled for PAAF/PASMCs was small for both healthy controls and IPAH patients. Thus, while the level of detail of -omics profiling was quite deep, the generalizability of their findings to all IPAH patients or Group 1 PAH patients is limited.

      We appreciate the reviewers concerns regarding the generalizability of the findings and have acknowledged this as the study limitation in the discussion: “A low case number and end-stage disease samples used for omics characterization represents a study limitation that has to be taken into account before assuming similar findings would be evident in the entire PAH patient population over the course of the disease development and progression”. We have addressed this issue by performing validation of key in vitro findings using fresh cells or assessment of FFPE lung material from additional independent samples in the revised manuscript (Figures 2D, 3D, 3H, 4H). For transparency, we provide biological sample number in the result section of the modified manuscript.

      (2) While the study utilized early passage cells, these cells nonetheless were still cultured outside the in vivo milieu prior to analysis. Thus, while there is an assumption that these cells do not change fundamental behavior outside the body, that is not entirely proven for all transcriptional and proteomic signatures. As such, the major alterations that are noted would be more compelling if validated from tissue or cells derived directly from in vivo sources. Without such validation, the major limitation of the impact and conclusions of the paper is that the full extent of the relevance of these findings to human disease is not known.

      We thank the reviewer for this constructive and excellent suggestion. The comparison of fresh and cultured cells revealed a strong and early divergence of differentially regulated pathways for PAAF, while a more gradual transition for PASMC. The results of this analysis are included in the new Figures 2D, 3D, 3H, and 4H. Implications are discussed in the revised manuscript: “However, the same mechanism renders cells susceptible to phenotypic change induced simply by extended vitro culturing, testified by broad expression profile differences between fresh and cultured cells. This common caveat in cell biology research and represents a technical and practical tradeoff that requires cross validation of key findings. Using a combination of archived lung tissue and available single cell RNA sequencing dataset of human pulmonary arteries, we show that some of the key defining phenotypic features of diseased cells, such as altered proliferation rate and ECM production, are preserved and gradually lost upon prolonged culturing”.

      (3) While the presentation of most of the manuscript was quite clear and convincing, the terminology and conclusions regarding "cell fate trajectories" throughout the manuscript did not seem to be fully justified. That is, all of the analyses were derived from cells originating from end-stage IPAH, and otherwise, the authors were not lineage tracing across disease initiation or development (which would be impossible currently in humans). So, while the description of distinct "IPAH-associated states" makes sense, any true cell fate trajectory was not clearly defined.

      In accordance to reviewer’s comment, we have decided to modify the wording to exclude the “cell fate trajectory” phrase and replace it with “acquisition of disease cell state”.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      (1) In Figure 1, PASMC and PAAF were collected from the lungs of healthy donors and analyzed for transcriptomics and proteomics; in Figure 1A, it can be taken as if both cells from IPAH patients were also analyzed, but this is not reflected in the results. In Figure1D, immunostaining of normal lungs confirms the localization of PASMC and PAAF markers found by transcriptomics. The authors describe a strong, but not perfect, correlation between the transcriptomics and proteomics data from Figure S1, but the gene names of each cellular marker they found should also be listed. In addition, the authors have observed the expression of markers characteristic of PASMC and PAAF in pulmonary vessels of healthy subjects by IH, but is there any novelty in these markers? Furthermore, are the expression sites of these markers altered in IPAH patients?

      In the revised manuscript we have adjusted the schematic to reflect the fact that only donor cells are compared in Figure 1. We additionally provide a correlation of cell type markers between proteomic and transcriptomic data sets for those molecules that are detected in both datasets (Figure S1B).

      We provide clarification on the novelty aspect in the result section: “Some of the molecules were previously associated with predominant SMC, such as RGS5 and CSPR1 (Crnkovic et al., 2022; Snider et al., 2008), or adventitial fibroblast, such as SCARA5, CFD and MGST1 (Crnkovic et al., 2022; Sikkema et al., 2023) expression”. Except for RGS5, expression and localization of other markers in IPAH was previously unknown.

      The conservation of expression sites for reported markers was validated in IPAH in the revised manuscript (Figure 2D), with IGFBP5 showing dual localization in both cell types. Moreover, results in Figure 1D, 1E and 2D support the validity of omics findings and preservation of key markers during passaging.

      (2) In Figure 2, the authors compare PASMC and PAAF derived from IPAH patients and donors. The results show that transcriptomics and proteomics changes are clearly differentiated by cell type and not by pathological state. In the pathological state, transcriptional changes are more pronounced. The GO analysis of the factors that showed significant changes in each cell type is shown in Figure 2E, but the differences between the GO analysis of the transcriptomics and proteomics results are not clearly shown. The reviewer believes that the advantages of a combined analysis of both should be indicated. Also, in Figure 2G, the GAG content in PA appears to be elevated in only 3 cases, while the other 5 cases appear to be at the same level as the donor; is there a characteristic change in these 3 cases? Figure 2I shows that the phenotype of PAAF changes with cell passages. Since this phenomenon would be interesting and useful to the reader, additional discussion regarding the mechanism would be desired.

      We have integrated both data sets in order to achieve stronger and meaningful analysis due to weaker and uncomplete correlation between transcriptomic and protein dataset as indicated in the results section: “Comparative analysis of transcriptomic and proteomic data sets revealed a strong, but not complete level of linear correlation between the gene and protein expression profiles (Figure S1B, C). We therefore decided to use an integrative dataset and analyzed all significantly enriched genes and proteins (-log10(P)>1.3) between both cell types to achieve stronger and more robust analysis”. In general, proteomic profile showed fewer significant differences and extent of change was lesser compared with transcriptomics, likely due to technical limitations of the method and sensitivity, testified by the complete lack of top transcriptomic molecules (RGS5, ADH1C, IGFBP5, CFD, SCARA5) in the protein dataset.

      To strengthen the findings of increased GAG in IPAH pulmonary arteries, we have performed compartment-specific, quantitative image analysis of Alcian blue staining on additional donor and patient samples (n=10 for each condition). The new analysis totaling around 40 PA confirmed significantly increased deposition of GAG in IPAH pulmonary arteries.

      We have addressed the issue of phenotypic change with prolonged cell culture in the revised manuscript by systematically comparing enrichment for biological processes between fresh (Crnkovic et al., 2022: GSE210248), very early (this study: GSE255669) and later passage cells (Chelladurai et al., 2022: GSE144932; Gorr et al., 2020: GSE144274). We observed cell type differences in the rate of change of phenotypic features, with PAAF showing faster shift early on during culturing that could for some of the features be due to isolation from immunomodulatory environment or presence of hydrocortisone supplement in the PAAF cell media. These points have been described in the revised results section and mentioned in the discussion.

      (3) The authors claim that one feature of this paper is the use of "very early passage (p1)" of pulmonary artery smooth muscle cells (PASMC). Since there are other existing (previouly reported) data that are publicly available, such as RNA-seq data using cells with 2-4 cell passages, it may be possible to show that fewer passages are better in primary culture by comparing the data presented in this paper.

      Following reviewers’ comments, we have performed systematic comparison (Crnkovic et al., 2022: GSE210248), very early (this study: GSE255669) and later passage cells (Chelladurai et al., 2022: GSE144932; Gorr et al., 2020: GSE144274). in the revised manuscript in order to comprehensively address the issue and define changes occurring as a result of prolonged in vitro conditions (Figure 3H). The results showed that the expression profile of early passage cells retains some of the key phenotypic features displayed by cells in their native environment, with PASMC displaying a more gradual loss of phenotypic characteristics compared to PAAF. Interestingly, PAAF displayed a striking inverse enrichment for inflammatory/NF-kB signaling between fresh and cultured PAAF, which could potentially be caused by the hydrocortisone supplement in the PAAF cell media or due to the isolation from its highly immunomodulatory enviroment. These points have been described in the revised results section and mentioned in the discussion.

      (4) The authors describe a study characterized by decreased expression of "cytoskeletal contractile elements" in pulmonary artery smooth muscle cells (PASMC) derived from patients with IPAH. What are the implications of this result, and does it arise from the use of smooth muscle in patients resistant to pulmonary artery smooth muscle dilating agents? A discussion on this issue needs to be made in a way that is easy for the reader to understand.

      The reviewer raises an interesting point regarding the loss the contractile markers and response to vasodilating therapy. We would speculate that isolated decrease in contractile machinery, without concomitant change in ECM and other PASMC features, would dampen both the contraction and relaxation properties of the single PASMC, affecting not only its response to dilating agents, but also to vasoconstrictors. Clinical consequences and responsiveness to dilating agents are more difficult to predict, since the vasoactive response would additionally depend on mechanical properties of the pulmonary artery defined by cellular and ECM composition. Nevertheless, we believe that decreased expression of contractile machinery reflects an intrinsic, “programmed” response of SMC to remodeling, rather than vasodilator therapy-induced selection pressure, since similar phenotypic change is observed in SMC from systemic circulation and in various animal models without exposure to PAH medication. These considerations have been included in the revised discussion section.

      (5) There are a lot of secreted proteins that increase or decrease in Figure 6G, but there is scant reason to focus on PTX3 and HGF among them. The authors need to elaborate on the above issue.

      We regret the lack of clarity and provide improved explanation of the ligand selection strategy in the revised manuscript. In order to prioritize the potential hits, we first used hierarchical clustering to group co-regulated ligands into smaller number of groups. We then prioritized for the ligands that lacked or had limited information with respect to IPAH. Based on these results, we analyzed the effect of three additional ligands on PASMC cell state marker expression (Figure S8). This additional data supported the initial focus on PTX3 and HGF.

      Minor comments:

      (1) Regarding the number of specimens used in the Result, it would be more helpful to the reader if the number of samples were also mentioned in the text.

      We have included the number of used samples in manuscript text.

      (2) There is no explanation of what R2Y represents in Figure 2B. This reviewer is not able to understand the statistical analysis of Figure 2H. The detailed results should be explained.

      We apologize for the oversight in labeling of Figure 2B and modify the figure legend: “Orthogonal projection to latent structures-discriminant analysis (OPLS-DA) T score plots separating predictive variability (x-axis), attributed to biological grouping, and non-predictive variability (technical/inter-individual, y-axis). Monofactorial OPLS-DA model for separation according to cell type or disease. C) Bifactorial OPLS-DA model considering cell type and disease simultaneously. Ellipse depicting the 95% confidence region, Q2 denoting model’s predictive power (significance: Q2>50%) and R2Y representing proportion of variance in the response variable explained by the model (higher values indicating better fit)”.

      We also modified figure legend wording for the analysis in Figure 2H (new Figure 3E) to clarify the independent factors whose interaction was investigated using 3-way ANOVA: “Interaction effects of stimulation, cell type, and disease state on cellular proliferation were analyzed by 3-way ANOVA. Significant interaction effects are indicated as follows: * for stimulation × cell type interactions and # for cell type × disease state interactions (both *, # p<0.05)”.

      (3) In Figure 3, the authors examined whether there were molecular abnormalities common to IPAH-PASMC and IPAH-PAAF and found that the number of commonly regulated genes and proteins was limited to 47. Further analysis of these regulators by STRING analysis revealed that factors related to the regulation of apoptosis are commonly altered in both cells. On the other hand, the authors focused on mitochondria, as SOD2 is downregulated, and found an increase in ROS production specific to PASMC, indicating that mitochondrial dysfunction is common to PASMC and PAAF in IPAH, but downstream phenomena are different between cell types. Factors associated with apoptosis regulation have been found to be both upward and downward regulated, but the actual occurrence of apoptosis in both cell types has not been addressed.

      We have performed TUNEL staining on FFPE lung tissue from donors and IPAH patients that revealed apoptosis as a rare event in both conditions in PASMC and PAAF. Therefore, no meaningful quantification could be conducted. An example of pulmonary artery where rare positive signal in either PAAF or PASMC could be found is provided in Figure 4H.

      Unfortunately, association of a particular gene with a pathway is by default arbitrary and potentially ambiguous. In particular, factors identified as associated in apoptosis are also involved in regulation of inflammatory signaling (BIRC3, DDIT3) and amino acid metabolism (SHMT1). Nevertheless, mitochondria represent a crucial cellular hub for apoptosis regulation and, as shown in the current study, display significant functional alterations in IPAH in both cell types, aligning with reduced mitochondrial superoxide dismutase (SOD2) expression.

      (4) The meaning of the gray circle in Figure 3C should be clarified. Similarly, the meaning of the color in Fig. 3D should be clearly explained. In Figure 3E-G, each cell is significantly different from 18-61 cells, and the number of each cell and the reason should be described.

      We regret the confusion and provide better explanation of the figure legend: “gray nodes representing their putative upstream regulators”, “with color coding reflecting the IPAH dependent regulation”. In the revised Figure panels 4E-G (old 3E-G) we provide the exact number of cells measured in each condition. Although we tried to have comparable cell confluency at the time of measurement, different proliferation rates between cells from different cell type and condition led to different number of measured cells per donor/patient.

      (5) In Figure 4, the authors focus on factors that vary in different directions between cells, revealing fingerprints of molecular changes that differ between cell types, particularly IPAH-PASMC, which acquires a synthetic phenotype with enhanced regulation of chemotaxis elements, whereas IPAH-PAAF, a fast cycling cell characteristics. Next, focusing on the ECM components that were specifically altered in IPAH-PASMC, Nichenet analysis in Figure 5 suggested that ligands from PAAF may act on PASMC, and the authors focused on integrin signaling to examine ECM contact and changes in cell function. The results indicate that adhesion to laminin is poor in PASMC. Although no difference was observed between donor and IPAH PASMCs, a discussion of the reasons for this would be desired and helpful to the readers.

      Both donor and IPAH PASMCs respond similarly to laminin. However, our key finding is the downregulation of laminin in IPAH PAAF, which likely leads to a skewed laminin-to-collagen ratio and altered ECM composition in remodeled arteries. This shift in the ECM class results in altered PASMC behavior, affecting both donor and IPAH cells similarly. In the revised manuscript, we demonstrate that PASMC largely retain the expression pattern of integrin subunits that serve as high-affinity collagen and laminin receptors, with higher levels compared to PAAF (Figure 6F, G). Furthermore, we speculate that the distinct cellular phenotypic responses to collagen versus laminin coatings may arise from different downstream signaling pathways activated by the various integrin subunits (Nguyen et al., 2000). These considerations have been included in the revised discussion: “The comparable responses of donor and IPAH PASMC likely result from their shared integrin receptor expression profiles. Meanwhile, ECM class switching engages different high-affinity integrin receptors, which activate alternative downstream signaling pathways (Nguyen et al., 2000) and lead to differential responses to collagen and laminin matrices. We thus propose a model in which laminins and collagens act as PAAF-secreted ligands, regulating PASMC behavior through their ECM-sensing integrin receptors.”

      (6) Since Figure 3B and Figure 4A seem to show the same results, why not combine them into one?

      Indeed, these figure panels show the same results, but the focus of the investigations in each Figure is different. We therefore opted to keep the panels separate for better clarity and logical link to other panels in the same figure

      (7) In Figure 6, the interaction analysis of scRNAseq data with respect to signaling between PASMC and PAAF was performed using Nichenet and CellChat, showing that signaling from PAAF to PASMC is biased toward secreted ligands and that a functionally relevant set of soluble ligands is impaired in the IPAH state. From there, they proceeded with co-culture experiments and showed that co-culture healthy PASMC with PAAF of IPAH patients abolished PASMC markers in the healthy state. Furthermore, the authors attempted to identify ligands that induce functional changes in PASMCs produced from IPAH PAAFs and found that HGF is a factor that downregulates the expression of contractile markers in PASMCs. Further insights may be gained by co-culturing IPAH-derived cells in co-culture experiments. Also, no beneficial effect of pentraxin3 was found in Figure 6H. The authors should examine the effect of pentraxin3 on PASMC cells derived from IPAH patients, rather than healthy donors.

      We tested the influence of IPAH-PASMC on donor-PAAF and found no effect on the expression of the selected markers. We thank the reviewer for the suggestion to conduct the experiments on IPAH-PASMC. The new data show that both PTX3 and HGF have a significant effect, but differential effect on IPAH-PASMC as compared to donors-PASMC. Whereas PTX lacks effect on donor PASMC, it leads to downregulation of some of the contractile markers in IPAH PASMC, while HGF upregulates VCAN synthetic marker in IPAH PASMC. These results are now included in Figure 7H.

      Reviewer #2 (Recommendations For The Authors):

      The authors should double-check for grammar and typos in the manuscript. I caught a few such as "therefor" and others, but there could be more.

      We thank the reviewer for the effort and time in reading and evaluating the manuscript. To the best of our knowledge, we have corrected the grammatical errors in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1:

      (1) To improve the clarity of the work, I suggest a final note to the authors to say more explicitly that objective accuracy has a finer resolution *due to the number of "special circles" per trial* in their task. This task detail got lost in my read of the manuscript, and confused me with respect to the resolution of each accuracy measure.

      We agree with the reviewer that this would be a useful clarification and have therefore added the following statement to the Methods section on p. 20:

      “It should be noted that the OIP has a slightly finer resolution due to the number of special circles per trial.”

      (2) Similarly for clarification, they could point out that their exclusion criteria removes subjects that have lower OIP than their AIP analysis allows (which is good for comparison between OIP and AIP). Thus, it removes the possibility that very poor performing subjects (OIP) are forced to have a higher than actual AIP due to the range).

      We agree this would be a useful statement to add and have included the following sentence in the Supplement on p. 8:

      “Such a restriction of the threshold parameter was intended to increase the comparability between AIP and OIP, and hence improved the calculation of the reminder bias.”


      The following is the authors’ response to the previous reviews.

      Reviewer #1:

      (1) Upon reading their response to the question I had regarding AIP and OIP, a few more questions came up regarding OIP, AIP, how they're calculations differ, and how the latter was computed in R. I hope these help readers to clarify how to interpret these key measures, and the hypotheses that rely upon them.

      Regarding fitting, and in relation to power, is16 queries adequate to estimate an AIP using the R's quickpsy? That is, assuming some noise in the choice process, how recoverable is a true indifference points from 16 trials? If there's a parameter recovery analysis (ie generating choice via the fitting parameters, which will have built-in stochasticity, and seeing how well you recover the parameter) of interest would be helpful. It may help to characterize why the present study might differ from prior studies (maybe a power issue here).

      The reviewer is absolutely correct that we should have provided more detail when describing our fitting procedure for the psychometric curves. We have now addressed this by adding the following statements to the Methods section and Supplement:

      Page 20 in the main manuscript: “Fitting was done using the quickpsy package in R and more detail is given in the Supplement.”

      Pages 8 and 9 in the Supplement: 

      “Psychometric curve fitting

      We used the quickpsy package in R to fit psychometric curves to each participant’s choice data to derive their actual indifference point (AIP), which was operationalised as the threshold parameter when predicting reminder choices from target values. We restricted the possible parameter ranges from 2 to 9 for the threshold parameter and from 1 to 500 for the slope parameter, based on the task’s properties and pilot data. Apart from those parameter ranges, we used only default settings of the quickpsy() function.

      Each participant has only 16 trials (2 for each target value) contribute to the curve fitting. To understand the robustness of the AIP based on such limited data, we conducted a parameter recovery analysis. We simulated 16 trials based on each psychometric function and re-ran the curve fitting based on those simulated choices. There was close correspondence between the actual and recovered threshold parameters (or AIPs) with a correlation of r = 0.97, p < 0.001 (see also Figure S1). In contrast, the slope parameter—which was not central to any of our analyses—exhibited greater variability during the initial fitting. This increased uncertainty likely contributed to its poor recovery in the simulation, as evidenced by a near-zero correlation (r = −0.01, p = 0.82).”

      (2) Along these lines, it would be helpful for the reader to actually see the individual psychometric curve, now how quickpsy was used (did you fit left and right asymptotes), etc, to understand how that fitting procedure works and how the assumptions of the fitting procedure compare to what can be gleaned through seeing the choice curves plotted.

      As stated above, we used default settings of the quickpsy() function and hence assumed symmetric asymptotes at 0 and 1. However, the reviewer mentions “left and right asymptotes”, so maybe this question is about restricting the possible parameter range for the threshold, which we restricted to values from 2 to 9, as described above.

      Regarding the individual curves, we have now include the following statement on page 9 in the Supplement: “Figures S2 to S31 show the individual psychometric curves that were estimated for each participant.” Please refer to the Supplement for the added figures.

      (3) A more full explanation of quickpsy, its parameters, and how choice curves look might also generate interesting further questions to think about with respect to biases and compulsivity. Two individuals might have similar indifference points, but an asymptote might reflect a bias to always have some percent chance of for example to take the reminders even at the lowest offer available for them.

      We agree that this is an interesting focus which we will keep in mind for future studies.

      (4) Regarding comparing OIP to AIP: 

      For OIP, as far as I can understand, the resolution of it is decreased compared to AIP.  Accuracies for OIP can only be 0/4,1/4,2/4,3/4, or 4/4. Yet, the resolution for AIP is the full range of offers (2 to 9) with respect to the parameter of interest (the indifference point). Could this bias the estimation of OIP (for instance, someone who scored 25% might actually be much closer to either 50 or 0, but we can't tell due to resolution?

      As mentioned in response to comment (1), we restricted the parameter range for the thresholds to 2 to 9 to increase comparability. The reviewer is right to point out that the OIP  still has lower resolution than the AIP, which is one of the downsides of having a shortened paradigm (cf. the longer version in Gilbert et al., 2019), which is optimised for online testing, especially if used in combination with additional questionnaires. We have no reason to believe though that this could have led to any bias, especially none that would contribute to the individual differences which are the main focus of our study.

      Gilbert, S. J., Bird, A., Carpenter, J. M., Fleming, S. M., Sachdeva, C., & Tsai, P.-C. (2020). Optimal use of reminders: Metacognition, effort, and cognitive offloading. Journal of Experimental Psychology: General, 149(3), 501–517. https://doi.org/10.1037/xge0000652

      (5) Additionally, it seems like the upper and lower bounds of OIP (0 and 10) differ from AIP (2 and 9). Could this also introduce bias (for example, if someone terrible performance, the mean would artificially be higher under AIP than OIP because the smallest indifference point is 2 under AIP, but could be 0 under OIP.

      See our response to comment (1), we fixed the range to 2 to 9 (which was the range of target values used in our study).

      (6) Finally seeing how CIT actually corresponds to accuracy overall (not a relative measure like AIP compared to OIP) I think would also be helpful as this is related to most points noted above.

      We included the suggested test as an exploratory analysis on pages 42-43 in the Supplement: “Third, we were interested in how the transdiagnostic phenotypes would correspond to performance. We therefore fitted a model which predicted internal accuracy (that is, unaided task performance on trials where no reminders could be used) from AD, CIT, and the other covariates (age, education and gender). We found that neither AD, β = -0.02, SE = 0.05, t = 0.44, p = 0.658, nor CIT, β = -0.03, SE = 0.05, t = -0.66, p = 0.510, predicted internal accuracy.

      The full results can be found in Table S13 as well as in Figure S32.”

    1. Author response:

      We genuinely appreciate the reviewers' interest and recognition of our work. The comments and suggestions on the results presentation and interpretation are well taken. We plan to revise the manuscript based on the reviewers' recommendations in the following aspects.

      (1) We fully agree with the reviewer that the aged environment indeed would affect the myeloid and megakaryocyte differentiation behaviors of HSC. As a result, the clonal behaviors of HSCs presented in the current manuscript could be different from how HSCs differentiate in young mice. This point will be discussed in the revised manuscript.

      (2) We agree with the reviewer that the manuscript was not as easy to follow as many other papers in experimental hematology, primarily because the analyses presented in the current manuscript were not frequently used in previous studies. To address this, we will try to revise the manuscript using plain language to describe the results and conclusions. We will also provide graphical summary schematics where appropriate to present the findings better. We will further discuss our results in the context of previous findings to better illustrate the novelty of the current work.

      (3) We will provide more technical details of our analysis in the revised manuscript for readers to better understand how results are obtained and data analyses are performed in the current manuscript.

    1. Author response:

      We thank the reviewers for their thoughtful and constructive assessment of our manuscript. We agree that additional clarity on some key points in the manuscript will be valuable additions to this work. Both reviewers expressed a related concern regarding the basis for design and interpretation of our pyrazinamide ROS synergy experiments. 

      Reviewer 1:

      The in vitro experiments performed in this manuscript mainly report that PZA pre-treatment increases H2O2-mediated killing or inhibition. There is no direct evidence that clearly shows that oxidative stress drives the potent bactericidal activity of PZA. In these settings the oxidative stress is always applied after PZA pre-treatment and is therefore likely displaying the major lethal effect.

      Reviewer 2:

      The manuscript would benefit from a clear statement of the rationale for the protocols used to examine the synergy of PZA with ROS, the possible models their protocols could be testing, and then how their data supports or disproves the models being tested. The manuscript appears to propose, as stated in the title, that "Oxidative stress drives potent bactericidal activity of pyrazinamide...". However their experimental design more likely tests the effect of PZA on ROS sensitivity. Indeed, by the last figure, the authors begin the present their data as PZA sensitizing the bacteria to ROS. More clarity on these possible models and the different interpretations of the data should be considered.

      We agree that the data presented in the current version of the manuscript is incomplete in supporting our assertion that oxidative stress drives bactericidal activity of pyrazinamide. As both reviewers note, pretreatment of bacilli with pyrazinamide followed by challenge with ROS indicates that pyrazinamide enhances susceptibility to oxidative stress but does not address whether oxidative stress enhances susceptibility to pyrazinamide. Further, we neglected to provide information regarding why we chose to pretreat bacilli with pyrazinamide before ROS exposure. Over the course of our work, we had found that pyrazinoic acid, the active form of pyrazinamide, showed potent synergy with hydrogen peroxide.  In contrast to the time-dependent synergy that we observed between pyrazinamide and peroxide, synergy between pyrazinoic acid and peroxide did not require pretreatment. We will revise our manuscript to include results that address these key issues and we will carefully consider revising our interpretations accordingly.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The question of how central nervous system (CNS) lamination defects affect functional integrity is an interesting topic, though it remains a subject of debate. The authors focused on the retina, which is a relatively simple yet well-laminated tissue, to investigate the impact of afadin - a key component of adherens junctions on retinal structure and function. Their findings show that the loss of afadin leads to significant disruptions in outer retinal lamination, affecting the morphology and localization of photoreceptors and their synapses, as illustrated by high-quality images. Despite these severe changes, the study found that some functions of the retinal circuits, such as the ability to process light stimuli, could still be partially preserved. This research offers new insights into the relationship between retinal lamination and neural circuit function, suggesting that altered retinal morphology does not completely eliminate the capacity for visual information processing.

      Strengths:

      The retina serves as an excellent model for investigating lamination defects and functional integrity due to its relatively simple yet well-organized structure, along with the ease of analyzing visual function. The images depicting outer retinal lamination, as well as the morphology and localization of photoreceptors and their synapses, are clear and well-described. The paper is logically organized, progressing from structural defects to functional analysis. Additionally, the manuscript includes a comprehensive discussion of the findings and their implications.

      Weaknesses:

      While this work presents a wealth of descriptive data, it lacks quantification, which would help readers fully understand the findings and compare results with those from other studies. Furthermore, the molecular mechanisms underlying the defects caused by afadin deletion were not explored, leaving the role of afadin and its intracellular signaling pathways in retinal cells unclear. Finally, the study relied solely on electrophysiological recordings to demonstrate RGC function, which may not be robust enough to support the conclusions. Incorporating additional experiments, such as visual behavior tests, would strengthen the overall conclusions.

      Thank you very much for taking the time and thoughtful and valuable comments. Following your suggestions, we will quantify some of the histological data and explore the mechanisms underlying the defects of lamination and cell fate determination observed in afadin cKO retina. We will also try to examine the vision of afadin cKO mice by visual behavior tests.

      Reviewer #2 (Public review):

      Summary:

      Ueno et al. described substantial changes in the afadin knockout retina. These changes include decreased numbers of rods and cones, an increased number of bipolar cells, and disrupted somatic and synaptic organization of the outer limiting membrane, outer nuclear layer, and outer plexiform layer. In contrast, the number and organization of amacrine cells and retinal ganglion cells remain relatively intact. They also observed changes in ERG responses and RGC receptive fields and functions using MEA recordings.

      Strengths:

      The morphological characterization of retinal cell types and laminations is detailed and relatively comprehensive.

      Weaknesses:

      (1) The major weakness of this study, perhaps, is that its findings are predominantly descriptive and lack any mechanistic explanation. As afadin is key component of adherent junctions, its role in mediating retinal lamination has been reported previously (see PMCID: PMC6284407). Thus, a more detailed dissection of afadin's role in processes, such as progenitor generation, cell migration, or the formation of retinal lamination would provide greater insight into the defects caused by knocking out afadin.

      Thank you for taking the time and valuable comments. Following your suggestions, we will perform experiments to evaluate mechanisms of retinal lamination and cell fate determination defects observed in the afadin cKO retina. However, we would like to note that the paper cited in the comment (PMCID: PMC6284407) analyzed the function of afadin in the formation of dendrites of direction selective RGCs in the IPL, and that the word "lamination" refers to the layering of RGC dendrites in the IPL. Here, we analyzed the function of afadin in laminar construction of the retina.

      (2) The authors observed striking changes in the numbers of rods, cones, and BCs, but not in ACs or RGCs. The causes of these distinct changes in specific cell classes remain unclear. Detailed characterizations, such as the expression of afadin in early developing retina, tracing cell numbers across various early developmental time points, and staining of apoptotic markers in developing retinal cells, could help to distinguish between defects in cell generation and survival, providing a better understand of the underlying causes of these phenotypes.

      Following your suggestion, we will perform the experiments to characterize the causes of distinct changes in the afadin cKO retina.

      (3) Although the total number of ACs or RGCs remains unchanged, their localizations are somewhat altered (Figures 2E and 4E). Again, the cause of the altered somatic localization in ACs and RGCs is unclear.

      To clarify the reviewer’s point, we will analyze the progenitor and those cell positions in the developing stage of the afadin cKO retina.

      (4) One conclusion that the authors emphasise is that the function of RGCs remains detectable despite a major disrupted outer plexiform layer. However, the organization of the inner plexiform layer remains largely intact, and the axonal innervation of BCs remains unchanged. This could explain the function integrity of RGCs. In addition, the resolution of detecting RGCs by MEA is low, as they only detected 5 clusters in heterozygous animals. This represents an incomplete clustering of RGC functional types and does not provide a full picture of how functional RGC types are altered in the afadin knockout.

      We appreciate the reviewer’s insightful comments. Although our clustering of RGC subtypes in afadin cHet retinas resulted in only five clusters, the key finding of our study is the preservation of RGC receptive fields in afadin cKO retinas, despite severe photoreceptor loss (reduced to about one-third of normal) and disruption of photoreceptor-bipolar cell synapses in the OPL. This suggests that even with crucial damage to the OPL, the primary photoreceptor-bipolar-RGC pathway can still function as long as the IPL remains intact. Moreover, the presence of rod-driven responses in RGCs indicates that the AII amacrine cell-mediated rod pathway may also continue to function. We agree that our functional clustering in afadin cHet retinas was incomplete. However, we guess that the absence of RGCs with fast temporal responses in afadin cKO retinas may not simply due to the loss of specific RGC subtypes but due to disrupted synaptic connections between photoreceptors and fast-responding bipolar cells. Furthermore, the structural abnormalities in retinal lamination in afadin cKO retinas may alter RGC response properties, making strict functional classification less meaningful. We would like to emphasize the finding that disruption of the retinal lamination in afadin cKO retinas leads to the absence of RGCs with fast temporal response properties, rather than focusing solely on the classification of RGC subtypes.

      Minor Comments:

      (1) Line 56-67: "Overall, these findings provide the first evidence that retinal circuit function can be partially preserved even when there are significant disruptions in retinal lamination and photoreceptor synapses" There is existing evidence showing substantial adaption in retinal function when retinal lamination or photoreceptor synapses are disrupted, such as PMCID: PMC10133175.

      Thank you for your comment. The paper you mentioned is crucial for discussing and considering the results of our study. We will refer the paper and mention in Discussion.  

      (2) Line 114-115: "we focused on afadin, which is a scaffolding protein for nectin and has no ortholog in mice." The term "Ortholog" is misused here, as the mouse has an afadin gene. Should the intended meaning be that afadin has no other isoforms in mouse?

      Thank you for pointing it out. As we misused "Ortholog" as "Paralog", we will revise it.

    1. Author response:

      eLife Assessment

      This study presents a valuable theoretical exploration on the electrophysiological mechanisms of ionic currents via gap junctions in hippocampal CA1 pyramidal-cell models, and their potential contribution to local field potentials (LFPs) that is different from the contribution of chemical synapses. The biophysical argument regarding electric dipoles appears solid, but the evidence can be more convincing if their predictions are tested against experiments. A shortage of model validation and strictly comparable parameters used in the comparisons between chemical vs. junctional inputs makes the modeling approach incomplete; once strengthened, the finding can be of broad interest to electrophysiologists, who often make recordings from regions of neurons interconnected with gap junctions.

      We gratefully thank the editors and the reviewers for the time and effort in rigorously assessing our manuscript, for the constructive review process, for their enthusiastic responses to our study, and for the encouraging and thoughtful comments. We especially thank you for deeming our study to be a valuable exploration on the differential contributions of active dendritic gap junctions vs. chemical synapses to local field potentials. We thank you for your appreciation of the quantitative biophysical demonstration on the differences in electric dipoles that appear in extracellular potentials with gap junctions vs. chemical synapses.

      However, we are surprised by aspects of the assessment that resulted in deeming the approach incomplete, especially given the following with specific reference to the points raised:

      (1) Testing against experiments: With specific reference to gap junctions, quantitative experimental verification becomes extremely difficult because of the well-established nonspecificities associated with gap junctional modulators (Behrens et al., 2011; Rouach et al., 2003). The non-specific actions of gap junctions are tabulated in Table 2 of (Szarka et al., 2021), reproduced below. In addition, genetic knockouts of gap junctional proteins are either lethal or involve functional compensation (Bedner et al., 2012; Lo, 1999), together making causal links to specific gap junctional contributions with currently available techniques infeasible.

      In addition, the complex interactions between co-existing chemical synaptic, gap junctional, and active dendritic contributions from several cell-types make the delineation of the contributions of specific components infeasible with experimental approaches. A computational approach is the only quantitative route to specifically delineate the contributions of individual components to extracellular potentials, as seen from studies that have addressed the question of active dendritic contributions to field potentials (Halnes et al., 2024; Ness et al., 2018; Reimann et al., 2013; Sinha & Narayanan, 2015, 2022) or spiking contributions to local field potentials (Buzsaki et al., 2012; Gold et al., 2006; Schomburg et al., 2012). The biophysically and morphologically realistic computational modeling route is therefore invaluable in assessing the impact of individual components to extracellular field potentials (Einevoll et al., 2019; Halnes et al., 2024).

      Together, we emphasize that the computational modeling route is currently the only quantitative methodology to delineate the contributions of gap junctions vs. chemical synapses to extracellular potentials.

      (2) Model validation: The model used in this study was adopted from a physiologically validated model from our laboratory (Roy & Narayanan, 2021). Please note that the original model was validated against several physiological measurements along the somatodendritic axis. We sincerely regret our oversight in not mentioning clearly that we have used an existing, thoroughly physiologically-validated model from our laboratory in this study.

      (3) Comparisons between chemical vs. junctional inputs: We had taken elaborate precautions in our experimental design to match the intracellular electrophysiological signatures with reference to synchronous as well as oscillatory inputs, irrespective of whether inputs arrived through gap junctions or chemical synapses.

      In a revised manuscript, we will address all the concerns raised by the reviewers in detail. We have provided point-by-point responses to reviewers’ helpful and constructive comments below. We thank the editors and the reviewers for this constructive review process, which we believe will help us in improving our manuscript with specific reference to emphasizing the novelty of our approach and conclusions.

      Reviewer #1 (Public review):

      This manuscript makes a significant contribution to the field by exploring the dichotomy between chemical synaptic and gap junctional contributions to extracellular potentials. While the study is comprehensive in its computational approach, adding experimental validation, network-level simulations, and expanded discussion on implications would elevate its impact further.

      We gratefully thank you for your time and effort in rigorously assessing our manuscript, for the enthusiastic response, and the encouraging and thoughtful comments on our study. In what follows, we have provided point-by-point responses to the specific comments.

      Strengths

      Novelty and Scope

      The manuscript provides a detailed investigation into the contrasting extracellular field potential (EFP) signatures arising from chemical synapses and gap junctions, an underexplored area in neuroscience. It highlights the critical role of active dendritic processes in shaping EFPs, pushing forward our understanding of how electrical and chemical synapses contribute differently to extracellular signals.

      We thank you for the positive comments on the novelty of our approach and how our study addresses an underexplored area in neuroscience. The assumptions about the passive nature of dendritic structures had indeed resulted in an underestimation of the contributions of gap junctions to extracellular potentials. Once the realities of active structures are accounted for, the contributions of gap junctions increases by several orders of magnitude compared to passive structures (Fig. 1D).

      Methodological Rigor

      The use of morphologically and biophysically realistic computational models for CA1 pyramidal neurons ensures that the findings are grounded in physiological relevance. Systematic analysis of various factors, including the presence of sodium, leak, and HCN channels, offers a clear dissection of how transmembrane currents shape EFPs.

      We thank you for your encouraging comments on the experimental design and methodological rigor of our approach.

      Biological Relevance

      The findings emphasize the importance of incorporating gap junctional inputs in analyses of extracellular signals, which have traditionally focused on chemical synapses. The observed polarity differences and spectral characteristics provide novel insights into how neural computations may differ based on the mode of synaptic input.

      We thank you for your positive comments on the biological relevance of our approach. We also gratefully thank you for emphasizing the two striking novelties unveiling the dichotomy between gap junctions and chemical synapses in their contributions to field potentials: polarity differences and spectral characteristics.

      Clarity and Depth

      The manuscript is well-structured, with a logical progression from synchronous input analyses to asynchronous and rhythmic inputs, ensuring comprehensive coverage of the topic.

      We sincerely thank you for the positive comments on the structure and comprehensive coverage of our manuscript encompassing different types of inputs that neurons typically receive.

      Weaknesses and Areas for Improvement

      Generality and Validation

      The study focuses exclusively on CA1 pyramidal neurons. Expanding the analysis to other cell types, such as interneurons or glial cells, would enhance the generalizability of the findings. Experimental validation of the computational predictions is entirely absent. Empirical data correlating the modeled EFPs with actual recordings would strengthen the claims.

      We thank you for raising this important point. The prime novelty and the principal conclusion of this study is that gap junctional contributions to extracellular field potentials are orders of magnitude higher when the active nature of cellular compartments are accounted for. The lacuna in the literature has been consequent to the assumption that cellular compartments are passive, resulting in the dogma that gap junctional contributions to field potentials are negligible. Despite knowledge about active dendritic structures for decades now, this assumption has kept studies from understanding or even exploring the contributions of gap junctions to field potentials. The rationale behind the choice of a computational approach to address the lacuna were as follows:

      (1) The complex interactions between co-existing chemical synaptic, gap junctional, and active dendritic contributions from several cell-types make the delineation of the contributions of specific components infeasible with experimental approaches. A computational approach is the only quantitative route to specifically delineate the contributions of individual components to extracellular potentials, as seen from studies that have addressed the question of active dendritic contributions to field potentials (Halnes et al., 2024; Ness et al., 2018; Reimann et al., 2013; Sinha & Narayanan, 2015, 2022) or spiking contributions to local field potentials (Buzsaki et al., 2012; Gold et al., 2006; Schomburg et al., 2012). The biophysically and morphologically realistic computational modeling route is therefore invaluable in assessing the impact of individual components to extracellular field potentials (Einevoll et al., 2019; Halnes et al., 2024).

      (2) With specific reference to gap junctions, quantitative experimental verification becomes extremely difficult because of the well-established non-specificities associated with gap junctional modulators (Behrens et al., 2011; Rouach et al., 2003). The non-specific actions of gap junctions are tabulated in Table 2 of (Szarka et al., 2021). In addition, genetic knockouts of gap junctional proteins are either lethal or involve functional compensation (Bedner et al., 2012; Lo, 1999), together making causal links to specific gap junctional contributions with currently available techniques infeasible.

      We highlight the novelty of our approach and of the conclusions about differences in extracellular signatures associated with active-dendritic chemical synapses and gap junctions, against these experimental difficulties. We emphasize that the computational modeling route is currently the only quantitative methodology to delineate the contributions of gap junctions vs. chemical synapses to extracellular potentials. Our analyses clearly demonstrates that gap junctions do contribute to extracellular potentials if the active nature of the cellular compartments is explicitly accounted for (Fig. 1D). We also show theoretically well-grounded and mechanistically elucidated differences in polarity (Figs. 1–3) as well as in spectral signatures (Figs. 5–8) of extracellular potentials associated with gap junctional vs. chemical synaptic inputs. Together, our fundamental demonstration in this study is the critical need to account for the active nature of cellular compartments in studying gap junctional contributions of extracellular potentials, with CA1 pyramidal neuronal dendrites used as an exemplar.

      In a revised version of the manuscript, we will emphasize the motivations for the approach we took, highlighting the specific novelties both in methodological and conceptual aspects, finally emphasizing the need to account for other cell types and gap junctional contributions therein. Importantly, we will emphasize the non-specificities associated with gap-junctional blockers as the reason why experimental delineation of gap junctional vs. chemical synaptic contributions to LFP becomes tedious. We hope that these points will underscore the need for the computational approach that we took to address this important question, apart from the novelties of the manuscript.

      Role of Active Dendritic Currents

      The paper emphasizes active dendritic currents, particularly the role of HCN channels in generating outward currents under certain conditions. However, further discussion of how this mechanism integrates into broader network dynamics is warranted.

      We thank you for this constructive suggestion. We agree that it is important to consider the implications for broader network dynamics of the outward HCN currents that are observed with synchronous inputs. In a revised manuscript, we will elaborate on the implications of the outward HCN current to network dynamics in detail.

      Analysis of Plasticity

      While the manuscript mentions plasticity in the discussion, there are no simulations that account for activity-dependent changes in synaptic or gap junctional properties. Including such analyses could significantly enhance the relevance of the findings.

      We thank you for this constructive suggestion. Please note that we have presented consistent results for both fewer and more gap junctions in our analyses (Figure 1 with 217 gap junctions and Supplementary Figure 1 with 99 gap junctions). Thus, our fundamentally novel result that gap junctions onto active dendrites differentially shape LFPs holds true irrespective of the relative density of gap junctions onto the neuron. Thus, these results demonstrate that the conclusions about their contributions to LFP are invariant to plasticity in their gap junctional numerosity.

      We had only briefly mentioned plasticity in the Introduction to highlight the different modes of synaptic transmission and to emphasize that plasticity has been studied in both chemical synapses and gap junctions, playing a role in learning and adaptation. However, if this wording inadvertently suggests that our study includes plasticity simulations, we would remove it from Introduction in the updated manuscript to ensure clarity.

      In the ‘Limitations of analyses and future studies’ section in Discussion, we suggested investigating the impact of plasticity mechanisms—specifically, activity-dependent plasticity of ion channels—on synaptic receptors vs. gap junctions and their effects on extracellular field potentials under various input conditions and plasticity combinations across different structures. We fully agree with the reviewer that such studies would offer valuable insights and further enhance the broader relevance of our findings. However, while our study implies this direction, it was not the primary focus of our investigation.

      In the revised manuscript, we will expand on intrinsic/synaptic plasticity and how they could contribute to LFPs (Sinha & Narayanan, 2015, 2022), while also pointing to simulations with different numbers of gap junction in this context.

      Frequency-Dependent Effects

      The study demonstrates that gap junctional inputs suppress highfrequency EFP power due to membrane filtering. However, it could delve deeper into the implications of this for different brain rhythms, such as gamma or ripple oscillations.

      We sincerely thank you for these insightful comments that we totally agree with. As it so happens, this manuscript forms the first part of a broader study where we explore the implications of gap junctions to ripple frequency oscillations. The ripple oscillations part of the work was presented as a poster in the Society for Neuroscience (SfN) annual meeting 2024 (Sirmaur & Narayanan, 2024). There, we simulate a neuropil made of hundreds of morphologically realistic neurons to assess the role of different synaptic inputs — excitatory, inhibitory, and gap junctional — and active dendrites to ripple frequency oscillations. We demonstrate there that the conclusions from single-neuron simulations in this current manuscript extend to a neuropil with several neurons, each receiving excitatory, inhibitory and gap-junctional inputs, especially with reference to high-frequency oscillations. Our networkbased analyses unveiled a dominant mediatory role of patterned inhibition in ripple generation, with recurrent excitations through chemical synapses and gap junctions in conjunction with return-current contributions from active dendrites playing regulatory roles in determining ripple characteristics (Sirmaur & Narayanan, 2024).

      Our principal goal in this study, therefore, was to lay the single-neuron foundation for network analyses of the impact of gap junctions on LFPs. We are preparing the network part of the study, with a strong focus on ripple-frequency oscillations, for submission for peer review separately.

      In a revised manuscript, we will mention the results from our SfN abstract with reference to network simulations and high-frequency oscillations, while also presenting discussions from other studies on the role of gap junctions in synchrony and LFP oscillations.

      Visualization

      Figures are dense and could benefit from more intuitive labeling and focused presentations. For example, isolating key differences between chemical and gap junctional inputs in distinct panels would improve clarity.

      We thank you for this constructive suggestion. In the revised manuscript, we will enhance the visualization of the figures to ensure a clearer and more intuitive distinction between chemical synapses and gap junctions.

      Contextual Relevance

      The manuscript touches on how these findings relate to known physiological roles of gap junctions (e.g., in gamma rhythms) but does not explore this in depth. Stronger integration of the results into known neural network dynamics would enhance its impact.

      We sincerely appreciate your valuable suggestion and acknowledge the importance of integrating our results into established neural network dynamics, particularly their implications for gamma rhythms. We will address this aspect more comprehensively in the revised version of our manuscript.

      Reviewer #2 (Public review):

      This computational work examines whether the inputs that neurons receive through electrical synapses (gap junctions) have different signatures in the extracellular local field potential (LFP) compared to inputs via chemical synapses. The authors present the results of a series of model simulations where either electric or chemical synapses targeting a single hippocampal pyramidal neuron are activated in various spatio-temporal patterns, and the resulting LFP in the vicinity of the cell is calculated and analyzed. The authors find several notable qualitative differences between the LFP patterns evoked by gap junctions vs. chemical synapses. For some of these findings, the authors demonstrate convincingly that the observed differences are explained by the electric vs. chemical nature of the input, and these results likely generalize to other cell types. However, in other cases, it remains plausible (or even likely) that the differences are caused, at least partly, by other factors (such as different intracellular voltage responses due to, e.g., the unequal strengths of the inputs). Furthermore, it was not immediately clear to me how the results could be applied to analyze more realistic situations where neurons receive partially synchronized excitatory and inhibitory inputs via chemical and electric synapses.

      We gratefully thank you for your time and effort in rigorously assessing our manuscript, for the enthusiastic response, and the encouraging and thoughtful comments on our study. In what follows, we have provided point-by-point responses to the specific comments.

      Strengths

      The main strength of the paper is that it draws attention to the fact that inputs to a neuron via gap junctions are expected to give rise to a different extracellular electric field compared to inputs via chemical synapses, even if the intracellular effects of the two types of input are similar. This is because, unlike chemical synaptic inputs, inputs via gap junctions are not directly associated with transmembrane currents. This is a general result that holds independent of many details such as the cell types or neurotransmitters involved.

      We gratefully thank you for the positive comments and the encouraging words about the novel contributions of our study. We are particularly thankful to you for your comment on the generality of our conclusions that hold for different cell types and neurotransmitters involved.

      Another strength of the article is that the authors attempt to provide intuitive, non-technical explanations of most of their findings, which should make the paper readable also for non-expert audiences (including experimentalists).

      We sincerely thank you for the positive comments about the readability of the paper.

      Weaknesses

      The most problematic aspect of the paper relates to the methodology for comparing the effects of electric vs. chemical synaptic inputs on the LFP. The authors seem to suggest that the primary cause of all the differences seen in the various simulation experiments is the different nature of the input, and particularly the difference between the transmembrane current evoked by chemical synapses and the gap junctional current that does not involve the extracellular space. However, this is clearly an oversimplification: since no real attempt is made to quantitatively match the two conditions that are compared (e.g., regarding the strength and temporal profile of the inputs), the differences seen can be due to factors other than the electric vs. chemical nature of synapses. In fact, if inputs were identical in all parameters other than the transmembrane vs. directly injected nature of the current, the intracellular voltage responses and, consequently, the currents through voltage-gated and leak currents would also be the same, and the LFPs would differ exactly by the contribution of the transmembrane current evoked by the chemical synapse. This is evidently not the case for any of the simulated comparisons presented, and the differences in the membrane potential response are rather striking in several cases (e.g., in the case of random inputs, there is only one action potential with gap junctions, but multiple action potentials with chemical synapses). Consequently, it remains unclear which observed differences are fundamental in the sense that they are directly related to the electric vs. chemical nature of the input, and which differences can be attributed to other factors such as differences in the strength and pattern of the inputs (and the resulting difference in the neuronal electric response).

      We thank you for raising this important point. We would like to emphasize that our experimental design and analyses quantitatively account for the spatial distribution and temporal pattern of specific kinds of inputs that arrive through gap junctions and chemical synapses. We submit that our analyses quantitatively demonstrates that the fundamental difference between the gap junctional and chemical synaptic contributions to extracellular potentials is the absence of the direct transmembrane component from gap junctional inputs. We elucidate these points below:

      (1) Spatial distribution: The inputs were distributed randomly across the basal dendrites, irrespective of whether they were through gap junctions or chemical synapses. For both chemical synapses and gap junctions, the inputs were of the same nature: excitatory.

      (2) Different numbers of inputs: We have presented consistent results for both fewer and more gap junctions or chemical synapses in our analyses (see Figure 1 with 217 gap junctions or 245 chemical synapses and Supplementary Figure 2 with 99 gap junctions or 30 chemical synapses). Our fundamentally novel result that gap junctions onto active dendrites shape LFPs holds true irrespective of the relative density of gap junctions onto the neuron.

      (3) Synchronous inputs (Figs. 1–3): For chemical synapses, the waveforms are in the shape of postsynaptic potentials. For gap junctional inputs, the waveforms are in the shape of postsynaptic potentials or dendritic spikes (to respect the active nature of inputs from the other cell). Here, the electrical response of the postsynaptic cell is identical irrespective of whether inputs arrive through gap junctions or chemical synapses: an action potential. We quantitatively matched the strengths such that the model generated a single action potential in response to synchronous inputs, irrespective of whether they arrived through chemical synaptic and gap junctional inputs. We mechanistically analyze the contributions of different cellular components and show that the direct transmembrane current in chemical synapses is the distinguishing factor that determines the dichotomy between the contributions of gap junctions vs. chemical synapses to extracellular potentials (Figs. 2–3). In a revised manuscript, we will show the intracellular responses to demonstrate that they are electrically matched.

      (4) Random inputs (Fig. 4): For random inputs, we did not account for the number of action potentials that arrived, as the only observation we made here was with reference to the biphasic nature of the extracellular potentials with gap junctional inputs in the “No Sodium” scenario. We note that in the “No Sodium” scenario, the time-domain amplitudes were comparable for the field potentials (Fig. 4B, Fig. 4D).

      (5) Rhythmic inputs (Fig. 5–8): For rhythmic inputs, please note that the intracellular and extracellular waveforms for every frequency are provided in supplementary figures S5– S11. It may be noted that the intracellular responses are comparable. In simulations for assessing spike-LFP comparison, we tuned the strengths to produce a single spike per cycle, ensuring fair comparison of LFPs with gap junctions vs. chemical synapses.

      Taken together, we demonstrate through explicit sets of simulations and analyses that the differences in LFPs were not driven by the strength or patterns of the inputs but rather by the differences in direct transmembrane currents, which are subsequently reflected in the LFPs. In a revised manuscript, we will add a section to emphasize these points apart from providing intracellular traces for cases where they are not provided.

      Some of the explanations offered for the effects of cellular manipulations on the LFP appear to be incomplete. More specifically, the authors observed that blocking leak channels significantly changed the shape of the LFP response to synchronous synaptic inputs - but only when electric inputs were used, and when sodium channels were intact. The authors seemed to attribute this phenomenon to a direct effect of leak currents on the extracellular potential - however, this appears unlikely both because it does not explain why blocking the leak conductance had no effect in the other cases, and because the leak current is several orders of magnitude smaller than the spike-generating currents that make the largest contributions to the LFP. An indirect effect mediated by interactions of the leak current with some voltage-gated currents appears to be the most likely explanation, but identifying the exact mechanism would require further simulation experiments and/or a detailed analysis of intracellular currents and the membrane potential in time and space.

      We thank you for raising this important question. Leak channels were among the several contributors to the positive deflection observed in LFPs associated with gap junctions. This effect was present not only in gap junctional models with intact sodium conductance but also in the no-sodium model, where the amplitude of the positive deflection was reduced across other models as well (Fig. 2F, I). Furthermore, even in the absence of leak conductance, a small positive deflection was still observed (Fig. 2F), leading us to further investigate other transmembrane currents over time and across spatial locations, from the proximal to the distal dendritic ends relative to the soma (Fig. 3D). We had observed that the dominant contributor in the case of chemical synapses was the inward synaptic current (Fig. 3A), whereas for gap junctions, the primary contributors were leak conductance along with other outward currents, such as potassium and HCN currents (Fig. 3D). Together, the direct transmembrane component of chemical synapses provides a dominant contribution to extracellular potentials. This dominance translates to differences in the relative contributions of indirect currents (including leak currents) to extracellular potentials associated chemical synaptic vs. gap junctional inputs. Our analyses of the exact ionic mechanisms (Fig. 3) demonstrates the involvement of several ion channels contributing to the indirect component in either scenario.

      In every simulation experiment in this study, inputs through electric synapses are modeled as intracellular current injections of pre-determined amplitude and time course based on the sampled dendritic voltage of potential synaptic partners. This is a major simplification that may have a significant impact on the results. First, the current through gap junctions depends on the voltage difference between the two connected cellular compartments and is thus sensitive to the membrane potential of the cell that is treated as the neuron "receiving" the input in this study (although, strictly speaking, there is no pre- or postsynaptic neuron in interactions mediated by gap junctions). This dependence on the membrane potential of the target neuron is completely missing here. A related second point is that gap junctions also change the apparent membrane resistance of the neurons they connect, effectively acting as additional shunting (or leak) conductance in the relevant compartments. This effect is completely missed by treating gap junctions as pure current sources.

      We thank you for raising this important point. We agree with the analyses presented by the reviewer on the importance of network simulations and bidirectional gap junctions that respect the voltages in both neurons. However, the complexities of LFP modeling precludes modeling of networks of morphologically realistic models with patterns of stimulations occurring across the dendritic tree. LFP modeling studies predominantly uses “post-synaptic” currents to analyze the impact of different patterns of inputs arriving on to a neuron, even when chemical synaptic inputs are considered. Explicitly, individual neurons are separately simulated with different patterns of synaptic inputs, the transmembrane current at different locations recorded, and the extracellular potential is then computed using line source approximation (Buzsaki et al., 2012; Gold et al., 2006; Halnes et al., 2024; Ness et al., 2018; Reimann et al., 2013; Schomburg et al., 2012; Sinha & Narayanan, 2015, 2022). Even in scenarios where a network is analyzed, a hybrid approach involving the outputs of a pointneuron-based network being coupled to an independent morphologically realistic neuronal model is employed (Hagen et al., 2016; Martinez-Canada et al., 2021; Mazzoni et al., 2015). Given the complexities associated with the computation of electrode potentials arising as a distance-weighted summation of several transmembrane currents, these simplifications becomes essential.

      Our approach models gap junctional currents in a similar way as the other model incorporate synaptic currents in LFP modeling (Buzsaki et al., 2012; Gold et al., 2006; Halnes et al., 2024; Ness et al., 2018; Reimann et al., 2013; Schomburg et al., 2012; Sinha & Narayanan, 2015, 2022). As gap junctions are typically implemented as resistors from the other neuronal compartment, we accounted for gap-junctional variability in our model by randomizing the scaling-factors and the exact waveforms that arrive through individual gap junctions at specific locations. Thus, the inputs were not pre-determined by “pre” neurons. Instead, the recorded voltages from potential synaptic partner neurons were randomized across locations and scaled using factors at the dendrites before being injected into the target neuron (Supplementary Fig. S1). While incorporating a network of interconnected neurons is indeed important, we utilized biophysical, morphologically realistic CA1 neuron model with different sets of input patterns to model LFPs, which were derived from the total transmembrane currents across all compartments of the multi-compartmental neuron model. Given the complexity of this approach, adding further network-level interactions or pre-post connections would have been computationally demanding.

      In a revised manuscript, we will introduce the general methodology used in LFP modeling studies to introduce synaptic currents. We will emphasize that our study extends this approach to modeling gap junctional inputs, while also highlighting randomization of locations and the scaling process in assigning gap junctional synaptic strengths.

      One prominent claim of the article that is emphasized even in the abstract is that HCN channels mediate an outward current in certain cases. Although this statement is technically correct, there are two reasons why I do not consider this a major finding of the paper. First, as the authors acknowledge, this is a trivial consequence of the relatively slow kinetics of HCN channels: when at least some of the channels are open, any input that is sufficiently fast and strong to take the membrane potential across the reversal potential of the channel will lead to the reversal of the polarity of the current. This effect is quite generic and well-known and is by no means specific to gap junctional inputs or even HCN channels. Second, and perhaps more importantly, the functional consequence of this reversed current through HCN channels is likely to be negligible. As clearly shown in Supplementary Figure S3, the HCN current becomes outward only for an extremely short time period during the action potential, which is also a period when several other currents are also active and likely dominant due to their much higher conductances. I also note that several of these relevant facts remain hidden in Figure 3, both because of its focus on peak values, and because of the radically different units on the vertical axes of the current plots.

      We thank you for raising this point and agree with you on every point. Please note that we do not assert that the outward HCN currents are exclusively associated with gap junctional inputs. Rather, our results show that synchronous inputs generate outward HCN currents in both chemical synapses (Fig. 3B; positive/outward HCN currents, except in the no sodium or leak model) and gap junctions (Fig. 3D; positive/outward HCN currents). We emphasized this in the case of gap junctions because, in the absence of inward synaptic currents, HCN (acting as outward currents with synchronous inputs) contributed to the positive deflection observed in the LFPs. While HCN would also contribute in the case of chemical synapses, its effect was negligible due to the presence of large inward synaptic currents. Since LFPs reflect the collective total transmembrane currents, the dominant contributors differ between these two scenarios, which we aimed to highlight. Since HCN exhibited outward currents in our synchronous input simulations, we have elaborated on this mechanism in the supplementary figure (Fig. S3). Our intention was not to emphasize this effect for only one synaptic mode but rather to highlight HCN's contribution to the positive deflection as one of the contributing factors.

      We agree that HCN currents are relatively small in magnitude; therefore, our conclusions were based on HCN being one of the several contributing factors. Leak conductance and other outward conductances, including HCN currents (Fig. 3D), collectively contribute to the positive deflections observed in the case of gap junctional synchronous inputs.

      We will ensure that we will account for all the points appropriately in a revised manuscript.

      Finally, I missed an appropriate validation of the neuronal model used, and also the characterization of the effects of the in silico manipulations used on the basic behavior of the model. As far as I understand, the model in its current form has not been used in other studies. If this is the case, it would be important to demonstrate convincingly through (preferably quantitative) comparisons with experimental data using different protocols that the model captures the physiological behavior of at least the relevant compartments (in this case, the dendrites and the soma) of hippocampal pyramidal neurons sufficiently well that the results of the modeling study are relevant to the real biological system. In addition, the correct interpretation of various manipulations of the model would be strongly facilitated by investigating and discussing how the physiological properties of the model neuron are affected by these alterations.

      We thank you for raising this important point. The CA1 pyramidal neuronal model used in this study is built with ion-channel models derived from biophysical and electrophysiological recordings from these cells. As mentioned in the Methods section “Dynamics and distribution of active channels” and Supplementary Table S1, models for individual channels, their gating kinetics, and channel distributions across the somatodendritic arbor (wherever known) are all derived from their physiological equivalents. Importantly, these values were derived from previously validated models from the laboratory, which contain these very ion channel models and the exact same morphology (Roy & Narayanan, 2021). Please compare Supplementary Table S1 with the Table 1 from (Roy & Narayanan, 2021). Please note that this model was validated against several physiological measurements along the somatodendritic axis (Fig. 1 of (Roy & Narayanan, 2021)).

      In a revised manuscript, we will explicitly mention this while also mentioning the different physiological properties that were used for the validation process from (Roy & Narayanan, 2021). We sincerely regret not mentioning these details in the current version of our manuscript.

      We will fix these in a revised version of the manuscript.

      References

      Bedner, P., Steinhauser, C., & Theis, M. (2012). Functional redundancy and compensation among members of gap junction protein families? Biochim Biophys Acta, 1818(8), 1971-1984. https://doi.org/10.1016/j.bbamem.2011.10.016

      Behrens, C. J., Ul Haq, R., Liotta, A., Anderson, M. L., & Heinemann, U. (2011). Nonspecific effects of the gap junction blocker mefloquine on fast hippocampal network oscillations in the adult rat in vitro. Neuroscience, 192, 11-19. https://doi.org/10.1016/j.neuroscience.2011.07.015

      Buzsaki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci, 13(6), 407-420. https://doi.org/10.1038/nrn3241

      Einevoll, G. T., Destexhe, A., Diesmann, M., Grun, S., Jirsa, V., de Kamps, M., Migliore, M., Ness, T. V., Plesser, H. E., & Schurmann, F. (2019). The Scientific Case for Brain Simulations. Neuron, 102(4), 735-744. https://doi.org/10.1016/j.neuron.2019.03.027

      Gold, C., Henze, D. A., Koch, C., & Buzsaki, G. (2006). On the origin of the extracellular action potential waveform: A modeling study. J Neurophysiol, 95(5), 3113-3128. https://doi.org/10.1152/jn.00979.2005

      Hagen, E., Dahmen, D., Stavrinou, M. L., Linden, H., Tetzlaff, T., van Albada, S. J., Grun, S., Diesmann, M., & Einevoll, G. T. (2016). Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks. Cereb Cortex, 26(12), 4461-4496. https://doi.org/10.1093/cercor/bhw237

      Halnes, G., Ness, T. V., Næss, S., Hagen, E., Pettersen, K. H., & Einevoll, G. T. (2024). Electric Brain Signals: Foundations and Applications of Biophysical Modeling. Cambridge University Press. https://doi.org/DOI: 10.1017/9781009039826

      Lo, C. W. (1999). Genes, gene knockouts, and mutations in the analysis of gap junctions. Dev Genet, 24(1-2), 1-4. https://doi.org/10.1002/(SICI)1520-6408(1999)24:1/2<1::AIDDVG1>3.0.CO;2-U

      Martinez-Canada, P., Ness, T. V., Einevoll, G. T., Fellin, T., & Panzeri, S. (2021). Computation of the electroencephalogram (EEG) from network models of point neurons. PLoS Comput Biol, 17(4), e1008893. https://doi.org/10.1371/journal.pcbi.1008893

      Mazzoni, A., Linden, H., Cuntz, H., Lansner, A., Panzeri, S., & Einevoll, G. T. (2015). Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models. PLoS Comput Biol, 11(12), e1004584. https://doi.org/10.1371/journal.pcbi.1004584

      Ness, T. V., Remme, M. W. H., & Einevoll, G. T. (2018). h-Type Membrane Current Shapes the Local Field Potential from Populations of Pyramidal Neurons. J Neurosci, 38(26), 6011-6024. https://doi.org/10.1523/jneurosci.3278-17.2018

      Reimann, M. W., Anastassiou, C. A., Perin, R., Hill, S. L., Markram, H., & Koch, C. (2013). A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron, 79(2), 375-390. https://doi.org/10.1016/j.neuron.2013.05.023

      Rouach, N., Segal, M., Koulakoff, A., Giaume, C., & Avignone, E. (2003). Carbenoxolone blockade of neuronal network activity in culture is not mediated by an action on gap junctions. Journal of Physiology, 553(Pt 3), 729-745. https://doi.org/10.1113/jphysiol.2003.053439

      Roy, A., & Narayanan, R. (2021). Spatial information transfer in hippocampal place cells depends on trial-to-trial variability, symmetry of place-field firing, and biophysical heterogeneities. Neural Netw, 142, 636-660. https://doi.org/10.1016/j.neunet.2021.07.026

      Schomburg, E. W., Anastassiou, C. A., Buzsaki, G., & Koch, C. (2012). The spiking component of oscillatory extracellular potentials in the rat hippocampus. J Neurosci, 32(34), 11798-11811. https://doi.org/10.1523/JNEUROSCI.0656-12.2012

      Sinha, M., & Narayanan, R. (2015). HCN channels enhance spike phase coherence and regulate the phase of spikes and LFPs in the theta-frequency range. Proc Natl Acad Sci U S A, 112(17), E2207-2216. https://doi.org/10.1073/pnas.1419017112

      Sinha, M., & Narayanan, R. (2022). Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations. Neuroscience, 489, 111-142. https://doi.org/10.1016/j.neuroscience.2021.08.035

      Sirmaur, R., & Narayanan, R. (2024). Distinct extracellular signatures of chemical and electrical synapses impinging on active dendrites differentially contribute to ripple-frequency oscillations. Society for Neuroscience annual meeting (https://www.abstractsonline.com/pp8/?_gl=1*1bxo7m*_gcl_au*MTc5MTQ0NjE0NC4xNzI3MDcwOTMw*_ga*MTMxMTE5OTcyMy4xNzI3MDcwOTMx*_ga_T09K 3Q2WDN*MTcyNzA3MDkzMS4xLjEuMTcyNzA3MDkzNy41NC4wLjA.#!/20433/ presentation/13949), Chicago, USA.

      Szarka, G., Balogh, M., Tengolics, A. J., Ganczer, A., Volgyi, B., & Kovacs-Oller, T. (2021). The role of gap junctions in cell death and neuromodulation in the retina. Neural Regen Res, 16(10), 1911-1920. https://doi.org/10.4103/1673-5374.308069

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #2:

      The authors indicated that they had added coefficients of variation for within-lineage heterogeneity (line 93), but I can't seem to find this.

      The coefficients of variation were indeed included as suggested, and can be found in lines 94-96 of the current revised version of the manuscript. The sentence states: “Nevertheless, substantial intra-lineage heterogeneity could be observed, particularly within L1 and L2 (coefficients of variation 84.4% [L1] and 66.0% [L2] vs. 32.6% [L3], 34.6% [L4] and 31.9% [L5]).”

      They were unable to address my question on the impact of T-cell depletion from PBMC on bacterial growth? Their discussion should include that this experimental limitation means that they are unable to test cause and effect for the relationship between T cell proliferation and bacterial growth.

      As recommended, this experimental limitation is now included in the discussion in lines 344-346.

      Reviewer #3:

      EM:

      Based on the authors lack of resources, I don't believe that electron microscopy experiments should be required for this publication. However, it should be noted that EM is performed on fixed samples such that implementation of those protocols as it relates to bio-safety is no more demanding than the preparation of samples for other common assays performed outside of the BSL3.

      We appreciate your understanding regarding our lack of resources to carry out the EM experiments, although we recognize the possibility of them being performed on BSL3 samples.

      Granuloma score:

      From the author comments and the manuscript's text, it appears that the "granuloma score" is an attempt at quantitation of PBMC organization. Where every component of the metric [(mean area / mean aspect ratio) / mean n ] is a visual facet of the relative integration of PBMCs into a more organized aggregate. The area and number (n) of aggregates both address regional coalescence of the total number of PBMCs added into the matrix. Whereas the aspect ratio component is an indicator of uniformity of the PBMCs that have been assigned to an individual aggregate. Perhaps another roundness estimation would have been a more precise, but aspect ratio seems fine for their assay. Considering these factors and the author's contention that the aggregates making up (n) are granulomas, the name "granuloma score" is inaccurate and a more appropriate title would be "aggregate organization score" or "aggregate organization index".

      Thank you for the suggested alternative terminology, the term “granuloma score” has been substituted with “aggregate formation score” throughout the manuscript.

      Dormancy:

      In the manuscript, the authors should explicitly reference the validation studies which demonstrate induction of the DosR regulon in the model, lest their previously generated and conducted studies go unappreciated by a broader audience. In the title of that previous work (PMID: 32069329) this group used the designation "dormant-like" to describe the state observed in bacteria within their in vitro granuloma model system, as they also do in LINE 124. This term or a variation of it should be exchanged for dormant/dormancy throughout the manuscript when referring to observations in the model bacteria. It is a more precise description. Further, "dormant-like" allows the latitude to refer to actively growing bacteria in the context of dormancy without running the risk of putting forth confusing or potentially erroneous assertions.

      As recommended, the suffix “-like” has been added to the designation “dormant” when referring to the bacterial phenotype induced in the model. In addition, de induction of the DosR regulon in the model is now mentioned in line 116 and the reference to Kapoor’s work that originally demonstrated it by qPCR included.

      PBMC aggregation:

      I would like to make the authors aware that in well vetted models, cell aggregation as a function of infection does not typically occur in PBMCs on tissue culture plates until day 6 post infection (PMID: 25691598, Fig 2). Further, this group's own published protocol for the model under consideration in this manuscript (PMID: 33659472, Fig1) explicitly states that "Formation of granuloma like structures can be observed after 7-8 days", the implication being that prior to 7 days granuloma like structures cannot be observed reliably. Regardless, it seems evident that the authors will not be conducting additional experiments for this publication, which I find acceptable. However a proper negative control would certainly strengthen evidence for the association of strain specific bacterial and host responses with the granulomatous response in this model.

      We had interpreted the reviewer’s previous comment regarding PBMC aggregation as referring to a different experimental model rather than a matter of timing. Since many other studies have previously assessed the impact of strain/lineage variability in macrophage responses, in this work we decided to focus on later time points and we did include uninfected as a negative control. Nonetheless, we agree it would be indeed very interesting to additionally evaluate monocyte/macrophage early responses and we will take it into account for future studies.

      Use of antiquated terminology:

      I can appreciate the desire to establish continuity between publications by using the same abbreviation for TNF but it will come at a cost. Using outdated terms in general makes people more dismissive of the work. Perhaps something to consider.

      Since this seems an important issue to the reviewer, we have replaced the term TNF-a with TNF throughout the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1) Adding microscopy of the untreated group to compare Figure 2A with would further strengthen the findings here.

      First of all, we would like to thank Reviewer #1 for their comments and efforts on our manuscript. We have carefully revised it. We used a time-lapse method to capture images at 0 minutes, before any drugs were added. We will change '0 min' to 'untreated,' which will further strengthen the findings.

      (2) Quantification of immune infiltration and histological scoring of kidney, liver, and spleen in the various treatment groups would increase the impact of Figure 4.

      Thank you very much to Reviewer #1 for their comments and efforts on our manuscript. We have revised it carefully. We conducted quantitative analysis of immune infiltration in the kidney, liver, and spleen across different treatment groups. However, due to the extremely low number of abnormal cells in the negative control, treatment, and prophylactic groups, neither the instrument nor manual methods could reliably gate the cells. Consequently, quantification of immune infiltration and histological scoring were not performed.

      (3) The data in Figure 6 I is not sufficiently convincing as being significant.

      Thanks so much for Reviewer #1 comments and efforts for our manuscript. We have revised it carefully. Previous researches have shown that antibiotics and other drugs can cause alterations in gut microbiota. Therefore, we plan to study the effects of antibiotics on gut microbiota. To conduct this research, we need to isolate these microbes from the gut. Although this process is challenging, we still aim to explore the gut microbiota. If possible, we will continue to delve into interesting aspects of how antibiotics affect gut microbiota in future studies.

      (4) Comparisons of the global transcriptomic analysis of the untreated group to the PC, LP, and LT groups would strengthen the author's claims about the immunological and transcriptomic changes caused by linalool and provide a true baseline.

      Thanks so much for Reviewer #1 comments and efforts for our manuscript. We have revised it carefully. Due to the initial research design and data analysis strategy, we have focused on comparisons among the PC, LP, and LT groups to more directly explore the differences under various treatment conditions. Specifically, while the transcriptomic data from the untreated group could provide a basic reference, it has shown limited relevance to the core hypotheses of our study. Our research has aimed to investigate the immunological and transcriptomic changes among the treatment groups rather than comparing treated and untreated states. We believe that the current experimental design and data analysis have effectively revealed the mechanisms of linalool and that the additional comparisons among the treatment groups have further supported our conclusions. We hope the reviewer understands the rationale behind our experimental design. If there are additional suggestions, we are more than willing to further optimize the content of our manuscript.

      Reviewer #2 (Public review):

      (1) The authors have taken for granted that the readers already know the experiments/assays used in the manuscript. There was not enough explanation for the figures as well as figure legends.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. We will provide more detailed explanations of the experiments and assays used in the manuscript, as well as enhance the descriptions in the figure legends, to ensure that readers have a clear understanding of the figures and their context.

      (2) The authors missed adding the serial numbers to the references.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. We will add serial numbers to the references to ensure proper citation and improve the clarity of our manuscript.

      (3) The introduction section does not provide adequate rationale for their work, rather it is focused more on the assays done.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. We will add a section to the introduction that provides a rationale for our work, specifically focusing on the impact of plant extract on immunoregulation.

      (4) Full forms are missing in many places (both in the text and figure legends), also the resolution of the figures is not good. In some figures, the font size is too small.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We will ensure that all abbreviations are expanded where necessary, both in the text and figure legends. Additionally, we will improve the resolution of the figures and increase the font size where needed to enhance clarity.

      (5) There is much mislabeling of the figure panels in the main text. A detailed explanation of why and how they did the experiments and how the results were interpreted is missing.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. We will improve the labeling of the figure panels, provide detailed explanations of the experimental methods, including their rationale and interpretation, and clarify the connections between the methods.

      (6) There is not enough experimental data to support their hypothesis on the mechanism of action of linalool. Most of the data comes from pathway analysis, and experimental validation is missing.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Actually, in our manuscript the transcriptomic data are not alone, and we carried out many experiments to substantiate the changes inferred from the transcriptomic data as SEM, TEM, CLSM, molecular docking, RT-qPCR, histopathological examinations. The detailed information is listed as below.

      As shown in Figure 2, we combined the transcriptomic data related to membrane and organelle with SEM, TEM, and CLSM images. After deep analysis of these data and observation together, we illustrated that cell membrane may be a potential target for linalool.

      As shown in Figure 3, we carried out molecular docking to explore the specific binding protein of linalool with ribosome which were screen out as potential target of linalool by transcriptomic data.

      As shown in Figure 5, transcriptomic data illustrated that linalool enhanced the host complement and coagulation system. To substantiate these changes, we carried out RT-qPCR to detect those important immune-related gene expressions, and found that RT-qPCR analysis results were consistent with the expression trend of transcriptome analysis genes.

      As shown in Figure 4 and 5, transcriptomics data revealed that linalool promoted wound healing tissue repair, and phagocytosis (Figure. 5E). To ensure these, we carried out histopathological examinations, and found that linalool alleviated tissue damage caused by S. parasitica infection on the dorsal surface of grass carp and enhancing the healing capacity (Figure. 4G).

      Overall, we will conduct additional experiments to verify the mechanism of action of linalool in the future.

      Reviewer #1 (Recommendations for the authors):

      (1) Figure 1 Panel G is not referenced in the legend, this should be fixed

      Thanks so much for Reviewer #1 comments and efforts for our manuscript. We have revised it carefully. Please check the Figure 1. The order of Panel F and G in Figure 1 is wrong. We have modified the order of Figure 1.

      (2) Statistical comparisons between groups in Figure 4 Panels C-F is lacking and should be added.

      Thanks so much for Reviewer #1 comments and efforts for our manuscript. We have revised it carefully. Please check the Figure 4 C-F. We have added statistical comparisons between groups in Figure 4 Panels C-F.

      (3) Capitalize Kidney label in Figure 4G.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check the Figure 4G. We have capitalized the K of kidney.

      Reviewer #2 (Recommendations for the authors):

      (1) The authors missed adding the serial numbers to the references. I could not go through the references to cross-check if they cited the right ones because it's extremely difficult to figure out which one corresponds to which reference number.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check the references. We have added the serial numbers to the references.

      (2) In the last paragraph of the introduction section, most of the techniques in the paper were summarized which does not go with the flow of the paper. The introduction should not be focused on the different techniques used the focus should be more on the rationale of the work. It would be nice if the last paragraph could be rewritten.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it in Line 85-94. We have added a section to the introduction that provides a rationale for our work, specifically focusing on the impact of plant extract on immunoregulation.

      (3) The resolution of the figures is not good.

      Thank you for your suggestion. We have revised it carefully. Please check all the figures. We have increased the resolution and size of all the figures.

      (4) Mostly, the figure legends sound like results, with not enough explanation. Full forms are missing in many places which would make the readers go back to the text/other figures each time.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it throughout the manuscript and all the figure legends. We have added full names and abbreviations to both the manuscript and all the figure legends so that we don't make the readers go back to the text/other figures each time.

      (5) Figure 1:

      Figure 1A: there is not enough explanation for this panel. It's not clear from the text which other EOs than Linalool are referred to here. Which EOs were extracted from daidai flowers?

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it in the Figure 1A. Figure 1A is divided into “Essential oils (EOs)” and “The main compounds of EOs” to make it easier to distinguish.

      Figure 1B: do the three different wells of each set represent three replicates? If so, are they biological/technical replicates? Also, I'm not sure how the MFC was determined from this figure (line 116) because clearly this panel only corresponds to the determination of MICs, not MFCs.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it in Line 126-130. The three different wells of each set represent three biological replicates. After adding 5 μL of resazurin dye, when the color of the wells turned to pink, the linalool concentration in the first non-pink well corresponded to the MIC. The culture liquid in the well where no mycelium growth was seen was marked onto the plate and incubated at 25°C for 7 days. The well with the lowest linalool concentration and no mycelium growth was identified as MFC.

      Figure 1C: the figure legend says that the effect of linalool on mycelium growth inhibition was done over a 6hr timepoint but according to the figure the timepoint was 60hr. I am also confused about the concentrations of linalool used. Although a range of concentration from 0 to 0.4% is mentioned, I only see the time vs diameter curves for 7 concentrations.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it in Line 983 and Figure 1C. We have changed 6 h to 60 h in the figure legends. The reason why only the time vs diameter curves for 7 concentrations in Figure1C is that the growth inhibition of 0.4%, 0.2% and 0.1% linalool on mycelial growth is the same. As a result, the time vs diameter curves coincide. We have shown the time and diameter curves of 0.4%, 0.2% and 0.1% concentration with three dotted lines of different colors and sizes in Figure 1C.

      Figure 1D: mislabeled as 1G in the figure panel.

      Figures 1E and 1G: Figure 1E is missing and I do not see any figure legend for Figure 1G.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check the Figure 1. The order of Panel F and G in Figure 1 is wrong. We changed the order of Figure 1 ABCDEF, no Figure G.

      Overall, Figure 1 is very confusing and needs rewriting. Also, there is a need to add more explanation of the figure panels in the results section.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check the Figure 1. We have corrected all the problems in Figure1. And we have added more explanation of the figure panels in the results section, and increased the correlation between methods, in order to show how to carry out the experiment logically and interpret the results, please check them in Line 126-130, 144-147, 174-179, 213-217, 343-345, 677-682.

      (6) Figure 2:

      The authors could justify the reason for doing the experiments before moving into the results they got.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check the methods and results in the manuscript, please check them in Line 126-130, 144-147, 174-179, 213-217, 343-345, 677-682. We have added more explanation of the figure panels in the results section, and increased the correlation between methods, in order to show how to carry out the experiment logically and interpret the results.

      What concentration of linalool was used?

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it in Line 992-996. The mycelium treated with 6×MIC (0.3%) linalool was observed by Confocal laser scanning microscopy (CLSM), and the mycelium treated with 1×MIC 0.05% linalool was observed by Scanning Electron Microscope (SEM) and transmission electron microscopy (TEM).

      The full form of DEGs has been mentioned later, but it should be mentioned in the figure legend of Figure 2 as this is the first time the term was used. Also, what is the full form of DEPs?

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it in Line 168, 175, 182, 631, 998, 1001. The word DEPs in Figure 2I was incorrect, and we have changed DEPs to DEGs.

      Is there a particular reason for looking into the cellular component rather than molecular function and biological processes in the GO analysis? (what I see is that Figure 2H indicates the prevalence of catalytic activity, binding, cellular, and metabolic processes as well). Also, there is not enough explanation of the observation from Figure 2I (both in the results section and figure legend).

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it in Line 174-179, 998-1002 (Figure 2I). The reason we looked at cellular components rather than molecular functions and biological processes in GO analysis is because we focused more on the effects of cell membranes and cell walls. These results are closely related to and echo the results of our scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and also support the results of electron microscopy. Enough explanations have added to the results and figure legend section to explain the observations from Figure 2I.

      (7) Figure 3:

      Figures 3A and 3B: The adjusted p value is already indicated in the figures, so there is no need to add statistical significance (Asterix) to each bar. The resolution for these panels is not good and the font is too small.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check the Figure 3A and 3B. We have removed statistical significance (Asterix) from Figure3A and 3B. If we are lucky, we will upload the clearest figures when the manuscript is published.

      Figure 3C: the figure legend is missing (wrongly added as KEGG analysis, which should be network analysis). The numbering for the figure legends is wrong. What are the node sizes (5, 22, 40, 58) mentioned in the figure represent? Also, I wonder why ribosome biogenesis in eukaryotes has been indicated as the most enriched pathway despite its less connection to the other nodes.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check the Figure 3C. Figure 3C is KEGG analysis generated by software, not network analysis. For the convenience of readers, we have made a new Figure of KEGG analysis.

      Figure 3D: KEGG enrichment and GO analysis: global/local search? Which database was used as a reference?

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check the 633-635. Functional enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. KEGG pathway analysis was conducted using Goatools.

      Figure 3E: why were the RNA pol structures compared? The authors did not mention anything about this panel in their results.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check the line 207. We found that many DEGs related to ribosome biogenesis (Figure 3D) and RNA polymerase (Figure 3E) are down expressed. Because RNA polymerase is closely related to ribosome biogenesis, the downregulation of RNA polymerase directly affects the synthesis of ribosome-related RNAs, including rRNA, mRNA, and tRNA, thereby inhibiting ribosome production. This relationship is particularly significant in cell growth, division, and the response to external environmental changes.

      Figures 3F and 3G: please mention which model is illustrated (ribbon/sphere model).

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check the line 1010-1015. The tertiary structure of NOP1 was displayed using a cartoon representation. Molecular docking of linalool with NOP1 was performed by enlarging the regions binding to the NOP1 activation pocket to showcase the detailed amino acid structures, which were presented using a surface model, while the small molecule was displayed with a ball-and-stick representation.

      Figure 3H: this panel needs more explanation. Why were some of the ABC transporters upregulated while some were downregulated?

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. It is a common phenomenon that microorganisms adjust the expression of genes related to substance transport in response to different environmental stimuli to optimize their survival strategies. The expression of ATP-binding cassette (ABC) transporters can be upregulated or downregulated due to various factors, such as environmental stimuli, metabolic demands, energy consumption, species specificity, and signaling molecules. This explains why some ABC transporters are upregulated while others are downregulated.

      (8) Figure 4:

      There was no statistical significance shown in the figures (D-F) which makes me wonder how they worked out that there was any significant increase/decrease, as mentioned in the text. What are the p values? What is the number of replicates? What concentration of linalool was used?

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully.  Please check the Figure 4D-F. In this study, 4 groups were established: (1) Positive control (PC) group (10 fish infected with S. parasitica). (2) Linalool therapeutic (LT) group (10 fish infected with S. parasitica, soaked in 0.00039% linalool in a 20L tank for 7 days). (3) Linalool prophylactic (LP) group (10 uninfected fish soaked in 0.00039% linalool in a 20L tank for 2 days, followed by the addition of 1×10<sup>6</sup> spores/mL secondary zoospores). (4) Negative control (NC) group (10 uninfected fish without linalool treatment). Each group had 3 replicate tanks. In each group, 8 fish were utilized for immunological assays, and on day 7, blood samples were collected from the tail veins using heparinized syringes and left to coagulate overnight at 4°C. Kits from Nanjing Jiancheng Institute (Nanjing, China) were used to measure lysozyme (LZY) activity, superoxide dismutase (SOD) activity, and alkaline phosphatase (AKP) activity.

      (9) Figure 5:

      Again, the resolution and font size are off. Please mention the full forms of the terms used in the figure legend. The interpretation of the in vivo protective mechanism of linalool is completely based on GO enrichment and KEGG pathway analysis (also some transcriptional analysis). The only wet lab validation done was by checking the mRNA level of some cytokines but that does not necessarily validate what the authors claim.

      Thank you for your suggestion. We have revised it carefully. Please check all the figures and figure legend. We have increased the resolution and size of all the figures and used the full forms of the terms in figure legend. If we are lucky, we will upload the clearest figures when the manuscript is published. Currently, in the field of aquaculture research, mRNA quantification at the genetic level faces numerous challenges compared to model organisms like mice and zebra fish, primarily due to the lack of available antibodies. For instance, antibodies related to grass carp have not yet been commercialized, making protein-level studies and validations significantly more difficult. This lack of antibodies limits the progress of protein verification. However, we hope to design more experiments and validation tests in the future to gradually overcome these technical bottlenecks and provide stronger support for research in the future.

      (10) Figure 6:

      There is not enough explanation on why and how the experiments were done. It seems like the authors already presumed that the readers know the experiments. The interpretation of the PCA plot is not clear. Why are the quadrant sizes different? How was the heat map plotted? Also, the claim of linalool regulating the gut microbiota is only dependent on the correlation analysis and there is no wet lab validation for this. The data represented in this figure is not enough to prove their hypothesis and needs further investigation.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check the Figure 6. We will improve the labeling of the figure panels, provide detailed explanations of the experimental methods, including their rationale and interpretation, and clarify the connections between the methods.

      The goal of PCoA is to preserve the distance relationships between samples as much as possible through the principal coordinates, thereby revealing the differences or patterns in microbial composition among different groups. For example, in our study, PCoA analysis demonstrated that the microbial compositions of the positive control (PC), linalool prophylactic (LP), and linalool therapeutic (LT) groups showed significant differences in the reduced dimensional space, possibly indicating that these treatments had a notable impact on the microbial community.

      In our study, the heatmap was generated using the Majorbio Cloud Platform. This platform visualized the preprocessed microbial community data, providing an intuitive representation of the differences in microbial composition and relative abundance among samples. The platform automatically performed steps such as data normalization, color mapping, and clustering analysis, offering convenience for data analysis and interpretation.

      Previous researches have shown that antibiotics and other drugs can cause alterations in gut microbiota. Therefore, we plan to study the effects of antibiotics on gut microbiota. To conduct this research, we need to isolate these microbes from the gut. Although this process is challenging, we still aim to explore the gut microbiota. If possible, we will continue to delve into interesting aspects of how antibiotics affect gut microbiota in future studies.

      (11) Figure 7:

      This figure does not clarify how they did the interpretation. The in vivo study does not phenocopy their in vivo studies.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. we have carefully reviewed and confirmed the current experimental design and data analysis. Although we have not made any changes to Figure 7, we have further clarified the interpretation of the results in the revised manuscript, especially concerning the discrepancies between the in vivo and in vitro studies. We have added more experimental background information to help better understand the possible reasons for these differences. We hope the reviewer will understand our explanation and we look forward to your further feedback.

      (12) Minor comments:

      Line 61: what's meant by "et al"?

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it in Line 61. We have removed "et al".

      Line 87-88: please add a citation referring to the earlier studies.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it in Line 109.

      Line 151-152: the term "related to" has been used a couple of times. Mentioning it once in the beginning and avoiding repeating the same word might be better.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it in Line 168-171.We have rewritten this paragraph to avoid repeating the word “related to”.

      How did they reconstitute the EO compounds?

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. The EO compounds we used in our experiments were partially extracted from essential oils in the laboratory and partially purchased from ThermoFisher (USA).

      Line 544: needs explanation of how there was a 2-fold dilution in the concentrations shown in the figure compared to the concentrations mentioned here.

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. We set the concentration of MIC assay for mycelium to be 0.8%, 0.4%, 0.2%, 0.1%, 0.05%, 0.025%, 0.0125%, and 0.00625%, and the concentration of MIC assay for spores to be 0.4%, 0.2%, 0.1%. 0.05%, 0.025%, 0.0125%, 0.00625%. Figure 1B shows the MIC determination of linalool on spores, while the MIC determination of mycelium is not shown.

      Line 546: remove "were".

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it in Line 573. We have removed "were".

      Line 555: what concentration of malachite green and tween 20 was used?

      Thanks so much for Reviewer #2 comments and efforts for our manuscript. We have revised it carefully. Please check it in Line 579-580. 2.5mg /mL malachite green and 1% Tween 20 were used.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer 1:

      (1) Some conclusions are not completely supported by the present data, and at times the manuscript is disjoint and hard to follow. While the work has some interesting observations, additional experiments and controls are warranted to support the claims of the manuscript.

      Thank you for the comments. We revised some of the claims and conclusions to be more objective and result-supportive.

      (2) While the authors present compelling data that is relevant to the development of anti-bacterial vaccinations, the data does not completely match their assertions and there are places where some further investigation would further the impact of their interesting study.

      We do not fully agree with the reviewer's comments. We have demonstrated that changes in CPS levels during infection are associated with pathogenesis, which will guide future studies on the underlying mechanisms. A significant amount of effort is required for studying mechanisms, which is beyond the scope of this research. We concur with the reviewer that assertions should be made cautiously until further studies are conducted. We have revised these assertions to align with the data and to avoid extrapolating the results (pages 7, lines 126, 133-136; page 11, lines 216-218; page 13, line 264; and page 18, lines 378-383).

      (3) The difference in the pathogenesis of a log phase vs. stationary phage intranasal infection would be interesting. Especially because the bacteria is a part of the natural microbial community of swine tonsils, it is curious if the change in growth phase and therefore CPS levels may be a causative reason for pathogenic invasion in some pigs.

      S. suis is a part of the natural microbial community of swine tonsils but not mouse NALT. It is interesting to know if CPS levels are low in pig tonsils since CPS is hydrophilic and not conducive to bacterial adhesion. In the study, mice were i.n. infected with a high dose of the bacteria, which could increase opportunities for dissemination (acidic acid may not be a contributor since with or without it is similar). S. suis getting into other body compartments from pig tonsils might be triggered by other conditions, such as viral coinfection, nasal cavity inflammation, cold weather, and decreased immunity.

      Experiments with pig blood and phagocytes have shown that genes involved in the synthesis of CPS are upregulated in pig blood. In contrast, these genes are downregulated [1]. In addition, the absence of CPS correlated with increased hydrophobicity and phagocytosis, proposing that S. suis undergoes CPS phase variation and could play a role in the different steps of S. suis infection [2]. We showed direct evidence of encapsulation modulation associated with S. suis pathogenesis in mice. A pig infection model is required to confirm these findings.

      (4) The authors should consider taking the bacteria from NALT/CSF and blood and compare the lag times bacteria from different organs take to enter a log growth phase to show whether the difference in CPS is because S. suis in each location is in a different growth phase. If log phase bacteria were intranasally delivered, would it adapt a stationary phase life strategy? How long would that take? 

      What causes CPS regulation in vivo is not known. CPS changes in different culture stages, indicating that stress, such as nutrition levels, is one of the signals triggering CPS regulation. The microenvironment in the body compartments is far more complex than in vitro, in which host cells, immune factors and others may affect CPS regulation, individually or collectively. The reviewer’ question is important but the suggested experiment is impracticable since bacterial numbers taken from organs are few, and culturing the bacteria in vitro would obliterate the in vivo status.  

      (5) Authors should be cautious about claims about S. suis downregulating CPS in the NALT for increased invasion and upregulating CPS to survive phagocytosis in blood. While it is true that the data shows that there are different levels of CPS in these locations, the regulation and mechanism of the recorded and observed cell wall difference are not investigated past the correlation to the growth phase.

      We lower the tone and change the claim as “suggest a correlation between lower CPS in the NALT and a greater capacity for cellular association, whereas elevated CPS levels in the blood are linked to improved resistance against bactericidal activity. However, the mechanisms behind these associations remain unknown.” (page 7, lines 133-136).

      (6) The mouse model used in this manuscript is useful but cannot reproduce the nasal environment of the natural pig host. It is not clear if the NALTs of pigs and mice have similar microbial communities and how this may affect the pathogenesis of S. Suis in the mouse. Because the authors show a higher infection rate in the mouse with acetic acid, they may want to consider investigating what the mouse NALT microenvironment is naturally doing to exclude more bacterial invasion. Is it simply a host mismatch or is there something about the microbiome or steady-state immune system in the nose of mice that is different from pigs?

      It is a very interesting comment. The mice are SPF level. The microenvironment in SPF mouse NALT should be significantly different from conventional pig tonsils. Although NALT in mice resembles pig tonsils in function, many factors may contribute to the sensitivity to S. suis colonization in the pig nasal cavity, such as the microbiome and local steady-state immune system. More complex microbiota in tonsils could be one of the factors. Analyzing what makes S. suis inclined towards colonization in pig tonsils by SPF and conventional pigs are an ideal experiment to answer the question. 

      (7) Have some concerns regarding the images shown for neuroinvasion because I think the authors mistake several compartments of the mouse nasal cavity as well as the olfactory bulb. These issues are critical because neuroinvasion is one of the major conclusions of this work.

      Thank you for your comments. The olfactory epithelium (OE) is located directly underneath the olfactory bulb in the olfactory mucosa area and lines approximately half of the nasal cavities of the nasal cavity. The remaining surface of the nasal cavity is lined by respiratory epithelium, which lacks neurons. The olfactory receptor neuron in OE is stained green in the images by β-tubulin III, a neuron-specific marker. The respiratory epithelium is colorless due to the absence of nerve cells. Similarly, the green color stained by β-tubulin III identifies the olfactory bulb. The accuracy of the anatomic compartments of the mouse nasal cavity has been checked and confirmed by referring to related literature [3, 4].

      References

      (1) Wu Z, Wu C, Shao J, Zhu Z, Wang W, Zhang W, Tang M, Pei N, Fan H, Li J, Yao H, Gu H, Xu X, Lu C. The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid. RNA. 2014 Jun;20(6):882-98.

      (2) Charland N, Harel J, Kobisch M, Lacasse S, Gottschalk M. Streptococcus suis serotype 2 mutants deficient in capsular expression. Microbiology (Reading). 1998 Feb;144 ( Pt 2):325-332.

      (3) Pägelow D, Chhatbar C, Beineke A, Liu X, Nerlich A, van Vorst K, Rohde M, Kalinke U, Förster R, Halle S, Valentin-Weigand P, Hornef MW, Fulde M. The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nat Commun. 2018;9(1):4269.

      (4) Sjölinder H, Jonsson AB. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One. 2010 Nov 18;5(11):e14034.

      Reviewer 2:

      (1) However, there are serious concerns about data collection and interpretation that require further data to provide an accurate conclusion. Some of these concerns are highlighted below:

      Both reviewers were concerned about some of the interpretations of the results. We modified the interpretations in related lines throughout the manuscript (Please see the related responses to Reviewer 1).

      (2) In figure 2, the authors conclude that high levels of CPS confer resistance to phagocytic killing in blood exposed S. suis. However, it seems equally likely that this is resistance against complement mediated killing. It would be important to compare S. suis killing in animals depleted of complement components (C3 and C5-9).

      We thank the reviewer for the comment. The experiment should be Bactericidal Assay instead of anti-phagocytosis killing. CPS is a main inhibitor of C3b deposition [1]. It interferes with complement-mediated and receptor-mediated phagocytosis; and direct killing. Data in Figure 2C is expressed as “% of bacterial survival in whole blood” for clarity (page 8, Fig. 2C and page 23, lines 489-490).

      (3) Intranasal administration non-CPS antisera provides a nice contrast to intravenous administration, especially in light of the recently identified "blood-olfactory barrier". Can the authors provide any insight into how long and where this antibody would be located after intranasal administration? Would this be antibody mediated cellular resistance, or something akin to simple antibody "neutralization"

      Anti-V5 may not stay long locally following intranasal administration. Efficient reduction of S. suis colonization in NALT supports that anti-V5 could recognize and neutralize the bacteria in NALT quickly, thereby reducing further dissemination in the body. Antibody-mediated phagocytosis may not play a major role because neutrophils are mainly present in the blood but not in the tissues.  

      (4) The micrographs in Figure 7 depict anatomy from the respiratory mucosa. While there is no histochemical identification of neurons, the tissues labeled OE are almost certainly not olfactory and in fact respiratory. However, more troubling is that in figures 7A,a,b,e, and f, the lateral nasal organ has been labeled as the olfactory bulb. This undermines the conclusion of CNS invasion, and also draws into question other experiments in which the brain and CSF are measured.

      We understand the significance of your concerns and appreciate your careful review of Figure 7. The olfactory epithelium (OE) is situated directly beneath the olfactory bulb in the olfactory mucosa area and covers about half of the nasal cavity. This positioning allows information transduction between the olfactory and the olfactory epithelium. The remaining surface of the nasal cavity is lined with respiratory epithelium, which does not contain neurons and primarily serves as a protective barrier. In contrast, the olfactory epithelium consists of basal cells, sustentacular cells, and olfactory receptor neurons. The olfactory receptor neurons are specifically stained green in the images using β-tubulin III, a marker that is unique to neurons. The respiratory epithelium appears colorless due to the lack of nerve cells. Similarly, the green staining with β-tubulin III also highlights the olfactory bulb. The anatomical structures indicated in the images are consistent with those described in the literature [2, 3], confirming that the anatomy of the nasal cavity has been accurately identified.

      (5) Micrographs of brain tissue in 7B are taken from distal parts of the brain, whereas if olfactory neuroinvasion were occurring, the bacteria would be expected to arrive in the olfactory bulb. It's also difficult to understand how an inflammatory process would be developed to this point in the brain -even if we were looking at the appropriate region of the brain -within an hour of inoculation (is there a control for acetic acid induced brain inflammation?). Some explanations about the speed of the immune responses recorded are warranted.

      Thank you for highlighting this issue. Cerebrospinal fluid (CSF) flows into the subarachnoid space surrounding the spinal cord and the brain. There are direct connections from this subarachnoid space to lymphatic vessels that wrap around the olfactory nerves as they cross the cribriform plate towards the nasal submucosa. This connection allows for the drainage of CSF into the nasal submucosal lymphatics in mice [4, 5]. Bacteria may utilize this CSF outflow channel in the opposite direction, which explains the development of brain inflammation in the distal areas of brain tissue adjacent to the subarachnoid space. We have included additional relevant information in the revised manuscript (page 16, lines 323-325).

      (6) The detected presence of S. suis in the CSF 0.5hr following intranasal inoculation is difficult to understand from an anatomical perspective. This is especially true when the amount of S. suis is nearly the same as that found within the NALT. Even motile pathogens would need far longer than 0.5hr to get into the brain, so it's exceedingly difficult to understand how this could occur so extensively in under an hour. The authors are quantifying CSF as anything that comes out of the brain after mincing. Firstly, this should more accurately be referred to as "brain", not CSF. Secondly, is it possible that the lateral nasal organ -which is mistakenly identified as olfactory bulb in figure 7- is being included in the CNS processing? This would explain the equivalent amounts of S. suis in NALT and "CSF".

      The high dose of inoculation used in the experiment may explain the rapid presence of S. suis in the CSF. Mice exhibit low sensitivity to S. suis infection, and the range for the effective intranasal infectious dose is quite narrow. Higher doses lead to the quick death of the mice, while lower doses do not initiate an infection at all. The dose used in this study is empirical and is intended to facilitate the observation of the progression of S. suis infection in mice.

      The NALT tissue and CSF samples are collected separately. After obtaining the NALT tissue, the nasal portion was carefully separated from the rest of the head along the line of the eyeballs. The brain tissue was then extracted from the remaining part of the head to collect the CSF, and it was lacerated to expose the subarachnoid space without being minced. This procedure aims to preserve the integrity of the brain tissue as much as possible. Further details about the CSF collection process can be found in the Materials and Methods section (page 24, lines 508-512).

      (7) To support their conclusions about neuroinvasion along the olfactory route and /CSF titer the authors should provide more compelling images to support this conclusion: sections stained for neurons and S. suis, images of the actual olfactory bulb (neurons, glomerular structure etc).

      Thank you. We respectfully disagree with the reviewer. We stained neurons using a neuron-specific marker to identify the anatomical structures of the olfactory bulb and olfactory epithelium (in green). We used an S. suis-specific antibody to highlight the bacteria present in these areas (in orange and red). The images, along with the bacteria found in the cerebrospinal fluid (CSF) and the brain inflammation observed early in the infection, strongly support our conclusion regarding brain invasion through the olfactory pathway. Please see the response to question 4 for further clarification.

      References

      (1) Seitz M, Beineke A, Singpiel A, Willenborg J, Dutow P, Goethe R, Valentin-Weigand P, Klos A, Baums CG. Role of capsule and suilysin in mucosal infection of complement-deficient mice with Streptococcus suis. Infect Immun. 2014 Jun;82(6):2460-71.

      (2) Sjölinder H, Jonsson AB. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One. 2010 Nov 18;5(11):e14034.

      (3) Pägelow D, Chhatbar C, Beineke A, Liu X, Nerlich A, van Vorst K, Rohde M, Kalinke U, Förster R, Halle S, Valentin-Weigand P, Hornef MW, Fulde M. The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nat Commun. 2018;9(1):4269.

      (4) Yoon JH, Jin H, Kim HJ, Hong SP, Yang MJ, Ahn JH, Kim YC, Seo J, Lee Y, McDonald DM, Davis MJ, Koh GY. Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage. Nature. 2024 Jan;625(7996):768-777.

      (5) Spera I, Cousin N, Ries M, Kedracka A, Castillo A, Aleandri S, Vladymyrov M, Mapunda JA, Engelhardt B, Luciani P, Detmar M, Proulx ST. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. EBioMedicine. 2023 May;91:104558.

      Response to Recommendations for the authors:

      Reviewer 1:

      Minor concerns for the manuscript:

      (1) In the introduction, please consider giving a little more background about the bacteria itself and how it causes pathogenesis.

      We appreciate your suggestion. We have included additional background on the virulent factors and the pathogenesis of the bacteria in the introduction to enhance understanding of the results (page 4, lines 63-69).

      (2) Figure 2C would be more correct to say percent survival as the CFUs before and after are what are being compared and not if the bacteria is being phagocytosed or not. Flow cytometry of the leukocytes and a fluorescent S. Suis would show phagocytosis. Unless that experiment is performed, the authors cannot claim that there is a resistance to phagocytosis.

      Thank you for your feedback. We agree with the reviewer that the experiment should be Bactericidal Assay rather than anti-phagocytosis killing. CPS interferes with complement-mediated phagocytosis and direct killing, and receptor-mediated phagocytosis. To enhance clarity, the data in Fig. 2C has been presented as “% of bacterial survival in whole blood” (page 8).  

      (3) There are two different legends present for Figure 1. Please resolve.

      We apologize for the oversight. The redundant figure legend has been removed (page 6).

      (4) There are places such as in lines 194-195, that there are assertions and interpretations about the data that are not directly drawn from the data. These hypotheses are valuable, but please move them to the discussion.

      Thank you for your suggestion. The hypothesis has been moved to the Discussion section (page 19, lines 402 - 405).

      (5) In Figure 4B, higher resolution images would strengthen the ability of non-microbiologists to see the differences in CPS levels in the cell wall.

      We achieved the highest resolution possible for clearer distinctions in CPS levels. To enhance the visualization of the different CPS levels in the images, we revised the description of the CPS changes in Figure 4B within the results section (page 11, lines 208-213).

      (6) In Figure 5 there is no D. Further, the schematics throughout would be easier to parse with the text if the challenge occurred at time 0. Consider revising them for clarity.

      Thank you for highlighting the error. We have removed "i.v + i.n (Fig. 5)" from Figure 5A and made adjustments to the schematic illustrations in Figures 5 and 6 as recommended by the reviewer (page 14).

      (7) What is the control for the serum? The findings for figures 5 and 6 would be much stronger if a non- S. Suis isotype control serum was also infused.

      We used a naive serum as a control to avoid interference from a non-S. suis isotype control that targets other surface molecules of S. suis serotypes.

      (8) Figure 6 legend does not include the anti-CPS treatment.

      Thank you. We have added anti-CPS serum in the legend (page 15, line 249).

      (9) Figure 7 legend does not include the time point for panel 7A.

      Thank you. The time point is shown on Fig.7A (page 17).

      (10) Figure 7 should show OB micrographs or entire brain including the OB.

      The neuron-specific marker, β-tubulin III, identifies the neuro cells in the olfactory bulb (OB) as shown in Fig. 7A. Unfortunately, we were unable to provide an image of the entire brain that includes the OB due to limitations in our section preparation. We apologize for the mislabeled structure in Fig. 7A, which may have caused confusion. We have corrected the labeling for consistency (see page 15, lines 257-260). Additionally, we included a drawing of the sagittal plane of the rodent's nose, depicting the compartments of the OB, olfactory epithelium (OE), nasal cavity (NC), and brain. This illustration, presented in Fig. 7B on page 17, aims to clarify the structural and functional connections between the nasopharynx and the CNS.

      (11) Some conclusions may be better drawn if figures were to be consolidated. As noted above, the data at times feels disjointed and the importance is more difficult for readers to follow because data are presented further apart. Particularly figures 5 and 6 which are similar with different time points and controls of antisera administrative routes; placing these figures together would be an example of increasing continuity throughout the paper.

      Thank you for the valuable suggestion. Figures 5 and 6, along with their related descriptions in the results section, have been combined for better cohesiveness (pages 14-15).

      Reviewer #2:

      To support their conclusions about neuroinvasion along the olfactory route and /CSF titer the authors should provide more compelling images to support this conclusion: sections stained for neurons and S. suis, images of the actual olfactory bulb (neurons, glomerular structure etc).

      Please refer to our responses to Reviewer 1's Question 7, Reviewer 2's Questions 4 and 7 in the public reviews, and Reviewer 1's Question 10 in the authors' recommendations.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public review):

      The authors have strengthened their conclusions by providing additional information about the specificity of their antibodies, but at the same time the authors have revealed concerning information about the source of their antibodies.

      It appears that many of the antibodies used in this study have been discontinued because the supplier company was involved in a scandal of animal cruelty and all their goats and rabbits Ab products were sacrificed. The authors acknowledge that this is unfortunate but they also claim that the issue is out of their hands.

      The authors' statement is false; the authors ought to not use these antibodies, just as the providing company chose to discontinue them, as those antibodies are tied to animal cruelty. The issue that the authors feel OK with using them is of concern. In short, please remove any results from unethical antibodies.

      Removal of such results also best serves science. That is, any of their results using the discontinued antibodies means that the authors' results are non-reproducible and we should be striving to publish good, reproducible science.

      For the antibodies that do not have unethical origins the authors claim that their antibodies have been appropriately validated, by "testing in positive control tissue and/or Western blot or in situ hybridization". This is good but needs to be expanded upon. It is a strong selling point that the Abs are validated and I want to see additional information in their Supplementary Table 2 stating for each Ab specifically:

      (1) What +ve control tissue was used in the validation of each Ab and which species that +ve control came from. Likewise, if competition assays to confirm validity was used, please also specify.

      (2) Which assay was the Ab validated for (WB, IHC, ELISA, all etc)

      (3) For Antibodies that were validated for, or using WBs please let the reader know if there were additional bands showing.

      (4) Include references to the literature that supports these validations. That is, please make it easy for the reader to appreciate the hard work that went into the validation of the Antibodies.

      Finally, for the Abs, when the authors write that "All antibodies used have been validated by testing in positive control tissue and/or Western blot or in situ hybridization" I fail to understand what in situ hybridisation means in this context. I am under the impression that in situ hybridisation is some nucleic acid -hybridising-to-organ or tissue slice. Not polypeptide binding.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Remove results that have been obtained by unethically-sourced antibody reagents.

      Strengthen the readers' confidence about the appropriateness & validity of your antibodies.

      First, we want to stress that reviewer 1 has raised his critique related to the used of antibodies from Santa Cruz biotechnology not only through the journal. The head of our department and two others were contacted by reviewer 1 directly without going through the journal or informing/approaching the corresponding or first author. It is our opinion that this debate and critique should be handled through the journal and editorial office and not with people without actual involvement in the project.

      It is correct that we have purchased antibodies from Santa Cruz Biotechnologies both mouse, rabbit and goat antibodies as stated in the correspondence with the reviewer.

      As stated in our previous rebuttal – the goat antibodies from Santa Cruz were discontinued due to inadequate treatment of goats after settling with the authorities in 2016.

      https://www.nature.com/articles/nature.2016.19411

      https://www.science.org/content/blog-post/trouble-santa-cruz-biotechnology

      We have used 11 mouse, rabbit or goat antibodies from Santa Cruz biotechnologies in the manuscript as listed in supplementary table 2 of the manuscript and all of them have been carefully validated in other control tissues supported by ISH and/or WB and many of them already used in several publications by our group (https://pubmed.ncbi.nlm.nih.gov/34612843/, https://pubmed.ncbi.nlm.nih.gov/33893301/, https://pubmed.ncbi.nlm.nih.gov/32931047/, https://pubmed.ncbi.nlm.nih.gov/32729975/, https://pubmed.ncbi.nlm.nih.gov/30965119/, https://pubmed.ncbi.nlm.nih.gov/29029242/, https://pubmed.ncbi.nlm.nih.gov/23850520/, https://pubmed.ncbi.nlm.nih.gov/23097629/, https://pubmed.ncbi.nlm.nih.gov/22404291/, https://pubmed.ncbi.nlm.nih.gov/20362668/, https://pubmed.ncbi.nlm.nih.gov/20172873/,  and other research groups. All antibodies used in this manuscript were purchased before the whole world was aware of mistreatment of goats that was evident several years later.

      We do not support animal cruelty in anyway but the purchase of antibodies from Santa Cruz biotechnologies were conducted long before mistreatment was reported. Moreover, antibodies from Santa Cruz biotechnologies are being used in thousands of publications annually. The company has been punished for their misconduct, and subsequently granted permission to produce antibodies from the relevant authorities again.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Despite the study being a collation of important results likely to have an overall positive effect on the field, methodological weaknesses and suboptimal use of statistics make it difficult to give confidence to the study's message.

      Strengths:

      Relevant human and mouse models approached with in vivo and in vitro techniques.

      Weaknesses:

      The methodology, statistics, reagents, analyses, and manuscripts' language all lack rigour.

      (1) The authors used statistics to generate P-values and Rsquare values to evaluate the strength of their findings.

      However, it is unclear how stats were used and/or whether stats were used correctly. For instance, the authors write: "Gaussian distribution of all numerical variables was evaluated by QQ plots". But why? For statistical tests that fall under the umbrella of General Linear Models (line ANOVA, t-tests, and correlations (Pearson's)), there are several assumptions that ought to be checked, including typically:

      (a) Gaussian distribution of residuals.

      (b) Homoskedasticity of the residuals.

      (c) Independence of Y, but that's assumed to be valid due to experimental design.

      So what is the point of evaluating the Gaussian distribution of the data themselves? It is not necessary. In this reviewer's opinion, it is irrelevant, not a good use of statistics, and we ought to be leading by example here.

      Additionally, it is not clear whether the homoscedasticity of the residuals was checked. Many of the data appear to have particularly heteroskedastic residuals. In many respects, homoscedasticity matters more than the normal distribution of the residuals. In Graphpad analyses if ANOVA is used but equal variances are assumed (when variances among groups are unequal then standard deviations assigned in each group will be wrong and thus incorrect p values are being calculated.

      Based on the incomplete and/or wrong statistical analyses it is difficult to evaluate the study in greater depth.

      We agree with the reviewer that we should lead by example and improve clarity on the use of the different statistical tests and their application. In response to the reviewer’s suggestion, we have extended the statistical section, focusing on the analyses used. Additionally, we have specified the statistical test used in the figure legends for each figure. Additionally, we did check for Gaussian distribution and homoskedasticity of residuals before conducting a general linear model test, and this has now been specified in the revised manuscript. In case the assumptions were not met, we have specified which non-parametric test we used. If the assumptions were not met, we specified which non-parametric test was used.

      While on the subject of stats, it is worth mentioning this misuse of statistics in Figure 3D, where the authors added the Slc34a1 transcript levels from controls in the correlation analyses, thereby driving the intercept down. Without the Control data there does not appear to be a correlation between the Slc34a1 levels and tumor size.

      We agree with the reviewer that a correlation analysis is inappropriate here and have removed this part of the figure.

      There is more. The authors make statements (e.g. in the figure levels as: "Correlations indicated by R2.". What does that mean? In a simple correlation, the P value is used to evaluate the strength of the slope being different from zero. The authors also give R2 values for the correlations but they do not provide R2 values for the other stats (like ANOVAs). Why not?

      We agree with the reviewer and have replaced the R2 values with the Pearson correlation coefficient in combination with the P value.

      (2) The authors used antibodies for immunos and WBs. I checked those antibodies online and it was concerning:

      (a) Many are discontinued.

      Many of the antibodies we have used were from the major antibody provider Santa Cruz Biotechnology (SCBT). SCBT was involved in a scandal of animal cruelty and all their goats and rabbits were sacrificed, which explains why several antibodies were discontinued, while the mice antibodies were allowed to continue. This is unfortunate but out of our hands.

      (b) Many are not validated.

      We agree with the reviewer that antibody validation is essential. All antibodies used in this manuscript have been validated. The minimal validation has been to evaluate cellular expression in positive control tissue for instance bone, kidney, or mamma. Moreover, many of the antibodies have been used and validated in previous publications (doi: 10.1593/neo.121164, doi:10.1096/fj.202000061RR, doi: 10.1093/cvr/cvv187) including knockout models. Moreover, many antibodies but not all have been validated by western blot or in situ hybridization. We have included the following in the Materials and Methods section: “All antibodies used have been validated by testing in positive control tissue and/or Western blot or in situ hybridization”.

      (c) Many performed poorly in the Immunos, e.g. FGF23, FGFR1, and Kotho are not really convincing. PO5F1 (gene: OCT4) is the one that looks convincing as it is expressed at the correct cell types.

      We fail to understand the criticism raised by the reviewer regarding the specificity of these specific antibodies. We believe the FGF23 and Klotho antibodies are performing exceptionally well, and FGFR1 is abundantly expressed in many cell types in the testis. As illustrated in Figure 2E, the expression of Klotho, FGF23, and FGFR1 is very clear, specific, and convincing. FGF23 is not expressed in normal testis – which is in accordance with no RNA present there either. However, it is abundantly expressed in GCNIS where RNA is present. On the other hand, Klotho is abundantly expressed in germ cells from normal testis but not expressed in GCNIS.

      (d) Others like NPT2A (product of gene SLC34A1) are equally unconvincing. Shouldn't the immuno show them to be in the plasma membrane?

      If there is some brown staining, this does not mean the antibodies are working. If your antibodies are not validated then you ought to omit the immunos from the manuscript.

      We acknowledge your concerns regarding the NPT2A, NPT2B, and NPT2C staining. While the NPT2A antibody is performing well, we understand your reservations about the other antibodies. It's worth noting that NPT2A is not expressed in normal testis (no RNA either) but is expressed in GCNIS where the RNA is also present. Although it is typically present in the plasma membrane, cytoplasmic expression can be acceptable as membrane availability is crucial for regulating NPT2A function, particularly in the kidney where FGF23 controls membrane availability. We are currently involved in a comprehensive study exploring these phosphate transporters in the organs lining the male reproductive tract. In functional animal models, we have observed very specific staining with this NPT2A antibody following exposed to high phosphate or FGF23. Additionally, we are conducting Western Blot analyses with this antibody, which reinforces our belief that the antibody has a specific binding.

      Reviewer #2 (Public Review):

      Summary:

      This study set out to examine microlithiasis associated with an increased risk of testicular germ cell tumors (TGCT). This reviewer considers this to be an excellent study. It raises questions regarding exactly how aberrant Sertoli cell function could induce osteogenic-like differentiation of germ cells but then all research should raise more questions than it answers.

      Strengths:

      Data showing the link between a disruption in testicular mineral (phosphate)homeostasis, FGF23 expression, and Sertoli cell dysfunction, are compelling.

      Weaknesses:

      Not sure I see any weaknesses here, as this study advances this area of inquiry and ends with a hypothesis for future testing.

      We thank the reviewer for the acknowledgment and highlighting that this is an important message that addresses several ways to develop testicular microlithiasis, which indicates that it is not only due to malignant disease but also frequent in benign conditions.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I applaud the authors' approach to nomenclature for rodent and human genes and proteins (italicised for genes, all caps for humans, capitalised only for rodents, etc), but the authors frequently got it wrong when referring to genes or proteins. A couple of examples include:

      (1) SLC34A1 (italics) refers to gene (correct use by the authors) but then again the authors use e.g. SLC34A1 (not italics) to refer to the protein product of SLC34A1(italics) gene. In fact, the protein product of the SLC34A1 (italics) gene is called NPT2A (non-italics).

      (2) OCT4 (italics) refers to gene (correct use by the authors) but then again the authors use e.g. OCT4 (not italics) to refer to the protein product of OCT4 (italics)gene. In fact, the protein product of the OCT4 gene (italics) gene is called PO5F1(non-italics).

      The problem with their incorrect and inconsistent nomenclature is widespread in the manuscript making further evaluation difficult.

      Please consult a reliable protein-based database like Uniprot to derive the correct protein names for the genes. You got NANOG correct though.

      We thank the reviewer for addressing this important point. We have corrected the nomenclature throughout the manuscript as suggested.

      (3) The authors use the word "may" too many times. Also often in conjunction with words like "indicates", and "suggests". Examples of phrases that reflect that the authors lack confidence in their own results, conclusions, and understanding of the literature are:

      "...which could indicate that the bone-specific RUNX2 isoform may also be expressed... "

      "...which indicates that the mature bone may have been..."

      Are we shielding ourselves from being wrong in the future because "may" also means "may not"? It is far more engaging to read statements that have a bit more tooth to them, and some assertion too. How about turning the above statements around, to :

      "...which shows that the bone-specific RUNX2 isoform is also expressed... "

      "...which reveals that the mature bone were..."

      ...then revisit ambiguous language ("may", "might" "possibly", "could", "indicate" etc.) throughout the manuscript?

      It's OK to make a statement and be found wrong in the future. Being wrong is integral to Science.

      Thank you for addressing this. We agree with the reviewer that it is fair to be more direct and have revised many of these vague phrases throughout the manuscript.

      (4) The authors use the word "transporter" which in itself is confusing. For instance, is SLC34A1 an importer or an exporter of phosphate? Or both? Do SLC34As move phosphate in or out of the cells or cellular compartments? "Transporter" sounds too vague a word.

      We understand that it might be easier for the reader with the term "importer". However, we should use the specific nomenclature or "wording" that applies to these transporters. The exact terminology is a co-transporter or sodium-dependent phosphate cotransporter as reported here (doi: 10.1152/physrev.00008.2019). Thus, we will use the terms “co-transporter” and “transporter” throughout the revised manuscript.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We would like to remind the editors and reviewers that the present project is a pilot study that does not claim to produce definitive results. Pilot studies are exploratory preliminary studies to test the validity of hypotheses, the feasibility of a study as well as the research methods and the study design. From our point of view, our hypotheses and the feasibility of the pilot study have been confirmed to such an extent that the implementation of a larger study is justified. At the same time, it became clear during the pilot that the methods and design need to be adapted in some areas in order to increase the reliability of the results - a finding that pilot studies are usually conducted to obtain. We discussed these limitations in detail in order to explain the planned changes in the follow-up study. What the reviewers and editors interpret as incompleteness is therefore due to the nature of a pilot study.  We consider it necessary that appropriate standards are taken into account in the evaluation of the present work.

      In addition, we would like to make a counterstatement as to what our main claims, which should be used to assess the strength of evidence, are - and what they are not:

      In the introduction, we describe the background that led to the formation of our hypotheses: Previous animal and human studies show that food, along with light, serves as the main Zeitgeber for circadian clocks. It has also been shown that chrononutrition can lead to weight loss and improved well-being. Based on this, we hypothesized that individualized meal timing can enhance these positive effects. This hypothesis has been validated on the basis of the available results. Contrary to what the editors and reviewers stated, the assumption that the observed beneficial effects are indeed related to an alteration or resetting of endogenous circadian rhythms was not intended to be investigated in this study and is not one of our main claims. This has already been sufficiently demonstrated and, in our view, need not and should not be repeated in every study on chrononutrition. Accordingly, this assumption was not formulated as a working hypothesis or main claim. It is described in the paper as a potential mechanism, the assumption of which is justified on the basis of previous studies. The lack of a corresponding examination and the erroneous insinuation that corresponding results were nevertheless listed by us in the paper as a main claim should therefore not be used as a criterion for downgrading the assessment of the strength of evidence.

      The main criticism of our study is the collection of data using self-reported food and food quantities. This form of data collection is indeed prone to error, as there is little control over the accuracy of the reported data. However, we believe that this problem is limited in scope.

      (1) Contrary to what the editors and reviewers claim, at no point do we write that we are convinced that food intake has not changed. On the contrary, in Figure 2 we explicitly show that there was a change in what some participants reported to us regarding their food intake. We make it clear throughout the text that we could not find any correlation between weight change and the changes in the reports of food quantities/meals. These statements are correct and only what are actual and formulated main claims should be included in the evaluation of the study.

      (2) As previously stated, we conducted analyses that suggest that an unreported reduction in food intake is unlikely to be the cause of weight loss. For the most part, participants did not change their reporting behavior during the exploration and intervention phases. That is, participants who underreported food intake reported similar amounts in both phases of the study, but lost weight only in the intervention phase. To explain their weight loss with imprecise reporting, it would have to be assumed that these participants began to eat less in the intervention phase and at the same time report more in order to achieve similar calorie counts and food composition in the evaluation. We consider such behavior to be very unlikely, especially since it would apply to numerous participants.

      (3) The editors and reviewers reduce the results to the absence of a correlation between weight loss and reported food quantity and composition. In their assessment of the significance of the findings, however, they ignore the fact that we did find a significant correlation in our analyses, namely between weight loss and an increase in the regularity of food intake. There is no correlation between an increase in regularity and a reduction in reported calories (R<sup>2</sup> = 0.01472). This is credible in our view, as it is unlikely that the more regularly participants ate, the more pronounced the error in their reports was (while in reality they ate less than before).

      (4) We also had the requirement for the study design that the participants could carry out the intervention in their normal everyday life and environment in order to test and ensure implementation in real life. We consider it unrealistic to be able to monitor food intake continuously and without interruption over a period of several weeks under these conditions. We therefore see no alternative to self-reporting. As the reviewers and editors did not suggest any alternative methods of data collection that would fulfil the requirements of our study, we assume that, despite criticism and reservations, they generally agree with our assessment and take this into account in their evaluation.

      It is still criticized that some confounding factors are present. The reviewer makes no reference to the fact that we either eliminated these in the last version submitted (age range), identified them as unproblematic (unmatched cohorts, menstrual cycle, shift work) or even deliberately used them in order to be able to test our hypothesis more validly (inclusion of individuals with normal weight, overweight, and obesity).

      Besides, the use of actimeters to determine circadian rhythms as proposed by the editors and reviewers is not valid for this study and the requirement to use them to determine a circadian reset in the eLife assessment is misleading and inappropriate. This instrument only measures physical activity, but not the physiological parameters that are relevant for an investigation in this field of research.

      For the assessment of chronotype alone, the MCTQ questionnaire is a valid instrument that has been validated several times against actimetry (e.g., DOIs: 10.1080/07420528.2022.2025821, 10.1080/07420528.2023.2202246, 10.1016/j.ijpsycho.2016.07.433, 10.1155/2018/5646848). The reviewer's statement that the MCTQ questionnaire is unreliable for determining chronotype is unsupported and incorrect.

      Equally unproven is the statement that any form of imposed diet appears to lead to weight loss over a period of several months.

      Nevertheless, in order to prevent further misunderstandings, we have revised our text in a number of places and clarified that our statements are not irrefutable assertions, but potential interpretations of the results obtained in the pilot study, which are to be analyzed in more detail with regard to the planned more comprehensive study.

    1. Author response:

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      The authors found that IL-1b signaling is pivotal for hypoxemia development and can modulate NETs formation in LPS+HVV ALI model.  

      Strengths: 

      They used IL1R1 ko mice and proved that IL1R1 is involved in ALI model proving that IL1b signalling leads towards ARDS. In addition, hypothermia reduces this effect, suggesting a therapeutic option.  

      We thank the Reviewer for recognizing the strengths of our study and their positive feedback.

      Weaknesses: 

      (1) IL1R1 binds IL1a and IL1b. What would be the role of IL1a in this scenario? 

      Thank you for asking this question. We have addressed this in our previous paper (Nosaka et al. Front Immunol 2020;11; 207) where we used  anti-IL-1a and IL-1a KO mice (Nosaka et al. Front Immunol 2020;11; 207) in our model and found that neither anti-IL-1a treated mice nor IL-1a KO mice were protected. Thus, IL-1b plays a role in inducing hypoxemia during LPS+HVV but not IL-1a. We will now add this point in our revised manuscript discussion.

      (2) The authors depleted neutrophils using anti-Ly6G. What about MDSCs? Do these latter cells be involved in ARDS and VILI?  

      Anti-Ly6G neutrophils depletion may potentially affect G-MDSCs as well (Blood Adv 2022 Jul 29;7(1):73–86), however, we have not looked directly at G-MDSCs.  If these cells were depleted we would have expected to see an increase in inflammation, which we did not.   

      Instead, anti-Ly6G treated mice were protected. Thus, we can not comment on any presumed role of G-MDSCs in LPS+HVV induced severe ALI model that we used.  

      (3) The authors found that TH inhibited IL-1β release from macrophages led to less NETs formation and albumin leakage in the alveolar space in their lung injury model. A graphical abstract could be included suggesting a cellular mechanism.  

      Thanks for summarizing our findings and the suggestion. Unfortunately, eLIFE does not publish a graphical abstract. We tried to mention this mechanism in the discussion.

      (4) If Macrophages are responsible for IL1b release that via IL1R1 induces NETosis, what happens if you deplete macrophages? what is the role of epithelial cells?  

      Previous studies have found that macrophage depletion is protective in several models of ALI (Eyal. Intensive Care Med. 2007;33:1212–1218., Lindauer.  J Immunol. 2009;183:1419–1426.), and other researchers have found that airway epithelial cells did not contribute to IL-1β secretion (Tang. PLoS ONE. 2012;7:e37689.). We have previously reported that epithelial cells produce IL-18 without LPS priming signal during LPS+HVV (Nosaka et al. Front Immunol 2020;11; 207). Thus, IL-18 is not sufficient to induce Hypoxemia as Saline+HVV treated mice do not develop hypoxemia (Nosaka et al. Front Immunol 2020;11; 207). We will now add this point to the revised discussion of the manuscript.

      Reviewer #2 (Public review): 

      Summary: 

      The manuscript by Nosaka et al is a comprehensive study exploring the involvement of IL1beta signaling in a 2-hit model of lung injury + ventilation, with a focus on modulation by hypothermia. 

      Strengths: 

      The authors demonstrate quite convincingly that interleukin 1 beta plays a role in the development of ventilator-induced lung injury in this model, and that this role includes the regulation of neutrophil extracellular trap formation. The authors use a variety of in vivo animal-based and in vitro cell culture work, and interventions including global gene knockout, cell-targeted knockout and pharmacological inhibition, which greatly strengthen the ability to make clear biological interpretations. 

      We thank the Reviewer for their positive feedback 

      Weaknesses: 

      A primary point for open discussion is the translatability of the findings to patients. The main model used, one of intratracheal LPS plus mechanical ventilation is well accepted for research exploring the pathogenesis and potential treatments for acute respiratory distress syndrome (ARDS). However, the interpretation may still be open to question - in the model here, animals were exposed to LPS to induce inflammation for only 2 hours, and seemingly displayed no signs of sickness, before the start of ventilation. This would not be typical for the majority of ARDS patients, and whether hypothermia could be effective once substantial injury is already present remains an open question. The interaction between LPS/infection and temperature is also complicated - in humans, LPS (or infection) induces a febrile, hyperthermic response, whereas in mice LPS induces hypothermia (eg. Ganeshan K, Chawla A. Nat Rev Endocrinol. 2017;13:458-465). Given this difference in physiological response, it is therefore unclear whether hypothermia in mice and hypothermia in humans are easily comparable. Finally, the use of only young, male animals such as in the current study has been typical but may be criticised as limiting translatability to people. 

      Therefore while the conclusions of the paper are well supported by the data, and the biological pathways have been impressively explored, questions still remain regarding the ultimate interpretations.  

      We agree with the reviewer that at two hours post LPS, there is only minimal pulmonary inflammation at that time (Dagvadorj et al Immunity 42, 640–653). This is a limitation to the experimental model we used in our study. Additionally, as the reviewer pointed out that LPS induces hyperthermia in human, but it is also well-established that physiological hypothermia occurs in humans with severe infections and sepsis (Baisse. Am J Emerg Med. 2023 Sep: 71: 134-138., Werner.  Am J Emerg Med. 2025 Feb;88:64-78.). Therefore, the difference between human and mouse responses to sepsis or infections may be more nuanced.  Furthermore, it is important to distinguish between physiological hypothermia (just <36°C) and therapeutic hypothermia (typically 32-34°C). We will add to the discussion whether hypothermia serves as a protective response, and the transition from normothermia to hyperthermia could have detrimental effects. We only used young male mice in our study as the Reviewer points out; we will also add this point to the revised discussion as a limitation of our study.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      DiPeso et al. develop two tools to (i) classify micronucleated (MN) cells, which they call VCS MN, and (ii) segment micronuclei and nuclei with MMFinder. They then use these tools to identify transcriptional changes in MN cells.

      The strengths of this study are:

      (1) Developing highly specialized tools to speed up the analysis of specific cellular phenomena such as MN formation and rupture is likely valuable to the community and neglected by developers of more generalist methods.

      (2) A lot of work and ideas have gone into this manuscript. It is clearly a valuable contribution.

      (3) Combining automated analysis, single-cell labeling, and cell sorting is an exciting approach to enrich phenotypes of interest, which the authors demonstrate here.

      Weaknesses:

      (1) Images and ground truth labels are not shared for others to develop potentially better analysis methods.

      We regret this omission and thank the reviewer for pointing it out. Both the images and ground truth labels for VCS MN and MNFinder are now available on the lab’s github page and described in the README.txt files. VCS MN: https://github.com/hatch-lab/fast-mn. MNFinder: https://github.com/hatch-lab/mnfinder.

      (2) Evaluations of the methods are often not fully explained in the text.

      The text has been extensively updated to include a full description of the methods and choices made to develop the VCS MN and MNFinder image segmentation modules.

      (3) To my mind, the various metrics used to evaluate VCS MN reveal it not to be terribly reliable. Recall and PPV hover in the 70-80% range except for the PPV for MN+. It is what it is - but do the authors think one has to spend time manually correcting the output or do they suggest one uses it as is?

      VCS MN attempts to balance precision and recall with speed to reduce the fraction of MN changing state from intact to ruptured during a single cell cycle during a live-cell isolation experiment. In addition, we chose to prioritize inclusion of small MN adjacent to the nucleus in our positive calls. This meant that there were more false positives (lower PPV) than obtained by other methods but allowed us to include this highly biologically relevant class of MN in our MN+ population. Thus, for a comprehensive understanding of the consequences of MN formation and rupture, we recommend using the finder as is. However, for other visual cell sorting applications where a small number of highly pure MN positive and negative cells is preferred, such as clonal outgrowth or metastasis assays, we would recommend using the slower, but more precise, MNFinder to get a higher precision at a cost of temporal resolution. In addition, MNFinder, with its higher flexibility and object coverage, is recommended for all fixed cell analyses.

      Reviewer #2 (Public review):

      Summary:

      Micronuclei are aberrant nuclear structures frequently seen following the missegregation of chromosomes. The authors present two image analysis methods, one robust and another rapid, to identify micronuclei (MN) bearing cells. The authors induce chromosome missegregation using an MPS1 inhibitor to check their software outcomes. In missegregation-induced cells, the authors do not distinguish cells that have MN from those that have MN with additional segregation defects. The authors use RNAseq to assess the outcomes of their MN-identifying methods: they do not observe a transcriptomic signature specific to MN but find changes that correlate with aneuploidy status. Overall, this work offers new tools to identify MN-presenting cells, and it sets the stage with clear benchmarks for further software development.

      Strengths:

      Currently, there are no robust MN classifiers with a clear quantification of their efficiency across cell lines (mIoU score). The software presented here tries to address this gap. GitHub material (tools, protocols, etc) provided is a great asset to naive and experienced computational biologists. The method has been tested in more than one cell line. This method can help integrate cell biology and 'omics' studies.

      Weaknesses:

      Although the classifier outperforms available tools for MN segmentation by providing mIOU, it's not yet at a point where it can be reliably applied to functional genomics assays where we expect a range of phenotypic penetrance.

      We agree that the MNFinder module has limitations with regards to the degree of nuclear atypia and cell density that can be tolerated. Based on the recall and PPV values and their consistency across the majority conditions analyzed, we believe that MNFinder can provide reliable results for MN frequency, integrity, shape, and label characteristics in a functional genomics assay in many commonly used adherent cell lines. We also added a discussion of caveats for these analyses, including the facts that highly lobulated nuclei will have higher false positive rates and that high cell confluency may require additional markers to ensure highly accurate assignment of MN to nuclei.

      Spindle checkpoint loss (e.g., MPS1 inhibition) is expected to cause a variety of nuclear atypia: misshapen, multinucleated, and micronucleated cells. It may be difficult to obtain a pure MN population following MPS1 inhibitor treatment, as many cells are likely to present MN among multinucleated or misshapen nuclear compartments. Given this situation, the transcriptomic impact of MN is unlikely to be retrieved using this experimental design, but this does not negate the significance of the work. The discussion will have to consider the nature, origin, and proportion of MN/rupture-only states - for example, lagging chromatids and unaligned chromosomes can result in different states of micronuclei and also distinct cell fates.

      We appreciate the reviewer’s comments and now quantify the frequency of other nuclear atypias and MN chromosome content in RPE1 cells after 24 h Mps1 inhibition (Fig. S1). In summary, we find only small increases in nuclear atypia, including multinucleate cells, misshapen nuclei, and chromatin bridges, compared to the large increase in MN formation. This contrasts with what is observed when mitosis is delayed using nocodazole or CENPE inhibitors where nuclear atypia is much more frequent. Importantly, after Mps1 inhibition, RPE1 cells with MN were only slightly more likely to have a misshapen nucleus compared to cells without MN (Fig. S1C).

      Interestingly, this analysis showed that the VCS MN pipeline, which uses the Deep Retina segmenter to identify nuclei, has a strong bias against lobulated nuclei and frequently fails to find them (Fig. S2B). Therefore, the cell populations analyzed by RNAseq were largely depleted of highly misshapen nuclei and differences in nuclear atypia frequency between MN+ and MN- cells in the starting population were lost (Fig. S9A, compare to Fig. S1C). This strongly suggests that the transcript changes we observed reflect differences in MN frequency and aneuploidy rather than differences in nuclei morphology.

      We agree with the reviewer that MN rupture frequency and formation, and downstream effects on cell proliferation and DNA damage, are sensitive to the source of the missegregated chromatin. In the revised manuscript we make clear that we chose Mps1 inhibition because it is strongly biased towards whole chromosome MN (Fig. S1E), limiting signal from DNA damage products, including chromosome fragments and chromatin bridges. This provides a base line to disambiguate the consequences of micronucleation and DNA damage in more complex chromosome missegregation processes, such as DNA replication disruption and irradiation. 

      Reviewer #3 (Public review):

      Summary:

      The authors develop a method to visually analyze micronuclei using automated methods. The authors then use these methods to isolate MN post-photoactivation and analyze transcriptional changes in cells with and without micronuclei of RPE-1 cells. The authors observe in RPE-1 cells that MN-containing cells show similar transcriptomic changes as aneuploidy, and that MN rupture does not lead to vast changes in the transcriptome.

      Strengths:

      The authors develop a method that allows for automating measurements and analysis of micronuclei. This has been something that the field has been missing for a long time. Using such a method has the potential to advance micronuclei biology. The authors also develop a method to identify cells with micronuclei in real time and mark them using photoconversion and then isolate them via FACS. The authors use this method to study the transcriptome. This method is very powerful as it allows for the sorting of a heterogenous population and subsequent analysis with a much higher sample number than could be previously done.

      Weaknesses:

      The major weakness of this paper is that the results from the RNA-seq analysis are difficult to interpret as very few changes are found to begin with between cells with MN and cells without. The authors have to use a 1.5-fold cut-off to detect any changes in general. This is most likely due to the sequencing read depth used by the authors. Moreover, there are large variances between replicates in experiments looking at cells with ruptured versus intact micronuclei. This limits our ability to assess if the lack of changes is due to truly not having changes between these populations or experimental limitations. Moreover, the authors use RPE-1 cells which lack cGAS, which may contribute to the lack of changes observed. Thus, it is possible that these results are not consistent with what would occur in primary tissues or just in general in cells with a proficient cGAS/STING pathway.

      We agree with the reviewer’s assessment of the limitations of our RNA-Seq analysis. After additional analysis, we propose an alternative explanation for the lower expression changes we observe in the MN+ and Mps1 inhibitor RNA-Seq experiments. In summary, we find that VCS MN has a strong bias against highly lobulated nuclei that depletes this class of cells from both the bulk analysis and the micronucleated cell populations (Fig. S9A). Based on this result, we propose that our analysis reduces the contribution of nuclear atypia to these transcriptional changes and that nuclear morphology changes are likely a signaling trigger associated with aneuploidy.

      We believe that this finding strengthens our overall conclusion that MN formation and rupture do not cause transcriptional changes, as suppressing the signaling associated with nuclei atypia should increase sensitivity to changes from the MN. However, we cannot completely rule out that MN formation or rupture cause a broad low-level change in transcription that is obscured by other signals in the dataset.

      As to cGAS signaling, several follow up papers and even the initial studies from the Greenburg lab show that MN rupture does not activate cGAS and does not cause cGAS/STING-dependent signaling in the first cell cycle (see citations and discussion in text). Therefore, we expect the absence of cGAS in RPE1 cells will have no effect in the first cell cycle, but could alter the transcriptional profile after mitosis. Although analysis of RPE1  cGAS+ cells or primary cells in these experiments will be required to definitively address this point, we believe that our interpretation of our RNAseq results is sufficiently backed up by the literature to warrant our conclusion that MN formation and rupture do not induce a transcriptional response in the first cell cycle.

      Reviewer #1 (Recommendations for the authors):

      I do not recommend additional experimental or computational work. Instead, I just recommend adapting the claims of the manuscript to what has been done. I am just asking for further clarification and minor rewriting.

      (1) The manuscript is written like a molecular biology paper with sparse explanations of the authors' reasoning, especially in the development of their algorithms. I was often lost as to why they did things in one way or another.

      The revised manuscript has thorough explanations and additional data and graphics defining how and why the VCS MN and MNFinder modules were developed. We hope that this clears up many of the questions the reviewer had and appreciate their guidance on making it more readable for scientists from different backgrounds.

      (2) Evaluations of their method are often not fully explained, for example:

      "On average, 75% of nuclei per field were correctly segmented and cropped."

      "MN segments were then assigned to 'parent' nuclei by proximity, which correctly associated 97% of MN."

      Were there ground truth images and labels created? How many? For example, I don't know how the authors could even establish a ground-truth for associating MNs to nuclei if MNs happened to be almost equidistant between two nuclei in their images.

      I suggest a separate subsection early in the Results section where the underlying imaging data + labels are presented.

      We added new sections to the text and figures at the beginning of the VCS MN and MNFinder subsections (Fig. S2 and Fig. S5) with specific information about how ground truth images and labels were generated for both modules and how these were broken up for training, validation, and testing.

      We also added information and images to explain how ground truth MN/nucleus associations were derived. In summary, we took advantage of the fact that 2xDendra-NLS is present at low levels in the cytoplasm to identify cell boundaries. This combined with a subconfluent cell population allowed us to unambiguously group MN and nuclei for 98% of MN, we estimate. These identifications were used to generate ground truth labels and analyze how well proximity defines MN/nuclei groups (Fig.s S1 and S2).

      (3) Overall, I find the sections long and more subtitles would help me better navigate the manuscript.

      Where possible, we have added subtitles.

      (4) Everything following "To train the model, H2B channel images were passed to a Deep Retina neural net ..." is fully automated, it seems to me. Thus, there seems to be no human intervention to correct the output before it is used to train the neural network. Therefore, I do not understand why a neural network was trained at all if the pipeline for creating ground truth labels worked fully automatically. At least, the explanations are insufficient.

      We apologize for the initial lack of clarity in the text and included additional details in the revision. We used the Deep Retina segmenter to crop the raw images to areas around individual nuclei to accelerate ground truth labeling of MN. A trained user went through each nucleus crop and manually labeled pixels belonging to MN to generate the ground truth dataset for training, validation, and imaging in VCS MN (Fig. S2A).

      (5) To my mind, the various metrics used to evaluate VCS MN reveal it not to be terribly reliable. Recall and PPV hover in the 70-80% range except for the PPV for MN+. It is what it is - but do the authors think one has to spend time manually correcting the output or do they suggest one uses it as is? I understand that for bulk transcriptomics, enrichment may be sufficient but for many other questions, where the wrong cell type could contaminate the population, it is not.

      Remarks in the Results section on what the various accuracies mean for different applications would be good (so one does not need to wait for the Discussion section).

      One of the strengths of the visual cell sorting system is that any image analysis pipeline can be used with it. We used VCS MN for the transcriptomics experiment, but for other applications a user could run visual cell sorting in conjunction with MNFinder for increased purity while maintaining a reasonable recall or use a pre-existing MN segmentation program that gives 100% purity but captures only a specific subgroup of micronucleated cells (e.g. PIQUE). 

      To maintain readability, especially with the expansion of the results sections, we kept the discussion of how we envision using visual cell sorting for other MN-based applications in the discussion section.

      (6) I am confused about what "cell" is referring to in much of the manuscript. Is it the nucleus + MNs only? Is it the whole cell, which one would ordinarily think it is? If so, are there additional widefield images, where one can discern cell boundaries? I found the section "MNFinder accurately ..." very hard to read and digest for this reason and other ambiguous wording. I suggest the authors take a fresh look at their manuscript and see whether the text can be improved for clarity. I did not find it an easy read overall, especially the computational part.

      After re-examining how “cell” was used, we updated the text to limit its use to the MNFinder arm tasked with identifying MN-nucleus associations where the convex hull defined by these objects is used to determine the “cell” boundary. In all other cases we have replaced cell with “nucleus” because, as the reviewer points out, that is what is being analyzed and converted. We hope this is clearer.

      (7) Post-FACS PPVs are not that great (Figure 3c). It depends on the question one wants to answer whether ~70% PPV is good enough. Again, would be good to comment on.

      We added discussion of this result to the revision. In summary, a likely reason for the reduced PPV is that, although we maintain the cells in buffer with a Cdk1 inhibitor, we know that some proportion of the cells go through mitosis post-sorting. Since MN are frequently reincorporated into the nucleus after mitosis (Hatch et al, 2013; Zhang et al., 2015), we expect this to reduce the MN+ population. Thus, we expect that the PPV in the RNAseq population is higher than what we can measure by analyzing post-sorted cells that have been plated and analyzed later.

      (8) I am thoroughly confused as to why the authors claim that their system works in the "absence of genetic perturbations" and why they emphasize the fact that their cells are non-transformed: They still needed a fluorescent label and they induce MNs with a chemical Mps1 inhibitor. (The latter is not a genetic manipulation, of course, but they still need to enrich MNs somehow. That is, their method has not been tested on a cell population in which MNs occur naturally, presumably at a very low rate, unless I missed something.) A more careful description of the benefits of their method would be good.

      We apologize for the confusion on these points and hope this is clarified in the revision. We were comparing our system, which can be made using transient transfection, if desired, to current tools that disambiguate aneuploidy and MN formation by deleting parts of chromosomes or engineering double strand breaks with CRISPR to generate single chromosome-specific missegregation events. Most of these systems require transformed cancer cells to obtain high levels of recombination. In contrast, visual cell sorting can isolate micronucleated cells from any cell line that can exogenously express a protein, including primary cells and non-transformed cells like RPE1s.

      Other minor points:

      (1) The authors should not refer to "H2B channels" but to "H2B-emiRFP703 channels". It may seem obvious to the authors but for someone reading the manuscript for the very first time, it was not. I was not sure whether there were additional imaging modalities used for H2B/nucleus/chromatin detection before I went back and read that only fluorescence images of H2B-emiRFP703 were used. To put it another way, the authors are detecting fluorescence, not histones -- unless I misunderstood something.

      To address this point, we altered the text to read “H2B-emiRFP703” when discussing images of this construct. For MNFinder some images were of cells expressing H2B-GFP, which has also been clarified.

      (2) If the level of zoom on my screen is such that I can comfortably read the text, I cannot see much in the figure panels. The features that I should be able to see are the size of a title. The image panels should be magnified.

      In the revision, the images are appended to the end at full resolution to overcome this difficulty. Thank you for your forbearance.

      Reviewer #2 (Recommendations for the authors):

      The methods are adequately explained. The Results text narrating experiments and data analysis is clear. Interpretation of a few results could be clarified and strengthened as explained below.

      (1) RNAseq experiments are a good proof of principle. To strengthen their interpretation in Figures 4 and 6, I would recommend the authors cite published work on checkpoint/MPS1 loss-induced chromosome missegregation (PMID: 18545697, PMID: 33837239, PMC9559752) and consider in their discussion the 'origin' and 'proportion' of micronucleated cells and irregularly shaped nuclei expected in RPE1 lines. This will help interpret Figure 6 findings on aneuploidy signature accurately. Not being able to see an MN-specific signature could be due to the way the biological specimen is presented with a mixture of cells with 'MN only' or 'rupture' or 'MN along with misshapen nuclei'. These features may all link to aneuploidy rather than 'MN' specifically.

      We appreciate the reviewer’s suggestion and added a new analysis of nuclear atypia after Mps1 inhibition in RPE1 cells to Fig. S1. Overall, we found that Mps1 inhibition significantly, but modestly, increased the proportion of misshapen nuclei and chromatin bridges. Multinucleate cells were so rare that instead of giving them their own category we included them in “misshapen nuclei.” These results are consistent with images of Msp1i treated RPE1 cells from He et al. 2019 and Santaguida et al. 2017 and distinct from the stronger changes in nuclear morphology observed after delaying mitosis by nocodazole or CENPE inhibition.

      We also found that the Deep Retina segmenter used to identify nuclei in VCS MN had a significant bias against highly lobulated nuclei (Fig. S2B) that led to misshapen nuclei being largely excluded from the RNAseq analyses. As a result we found no enrichment of misshapen nuclei, chromatin bridges, or dead/mitotic nuclear morphologies in MN+ compared to MN- nuclei in our RNASeq experiments (Fig. S9A).

      (2) As the authors clarify in the response letter, one round of ML is unlikely to result in fully robust software; additional rounds of ML with other markers will make the work robust. It will be useful to indicate other ML image analysis tools that have improved through such reiterations. They could use reviews on challenges and opportunities using ML approaches to support their statement. Also in the introduction, I would recommend labelling as 'rapid' instead of 'rapid and precise' method.

      We updated the text to reference review articles that discuss the benefit of additional training for increasing ML accuracy and changed the text to “rapid.”

      (3) The lack of live-cell studies does not allow the authors to distinguish the origin of MN (lagging chromatids or unaligned chromosomes). As explained in 1, considering these aspects in discussion would strengthen their interpretation. Live-cell studies can help reduce the dependencies on proximity maps (Figure S2).

      The revised text includes new references and data (Fig. S1E) demonstrating that Mps1 inhibition strongly biases towards whole chromosome missegregation and that MN are most likely to contain a single centromere positive chromosome rather than chromatin fragments or multiple chromosomes.

      (4) Mean Intersection over Union (mIOU) is a good measure to compare outcomes against ground truth. However, the mIOU is relatively low (Figure 2D) for HeLa-based functional genomics applications. It will help to discuss mIOU for other classifiers (non-MN classifiers) so that they can be used as a benchmark (this is important since the authors state in their response that they are the first to benchmark an MN classifier). There are publications for mitochondria, cell cortex, spindle, nuclei, etc. where IOU has been discussed.

      We added references to classifiers for other small cellular structures. We also evaluated major sources of error in MNFinder found that false negatives are enriched in very small MN (3 to 9 pixels, or about 0.4 µm<sup>2</sup> – 3 µm<sup>2</sup>, Fig. S6B). A similar result was obtained for VCS MN (Fig. S3B). Because small changes in the number of pixels identified in small objects can have outsized effects on mIoU scores, we suspect that this is exerting downward pressure on the mIoU value. Based on the PPV and recall values we identified, we believe that MNFinder is robust enough to use for functional genomics and screening applications with reasonable sample sizes.

      (5) Figure 5 figure legend title is an overinterpretation. MN and rupture-initiated transcriptional changes could not be isolated with this technique where several other missegregation phenotypes are buried (see point 1 above).

      We decided to keep the figure title legend based on our analysis of known missegregation phenotypes in Fig. S1 and S9 showing that there is no difference in major classes of nuclear atypia between MN+ and MN- populations in this analysis. Although we cannot rule out that other correlated changes exist, we believe that the title represents the most parsimonious interpretation.

      Minor comments

      (1) The sentence in the introduction needs clarification and reference. "However, these interventions cause diverse "off-target" nuclear and cellular changes, including chromatin bridges, aneuploidy, and DNA damage." Off-target may not be the correct description since inhibiting MPS1 is expected to cause a variety of problems based on its role as a master kinase in multiple steps of the chromosome segregation process. Consider one of the references in point 1 for a detailed live-cell view of MPS1 inhibitor outcomes.

      We have changed “off-target” to “additional” for clarity.

      (2) In Figure 3 or S3, did the authors notice any association between the cell cycle phase and MN or rupture presence? Is this possible to consider based on FACS outcomes or nuclear shapes?

      Previous work by our lab and others have shown that MN rupture frequency increases during the cell cycle (Hatch et al., 2013; Joo et al., 2023). Whether this is stochastic or regulated by the cell cycle may depend on what chromosome is in the MN (Mammel et al., 2021) and likely the cell line. Unfortunately, the H2B-emiRFP703 fluorescence in our population is too variable to identify cell cycle stage from FACS or nuclear fluorescence analysis.

      (3) Figure 5 - Please explain "MA plot".

      An MA plot, or log fold-change (M) versus average (A) gene expression, is a way to visualize differently expressed genes between two conditions in an RNASeq experiment and is used as an alternative to volcano plots. We chose them for our paper because most of the expression changes we observed were small and of similar significance and the MA plot spreads out the data compared to a volcano plot and allowed a better visualization of trends across the population.

      (4) Page 7: "our results strongly suggest that protein expression changes in MN+ and rupture+ cells are driven mainly by increased aneuploidy rather than cellular sensing of MN formation and rupture.". This is an overstatement considering the mIOU limits of the software tool and the non-exclusive nature of MN in their samples.

      We agree that we cannot rule out that an unknown masking effect is inhibiting our ability to observe small broad changes in transcription after MN formation or rupture. However, we believe we have minimized the most likely sources of masking effects, including nuclear atypia and large scale aneuploidy differences, and thus our interpretation is the most likely one.

      Reviewer #3 (Recommendations for the authors):

      Overall, the authors need to explain their methods better, define some technical terms used, and more thoroughly explain the parameters and rationale used when implementing these two protocols for identifying micronuclei; primarily as this is geared toward a more general audience that does not necessarily work with machine learning algorithms.

      (1) A clearer description in the methods as to how accuracy was calculated. Were micronuclei counted by hand or another method to assess accuracy?

      We significantly expanded the section on how the machine learning models were trained and tested, including how sensitivity and specificity metrics were calculated, in both the results and the methods sections. The code used to compare ground truth labels to computed masks is also now included in the MNFinder module available on the lab github page. 

      (2) Define positive predictive value.

      The text now says “the positive predictive value (PPV, the proportion of true positives, i.e. specificity) and recall (the proportion of MN found by the classifier, i.e. sensitivity)…”.

      (3) Why is it a problem to use the VCS MN at higher magnifications where undersegmentation occurs? What do the authors mean by diminished performance (what metrics are they using for this?).

      We have included a representative image and calculated mIoU and recall for 40x magnification images analyzed by MNFinder after rescaling in Fig. 2A. In summary, VCS MN only correctly labeled a few pixels in the MN, which was sufficient to call the adjacent nucleus “MN+” but not sufficient for other applications, such as quantifying MN area. In addition, VCS MN did much worse at identifying all the MN in 40x images with a recall, or sensitivity, metric of 0.36. We are not sure why. Developing MNFinder provided a module that was well suited to quantify MN characteristics in fixed cell images, an important use case in MN biology.

      (4) The authors should compare MN that are analyzed and not analyzed using these methods and define parameters. Is there a size limitation? Closeness to the main nucleus?

      We added two new figures defining what contributes to module error for both VCS MN (Fig. S3) and MNFinder (Fig. S6). For VCS MN, false negatives are enriched in very large or very small MN and tend to be dimmer and farther from the nucleus than true positives. False positives are largely misclassification of small dim objects in the image as MN. For MNFinder, the most missed class of MN are very small ones (3-9 px in area) and the majority of false positives are misclassifications of elongated nuclear blebs as MN.

      (5) Are there parameters in how confluent an image must be to correctly define that the micronucleus belongs to the correct cell? The authors discussed that this was calculated based on predicted distance. However, many factors might affect proper calling on MN. And the authors should test this by staining for a cytosolic marker and calculating accuracy.

      We updated the text with more information about how the cytoplasm was defined using leaky 2x-Dendra2-NLS signal to analyze the accuracy of MN/nucleus associations (Fig. S2G-H). In addition, we quantified cell confluency and distance to the first and second nearest neighbor for each MN in our training and testing image datasets. We found that, as anticipated, cells were imaged at subconfluent concentrations with most fields having a confluency around 30% cell coverage (Fig. S2E) and that the average difference in distance between the closest nucleus to an MN and the next closest nucleus was 3.3 fold (Fig. S2F). We edited the discussion section to state that the ability of MN/nuclear proximity to predict associations at high cell confluencies would have to be experimentally validated.

      (6) The authors measure the ratio of Dendra2(Red) v. Dendra2 (Green) in Figure 3B to demonstrate that photoconversion is stable. This measurement, to me, is confusing, as in the end, the authors need to show that they have a robust conversion signal and are able to isolate these data. The authors should directly demonstrate that the Red signal remains by analyzing the percent of the Red signal compared to time point 0 for individual cells.

      We found a bulk analysis to be more powerful than trying to reidentify individual cells due to how much RPE1 cells move during the 4 and 8 hours between image acquisitions. In addition, we sort on the ratio between red and green fluorescence per cell, rather than the absolute fluorescence, to compensate for variation in 2xDendra-NLS protein expression between cells. Therefore, demonstrating that distinct ratios remained present throughout the time course is the most relevant to the downstream analysis.

      To address the reviewer’s concern, we replotted the data in Fig. 3B to highlight changes over time in the raw levels of red and green Dendra fluorescence (Fig. S7D). As expected, we see an overall decrease in red fluorescence intensity, and complementary increase in green fluorescence intensity, over 8 hours, likely due to protein turnover. We also observe an increase in the number of nuclei lacking red fluorescence. This is expected since the well was only partially converted and we expect significant numbers of unconverted cells to move into the field between the first image and the 8 hour image.

      (7) The authors isolate and subsequently use RNA-sequencing to identify changes between Mps1i and DMSO-treated cells. One concern is that even with the less stringent cut-off of 1.5 fold there is a very small change between DMSO and MPS1i treated cells, with only 63 genes changing, none of which were affected above a 2-fold change. The authors should carefully address this, including why their dataset sees changes in many more pathways than in the He et al. and Santaguida et al. studies. Is this due to just having a decreased cut-off?

      The reviewer correctly points out that we observed an overall reduction in the strength of gene expression changes between our dataset of DMSO versus Mps1i treated RPE1 cells compared to similar studies. We suggest a couple reasons for this. One is that the log<sub>2</sub> fold changes observed in the other studies are not huge and vary between 2.5 and -3.8 for He et al., 3.3 and -2.3 for Santaguida et al., and -0.8 and 1.6 for our study. This variability is within a reasonable range for different experimental conditions and library prep protocols. A second is that our protocol minimizes a potential source of transcriptional change – nuclear lobulation – that is present in the other datasets.

      For the pathway analysis we did not use a fold-change cut-off for any data set, instead opting to include all the genes found to be significantly different between control and Mps1i treated cells for all three studies. Our read-depth was higher than that of the two published experiments, which could contribute to an increased DEG number. However, we hypothesize that our identification of a broader number of altered pathways most likely arises from increased sensitivity due to the loss of covering signal from transcriptional changes associated with increased nuclear atypia. Additional visual cell sorting experiments sorting on misshapen nuclei instead of MN would allow us to determine the accuracy of this hypothesis.

      (8) Moreover, clustering (in Figure 5E) of the replicates is a bit worrisome as the variances are large and therefore it is unclear if, with such large variance and low screening depth, one can really make such a strong conclusion that there are no changes. The authors should prove that their conclusion that rupture does not lead to large transcriptional changes, is not due to the limitations of their experimental design.

      We agree with the reviewers that additional rounds of RNAseq would improve the accuracy of our transcriptomic analysis and could uncover additional DEGs. However, we believe the overall conclusion to be correct based on the results of our attempt to validate changes in gene expression by immunofluorescence. We analyzed two of the most highly upregulated genes in the ruptured MN dataset, ATF3 and EGR1. Although we saw a statistically significant increase in ATF3 intensity between cells without MN and those with ruptured MN, the fold change was so small compared to our positive control (100x less) that we believe it is it is more consistent with a small increase in the probability of aneuploidy rather than a specific signature of MN rupture.

      (9) The authors also need to address the fact that they are using RPE-1 cells more clearly and that the lack of effect in transcriptional changes may be simply due to the loss of cGAS-STING pathway (Mackenzie et al., 2017; Harding et al., 2017; etc.).

      As we discuss above in the public comments section, the literature is clear that MN do not activate cGAS in the first cell cycle after their formation, even upon rupture. Therefore, we do not expect any changes in our results when applied to cGAS-competent cells. However, this expectation needs to be experimentally validated, which we plan to address in upcoming work.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      The paper begins with phenotyping the DGRP for post-diapause fecundity, which is used to map genes and variants associated with fecundity. There are overlaps with genes mapped in other studies and also functional enrichment of pathways including most surprisingly neuronal pathways. This somewhat explains the strong overlap with traits such as olfactory behaviors and circadian rhythm. The authors then go on to test genes by knocking them down effectively at 10 degrees. Two genes, Dip-gamma and sbb, are identified as significantly associated with post-diapause fecundity, and they also find the effects to be specific to neurons. They further show that the neurons in the antenna but not the arista are required for the effects of Dip-gamma and sbb. They show that removing the antenna has a diapause-specific lifespan-extending effect, which is quite interesting. Finally, ionotropic receptor neurons are shown to be required for the diapause-associated effects. 

      Strengths and Weaknesses: 

      Overall I find the experiments rigorously done and interpretations sound. I have no further suggestions except an ANOVA to estimate the heritability of the post-diapause fecundity trait, which is routinely done in the DGRP and offers a global parameter regarding how reliable phenotyping is. 

      We added to the Methods: “We performed a one-way ANOVA to get the mean squares for between-group and withingroup variances and calculated broad-sense heritability using the formula: H<sup>2</sup> = MS<sub>G</sub> - MS<sub>E</sub> / MS<sub>G</sub> + (k-1) MS<sub>E</sub> where MS<sub>G</sub> - Mean square between groups and MS<sub>G</sub> - Mean square within groups and k - Number of individuals per group. Using this formula, the broad-sense heritability for normalized post-diapause fecundity was found to be 0.51.” 

      We added to the Results: “The broad-sense heritability for normalized post-diapause fecundity was found to be 0.51 (see Methods).”

      A minor point is I cannot find how many DGRP lines are used. 

      Response: We screened 193 lines and have added that to the Results. 

      Reviewer #2 (Public Review):

      Summary

      In this study, Easwaran and Montell investigated the molecular, cellular, and genetic basis of adult reproductive diapause in Drosophila using the Drosophila Genetic Reference Panel (DGRP). Their GWAS revealed genes associated with variation in post-diapause fecundity across the DGRP and performed RNAi screens on these candidate genes. They also analyzed the functional implications of these genes, highlighting the role of genes involved in neural and germline development. In addition, in conjunction with other GWAS results, they noted the importance of the olfactory system within the nervous system, which was supported by genetic experiments. Overall, their solid research uncovered new aspects of adult diapause regulation and provided a useful reference for future studies in this field.

      Strengths:

      The authors used whole-genome sequenced DGRP to identify genes and regulatory mechanisms involved in adult diapause. The first Drosophila GWAS of diapause successfully uncovered many QTL underlying post-diapause fecundity variations across DGRP lines. Gene network analysis and comparative GWAS led them to reveal a key role for the olfactory system in diapause lifespan extension and post-diapause fecundity.

      Comments on revised version:

      While the authors have addressed many of the minor concerns raised by the reviewers, they have not fully resolved some of the key criticisms. Notably, two reviewers highlighted significant concerns regarding the phenotype and assay of post-diapause fecundity, which are critical to the study. The authors acknowledged that this assay could be confounded by the 'cold temperature endurance phenotype,' potentially altering the interpretation of their results.

      However, they responded by stating that it is not obvious how to separate these effects experimentally. This leaves the analysis in this research ambiguous, as also noted by Reviewer #3.

      We should have clarified earlier that we actually chose to measure post-diapause fecundity in order to minimize any impact of ‘cold temperature endurance.” In fact, we chose post-diapause fecundity as the appropriate measure of successful diapause for both technical and conceptual reasons. Conceptually, the benefit of diapause is to perpetuate the species. It seems obvious to us that post-diapause fecundity is more relevant to species propagation than other measures of diapause such as how many egg chambers contain yolk or how many eggs are laid. Technically, we chose 5-week diapause and recovery based on pilot studies that showed that nearly all DGRP lines showed excellent survival at 5 weeks in diapause conditions. Therefore, our experimental design minimized as much as possible any effect of cold temperature endurance - in the sense of the ability to survive at 10°C - on our phenotype. 

      We apologize for not clarifying that point earlier and have added this text to the Results: “We chose 5 weeks based on pilot studies that showed that nearly all DGRP lines showed excellent survival at 5 weeks in diapause conditions while exhibiting sufficient variation in post-diapause fecundity to carry out GWAS. Beyond 5 weeks, fecundity was low and there was insufficient variation to conduct a GWAS.”

      Additionally, I raised concerns about the validity of prioritizing genes with multiple associated variants. Although the authors agreed with this point, they did not revise the manuscript accordingly. The statement that 'Genes with multiple SNPs are good candidates for influencing diapause traits' is not a valid argument within the context of population and quantitative genetics.

      We apologize for neglecting to revise the manuscript accordingly. We have revised Supplemental Table: S4 and ranked the genes by p-value.

    1. Author Response:

      Reviewer #1 (Public Review):

      [...] Strengths: This study utilized multiple in vitro approaches, such as proteomics, siRNA, and overexpression, to demonstrate that PCBP2 is an intrinsic factor of BMSC aging.

      Weaknesses:

      This study did not perform in vivo experiments.

      Response: We will continue to conduct animal experiments in subsequent studies.

      Reviewer #2 (Public Review):

      [...] Weaknesses: It is unclear if PCBP2 can also function as an intrinsic factor for BMSC cells in female individuals. More work may be needed to further dissect the mechanism of how PCBP2 impacts FGF2 expression. Could PCBP2 impact the FGF2 expression independent of ROS?

      Response: Thank you very much for your valuable comments, which is also the focus of our follow-up work. We will sort out the data and publish the relevant research results as soon as possible.

      Additional context that would help readers interpret or understand the significance of the work: In the current work, the authors studied the aging process of BMSC cells, which are related to osteoporosis. Aging processes also impact many other cell types and their function, such as in muscle, skin, and the brain.

      Response: Thank you very much for your valuable comments, we will continue to improve the writing logic of the article to make the article more understandable.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript performs a comprehensive biochemical, structural, and bioinformatic analysis of TseP, a type 6 secretion system effector from Aeromonas dhakensis that includes the identification of a domain required for secretion and residues conferring target organism specificity. Through targeted mutations, they have expanded the target range of a T6SS effector to include a gram-positive species, which is not typically susceptible to T6SS attack.

      Strengths:

      All of the experiments presented in the study are well-motivated and the conclusions are generally sound.

      Thank you.

      Weaknesses:

      There are some issues with the clarity of figures. For example, the microscopy figures could have been more clearly presented as cell counts/quantification rather than representative images. Similarly, loading controls for the secreted proteins for the westerns probably should be shown.

      Also, some of the minor/secondary conclusions reached regarding the "independence" of the N and C term domains of the TseP are a bit overreaching.

      We thank the reviewer for pointing out the issues and have carefully revised the manuscript accordingly. We acknowledge the reviewer’s concern regarding the independence of the N- and C-terminal domains, and have toned down the relevant claims.

      Reviewer #2 (Public review):

      Summary:

      Wang et al. investigate the role of TseP, a Type VI secretion system (T6SS) effector molecule, revealing its dual enzymatic activities as both an amidase and a lysozyme. This discovery significantly enhances the understanding of T6SS effectors, which are known for their roles in interbacterial competition and survival in polymicrobial environments. TseP's dual function is proposed to play a crucial role in bacterial survival strategies, particularly in hostile environments where competition between bacterial species is prevalent.

      Strengths:

      (1) The dual enzymatic function of TseP is a significant contribution, expanding the understanding of T6SS effectors.

      (2) The study provides important insights into bacterial survival strategies, particularly in interbacterial competition.

      (3) The findings have implications for antimicrobial research and understanding bacterial interactions in complex environments.

      Thank you.

      Weaknesses:

      (1) The manuscript assumes familiarity with previous work, making it difficult to follow. Mutants and strains need clearer definitions and references.

      Thank you for raising the issue. We have revised the manuscript accordingly to improve the clarity by including more detailed descriptions of the mutants and strains, along with references to prior work where relevant, to improve clarity.

      (2) Figures lack proper controls, quantification, and clarity in some areas, notably in Figures 1A and 1C.

      We have now added the controls as requested by reviewers.

      (3) The Materials and Methods section is poorly organized, hindering reproducibility. Biophysical validation of Zn<sup>2+</sup> interaction and structural integrity of proteins need to be addressed.

      We have now included more details in the Materials and Methods section. While we recognize the importance of biophysical validation of the Zn<sup>2+</sup> interaction, this analysis lies beyond the primary scope of the current study. We plan to investigate the role of Zn²⁺ interaction and the EF-hand domain in greater depth as part of our follow-up studies. Thank you for this suggestion.

      (4) Discrepancies in protein degradation patterns and activities across different figures raise concerns about data reliability.

      We acknowledge the concern about discrepancies in protein degradation patterns. TseP exhibits inherent instability, which might explain the observed variations. We have added an explanation in the detailed response letter and the manuscript.

      Reviewer #3 (Public review):

      Summary:

      Type VI secretion systems (T6SS) are employed by bacteria to inject competitor cells with numerous effector proteins. These effectors can kill injected cells via an array of enzymatic activities. A common class of T6SS effector are peptidoglycan (PG) lysing enzymes. In this manuscript, the authors characterize a PG-lysing effector-TseP-from the pathogen Aeromonas dhakensis. While the C-terminal domain of TseP was known to have lysozyme activity, the N-terminal domain was uncharacterized. Here, the authors functionally characterize TsePN as a zinc-dependent amidase. This discovery is somewhat novel because it is rare for PG-lysing effectors to have amidase and lysozyme activity.

      In the second half of the manuscript, the authors utilize a crystal structure of the lysozyme TsePC domain to inform the engineering of this domain to lyse gram-positive peptidoglycan.

      Strengths:

      The two halves of the manuscript considered together provide a nice characterization of a unique T6SS effector and reveal potentially general principles for lysozyme engineering.

      Thank you.

      Weaknesses:

      The advantage of fusing amidase and lysozyme domains in a single effector is not discussed but would appear to be a pertinent question. Labeling of the figures could be improved to help readers understand the data.

      Thank you for the suggestions. We have revised the manuscript and figures to improve clarity.

      The advantage of having dual-domain functions relative to having just one of the two functions is likely for increasing competitive fitness. Although such dual functional cell-wall targeting effectors have not been characterized prior to this study, there are some examples that dual functions are encoded by the same secretion module, for example the VgrG1-TseL pair in Vibrio cholerae. The C-terminal of VgrG1 not only catalyzes actin crosslinking but also recognizes and delivers the downstream encoded lipase effector TseL through direct interaction. In this context, the VgrG1-TseL pair also represent a dual-functional module. Therefore, it is likely that fusing effector domains and coupling effector functions are parallel strategies for the evolution of T6SS effectors.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      The paper explored cross-species variance in albumin glycation and blood glucose levels in the function of various life-history traits. Their results show that

      (1) blood glucose levels predict albumin gylcation rates

      (2) larger species have lower blood glucose levels

      (3) lifespan positively correlates with blood glucose levels and

      (4) diet predicts albumin glycation rates.

      The data presented is interesting, especially due to the relevance of glycation to the ageing process and the interesting life-history and physiological traits of birds. Most importantly, the results suggest that some mechanisms might exist that limit the level of glycation in species with the highest blood glucose levels.

      While the questions raised are interesting and the amount of data the authors collected is impressive, I have some major concerns about this study:

      (1) The authors combine many databases and samples of various sources. This is understandable when access to data is limited, but I expected more caution when combining these. E.g. glucose is measured in all samples without any description of how handling stress was controlled for. E.g glucose levels can easily double in a few minutes in birds, potentially introducing variation in the data generated. The authors report no caution of this effect, or any statistical approaches aiming to check whether handling stress had an effect here, either on glucose or on glycation levels.

      (2) The database with the predictors is similarly problematic. There is information pulled from captivity and wild (e.g. on lifespan) without any confirmation that the different databases are comparable or not (and here I'm not just referring to the correlation between the databases, but also to a potential systematic bias (e.g. captivate-based sources likely consistently report longer lifespans). This is even more surprising, given that the authors raise the possibility of captivity effects in the discussion, and exploring this question would be extremely easy in their statistical models (a simple covariate in the MCMCglmms).

      (3) The authors state that the measurement of one of the primary response variables (glycation) was measured without any replicability test or reference to the replicability of the measurement technique.

      (4) The methods and results are very poorly presented. For instance, new model types and variables are popping up throughout the manuscript, already reporting results, before explaining what these are e.g. results are presented on "species average models" and "model with individuals", but it's not described what these are and why we need to see both. Variables, like "centered log body mass", or "mass-adjusted lifespan" are not explained. The results section is extremely long, describing general patterns that have little relevance to the questions raised in the introduction and would be much more efficiently communicated visually or in a table.

      Reviewer #2 (Public review):

      Summary

      In this extensive comparative study, Moreno-Borrallo and colleagues examine the relationships between plasma glucose levels, albumin glycation levels, diet, and lifehistory traits across birds. Their results confirmed the expected positive relationship between plasma blood glucose level and albumin glycation rate but also provided findings that are somewhat surprising or contradicting findings of some previous studies (relationships with lifespan, clutch mass, or diet). This is the first extensive comparative analysis of glycation rates and their relationships to plasma glucose levels and life history traits in birds that are based on data collected in a single study and measured using unified analytical methods.

      Strengths

      This is an emerging topic gaining momentum in evolutionary physiology, which makes this study a timely, novel, and very important contribution. The study is based on a novel data set collected by the authors from 88 bird species (67 in captivity, 21 in the wild) of 22 orders, which itself greatly contributes to the pool of available data on avian glycemia, as previous comparative studies either extracted data from various studies or a database of veterinary records of zoo animals (therefore potentially containing much more noise due to different methodologies or other unstandardised factors), or only collected data from a single order, namely Passeriformes. The data further represents the first comparative avian data set on albumin glycation obtained using a unified methodology. The authors used LC-MS to determine glycation levels, which does not have problems with specificity and sensitivity that may occur with assays used in previous studies. The data analysis is thorough, and the conclusions are mostly wellsupported (but see my comments below). Overall, this is a very important study representing a substantial contribution to the emerging field of evolutionary physiology focused on the ecology and evolution of blood/plasma glucose levels and resistance to glycation.

      Weaknesses

      My main concern is about the interpretation of the coefficient of the relationship between glycation rate and plasma glucose, which reads as follows: "Given that plasma glucose is logarithm transformed and the estimated slope of their relationship is lower than one, this implies that birds with higher glucose levels have relatively lower albumin glycation rates for their glucose, fact that we would be referring as higher glycation resistance" (lines 318-321) and "the logarithmic nature of the relationship, suggests that species with higher plasma glucose levels exhibit relatively greater resistance to glycation" (lines 386-388). First, only plasma glucose (predictor) but not glycation level (response) is logarithm transformed, and this semi-logarithmic relationship assumed by the model means that an increase in glycation always slows down when blood glucose goes up, irrespective of the coefficient. The coefficient thus does not carry information that could be interpreted as higher (when <1) or lower (when >1) resistance to glycation (this only can be done in a log-log model, see below) because the semi-log relationship means that glycation increases by a constant amount (expressed by the coefficient of plasma glucose) for every tenfold increase in plasma glucose (for example, with glucose values 10 and 100, the model would predict glycation values 2 and 4 if the coefficient is 2, or 0.5 and 1 if the coefficient is 0.5). Second, the semi-logarithmic relationship could indeed be interpreted such that glycation rates are relatively lower in species with high plasma glucose levels. However, the semi-log relationship is assumed here a priori and forced to the model by log-transforming only glucose level, while not being tested against alternative models, such as: (i) a model with a simple linear relationship (glycation ~ glucose); or (ii) a loglog model (log(glycation) ~ log(glucose)) assuming power function relationship (glycation = a * glucose^b). The latter model would allow for the interpretation of the coefficient (b) as higher (when <1) or lower (when >1) resistance in glycation in species with high glucose levels as suggested by the authors.

      Besides, a clear explanation of why glucose is log-transformed when included as a predictor, but not when included as a response variable, is missing.

      We apologize for missing an answer to this part before. Indeed, glucose is always log transformed and this is explained in the text.

      The models in the study do not control for the sampling time (i.e., time latency between capture and blood sampling), which may be an important source of noise because blood glucose increases because of stress following the capture. Although the authors claim that "this change in glucose levels with stress is mostly driven by an increase in variation instead of an increase in average values" (ESM6, line 46), their analysis of Tomasek et al.'s (2022) data set in ESM1 using Kruskal-Wallis rank sum test shows that, compared to baseline glucose levels, stress-induced glucose levels have higher median values, not only higher variation.

      Although the authors calculated the variance inflation factor (VIF) for each model, it is not clear how these were interpreted and considered. In some models, GVIF^(1/(2*Df)) is higher than 1.6, which indicates potentially important collinearity; see for example https://www.bookdown.org/rwnahhas/RMPH/mlr-collinearity.html). This is often the case for body mass or clutch mass (e.g. models of glucose or glycation based on individual measurements).

      It seems that the differences between diet groups other than omnivores (the reference category in the models) were not tested and only inferred using the credible intervals from the models. However, these credible intervals relate to the comparison of each group with the reference group (Omnivore) and cannot be used for pairwise comparisons between other groups. Statistics for these contrasts should be provided instead. Based on the plot in Figure 4B, it seems possible that terrestrial carnivores differed in glycation level not only from omnivores but also from herbivores and frugivores/nectarivores.

      Given that blood glucose is related to maximum lifespan, it would be interesting to also see the results of the model from Table 2 while excluding blood glucose from the predictors. This would allow for assessing if the maximum lifespan is completely independent of glycation levels. Alternatively, there might be a positive correlation mediated by blood glucose levels (based on its positive correlations with both lifespan and glycation), which would be a very interesting finding suggesting that high glycation levels do not preclude the evolution of long lifespans.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Line 84: "glycation scavengers" such as polyamines - can you specify what these polyamines do exactly?

      A clarification of what we mean with "glycation scavengers" is added.

      (2) Line 87-89: specify that the work of Wein et al. and this sentence is about birds.

      This is now clarified.

      (3) Line 95: "88 species" add "OF BIRDS". Also, I think it would be nice if you specified here that you are relying on primary data.

      This is now clarified (line 96).

      (4) Line 90-119: I find this paragraph very long and complex, with too many details on the methodology. For instance, I agree with listing your hypothesis, e.g. that with POL, but then what variables you use to measure the pace of life can go in the materials and methods section (so all lines between 112-119).

      This is explained here as a previous reviewer considered this presentation was indeed needed in the introduction.

      (5) Line 122-124: The first sentence should state that you collected blood samples from various sources, and list some examples: zoos? collaborators? designated wild captures? Stating the sample size before saying what you did to get them is a bit weird. Besides, you skipped a very important detail about how these samples were collected, when, where, and using what protocols. We know very well, that glucose levels can increase quickly with handling stress. Was this considered during the captures? Moreover, you state that you had 484 individuals, but how many samples in total? One per individual or more?

      We kindly ask the reviewer to read the multiple supplementary materials provided, in which the questions of source of the samples, potential stress effects and sample sizes for each model are addressed. All individuals contributed with one sample. More details about the general sources employed are given now in lines 125-127.

      (6) Line 135-36: numbers below 10 should be spelled out.

      Ok. Now that is changed.

      (7) Line 136: the first time I saw that you had both wild and captive samples. This should be among the first things to be described in the methods, as mentioned above.

      As stated above, details on this are included in the supplementary materials, but further clarifications have now been included in the main text (question 5).

      (8) Line 137-138: not clear. So you had 46 samples and 9 species. But what does the 3-3-3 sample mean? or for each species you chose 9 samples (no, cause that would be 81 samples in total)?

      This has now been clarified (lines 139-140).

      (9) Line 139-141: what methodological constraints? Too high glucose levels? Too little plasma?

      There were cases in which the device (glucometer) produced an unspecific error. This did not correspond to too high nor too low glucose levels, as these are differently signalled errors. Neither the manual nor the client service provided useful information to discern the cause. This may perhaps be related to the composition of the plasma of certain species, interfering with the measurement. Some clarifications have been added (lines 143-146).

      (10) Line 143: should be ZIMS.

      Corrected.

      (11) Line 120-148: you generally talk about individuals here, but I feel it would be more precise to use 'samples'.

      The use is totally interchangeable, as we never measured more than one sample for a given individual within this study. Besides, in some cases, saying “sample” could result less informative.

      (12) Line 150: missing the final number of measurements for glucose and glycation.

      Please, read the ESM6 (Table ESM6.1), where this information is given.

      (13) Line 154-155: so you took multiple samples from the same individual? It's the first time the text indicates so. Or do you mean technical replicates were not performed on the same samples?

      As previously indicated, each individual included only one sample. Replicates were done only for some individuals to validate the technique, as it would be unfeasible to perform replicates of all of them. This part of the text is referring to the fact that not all samples were analysed at the same time, as it takes a considerable amount of time, and the mass spectrometry devices are shared by other teams and project. Clarifications in this sense are now added (lines 160-163).

      (14) Line 171-172: "After realizing that diet classifications from AVONET were not always suitable for our purpose" - too informal. Try rephrasing, like "After determining that AVONET diet classifications did not align with our research needs...", but you still need to specify what was wrong with it and what was changed, based on what argument?

      The new formulation suggested by the reviewer has now been applied (lines 181-183). The details are given in the ESM6, as indicated in the text. 

      (15) Line 174-176: You start a new paragraph, talking about missing values, but you do not specify what variable are you talking about. you talk about calculating means, but the last variable you mentioned was diet, so it's even more strange.

      We refer to life history traits. It has now been clarified in the text (line 185).

      (16) Line 177: what longevity records? Coming from where? How did you measure longevity? Maximum lifespan ever recorded? 80-90% longevity, life expectancy???

      We refer to maximum lifespan, as indicated in the introduction and in every other case throughout the manuscript. Clarifications have now been introduced (188-190).

      (17) Line 180-183: using ZIMS can be problematic, especially for maximum longevity. There are often individuals who had a wrong date of birth entered or individuals that were failed to be registered as dead. The extremes in this database are often way off. If you want to combine though, you can check the correlation of lifespans obtained from different sources for the overlapping species. If it's a strong correlation it can be ok, but intuitively this is problematic.

      The species for which we used ZIMS were those for which no other databases reported any values. We could try correlations for other species, but this issue is not necessarily restricted to ZIMS, as the primary origin of the data from other databases is often difficultly traceable. Also, ZIMS is potentially more updated that some of the other databases, mainly Amniotes database, from which we rely the most, as it includes the highest number of species in the most easily accessible format.

      (18) Line 181-186: in ZIMS you calculate the average of the competing records, otherwise you choose the max. Why use different preferences for the same data?

      This constitutes a misunderstanding, for which we include clarifications now (line 196). We were referring here to the fact that for maximum lifespan the maximum is always chosen, while for other variables an average is calculated. 

      (19) Line 198: Burn-in and thinning interval is quite low compared to your number of iterations. How were model convergences checked?

      Please, check ESM1.

      (20) Line 201-203: What's the argument using these priors? Why not use noninformative ones? Do you have some a priori expectations? If so, it should be explained.

      Models have now been rerun with no expectations on the variance partitions so the priors are less informative, given the lack of firm expectations, and results are similar. Smaller nu values are also tried.

      (21) Line 217: "carried" OUT.

      Corrected (now in line 229).

      (22) Line 233-234: "species average model" - what is this? it was not described in the methods.

      Please, read the ESM6.

      (23) Line 232-246: (a) all this would be better described by a table or plot. You can highlight some interesting patterns, but describing it all in the text is not very useful I think, (b) statistically comparing orders represented by a single species is a bit odd.

      (a) Figure 1 shows this graphically, but this part was found to be quite short without descriptions by previous reviewers. (b) We recognise this limitation, but this part is not presented as one of the main results of the article, and just constitutes an attempt to illustrate very general patterns, in order to guide future research, as in most groups glycation has never been measured, so this still constitutes the best illustration of such patterns in the literature.

      (24) Line 281: the first time I saw "mass-adjusted maximum lifespan" - what is this, and how was it calculated? It should be described in the methods. But in any case, neither ratios, nor residuals should be used, but preferably the two variables should be entered side by side in the model.

      Please, see ESM6 for the explanations and justifications for all of this.

      (25) Line 281: there was also no mention of quadratic terms so far. How were polynomial effects tested/introduced in the models? Orthogonal polynomials? or x+ x^2?

      Please, read ESM6.

      (26) Table 1. What is 'Centred Log10Body mass', should be added in the methods.

      Please, read ESM6.

      (27) Table 1: what's the argument behind separating terrestrial and aquatic carnivores?

      This was mostly based on the a priori separation made in AVONET, but it is also used in a similar way by Szarka and Lendvai 2024 (comparative study on glucose in birds), where differences in glucose levels between piscivorous and carnivorous are reported. We had some reasons to think that certain differences in dietary nutrient composition, as discussed later, can make this difference relevant.

      (28) Table 1: The variable "Maximum lifespan" is discussed and plotted as 'massadjusted maximum lifespan' and 'residual maximum lifespan'. First, this is confusing, the same name should be used throughout and it should be defined in the methods section. Second, it seems that non-linear effects were tested by using x + x^2. This is problematic statistically, orthogonal polynomials should be used instead (check polyfunction in R). Also, how did you decide to test for non-linear effects in the case of lifespan but not the other continuous predictors? Should be described in the methods again.

      Please, read ESM6. Data exploration was performed prior to carry out these models. Orthogonal polynomials were considered to difficult the interpretation of the estimates and therefore the patterns predicted by the models, so raw polynomials were used. Clarifications have now been included in line 297.

      (29) Figure 2. From the figure label, now I see that relative lifespan is in fact residual. This is problematic, see Freckleton, R. P. (2009). The seven deadly sins of comparative analysis. Journal of evolutionary biology, 22(7), 1367-1375. Using body mass and lifespan side by side is preferred. This would also avoid forcing more emphasis on body mass over lifespan meaning that you subjectively introduce body mass as a key predictor, but lifespan and body size are highly correlated, so by this, you remove a large portion of variance that might in fact be better explained by lifespan.

      Please, read ESM6 for justifications on the use of residuals.

      Reviewer #2 (Recommendations for the authors):

      (1) If the semi-logarithmic relationship (glycation ~ log10(glucose)) is to be used to support the hypothesis about higher glycation resistance in species with high blood glucose (lines 318-321 and 386-388), it should be tested whether it is significantly better than the model assuming a simple linear relationship (i.e., glycation ~ glucose). Alternatively, if the coefficient is to be used to determine whether glycation rate slows down or accelerates with increasing glucose levels, log-log model (log10(glycation) ~ log10(glucose)) assuming power function relationship (glycation = a * glucose^b) should be used (as is for example in the literature about relationships between metabolic rates and body size). Probably the best approach would be to compare all three models (linear, semi-logarithmic, and log-log) and test if one performs significantly better. If none of them, then the linear model should be selected as the most parsimonious.

      Different options (linear, both semi-logarithmic combinations and log-log) have now been tested, with similar results. All of the models confirm the pattern of a significant positive relationship between glucose and glycation. Moreover, when standardizing the variables (both glucose and glycation, either log transformed or not), the estimate of the slope is almost equal for all the models. It is also lower than one, which in the case of both the linear and log-log confirms the stated prediction. The log-log model, showing a much lower DIC than the linear version, is now shown as the final model.

      (2) ESM6, line 46: Please note that Kruskal-Wallis rank sum test in ESM1 shows that, compared to baseline glucose levels, stress-induced glucose levels have higher median values (not only higher variation). With this in mind, what is the argument here about increased variation being the main driver of stress-induced change in glucose levels based on? It seems that both the median values and variation differ between baseline and stress-induced levels, and this should be acknowledged here.

      As discussed in the public answers, Kruskal Wallis does not allow to determine differences in mean, but just says that the groups are “different” (implicitly, in their ranksums, which does not mean necessarily in mean), while the Levene test performed signals heteroskedasticity. This makes this feature of the data analytically more grounded. Of course, when looking at the data, a higher mean can be perceived, but nothing can be said about its statistical significance. Still, some subtle changes have been introduced in corresponding section of the ESM6.

      (3) Have you recorded the sampling times? If yes, why not control them in the models? It is at least highly advisable to include the sampling times in the data (ESM5).

      As indicated in ESM6 lines 42-43, we do not have sampling times for most of the individuals (only zebra finches and swifts), so this cannot be accounted for in the models.

      (4) If sampling times will remain uncontrolled statistically, I recommend mentioning this fact and its potential consequences (i.e., rather conservative results) in the Methods section of the main text, not only in ESM6.

      A brief description of this has now been included in the main text (lines 129-132), referencing the more detailed discussion on the supplementary materials. Some subtle changes have also been included in the “Possible effects of stress” section of the ESM6.

      (5) ESM6, lines 52-53: The lower repeatability in Tomasek et al.' study compared to your study is irrelevant to the argument about the conservative nature of your results (the difference in repeatability between both studies is most probably due to the broader taxonomic coverage of the current study). The important result in this context is that repeatability is lower when sampling time is not considered within Tomasek et al's data set (ESM1). Therefore, I suggest rewording "showing a lower species repeatability than that from our data" to "showing lower species repeatability when sampling time is not considered" to avoid confusion. Please also note that you refer here to species repeatability but, in ESM1, you calculate individual repeatability. Nevertheless, both individual and species repeatabilities are lower when not controlling for sampling time because the main driver, in that case, is an increased residual variance.

      We recognize the current confusion in the way the explanation is exposed, and have significantly changed the redaction of the section. However, we would like to indicate that ESM1 shows both species and individual repeatability (for Tomasek et al. 2022 data, for ours only species as we do not have repeated individual values). Changes are now made to make it more evident.

      (6) I recommend providing brief guidelines for the interpretation of VIFs to the readers, as well as a brief discussion of the obtained values and their potential importance.

      Thank you for the recommendation. We included a brief description in lines 230-231. Also in the results section (lines 389-393).

      (7) Line: 264: Please note that the variance explained by phylogeny obtained from the models with other (fixed) predictors does not relate to the traits (glucose or glycation) per se but to model residuals.

      We appreciate the indication, and this has been rephrased accordingly (lines 280-286).

      (8) Change the term "confidence intervals" to "credible intervals" throughout the paper, since confidence interval is a frequentist term and its interpretations are different from Bayesian credible interval.

      Thank you for the remark, this has now been changed.

      (9) Besides lifespan, have you also considered quadratic terms for body mass? The plot in Figure 2A suggests there might be a non-linear relationship too.

      A quadratic component of body mass has not shown any significant effect on glucose in an alternative model. Also, a model with linear instead of log glucose (as performed in other studies) did not perform better by comparing the DICs, despite both showing a significant relationship between glucose and body mass. Therefore, this model remains the best option considered as presented in the manuscript.

      (10) ESM6, lines 115-116: It is usually recommended that only factors with at least 6 or 8 levels are included as random effects because a lower number of levels is insufficient for a good estimation of variance.

      In a Bayesian approach this does not apply, as random and fixed factors are estimated similarly. 

      (11) Typos and other minor issues:

      a) Line 66: Delete "related".

      b) Figure 2: "B" label is missing in the plot.

      c) Reference 9: Delete "Author".

      d) References 15 and 83 are duplicated. Keep only ref. 83, which has the correct citation details.

      e) ESM6, line 49: Change "GLLM" to "GLMM".

      Thank you for indicating this. Now it’s corrected.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Response to Reviewer 2’s comments:

      I am concerned that the results in Figure 8D may not be correct, or that the authors may be mis-interpreting them. From my reading of the paper they cite (Lammers & Flamholz 2023), the equilibrium sharpness limit for the network they consider in Figure 8 should be 0.25. But both solutions shown in Figure 8D fall below this limit, which means that they have sharpness levels that could have been achieved with no energy expenditure. If this is the case, then it would imply that while both systems do dissipate energy, they are not doing so productively; meaning that the same results could be achieved while holding Phi=0.

      I acknowledge that this could be due to a difference in how they measure sharpness, but wanted to raise it here in case it is, in fact, a genuine issue with the analysis.There should be an easy fix for this: just set the sharper "desired response" curve in 8b to be such that it demands non-equilibrium sharpness levels (0.25<S<0.5).

      Thank you for raising this point regarding the interpretation of our results in Figure 8D. We agree that if the equilibrium sharpness limit for this particular network is around 0.25 (as shown by Lammers & Flamholz 2023), then achieving a sharpness below this threshold could, in principle, be accomplished without any energy expenditure. However, in our current design approach, the loss function is solely designed to enforce agreement with a target mean mRNA level at different input concentrations; it does not explicitly constrain energy dissipation, noise, or other metrics. Consequently, the DGA has no built-in incentive to minimize or optimize energy consumption, which means the resulting solutions may dissipate energy without exceeding the equilibrium sharpness limit.

      In other words, the same input–output relationship could theoretically be achieved with \Phi =0 if an explicit constraint or regularization term penalizing energy usage had been included. As noted, adding such a term (e.g., penalizing \Phi^2) is conceptually straightforward but falls outside the scope of this study. Our primary goal is to demonstrate the flexibility of the DGA in designing a desired response, rather than to delve into energy–sharpness trade-offs or other biological considerations

      While we appreciate the suggestion to set a higher target sharpness that exceeds the equilibrium limit, we believe the current example effectively demonstrates the DGA’s ability to design circuits with desired input-output relationships, which is the primary focus of this study. Researchers interested in optimizing energy efficiency, burst size, burst frequency, noise, response time, mutual information, or other system properties can easily extend our approach by incorporating additional terms into the loss function to target these specific objectives.

      We hope this explanation addresses your concern and clarifies that the manuscript provides sufficient context for readers to interpret the results in Figure 8D correctly.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      We thank Reviewer #1 for their thoughtful feedback and appreciation of the manuscript's clarity. Our primary goal is to introduce the DGA  as a foundational tool for integrating stochastic simulations with gradient-based optimization. While we recognize the value of providing detailed comparisons with existing methods and a deeper analysis of the DGA’s limitations (such as rare event handling), these topics are beyond the scope of this initial work. Our focus is on presenting the core concept and demonstrating its potential, leaving more extensive evaluations for future research.

      Reviewer #2 (Public review):

      We thank Reviewer #2 for their detailed and constructive feedback. We appreciate the recognition of the DGA as a significant conceptual advancement for stochastic biochemical network analysis and design.

      Weaknesses:

      (1) Validation of DGA robustness in complex systems:

      Our primary goal is to introduce the DGA framework and demonstrate its feasibility. While validation on high-dimensional and non-steady-state systems is important, it is beyond the scope of this initial work. Future studies may improve scalability by employing techniques such as dynamically adjusting the smoothness of the DGA's approximations during simulation or using surrogate models that remain differentiable but more accurately capture discrete behaviors in critical regions, thus preserving gradient computation while improving accuracy.

      (2) Inference accuracy and optimization:

      We acknowledge that the non-convex loss landscape in the DGA can hinder parameter inference and convergence to global minima, as seen in Figure 5A. While techniques like multi-start optimization or second-order methods (e.g., L-BFGS) could improve performance, our focus here is on establishing the DGA framework. We plan to explore better optimization methods in future work to improve the accuracy of parameter inference in complex systems.

      (3) Use of simple models for demonstration:

      We selected well-understood systems to clearly illustrate the capabilities of the DGA. These examples were intended to demonstrate how the DGA can be applied, rather than to solve problems better addressed by analytical methods. Applying DGA to more complex, analytically intractable systems is an exciting avenue for future work, but introducing the method was our main objective in this study.

      Reviewer #3 (Public review):

      We thank the reviewer for their detailed and insightful feedback. We appreciate the recognition of the DGA as a significant advancement for enabling gradient-based optimization in stochastic systems.

      Weaknesses:

      (1) Application beyond steady-state analysis

      We acknowledge the limitation of focusing solely on steady-state properties. To extend the DGA for analyzing transient dynamics, time-dependent loss functions can be incorporated to capture system evolution over time. This could involve aligning simulated trajectories with experimental time-series data or using moment-matching across multiple time points. 

      (2) Numerical instability in gradient computation

      The reviewer correctly highlights that large sharpness parameters (a and b) in the sigmoid and Gaussian approximations can induce numerical instability due to vanishing or exploding gradients. To address this, adaptive tuning of a and b during optimization could balance smoothness and accuracy. Additionally, alternative smoothing functions (e.g., softmax-based reaction selection) and gradient regularization techniques (such as gradient clipping and trust-region methods) could improve stability and convergence.

      Reviewer #1 (recommendations):

      We thank the reviewer for their thoughtful and constructive feedback on our manuscript. Below, we address each of the comments and suggestions raised.

      Main points:

      (1) It would have been useful to have a brief discussion, based on a concrete example, of what can be achieved with the DGA and is totally beyond the reach of the Gillespie algorithm and the numerous existing stochastic simulation methods.

      Thank you for your comment. We would like to clarify that the primary aim of this work is to introduce the DGA and demonstrate its feasibility for tasks such as parameter estimation and network design. Unlike traditional stochastic simulation methods, the DGA’s differentiable nature enables gradient-based optimization, which is not possible with the classical Gillespie algorithm or its variants.

      (2) As often with machine learning techniques, there is a sense of black box, with a lack of mathematical details of the proposed method: as opposite to the exact Gillespie algorithm, whose foundations lie on solid mathematical results (exponentially-distributed waiting times of continuous-time Markov processes), the DGA involves uncontrolled approximations, that are only briefly mentioned in the paper. For instance, it is currently simply noted that "the approximations introduced by the DGA may be pronounced in more complex settings such as the calculation of rare events", without specifying how limiting these errors are. It would be useful to include a clearer and more comprehensive discussion of the limitations of the DGA: When does it work accurately? What are the approximations/errors and can they be controlled? When is it worth paying the price for those approximations/errors, and when is it better to stick to the Gillespie algorithm? Is this notably the case for problems involving rare events? Clearly, these are difficult questions, and the answers are problem specific. However, it would be important to draw the readers' attention on the issues, especially if the DGA is presented as a potentially significant tool in computational and synthetic biology.

      We acknowledge the importance of discussing the limitations of the DGA in more detail. While we have noted that the approximations introduced by the DGA may impact its accuracy in certain scenarios, such as rare-event problems, a deeper exploration of these trade-offs is outside the scope of this work. Instead, we provide sufficient context in the manuscript to guide readers on when the DGA is appropriate.

      (3) The DGA is here introduced and discussed in the context of non-spatial problems (simple gene regulatory networks). However, numerous problems in the life sciences and computational/synthetic biology, involve stochasticity and spatial degrees of freedom (e.g. for problems involving diffusion, migration, etc). It is notoriously challenging to use the Gillespie algorithm to efficiently simulate stochastic spatial systems, especially in the context of rare events (e.g., extinction or fixation problems). It would be useful to comment on whether, and possibly how, the DGA can be used to efficiently simulate stochastic spatial systems, and if it would be better suited than the Gillespie algorithm for this purpose.

      Thank you for pointing this out. Although our current work centers on non-spatial systems, we agree that many biological contexts incorporate both stochasticity and spatial degrees of freedom. Extending the DGA to efficiently simulate such systems would indeed require substantial modifications—for instance, coupling it with reaction-diffusion frameworks or spatial master equations. We believe this is an exciting direction for future research and mention it briefly in the discussion as a potential extension.

      Minor suggestions:

      (1) After Eq.(10): it would be useful to explain and motivate the choice of the ratio JSD/H.

      Done.

      (2) On page 6, just below the caption of Fig.4: it would be useful to clarify what is actually meant by "... convergence towards the steady-state distribution of the exact Gillespie simulation, which is obtained at a simulation time of 10^4".

      Done.

      (3) At the end of Section B on page 7: please clarify what is meant here by "soft directions".

      Done.

      Reviewer #2 (recommendations):

      We thank the reviewer for their thoughtful comments and constructive feedback. Below, we address each of the comments/suggestions.

      Main points:

      (1) Enumerate the conditions under which DGA assumptions hold (and when they do not). There is currently not enough information for the interested reader to know whether DGA would work for their system of interest. Without this information, it is difficult to assess what the true scope of DGA's impact will be. One simple idea would be to test DGA performance along two axes: (i) increasing number of model states and (ii) presence/absence of non-steady state dynamics. I acknowledge that these are very open-ended directions, but looking at even a single instance of each would greatly strengthen this work. Alternatively, if this is not feasible, then the authors should provide more discussion of the attendant difficulties in the main text.

      We agree that a detailed exploration of the conditions under which the DGA assumptions hold would be a valuable addition to the field. However, this paper primarily aims to introduce the DGA methodology and demonstrate its proof-of-concept applications. A comprehensive analysis along axes such as increasing model states or non-steady-state dynamics, while important, would require significant additional simulations and is beyond the scope of this work. In Appendix A, we have discussed the trade-off between accuracy and numerical stability. Additionally, we encourage future users to tune the hyperparameters a and b for their specific systems.

      (2) Demonstrate DGA performance in a more complex biochemical system. Clearly the authors were aware that analytic solutions exist for the 2-state system in Figure 7, but it this is actually also the case (I think) for mean mRNA production rate of the non-equilibrium system in Figure 8. To really demonstrate that DGA is practically viable, I encourage the authors to seek out an interesting application that is not analytically tractable.

      We appreciate the suggestion to validate DGA on a more complex biochemical system. However, the goal of this study is not to provide an exhaustive demonstration of all possible applications but to introduce the DGA and validate it in systems where ground-truth comparisons are available. While the non-equilibrium system in Figure 8 might be analytically tractable, its complexity already provides a meaningful demonstration of DGA’s ability to optimize parameters and design systems. Extending this work to analytically intractable systems is an exciting direction for future studies, and we hope this paper will inspire others to explore these applications.

      (3) Take steps to improve the robustness of parameter optimization and error bar calculations. (3a) When the loss landscape is degenerate, shallow, or otherwise "difficult," a common solution is to perform multiple (e.g. 25-100) inference runs starting from different random positions in parameter space. Doing this, and then taking the parameter set that minimizes the loss should, in theory, lead to a more robust recovery of the optimal parameter set.

      (3b) It seems clear that the Hessian approximation is underestimating the true error in your inference results. One alternative is to use a "brute force" approach like bootstrap resampling to get a better estimate for the statistical dispersion in parameter estimates. But I recognize that this is only viable if the inference is relatively fast. Simply recovering the true minimum will, of course, also help.

      (3a) We acknowledge the challenge posed by degenerate or shallow loss landscapes during parameter optimization. While performing multiple inference runs from different initializations is a common strategy, this approach is computationally intensive. Instead, we rely on standard optimization techniques (e.g., ADAM) to find a robust local minimum. 

      (3b) Thank you for your comment. We agree that Hessian-based error bars can underestimate uncertainty, particularly in degenerate or poorly conditioned loss landscapes. While methods like bootstrap and Monte Carlo can provide more robust estimates, they can be computationally prohibitive for larger-scale simulations. A simpler reason for not using them is the high resource demand from repeated simulations, which quickly becomes infeasible for complex or high-dimensional models. We note these trade-offs between robust estimation and practicality as an important area for further exploration.

      Moderate comments:

      (1) Figure 7: is it possible to also show the inferred kon values? Specifically, it would be of interest to see how kon varies with repressor concentration.

      Thank you for the suggestion. We have updated Figure 7 to include the inferred kon values, showing their variation with the mean mRNA copy number. However, we could not plot them against repressor concentration due to the lack of available data.

      (2) Figure 8B & D: the authors claim that the sharper system dissipates more energy, but doesn't 8D show the opposite of this? More importantly, it does not look like either network drives sharpness levels that exceed the upper equilibrium limit cited in [36]. So it is not clear that it is appropriate to look at energy dissipation here. In fact, it is likely that equilibrium networks could produce the curves in 8B, and might be worth checking.

      Thank you for pointing this out. We realized that the plotted values in Figure 8D were incorrect, as we had mistakenly plotted noise instead of energy dissipation. The plot has now been corrected. 

      (3) Figure 8: I really like this idea of using DGA to "design" networks with desired input-output properties, but I wonder if you could explore more a biologically compelling use-case. Specifically, what about some kind of switch-like logic where, as the activator concentration increases, you have first 0 genes on, then 1 promoter on, then 2 promoters on. This would achieve interesting regulatory logic, and having DGA try to produce step functions would ensure that you force the networks to be maximally sharp (i.e. about double what you're currently achieving).

      Thank you for this intriguing suggestion. While the proposed switch-like logic use case is indeed compelling, implementing such a system would require significant work. This goes beyond the scope of the current study, which focuses on demonstrating the feasibility of DGA for network design with simple input-output properties.

      Minor comments:

      (1) Figure 4B & C: the bar plots do not do a good job conveying the points made by the authors. Consider alternatives, such as scatter plots or box plots that could convey inference uncertainty.

      Done.

      (2) Figure 4B: consider using a log y-axis.

      The y-axis in Figure 4B is already plotted on a log scale.

      (3) Figure 4D is mentioned prior to 4C in the text. Consider reordering.

      Done. 

      (4) Figure 5B: it is difficult to assess from this plot whether or not the landscape is truly "flat," as the authors claim. Flat relative to what? Consider alternative ways to convey your point.

      Thank you for highlighting this ambiguity. By describing the loss landscape as “flat,” we intend to convey its relative insensitivity to parameter variations in certain regions, rather than implying a completely level surface. While we believe Figure 5B still provides a useful qualitative depiction of this behavior, we acknowledge that it does not quantitatively establish “flatness.” In future work, we plan to incorporate more rigorous measures—such as gradient magnitudes or Hessian eigenvalues—to more accurately characterize and communicate the geometry of the loss landscape.

      Reviewer #3 (recommendations):

      We sincerely thank the reviewer for their thoughtful feedback and constructive suggestions, which have helped us improve the clarity and rigor of our manuscript. Below, we address each of the comments.

      (1) Precision is lacking in the introduction section. Do the authors mean the Direct SSA, sorted SSA, which is usually faster, and how about rejection sampling methods?

      Thank you for pointing this out. We have updated the introduction to explicitly mention the Direct SSA.

      (2) When mentioning PyTorch and Jax, would be good to also talk about Julia, as they have fast stochastic simulators.

      We have now mentioned Julia alongside PyTorch and Jax.

      (3) Mentioned references 22-27. Reference 26 is an odd choice; a better reference is from the same author the Automatic Differentiation of Programs with Discrete Randomness, G Arya, M Schauer, F Schäfer, C Rackauckas, Advances in Neural Information Processing Systems, NeurIPS 2022

      We have now cited the suggested reference.

      (4) Page 1, Section: 'To circumnavigate these difficulties, the DGA modifies....' Have you thought about how you would deal with the bias that will be introduced by doing this?

      Thank you for your insightful comment. We acknowledge the potential for bias due to the differentiable approximations in the DGA; however, our analysis has not revealed any systematic bias compared to the exact Gillespie algorithm. Instead, we observe irregular deviations from the exact results as the smoothness of the approximations increases.

      (5) Page 2, first sentence '... traditional Gillespie...' be more precise here - the direct algorithm.

      Thank you for your comment. We believe that the context of the paper, particularly the schematic in Figure 1, makes it clear that we are focusing on the Direct SSA. 

      (6) Page 2, second paragraph: ' In order to simulate such a system...' This doesn't fit here as this section is about tau-leaping. As this approach approximates discrete operations, it is unclear if it would work for large models, snap-shot data of larger scale and if it would be possible to extend it for time-lapse data

      Thank you for your comment. We respectfully disagree that this paragraph is misplaced. The purpose of this paragraph is to explain why the standard Gillespie algorithm does not use fixed time intervals for simulating stochastic processes. By highlighting the inefficiency of discretizing time into small intervals where reactions rarely occur, the paragraph provides necessary context for the Gillespie algorithm’s event-driven approach, which avoids this inefficiency.

      Regarding the applicability of the DGA to larger models, snapshot data, or time-lapse data, we acknowledge these are important directions and have noted them as potential extensions in the discussion section.

      (7) Page 2 Section B: 'In order to make use of modern deep-learning techniques...' It doesn't appear from the paper that any modern deep learning is used.

      Thank you for your comment. Although the DGA does not utilize deep learning architectures such as neural networks, it employs automatic differentiation techniques provided by frameworks like PyTorch and Jax. These tools allow efficient gradient computations, making the DGA compatible with modern optimization workflows.

      (8) Page 3, Fig 1(a). S matrix last row, B and C should swap places: B should be 1 and C is -1.

      Corrected the typo.

      (9) Fig1 needs a more detailed caption.

      Expanded the caption slightly for clarity.

      (10) Page 3 last paragraph: 'The hyperparameter b...' Consequences of this are relevant, for example can we now go below zero. Also, we lose more efficient algorithms here. It would be good to discuss this in more detail that this is an approx.. algorithm that is good for our case study, but for other to use it more tests are needed.

      Thank you for the comment. Appendix A discusses the trade-offs related to a and b, but we agree that more detailed analysis is needed. The hyperparameters are tailored to our case study and must be tuned for specific systems.

      (11) Page 4, Section C, first paragraph, 'The goal of making...' This is snapshot data. Would the framework also translate to time-lapse data? Also, it would be better to make it clearer earlier which type of data are the target of this study.

      Thank you for your suggestion. While the current study focuses on snapshot data and steady-state properties, we believe the DGA could be extended to handle time-lapse data by incorporating multiple recorded time points into its inference objective. Specifically, one could modify the loss function to penalize discrepancies across observed transitions between these time points, effectively capturing dynamic trajectories. We consider this an exciting area for future development, but it lies beyond our present scope.

      (12) Page 4 Section C, sentence '...experimentally measured moments'. Should later be mentioned as error, as moments are imperfect

      Thank you for your comment. We agree that experimentally measured moments are inherently noisy and may not perfectly represent the true system. However, within the context of the DGA, these moments serve as target quantities, and the discrepancy between simulated and measured moments is already accounted for in the loss function. 

      (13) Page 4 Section C, last sentence '...second-order...such as ADAM'. Another formulation would be better as second order can be confusing, especially in the context of parameter estimation

      We have revised the language to avoid confusion regarding “second-order” methods.

      (14) Fig 4(a) a density plot would fit better here

      Fig. 4(a) has been updated to a scatter density plot as suggested.

      (15) Fig 4(c) Would be interesting to see closer analysis of trade of between gradient and accuracy when changing a and b parameters

      Thank you for this suggestion. We acknowledge that an in-depth exploration of these trade-offs could provide deeper insights into the method’s performance. However, for now, we believe the current analysis suffices to highlight the utility of the DGA in the contexts examined.

      (16) Page 6 Section III, first sentence: This fits more to intro. Further the reference list is severely lacking here, with no comparison to other methods for actually fitting stochastic models.

      Thank you for the suggestion. We have added a few references there.

      (17) Page 6, Section A, sentence: '....experimental measured mean...' Why is it a good measure here (moment matching is not perfect), also do you have distribution data, would that not be better? How about accounting for measurement error?

      Thank you for the comment. While we do not have full distribution data, we acknowledge that incorporating experimental measurement error could enhance the framework. A weighted loss function could model uncertainty explicitly, but this is beyond the scope of the current study. 

      (18) Page 7, section B, first paragraph: 'Motivated by this, we defined the...'Why using Fisher-Information when profile-likelihood have proven to be better, especially for systems with few parameters like this.

      Thank you for the suggestion. While profile-likelihood is indeed a powerful tool for parameter uncertainty analysis, we chose Fisher Information due to its computational efficiency and compatibility with the differentiable nature of the DGA framework.

      (19)  Page 7, section C, sentence '...set kR/off=1..'. In this case, we cannot infer this parameter.

      Thank you for the comment. You are correct that setting kR/off = 1 effectively normalizes the rates, making this parameter unidentifiable. In steady-state analyses, not all parameters can be independently inferred because observable quantities depend on relative—rather than absolute—rate values (as evident when setting the time derivative to zero in the master equation). To infer all parameters, one would need additional information, such as time-series data or moments at finite time.

      (20)  Page 7 Section 2. Estimating parameters .... Sentence: '....as can be seen, there is very good agreement..' How many times the true value falls within the CI (because corr 0.68 is not great).

      Thank you for your comment. While a correlation coefficient of 0.68 indicates moderate agreement, the primary goal was to demonstrate the feasibility of parameter estimation using the DGA rather than achieving perfect accuracy. The coverage of the CI was not explicitly calculated, as the focus was on the overall trends and relative agreement.

      (21) Page 7 Section 2. Estimating parameters .... Sentence: 'Fig5(c) shows....' Is this when using exact simulator?

      Thank you for your question. Yes, the exact values in x-axis of Fig. 5(c) are obtained using the exact Gillespie simulation.

      (22) Page 7 Section 3 Estimating parameters for the... Sentence: 'Fig6(a) shows...' Why Cis are not shown?

      Thank you for your comment. CIs are not shown in Fig. 6(a) because this particular case is degenerate, making the calculation and meaningful representation of CIs challenging. 

      (23) Page 10, Sentence: 'As can be seen in Fig 7(b)...' Can you show uncertainty in measured value? It would be good to see something of a comparison against an exact method, at least on simulated synthetic data

      Thank you for the comment. Fig. 7(a) already includes error bars for the experimental data, which account for measurement uncertainty. However, in Fig. 7(b), we do not include error bars for the experimental values due to limitations in the available data.

      (24) Page 12, Section B Loss function '...n=600...' This is on a lower range. Have you tested with n=1000?

      Yes, we have tested with n=1000 and observed no significant difference in the results. This indicates that n=600 is sufficient for the purposes of this study. 

      (25) Fig 8(c) why there are no CI shown?

      Thank you for your comment. CIs were not included in Fig. 8(c) due to degeneracy, which makes meaningful confidence intervals difficult to compute.

      (26) Page 12 Conclusion, sentence: '..gradients via backpropagation...' Actually, by making the function continuous, both forward and reverse mode might be used. And in this case, forward-mode would actually be the fastest by quite a margin

      Thank you for your insightful comment. You are correct that by making the function continuous, both forward-mode and reverse-mode automatic differentiation can be used. We have now mentioned this point in the discussion.

      (27) Overall comment for the Conclusion section: It would be good to discuss how this framework compares to other model-fitting frameworks for models with stochastic dynamics. The authors mention dynamic data and more discussion on this would be very welcomed. Why use ADAM and not something established like BFGS for model fitting? It would be interesting to discuss how this can fit with other SSA algorithms (e.g. in practice sorting SSA is used when models get larger). Also, inference comparison against exact approaches would be very nice. As it is now, the authors truly only check the accuracy of the SSA on 1 model -it would be interesting to see for other models.

      Thank you for your detailed comments. While this study focuses on introducing the DGA and demonstrating its feasibility, we agree that comparisons with other model-fitting frameworks, testing on additional models, and integrating with other SSA variants like sorted SSA are important directions for future work. Similarly, extending the DGA to handle transient dynamics and exploring alternatives to ADAM, such as BFGS, are promising areas to investigate further.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We are grateful for the positive evaluation of the work and the critical points raised by the reviewers. We thank all reviewers for their excellent comments. We believe that these revisions have significantly improved the quality of our study.

      In response to the 2nd reviewer, we apologise for the missing data, we failed to provide a P-value of the RM ANOVA post-hoc test, we are very grateful that this was brought to our attention. We have revised the RM ANOVA by using the Tukey HSD post-hoc test, which is generally recommended for pairwise comparisons as it is more robust to unequal sample sizes. The controversial statistical analysis of the overall comparison of speed differences was deleted, as were three supplementary figures (Fig. S4, Fig. S9 and S10), which are less informative in support of the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This study is useful as it provides further analysis of previously published data to address which specific genes are part of the masculinizing actions of E2 on female zebra finches, and where these key genes are expressed in the brain. However the data supporting the conclusion of masculinizing the song system are incomplete as the current manuscript is a re-analysis of differential gene expression modulated by E2 treatment between male/female zebra finches without manipulation of gene expression. The conclusions (and title) regarding song learning are also incompletely supported with no gene manipulation or song analysis. Importantly, the use of WGCNA for a question of sex-chromosome expression in species without dosage compensation is considered inadequate. As the experimental design did not include groups to directly test for song learning, and there was also no analysis of song performance, these data were also considered inadequate in that regard.

      We are sorry the editor felt the manuscript so incomplete and inadequate. Though the tone of this assessment seems more severe than the below reviewer comments, we are also happy to see that the editor has considered our paper further for a revised publication, based on the reviewer’s comments. We address the editor’s comments as follows:

      While we agree that manipulation of some of the genes we discovered, whose expression levels are E2-sensitive in the song system, would take the study further in validating some proposed hypothesis in the discussion of the paper, we don’t think the outcome of gene manipulations would change the major conclusions from the results of the paper. In this study we performed estrogen hormone manipulations, with causal consequences on gene expression in song nuclei and associated song behavior. In a way this is analogous to gene manipulations, but manipulating directly the action of estrogen. The categories of genes impacted, and the differences among the sex chromosomes wouldn’t change.

      For the comment on WGCNA being inadequate for addressing questions on sex chromosome expression in species without dosage compensation, we think the evidence in our data does not bear that out. One main result of this paper is the separation of Z chromosome transcripts whose expression is most strongly regulated by chromosomal dosage (WGCNA module E) across regions from those subject to additional sources of regulation in song nuclei (other modules). It seems to us that rather than being confounded by the lack of dosage compensation, WGCNA allowed us to better resolve the effects of dosage on different genes within the sex chromosomes. We have added a new figure more directly examining sex chromosome transcript abundance within different modules. Briefly, we found that module E assigned Z chromosome genes exhibited almost exactly the male-biased expression ratio expected from no dosage compensation while the Z chromosome genes in song nuclei assigned to other modules were expressed below the dosage predicted value, consistent with module E containing those genes whose expression are most strongly regulated by dose across all brain regions sampled.

      At its core, WGCNA finds sets of correlated genes. The biological reality of the zebra finch transcriptome is that Z chromosome expression is largely anti-correlated with W chromosome due to dosage. However, this dosage effect is not felt equally by all genes and WGCNA provides an unbiased computational framework which can be used to separate dose from other potential sources of gene regulation. This is why roughly ⅓ of Z chromosome genes are not assigned to module E; for example the growth hormone receptor is assigned to module G based on its correlation with genes upregulated within HVC.

      “As the experimental design did not include groups to directly test for song learning, and there was also no analysis of song performance, these data were also considered inadequate in that regard.”

      Concerning the comment on no analysis on song performance in the paper, all such analyses were conducted on our previous study on the same animals (Choe et al. 2021, Hormones & Behavior). The birds considered here were sacrificed at PHD30, prior to the onset of learned song behavior. However, females treated with E2 the same at the same time and allowed to mature into adulthood, went onto to develop rudimentary song. Further, induction of rudimentary song learning in females following E2 treatment has been well established since the early ‘80s. We have added the following text toward the end of the intro to make this more clear:

      “While the birds for this study were sacrificed prior to the developmental presentation of song behavior, we have previously shown that female finches treated in exactly the say way with E2 go on to produce rudimentary imitative songs as adults (Choe et al 2021), consistent with the known induction of vocal learning in females by E2 (REF).”

      Reviewer #1 (Recommendations For The Authors):

      Overall, this is a wonderfully designed and executed study that takes full advantage of new resources, such as the most complete zebra finch genome assembly yet, as well as the latest methods. I have very few suggestions as to the improvement of the manuscript. They are as follows:

      Results Section:

      In the paragraph "Identification of gene expression modules in song nuclei":

      "The E2-treated females in this study had similarly sized song system nuclei as males, indicating that E2 treatment prevented atrophy."

      Clarify if this comparison is to treated and/or untreated males.

      We thank the reviewer for their comment. The relative differences in the song nuclei sizes between the E2-treated females and the other groups is more complex that our original sentence implied. We have revised the main the text as follows

      “In our previous study, we found that estradiol treatment in PHD30 females caused HVC to enlarge and Area X to appear when it normally does not develop in females, but both at sizes less than in untreated or treated males.The sizes of PHD30 female LMAN RA were already the sizes as seen in males, as the later has not atrophied yet at this age(25).”

      In the paragraph "Sex- and micro-chromosome gene expression across the telencephalon": "These animal and chromosome specific shifts in the transcriptomes could represent the systemic effects of allelic chromosomal structural variation..."

      The authors should clarify the meaning of a"llelic chromosomal structural variation" in this context, as it is an unusual phrase. Major chromosomal structural variation seems unlikely to produce these effects. Is it also possible that animal-specific modules with brain-wide higher could also result from laboratory contamination between all samples from one animal? This is not too likely but perhaps should be acknowledged or ruled out.

      We have removed the word allelic, which was unnecessary. We can’t envision how laboratory contamination could occur such that all of one animal’s samples would be affected to produce the observed result which is module and chromosome specific. An animal wide effect could emerge during sacrifice, but we can think of no reason that would affect these modules and not others. Rather, the most likely explanation is biological natural difference between animals. We have added this consideration of alternative explanations.

      In the section "Candidate gene drivers of HVC specialization in E2-treated females":

      When discussing GHR's role in cell growth and proliferation, the authors' argument could be expanded by including the documented role of GH signaling in anti-apoptotic protection of neurons from rounds of neural pruning during development as documented in the chicken, e.g. • Harvey S, Baudet M-L, Sanders EJ. 2009. Growth Hormone-induced Neuroprotection in the Neural Retina during Chick Embryogenesis. Annals of the New York Academy of Sciences, 1163: 414-416. https://doi.org/10.1111/j.1749-6632.2008.03641.x

      We thank the reviewer for sharing this publication with us.. We have added the following sentence to our discussion with the above citation. “Further, our results are consistent with growth hormone’s known role in avian anti-apoptotic protection, with elevated signaling associated with the survival of chicken neurons during rounds of pruning in the developing

      retina.”

      The authors' argument of the relevance of the passerine GH duplication would be strengthened by citing:

      • Rasband SA, Bolton PE, Fang Q, Johnson PLF, Braun MJ. 2023. Evolution of the Growth Hormone Gene Duplication in Passerine Birds, Genome Biol Evol, 15(3) https://doi.org/10.1093/gbe/evad033. Greatly expands on the Yuri et al. paper cited by characterizing of the molecular evolution of these genes across hundreds of avian species, supporting positive selection on multiple amino acid sites identified in both ancestral and duplicate (passerine) growth hormone.

      • Xie F, London SE, Southey BR et al. 2010. The zebra finch neuropeptidome: prediction, detection and expression. BMC Biol 8, 28. https://doi.org/10.1186/1741-7007-8-28 The authors report significantly different expression of the ancestral GH gene in the adult male zebra finch auditory forebrain after different song exposure experiences.

      We have amended the results section sentence and added all suggested citations. The sentence now reads: “The gene which encodes growth hormone receptor’s ligand, growth hormone, is interestingly duplicated and undergoing accelerated evolution in the genomes of songbirds (Rasband et al 2023); the GH ligand has been found to be upregulated in the zebra finch auditory forebrain following the presentation of familiar song (Xie et al 2010).”

      Figures:

      - Figure 1B. "Duration of sex typing" being a shorter bar compared to the others is not fully explained in the experimental design. Presumably at the end of this time period, the sex is non-invasively, phenotypically evident. I suggest an arrow pointing to the PHD/PHD range when sex is apparent in plumage/anatomy.

      - Figure 4. Caption appears to be truncated; "across all... genes"?

      Fixed

      - Figure 5. For 5E, 5F, 5G, 5H, consider enlarging the plots so overlapping gene symbols are readable. Alternately, smaller numbers or symbols could be used with a key in areas where overlapping symbols are hard to prevent.

      We agree that these are not the easiest to read; we originally offset the symbols in R to minimize overlaps, but it can only do so much for the more crammed panels. We have now added a supplemental .xlsx file with the underlying data from each of the 4 tests for readers that want to examine the data in more detail.

      Reviewer #2 (Recommendations For The Authors):

      Since WGCNA methods will inherently draw together sex-chromosome genes into the same module in systems without dosage compensation, I suggest the authors rerun the WGCNA using only female samples and only male samples. Then identify the composition of modules that differ between E2 and vehicle-treated females and compare these genes to males. Then from male WGCNA identify the composition of modules that differ between E2 and vehicle-treated males and compare to female modules.

      We thank the reviewer for their suggestions. However, we believe it is not as strong as the approach we used, which is grouping data from both sexes in the WGCNA analyses in a study that is looking for sex differences. The reviewer's proposed approach amounts to computing modules twice (once per sex), determining song system specialized modules and E2 responsive modules in both settings, then intersecting the two sets to find corresponding modules, all done to prevent the non-dose compensated sex chromosome genes from being drawn into the same module.

      While WGCNA does group the majority of sex chromosome genes into module E, it does not categorize them all this way (Fig 3). The module classification instead differentiates those sex chromosome genes whose expression are most explained by chromosome dosage / sex across regions (modE) from those whose expression is controlled by other sources of regulation; for an example of the latter, the growth hormone receptor (GHR) is one of several Z chromosome genes classified into modG as its expression better correlates with the genes specialized to HVC than it does with the majority of dosage-dependent Z chromosome genes found in modE. Further, to remove biological sex as a variable in a WGCNA analysis that is focused on sex differences seems counterintuitive.

      Instead, to quantitatively address the reviewer’s concern, we conducted additional analyses, that led to an added new figure, associated text, and tables, that better describes sex/chromosome dosage effects on the abundance (FPKM) and expression ratios of sex chromosome transcripts by module irrespective of brain region (Fig. 5). We find that the Z chromosome genes in modE were expressed at the expected chromosome dosage in the non-vocal surrounding regions (65.06% observed vs 66.6% expected) while in other modules, other Z chromosome genes were expressed at intermediate levels between equal expression and the expected chromosomal dosage. For example, the Z chromosome content of modules D and H exhibited near equal expression between sexes. Within the song system, Z chromosome gene content of modG was highly expressed in males beyond what is expected from chromosome dosage, consistent with modG’s male-specific upregulation in song nuclei relative to surrounds in the absence of E2. These results better demonstrate that in our WGCNA on the combined dataset we are able to separate those Z chromosome genes whose expression is predominantly dosage controlled from those subject to additional regulation such as song system specialization.

      Fig. S3 Legend: 'Black arrow' -> 'Red arrow'

      Change made.

      Fig. S5 - What part of the figure shows the 'human convergent signature'? Also, simply listing the number of genes mapped to a chromosome is misleading to readers unfamiliar with the zebra finch genome, you should either provide the number of genes on each chromosome or present as corrected by that number.

      Fig. S5 was the same type of analyses in Fig. 3 but with an older zebra finch genome assembly, where we had not included the panel a for enrichments with genes convergent in expression between songbird song regions and humans speech brain regions. However, we see that Fig. S5 was not adding any new important information to the paper, so we removed it.

      For the chromosome analyses in Fig. 3b, we provide both the total raw number of module assigned genes broken down by chromosome (The black bar plots on the right) as well as a statistical fold-enrichment value of modules per chromosome. Given the number of genes per chromosome and genes per module in our data, we computed the fold-enrichment for each intersection (observed intersection size / expected intersection size). To test for the significance of these enrichments, we bootstrapped FDR corrected p values for the enrichment of each chromosome-module pairing by randomizing the mapping of genes to modules to construct a null distribution of fold enrichments for each intersection. Our intent was not to describe the size of the chromosomes themselves, information readily available elsewhere, but to show the disproportionate chromosomal origins of the gene sets considered by this study. Performing this enrichment test using all annotated genes per chromosome would artificially increase enrichment values and make the analysis less conservative by confounding the results with the inherent enrichment for “brain function” in the assigned genes relative to all genes.

      At several places you say "we correlated expression of each sex chromosome transcript with sexual dimorphism within each region, such that expressed W genes would be positively correlated and depleted Z chromosome genes would be anticorrelated." What was the sexual dimorphism that was being correlated with? Is this the eigengene?

      We thank you for this comment. Our language was less clear than it could be. We tested for correlations of both the eigengene and the individual gene expression profiles with the biological sex of the animals. We have changed the text to:

      “To do this, we tested for a correlation between the expression of each sex chromosome transcript to the animals’ sex within each brain region. We found that female-enriched transcripts were positively correlated with sex and male-enriched transcripts were anticorrelated (Fig. 4f,g).”

      Fig. 4A: The 'true/false' boxes and animal A-L is confusing and unnecessary. I'd suggest just using M and F (or sex symbols) with a horizontal line below each set of 3 for respective E2 and Veh.

      Change made.

      Reviewer #3 (Recommendations For The Authors):

      General comments:

      After the initial characterization of the datasets and module identification, it is quite hard to follow the logic of the data presentation in the various other Results sections or to clearly understand how they relate to the main stated goal to identify factors related to sex differences in vocal learning. The most relevant findings relate to the presumed actions of hormone treatment and sex chromosome gene dosage in song nuclei, whereas analyses of other brain areas, other chromosomes, or speech-related genes serve more as controls and/or appear as distractions from the main theme. A suggestion to increase the clarity of the presentation and potential impact of the study is to change the order of the presentation, focusing first on the specific analyses and comparisons that most directly speak to the main goals of the study, and then secondarily and more briefly presenting the controls or less related comparisons.

      The reviewer’s suggestion for the results section organization is exactly what we had tried to do. We opened the first paragraph on identification of modules, then presented the song nuclei specific modules, followed by E2-changes to those modules; and the followed by other specific results for the remainder of the paper, including module enrichments to specific chromosomes. The reviewer mentioned our analyses of “other brain areas” (which we assume to mean the non-vocal surround regions), other chromosomes (which we assume means autosomes) and speech-related genes as controls were a distraction in the paper; but within our analysis, these other brain regions are essential controls needed to assess the song-system specificity of any observed sex differences observed from the very first paragraphs of the results; the autosomes were not controls for sex chromosome results, but primary results in of themselves; the overlap with speech-related genes was also not a control, but a novel discovery. We have revised these points in the paper to make them clearer, and revised some of the section titles and transitions between sections to help increase clarity of the main storyline of the paper.

      A related comment is that many of the inferences drawn from the WGCNA analysis were quite complex, thus independent verification of some predictions would be quite valuable. For example, consider the passage: "In non-vocal learning juvenile females, interestingly LMAN was specialized relative to the AN by the same gene modules as in males (B, F, and I) as well as an additional module G (Fig. 2b); RA was specialized by module A as in males, but not module L and by additional modules A and G. In contrast, neither juvenile female HVC nor Area X exhibited significant gene module expression specializations relative to their surrounds." Providing in situ hybridization verification of these regional gene expression predictions with a few representative genes seems quite feasible given the group's expertise and would considerably strengthen confidence in the module-based inferences.

      We performed in-situ independent validation of 36 candidate genes in our first study with this dataset (Choe et al 2021). We now mention this validation in the revised paper. The reviewer’s selection of one of our sentences though made us realize that our grammar used to explain the results was not as clear as it needs to be. We thus cleaned up the grammar of our module descriptions so that it should be communicated with less complexity, the main issue noted by the reviewer.

      Because this is a re-analysis of a previously published dataset, the authors should more explicitly describe somewhere in the Discussion how the present analysis advances the understanding of sex differences in songbird neuroanatomy and behavior beyond the previous analysis.

      We have added an additional sentence into the discussion more clearly separating the results of the current study from our previous work.

      Specific comments:

      Abstract:

      There is evidence (from Frank Johnson's lab) that RA does not completely atrophy in female zebra finches, but is still present with more preserved connectivity than previously thought, possibly related to non-singing function(s). A term like 'marked reduction' of female RA may more accurately reflect the current state of knowledge.

      We have changed the text to “partial atrophy”.

      The term "driver" is undefined and unclear at this point of the paper; a clear definition for "driver" is also lacking in the Intro.

      We now define “driver” or “genetic driver” as understood to mean “a genetic locus whose expression and/or inheritance strongly regulates the trait of interest”.

      When citing the literature on studies that identified "specific genes with specialized up- or down-regulated expression in song and speech circuits relative to the surrounding motor control circuits", the authors should also cite studies from other labs (e.g. Li et al., PNAS, 2007; Lovell et al, Plos One 2008; Lovell et al, BMC Genomics 2018; Nevue et al, Sci Rep. 2020), to be accurate and fair.

      Citations added

      For clarity, the authors should explicitly formulate the hypothesis they are proposing at the end of the Summary.

      We thank the reviewer for this comment. We have replaced the final sentence of the summary with: “We present a hypothesis where reduced dosage and expression of these Z chromosome genes changes the developmental trajectory of female HVC, partially preventable by estrogen treatment, contributing to the loss of song learning behavior.”

      Introduction:

      Vocal learning is arguably the ability to imitate 'vocal' sounds, this could be clarified here.

      We have amended the sentence to “Vocal learning is the ability to imitate heard sounds using a vocal organ…”

      Given they are currently considered sister taxa, can the author briefly explain what is the basis for assuming that songbirds and parrots independently evolved vocal learning?

      Although songbirds and parrots belong to a monophyletic clade, they are not sister taxa. There are two clades separating them that are vocal non-learners. We have cited the reference that demonstrated this (e.g. Jarvis et al 2014 Science).

      Why use Taeniopygia castanotis rather than the more broadly used Taeniopygia guttata?

      Zebra finches were recently reclassified and T.castanotis is now more accurate. The Indonesian Timor zebra finch retained T.guttata while the Australian finch, used here, was classified as T.castanotis.

      The authors state: "...vocal learning is strongly sexually dimorphic in zebra finches and many other vocal learning species" and cite Nottebohm and Arnold, Science, 1978. That landmark paper only shows dimorphism in song nuclei (not learning) in two songbird species. The authors should provide citations for other species and behavior, or modify the statement.

      We have added an additional citation (Odom et al.) to this sentence which covers the phylogeny more broadly.

      The authors refer to the nucleus RA as being located in the lateral intermediate arcopallium (LAI). Other labs have described this domain as the dorsal part of the intermediate arcopallium, thus AId or AID (Mello et al., JCN, 2019; Yuan and Bottjer, J Neurophys 2019; Yuan and Bottjer, eNeuro, 2020; Nevue et al., BCM Genomics, 2020). The authors should acknowledge this discrepancy in nomenclature so that data and conclusions can be more readily compared across studies.

      We thank the reviewer and agree that this is helpful. We have added a note at the first mention of LAI.

      The authors state that data from the gynandromorph bird described by Agate et al implicates "sex chromosome gene expression within the song system" as involved in the song system sexual dimorphism. That study, however, only rules out circulating gonadal steroids, and while suggesting a cell-autonomous mechanism like sex chromosome genes, it does not necessarily exclude other brain-autonomous factors like sex differences in local production of sex steroids.

      We say that this study “implicated” sex chromosome gene expression, which is accurate per the results and discussion of that study. We are unsure what “brain autonomous factors like sex differences in local production of sex steroids” means?. “Brain autonomous” and “local production” in the brain seem contradictory in this context?

      Results:

      The authors state that "the E2-treated females in this study had similarly sized song system nuclei as males, indicating that E2 treatment prevented atrophy". Can they clarify whether the VEH-treated females actually had smaller RAs than E2-treated females or VEH-treated males at this age? This is still quite early in development and it is unclear to what extent RA's marked sexual dimorphism in adults or later developmental ages has already taken place in untreated (or VEH-treated) birds. A related comment is that the authors state later on: "We interpret these findings to indicate that: LMAN and RA atrophy later in juvenile female development..." Does this mean these nuclei actually did not show the marked decreases predicted earlier in the text? Clarifying this point would be helpful.

      We thank the reviewer for pointing out this discrepancy, which reviewer #1 asked for clarification as well. RA size at this age is similar in males and females. However, HVC and Area X is smaller and absent respectively in females and E2 treatment partially prevents this atrophy. The text now reads:

      “In our previous study, we found that estradiol treatment in PHD30 females caused HVC to enlarge and Area X to appear when it normally does not develop in females, but both at sizes less than in untreated or treated males.The sizes of PHD30 female LMAN RA were already the sizes as seen in males, as the later has not atrophied yet at this age(25).”

      The authors acknowledge that area X is absent in untreated and VEH-treated females. Could they please clarify how area X and the surrounding stratal tissue that excludes area X were identified for laser capture dissections in juvenile females?

      We have added the following statement to the main text portion discussing the dissections.

      “In the case of vehicle-treated females which lack Area X, a piece of striatum from the same location of where Area X is found in males was taken. “

      Some passages in Results discussing the authors' interpretation of the modules seem quite speculative and possibly belong instead in the Discussion. For example: "... that module A and G genes could be associated with the start of this atrophy; HVC and Area X are likely the first to atrophy or not develop; and lack of any gene module specialization in them at this age could mean that they would be more sensitive to estrogen prevention of vocal learning loss."

      As suggested, we have removed this text from the results; these ideas were already presented in the Discussion. We have merged the resulting small paragraph with the preceding paragraph.

      The authors state: "To assess the effects of chronic exogenous estrogen on the developing song system, we first performed a control analysis of modules in the E2-treated juvenile males." How can an assessment of estrogen effects be a "control" analysis? Does this refer to a contrast with females? Please clarify the language here.

      The reviewer is correct, that E2 treatment in males should not be considered a control experiment. We removed the word “control”.

      When discussing the GO-enriched terms for module G, it is unclear how the authors reached the conclusion about "proliferative", as the enriched terms do not refer to processes more directly indicative of proliferation like "cell division" or "cell cycle regulation". Rather, these terms seem more related to differentiation and growth, which do not necessarily imply proliferation. The authors also refer to "HVC proliferation" later on in the Discussion. However, there is conclusive evidence from several labs that proliferative events associated with postnatal neuronal addition and/or replacement in song nuclei occur in the subventricular zone, not in song nuclei like HVC itself, and that the growth of song nuclei largely reflects cell survival, as well as growth in size and complexity under the regulation of sex steroids.

      We agree that “proliferative” may have been a poor word choice here. We did not mean to indicate that cell division was occuring in HVC itself. Instead we meant to indicate that HVC is able to accommodate the new born neurons from the SVZ. We have replaced the word “proliferative” throughout. In the instance the reviewer mentions specifically we replaced it with,“...potentially act to integrate and differentiate late born neurons.”

      With regard to module E, referring to a telencephalon-wide sexually dimorphic gene expression program seems quite a stretch, given that only a few regions were sampled and compared between sexes. These related statements should be toned down.

      We have replaced “telencephalon-wide” with “more distributed across the finch telencephalon” and other similar language in each instance.

      The following passage is very speculative and should shortened and/or moved to the Discussion: "Based on the findings in these gene sets, we hypothesize that without excess estrogen in females, HVC expansion is prevented by not specializing the growth and neuronal migration promoting genes in module G to the HVC lineage by late development. This is potentially enacted by depleting necessary gene products from the Z sex chromosome, such as GHR, which are already present in only one copy."

      We have deleted this portion of the text, as the idea is already present in the discussion.

      Figure 5: To this reviewer, the comparisons of sex differences and of female response to E2 are the most relevant and informative ones, whereas the regional differences between song nuclei and surrounds refer to different cell populations and cell types where other processes may be occurring, independently of what occurs in song nuclei. It thus seems like the intersection analysis in panel 5i may be subtracting out important "core genes" in terms of E2 effects and/or sex differences in the most relevant cell populations, i.e. in this case within song nucleus HVC.

      Song learning and the vocal learning brain regions are specialized behaviors and associated nuclei which have a set of hundreds of specialized genes compared to the surrounds. Our previous findings shows that E2 drives the appearance of these specializations in female zebra finches. Thus, we considered this the most interesting question to focus on, which we have further highlighted. Nevertheless, in response to the reviewers suggestion, we have added a .xlsx supplemental file containing the results from each of the individual tests so readers may examine any single comparison, or set of comparisons, in more detail.

      Discussion:

      It is unclear what the term "critical period" refers to in: "during the critical period of atrophy for the female vocal circuit"; please clarify.

      We agree that our language was nebulous. We have replaced it with “as several male song control nuclei begin to expand and female nuclei partially atrophy”

      In: "HVC appeared unspecialized at the level of gene module expression in control females", does "unspecialized" refer to a lack of difference in gene expression when compared to surroundings? Please clarify. The same comment applies to other uses of "unspecialized" in this paragraph.

      Yes, unspecialized means lack of difference in gene expression in the song nucleus. To clarify this point, we have reworked that and the following sentence as follows:

      “HVC appeared unspecialized compared to the surrounding nidopallium at the level of gene module expression in control females, with no significantly differentially expressed MEGs . However, in E2-treated females, HVC exhibited a subset of the observed male HVC gene expression specializations. Similarly, the vehicle-treated female striatum located where Area X would be also lacked any specialized gene module expression, but the E2-treated female Area X exhibited a subset of the male Area X specializations, consistent with the known absence of Area X in vehicle-treated females and presence in E2-treated females.”

      The authors state: "...we surprisingly found that the most specialized genes were disproportionately from the Z chromosome", when discussing module G in HVC. Why is this so surprising? In a sense, this could be taken as consistent with the findings of Friedrich et al, 2022, where sex differences in the RA transcriptome were predominantly Z related on 20 dph. Arguably 20 dph is still quite close to 30 dph in the present study, when compared to 50 dph in Friedrich et al, when autosomes predominate.

      Our bioRxiv was originally posted in July 2021, prior to the publication of Friedrich et al, 2022; however we had previously added to our discussion that several of our results are consistent with the observations of Friedrich et al..

      We have a different interpretation of Z chromosome gene results in Friedrich et al.. While the percentage of specialized genes from the Z chromosome decreased, the absolute number of specialized Z chromosome genes actually increased over this interval. In Fig. 3a from Friedrich et al. it appears that ~28% of Z chromosome genes were sexually dimorphic in their expression in RA at PHD20 but that ~39% of Z chromosome genes were similarly dimorphic at PHD50. We interpret this result as the Z chromosome genes being among the earliest genes differentially expressed between the sexes, not that their differential expression or role ever subsequently decreased. We have reworked this portion of the discussion to make our point more clear:

      “This model of sex chromosome influenced song system development is consistent with recent observations comparing male and female zebra finch transcriptomes from RA at young juvenile (PHD20) and young adult (PHD50) ages in un-manipulated birds (Friedrich et al. 2022)57. While that study proposes that the role of the sex chromosome in maintaining transcriptomic sex differences diminishes across development, as the proportion of specialized genes that originate on the sex chromosomes diminishes, this effect was driven by large increases in differentially expressed autosomal genes rather than by any reduction in sex chromosome dimorphism; the percentage of differentially expressed Z chromosome genes increased from PHD20 (28%) to PHD50 (39%) (Friedrich et al). This leads us to conclude that sexually dimorphic Z chromosome expression at juvenile ages precedes the sexually dimorphic expression of the autosomes seen in adults. This is consistent with our hypothesis that sufficient expression of select Z chromosome gene products (GHR, etc..) is necessary for subsequent autosomal song system specializations (modG).”

      Further, when we write ”When examining the module G HVC specialization induced by E2-treatment in female HVC, we surprisingly found that the most specialized genes were disproportionately from the Z chromosome” we are referring to the upregulation of module G by E2 in female HVC, not the sex difference described in RA by Friedrich et al. which only utilized un-treated RA samples and thus is more likely related to our observations of module E.

      The term "sexual dimorphism" has been more traditionally used for sex differences that are very marked, like features that are highly regressed or absent in one sex, most often in females. Quantitative differences in gene expression, including dosage differences like those related to module E, are more appropriately described as sex differences rather than dimorphisms. That usage would be more consistent with most of the literature, and thus preferable.

      We did a google search for common definitions, and found more the opposite. Sexual dimorphism being used more often as differences of degree (with the zebra finch example as one of the top hits), and sex differences being used often as more absolute differences (like presence vs absence of the Y chromosome). Further, as in the reviewer’s first sentence, the definition of sexual dimorphism is a sex difference. That is, the two phrases can be interchangeable. Thus, we prefer to keep sexual dimorphism.

      Several references are incomplete or seem truncated, like 9 and 10.

      Fixed

      Table S2: Please examine and take into account the W gene curation presented in Table S3 of Friedrich et al., 2022.

      We have added additional supplementals (supplemetal_w_chrom_express.csv and supplemetal_z_chrom_express.csv) of the data provided in new Fig 5 incorporating the curation information from Table S3 from Friedrich et al.

      Data availability:

      Genes for all the main modules identified should be presented in a Supplemental Table, or through a link to a stable data repository.

      We have added an additional Supplemental Table supplemental_gene_module_assignment.csv with this information.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews

      Reviewer #1 (Public Review):

      Summary:

      The authors have created a system for designing and running experimental pipelines to control and coordinate different programs and devices during an experiment, called Heron. Heron is based around a graphical tool for creating a Knowledge Graph made up of nodes connected by edges, with each node representing a separate Python script, and each edge being a communication pathway connecting a specific output from one node to an iput on another. Each node also has parameters that can be set by the user during setup and runtime, and all of this behavior is concisely specified in the code that defines each node. This tool tries to marry the ease of use, clarity, and selfdocumentation of a purely graphical system like Bonsai with the flexibility and power of a purely code-based system like Robot Operating System (ROS).

      Strengths:

      The underlying idea behind Heron, of combining a graphical design and execution tool with nodes that are made as straightforward Python scripts seems like a great way to get the relative strengths of each approach. The graphical design side is clear, selfexplanatory, and self-documenting, as described in the paper. The underlying code for each node tends to also be relatively simple and straightforward, with a lot of the complex communication architecture successfully abstracted away from the user. This makes it easy to develop new nodes, without needing to understand the underlying communications between them. The authors also provide useful and well-documented templates for each type of node to further facilitate this process. Overall this seems like it could be a great tool for designing and running a wide variety of experiments, without requiring too much advanced technical knowledge from the users.

      The system was relatively easy to download and get running, following the directions and already has a significant amount of documentation available to explain how to use it and expand its capabilities. Heron has also been built from the ground up to easily incorporate nodes stored in separate Git repositories and to thus become a large community-driven platform, with different nodes written and shared by different groups. This gives Heron a wide scope for future utility and usefulness, as more groups use it, write new nodes, and share them with the community. With any system of this sort, the overall strength of the system is thus somewhat dependent on how widely it is used and contributed to, but the authors did a good job of making this easy and accessible for people who are interested. I could certainly see Heron growing into a versatile and popular system for designing and running many types of experiments.

      Weaknesses:

      (1) The number one thing that was missing from the paper was any kind of quantification of the performance of Heron in different circumstances. Several useful and illustrative examples were discussed in depth to show the strengths and flexibility of Heron, but there was no discussion or quantification of performance, timing, or latency for any of these examples. These seem like very important metrics to measure and discuss when creating a new experimental system.

      Heron is practically a thin layer of obfuscation of signal passing across processes. Given its design approach it is up to the code of each Node to deal with issues of timing, synching and latency and thus up to each user to make sure the Nodes they author fulfil their experimental requirements. Having said that, Heron provides a large number of tools to allow users to optimise the generated Knowledge Graphs for their use cases. To showcase these tools, we have expanded on the third experimental example in the paper with three extra sections, two of which relate to Heron’s performance and synching capabilities. One is focusing on Heron’s CPU load requirements (and existing Heron tools to keep those at acceptable limits) and another focusing on post experiment synchronisation of all the different data sets a multi Node experiment generates.   

      (2) After downloading and running Heron with some basic test Nodes, I noticed that many of the nodes were each using a full CPU core on their own. Given that this basic test experiment was just waiting for a keypress, triggering a random number generator, and displaying the result, I was quite surprised to see over 50% of my 8-core CPU fully utilized. I don’t think that Heron needs to be perfectly efficient to accomplish its intended purpose, but I do think that some level of efficiency is required. Some optimization of the codebase should be done so that basic tests like this can run with minimal CPU utilization. This would then inspire confidence that Heron could deal with a real experiment that was significantly more complex without running out of CPU power and thus slowing down.

      The original Heron allowed the OS to choose how to manage resources over the required process. We were aware that this could lead to significant use of CPU time, as well as occasionally significant drop of packets (which was dependent on the OS and its configuration). This drop happened mainly when the Node was running a secondary process (like in the Unity game process in the 3rd example). To mitigate these problems, we have now implemented a feature allowing the user to choose the CPU that each Node’s worker function runs on as well as any extra processes the worker process initialises. This is accessible from the Saving secondary window of the node. This stops the OS from swapping processes between CPUs and eliminates the dropping of packages due to the OS behaviour. It also significantly reduces the utilised CPU time. To showcase this, we initially run the simple example mentioned by the reviewer. The computer running only background services was using 8% of CPU (8 cores). With Heron GUI running but with no active Graph, the CPU usage went to 15%. With the Graph running and Heron’s processes running on OS attributed CPU cores, the total CPU was at 65% (so very close to the reviewer’s 50%). By choosing a different CPU core for each of the three worker processes the CPU went down to 47% and finally when all processes were forced to run on the same CPU core the CPU load dropped to 30%.  So, Heron in its current implementation running its GUI and 3 Nodes takes 22% of CPU load. This is still not ideal but is a consequence of the overhead of running multiple processes vs multiple threads. We believe that, given Heron’s latest optimisation, offering more control of system management to the user, the benefits of multi process applications outweigh this hit in system resources. 

      We have also increased the scope of the third example we provide in the paper and there we describe in detail how a full-scale experiment with 15 Nodes (which is the upper limit of number of Nodes usually required in most experiments) impacts CPU load. 

      Finally, we have added on Heron’s roadmap projects extra tasks focusing only on optimisation (profiling and using Numba for the time critical parts of the Heron code).

      (3) I was also surprised to see that, despite being meant specifically to run on and connect diverse types of computer operating systems and being written purely in Python, the Heron Editor and GUI must be run on Windows. This seems like an unfortunate and unnecessary restriction, and it would be great to see the codebase adjusted to make it fully crossplatform-compatible.

      This point was also mentioned by reviewer 2. This was a mistake on our part and has now been corrected in the paper. Heron (GUI and underlying communication functionality) can run on any machine that the underlying python libraries run, which is Windows, Linux (both for x86 and Arm architectures) and MacOS. We have tested it on Windows (10 and 11, both x64), Linux PC (Ubuntu 20.04.6, x64) and Raspberry Pi 4 (Debian GNU/Linux 12 (bookworm), aarch64). The Windows and Linux versions of Heron have undergone extensive debugging and all of the available Nodes (that are not OS specific) run on those two systems. We are in the process of debugging the Nodes’ functionality for RasPi. The MacOS version, although functional requires further work to make sure all of the basic Nodes are functional (which is not the case at the moment). We have also updated our manuscript (Multiple machines, operating systems and environments) to include the above information. 

      (4) Lastly, when I was running test experiments, sometimes one of the nodes, or part of the Heron editor itself would throw an exception or otherwise crash. Sometimes this left the Heron editor in a zombie state where some aspects of the GUI were responsive and others were not. It would be good to see a more graceful full shutdown of the program when part of it crashes or throws an exception, especially as this is likely to be common as people learn to use it. More problematically, in some of these cases, after closing or force quitting Heron, the TCP ports were not properly relinquished, and thus restarting Heron would run into an "address in use" error. Finding and killing the processes that were still using the ports is not something that is obvious, especially to a beginner, and it would be great to see Heron deal with this better. Ideally, code would be introduced to carefully avoid leaving ports occupied during a hard shutdown, and furthermore, when the address in use error comes up, it would be great to give the user some idea of what to do about it.

      A lot of effort has been put into Heron to achieve graceful shut down of processes, especially when these run on different machines that do not know when the GUI process has closed. The code that is being suggested to avoid leaving ports open has been implemented and this works properly when processes do not crash (Heron is terminated by the user) and almost always when there is a bug in a process that forces it to crash. In the version of Heron available during the reviewing process there were bugs that caused the above behaviour (Node code hanging and leaving zombie processes) on MacOS systems. These have now been fixed. There are very seldom instances though, especially during Node development, that crashing processes will hang and need to be terminated manually. We have taken on board the reviewer’s comments that users should be made more aware of these issues and have also described this situation in the Debugging part of Heron’s documentation. There we explain the logging and other tools Heron provides to help users debug their own Nodes and how to deal with hanging processes.

      Heron is still in alpha (usable but with bugs) and the best way to debug it and iron out all the bugs in all use cases is through usage from multiple users and error reporting (we would be grateful if the errors the reviewer mentions could be reported in Heron’s github Issues page). We are always addressing and closing any reported errors, since this is the only way for Heron to transition from alpha to beta and eventually to production code quality.

      Overall I think that, with these improvements, this could be the beginning of a powerful and versatile new system that would enable flexible experiment design with a relatively low technical barrier to entry. I could see this system being useful to many different labs and fields. 

      We thank the reviewer for positive and supportive words and for the constructive feedbacks. We believe we have now addressed all the raised concerns.  

      Reviewer #2 (Public Review):

      Summary:

      The authors provide an open-source graphic user interface (GUI) called Heron, implemented in Python, that is designed to help experimentalists to

      (1) design experimental pipelines and implement them in a way that is closely aligned with their mental schemata of the experiments,

      (2) execute and control the experimental pipelines with numerous interconnected hardware and software on a network.

      The former is achieved by representing an experimental pipeline using a Knowledge Graph and visually representing this graph in the GUI. The latter is accomplished by using an actor model to govern the interaction among interconnected nodes through messaging, implemented using ZeroMQ. The nodes themselves execute user-supplied code in, but not limited to, Python.

      Using three showcases of behavioral experiments on rats, the authors highlighted three benefits of their software design:

      (1) the knowledge graph serves as a self-documentation of the logic of the experiment, enhancing the readability and reproducibility of the experiment,

      (2) the experiment can be executed in a distributed fashion across multiple machines that each has a different operating system or computing environment, such that the experiment can take advantage of hardware that sometimes can only work on a specific computer/OS, a commonly seen issue nowadays,

      (3) he users supply their own Python code for node execution that is supposed to be more friendly to those who do not have a strong programming background.

      Strengths:

      (1) The software is light-weight and open-source, provides a clean and easy-to-use GUI,

      (2) The software answers the need of experimentalists, particularly in the field of behavioral science, to deal with the diversity of hardware that becomes restricted to run on dedicated systems.

      (3) The software has a solid design that seems to be functionally reliable and useful under many conditions, demonstrated by a number of sophisticated experimental setups.

      (4) The software is well documented. The authors pay special attention to documenting the usage of the software and setting up experiments using this software.

      Weaknesses:

      (1) While the software implementation is solid and has proven effective in designing the experiment showcased in the paper, the novelty of the design is not made clear in the manuscript. Conceptually, both the use of graphs and visual experimental flow design have been key features in many widely used softwares as suggested in the background section of the manuscript. In particular, contrary to the authors’ claim that only pre-defined elements can be used in Simulink or LabView, Simulink introduced MATLAB Function Block back in 2011, and Python code can be used in LabView since 2018. Such customization of nodes is akin to what the authors presented.

      In the Heron manuscript we have provided an extensive literature review of existing systems from which Heron has borrowed ideas. We never wished to say that graphs and visual code is what sets Heron apart since these are technologies predating Heron by many years and implemented by a large number of software. We do not believe also that we have mentioned that LabView or Simulink can utilise only predefined nodes. What we have said is that in such systems (like LabView, Simulink and Bonsai) the focus of the architecture is on prespecified low level elements while the ability for users to author their own is there but only as an afterthought. The difference with Heron is that in the latter the focus is on the users developing their own elements. One could think of LabView style software as node-based languages (with low level visual elements like loops and variables) that also allow extra scripting while Heron is a graphical wrapper around python where nodes are graphical representations of whole processes. To our knowledge there is no other software that allows the very fast generation of graphical elements representing whole processes whose communication can also be defined graphically. Apart from this distinction, Heron also allows a graphical approach to writing code for processes that span different machines which again to our knowledge is a novelty of our approach and one of its strongest points towards ease of experimental pipeline creation (without sacrificing expressivity). 

      (2) The authors claim that the knowledge graph can be considered as a self-documentation of an experiment. I found it to be true to some extent. Conceptually it’s a welcoming feature and the fact that the same visualization of the knowledge graph can be used to run and control experiments is highly desirable (but see point 1 about novelty). However, I found it largely inadequate for a person to understand an experiment from the knowledge graph as visualized in the GUI alone. While the information flow is clear, and it seems easier to navigate a codebase for an experiment using this method, the design of the GUI does not make it a one-stop place to understand the experiment. Take the Knowledge Graph in Supplementary Figure 2B as an example, it is associated with the first showcase in the result section highlighting this self-documentation capability. I can see what the basic flow is through the disjoint graph where 1) one needs to press a key to start a trial, and 2) camera frames are saved into an avi file presumably using FFMPEG. Unfortunately, it is not clear what the parameters are and what each block is trying to accomplish without the explanation from the authors in the main text. Neither is it clear about what the experiment protocol is without the help of Supplementary Figure 2A.

      In my opinion, text/figures are still key to documenting an experiment, including its goals and protocols, but the authors could take advantage of the fact that they are designing a GUI where this information, with properly designed API, could be easily displayed, perhaps through user interaction. For example, in Local Network -> Edit IPs/ports in the GUI configuration, there is a good tooltip displaying additional information for the "password" entry. The GUI for the knowledge graph nodes can very well utilize these tooltips to show additional information about the meaning of the parameters, what a node does, etc, if the API also enforces users to provide this information in the form of, e.g., Python docstrings in their node template. Similarly, this can be applied to edges to make it clear what messages/data are communicated between the nodes. This could greatly enhance the representation of the experiment from the Knowledge graph.

      In the first showcase example in the paper “Probabilistic reversal learning.

      Implementation as self-documentation” we go through the steps that one would follow in order to understand the functionality of an experiment through Heron’s Knowledge Graph. The Graph is not just the visual representation of the Nodes in the GUI but also their corresponding code bases. We mention that the way Heron’s API limits the way a Node’s code is constructed (through an Actor based paradigm) allows for experimenters to easily go to the code base of a specific Node and understand its 2 functions (initialisation and worker) without getting bogged down in the code base of the whole Graph (since these two functions never call code from any other Nodes). Newer versions of Heron facilitate this easy access to the appropriate code by also allowing users to attach to Heron their favourite IDE and open in it any Node’s two scripts (worker and com) when they double click on the Node in Heron’s GUI. On top of this, Heron now (in the versions developed as answers to the reviewers’ comments) allows Node creators to add extensive comments on a Node but also separate comments on the Node’s parameters and input and output ports. Those can be seen as tooltips when one hovers over the Node (a feature that can be turned off or on by the Info button on every Node).  

      As Heron stands at the moment we have not made the claim that the Heron GUI is the full picture in the self-documentation of a Graph. We take note though the reviewer’s desire to have the GUI be the only tool a user would need to use to understand an experimental implementation. The solution to this is the same as the one described by the reviewer of using the GUI to show the user the parts of the code relevant to a specific Node without the user having to go to a separate IDE or code editor. The reason this has not been implemented yet is the lack of a text editor widget in the underlying gui library (DearPyGUI). This is in their roadmap for their next large release and when this exists we will use it to implement exactly the idea the reviewer is suggesting, but also with the capability to not only read comments and code but also directly edit a Node’s code (see Heron’s roadmap). Heron’s API at the moment is ideal for providing such a text editor straight from the GUI.

      (3) The design of Heron was primarily with behavioral experiments in mind, in which highly accurate timing is not a strong requirement. Experiments in some other areas that this software is also hoping to expand to, for example, electrophysiology, may need very strong synchronization between apparatus, for example, the record timing and stimulus delivery should be synced. The communication mechanism implemented in Heron is asynchronous, as I understand it, and the code for each node is executed once upon receiving an event at one or more of its inputs. The paper, however, does not include a discussion, or example, about how Heron could be used to address issues that could arise in this type of communication. There is also a lack of information about, for example, how nodes handle inputs when their ability to execute their work function cannot keep up with the frequency of input events. Does the publication/subscription handle the queue intrinsically? Will it create problems in real-time experiments that make multiple nodes run out of sync? The reader could benefit from a discussion about this if they already exist, and if not, the software could benefit from implementing additional mechanisms such that it can meet the requirements from more types of experiments.

      In order to address the above lack of explanation (that also the first reviewer pointed out) we expanded the third experimental example in the paper with three more sections. One focuses solely on explaining how in this example (which acquires and saves large amounts of data from separate Nodes running on different machines) one would be able to time align the different data packets generated in different Nodes to each other. The techniques described there are directly implementable on experiments where the requirements of synching are more stringent than the behavioural experiment we showcase (like in ephys experiments). 

      Regarding what happens to packages when the worker function of a Node is too slow to handle its traffic, this is mentioned in the paper (Code architecture paragraph): “Heron is designed to have no message buffering, thus automatically dropping any messages that come into a Node’s inputs while the Node’s worker function is still running.” This is also explained in more detail in Heron’s documentation. The reasoning for a no buffer system (as described in the documentation) is that for the use cases Heron is designed to handle we believe there is no situation where a Node would receive large amounts of data in bursts while very little data during the rest of the time (in which case a buffer would make sense). Nodes in most experiments will either be data intensive but with a constant or near constant data receiving speed (e.g. input from a camera or ephys system) or will have variable data load reception but always with small data loads (e.g. buttons). The second case is not an issue and the first case cannot be dealt with a buffer but with the appropriate code design, since buffering data coming in a Node too slow for its input will just postpone the inevitable crash. Heron’s architecture principle in this case is to allow these ‘mistakes’ (i.e. package dropping) to happen so that the pipeline continues to run and transfer the responsibility of making Nodes fast enough to the author of each Node. At the same time Heron provides tools (see the Debugging section of the documentation and the time alignment paragraph of the “Rats playing computer games”  example in the manuscript) that make it easy to detect package drops and either correct them or allow them but also allow time alignment between incoming and outgoing packets. In the very rare case where a buffer is required Heron’s do-it-yourself logic makes it easy for a Node developer to implement their own Node specific buffer.

      (4) The authors mentioned in "Heron GUI’s multiple uses" that the GUI can be used as an experimental control panel where the user can update the parameters of the different Nodes on the fly. This is a very useful feature, but it was not demonstrated in the three showcases. A demonstration could greatly help to support this claim.

      As the reviewer mentions, we have found Heron’s GUI double role also as an experimental on-line controller a very useful capability during our experiments. We have expanded the last experimental example to also showcase this by showing how on the “Rats playing computer games” experiment we used the parameters of two Nodes to change the arena’s behaviour while the experiment was running, depending on how the subject was behaving at the time (thus exploring a much larger set of parameter combinations, faster during exploratory periods of our shaping protocols construction). 

      (5) The API for node scripts can benefit from having a better structure as well as having additional utilities to help users navigate the requirements, and provide more guidance to users in creating new nodes. A more standard practice in the field is to create three abstract Python classes, Source, Sink, and Transform that dictate the requirements for initialisation, work_function, and on_end_of_life, and provide additional utility methods to help users connect between their code and the communication mechanism. They can be properly docstringed, along with templates. In this way, the com and worker scripts can be merged into a single unified API. A simple example that can cause confusion in the worker script is the "worker_object", which is passed into the initialise function. It is unclear what this object this variable should be, and what attributes are available without looking into the source code. As the software is also targeting those who are less experienced in programming, setting up more guidance in the API can be really helpful. In addition, the self-documentation aspect of the GUI can also benefit from a better structured API as discussed in point 2 above.

      The reviewer is right that using abstract classes to expose to users the required API would be a more standard practice. The reason we did not choose to do this was to keep Heron easily accessible to entry level Python programmers who do not have familiarity yet with object oriented programming ideas. So instead of providing abstract classes we expose only the implementation of three functions which are part of the worker classes but the classes themselves are not seen by the users of the API. The point about the users’ accessibility to more information regarding a few objects used in the API (the worker object for example) has been taken on board and we have now addressed this by type hinting all these objects both in the templates and more importantly in the automatically generated code that Heron now creates when a user chooses to create a Node graphically (a feature of Heron not present in the version available in the initial submission of this manuscript).  

      (6) The authors should provide more pre-defined elements. Even though the ability for users to run arbitrary code is the main feature, the initial adoption of a codebase by a community, in which many members are not so experienced with programming, is the ability for them to use off-the-shelf components as much as possible. I believe the software could benefit from a suite of commonly used Nodes.

      There are currently 12 Node repositories in the Heron-repositories project on Github with more than 30 Nodes, 20 of which are general use (not implementing a specific experiment’ logic). This list will continue to grow but we fully appreciate the truth of the reviewer’s comment that adoption will depend on the existence of a large number of commonly used Nodes (for example Numpy, and OpenCV Nodes) and are working towards this goal.

      (7) It is not clear to me if there is any capability or utilities for testing individual nodes without invoking a full system execution. This would be critical when designing new experiments and testing out each component.

      There is no capability to run the code of an individual Node outside Heron’s GUI. A user could potentially design and test parts of the Node before they get added into a Node but we have found this to be a highly inefficient way of developing new Nodes. In our hands the best approach for Node development was to quickly generate test inputs and/or outputs using the “User Defined Function 1I 1O” Node where one can quickly write a function and make it accessible from a Node. Those test outputs can then be pushed in the Node under development or its outputs can be pushed in the test function, to allow for incremental development without having to connect it to the Nodes it would be connected in an actual pipeline. For example, one can easily create a small function that if a user presses a key will generate the same output (if run from a “User Defined Function 1I 1O” Node) as an Arduino Node reading some buttons. This output can then be passed into an experiment logic Node under development that needs to do something with this input. In this way during a Node development Heron allows the generation of simulated hardware inputs and outputs without actually running the actual hardware. We have added this way of developing Nodes also in our manuscript (Creating a new Node).

      Reviewer #3 (Public Review):

      Summary:

      The authors present a Python tool, Heron, that provides a framework for defining and running experiments in a lab setting (e.g. in behavioural neuroscience). It consists of a graphical editor for defining the pipeline (interconnected nodes with parameters that can pass data between them), an API for defining the nodes of these pipelines, and a framework based on ZeroMQ, responsible for the overall control and data exchange between nodes. Since nodes run independently and only communicate via network messages, an experiment can make use of nodes running on several machines and in separate environments, including on different operating systems.

      Strengths:

      As the authors correctly identify, lab experiments often require a hodgepodge of separate hardware and software tools working together. A single, unified interface for defining these connections and running/supervising the experiment, together with flexibility in defining the individual subtasks (nodes) is therefore a very welcome approach. The GUI editor seems fairly intuitive, and Python as an accessible programming environment is a very sensible choice. By basing the communication on the widely used ZeroMQ framework, they have a solid base for the required non-trivial coordination and communication. Potential users reading the paper will have a good idea of how to use the software and whether it would be helpful for their own work. The presented experiments convincingly demonstrate the usefulness of the tool for realistic scientific applications.

      Weaknesses:

      (1) In my opinion, the authors somewhat oversell the reproducibility and "selfdocumentation" aspect of their solution. While it is certainly true that the graph representation gives a useful high-level overview of an experiment, it can also suffer from the same shortcomings as a "pure code" description of a model - if a user gives their nodes and parameters generic/unhelpful names, reading the graph will not help much. 

      This is a problem that to our understanding no software solution can possibly address. Yet having a visual representation of how different inputs and outputs connect to each other we argue would be a substantial benefit in contrast to the case of “pure code” especially when the developer of the experiment has used badly formatted variable names.

      (2) Making the link between the nodes and the actual code is also not straightforward, since the code for the nodes is spread out over several directories (or potentially even machines), and not directly accessible from within the GUI. 

      This is not accurate. The obligatory code of a Node always exists within a single folder and Heron’s API makes it rather cumbersome to spread scripts relating to a Node across separate folders. The Node folder structure can potentially be copied over different machines but this is why Heron is tightly integrated with git practices (and even politely asks the user with popup windows to create git repositories of any Nodes they create whilst using Heron’s automatic Node generator system). Heron’s documentation is also very clear on the folder structure of a Node which keeps the required code always in the same place across machines and more importantly across experiments and labs. Regarding the direct accessibility of the code from the GUI, we took on board the reviewers’ comments and have taken the first step towards correcting this. Now one can attach to Heron their favourite IDE and then they can double click on any Node to open its two main scripts (com and worker) in that IDE embedded in whatever code project they choose (also set in Heron’s settings windows). On top of this, Heron now allows the addition of notes both for a Node and for all its parameters, inputs and outputs which can be viewed by hovering the mouse over them on the Nodes’ GUIs. The final step towards GUI-code integration will be to have a Heron GUI code editor but this is something that has to wait for further development from Heron’s underlying GUI library DearPyGUI.

      (3) The authors state that "[Heron’s approach] confers obvious benefits to the exchange and reproducibility of experiments", but the paper does not discuss how one would actually exchange an experiment and its parameters, given that the graph (and its json representation) contains user-specific absolute filenames, machine IP addresses, etc, and the parameter values that were used are stored in general data frames, potentially separate from the results. Neither does it address how a user could keep track of which versions of files were used (including Heron itself).

      Heron’s Graphs, like any experimental implementation, must contain machine specific strings. These are accessible either from Heron’s GUI when a Graph json file is opened or from the json file itself. Heron in this regard does not do anything different to any other software, other than saving the graphs into human readable json files that users can easily manipulate directly.

      Heron provides a method for users to save every change of the Node parameters that might happen during an experiment so that it can be fully reproduced. The dataframes generated are done so in the folders specified by the user in each of the Nodes (and all those paths are saved in the json file of the Graph). We understand that Heron offers a certain degree of freedom to the user (Heron’s main reason to exist is exactly this versatility) to generate data files wherever they want but makes sure every file path gets recorded for subsequent reproduction. So, Heron behaves pretty much exactly like any other open source software. What we wanted to focus on as the benefits of Heron on exchange and reproducibility was the ability of experimenters to take a Graph from another lab (with its machine specific file paths and IP addresses) and by examining the graphical interface of it to be able to quickly tweak it to make it run on their own systems. That is achievable through the fact that a Heron experiment will be constructed by a small amount of Nodes (5 to 15 usually) whose file paths can be trivially changed in the GUI or directly in the json file while the LAN setup of the machines used can be easily reconstructed from the information saved in the secondary GUIs.

      Where Heron needs to improve (and this is a major point in Heron’s roadmap) is the need to better integrate the different saved experiments with the git versions of Heron and the Nodes that were used for that specific save. This, we appreciate is very important for full reproducibility of the experiment and it is a feature we will soon implement. More specifically users will save together with a graph the versions of all the used repositories and during load the code base utilised will come from the recorded versions and not from the current head of the different repositories. This is a feature that we are currently working on now and as our roadmap suggests will be implemented by the release of Heron 1.0. 

      (4) Another limitation that in my opinion is not sufficiently addressed is the communication between the nodes, and the effect of passing all communications via the host machine and SSH. What does this mean for the resulting throughput and latency - in particular in comparison to software such as Bonsai or Autopilot? The paper also states that "Heron is designed to have no message buffering, thus automatically dropping any messages that come into a Node’s inputs while the Node’s worker function is still running."- it seems to be up to the user to debug and handle this manually?

      There are a few points raised here that require addressing. The first is Heron’s requirement to pass all communication through the main (GUI) machine. We understand (and also state in the manuscript) that this is a limitation that needs to be addressed. We plan to do this is by adding to Heron the feature of running headless (see our roadmap). This will allow us to run whole Heron pipelines in a second machine which will communicate with the main pipeline (run on the GUI machine) with special Nodes. That will allow experimenters to define whole pipelines on secondary machines where the data between their Nodes stay on the machine running the pipeline. This is an important feature for Heron and it will be one of the first features to be implemented next (after the integration of the saving system with git). 

      The second point is regarding Heron’s throughput latency. In our original manuscript we did not have any description of Heron’s capabilities in this respect and both other reviewers mentioned this as a limitation. As mentioned above, we have now addressed this by adding a section to our third experimental example that fully describes how much CPU is required to run a full experimental pipeline running on two machines and utilising also non python code executables (a Unity game). This gives an overview of how heavy pipelines can run on normal computers given adequate optimisation and utilising Heron’s feature of forcing some Nodes to run their Worker processes on a specific core. At the same time, Heron’s use of 0MQ protocol makes sure there are no other delays or speed limitations to message passing. So, message passing within the same machine is just an exchange of memory pointers while messages passing between different machines face the standard speed limitations of the Local Access Network’s ethernet card speeds. 

      Finally, regarding the message dropping feature of Heron, as mentioned above this is an architectural decision given the use cases of message passing we expect Heron to come in contact with. For a full explanation of the logic here please see our answer to the 3rd comment by Reviewer 2.

      (5) As a final comment, I have to admit that I was a bit confused by the use of the term "Knowledge Graph" in the title and elsewhere. In my opinion, the Heron software describes "pipelines" or "data workflows", not knowledge graphs - I’d understand a knowledge graph to be about entities and their relationships. As the authors state, it is usually meant to make it possible to "test propositions against the knowledge and also create novel propositions" - how would this apply here?

      We have described Heron as a Knowledge Graph instead of a pipeline, data workflow or computation graph in order to emphasise Heron’s distinct operation in contrast to what one would consider a standard pipeline and data workflow generated by other visual based software (like LabView and Bonsai). This difference exists on what a user should think of as the base element of a graph, i.e. the Node. In all other visual programming paradigms, the Node is defined as a low-level computation, usually a language keyword, language flow control or some simple function. The logic in this case is generated by composing together the visual elements (Nodes). In Heron the Node is to be thought of as a process which can be of arbitrary complexity and the logic of the graph is composed by the user both within each Node and by the way the Nodes are combined together. This is an important distinction in Heron’s basic operation logic and it is we argue the main way Heron allows flexibility in what can be achieved while retaining ease of graph composition (by users defining their own level of complexity and functionality encompassed within each Node). We have found that calling this approach a computation graph (which it is) or a pipeline or data workflow would not accentuate this difference. The term Knowledge Graph was the most appropriate as it captures the essence of variable information complexity (even in terms of length of shortest string required) defined by a Node.

      Recommendations for the authors:  

      Reviewer #1 (Recommendations For The Authors):

      -  No buffering implies dropped messages when a node is busy. It seems like this could be very problematic for some use cases... 

      This is a design principle of Heron. We have now provided a detailed explanation of the reasoning behind it in our answer to Reviewer 2 (Paragraph 3) as well as in the manuscript. 

      -  How are ssh passwords stored, and is it secure in some way or just in plain text?  

      For now they are plain text in an unencrypted file that is not part of the repo (if one gets Heron from the repo). Eventually, we would like to go to private/public key pairs but this is not a priority due to the local nature of Heron’s use cases (all machines in an experiment are expected to connect in a LAN).  

      Minor notes / copyedits:

      -  Figure 2A: right and left seem to be reversed in the caption. 

      They were. This is now fixed. 

      -  Figure 2B: the text says that proof of life messages are sent to each worker process but in the figure, it looks like they are published by the workers? Also true in the online documentation.  

      The Figure caption was wrong. This is now fixed.

      -  psutil package is not included in the requirements for GitHub

      We have now included psutil in the requirements.

      -  GitHub readme says Python >=3.7 but Heron will not run as written without python >= 3.9 (which is alluded to in the paper)

      The new Heron updates require Python 3.11. We have now updated GitHub and the documentation to reflect this.

      -  The paper mentions that the Heron editor must be run on Windows, but this is not mentioned in the Github readme.  

      This was an error in the manuscript that we have now corrected.

      -  It’s unclear from the readme/manual how to remove a node from the editor once it’s been added.  

      We have now added an X button on each Node to complement the Del button on the keyboard (for MacOS users that do not have this button most of the times).

      -  The first example experiment is called the Probabilistic Reversal Learning experiment in text, but the uncertainty experiment in the supplemental and on GitHub.  

      We have now used the correct name (Probabilistic Reversal Learning) in both the supplemental material and on GitHub

      -  Since Python >=3.9 is required, consider using fstrings instead of str.format for clarity in the codebase  

      Thank you for the suggestion. Latest Heron development has been using f strings and we will do a refactoring in the near future.

      -  Grasshopper cameras can run on linux as well through the spinnaker SDK, not just Windows.  

      Fixed in the manuscript. 

      -  Figure 4: Square and star indicators are unclear.

      Increased the size of the indicators to make them clear.

      -  End of page 9: "an of the self" presumably a typo for "off the shelf"?  

      Corrected.

      -  Page 10 first paragraph. "second root" should be "second route"

      Corrected.

      -  When running Heron, the terminal constantly spams Blowfish encryption deprecation warnings, making it difficult to see the useful messages.  

      The solution to this problem is to either update paramiko or install Heron through pip. This possible issue is mentioned in the documentation.

      -  Node input /output hitboxes in the GUI are pretty small. If they could be bigger it would make it easier to connect nodes reliably without mis-clicks.

      We have redone the Node GUI, also increasing the size of the In/Out points.

      Reviewer #2 (Recommendations For The Authors):

      (1) There are quite a few typos in the manuscript, for example: "one can accessess the code", "an of the self", etc.  

      Thanks for the comment. We have now screened the manuscript for possible typos.

      (2) Heron’s GUI can only run on Windows! This seems to be the opposite of the key argument about the portability of the experimental setup.  

      As explained in the answers to Reviewer 1, Heron can run on most machines that the underlying python libraries run, i.e. Windows and Linux (both for x86 and Arm architectures). We have tested it on Windows (10 and 11, both x64), Linux PC (Ubuntu 20.04.6, x64) and Raspberry Pi 4 (Debian GNU/Linux 12 (bookworm), aarch64). We have now revised the manuscript and the GitHub repo to reflect this.

      (3) Currently, the output is displayed along the left edge of the node, but the yellow dot connector is on the right. It would make more sense to have the text displayed next to the connectors.  

      We have redesigned the Node GUI and have now placed the Out connectors on the right side of the Node.

      (4) The edges are often occluded by the nodes in the GUI. Sometimes it leads to some confusion, particularly when the number of nodes is large, e.g., Fig 4.

      This is something that is dependent on the capabilities of the DearPyGUI module. At the moment there is no way to control the way the edges are drawn.

      Reviewer #3 (Recommendations For The Authors):

      A few comments on the software and the documentation itself:

      - From a software engineering point of view, the implementation seems to be rather immature. While I get the general appeal of "no installation necessary", I do not think that installing dependencies by hand and cloning a GitHub repository is easier than installing a standard package.

      We have now added a pip install capability which also creates a Heron command line command to start Heron with. 

      -The generous use of global variables to store state (minor point, given that all nodes run in different processes), boilerplate code that each node needs to repeat, and the absence of any kind of automatic testing do not give the impression of a very mature software (case in point: I had to delete a line from editor.py to be able to start it on a non-Windows system).  

      As mentioned, the use of global variables in the worker scripts is fine partly due to the multi process nature of the development and we have found it is a friendly approach to Matlab users who are just starting with Python (a serious consideration for Heron). Also, the parts of the code that would require a singleton (the Editor for example) are treated as scripts with global variables while the parts that require the construction of objects are fully embedded in classes (the Node for example). A future refactoring might make also all the parts of the code not seen by the user fully object oriented but this is a decision with pros and cons needing to be weighted first. 

      Absence of testing is an important issue we recognise but Heron is a GUI app and nontrivial unit tests would require some keystroke/mouse movement emulator (like QTest of pytest-qt for QT based GUIs). This will be dealt with in the near future (using more general solutions like PyAutoGUI) but it is something that needs a serious amount of effort (quite a bit more that writing unit tests for non GUI based software) and more importantly it is nowhere as robust as standard unit tests (due to the variable nature of the GUI through development) making automatic test authoring an almost as laborious a process as the one it is supposed to automate.

      -  From looking at the examples, I did not quite see why it is necessary to write the ..._com.py scripts as Python files, since they only seem to consist of boilerplate code and variable definitions. Wouldn’t it be more convenient to represent this information in configuration files (e.g. yaml or toml)?  

      The com is not a configuration file, it is a script that launches the communication process of the Node. We could remove the variable definitions to a separate toml file (which then the com script would have to read). The pros and cons of such a set up should be considered in a future refactoring.

      Minor comments for the paper:

      -  p.7 (top left): "through its return statement" - the worker loop is an infinite loop that forwards data with a return statement?  

      This is now corrected. The worker loop is an infinite loop and does not return anything but at each iteration pushes data to the Nodes output.

      -  p.9 (bottom right): "of the self" → "off-the-shelf"  

      Corrected.

      -  p.10 (bottom left): "second root" → "second route"  

      Corrected.

      -  Supplementary Figure 3: Green start and square seem to be swapped (the green star on top is a camera image and the green star on the bottom is value visualization - inversely for the green square).  

      The star and square have been swapped around.

      -  Caption Supplementary Figure 4 (end): "rashes to receive" → "rushes to receive"  

      Corrected.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      (1) This is a valuable manuscript that successfully integrates several data sets to determine genomic interactions with nuclear bodies.

      In this paper we both challenge and/or revise multiple long-standing “textbook” models of nuclear genome organization while also revealing new features of nuclear genome organization. Therefore, we argue that the contributions of this paper extend well beyond “valuable”. Specifically, these contributions include:

      a. We challenge a several decades focus on the correlation of gene positioning relative to the nuclear lamina. Instead, through comparison of cell lines, we show a strong correlation of di4erences in gene activity with di4erences in relative distance to nuclear speckles in contrast to a very weak correlation with di4erences in relative distance to the nuclear lamina. This inference of little correlation of gene expression with nuclear lamina association was supported by direct experimental manipulation of genome positioning relative to the nuclear lamina. Despite pronounced changes in relative distances to the nuclear lamina there was little change relative to nuclear speckles and little change in gene expression.

      b. We similarly challenge the long-standing proposed functional correlation between the radial positioning of genes and gene expression. Here, and in a now published companion paper (doi.org/10.1038/s42003-024-06838-7), we demonstrate how nuclear speckle positioning relative to nucleoli and the nuclear lamina varies among cell types, as does the inverse relationship between genome positioning relative to nuclear speckles and the nuclear lamina. Again, this is consistent with the primary correlation of gene activity being the positioning of genes relative to nuclear speckles and also explains previous observations showing a strong relationship between radial position and gene expression only in some cell types.

      c. We identified a new partially repressed, middle to late DNA replicating type of chromosome domain- “p-w-v fILADs”- by their weak interaction with the nuclear lamina, which, based on our LMNA/LBR KO experimental results, compete with LADs for nuclear lamina association. Moreover, we show that when fLADs convert to iLADs, most conversions are to this p-w-v fiLAD state, although ~ one third are to a normal, active, early replicating iLAD state. Thus, fLADs can convert between repressed, partially repressed, and active states, challenging the prevailing assumption of the division of the genome into two states – active, early replicating A compartment/iLAD regions versus inactive, late replicating, B compartment/LAD regions.

      d. We identified nuclear speckle associated domains as DNA replication initiation zones, with the domains showing strongest nuclear speckle attachment initiating DNA replication earliest in S-phase.

      e. We describe for the first time an overall polarization of nuclear genome organization in adherent cells with the most active, earliest replicating genomic regions located towards the equatorial plane and less expressed genomic regions towards the nuclear top or bottom surfaces. This includes polarization of some LAD regions to the nuclear lamina at the equatorial plane and other LAD regions to the top or bottom nuclear surfaces.

      We have now rewritten the text to make the significance of these new findings clearer.

      (2) Strength of evidence: The evidence supporting the central claims is varied in its strength ranging from solid to incomplete. Orthogonal evidence validating the novel methodologies with alternative approaches would better support the central claims.

      We argue that our work exploited methods, data, and analyses equal to or more rigorous than the current state-of-the-art. This indeed includes orthogonal evidence using alternative methods which both supported our novel methodologies as well as demonstrating their robustness relative to more conventional approaches. This explains how we were able to challenge/revise long-standing models and discover new features of nuclear genome organization. More specifically:

      a. Unlike most previous analyses, we have integrated both genomic and imaging approaches to examine the nuclear genome organization relative to not one, but several di4erent nuclear locales and we have done this across several cell types. To our knowledge, this is the first such integrated approach and has been key to our success in appreciating new features of nuclear genome organization.

      b. The 16-fraction DNA replication Repli-seq data we developed and applied to this project represents the highest temporal mapping of DNA replication timing to date.

      c. The TSA-seq approach that we used remains the most accurate sequence-based method for estimating microscopic distance of chromosome regions to di4erent nuclear locales. As implemented, this method is unusually robust and direct as it exploits the exponential micron-scale gradient established by the di4usion of the free-radicals generated by peroxidase labeling to measure relative distances of chromosome regions to labeled nuclear locales. We had previously demonstrated that TSA-seq was able to estimate the average distances of genomic regions to nuclear speckles with an accuracy of ~50 nm, as validated by light microscopy. The TSA-seq 2.0 protocol we developed and applied to this project maintained the original resolution of TSA-seq to estimate to an accuracy of ~50 nm the average distances of genomic regions from nuclear speckles, as validated by light microscopy, while achieving more than a 10-fold reduction in the required number of cells.

      We have rewritten the text to address the reviewer concerns that led them to their initial characterization of the TSA-seq as novel and not yet validated.

      First, we have added a discussion of how the use of nuclear speckle TSA-seq as a “cytological ruler” was based on an extensive initial characterization of TSA-seq as described in previous published literature. In that previous literature we showed how the conventional molecular proximity method, ChIP-seq, instead showed local accumulation of the same marker proteins over short DNA regions unrelated to speckle distances. Second, we reference our companion paper, now published, and describe how the extension of TSA-seq to measure relative distances to nucleoli was further validated and shown to be robust by comparison to NAD-seq and extensive multiplexed immuno-FISH data. We further discuss how in the same companion paper we show how nucleolar DamID instead was inconsistent with both the NAD-seq and multiplexed immuno-FISH data as well as the nucleolar TSA-seq.

      Third, we have added scatterplots showing exactly how highly the estimated microscopic distances to all three nuclear locales, measured in IMR90 fibroblasts, correlate with the TSA-seq measurements in HFF fibroblasts. This addresses the concern that we were not using the exact same fibroblast cell line for the TSA-seq versus microscopic measurements. The strong correlation already observed would only be expected to become even stronger with use of the exact same fibroblast cell lines for both measurements.

      Fourth, we have addressed the reviewer concern that the nuclear lamin TSA-seq was not properly validated because it did not match nuclear lamin Dam-ID. We have now added to the text a more complete explanation of how microscopic proximity assays such as TSA-seq measure something di4erent from molecular proximity assays such as DamID or NAD-seq. We have added further explanation of how TSA-seq complements molecular proximity assays such as DamID and NAD-seq, allowing us to extract further information than either measurement alone. We also briefly discuss why TSA-seq succeeds for certain nuclear locales using multiple independent markers whereas molecular proximity assays may fail against the same nuclear locales using the same markers. This includes brief discussion from our own experience attempting unsuccessfully to use DamID against nucleoli and nuclear speckles.

      Reviewer #1 (Public Review):

      (1) The weakness of this study lies in the fact that many of the genomic datasets originated from novel methods that were not validated with orthogonal approaches, such as DNAFISH. Therefore, the detailed correlations described in this work are based on methodologies whose efficacy is not clearly established. Specifically, the authors utilized two modified protocols of TSA-seq for the detection of NADs (MKI67IP TSA-seq) and LADs (LMNB1-TSA-seq).

      We disagree with the statement that the TSA-seq approach and data has not been validated by orthogonal approaches. We have now addressed this point in the revised manuscript text:

      a) We added text to describe how previously FISH was used to validate speckle TSA-seq by demonstrating a residual of ~50 nm between the TSA-seq predicted distance to speckles and the distance measured by light microscopy using FISH:

      "In contrast, TSA-seq measures relative distances to targets on a microscopic scale corresponding to 100s of nm to ~ 1 micron based on the measured diffusion radius of tyramide-biotin free-radicals (Chen et al., 2018). Exploiting the measured exponential decay of the tyramide-biotin free-radical concentration, we showed how the mean distance of chromosomes to nuclear speckles could be estimated from the TSA-seq data to an accuracy of ~50 nm, as validated by FISH (Chen et al., 2018)."

      b) We note that we also previously have validated lamina (Chen et al, JCB 2018) and nucleolar (Kumar et al, 2024) TSA-seq and further validated speckle TSA-seq (Zhang et al, Genome Research 2021) by traditional immuno-FISH and/or immunostaining. The overall high correlation between lamina TSA-seq and the orthogonal lamina DamID method was also extensively discussed in the first TSA-seq paper (Chen et al, JCB 2018). Included in this discussion was description of how the di4erences between lamina TSA-seq and DamID were expected, given that DamID produces a signal more proportional to contact frequency, and independent of distance from the nuclear lamina, whereas TSA-seq produces a signal that is a function of microscopic distance from the lamina, as validated by traditional FISH.

      c) We added text to describe how the nucleolar TSA-seq previously was validated by two orthogonal methods- NAD-seq and multiplexed DNA immuno-FISH:

      "We successfully developed nucleolar TSA-seq, which we extensively validated using comparisons with two different orthogonal genome-wide approaches (Kumar et al., 2024)- NAD-seq, based on the biochemical isolation of nucleoli, and previously published direct microscopic measurements using highly multiplexed immuno-FISH (Su et al., 2020)."

      d) We have now added panels A&B to Fig. 7 and a new Supplementary Fig. 7 demonstrating further validation of TSA-seq based on showing the high correlation between the microscopically measured distances of many hundreds of genomic sites across the genome from di4erent nuclear locales and TSA-seq scores. As discussed in response #2 below, we have used comparison of distances measured in IMR90 fibroblasts with TSA-seq scores measured in HFF fibroblasts. We would argue therefore that these correlations are a lower estimate and therefore the correlation between microscopic distances and TSAseq scores would likely have been still higher if we had performed both assays in the exact same cell line.

      (2) Although these methods have been described in a bioRxiv manuscript by Kumar et al., they have not yet been published. Moreover, and surprisingly, Kumar et al., work is not cited in the current manuscript, despite its use of all TSA-seq data for NADs and LADs across the four cell lines.

      The Kumar et al, Communications Biology, 2024 paper is now published and is cited properly in our revision. We apologize for this oversight and confusion our initial omission of this citation may have created. We had been writing this manuscript and the Kumar et al manuscript in parallel and had intended to co-submit. We planned to cross-reference the two at the time we co-submitted, adding the Kumar et al reference to the first version of this manuscript once we obtained a doi from bioRxiv. But we then submitted the Kumar et al manuscript several months earlier, but meanwhile forgot that we had not added the reference to our first manuscript version.

      (3) Moreover, Kumar et al. did not provide any DNA-FISH validation for their methods.

      As we described in our response to Reviewer 1's comment #1, we had previously provided traditional FISH validation of lamina TSA-seq in our first TSA- seq paper as well as validation by comparison with lamina DamID (Chen et al, 2018).

      We also described how the nucleolar TSA-seq was extensively cross-validated in the Kumar et al, 2024 paper by both NAD-seq and the highly multiplexed immuno-FISH data from Su et al, 2020).

      We note additionally that in the Kumar et al, 2024 paper the nucleolar TSA-seq was additionally validated by correlating the predicted variations in centromeric association with nucleoli across the four cell lines predicted by nucleolar TSA-seq with the variations observed by traditional immunofluorescence microscopy.

      (4) Therefore, the interesting correlations described in this work are not based on robust technologies.

      This comment was made in reference to the Kumar et al paper not having been published, and, as noted in responses to points #2 and #3, the paper is now published.

      But we wanted to specifically note, however, that our experience is that TSA-seq has proven remarkably robust in comparison to molecular proximity assays. We've described in our responses to the previous points how TSA-seq has been cross-validated by both microscopy and by comparison with lamina DamID and nucleolar NAD-seq. We note also that in every application of TSA-seq to date, all antibodies that produced good immunostaining showed good TSA-seq results. Moreover, we obtained nearly identical results in every case in which we performed TSA-seq with different antibodies against the same target. Thus anti-SON and antiSC35 staining produced very similar speckle TSA-seq data (Chen et al, 2018), anti-lamin A and anti-lamin B staining produced very similar lamina TSA-seq data (Chen et al, 2018), antinucleolin and anti-POL1RE staining produced very similar DFC/FC nucleolar TSA-seq data (Kumar et al, 2024), and anti-MKI67IP and anti-DDX18 staining produced very similar GC nucleolar TSA-seq data (Kumar et al, 2024).

      This independence of results with TSA-seq to the particular antibody chosen to label a target differs from experience with methods such as ChIP, DamID, and Cut and Run/Tag in which results can differ or be skewed based on variable distance and therefore reactivity of target proteins from the DNA or due to other factors such as non-specific binding during pulldown (ChIP) or differential extraction by salt washes (Cut and Tag).

      Our experience in every case to date is that antibodies that produce similar immunofluorescence staining produce similar TSA-seq results. We attribute this robustness to the fact that TSA-seq is based only on the original immunostaining specificity provided by the primary and secondary antibodies plus the diffusion properties of the tyramide-free radical.

      We've now added the following text to our revised manuscript:

      "As previously demonstrated for both SON and lamin TSA-seq (Chen et al., 2018), nucleolar TSA-seq was also robust in the sense that multiple target proteins showing similar nucleolar staining showed similar TSA-seq results (Kumar et al., 2024); this robustness is intrinsic to TSA-seq being a microscopic rather than molecular proximity assay, and therefore not sensitive to the exact molecular binding partners and molecular distance of the target proteins to the DNA."

      (5) An attempt to validate the data was made for SON-TSA-seq of human foreskin fibroblasts (HFF) using multiplexed FISH data from IMR90 fibroblasts (from the lung) by the Zhuang lab (Su et al., 2020). However, the comparability of these datasets is questionable. It might have been more reasonable for the authors to conduct their analyses in IMR90 cells, thereby allowing them to utilize MERFISH data for validating the TSA-seq method and also for mapping NADs and LADs.

      We disagree with the reviewer's overall assessment that that the use of the IMR90 data to further validate the TSA-seq is questionable because the TSA-seq data from HFF fibroblasts is not necessarily comparable with multiplexed immuno-FISH microscopic distances measured in IMR90 fibroblasts.

      In response we have now added panels to Fig. 7 and Supplementary Fig. 7, showing:

      a) There is very little di4erence in correlation between speckle TSA-seq and measured distances from speckles in IMR90 cells whether we use IMR90 or HFF cells SON TSA-seq data (R<sup>2</sup> = 0.81 versus 0.76) (new Fig. 7A).

      b) There is also a high correlation between lamina (R<sup>2</sup> = 0.62) and nucleolar (R<sup>2</sup> = 0.73) HFF TSA-seq and measured distances in IMR90 cells. Thus, we conclude that this high correlation shows that the multiplexed data from ~1000 genomic locations does validate the TSA-seq. These correlations should be considered lower bounds on what we would have measured using IMR90 TSA-seq data. Thus, the true correlation between distances of loci from nuclear locales and TSA-seq would be expected to be either comparable or even stronger than what we are seeing with the IMR90 versus HFF fibroblast comparisons.

      c) This correlation is cell-type specific (Fig. 7B, new SFig. 7). Thus, even for speckle TSAseq, highly conserved between cell types, the highest correlation of IMR90 distances with speckle TSA-seq is with IMR90 and HFF fibroblast data. For lamina and nucleolar TSA-seq, which show much lower conservation between cell types, the correlation of IMR90 distances is high for HFF data but much lower for data from the other cell types. This further justifies the use of IMR90 fibroblast distance measurements as a proxy for HFF fibroblast measurements.

      Thus, we have added the following text to the revised manuscript:

      "We reasoned that the nuclear genome organization in the two human fibroblast cell lines would be sufficiently similar to justify using IMR90 multiplexed FISH data [43] as a proxy for our analysis of HFF TSA-seq data. Indeed, the high inverse correlation (R= -0.86) of distances to speckles measured by MERFISH in IMR90 cells with HFF SON TSA-seq scores is nearly identical to the inverse correlation (R= -0.89) measured instead using IMR90 SON TSA-seq scores (Fig. 7A). Similarly, distances to the nuclear lamina and nucleoli show high inverse correlations with lamina and nucleolar TSA-seq, respectively (Fig. 7A). These correlations were cell type specific, particularly for the lamina and nucleolar distance correlations, as these correlations were reduced if we used TSA-seq data from other cell types (SFig. 7A). Therefore, the high correlation between IMR90 microscopic distances and HFF TSA-seq scores can be considered a lower bound on the likely true correlation, justifying the use of IMR90 as a proxy for HFF for testing our predictions."

      Reviewer #2 (Public Review):

      Weaknesses:

      (1) The experiments are largely descriptive, and it is difficult to draw many cause-andeffect relationships...The study would benefit from a clear and specific hypothesis.

      This study was hypothesis-generating rather than hypothesis-testing in its goal. Our research was funded through the NIH 4D-Nucleome Consortium, which had as its initial goal the development, benchmarking, and validation of new genomic technologies. Our Center focused on the mapping of the genome relative to different nuclear locales and the correlation of this intranuclear positioning of the genome with functions- specifically gene expression and DNA replication timing. By its very nature, this project took a discovery-driven versus hypothesis-driven scientific approach. Our question fundamentally was whether we could gain new insights into nuclear genome organization through the integration of genomic and microscopic measurements of chromosome positioning relative to multiple different nuclear compartments/bodies and their correlation with functional assays such as RNA-seq and Repliseq.

      Indeed, this study resulted in multiple new insights into nuclear genome organization as summarized in our last main figure. We believe our work and conclusions will be of general interest to scientists working in the fields of 3D genome organization and nuclear cell biology. We anticipate that each of these new insights will prompt future hypothesis-driven science focused on specific questions and the testing of cause-and-effect relationships.

      However, we do want to point out that our comparison of wild-type K562 cells with the LMNA/LBR double knockout was designed to test the long-standing model that nuclear lamina association of genomic loci contributes to gene silencing. This experiment was motivated by our surprising result that gene expression differences between cell lines correlated strongly with differences in positioning relative to nuclear speckles rather than the nuclear lamina. Despite documenting in these double knockout cells a decreased nuclear lamina association of most LADs, and an increased nuclear lamina association of the “p-w-v” fiLADs identified in this manuscript, we saw no significant change in gene expression in any of these regions as compared to wild-type K562 cells. Meanwhile, distances to nuclear speckles as measured by TSA-seq remained nearly constant.

      We would argue that this represents a specific example in which new insights generated by our genomics comparison of cell lines led to a clear and specific hypothesis and the experimental testing of this hypothesis.

      (2) Similarly, the paper would be very much strengthened if the authors provided additional summary statements and interpretation of their results (especially for those not as familiar with 3D genome organization).

      We appreciate this feedback and agree with the reviewer that this would be useful, especially for those not familiar with previous work in the field of 3D genome organization. In an earlier draft, we had included additional summary and interpretation statements in both the Introduction and Results sections. At the start of each Results section, we had also previously included brief discussion of what was known before and the context for the subsequent analysis contained in that section. However, we had thought we might be submitting to a journal with specific word limits and had significantly cut out that text.

      We have now restored this text and, in certain cases, added additional explanations and context.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Figures 1C and D. Please add the units at the values of each y-axis.

      We have done that.

      The representation of Figure 2C lacks clarity and is diJicult to understand. The x-axis labeling regarding the gene fraction number needs clarification.

      We've modified the text to the Fig. 2C legend: "Fraction of genes showing significant di=erence in relative positioning to nuclear speckles (gene fraction, x-axis) versus log2 (HFF FKPM / H1 FKPM) (y-axis);"

      "We next used live-cell imaging to corroborate that chromosome regions close to nuclear speckles, primarily Type I peaks, would show the earliest DNA replication timing." This sentence requires modification as Supplementary Figure 3F does not demonstrate that Type I peaks exhibit the earliest DNA replication timing; it only indicates that the first PCNA foci in S-phase are in proximity to nuclear speckles.

      We've modified the text to: "We next used live-cell imaging to show that chromosome regions close to nuclear speckles show the earliest DNA replication timing; this is consistent with the earliest firing DNA replication IZs, as determined by Repli-seq, aligning with Type 1 peaks that are closely associated with nuclear speckles."

      In Figure 5, the authors employed LaminB1-DamID to quantify LADs in LBR-KO and LMNA/LBR-DKO K562 cells. These are interesting results. However, for these experiments, it is crucial to assess LMNB1 signal at the nuclear periphery via immunofluorescence (IF) to confirm the absence of changes, ensuring that the DamID signal solely reflects contacts with the nuclear lamina. Furthermore, in this instance, their findings should be validated through DNA-FISH.

      Immunostaining of LMNB1 was performed and showed a normal staining pattern as a ring adjacent to the nuclear periphery. Images of this staining were included in the metadata tied to the sequencing data sets deposited on the 4D Nucleome Data portal. We thank the reviewer for bringing up this point, and have added a sentence mentioning this result in the Results Section:

      "Immunostaining against LMNB1 revealed the normal ring of staining around the nuclear periphery seen in wt cells (images deposited as metadata in the deposited sequencing data sets)."

      Because both TSA-seq and DamID have been extensively validated by FISH, as detailed in our previous responses to the public reviewer comments, we feel it is unnecessary to validate these findings by FISH.

      p-w-v-fiLADs should be labelled in Figure 5B.

      We've added labeling as suggested.

      "The consistent trend of slightly later DNA replication timing for regions (primarily p-w-v fiLADs) moving closer to the lamina" is not visible in the representation of the data of Figure 5G.

      We did not make a change as we believed this trend was apparent in the Figure.

      To reduce the descriptive nature of the data, it would be pertinent to conduct H3K9me3 and H3K27me3 ChIP-seq analyses in both the parental and DKO mutant cells. This would elucidate whether p-w-v-fiLADs and NADs anchoring to the nuclear lamina undergo changes in their histone modification profile.

      We believe further analysis of the reasons underlying these shifts in positioning, including such ChIP-seq or equivalent analysis, is of interest but beyond the scope of this publication. We see such measurements as the beginning of a new story but insuJicient alone to determine mechanism. Therefore we believe such experiments should be part of that future study.

      The description of Figure 7 lacks clarity. Additionally, it appears that TSA-seq for NADs and LADs may not be universally applicable across all cell types, particularly in flat cells, whereas DamID scores demonstrate less variation across cell lines, as also stated by the authors.

      TSA-seq is a complement to rather than a replacement for either DamID or NAD-seq. TSAseq reports on microscopic distances whereas both DamID and NAD-seq instead are more proportional to contact frequency with the nuclear lamina or nucleoli, respectively, and insensitive to distances of loci away from the lamina or nucleoli. Thus, TSA-seq provides additional information based on the intrinsic diJerences in what TSA-seq measures relative to molecular proximity methods such as DamID or NAD-seq. The entire point is that the convolution of the exponential point-spread-function of the TSA-seq with the shape of the nuclear periphery allows us to distinguish genomic regions in the equatorial plane versus the top and bottom of the nuclei. The TSA-seq is therefore highly "applicable" when properly interpreted in discerning new features of genome organization. As we stated in the revised manuscript, the lamina DamID and TSA-seq are complementary and provide more information together then either method along. The same is true for the NAD-seq and nucleolar TSA-seq comparison, as described in more detail in the Kumar, et al, 2024 paper.

      Introduction:

      The list of methodologies for mapping genomic contacts with nucleoli (NADs) should also include recent technologies, such as Nucleolar-DamID (Bersaglieri et al., PMID: 35304483), which has been validated through DNA-FISH.

      We did not include nucleolar DamID in the mention in the Introduction of methods for identifying diJerential lamina versus nucleolar interactions of heterochromatin- either from our own collaborative group or from the cited reference- because we did not have confidence in the accuracy of this method in identifying NADs. In the case of the published nucleolar DamID from our collaborative group, published in Wang et al, 2021, we later discovered that despite apparent agreement of the nucleolar DamID with a small number of published FISH localization the overall correlation of the nucleolar DamID with nucleolar localization was poor. As described in detail in the Kumar et al, 2024 publication, this poor correlation of the nucleolar DamID was established using three orthogonal methods- nucleolar TSA-seq, NAD-seq, and multiplexed immuno-FISH measurements from ~1000 genomic locations. Instead, we found that this nucleolar DamID showed high correlation with lamina DamID. We note that many strong NADs are also LADs, which we think is why validation with only several FISH probes is inadequate to demonstrate overall validation of the approach.

      We could not compare our nucleolar-DamID data in human cells with the alternative nucleolar-DamID results cited by the reviewer which were performed in mouse cells. We note that in this paper the nucleolar DamID FISH validation only included several putative NAD chromosome regions and, I believe, one LAD region. However, our initial comparison of the nucleolar DamID cited by the reviewer with unpublished TSA-seq data from mouse ESCs produced by the Belmont laboratory and with NAD-seq data from the Kaufman laboratory shows a similar lack of correlation of the nucleolar DamID signal with nucleolar TSA-seq and NAD-seq, as well as multiplexed immuno-FISH data from the Long Cai laboratory, as we saw in our analysis of own nucleolar DamID data in human cells.

      We have added explanation concerning the lack of correlation of our nucleolar DamID with orthogonal measurements of nucleolar proximity in the added text (below) to our revised manuscript:

      "Nucleolar DamID instead showed broad positive peaks over large chromatin domains, largely overlapping with LADs mapped by LMNB1 DamID (Wang et al., 2021). However, this nucleolar DamID signal, while strongly correlated with lamin DamID, showed poor correlation with either NAD-seq or nucleolar distances mapped by multiplexed immunoFISH (Kumar et al., 2024). We suspect the problem is that with molecular proximity assays the output signals are disproportionally dominated by the small fraction of target proteins juxtaposed in su=icient proximity to the DNA to produce a signal rather than the amount of protein concentrated in the target nuclear body. "

      Our mention of nucleolar TSA-seq was in the context of why we focused on nucleolar TSAseq and excluded our own nucleolar DamID. We chose not to discuss the second nucleolar DamID method cited above 1) because it was not appropriate to our discussion of our own experimental approach and 2) also because we cannot yet make a definitive statement of its accuracy for nucleolar mapping.

      Reviewer #2 (Recommendations For The Authors):

      (1) The authors start the manuscript by describing the 'radial genome organization' model and contrast it with the 'binary model' of genome organization. It would be helpful for the authors to contextualize their results a bit more with regard to these two diJerent models in the discussion.

      We have added several sentences in the first paragraph of the Discussion to accomplish this contextualization. The new paragraph reads:

      "Here we integrated imaging with both spatial (DamID, TSA-seq) and functional (Repli-seq, RNA-seq) genomic readouts across four human cell lines. Overall, our results significantly extend previous nuclear genome organization models, while also demonstrating a cell-type dependent complexity of nuclear genome organization. Briefly, in contrast to the previous radial model of genome organization, we reveal a primary correlation of gene expression with relative distances to nuclear speckles rather than radial position. Additionally, beyond a correlation of nuclear genome organization with radial position, in cells with flat nuclei we show a pronounced correlation of nuclear genome organization with distance from the equatorial plane. In contrast to previous binary models of genome organization, we describe how both iLAD / A compartment and LAD / B compartment contain within them smaller chromosome regions with distinct biochemical and/or functional properties that segregate di=erentially with respect to relative distances to nuclear locales and geometry."

      (2) Data should be provided demonstrating KO of LBR and LMNA - immunoblotting for both proteins would be one approach. In addition, it would be helpful to provide additional nuclear morphology measurements of the DKO cells (volume, surface area, volume of speckles/nucleoli, number of speckles/nucleoli).

      We've added additional description describing the generation and validation of the KO lines:

      "To create LMNA and LBR knockout (KO) lines and the LMNA/LBR double knockout (DKO) line, we started with a parental "wt" K562 cell line, clone #17, expressing an inducible form of Cas9 (Brinkman et al., 2018). The single KO and DKO were generated by CRISPR-mediated frameshift mutation according to the procedure described previously (Schep et al., 2021). The "wt" K562 clone #17 was used for comparison with the KO clones.

      The LBR KO clone, K562 LBR-KO #19, was generated, using the LBR2 oligonucleotide GCCGATGGTGAAGTGGTAAG to produce the gRNA, and validated previously, using TIDE (Brinkman et al., 2014) to check for frameshifts in all alleles as described elsewhere (Schep et al., 2021). The LMNA/LBR DKO, K562 LBR-LMNA DKO #14, was made similarly, starting with the LBR KO line and using the combination of two oligonucleotides to produce gRNAs:

      LMNA-KO1: ACTGAGAGCAGTGCTCAGTG, LMNA-KO2: TCTCAGTGAGAAGCGCACGC.

      Additionally, the LMNA KO line, K562 LMNA-KO #14, was made the same way but starting with the "wt" K562 cell line. Validation was as described above; additionally, for the new LMNA KO and LMNA/LBR DKO lines, immunostaining showed the absence of anti-LMNA antibody signal under confocal imaging conditions used to visualize the wt LMNA staining while the RNA-seq from these clones revealed an ~20-fold reduction in LMNA RNA reads relative to the wt K562 clone."

      As suggested, we also added morphological data for the DKO line in a modified SFig.5.

      (3) The rationale for using LMNB1 TSA-seq and LMNB1 DAMID is not immediately clear. The LMNB1 TSA-seq is more variable across cell types and replicates than the DAMID. Could the authors please compare the datasets a bit more to understand the diJerences? For example, the authors demonstrate that "40-70% of the genome shows statistically significant diJerences in Lamina TSA-seq over regions 100 kb or larger, with most of these regions showing little or no diJerences in speckle TSA-seq scores." If the LMNB1 DAMID data is used for this analysis or Figure 2D, is the same conclusion reached? Also, in Figure 6, the authors conclude that C1 and C3 LAD regions are enriched for constitutive LADs, while C2 and C4 LAD regions are fLADs. This is a bit surprising because the authors and others have previously shown that constitutive LADs have higher LMNB1 contact frequency than facultative LADs (Kind, et al Cell 2015, Figure 3C).

      Indeed, in the first TSA-seq paper (Chen et al, 2018) we did observe that cLADs had the highest LMNB TSA-seq scores; this was for K562 cells with round nuclei in which there is therefore no diJerence in lamina TSA-seq scores produced by nuclear shape over the entire nucleus.

      However, there are diJerences between TSA-seq and DamID in terms of what they measure and we refer the reviewer to the first TSA-seq paper (Chen et al, 2018) that explains in greater depth these diJerences. This first paper explains how DamID is indeed related to contact frequency but how the TSA-seq instead estimates mean distances from the target, in this case the nuclear lamina. This is because the diJusion of tyramide free radicals from the site of their constant HRP production produces an exponential decay gradient of tyramide free radical concentration at steady state.

      We have summarized these diJerences in in text we have added to introduce both DamID and TSA-seq in the second Results section:

      "DamID is a well-established molecular proximity assay; DamID applied to the nuclear lamina divides the genome into lamina-associated domains (LADs) versus nonassociated “inter-LADs” or “iLADs” (Guelen et al., 2008; van Steensel and Belmont, 2017). In contrast, TSA-seq measures relative distances to targets on a microscopic scale corresponding to 100s of nm to ~ 1 micron based on the measured diJusion radius of tyramide-biotin free-radicals (Chen et al., 2018)... While LMNB1 DamID segments LADs most accurately, lamin TSA-seq provides distance information not provided by DamID- for example, variations in relative distances to the nuclear lamina of diJerent iLADs and iLAD regions. These diJerences between the LMNB1 DamID and LMNB TSA-seq signals are also crucial to a computational approach, SPIN, that segments the genome into multiple states based on their varying nuclear localization, including biochemically and functionally distinct lamina-associated versus near-lamina states (Consortium et al., 2024; Wang et al., 2021).

      Thus, lamin DamID and TSA-seq complement each other, providing more information together than either one separately."

      We note that these diJerences in lamina DamID and TSA-seq are crucial to being able to gain additional information by comparing variations in the lamina TSA-seq for LADs in Figs. 6&7. See our response to point (4) below, for further explanation.

      (4) In 7B/C, the authors show that the highest LMNB1 regions in HFF are equator of IMR90s. However, in Figure 7G, their cLAD score indicates that constitutive LADs are not at the equator. This is a bit surprising given the point above and raises the possibility that SON signals (as opposed to LMNB1 signals) might be more responsible for correlation to localization relative to the equator. Hence, it might be helpful if the authors repeat the analyses in Figures 7B/C in regions with diJering LMNB1 signals but similar SON signals (and vice versa).

      Again, this is based on the apparent assumption by the reviewer that DamID and TSA-seq work the same way and measure the same thing. But as explained above in the previous point, this is not true.

      In our first TSA-seq paper (Chen et al, 2018) we showed how we could use the exponential decay point-spread-function produced by TSA, measured directly by light microscopy, to convert sequencing reads from the TSA-seq into a predicted mean distance from nuclear speckles, approximated as point sources. These mean distances predicted from the SON TSA-seq data agreed with measured FISH distances to nuclear speckles to within ~50 nm for a set of DNA probes from diJerent chromosome regions. Moreover, varying TSA staining conditions changed the decay constants of this exponential decay, thus producing diJerences in the SON TSA-seq signals. By using these diJerent exponential decay functions to convert the TSA-seq scores from these independent data sets to estimated distances from nuclear speckles, we again observed a distance residual of ~50 nm; in this case though this distance residual of ~50 nm represented the mean residual observed genome-wide. This gives us great confidence that the TSA-seq is working as we have modeled it.

      As we mentioned in our response to point 3 above, we did see the highest LMNB TSA-seq signal for cLADs in K562 cells with round nuclei (Chen et al, 2018).

      But as we now show in our simulation performed in this paper for Fig. 7, the observed tyramide free radical exponential decay gradient convolved with the flat nuclear lamina shape produces a higher equatorial LMNB1 TSA-seq signal for LADs at the equatorial plane. We confirmed that LADs with this higher TSA-seq signal were enriched at the equatorial plane by mining the multiplexed IMR90 imaging data. Similar mining of the multiplexed FISH IMR90 data showed localization of cLADs away from the equatorial plane.

      We are not clear about the rationale for what the reviewer is suggesting about SON signals "being more responsible for correlation to localization to the equator". We have provided an explanation for the higher lamina TSA-seq scores for LADs near the equator based on the measured spreading of the tyramide free radicals convolved with the eJect of the nuclear shape. This makes a prediction that the observed variation in lamina TSA-seq scores for LADs with similar DamID scores is related to their positioning relative to the equatorial plane as we then validated through our mining of the IMR90 multiplexed FISH data.

      (5) FISH of individual LADs, v-fiLADs, and p-w-v-fiLADs relative to the lamina and speckle would be helpful to understand their relative positioning in control and LBR/LMNA double KO cells. This would significantly bolster the claim that "histone mark enrichments..more precisely revealed the diJerential spatial distribution of LAD regions...".

      Adequately testing these predictions made from the lamina/SON TSA-seq scatterplots by direct FISH measurements would require measurements from large numbers of diJerent chromosome regions through a highly multiplexed immuno-FISH approach. We are not equipped currently in any of our laboratories to do such measurements and we leave this therefore for future studies.

      Rather our statement is based on our use of TSA-seq analyzed through these 2D scatterplots and should be valid to the degree that our TSA-seq measurements do indeed correlate with microscopy derived distances.

      However, we do now include demonstration of a high correlation of speckle, lamina, and nucleolar TSA-seq with highly multiplexed immuno-FISH measurement of distances to these locales in a revised Fig. 7. The high correlation shown between the TSA-seq scores and measured distances does therefore add additional support to our claim that the reviewer is discussing, even without our own multiplexed FISH validation.

      (6) "In contrast, genes within genomic regions which in pair-wise comparisons of cell lines show a statistically significant diJerence in lamina TSA-seq show no obvious trend in their expression diJerences (Figure 2C).". This appears to be an overstatement based on the left panel of 2D.

      We do not follow the reviewer's point. In Fig. 2C we show little bias in the diJerences in gene expression between the two cell types for regions that showed diJerences in lamina TSA-seq. The reviewer is suggesting something otherwise based on their impression, not explicitly stated, of the left panel of Fig. 2D. But we see similar shades of blue extending vertically at low SON values and similar shades of red extending vertically at high SON values, suggesting a correlation of gene expression only with the SON TSA-seq score but not with the LMNB1 TSA-seq score displayed on the y-axis. This is also consistent with the very small and/or insignificant correlation coeJicients measured in our linear model relating diJerences in LMNB1 TSA-seq to diJerences in expression but the large correlation coeJicient observed for SON TSA-seq (Fig. 2E). Thus, we see Fig. 2C-E as self-consistent.

      (7) In the section on "Polarity of Nuclear Genome Organization" - "....Using the IMR90 multiplexed FISH data set [43]...." - The references are not numbered.

      We thank the reviewer for this correction.

      (8) I believe there is an error in the Figure 7B legend. The descriptions of Cluster 1 and 2 do not match those indicated in the figure.

      We again thank the reviewer for this correction.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      The entire study is based on only 2 adult animals, that were used for both the single cell dataset and the HCR. Additionally, the animals were caught from the ocean preventing information about their age or their life history. This makes the n extremely small and reduces the confidence of the conclusions. 

      This statement is incorrect.  While the scRNAseq was indeed performed in two animals (n=2), the HCR-FISH was performed in 3-5 animals (depending on the probe used).  These were different animals from those used for the scRNAseq.  The number of animals used has now been included in the manuscript.

      All the fluorescent pictures present in this manuscript present red nuclei and green signals being not color-blind friendly. Additionally, many of the images lack sufficient quality to determine if the signal is real. Additional images of a control animal (not eviscerated) and of a negative control would help data interpretation. Finally, in many occasions a zoomed out image would help the reader to provide context and have a better understanding of where the signal is localized. 

      Fluorescent photos have been changed to color-blind friendly colors.  Diagrams, arrows and new photos have been included as to guide readers to the signal or labeling in cells. Controls for HCR-FISH and labeling in normal intestines have been included.  

      Reviewer #2:

      The spatial context of the RNA localization images is not well represented, making it difficult to understand how the schematic model was generated from the data. In addition, multiple strong statements in the conclusion should be better justified and connected to the data provided.

      As explained above we have made an effort to provide a better understanding of the cellular/tissue localization of the labeled cells. Similarly, we have revised the conclusions so that the statements made are well justified.

      Reviewer #3:

      Possible theoretical advances regarding lineage trajectories of cells during sea cucumber gut regeneration, but the claims that can be made with this data alone are still predictive.

      We are conscious that the results from these lineage trajectories are still predictive and have emphasized this in the text. Nonetheless, they are important part of our analyses that provide the theoretical basis for future experiments.

      Better microscopy is needed for many figures to be convincing. Some minor additions to the figures will help readers understand the data more clearly.

      As explained above we have made an effort to provide a better understanding of the cellular/tissue localization of the labeled cells.  

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      -  Page 4, line 70-81: if the reader is not familiar with holothurian anatomy and regeneration process, this section can be complicated to fully understand. An illustration, together with clear definitions of mesothelium, coelomic epithelium, celothelium and luminal cells would help the reader. 

      A figure (now Figure 1) detailing the holothurian anatomy of normal and regenerating animals has been added. A figure detailing the intestinal regeneration process has also been included (S1).

      -  Page 5 line 92-104: this paragraph could be shortened. It would be more important to explain what the main question is the Authors would like to answer and why single cell would be the best technique to answer it, than listing previous studies that used scRNA-Seq. 

      The paragraph has been shortened and the focus has been shifted to the question of cellular components of regenerative tissues in holothurians.

      -  Page 6, line 125-127 and line 129-132: this belongs to the method section. 

      This information is now provided in the Materials and Methods section.

      -  Page 11, line 210-217: this belongs to the discussion. 

      This section has now been included in the Discussion.

      -  How many mesenteries are present in one animal? 

      This has now been included as part of Figure S1.

      -  In the methods there are no information about the quality of the dataset and the sequencing and the difference between the 2 samples coming from the 2 animals. How many cells from each sample and which is the coverage? The Authors provided this info only between mesentery and anlage but not between animals. 

      We have added additional information about the sequencing statistics in S4 Fig and S15 Table. Description has also been added in the methods in lines 922-926 under Single Cell RNA Sequencing and Data Analysis section.

      -  The result section "An in-depth analysis of the various cluster..." is particularly long and very repetitive. I would encourage to Authors to remove a lot of the details (list of genes and GO terms) that can be found in the figures and stressed only the most important elements that they will need to support their conclusions. Having full and abbreviated gene names and the long list of references makes the text difficult to read and it is challenging to identify the main point that the Authors are trying to highlight. 

      This section has been abbreviated.

      -  Figure 1: I would suggest adding a graph of holothurian anatomy before and after the evisceration to provide more context of the process we are looking at and remove 1C. 

      Information on the holothurian anatomy has been included in a new Fig 1 and in supplementary figure S1

      -  Figure 2: I would suggest removing this figure that is redundant with Figure 3 and several genes are not cluster specific. Figure 3 is doing a better job in showing similar concepts. 

      Figure 2 was removed and placed in the Supplement section. 

      - In figure 3 how were the 3 cell types defined? Was this done manually or through a bioinformatic analysis? 

      The cell definition was done following the analysis of the highly expressed transcripts and comparisons to what has been shown in the scientific literature.

      -  Figure 2O shows that one of the supra-cluster is made of C2, C7, C6 and C10. This contradicts the text page 9, line 195. 

      The transcript chosen for this figure gives the wrong idea that these 4 clusters are similar. We have now addressed this in the manuscript.

      -  Figure 4A and 4C: if these are representing a subset of Figure 3, they should be removed in one or the other. The same comment is valid also for Figures 5, 6 and 7. In general the manuscript is very redundant both in terms of Figures and text. 

      These are indeed subsets of Fig 3 that were added with the purpose of clarifying the findings, however, in view of the reviewer’s comment we have deleted the redundant information from all figures.

      -  Figure 9: since the panels are not in order, it is difficult to follow the flow of the figure.  - All UMAP should have the number of the cluster on the UMAP itself instead of counting only on the color code in order to be color-blind friendly. 

      The figure has been modified and clusters are now identified in the UMAP by their number.

      -  Figure S1F seems acquired in very different conditions compared to the other images in the same figure. 

      Fig S1F (now S2 Fig) is an overlay of fluorescent immune-histochemistry (UV light detected) with “classical” toluidine blue labeling (visible light detected).  This has now been explained in the figure legend.

      -  Table S7 is lacking some product numbers. 

      The toluidine blue product number has now been added to the table.  The antibodies that lack product number correspond to antibodies generated in our lab  and described in the references provided.

      -  The discussion is pretty long and partially redundant with the result section. I would encourage the Authors to shorten the text and shorten paragraphs that have repeating information.  - It might be out of the scope of the Authors but the readers would benefit from having a manuscript that focuses more on the novel aspects discovered with the single-cell RNA-Seq and then have a review that will bring together all the literature published on this topic and integrating the single-cell data with everything that is known so far. 

      We have tried to shorten the discussion by eliminating redundant text.

      Reviewer #2 (Recommendations For The Authors): 

      -  An intriguing finding is the lack of significant difference in the cell clusters between the anlage and mesentery during regeneration. This discovery raises important questions about the regenerative process. The authors should provide a more detailed explanation of the implications of this finding. For example, does it suggest that both organs contribute equally to the regenerated tissues? 

      The lack of significant differences in the cell clusters between the anlage and the mesentery is somewhat surprising but can be explained by two different facts. First, we have previously shown that many of the cellular processes that take place in the anlage, including cell proliferation, apoptosis, dedifferentiation and ECM remodeling occur in a gradient that begins at the tip of the mesentery where the anlage forms and extends to various degrees into the mesentery.  Similarly, migrating cells move along the connective tissue of the mesentery to the anlage.  Thus, there is no clear partition of the two regions that would account for distinct cell populations associated with the regenerative stage.  Second, the two cell populations that would have been found in the mesentery but not in the regenerating anlage, mature muscle and neurons, were not dissociated by our experimental protocol as to allow for their sequencing.  Our current experiments are being done using single nuclei RNA sequencing to overcome this hurdle. This has now been included in the discussion.

      -  Proliferating cells are obviously important to the study of regeneration as it is assumed these form the regenerating tissue. The authors describe cluster 8 as the proliferative cells. Is there evidence of proliferation in other cell types or are these truly the only dividing cells? Is c8 of multiple cell types but the clustering algorithm picks up on the markers of cell division i.e. what happens if you mask cell division markers - does this cluster collapse into other cluster types? This is important as if there is only one truly proliferating cell type then this may be the origin of the regenerative tissues and is important for this study to know this. 

      As the reviewer highlights, we also believe this to be an important aspect to discuss. We have addressed this in the manuscript discussion with the following: “Our data suggest that there appears to be a specific population of only proliferative cells (C8) characterized by a large number of cell proliferation genes, which can be visualized by the top genes shown in Fig 3. These cell proliferation genes are specific to C8, with minimum representation in other populations. Interestingly, as mentioned before C8 expresses at lower levels many of the genes of other coelomic epithelium populations. Nevertheless, even if we mask the top 38 proliferation genes (not shown), this cluster is maintained as an independent cluster, suggesting that its identity is conferred by a complex transcriptomic profile rather than only a few proliferation-related genes. Therefore, the identity and potential role of C8 could be further described by two distinct alternatives: (1) cells of C8 could be an intermediate state between the anlage precursor cells (discussed below) and the specialized cell populations or (2) cells of C8 are the source of the anlage precursor populations from which all other populations arise. The pseudotime data is certainly complex and challenging to interpret with our current dataset, yet the RNA velocity analysis showed in Fig 11B would suggests that cells of C8 transition into the anlage precursor populations, rather than being an intermediate state. This is also supported by the Slingshot pseudotime analysis that incorporates C8 (S13 Fig).

      Nevertheless, additional experiments are needed to confirm this hypothesis.”

      -  The schematic model presented in Fig 10 is essential for clarifying the paper's findings and will provide a crucial baseline model for future research. However, the comparison of the data shown in the HCR figures with the schematic is challenging due to the lack of spatial context in the HCR figures. The authors should find a way to provide better context in the figures, such as providing two-color in situ images to compare spatial relationships of cell types and/or including lower resolution and side-by-side fluorescent and bright field images if possible. 

      The figure has been modified to explain the spatial arrangement of the tissues.

      The authors make several strong statements in the discussion that weren't well connected to the findings in the data. Specifically: 

      “Regardless of which cell population is responsible for giving rise to the cells of the regenerating intestine, our study reveals that the coelomic epithelium, as a tissue layer, is pluripotent.” 

      This has now been expanded to better explain the statement.

      738 “…we postulate that cells from C1 stand as the precursor cell population from which the rest of the cells in the coelomic epithelium arise”. 

      This has now been expanded to better explain the statement.

      748 “differentiation: muscle, neuroepithelium, and coelomic epithelium cells. We also propose the presence of undifferentiated and proliferating cell populations in the coelomic epithelia, which give rise to the cells in this layer…”

      This has now been expanded to better explain the statement.

      777 “amphibians, the cells of the holothurian anlage coelomic epithelium are proliferative undifferentiated cells and originated via a dedifferentiation process…”

      This has now been expanded to better explain the statement.

      Reviewer #3 (Recommendations For The Authors): 

      Specific questions: 

      - Is there any way to systematically compare these cells to evolutionarily-diverged cells in distant relatives to sea cucumbers? Or even on a case-by-case basis? For example, is there evidence for any of these transitory cell types to have correlate(s) in vertebrate gut regeneration? 

      This is a most interesting question but one that is perhaps a bit premature to answer due to multiple reasons.  First, most of the studies in vertebrates focus on the regeneration of the luminal epithelium, a layer that we are not studying in our system since it appears later in the regeneration process.  Second, there is still too little data from adult echinoderms to fully comprehend which cells are cell orthologues to vertebrates. Third, we are only analyzing one regenerative stage.  It is our hope that this is just the start of a full description of what cell types/stages are found and how they function in regeneration and that this will lead us to identify the cellular orthologues among animal species.

      Major revisions: 

      - If lineage tracing is within the scope of this paper, it would provide more definitive evidence to the conclusions made about the precursor populations of the regenerating anlage. 

      Response:  This is certainly one of the next steps, however at present, it is not possible due to technical limitations.

      Minor revisions: 

      - Line 47: "for decades" even longer! Could the authors also cite some other amphibians, such as other salamanders (newts) and larval frogs? 

      References have been added.

      - Line 85: "specially"-could authors potentially change to "specifically" 

      Corrected

      - Line 122: Authors should add the full words of what these abbreviations stand for in the caption for Figure 1 or in Figure 1A itself. 

      Corrected

      - Lines 153: What conclusions are the authors trying to make from one type of tubulin presence compared to the others? It's unclear from the text. 

      The authors are not trying to reach any particular conclusion.  They are just stating what was found using several markers, and the possibility that what might be viewed first hand as a single cell population might be more heterogenous.  Although the tubulin-type information might not be relevant for the conclusions in the present manuscript, it might be important for future work on the cell types involved in the regeneration process.

      - Line 226: Could the authors clarify if "WNT9" is "WNT9a". Figure 3 lists WNT9a but authors refer to WNT9 in the text. 

      The gene names in Fig 3 are based on the human identifiers. H. glaberrima only has one sequence of Wnt9 (Auger et al. 2023) and this sequence shares the highest similarity to human Wnt9a, thus the name in the list. We have now identified the gene as Wnt9 to avoid confusion.

      - Lines 236-237: Can authors rule out that some immune cells might infiltrate the mesenchymal population? 

      No, this cannot be ruled out.  In fact, we believe that most of the immune cells found in our scRNA-seq are indeed cells that have infiltrated the anlage and are part of the mesenchyma.  This has been reported by us previously (see Garcia-Arraras et al. 2006). We have now included this in the text.

      - Line 452-453: The over-representation of ribosomal genes not shown. Would it be possible to show this information in the supplementary figures? 

      The sentence has been modified, the data is being prepared as part of a separate publication that focuses on the ribosomal genes.

      - Line 480: Could authors clarify if it's WNT9a or just WNT9?

      It is indeed Wnt9. See previous response above.

      - Line 500: In future experiments, it would be interesting to compare to populations at different timepoints in order see how the populations are changing or if certain precursors are activated at different times. 

      We fully agree with the reviewer. These are ongoing experiments or are part of new grant proposals.

      - Line 567-568: Choosing 9-dpe allowed for 13 clusters, but do authors expect a different number of clusters at different timepoints as things become more terminally differentiated? 

      Definitely, we believe that clusters related to the different regenerative stages of cells can be found by looking at earlier or later regeneration stages of the organ.  A clear example is that if the experiment is done at 14-dpe, when the lumen is forming, cells related to luminal epithelium populations will appear. It is also possible that different immune cells will be associated with the different regeneration stages.

      - Line 653: References Figure 10D (not in this manuscript). Are authors referring to only 1D or 9D or an old draft figure number? 

      As the reviewer correctly points out, this was a mistake where the reference is to a previous draft. It has now been corrected.

      - Line 701: "our study reveals that the coelomic epithelium, as a tissue layer, is pluripotent." Phrasing may be better as referring to the cell population making up the tissue layer as pluripotent/multipotent or that the cells it contains would likely be pluripotent or multipotent. Additionally, lineage tracing may be needed to definitively demonstrate this. 

      This has been modified.

      - Line 808: The authors may make a more accurate conclusion by saying that the characteristics are similar to blastemas or behave like a blastema rather than it is blastema. There is ambiguity about the meaning of this term in the field, but most researchers seem to currently have in mind that the "blastema" definition includes a discrete spatial organization of cells, and here these cells are much more spread out. This could be a good opportunity for the authors to engage in this dialogue, perhaps parsing out the nuances of what a "blastema" is, what the term has traditionally referred to, and how we might consider updating this term or at least re-framing the terminology to be inclusive of functions that "blastemas" have traditionally had in the literature and how they may be dispersed over geographical space in an organism more so than the more rigid, geographically-restricted definition many researchers have in mind. However, if the authors choose to elaborate on these issues, those elaborations do belong in the discussion, and the more provisional terminology we mention here could be used throughout the paper until that element of the revised discussion is presented. We would welcome the authors to do this as a way to point the field in this direction as this is also how we view the matter. For example, some of the genes whose expression has been observed to be enriched following removal of brain tissue in axolotls (such as kazald2, Lust et al.), are also upregulated in traditional blastemas, for instance, in the limb, but we appreciate that the expression domain may not be as localized as in a limb blastema. Additionally, since there is now evidence that some aspects of progenitor cell activation even in limb regeneration extend far beyond the local site of amputation injury (Johnson et al., Payzin-Dogru et al.), there is an opportunity to connect the dots and make the claim that there could be more dispersion of "blastema function" than previously appreciated in the field. Diving a bit more into these nuances may also enable better conceptual framework of how blastema function may evolve across vast evolutionary time and between different injury contexts in super-regenerative organisms. 

      We have followed the reviewer’s suggestion and stated that the holothurian anlage behaves as a blastema. Though we would love to elaborate on the blastema topic, as suggested by the reviewer, we believe that it would extend the discussion too much and that the topic might be better served in a different publication.

      - In the discussion, it would be important not to leave the reader with the impression that all amphibian blastema cells originate via dedifferentiation. This is not the case. For example, in axolotls (Sandoval-Guzman et al.) and in larval/juvenile newts, muscle progenitors within the blastema structure have been shown to originate from muscle satellite cells, a kind of stem cell, in stump tissues (while adult newts use dedifferentiation of myofibers to generate muscle progenitors in the blastema). Most cell lineages simply have not been evaluated in the level of detail that would be required to definitively conclude one way or the other, and the door is open for a more substantial contribution from stem cell populations than previously appreciated especially because new tools exist to detect and study them. Providing the reader with a more nuanced view of this situation will not negatively impact the findings in this paper, but it will show that there is biological complexity still waiting to be discovered and that we don't have all the answers at this point. 

      This has now been corrected. 

      Figures: Overall, the figures need minor work. 

      - Figure 1A: Can the authors draw a smaller, full-body cartoon and feature the current high-mag cartoon as an inset to that? Can they label the axes and make it clear how the geometry works here?

      Fig 1 has been re-done and now is split into Fig 1 and Fig 2.

      - Figure 1B: Can the authors label the UMAP with cluster identities on the map itself? This will make it easier to identify each cluster (especially to make sure cluster 11 is easier to find). 

      This has been corrected.

      - Figure 2: Could the authors put boxes/clearly distinguish panel labels around each cluster (AO), so that there are clear boundaries? 

      Fig 2 has been moved to Supplement, following another reviewer recommendation.

      - "Gene identifiers starting with "g" correspond to uncharacterized gene models of H. glaberrima." - The sentence is from another figure caption but this figure would benefit from having this sentence in the figure caption as well. 

      This has been added to other figures as suggested.

      - Figure 3A: Can the authors potentially bold, highlight, or underline genes you discuss in text, so it's easier for the reader to reference? 

      This has been added as suggested.

      - Figure 3C: Can the authors please label the cell types directly on the UMAP here as well? 

      The changes were made following the reviewer’s recommendation.

      - Figure 4D-E: There's not much context here to determine if this HCR-FISH validation can tell us anything about these cells besides some of them appear to be there. Do authors expect the coelomocyte morphology to look different in regenerating/injured tissue versus normal animals? Can the authors provide some double in situs, as well as some lower-magnification views showing where the higher-magnification insets are located? Is there any spatial pattern to where these cells are found? Counter stains would be helpful. 

      - Figure 6C: If clusters C5, C8, C9 are part of the coelomic epithelium, then authors could show a smaller diagram above with blue and grey to show types and then show clusters separately to help get their point across better. 

      - Figure 6G: This image appears to have high background- would it be possible for authors to repeat phalloidin stain or reimage with a lower exposure/gain. Additionally, imaging with Zstacks would help to obtain maximum intensity projections. It would greatly aid the reader if each image was labeled with HCR probes/antibodies that have been applied to the sample. 

      - Figure 7E: The cells appear to be out of focus and have high background. Additionally, they are lacking the speckled appearance expected to be seen with HCR-FISH. Would it be possible for authors to collect another image utilizing z-stacks? 

      HCR-FISH figures identifying the gene expression characteristic of cell clusters have been modified following the reviewer’s concerns.  The changes include:

      (1) Additional clusters have been verified with probes to gene identifiers. These include clusters 8, 9 and 12.

      (2) Redundant information has been removed.

      (3) Colors have been changed to make figures friendlier to color-impaired readers.

      (4) Spatial context has been added or identified.

      (5) In some cases, improved photos have been added

      (6) Better labels have been included

      (7) When necessary individual photos used for the overlay have been included.

      - Figure 9A: Could authors add cluster labels onto UMAP directly? 

      This change was made to Fig 2A. UMAP in Fig 9A is the same and used just as reference of the subset.

      - Figure 10: It could be useful if authors put a small map of the sea cucumber like in other images so that readers know where in the anlage this zoomed in model represents. 

      Added as suggested by the reviewer.

      - Supplementary figure 1F: Could authors add an arrow to the dark cell that's being pointed out? 

      Changed made as suggested by the reviewer.

      - Supplementary figure 1: Could authors label clearly what color is labeled with what marker? 

      Changed made as suggested by the reviewer.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      The authors present valuable findings on trends in hind limb morphology throughout the evolution of titanosaurian sauropod dinosaurs, the land animals that reached the most remarkable gigantic sizes. The solid results include the use of 3D geometric morphometrics to examine the femur, tibia, and fibula to provide new information on the evolution of this clade and understand the evolutionary trends between morphology and allometry. Further justification of the ontogenetic stages of the sampled individuals would help strengthen the manuscript's conclusions, and the inclusion of additional large-body mass taxa could provide expanded insights into the proposed trends.

      Most of the analyzed specimens, especially from the smaller taxa, come from adult or subadult specimens. None exhibit features that may indicate juvenile status. However, we lack information of the paleohistology that may be a stronger indicator on the ontogenetic status of the individual, and some of operative taxonomic units used in the study come from mean shape of all the sampled specimens.

      Current information on morphological differences between adult and subadult or juvenile specimens indicates that even early juvenile specimens may share same morphological features and overall morphology as the adult (e.g., see Curry-Rogers et al., 2016; Appendix S3). We included a comprehensive analysis of the impact of juvenile specimens as one of the aspects of the intraspecific variability that may alter our results in Appendix S3.

      Public Reviews:

      Reviewer #1:

      Weaknesses:

      Several sentences throughout the manuscript could benefit from citations. For example, the discussion of using hind limb centroid size as a proxy for body mass has no citations attributed. This should be cited or described as a new method for estimating body mass with data from extant taxa presented in support of this relationship. This particular instance is a very important point to include supporting documentation because the authors' conclusions about evolutionary trends in body size are predicated on this relationship.

      We address this issue in the text (Line 32 & 64). Centroid size seems a good indication as it’s the overall size of the entire hind limb, and the length of the femur and tibia is well correlated independently with the body size/mass. Also, as we use few landmarks and only those that are purely type I or II landmarks, with curves of semilandmarks bounded or limited by them, centroid size is not sensible to landmark number differences across the sample in our study (as the centroid size is dependent of the number of landmarks of the current study as well as the physical dimensions of the specimens).

      We have sampled and repeated all the analyses using other proxies like the femoral length and the body mass estimated from the Campione & Evans (2020) and Mazzeta et al. (2004) methods. The comprehensive description of the method is in Appendix S2, the alternative analyses can be accessed in the Appendix S3 and S4; and the code for the alternative analyses can be accessed in the modified Appendix S5. All offer similar results than the ones obtained in our analyses with the body size proxied with the hind limb landmark configuration centroid size.

      An additional area of concern is the lack of any discussion of taphonomic deformation in Section 3.3 Caveats of This Study, the results, or the methods. The authors provide a long and detailed discussion of taphonomic loss and how this study does a good job of addressing it; however, taphonomic deformation to specimens and its potential effects on the ensuing results were not addressed at all. Hedrick and Dodson (2013) highlight that, with fossils, a PCA typically includes the effects of taphonomic deformation in addition to differences in morphology, which results in morphometric graphs representing taphomorphospaces. For example, in this study, the extreme negative positioning of Dreadnoughtus on PC 2 (which the authors highlight as "remarkable") is almost certainly the result of taphonomic deformation to the distal end of the holotype femur, as noted by Ullmann and Lacovara (2016).

      We included a brief commentary in the Caveats of This Study (Line 467) and greatly expanded this issue in the Appendix S3. We followed the methodology proposed by Lefebvre et al. (2020) to discuss the effects of taphonomic deformation in the shape analyses.

      Our shape variables (PCs obtained from the shape PCA) should be viewed as taphomorphospaces as Hedrick and Dodson, as well as the reviewer, points in such cases.

      The analysis of the effects of taphonomy or errors induced by the landmark estimation method indicate that Dreadnoughtus schrani is one of the few sampled taxa that may have a noticeable impact on our analyses due lithostatic deformation. Other taxa like Mendozasaurus neguyelap or Ampelosaurus atacis may also induce some alterations to the PCs. In general, the trends of those PCs slightly altered by taphonomy, where D. scharni is the only sauropod that may alter an entire PC like PC2, did not exhibit phylogenetic signal and are a small proportion of the sample variance.

      The authors investigated 17 taxa and divided them into 9 clades, with only Titanosauria and Lithostrotia including more than two taxa (and four clades are only represented by one taxon). While some of these clades represent the average of multiple individuals, the small number of plotted taxa can only weakly support trends within Titanosauria. If similar general trends could be found when the taxa are parsed into fewer, more inclusive clades, it would support and strengthen their claims. Of course, the authors can only study what is preserved in the fossil record, and titanosaurian remains are often highly fragmentary; these deficiencies should therefore not be held against the authors. They clearly put effort and thought into their choices of taxa to include in this study, but there are limitations arising from this low sample size that inherently limit the confidence that can be placed on their conclusions, and this caveat should be more clearly discussed. Specifically, the authors note that their dataset contains many lithostrotians, but they do not discuss unevenness in body size sampling. As neither their size-category boundaries nor the taxa which fall into each of them are clearly stated, the reader must parse the discussion to glean which taxa are in each size category. It should be noted that the authors include both Jainosaurus and Dreadnoughtus as 'large' taxa even though the latter is estimated to have been roughly five times the body mass of the former, making Dreadnoughtus the only taxon included in this extreme size category. The effects that this may have on body size trends are not discussed. Additionally, few taxa between the body masses of Jainosaurus and Dreadnoughtus have been included even though the hind limbs of several such macronarians have been digitized in prior studies (such as Diamantinasaurus and Giraffititan; Klinkhamer et al. 2018). Also, several members of Colossosauria are more similar in general body size to Dreadnoughtus than Jainosaurus, but unfortunately, they do not preserve a known femur, tibia, and fibula, so the authors could not include them in this study. Exclusion of these taxa may bias inferences about body size evolution, and this is a sampling caveat that could have been discussed more clearly. Future studies including these and other taxa will be important for further evaluating the hypotheses about macronarian evolution advanced by Páramo et al. in this study.

      Sadly, we could not include some larger sized titanosaurians sauropods. As the reviewers points out, the lack of larger sauropods among the sampled taxa may hinder our results, as the “large-bodied” category is filled with some mid-sized taxa and the former Dreadnoughtus schrani which is five times larger than some of them. We tried to include Elaltitan lilloi, digitized for this study and included in preliminary analyses, but the fragmentary status increased greatly the error by the estimation method as there is only a proximal third or mid femur preserved from this taxon. Therefore we opted to exclude it from our database.

      Other taxa considered, as the reviewer suggest, was not readily available for the authors as the time of this study was conducted and including now may have increased the possible bias of our study. Giraffatitan brancai is an Late Jurassic brachiosaurid, which may again increase the number of early-branching titanosauriforms with large body masses while most of the smaller taxa sampled are recovered in deeply-branching macronarians (including Diamantinasaurus matildae if we would have also included it). Future analyses may include a wider sample of the mid to large-bodied titanosaurians, especially lithostrotians, as well as some colossosaurs like Patagotitan mayorum.

      Reviewer #1 (Recommendations For The Authors):

      These are all minor comments that would improve the manuscript.

      - There are a few typos throughout the manuscript such as: line 70 should be 2016 and line 242 should be forelimb.

      Corrected.

      - To me, the most interesting aspect of your study is the diversity and trends recovered in titanosaurian subclades and I would highlight this, not gigantism, in the title if you choose to revise the title.

      It has been addressed. The specificality of some of the tests and the implication to the acquisition of the spread limb posture and gigantism in early-branching taxa is important nonetheless, so we think that it may remain in the title.

      - The abstract should provide more details on the results such as none of the listed trends were statistically significant.

      Many of the trends exhibit phylogenetic signal, but not the allometric components. We have briefly addressed them.

      - Several sentences in the manuscript need citations such as: line 48 the reference to other megaherbivores, line 66 the discussion of poor understanding of the relationship of wide gauge posture and gigantism, and the use of centroid size as an estimate of body mass (see Public Review).

      We changed the line 66 to improve the focus on the current state of the art in the hypothesis of a relationship between arched limbs and in the increase of body size. We included a section relating centroid size as a proxy (due the good correlation between the femur and tibia length and the body mass) and the caveats of using it. We also expanded in the Appendix S2 the use of centroid size and the alternative models.

      - With titanosaur evolution, you mention that they are adapting to new niches and topography (line 64). What support is there for this versus they are adapting to be more successful in their current environment?

      Noted, we have changed the phrase to improved efficiency exploiting of inland environments, as thy can be either opening new inland niches or adapting better to current inland niches that were already exploited for less deeply branching sauropods. However, its testing is beyond the scope of the current work.

      - Line 384-385: the discussion of Rapetosaurus should mention that it is a juvenile and some studies have suggested that titanosaur limbs grow allometrically.

      We have included a small line. Whether Rapetosaurus krausei exhibit allometric growth or not may not change greatly the discussion, maybe only excluding it as morphologically convergent to Lirainosaurus and Muyelensaurus. But if that so, it will be further proof that small-sized titanosaurs exhibit the robust skeleton expected in the giant titanosaurs.

      - I would consider addressing the question of if we are certain enough in our understanding of titanosaurian phylogeny to rule out homology, especially when you discuss the uncertainty of the placement of specific taxa. Also, Diamantinasaurus is not the only titanosaur that has been proposed as a member of both basal and more derived subclades (e.g., Dreadnoughtus).

      We tried to assume a more conservative approach. We could not fully rule out that some of the features observed in the sampled deeply branching lithostrotians, especially saltasauroids, cannot be present in the entire somphospondylan lineage. However, none of the less deeply-branching or early-branching titanosaurs exhibit this kind of morphology. Recent studies propose the possibility that entire groups, included in this study like the Colossosauria, change its position in the phylogeny. However, despite the debated phylogenetic position of Diamantinasaurus or Dreadnoughtus, or even the inclusion of Colossosauria within the saltasauroids and the inclusion of the Ibero-Armorican lithostrotians as putative saltasaurids (Mocho et al. 2024). However, even considering these changes we did not notice any relevant differences in our conclusions about hind limb arched morphology nor about size. Distal hind limb overall robustness should indeed be addressed in the light of shifts in phylogenetic position and include some interesting sauropods like Diamantinasaurus or expand the large-sized Colossosauria or early-branching somphospondyls as it may have profound implications on the morphofunctional adaptations to specific feeding niches, e.g., see current hypotheses about rearing as mentioned in Bates et al. (2016), Ullmann et al. (2017) or Vidal et al. (2020). We had not enough information to conclude the presence of any plesiomorphic condition or analogous feature with our current sample and the debated titanosaurian phylogeny.

      - I understand this is not standard in the field, but your study provides the opportunity to conduct sensitivity testing of the effects of cartilage thickness and user articulation of the bones on PCA results. This would be an inciteful addition to the field of GMM.

      We are currently developing such a comprehensive analysis and several other implications on our past results. However, we feel that it is beyond the scope of the current study. We appreciate the suggestion nonetheless, as it would be a sensitivity test of the impact of several of our assumptions in the final results that is often not considered.

      - In Figure 1, if all the limbs were arranged the same way it would be easier to interpret. Consider flipping panels B and D to match A and C.

      Accepted.

      - In Figures 2-4, the views in C should be labeled in the figure or caption. Oceanotitan is also in the PCA plot but not included in the figure caption. Also, consider changing the names to represent the paraphyletic groupings you are using instead of formal clade names. For example, change 'Titanosauria' to 'Basal Titanosaurs' to reflect that it is not including all titanosaurs in the sample.

      Changes accepted for the shape PCA results. The informal (i.e., paraphyletic) terms such as “Basal Titanosaurs” were only used in the shape analyses as in the RMA, the Titanosauria (and other more inclusive groups) were used as natural groups. Each partial RMA model is based on a sample of all the taxa that are included within that particular clade (e.g., Titanosauria includes both Dreadnoughtus and Saltasaurus; Lithostrotia excludes the former).

      - I am concerned that centroid size does not scale evenly across the wide-ranging body mass of titanosaurs. I do not know if this affects your size trends or their significance, but as I mentioned above Dreadnoughtus is much bigger than most of the taxa included and that isn't as drastically apparent in centroid size (in Figure 5) as it is when taxa are plotted by body mass.

      Main problematic with centroid size of the hind limb is the shift in the body plan of deeply-branching titanosaurs as the Center of Masses is displaced toward the anterior portion of the body and it has been proposed due a large development of the forelimb region (e.g., Bates et al. 2016). However, it would only increase the effects of the phyletic body size reduction, as smaller taxa tend to have a 1:1 fore limb and hind limb ratio, e.g., from our past analyses as in Páramo et al. (2019), and the sacrum is not as beveled as in earlier somphospondyls, e.g., Vidal et al. (2020). The role of the low-browsing feeding habits of deeply-branching lithostrotians shall be explored elsewhere, as it may be the main driving force of this effect. Our point is, the proxy used may have some slight offset due some high-browsing giant early-branching titanosaurs which has a greater cranial region development which increase its body size and mass beyond our bare-minimum estimation based on the hind limb region. But, overall, this offset is assumed to be low. We repeated the analyses with the femoral length as proxy of body size and a mass estimation, including the quadratic equation based on both humeral and femoral lengths, and the results remain similar. Another problem that arises with the use of centroid size is the way it shall be calculated, but as we used an even number of landmarks and curve semilandmarks, and all of them bounded to anatomical features, it remains equal at least for our sample (but cannot be extrapolated to other geometric morphometric studies that do not use the same configurations)

      We appreciate the reviewer concerns nonetheless, as it was on of our own when designing this study, and we in the future will try to expand the analyses, or advise anyone expanding on this study, using total body size/volume estimations following Bates et al. (2016). Which also includes test of the effects of the different whole-body estimation models.

      Cites:

      Bates KT, Mannion PD, Falkingham PL, Brusatte SL, Hutchinson JR, Otero A, Sellers WI, Sullivan C, Stevens KA, Allen V. 2016. Temporal and phylogenetic evolution of the sauropod dinosaur body plan. Royal Society Open Science 3:150636. doi:10.1098/rsos.150636

      Mocho P, Escaso F, Marcos-Fernández F, Páramo A, Sanz JL, Vidal D, Ortega F. 2024. A Spanish saltasauroid titanosaur reveals Europe as a melting pot of endemic and immigrant sauropods in the Late Cretaceous. Commun Biol 7:1016. doi:10.1038/s42003-024-06653-0

      Páramo A, Ortega F, Sanz JL. 2019. A Niche Partitioning Scenario for the Titanosaurs of Lo Hueco (Upper Cretaceous, Spain). International Congress of Vertebrate Morphology (ICVM) - Abstract Volume, Journal of Morphology. Prague. p. S197.

      Ullmann PV, Bonnan MF, Lacovara KJ. 2017. Characterizing the Evolution of Wide-Gauge Features in Stylopodial Limb Elements of Titanosauriform Sauropods via Geometric Morphometrics. The Anatomical Record 300:1618–1635. doi:10.1002/ar.23607

      Vidal D, Mocho P, Aberasturi A, Sanz JL, Ortega F. 2020. High browsing skeletal adaptations in Spinophorosaurus reveal an evolutionary innovation in sauropod dinosaurs. Sci Rep 10:6638. doi:10.1038/s41598-020-63439-0

      Reviewer #2:

      The authors report a quantitative comparative study regarding hind limb evolution among titanosaurs. I find the conclusions and findings of the manuscript interesting and relevant. The strength of the paper would be increased if the authors were to improve their reporting of taxon sampling and their discussion of age estimation and the potential implications that uncertainty in these estimates would have for their conclusions regarding gigantism (vs. ontogenetic patterns).

      Considering the observations made by reviewer #1, we included a data about the impact of ontogenetic patterns and other intraspecific variability in the Appendix S3. We considered to increase the sample but it has not been possible at the time of this study was carried out.

      Reviewer #2 (Recommendations For The Authors):

      I have a few concerns/requests for the authors, that I hope can be easily resolved.

      Comments:

      - What drove taxon sampling?

      Random sampling of somphospondylan sauropods focused on the Lithostrotia clade for the thesis project of one of the authors, APB. Logistics were also one of the bias on our sample, and based on the available titanosaurian material we left out several macronarians that has been already sampled but would further induce a early-branching large sauropod, deeply-branching small sauropod that may alter our results.

      - Which phylogenies were used to create the supertree applied to the analyses? What references were used to time-calibrate the tips and deeper nodes? I couldn't find any reference to this. Additionally, more information regarding the R packages and analytical pipeline would be appreciated: e.g. were measurements used in the analyses log-transformed?

      A comprehensive description of the methodology is provided in Appendix S2.

      - Age estimate: can the author confirm the skeletal maturity of the sampled individuals? If this is not the case, how can the author be sure that the patterns towards gigantism are not reflecting different ontogenetic stages? I believe this should be part of both methods and discussion.

      As commented before, we excluded small, probable juvenile specimens from our sample. We have no paleohistological sample backing the claims of the ontogenetic status of some of the specimens that were included or excluded were calculating the mean shape for the operative taxonomic units. However, we followed a criteria to identify the relative ontogenetic status and it has been included in Appendix S3.

      - The authors used the centroid size for regressions in Figure 6. Although I believe that this is a good variable, would the author be willing to use body mass and log-transformed femur length in addition to what was done? These would be very useful considering that these variables are (relatively) independent from shape/morphology.

      Accepted, we tested our hypotheses with three alternative models based on femoral length, combined femoral and humeral lengths for body mass estimations. Methodology can be found in Appendix S2, results on Appendix S4, code for the alternative methods in Appendix S5.

      - Data access: will stl. Files of the limb elements be shared and freely available? In this case, where the files will be deposited?

      At the time of the current study, some of the sampled specimens cannot be available (material under study) but the mean shapes can be generated after the landmarks and semilandmark curves and the “atlas” mesh.

      - Additionally, outstanding references regarding limb evolution, GMM, role of ontogeny, and evolution of columnar gait are missing. The authors should reinforce the literature review with the following (alphabetical order):

      Bonnan, M. F. (2003). The evolution of manus shape in sauropod dinosaurs: implications for functional morphology, forelimb orientation, and phylogeny. Journal of Vertebrate Paleontology, 23(3), 595-613.

      Botha, J., Choiniere, J. N., & Benson, R. B. (2022). Rapid growth preceded gigantism in sauropodomorph evolution. Current Biology, 32(20), 4501-4507.

      Curry Rogers, K., Whitney, M., D'Emic, M., & Bagley, B. (2016). Precocity in a tiny titanosaur from the Cretaceous of Madagascar. Science, 352(6284), 450-453.

      Day, J. J., Upchurch, P., Norman, D. B., Gale, A. S., & Powell, H. P. (2002). Sauropod trackways, evolution, and behavior. Science, 296(5573), 1659-1659.

      Fabbri, M., Navalón, G., Benson, R. B., Pol, D., O'Connor, J., Bhullar, B. A. S., ... & Ibrahim, N. (2022). Subaqueous foraging among carnivorous dinosaurs. Nature, 603(7903), 852-857.

      Fabbri, M., Navalón, G., Mongiardino Koch, N., Hanson, M., Petermann, H., & Bhullar, B. A. (2021). A shift in ontogenetic timing produced the unique sauropod skull. Evolution, 75(4), 819-831.

      González Riga, B. J., Lamanna, M. C., Ortiz David, L. D., Calvo, J. O., & Coria, J. P. (2016). A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot. Scientific Reports, 6(1), 19165.

      Lefebvre, R., Allain, R., & Houssaye, A. (2023). What's inside a sauropod limb? First three‐dimensional investigation of the limb long bone microanatomy of a sauropod dinosaur, Nigersaurus taqueti (Neosauropoda, Rebbachisauridae), and implications for the weight‐bearing function. Palaeontology, 66(4), e12670.

      McPhee, B. W., Benson, R. B., Botha-Brink, J., Bordy, E. M., & Choiniere, J. N. (2018). A giant dinosaur from the earliest Jurassic of South Africa and the transition to quadrupedality in early sauropodomorphs. Current Biology, 28(19), 3143-3151.

      Martin Sander, P., Mateus, O., Laven, T., & Knötschke, N. (2006). Bone histology indicates insular dwarfism in a new Late Jurassic sauropod dinosaur. Nature, 441(7094), 739-741.

      Remes, K. (2008). Evolution of the pectoral girdle and forelimb in Sauropodomorpha (Dinosauria, Saurischia): osteology, myology and function (Doctoral dissertation, München, Univ., Diss., 2008).

      Sander, P. M., & Clauss, M. (2008). Sauropod gigantism. Science, 322(5899), 200-201.

      Yates, A. M., & Kitching, J. W. (2003). The earliest known sauropod dinosaur and the first steps towards sauropod locomotion. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1525), 1753-1758.

      We appreciate this suggestion and we already used some of the articles in our study but the selection of cites were based also in the available manuscript space enforced by the edition guidelines. We would have like to include several of these works but we had opted to include some of the works that summarize some of them, whereas excluding others.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their constructive criticism. It is rare and gratifying to receive such thoughtful feedback, and the result is a much stronger paper. We made significant changes to our statistical analyses and figures to better differentiate the effects of sex and dominance rank on food-cleaning behaviors. These revisions uphold our original conclusion––that rank-related variation overwhelms any sex difference in cleaning behavior. We hope that these edits, together with the rest of our responses, provide a convincing demonstration of the tradeoffs of eliminating quartz from food surfaces.

      Reviewer #1 (Public Review):

      Summary

      We have no objections to Reviewer 1’s summary of our manuscript.

      Strengths

      Reviewer 1 is extremely gracious, and we are grateful for the kind words.

      Weaknesses

      Reviewer 1 identified several weaknesses, enumerating three types: (1) statistics, (2) insufficient links to foraging theory, and (3) interpretation and validity of the model. The present response is organized around these same categories.

      (1) Statistics

      We put all of our data and code into the Zenodo repository prior to submission. This content should have been accessible to Reviewer 1 from the outset. But in any event, we are very sorry for the mixup. To ensure access to our data and code during the present stage of review, we included the URL in the main mainscript and here: https://doi.org/10.5281/zenodo.14002737

      (a) AIC and outcome distributions

      Reviewer 1 criticized our use of AIC for determining model selection. We agree and this aspect of our manuscript is now removed. In lieu of AIC, we produced two data sets consisting of whole number counts (seconds) with means <5. The data were right-skewed due to high concentrations of biologically-meaningful zeros (i.e., bouts of food handling without any cleaning effort). Following the recommendations of Bolker et al. (2008) and others (Brooks et al. 2017, 2019), we chose an outcome distribution (zero-inflated Poisson, see response below) that best matched this data distribution. In addition, we evaluated the post-hoc performance of each of our models using the standardized residual diagnostic tools for hierarchical regression models available in the DHARMa package (Hartig, 2022). To further evaluate our choice of outcome distribution, we generated QQ-plots and residual vs. predicted plots for each model and included them in our revision as Figures S3-S5.

      (b) zeros

      Reviewer 1 expressed concern over our treatment of biologically-meaningful zeros, and recommended use of a zero-inflated GLMM with either a Poisson or negative binomial outcome distribution. We agree that such models are best for our two data sets. Accordingly, we fit a series of zero-inflated generalized linear mixed models (ZIGLMM) using the glmmTMB package in R, each with a logit-link function, a single zero-inflation parameter applying to all observations, and a Poisson error distribution. For the food-brushing model, we fit a zero-inflated Poisson (ZIP), which produced favorable standardized residual diagnostic plots with no major patterns of deviation (Figure S3) and minor, but non-significant underdispersion (DHARMa dispersion statistic = 0.99, p = 0.80). For our two food-washing models, we used zero-inflated models with Conway-Maxwell Poisson (ZICMP) distributions, an error distribution chosen for its ability to handle data that are more underdispersed (DHARMa dispersion statistic = 8.2E-09, p = 0.74) than the standard zero-inflated Poisson (Brooks et al. 2019). Using this error distribution improved residual diagnostic plots over a standard ZIP model and we view any deviations in the standardized residuals as minor and attributable to the smaller sample size of our food-washing data set (see Figures S4 and S5) (Hartig, 2022). We reported the summarized fixed effects tests for each GLMM in Tables S1-S3 as Analysis of Deviance Tables (Type II Wald chi square tests, one-sided) along with 𝜒2 values, degrees of freedom, and p-values (one-sided tests). Full model summaries with standard errors and confidence intervals are also included in Tables S4-S6. For all statistical analyses, we set 𝛼 = 0.05.

      (2) Absence of Links to Foraging Theory

      This critique has three components. The first revisits the absence of code for the optimal cleaning time model. This omission was an unfortunate error at the moment of submission, but our code is available now as a Mathematica notebook in Zenodo (https://doi.org/10.5281/zenodo.14002737). The second pivots around our scholarship, admonishing us for failing to acknowledge the marginal value theorem of Charnov (1976). It is a fair point and we have corrected the oversight with a citation to this classic paper. The third criticism is also rooted in scholarship, with Reviewer 1 asking for greater connection to the existing literature on optimal foraging theory, a point echoed in the summary assessment of the editors at eLife. This comment and the weight given to it by eLife’s editors put us in a difficult spot, as our paper is focused on the optimization of delayed gratification, not food acquisition per se. So, we are in the awkward position of gently resisting this recommendation while simultaneously agreeing with Reviewer 1 that we need to better situate our findings in the landscape of existing literature. To thread this needle, we produced Box 2 with a photograph and 410 words. This display box puts our findings into direct conversation with recent research focused on the sunk cost fallacy.

      (3) Interpretation and validity of model relative to data

      This critique is focused on the simulated brushing and washing results reported in Figure S1, along with its captioning, which was inadequate. We edited the caption to identify the author (JER) who simulated the brushing and washing behaviors of the monkeys. In addition, we clarified the number of brushing replicates (3) and washing replicates (3) for each of three treatments, for a total of 18 simulations.

      We followed Reviewer 1’s suggestion, incorporating the experimental uncertainty of grit removal into our optimal cleaning time model. We drew % grit removed values the % grit removed is used to estimate the cleaning inefficiency≥ 100%parameter 𝑐 for from a distribution, discounting the rare event when values were drawn. As brushing and washing, the included uncertainty now allows us to evaluate these parameters as distributions; and, in turn, obtain a distribution for our predicted brushing and washing optimal cleaning times. As we now describe in the main text, the optimal cleaning time for brushing and washing are 𝑡* \= 0. 98 ± 0. 19 s and * = 2. 40 ± 0. 74 s, respectively. We are grateful for Reviewer 1’s suggestion, for it added𝑡 valuable context to our model predictions. Notably, the inclusion of experimental uncertainty did not change the qualitative nature of our results, or the interpretations of our model predictions compared to observed cleaning behaviors.

      We choose to exclude variability in handling time h to generate predicted cleaning time optima, at least in the main text. Our reasoning stems from the observation that handling time variability is long-tailed, with the longer handling times associated with behaviors that we do not account for in our analysis. For example, individuals carrying multiple cucumber slices to the ocean were apt to drop them, struggling at times to re-grasp so many at once. Such moments increased handling times substantially. Still, we acted on Reviewer 1’s suggestion, accounting for the tandem effects of handling time variability and uncertainty in % grit removed (see Figure S6). Drawing handling time estimates from a log-normal distribution fitted to the handling time data, we found that these dual sources of uncertainty did not qualitatively change our results. They added further uncertainty to the predicted washing time, but the mean remains roughly equivalent. (We note that brushing is assumed to have a constant handling time––composed of only assessment time and no travel––such that the results for brushing do not change.) Both analyses are included in the Mathematica notebook at (https://doi.org/10.5281/zenodo.14002737).

      Reviewer #2 (Public Review):

      Summary

      We have no objections to Reviewer 2’s summary of our manuscript.

      Strengths

      Reviewer 2 is extremely gracious, and we are grateful for the kind words.

      Weaknesses

      Reviewer 2 noted that our manuscript failed to provide “sufficient background on [our study] population of animals and their prior demonstrations of food-cleaning behavior or other object-handling behaviors (e.g., stone handling).” To address this comment, we edited the introduction (lines 56-58) to alert readers to the onset of regular food-cleaning behaviors sometime after December 26, 2004. In addition, we edited our methods text (lines 155-160) to highlight the onset and limited scope of prior research with this study population:

      “The animals are well habituated to human observers due to regular tourism and sustained study since 2013 (Tan et al., 2018). Most of this research has revolved around stone tool-mediated foraging on mollusks, the only activity known to elicit stone handling (Malaivijitnond et al., 2007; Gumert and Malaivijitnond, 2012, 2013; Tan et al., 2015), although infants and juveniles will sometimes use stones during object play (Tan, 2017). There has been no prior examination of food-cleaning behaviors.”

      Reviewer #3 (Public Review):

      Reviewer 3 identified three weaknesses, which we address in three paragraphs.

      Reviewer 3 questioned our methods for determining rank-dependent differences in cleaning behavior, arguing that our conclusions were unsupported. It is a fair point, and it compelled us to combine males and females into a single standardized ordinal rank of 24 individuals. This unified ranking is now reflected in the x-axes of Figure 2 and Figure S2. Plotting the data this way––see Figure S2––underscores Reviewer 3’s concern that sex and dominance rank are confounding variables. To address this problem, our GLMM included rank and sex as predictor variables, which controls for the effect of sex when assessing the relationship between rank and cleaning time across the three treatments. Reported in Tables S1-S3, these findings show that the effect of sex on either brushing or washing time was not significant. This result bolsters our original contention that rank-related variation in cleaning time overwhelms any sex differences.

      Relatedly, Reviewer 3 questioned our conclusions on the effects of rank because our study was focused on a single social group. In other words, it is plausible that our results were heavily influenced by the idiosyncrasies of select individuals, not dominance rank per se. It is a fair point, and it compelled us to include individual ID as a random effect in each of our GLMMs. Including individual ID as a random intercept allowed us to control for inter-individual variation in cleaning duration while assessing the effects of rank. An analysis based on additional social groups or longitudinal data are certainly desirable, but also well beyond the scope of a Short Report for eLife.

      Finally, Reviewer 3 objected to fragments of sentences in our abstract, introduction, and discussion, combining them into a criticism of claims that we did not and do not make. It probably wasn’t intentional, but it puts us in the awkward position of deconstructing a strawman:

      ● Review 3 begins, “there is no evidence presented on the actual fitness-related costs of tooth wear or the benefits of slightly faster food consumption”. This statement is true while insinuating that collecting such evidence was our intent. To be clear, our experiment was never designed to measure tooth wear or reproductive fitness, nor do we make any claims of having done so.

      ● Reviewer 3 adds, “Support for these arguments is provided based on other papers, some of which come from highly resource-limited populations (and different species). But this is a population that is supplemented by tourists with melons, cucumbers, and pineapples!” We were puzzled over these sentences. The first fails to mention that the citations exist in our discussion. Citing relevant work in a discussion is a basic convention of scientific writing. But it seems the underlying intent of these words is to denigrate the value of our study population because two dozen tourists visit Koram Island once a day. Exclamations to the contrary, the amount of tourist-provisioned food in the diet of any one monkey is negligible.

      ● Last, Reviewer 3 commented on matters of style, objecting to “overly strong claims.” We puzzled over this criticism because the claims in question are broader points of introduction or discussion, not results. The root problem appears to be the final sentence of our abstract:

      “Dominant monkeys abstained from washing, balancing the long-term benefits of mitigating tooth wear against immediate energetic requirements, an essential predictor of reproductive fitness.”

      This sentence has three clauses. The first is a statement of results, whereas the second and third are meant to mirror our discussion on the importance of our findings. We combined the concepts into a single concluding sentence for the sake of concision, but we can appreciate how a reader could feel deceived, expecting to see data on tooth wear and fitness. So, our impression is that we are dealing with a simple misunderstanding of our own making, and that this single sentence explains Reviewer 3’s criticism and tone––it cast a long shadow over the substance of our paper. To resolve this problem, we edited the sentence:

      “Dominant monkeys abstained from washing, a choice consistent with the impulses of dominant monkeys elsewhere: to prioritize rapid food intake and greater reproductive fitness over the long-term benefits of prolonging tooth function.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In their manuscript, Gomez-Frittelli and colleagues characterize the expression of cadherin6 (and -8) in colonic IPANs of mice. Moreover, they found that these cdh6-expressing IPANs are capable of initiating colonic motor complexes in the distal colon, but not proximal and midcolon. They support their claim by morphological, electrophysiological, optogenetic, and pharmacological experiments.

      Strengths:

      The work is very impressive and involves several genetic models and state-of-the-art physiological setups including respective controls. It is a very well-written manuscript that truly contributes to our understanding of GI-motility and its anatomical and physiological basis. The authors were able to convincingly answer their research questions with a wide range of methods without overselling their results.

      We greatly appreciate the reviewer’s time, careful reading and support of our study.

      Weaknesses:

      The authors put quite some emphasis on stating that cdh6 is a synaptic protein (in the title and throughout the text), which interacts in a homophilic fashion. They deduct that cdh6 might be involved in IPAN-IPAN synapses (line 247ff.). However, Cdh6 does not only interact in synapses and is expressed by non-neuronal cells as well (see e.g., expression in the proximal tubuli of the kidney). Moreover, cdh6 does not only build homodimers, but also heterodimers with Chd9 as well as Cdh7, -10, and -14 (see e.g., Shimoyama et al. 2000, DOI: 10.1042/02646021:3490159). It would therefore be interesting to assess the expression pattern of cdh6proteins using immunostainings in combination with synaptic markers to substantiate the authors' claim or at least add the possibility of cell-cell-interactions other than synapses to the discussion. Additionally, an immunostaining of cdh6 would confirm if the expression of tdTomato in smooth muscle cells of the cdh6-creERT model is valid or a leaky expression (false positive).

      We agree with the reviewer that Cdh6 could be mediating some other cell-cell interaction besides synapses between IPANs, and we noted it in the discussion. Cdh6 primarily forms homodimers but, as the reviewer points out, has been known to also form heterodimers with some other cadherins. We performed RNAscope in the colonic myenteric plexus with Cdh7 and found no expression (data not shown). Cdh10 is suggested to have very low expression (Drokhlyansky et al., 2020), possibly in putative secretomotor vasodilator neurons, and Cdh14 has not been assayed in any RNAseq screens. We attempted to visualize Cdh6 protein via antibody staining (Duan et al., 2018) but our efforts did not result in sufficient signal or resolution to identify synapses in the ENS, which remain broadly challenging to assay. Similarly, immunostaining with Cdh6 antibody was unable to confirm Cdh6 protein in tdT-expressing muscle cells, or by RNAscope. We have addressed these caveats in the discussion section.

      (1) E. Drokhlyansky, C. S. Smillie, N. V. Wittenberghe, M. Ericsson, G. K. Griffin, G. Eraslan, D. Dionne, M. S. Cuoco, M. N. Goder-Reiser, T. Sharova, O. Kuksenko, A. J. Aguirre, G. M. Boland, D. Graham, O. Rozenblatt-Rosen, R. J. Xavier, A. Regev, The Human and Mouse Enteric Nervous System at Single-Cell Resolution. Cell 182, 1606-1622.e23 (2020).

      (2) X. Duan, A. Krishnaswamy, M. A. Laboulaye, J. Liu, Y.-R. Peng, M. Yamagata, K. Toma, J. R. Sanes, Cadherin Combinations Recruit Dendrites of Distinct Retinal Neurons to a Shared Interneuronal Scaffold. Neuron 99, 1145-1154.e6 (2018).

      Reviewer #2 (Public review):

      Summary:

      Intrinsic primary afferent neurons are an interesting population of enteric neurons that transduce stimuli from the mucosa, initiate reflexive neurocircuitry involved in motor and secretory functions, and modulate gut immune responses. The morphology, neurochemical coding, and electrophysiological properties of these cells have been relatively well described in a long literature dating back to the late 1800's but questions remain regarding their roles in enteric neurocircuitry, potential subsets with unique functions, and contributions to disease. Here, the authors provide RNAscope, immunolabeling, electrophysiological, and organ function data characterizing IPANs in mice and suggest that Cdh6 is an additional marker of these cells.

      Strengths:

      This paper would likely be of interest to a focused enteric neuroscience audience and increase information regarding the properties of IPANs in mice. These data are useful and suggest that prior data from studies of IPANs in other species are likely translatable to mice.

      We appreciate the reviewer’s support of our study and insightful critiques for its improvement.

      Weaknesses:

      The advance presented here beyond what is already known is minimal. Some of the core conclusions are overstated and there are multiple other major issues that limit enthusiasm. Key control experiments are lacking and data do not specifically address the properties of the proposed Cdh6+ population.

      Major weaknesses:

      (1) The novelty of this study is relatively low. The main point of novelty suggests an additional marker of IPANs (Cdh6) that would add to the known list of markers for these cells. How useful this would be is unclear. Other main findings basically confirm that IPANs in mice display the same classical characteristics that have been known for many years from studies in guinea pigs, rats, mice and humans.

      We appreciate the already existing markers for IPANs in the ENS and the existing literature characterizing these neurons. The primary intent of this study was to use these well-established characteristics of IPANs in both mice and other species to characterize Cdh6-expressing neurons in the mouse myenteric plexus and confirm their classification as IPANs.

      (2) Some of the main conclusions of this study are overstated and claims of priority are made that are not true. For example, the authors state in lines 27-28 of the abstract that their findings provide the "first demonstration of selective activation of a single neurochemical and functional class of enteric neurons". This is certainly not true since Gould et al (AJP-GIL 2019) expressed ChR2 in nitrergic enteric neurons and showed that activating those cells disrupted CMC activity. In fact, prior work by the authors themselves (Hibberd et al., Gastro 2018) showed that activating calretinin neurons with ChR2 evoked motor responses. Work by other groups has used chemogenetics and optogenetics to show the effects of activating multiple other classes of neurons in the gut.

      We thank the reviewer for bringing up this important point and apologize if our wording was not clear. Whilst single neurochemical classes of enteric neurons have been manipulated to alter gut functions, all such instances to date do not represent manipulation of a single functional class of enteric neurons. In the given examples, multiple functional classes are activated utilizing the same neurotransmitter, as NOS and calretinin are each expressed to varying degrees across putative motor neurons, interneurons and IPANs. In contrast, Chd6 is restricted to IPANs and therefore this study is the first optogenetic investigation of enteric neurons from a single putative functional class. Our abstract and discussion emphasizes this point and differentiates this study from those previous.

      (3) Critical controls are needed to support the optogenetic experiments. Control experiments are needed to show that ChR2 expression a) does not change the baseline properties of the neurons, b) that stimulation with the chosen intensity of light elicits physiologically relevant responses in those neurons, and c) that stimulation via ChR2 elicits comparable responses in IPANs in the different gut regions focused on here.

      We completely agree controls are essential. However, our paper is not the first to express ChR2 in enteric neurons. Authors of our paper have shown in Hibberd et al. 2018 that expression of ChR2 in a heterogeneous population of myenteric neurons did not change network properties of the myenteric plexus. This was demonstrated in the lack of change in control CMC characteristics in mice expressing ChR2 under basal conditions (without blue light exposure). Regarding question (b), that it should be shown that stimulation with the chosen intensity of light elicits physiologically relevant responses in those neurons. We show the restricted expression of ChR2 in IPANs and that motor responses (to blue light) are blocked by selective nerve conduction blockade.

      Regarding question (c), that our study should demonstrate that stimulation via ChR2 elicits comparable responses in IPANs in the different gut regions. We would not expect each region of the gut to behave comparably. This is because the different gut regions (i.e. proximal, mid, distal) are very different anatomically, as is anatomy of the myenteric plexus and myenteric ganglia between each region, including the density of IPANs within each ganglia, in addition to the presence of different patterns of electrical and mechanical activity [Spencer et al., 2020]. Hence, it is difficult to expect that between regions stimulation of ChR2 should induce similar physiological responses. The motor output we record in our study (CMCs) is a unified motor program that involves the temporal coordination of hundreds of thousands of enteric neurons and a complex neural circuit that we have previously characterized [Spencer et al., 2018]. But, never has any study until now been able to selectively stimulate a single functional class of enteric neurons (with light) to avoid indiscriminate activation of other classes of neurons.

      (1) T. J. Hibberd, J. Feng, J. Luo, P. Yang, V. K. Samineni, R. W. Gereau, N. Kelley, H. Hu, N. J. Spencer, Optogenetic Induction of Colonic Motility in Mice. Gastroenterology 155, 514-528.e6 (2018).

      (2) N. J. Spencer, L. Travis, L. Wiklendt, T. J. Hibberd, M. Costa, P. Dinning, H. Hu, Diversity of neurogenic smooth muscle electrical rhythmicity in mouse proximal colon. American Journal of Physiology-Gastrointestinal and Liver Physiology 318, G244–G253 (2020).

      (3) N. J. Spencer, T. J. Hibberd, L. Travis, L. Wiklendt, M. Costa, H. Hu, S. J. Brookes, D. A. Wattchow, P. G. Dinning, D. J. Keating, J. Sorensen, Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle. The Journal of Neuroscience 38, 5507–5522 (2018).

      (4) The electrophysiological characterization of mouse IPANs is useful but this is a basic characterization of any IPAN and really says nothing specifically about Cdh6+ neurons. The electrophysiological characterization was also only done in a small fraction of colonic IPANs, and it is not clear if these represent cell properties in the distal colon or proximal colon, and whether these properties might be extrapolated to IPANs in the different regions. Similarly, blocking IH with ZD7288 affects all IPANs and does not add specific information regarding the role of the proposed Cdh6+ subtype.

      Our electrophysiological characterization was guided to be within a subset of Cdh6+ neurons by Hb9:GFP expression. As in the prior comment (1) above, we used these experiments to confirm classification of Cdh6+ (Hb9:GFP+) neurons in the distal colon as IPANs. We have clarified in the results and methods that these experiments were performed in the distal colon and agree that we cannot extrapolate that these properties are also representative of IPANs in the proximal colon. We apologize that this was confusing. Finally, we agree with the reviewer that ZD7288 affects all IPANs in the ENS and have clarified this in the text.

      (5) Why SMP IPANs were not included in the analysis of Cdh6 expression is a little puzzling. IPANs are present in the SMP of the small intestine and colon, and it would be useful to know if this proposed marker is also present in these cells.

      We agree with the reviewer. In addition to characterizing Cdh6 in the myenteric plexus, it would be interesting to query if sensory neurons located within the SMP also express Cdh6. Our preliminary data (n=2) show ~6-12% tdT/Hu neurons in Cdh6-tdT ileum and colon (data not shown). We have added a sentence to the discussion.

      (6) The emphasis on IH being a rhythmicity indicator seems a bit premature. There is no evidence to suggest that IH and IT are rhythm-generating currents in the ENS.

      Regarding the statement there is no evidence to suggest that IH and IT are rhythm-generating currents in the ENS. We agree with the reviewer that evidence of rhythm generation by IH and IT in the ENS has not been explicitly confirmed. We are confident the reviewer agrees that an absence of evidence is not evidence of absence, although the presence of IH has been well described in enteric neurons. We have modified the text in the results to indicate more clearly that IH and IT are known to participate in rhythm generation in thalamocortical circuits, though their roles in the ENS remain unknown. Our discussion of the potential role of IH or IT in rhythm generation or oscillatory firing of the ENS is constrained to speculation in the discussion section of the text.

      (7) As the authors point out in the introduction and discuss later on, Type II Cadherins such as Cdh6 bind homophillically to the same cadherin at both pre- and post-synapse. The apparent enrichment of Cdh6 in IPANs would suggest extensive expression in synaptic terminals that would also suggest extensive IPAN-IPAN connections unless other subtypes of neurons express this protein. Such synaptic connections are not typical of IPANs and raise the question of whether or not IPANs actually express the functional protein and if so, what might be its role. Not having this information limits the usefulness of this as a proposed marker.

      We agree with the reviewer that the proposed IPAN-IPAN connection is novel although it has been proposed before (Kunze et al., 1993). As detailed in our response to Reviewer #1, we attempted to confirm Cdh6 protein expression, but were unsuccessful, due to insufficient signal and resolution. We therefore discuss potential IPAN interconnectivity in the discussion, in the context of contrasting literature.

      (1) W. A. A. Kunze, J. B. Furness, J. C. Bornstein, Simultaneous intracellular recordings from enteric neurons reveal that myenteric ah neurons transmit via slow excitatory postsynaptic potentials. Neuroscience 55, 685–694 (1993).

      (8) Experiments shown in Figures 6J and K use a tethered pellet to drive motor responses. By definition, these are not CMCs as stated by the authors.

      The reviewer makes a valid criticism as to the terminology, since tethered pellet experiments do not record propagation. We believe the periodic bouts of propulsive force on the pellet is triggered by the same activity underlying the CMC. In our experience, these activities have similar periodicity, force and identical pharmacological properties. Consistent with this, we also tested full colons (n = 2) set up for typical CMC recordings by multiple force transducers, finding that CMCs were abolished by ZD7288, similar to fixed pellet recordings (data not shown).

      (9) The data from the optogenetic experiments are difficult to understand. How would stimulating IPANs in the distal colon generate retrograde CMCs and stimulating IPANs in the proximal colon do nothing? Additional characterization of the Cdh6+ population of cells is needed to understand the mechanisms underlying these effects.

      We agree that the different optogenetic responses in the proximal and distal colon are challenging to interpret, but perhaps not surprising in the wider context. It is not only possible that the different optogenetic responses in this study reflect regional differences in the Chd6+ neuronal populations, but also differences in neural circuits within these gut regions. A study some time ago by the authors showed that electrical stimulation of the proximal mouse colon was unable to evoke a retrograde (aborally) propagating CMC (Spencer, Bywater, 2002), but stimulation of the distal colon was readily able to. We concluded that at the oral lesion site there is a preferential bias of descending inhibitory nerve projections, since the ascending excitatory pathways have been cut off. In contrast, stimulation of the distal colon was readily able to activate an ascending excitatory neural pathway, and hence induce the complex CMC circuits required to generate an orally propagating CMC. Indeed, other recent studies have added to a growing body of evidence for significant differences in the behaviors and neural circuits of the two regions (Li et al., 2019, Costa et al., 2021a, Costa et al., 2021b, Nestor-Kalinoski et al., 2022). We have expanded this discussion.

      (1) N. J. Spencer, R. A. Bywater, Enteric nerve stimulation evokes a premature colonic migrating motor complex in mouse. Neurogastroenterology & Motility 14, 657–665 (2002).

      (2) Li Z, Hao MM, Van den Haute C, Baekelandt V, Boesmans W, Vanden Berghe P, Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. Elife 8:e42914 (2019).

      (3) Costa M, Keightley LJ, Hibberd TJ, Wiklendt L, Dinning PG, Brookes SJ, Spencer NJ, Motor patterns in the proximal and distal mouse colon which underlie formation and propulsion of feces. Neurogastroenterology & Motility e14098 (2021a).

      (4) Costa M, Keightley LJ, Hibberd TJ, Wiklendt L, Smolilo DJ, Dinning PG, Brookes SJ, Spencer NJ, Characterization of alternating neurogenic motor patterns in mouse colon. Neurogastroenterology & Motility 33:e14047 (2021b).

      (5) Nestor-Kalinoski A, Smith-Edwards KM, Meerschaert K, Margiotta JF, Rajwa B, Davis BM, Howard MJ, Unique Neural Circuit Connectivity of Mouse Proximal, Middle, and Distal Colon Defines Regional Colonic Motor Patterns. Cellular and Molecular Gastroenterology and Hepatology 13:309-337.e303 (2022).

      Recommendations for the Authors:

      Reviewer #1 (Recommendations for the authors):

      As mentioned above, immunolocalization of cdh6 would be helpful to substantiate the claims regarding IPAN-IPAN synapses.

      As mentioned in our response to both reviewers’ public reviews, we attempted to visualize Cdh6 protein via antibody staining (Duan et al., 2018), but our efforts did not result in sufficient signal or resolution to identify Cdh6+ synapses.

      (1) X. Duan, A. Krishnaswamy, M. A. Laboulaye, J. Liu, Y.-R. Peng, M. Yamagata, K. Toma, J. R. Sanes, Cadherin Combinations Recruit Dendrites of Distinct Retinal Neurons to a Shared Interneuronal Scaffold. Neuron 99, 1145-1154.e6 (2018).

      Reviewer #2 (Recommendations for the authors):

      (1) The authors repeatedly refer to IPANs as "sensory" neurons (e.g. in title, abstract, and introduction) but there is some debate regarding whether these cells are truly "sensory" because the information they convey never reaches sensory perception. This is why they have classically been referred to as intrinsic primary afferent (IPAN) neurons. It would be more appropriate to stick with this terminology unless the authors have compelling data showing that information detected by IPANs reaches the sensory cortex.

      We thank the reviewer for their comment, but respectfully disagree. The term “sensory neuron” is well established in the ENS. The first definitive proof that “sensory neurons” exist in the ENS was published in Kunze et al., 1995. We note that this paper did not use the word “IPAN” but used the term “sensory neuron”. Furthermore, mechanosensory neurons were published in Spencer and Smith (2004).

      Regarding the reviewer’s comment that the authors would need compelling data showing that information detected by IPANs reaches the sensory cortex before the term “sensory neuron” should be valid, it is important to note that many sensory neurons do not provide direct information to the cortex.

      (1) W. A. A. Kunze, J. C. Bornstein, J. B. Furness, Identification of sensory nerve cells in a peripheral organ (the intestine) of a mammal. Neuroscience 66, 1–4 (1995).

      (2) N. J. Spencer, T. K. Smith, Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. The Journal of Physiology 558, 577–596 (2004).

      (2) Important information regarding the gut region shown and other details are absent from many figure legends.

      We apologize for this omission. We have updated the figure legends to include information on gut regions.

    1. Author response:

      Thank you for the constructive feedback from the reviewers. We are grateful for their insights and are committed to addressing the key concerns raised in the public reviews through the following revisions:

      (1) Validating Axoneme Stability Claims

      We have procured new antibodies for DRC11, as well as marker proteins for ODA, IDA, and RS. We will conduct quantitative immunofluorescence staining to validate our claims regarding axoneme stability.

      (2) Investigating ANKRD5 Expression in Other Ciliated Cells

      We plan to examine the expression of ANKRD5 in mouse respiratory cilia to determine whether it is also expressed in these cells.

      (3) Supplementing Key Citations for N-DRC Components

      We will add references to published studies on N-DRC components (e.g., DRC1, DRC2, DRC3, DRC5) associated with male infertility in the Introduction to strengthen the background context.

      (4) Further Analysis and Validation of ANKRD5 Interactome

      We will conduct additional analyses and validation of the interactome of ANKRD5 detected by LC-MS.

      (5) Elucidating the Function of ANKRD5 in Mitochondria

      We will further investigate the role of ANKRD5 in mitochondrial function.

      (6) Investigating Mitochondrial Function and Energy Metabolism

      We will further explore the role of ANKRD5 in mitochondrial function and energy metabolism.

      (7) Improving Cryo-ET Data Quality and Interpretation

      We will attempt to further improve the quality of the STA results and try to calculate the DMT structure with a period of 96 nm. We will also use the WT density map with the same period to generate a difference map.

      (8) Expanding Discussion and Correcting Terminology

      The Discussion section will be revised to elaborate on the implications of ANKRD5 for male contraceptive research, particularly in targeting sperm motility. We will also correct terminology inaccuracies (e.g., changing "9+2 microtubule doublet" to "9+2 structure") and address formatting issues (e.g., capitalizing "Control").

      Response to Reviewer #2 Comment 4:

      We appreciate the reviewer's careful consideration of our proteomic data. However, our Gene Set Enrichment Analysis (GSEA) of glycolysis/gluconeogenesis pathways showed no significant enrichment (p-value=0.089, NES=0.708; Fig.6D), which does not meet the statistical thresholds for biological significance (|NES|>1, pvalue<0.05). This observation is further corroborated by our direct ATP measurements showing no difference between genotypes (Fig.6E). We agree that further studies on metabolic regulation could be valuable, but current evidence does not support glycolysis disruption as a primary mechanism for the motility defects observed in Ankrd5-null sperm. This misinterpretation likely arose from the reviewer's overinterpretation of non-significant proteomic trends. We request that this specific claim be excluded from the assessment to avoid misleading readers.

      We will provide a comprehensive point-by-point response, along with detailed experimental data and revised figures, in the resubmitted manuscript. Thank you once again for the opportunity to address the reviewers' concerns. We are confident that these revisions will strengthen our manuscript and contribute to the scientific community.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this study, the authors examined the role of Afadin, a key adaptor protein associated with cell-adhesion molecules, in retinal development. Using a conditional knockout mouse line (Six3-Cre; AfadinF/F), the authors successfully characterized a disorganized pattern of various neuron types in the mutant retinae. Despite these altered distributions, the retinal neurons maintained normal cell numbers and seemingly preserved some synaptic connections. Notably, tracing results indicated mistargeting of retinal ganglion cell (RGC) axon projections to the superior colliculus, and electroretinography (ERG) analyses suggested deficits in visual functions.

      Thank you for the summary and highlights of our study. We appreciate the input from Reviewer 1 and the Editor on this study, with focus on laminar choices, synaptic choices and axonal projections.

      Strengths:

      This compelling study provides solid evidence addressing the important question of how cell-adhesion molecules influence neuronal development. Compared to previous research conducted in other parts of the central nervous system (CNS), the clearly defined lamination of cell types in the retina serves as a unique model for studying the aberrant neuronal localizations caused by Afadin knockout. The data suggest that cell-cell interactions are critical for retinal cellular organization and proper axon pathfinding, while aspects of cell fate determination and synaptogenesis remain less understood. This work has broad implications not only for retinal studies but also for developmental biology and regenerative medicine.

      Weaknesses:

      While the phenotypes observed in the Afadin knockout (cKO) mice are intriguing, I would expect to see evidence confirming that Afadin is indeed knocked out in the retina through immunostaining. Specifically, is Afadin knocked out only in certain retinal regions and not others, as suggested by Figures 4A-B? Are Afadin levels different among distinct neuron types, which could mean that its knockout may have a more pronounced impact on certain cell types, such as rods compared to others?

      The authors suggest that synapses may form between canonical synaptic partners, based on the proximity of their processes (Figure 2). However, more solid evidence is needed to verify these synapses through the use of synaptic marker staining or transsynaptic labeling before drawing further conclusions.

      Although the Afadin cKO mice displayed dramatic phenotypes, additional experiments are necessary to clarify the details of this process. By manipulating Afadin levels in specific cell types or at different developmental time points, we could gain a better understanding of how Afadin regulates accurate retinal lamination and axonal projection.

      Regarding the antibody confirming the Knockout, we tested the commercially available antibody from Sigma but weren’t able to confirm its specificity. There was a homemade antibody from another Japan-based laboratory, but it was not available to share at the moment when the study was conducted. Nonetheless, the original allele was derived for hippocampal and cortical studies by Louis Reichardt’s Lab (UCSF), with verified efficacies of the KO allele.

      Regarding phenotypical penetrance, this may likely come from the mosaicism of the clone and the symmetric cell division, leading to a rosette-like structure. At this moment, we reason that Afadin KO does NOT lead to direct neuronal loss, and the selective rod loss may derive from other issues, but we lack direct evidence to validate this point.

      In regards to the specific neuronal types and synaptic pairs, we acknowledge the limitations of the current Figure 2 in linking the mutant phenotypes to circuit changes. However, the current genetic reagents (Six3Cre) are not compatible with neuron-type specific labeling of synaptic labeling – i.e., cell type-specific Cre and additional Cre-dependent AAV tools might be desired. To do so, we will need to initiate cell-type-specific breeding of transgenic markers such as Hb9GFP for ooDSGCs, or Chat-Cre, VGlut3-Cre for starburst amacrine cells, vG3 amacrine cells, followed by retinal physiology. These experiments take multi-allelic genetic crosses for a very low breeding yield (1/16 or 1/32 Mendelian ratio). These extensive genetic tests are beyond the scope of the current manuscript.

      Reviewer #2 (Public review):

      Summary:

      This study by Lum and colleagues reports on the role of Afadin, a cytosolic adapter protein that organizes multiple cell adhesion molecule families, in the generation and maintenance of complex cellular layers in the mouse retina. They used a conditional deletion approach, removing Afadin in retinal progenitors, and allowing them to analyze broad effects on retinal neuron development.

      The study presents high-quality and extensive characterization of the cellular phenotypes, supporting the main conclusions of the paper. They show that Afadin loss results in significant disorganization of the retinal cellular layers and the neuropil, producing rosettes and displacement of cells away from their resident layers. The major classes of neurons in the inner retina are affected, and some neurons are, remarkably, displaced to the other side of the inner plexiform layer. Nevertheless, they mostly target their synaptic partners, including the RGCs to distant retinorecipient targets in the brain. The main conclusions are as follows. Afadin is necessary for establishing and maintaining the retinal architecture. It is not necessary for the generation of the correct numbers/densities of retinal neuron subtypes. Moreover, Afadin loss preserves associations between known synaptic partners and preserves axonal targeting to retinorecipient layers. The consequences on photoreceptor viability and visual processing are also interesting, underscoring the essential function for maintaining retinal structure and function. Overall, the main conclusions describing the consequences are supported by the results.

      Strengths:

      The study provides new knowledge on the requirement of Afadin in retinal development. The introduction and discussion effectively set up the rationale for this work, and place it in the context of previous studies of Afadin in other regions of the CNS.

      The study presents high-quality and extensive characterizations of the cellular phenotypes resulting from Afadin loss. By analyzing various aspects of retinal organization - from cellular densities to axon targeting to brain - the study narrows down the role of a structure for promoting the establishment of the layers, or maintenance. The data are straightforward and convincing, and the interpretations are bounded by the data shown (though minor weakness re. survival). Another important finding is that the targeting of retinal neuron processes to synaptic partners, including retinorecipient targets in the brain, are intact.

      The study is important as it establishes a focused requirement for Afadin to set up and preserve the overall cellular organizations within the retinal tissue. The demonstration that Afadin is needed for photoreceptor viability and overall visual function enhances impact by establishing its functional importance.

      The manuscript is well well-written and presented. The images are attractive and compelling, and the figures are well organized.

      Thank you for your high praise on the logic, data presentation, and significance of the current manuscript. We appreciate your comments on the novelty and impact of our study using retinal circuits as a model.

      Weaknesses:

      (1) Expanding on the developmental mechanism is beyond the scope of the study, and would not add to the main conclusions. However, the manuscript would be improved by providing more clarity on the developmental emergence of the defects. The study left me questioning whether the rosettes and cell displacements occur during earlier stages of retina development, or are progressive. For instance, do the RGCs migrate and establish within the GCL correctly at first, and then are displaced with the progressive disorganization? Or are they disorganized and delaminate en route? Images of RGC staining at P0, or earlier during their migration, would be informative. Data in Figure 1 is limited to DAPI staining at P7. Figure 4 shows an image of rod photoreceptors at P7, with their displacement in the GCL layer (and not contained within a rosette). Are the progenitors mislocalized due to delamination?  A few additional thoughts on how these defects compare to other mutants with rosettes might give us more context for understanding the results.

      We chose P7 as our focus due to the lamination in controls. In the revised manuscript, we plan to include earlier time points, as suggested by the reviewer. The data in Figure 1 at P7 utilizes well-established cell type markers (RBPMS, Chx10, Ap2α) and is not limited only to DAPI. Additionally, we will revise the discussion section and place our mutant analyses in the context of other mutants with rosettes (beta-catenin, etc.) in the retina. Finally, we will address the comment on progenitor lamination by exploring earlier developmental time points.

      (2) The manuscript reports that the densities of major inner retinal classes are unaffected. There are a few details missing for this point. How were the cell densities quantified (in terms of ROI size), and normalized? This information is lacking in the methods. There is a striking thickening of the GCL in the DAPI-labeled images shown in Figure 1. What are these cells?

      We will revise the manuscript, particularly the methods section, to address these comments. Additionally, we will tackle ROI units and normalization. The cells in the thickened GCL were identified as displaced amacrine cells and bipolar cells.

    1. Author response:

      Reviewer #1:

      Summary:

      The authors address the role of the centromere histone core in force transduction by the kinetochore.

      Strengths:

      They use a hybrid DNA sequence that combines CDEII and CDEIII as well as Widom 601 so they can make stable histones for biophysical studies (provided by the Widom sequence) and maintain features of the centromere (CDE II and III).

      Weaknesses:

      The main results are shown in one figure (Figure 2). Indeed the Centromere core of Widom and CDE II and III contribute to strengthening the binding force for the OA-beads. The data are very nicely done and convincingly demonstrate the point. The weakness is that this is the entire paper. It is certainly of interest to investigators in kinetochore biology, but beyond that, the impact is fairly limited in scope.

      This reviewer might have missed that this is a Research Advance, not an article.  Research Advances are limited in scope by definition and provide a new development that builds on research reported in a prior paper.  They can be of any length.  Our Research Advance builds on our prior work, Hamilton et al., 2020 and provides the new result that native centromere sequences strengthen the attachment of the kinetochore to the nucleosome.

      Reviewer #2:

      Summary:

      This paper provides a valuable addendum to the findings described in Hamilton et al. 2020 (https://doi.org/ 10.7554/eLife.56582). In the earlier paper, the authors reconstituted the budding yeast centromeric nucleosome together with parts of the budding yeast kinetochore and tested which elements are required and sufficient for force transmission from microtubules to the nucleosome. Although budding yeast centromeres are defined by specific DNA sequences, this earlier paper did not use centromeric DNA but instead the generic Widom 601 DNA. The reason is that it has so far been impossible to stably reconstitute a budding yeast centromeric nucleosome using centromeric DNA.

      In this new study, the authors now report that they were able to replace part of the Widom 601 DNA with centromeric DNA from chromosome 3. This makes the assay more closely resemble the in vivo situation. Interestingly, the presence of the centromeric DNA fragment makes one type of minimal kinetochore assembly, but not the other, withstand stronger forces.

      We thank the reviewer for their careful and positive assessment of our work.

      Which kinetochore assembly turned out to be affected was somewhat unexpected, and can currently not be reconciled with structural knowledge of the budding yeast centromere/kinetochore. This highlights that, despite recent advances (e.g. Guan et al., 2021; Dendooven et al., 2023), aspects of budding yeast kinetochore architecture and function remain to be understood and that it will be important to dissect the contributions of the centromeric DNA sequence.

      We couldn’t agree more.

      Given the unexpected result, the study would become yet more informative if the authors were able to pinpoint which interactions contribute to the enhanced force resistance in the presence of centromeric DNA.

      Strength:

      The paper demonstrates that centromeric DNA can increase the attachment strength between budding yeast microtubules and centromeric nucleosomes.

      Weakness:

      How centromeric DNA exerts this effect remains unclear.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife Assessment

      In this work, the authors use a Drosophila adult ventral nerve cord injury model extending and confirming previous observations; this important study reveals key aspects of adult neural plasticity. Taking advantage of several genetic reporter and fate tracing tools, the authors provide solid evidence for different forms of glial plasticity, that are increased upon injury. The data on detected plasticity under physiologic conditions and especially the extent of cell divisions and cell fate changes upon injury would benefit from validation by additional markers. The experimental part would improve if strengthened and accompanied by a more comprehensive integration of results regarding glial reactivity in the adult CNS.

      Thank you very much for your thoughtful comments and constructive feedback regarding our manuscript. We appreciate all the positive remarks on the significance of our findings on neural plasticity in this Drosophila adult ventral nerve cord injury model.

      In response to your suggestion, we fully agree that the continuation of this project should address in detail cell fate changes with additional markers if available, or an “omic” approach such as scRNAseq. Unfortunately, these further experiments are beyond the scope of this paper to describe the in vivo phenomena of cell reprogramming, and the cellular events that take glial cells to convert into neurons or neuronal precursors.

      Additionally, we agree that the experimental part can be further improved by providing a more comprehensive integration of our results with current knowledge on glial reactivity in the adult CNS. We will revise the manuscript accordingly to include a deeper discussion of the broader implications of our findings and their alignment with existing literature.

      Thank you again for your valuable input, which will undoubtedly enhance the quality of our work. We look forward to submitting the revised manuscript for your consideration.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Casas-Tinto et al. present convincing data that injury of the adult Drosophila CNS triggers transdifferentiation of glial cell and even the generation of neurons from glial cells. This observation opens up the possibility to get an handle on the molecular basis of neuronal and glial generation in the vertebrate CNS after traumatic injury caused by Stroke or Crush injury. The authors use an array of sophisticated tools to follow the development of glial cells at the injury site in very young and mature adults. The results in mature adults reveal a remarkable plasticity in the fly CNS and dispels the notion that repair after injury may be only possible in nerve cords which are still developing. The observation of so called VC cells which do not express the glial marker repo could point to the generation of neurons by former glial cells.

      Conclusion:

      The authors present an interesting story which is technically sound and could form the basis for an in depth analysis of the molecular mechanism driving repair after brain injury in Drosophila and vertebrates.

      Strengths:

      The evidence for transdifferentiation of glial cells is convincing. In addition, the injury to the adult CNS shows an inherent plasticity of the mature ventral nerve cord which is unexpected.

      Weaknesses:

      Traumatic brain injury in Drosophila has been previously reported to trigger mitosis of glial cells and generation of neural stem cells in the larval CNS and the adult brain hemispheres. Therefore this report adds to but does not significantly change our current understanding. The origin and identity of VC cells is still unclear. The authors show that VC cells are not GABA- or glutamergic. Yet, there are many other neurotransmitter or neuropetides. It would have been nice to see a staining with another general neuronal marker such as anti-Syt1 to confirm the neuronal identity of Syt1.

      We thank the reviewer for the constructive comments and positive feedback. We concur that previous studies have demonstrated glial cell proliferation in response to CNS injury. In contrast, our study focuses on glial transdifferentiation that emerges as a novel phenomenon, particularly in response to injury. We found that neuropile glia lose their glial identity and express the pan-neuronal marker Elav. To investigate the identity of these newly observed elav-positive cells, we employed anti-ChAT, antiGABA and anti-GluRIIA antibodies to determine the functional identity of these cells, besides we stained them with other neuronal markers such Enabled, Gigas or Dac (not shown); however, our attempts yielded limited success. To address this, we have now included a discussion section exploring the potential identity of these cells, considering the possibility that they may represent immature neurons.

      Reviewer #2 (Public review):

      Summary:

      Casas-Tinto et al., provide new insight into glial plasticity using a crush injury paradigm in the ventral nerve cord (VNC) of adult Drosophila. The authors find that both astrocyte-like glia (ALG) and ensheating glia (EG) divide under homeostatic conditions in the adult VNC and identify ALG as the glial population that specifically ramps up proliferation in response to injury, whereas the number of EGs decreases following the insult. Using lineage-tracing tools, the authors interestingly observe interconversion of glial subtypes, especially of EGs into ALGs, which occurs independent of injury and is dependent on the availability of the transcription factor Prospero in EGs, adding to the plasticity observed in the system. Finally, when tracing the progeny of glia, Casas-Tinto and colleagues detect cells of neuronal identity and provide evidence that such gliaderived neurogenesis is specifically favoured following ventral nerve cord injury, which puts forward a remarkable way in which glia can respond to neuronal damage.

      Strengths:

      This study highlights a new facet of adult nervous system plasticity at the level of the ventral nerve cord, supporting the view that proliferative capacity is maintained in the mature CNS and stimulated upon injury.

      The injury paradigm is well chosen, as the organization of the neuromeres allows specific targeting of one segment, compared to the remaining intact and with the potential to later link observed plasticity to behaviour such as locomotion.

      Numerous experiments have been carried out in 7-day old flies, showing that the observed plasticity is not due to residual developmental remodelling or a still immature VNC.

      By elegantly combining different methods, the authors show glial divisions including with mitotic-dependent tracing and find that the number of generated glia is refined by apoptosis later on.

      The work identifies prospero in glia as an important coordinator of glial cell fate, from development to the adult context, which draws further attention to the upstream regulatory mechanisms.

      We would like to thank the reviewer for his/her comments and the positive analysis of this work.

      Weaknesses:

      The authors observe consistent inter-conversion of EG to ALG glial subtypes that is further stimulated upon injury. The authors conclude that these findings have important consequences for CNS regeneration and potentially for memory and learning. However, it remains somewhat unclear how glial transformation could contribute to regeneration and functional recovery.

      This is an ongoing question in the laboratory and in the field. We know that glial cells contribute to the regenerative program in the nervous system, and molecular signalling in glial cells is determinant for the functional recovery (Losada-Perez et al 2021). Therefore, we include this concept in the discussion as the evidence indicates that glial cells participate in these programs. However, further investigation is required to clarify and determine the mechanisms underlying this glial contribution. To determine if glial to neuron transformation contributes to functional recovery, we would need to compare the recovery of animals with new VC to animals without VC, however, the  molecular mechanism that produces this change of identity is still unknown, and therefore we are not able to generate injured flies with no new VC

      The signal of the Fucci cell cycle reporter seems more complex to interpret based on the panels provided compared to the other methods employed by the authors to assess cell divisions.

      We agree that Fly Fucci is a genetic reporter that might be more complex to interpret than EdU staining or other markers. However, glial cells proliferation is a milestone of this manuscript, and we used different available tools to confirm our results. We have revised this specific section to ensure that the text is clear and straightforward.

      Elav+ cells originating from glia do not express markers for mature neurons at the analysed time-point. If they will eventually differentiate or what type of structure is formed by them will have to be followed up in future studies.

      We fully agree with the reviewer, and we will analyze later days to study neuronal fate and contribution to VNC function.

      Context/Discussion

      There is some lack of connecting or later comparing the observed forms of glial plasticity in the VNC with respect to plasticity described in the fly brain.

      Highlighting some differences in the reactiveness of glia in the VNC compared to the brain could point to relevant differences in repair capacity in different areas of the CNS.

      Based on the assays employed, the study points to a significant amount of glial "identity" changes or interconversions under homeostatic conditions. The potential significance of this rather unexpected "baseline" plasticity in adult tissues is not explicitly pointed out and could improve the understanding of the findings.

      Some speculations if "interconversion" of glia is driven by the needs in the tissue could enrich the discussion.

      We would like to thank the reviewer for these suggestions. We have changed the discussion to introduce these concepts.

      Reviewer #3 (Public review):

      In this manuscript, Casas-Tintó et al. explore the role of glial cell in the response to a neurodegenerative injury in the adult brain. They used Drosophila melanogaster as a

      model organism, and found that glial cells are able to generate new neurons through the mechanism of transdifferentiation in response to injury. This paper provides a new mechanism in regeneration, and gives an understanding to the role of glial cells in the process.

      Comments on revisions:

      In the previous version of the manuscript, I had suggested several recommendations for the authors. Unfortunately, none of these were addressed in the author's revision.

      We are sorry for this error. We apologize but we never received these comments. We have now found them, and we have incorporated these comments in the new version of the manuscript.

      (1) Have you tried screening for other markers for the EdU+ Repo+ Pros- cells?

      We have identified these cells as glial cells (Repo +), and not astrocyte-like glia (pros-). But we have not further characterized  the identity of these cells. Our aim was to identify these proliferating glial cells as NPG (Neuropile glia), which are Astrocyte-Like Glia (ALG), as previous works suggest in larvae (Kato et al., 2020; Losada-Perez et al., 2016), or Ensheathing Glia (EG). To discard the ALG identity, we used prospero as the best marker. The results indicate that there are ALG among the proliferating population, but in addition, we also found pros- glial cells that were EdU positive. These cells are located in the interface between cortex and neuropile, where the neuropile glia position is described. The anti-pros staining indicated they were no ALG which suggest that they are EG.

      There is no specific nuclear marker for EG cells, therefore we used FLY_FUCCI under the control of a EG specific promoter (R56F03-Gal4) to determine if the other dividing cells were EG. These results indicate that EG glia divide although their proliferation does not increase upon injury.

      The R56F03 Gal4 construct is described as ensheathing glia specific by previous publications, including:

      (1) Kremer M. C., Jung C., Batelli S., Rubin G. M. and Gaul U. (2017). The glia of the adult Drosophila nervous system. Glia 65, 606-638. 10.1002/glia.23115

      (2) Qingzhong Ren, Takeshi Awasaki, Yu-Chun Wang, Yu-Fen Huang, Tzumin Lee. Lineage-guided Notch-dependent gliogenesis by Drosophila multi-potent progenitors. Development. 2018 Jun 11;145(11):dev160127. doi: 10.1242/dev.160127   

      To summarize, our results suggest that part of these proliferating glial cells are ALG and EG. Our results can not discard that a residual part of these proliferating cells are not AG nor EG.

      (2) You mentioned that ALG are heterogenous in size and shape, does that mean that you may have different subpopulations of ALG? Would that also mean that only a portion of them responds to injury?

      Yes, as in Astrocytes in vertebrates this population is highly heterogeneous. Currently there are no molecular tools to specifically identify these subpopulations and characterize their distinct roles. However, emerging research suggests that differences in size, shape, and potentially molecular markers could correlate with functional diversity. This implies that certain subpopulations of ALG may be more specialized or primed to respond to injury, while others may play roles in homeostasis or other processes. Understanding this heterogeneity will require advanced techniques such as single-cell RNA sequencing, spatial transcriptomics, or live imaging to unravel how these subpopulations contribute to injury responses and overall tissue dynamics.

      (3) You mentioned that NP-like cells have similar nuclear shape and size to ALG and EG, while Ventral cortex cells have larger nuclei. Can you please show a quantification of the NP-like cells and Ventral cortex cells size, and show a direct comparison with ALG and EG cells to support those claims (images, quantification and analysis)?

      We added a new supplementary figure with a graph showing nuclei size differences between VC and NP-like cells, and a diagram showing VC cell localization. Images in figure 2A-A’ and 2B-B’ show both types of cells with the same scale, additionally, NPG cells are shown in red (current expression of the specific Gal4 line). A direct comparison between EG and NP-like glia can be observed in Figure 3 as well.

      Besides of size and localization, we conclude  that VC and N-like cells present different molecular markers as VC are elav-positive and reponegative whereas NP-like cells are repo-positive elav-negative

      (4) In Figure 2B, the repo expression is not very clear. I suggest using a different example to support the claim that NP cells are Repo+.

      We have changed the color of anti-elav staining to facilitate visualisation

      (5) Again, in Figure 2C, you need quantification and analysis to support the claim that you used nuclear shape and size to identify VC vs. NP like cells.

      Quantification in point 3, criteria in Figure S1

      (6) What is the identity of the newly formed neurons? Other than Elav, have you tried using other markers of neurons that are typically found in this area?

      This question is of great interest and relevance. We have done great efforts to solve this open question and so far, our data suggest that these neurons might be in an immature state. In this last version of the manuscript, we included the results (Figure S1) with several different markers. 

      The molecular identity of these cell populations, glia and neurons, is currently under investigation.

      Minor comments:

      (1) In the abstract, EG and ALG abbreviations are not introduced properly.

      Thank you very much for noticing this missing information, we have now included it in the abstract.

      (2) Please include a representation of the NPG somata location in Figure 1A.

      We have included this information in the figure

      (3) A schematic showing the differences between ALG and EG cells would be helpful as well.

      We have included in the introduction references and reviews where other authors describe in detail the differences.

      (4) In Figure 1 E, G, H- please indicated the genotype of the fly used in the panel as well as the cell type studied.

      The complete genotype is included in the corresponding figure legend. We have added a simplified genotype in the figure for clarity.

      (5) Please show the genotype used for images in Figure 2: ALG or EG specific drivers.

      This information is included in the corresponding figure legend. We believe that it is better to keep the figure clean so we decided to keep the complete genotype, which is considerably long, only in the figure legend.

    1. Author response:

      We appreciate the constructive feedback provided by the reviewers and the editorial board. We are delighted by the positive reception of our work and the thoughtful insights shared.

      Regarding the validation of our predicted interactions, we are currently conducting yeast two-hybrid (Y2H) assays using a commercially available Arabidopsis thaliana cDNA library to screen for interacting partners of the ANK putative effector PBTT_00818 from Plasmodiophora brassicae. Following this initial screening, we will validate positive interactions through targeted 1-to-1 Y2H assays. In particular, we aim to confirm the AlphaFold Multimer-predicted interaction between PBTT_00818 and MPK3, a key immunity-related kinase in Arabidopsis

      We are grateful for the reviewers’ thoughtful suggestions regarding clustering visualization, sequence vs. structure-based motif alignments, and structural confidence assessments. We will carefully incorporate these improvements in our planned revisions.

      Once again, we thank the editors and reviewers for their rigorous and constructive assessment. We look forward to implementing these refinements and submitting an updated version that further enhances the impact of our study.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This important study identifies the "H-state" as a potential conformational marker distinguishing amyloidogenic from non-amyloidogenic light chains, addressing a critical problem in protein misfolding and amyloidosis. By combining advanced techniques such as small-angle X-ray scattering, molecular dynamics simulations, and H-D exchange mass spectrometry, the authors provide convincing evidence for their novel findings. However, incomplete experimental descriptions, limitations in SAXS data interpretation, and the way HDX MS data is presented aHect the strength and generalizability of the conclusions. Strengthening these aspects would enhance the impact of this work for researchers in amyloidosis and protein misfolding.

      We thank eLife editors and reviewers for their constructive feedback. The manuscript has been improved to provide a more complete description of the experiments and to strengthen the interpretation and presentation of all data. Updated Figures (Figure 2 and Figure 5) and a new Table (Table 2) in the main text provide a more complete and clearer comparison of the SAXS data with MD simulations as well as a clearer representation of the HDX MS data. Additional figures have been added in SI. The text has been extended accordingly and complete materials and methods are now included in the main text. Abstract, introduction and discussion have been revised to improve the overall readability of the manuscript.

      Public Reviews:

      Reviewer #1 (Public review):

      The study investigates light chains (LCs) using three distinct approaches, with a focus on identifying a conformational fingerprint to diHerentiate amyloidogenic light chains from multiple myeloma light chains. The study's major contribution is identifying a low-populated "H state," which the authors propose as a unique marker for AL-LCs. While this finding is promising, the review highlights several strengths and weaknesses. Strengths include the valuable contribution of identifying the H state and using multiple approaches, which provide a comprehensive understanding of LC structural dynamics. However, the study suHers from weaknesses, particularly in interpreting SAXS data, lack of clarity in presentation, and methodological inconsistencies. Critical concerns include high error margins between SAXS profiles and MD fits, unclear validation of oligomeric species in SAXS measurements, and insuHicient quantitative cross-validation between experimental (HDX) and computational data (MD). This reviewer calls for major revisions including clearer definitions, improved methodology, and additional validation, to strengthen the conclusions.

      We thank the reviewer for the supportive comments, in the revised version of the manuscript we have focused on improving the clarity and completeness of our work. We are sorry for example to not have made previously clear enough that the comparison of SAXS with MD simulation was not that shown in the main text in Figure 1 and Table 1 (this is the comparison with single structures) but that reported in the SI (previously Figure S1 and Table S2, showing very good fits). These data have been moved in the main text in the reworked Figure 2 and new Table 2.  We have also improved the presentation of the HDX MS data in Figure 5 and in the text adding also additional analysis in SI. Materials and methods are now completely moved in the main text. We generally revised the manuscript for clarity.

      Reviewer #2 (Public review):

      Summary:

      This well-written manuscript addresses an important but recalcitrant problem - the molecular mechanism of protein misfolding in Ig light chain (LC) amyloidosis (AL), a major life-threatening form of systemic human amyloidosis. The authors use expertly recorded and analyzed smallangle X-ray scattering (SAXS) data as a restraint for molecular dynamics simulations (called M&M) and to explore six patient-based LC proteins. The authors report that a highly populated "H-state" determined computationally, wherein the two domains in an LC molecule acquire a straight rather than bent conformation, is what distinguishes AL from non-AL LCs. They then use H-D exchange mass spectrometry to verify this conclusion. If confirmed, this is a novel and interesting finding with potentially important translational implications.

      We thank the reviewer for the supportive comments.

      Strengths:

      Expertly recorded and analyzed SAXS data combined with clever M&M simulations lead to a novel and interesting conclusion. Regardless of whether or not the CL-CL domain interface is destabilized in AL LCs explored in this (Figure 6) and other studies, stabilization of this interface is an excellent idea that may help protect at least a subset of AL LCs from misfolding in amyloid. This idea increases the potential impact of this interesting study.

      We thank the reviewer for the supportive comments.

      Weaknesses:

      The HDX analysis could be strengthened.

      We have extended the analysis and improved the presentation of the HDX data. Figure 5 has been reworked, text has been improved accordingly and additional analysis have been reported in SI.

      Reviewer #3 (Public review):

      Summary:

      This study identifies conformational fingerprints of amyloidogenic light chains, that set them apart from the non-amyloidogenic ones.

      We thank the reviewer for the supportive comments.

      Strengths:

      The research employs a comprehensive combination of structural and dynamic analysis techniques, providing evidence that conformational dynamics at the VL-CL interface and structural expansion are distinguished features of amyloidogenic LCs.

      We thank the reviewer for the supportive comments.

      Weaknesses:

      The sample size is limited, which may aHect the generalizability of the findings. Additionally, the study could benefit from deeper analysis of specific mutations driving this unique conformation to further strengthen therapeutic relevance.

      We agree, we tried to maximise the size of the sample and this was the best we could do. With respect to the analysis of the mutations, while we tried to discuss some of them also in view of previous works, because our set covers multiple germlines instead than focusing on a single one, this limit our ability to discuss single point mutations systematically, at the same time the discussion of single points mutations has been the focus of many recent works, while our approach provide a diNerent point of view.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      This study provides an investigation of light chains (LCs) using three distinct approaches, focusing primarily on identifying a conformational fingerprint to distinguish amyloidogenic light chains (AL-LCs) from multiple myeloma light chains (MM-LCs). The authors propose that the presence of a low-populated "H state," characterized by an extended quaternary structure and a perturbed CL-CL interface, is unique to AL-LCs. This finding is validated through hydrogendeuterium exchange mass spectrometry (HDX-MS). The study makes a valuable contribution to understanding the structural dynamics of light chains, particularly with the identification of the H state in AL-LCs. However, significant concerns regarding the interpretation of the SAXS data, clarity in presentation, and methodological rigor must be addressed. I recommend major revisions and resubmission of the work.

      Major concerns:

      (1) A critical concern is how the authors ensure that the SAXS profiles represent only dimeric species, given the high propensity of LCs to aggregate. If higher-order aggregates or monomers were present, this would significantly impact the SAXS data and SAXS-MD integration. Some measurements are bulk SAXS, while others are SEC-SAXS, making the study questionable. The authors need to clarify how only dimeric species were measured for the SEC-SAXS analysis, and all assessments of the dimeric state should be shown in the SI. Additionally, complementary techniques such as DLS or SEC-MALS should be used to verify the oligomeric state of the samples. Without this validation, the SAXS profiles may not be reliable.

      We added SEC-MALS and SEC-SAXS data in the SI (Figures S20 and S21) as well the SAXS curves shown in log-log plot (Figure S1) that display a flat trend at low q that exclude aggregation. SAXS is very sensitive to oligomers and aggregates and our data do not indicate the presence of those species. When we had indication of possible aggregation in the sample we used SEC-SAXS.

      (2) A major problem with the paper is that the claim of the "H state," which is the novelty of the study and serves as a marker of aggregation, is derived from samples where the error between the SAXS profiles and MD fits is extremely high. This casts doubt on whether the structure is indeed resolved by MD. The main conclusion of the paper is derived from weak consistency between experiment and simulation. In AL55, the error between experiment and simulation is greater than 5; for H7, it is higher than 2.8. The residuals show significant error at mid-q values, suggesting that long-range distance correlations (20-10 Å, CL, VL positioning) are not consistent between simulation and experiment. Furthermore, the FES plots of two independent replicas show deviation in the existence of the H state. One shows a minimum in that region, while the other does not. So, how robust is this conclusion? What is the chi-squared value if each replica is used independently? A separate experimental cross-validation is necessary to claim the existence of the H state.

      We apologise for the misunderstanding underlying this reviewer comment. The poor agreement mentioned is not between the SAXS and MD simulations, but with the individual structures, and this disagreement led us to perform MD simulations that are in much better agreement with the data (previously Fig. S1 and Table S2). To avoid this misunderstanding, which would indeed weaken our work, we have now moved both the figure and the table in the main text to the updated Figure 2 and the new Table 2.

      Regarding the robustness of the sampling, we believe that Table 3 (previously Table 2) clearly shows the statistical convergence of the data, diNerences in the presentation of the free energy are purely interpolation issues. The chi-squares of each replicate are reported in Table 2 (previously Table S2).

      (3) There is insuHicient discussion about SAXS computations from MD trajectories. The accuracy of these calculations is crucial to deriving the existing conclusions, and the study's reliance on the PLUMED plugin, which is known to give inaccurate results for SAXS computations, raises concerns. How the solvent is treated in the SAXS computations needs to be explained. Alternative methods like WAXSiS or Crysol should be explored to check whether the SAXS profiles derived from the MD trajectory are consistent across other SAXS computation methods for the major conformers of the proteins.

      We have now clarified that while the SAXS calculation to perform Metainference MD were done using PLUMED (that to our knowledge is as accurate as crysol) SAXS curves used for analysis were calculated using crysol.

      (4) The HDX and MD results do not seem to correlate well, and there is a disconnect between Figure 2 (SAXS profiles) and Figure 5 (HDX structural interpretation). The authors should quantitatively assess residue-level dynamics by comparing HDX signals with MD-derived HDX signals for each protein. This would provide a cross-validation between the experimental and computational data.

      In our opinion our SAXS, MD and HDX MS data provide a consistent picture. Our HDX-MS do not provide per residue data, making a quantitative comparison out of scope. RMSF data do not necessarily need to correlate with the deuterium uptake.

      (5) MD simulations are only used to refine the structure of AlphaFold predictions, but the trajectories could help explain why these structures diHer, what stabilizes the dimer, or what leads to the conformational transition of the H state. A lack of analysis regarding the physical mechanism behind these structural changes is a weakness of the study. The authors should dedicate more eHort to analyzing their data and provide physical insights into why these changes are observed.

      Our aim was to identify a property that could discriminate between AL and MM LCs. We used MD simulations, not to refine structures, but to explore the conformational dynamics of LCs (starting from either X-ray structures, homology or AlphaFold models), because SAXS data suggested that conformational dynamics could discriminate between AL- and MM-LCs. Simulations allowed us to propose a hypothesis, which we tested by HDX MS. While more insight is always welcome, we believe that we have achieved our goal for now. In the discussion, we present additional analysis of the simulations to connect with previous literature, we agree that more analysis can be done, and also for this reason, all our data are publicly available.

      Minor concerns

      (6) The abstract leans heavily on describing the problem and methods but lacks a clear presentation of key results. Providing a concise summary of the main findings (e.g., the identification of the H state) would better balance the abstract.

      We agree with the reviewer and we rewrote the abstract.

      (7) In the abstract, the term "experimental structure" is used ambiguously. Since SAXS also provides an experimental structure, it is unclear what the authors are referring to. This should be clarified.

      We agree with the reviewer and we rewrote the abstract.

      (8) Abbreviations such as VL (variable domain) and CL (constant domain) are not defined, making it harder for readers unfamiliar with the field to follow. Abbreviations should be defined when first mentioned.

      We agree with the reviewer and we rewrote the abstract.

      (9) The introduction provides a good general context but fails to explicitly define the knowledge gap. Specifically, the structural and dynamic determinants of LC amyloidogenicity are not well established, and this study could be framed as addressing that gap.

      We thank the reviewer and we agree this could be better framed, we improved the introduction accordingly.

      (10) The introduction does not present the novel discovery of the H state early enough. The unique contribution of identifying this state as a marker for AL-LCs should be mentioned upfront to guide the reader through the significance of the study.

      We thank the reviewer and we have now made more explicit what we found.

      (11) The therapeutic implications of this research should be highlighted more clearly in the discussion. Examples of how these findings could be utilized in drug design or therapeutic approaches would enhance the study's impact.

      We thank the reviewer, but while we think that the H-state could be targeted for drug design, since we do not have data yet we do not want to stress this point more than what we are already doing.

      (12) There is an overwhelming use of abbreviations such as H3, H7, H18, M7, and M10 without proper introduction. This makes it diHicult for readers to follow the results, and the average reader may become lost in the details. An introductory figure summarizing the sequences under study, along with a schematic of the dimeric structure defining VL and CL domains, would significantly aid comprehension.

      We agree and we tried to better introduce the systems and simplify the language without adding a figure that we think would be redundant.

      (13) In Figure 1, add labels to each SAXS curve to indicate which protein they correspond to. Also, what does online SEC-SAXS mean?

      Done

      (14) The caption of Figure 3 is unclear, particularly with abbreviations like Lb, Ls, G, and H, which are not mentioned in the captions. The authors should define these terms for clarity.

      Done

      (15) The study claims that the dominant structure of the dimer changes between diHerent LCs. However, Figure 5 shows identical structures for all proteins, raising questions about the consistency between the SAXS and HDX data. This inconsistency is a general problem between the MD and HDX sections, where cross-communication and comparisons are not properly addressed.

      We do not claim that the dominant structure of the dimer changes between diNerent LCs, this would also be in contradiction with current literature. We claim a diNerence in a low-populated state. From this point of view using always the same structure is consistent and should simplify the representation of the results. We agree that the manuscript may be not always easy to follow and we thank the reviewer in helping us improving it.

      (16) The authors show I(q) vs q and residuals for each protein. The Kratky plots are not suHicient to compare the SAXS computations with the measured profile.

      Showing Kratky and residuals is a standard and complementary way to present and compare SAXS data to structures. Chi-square values are also reported. Log-log plots have been added to SI in response to previous comments.

      (17) The authors need to explain how they estimate the Rg values (from simulation or SAXS profiles). If they are using simulations, they should compute the Rg values from the simulations for comparison.

      Rg values reported in Table 1 are derived from SAXS. Rg from simulations have been added in Table 2.

      (18) The evolution of the sampling is unclear. The authors need to show the initial starting conformation in each case and the most likely conformation after M&M in the SI, to demonstrate that their approach indeed caused changes in the initial predictions.

      Our approach is not structure refinement and as such the proposed analysis would be misleading. Metainference is meant to generate a statistical ensemble representing the equilibrium conformations that as whole reproduce the data. DiNerences (or not) between initial and selected configurations will not be particularly informative in this context.

      (19) The authors should also provide a running average of chi-squared values over time to demonstrate that the conformational ensemble converged toward the SAXS profile.

      Our simulations are not driven to improve the agreement with SAXS over time, this is not structure refinement. Metainference is meant to generate a statistical ensemble representing the equilibrium conformations that as whole reproduce the data. The suggested analysis would be a misinterpretation of our simulations. The comparison with SAXS is provided in Figure 2 and Table 2 as mentioned above.

      (20) The aggregate simulation time of 120 microseconds is misleading, as each replica was only run for 2-3 microseconds. This should be clarified.

      The number reported in the text is accurate and represent the aggregated sampling. The number of replicas for each metainference simulation and their length is reported in Table 2 now moved for clarity from the SI to main text.

      (21) It is not clear how the replicas were weighted to compute the SAXS profiles and FES. There are two independent runs in each case, and each run has about 30 replicas. How these replicas are weighted needs to be discussed in the SI.

      Done

      (22) The methods section is unevenly distributed, with detailed explanations of LC production and purification, while other key methodologies like SAXS+MD integration and HDX are not even mentioned in the main text (they are in the Supporting Information). The authors should provide a brief overview of all methodologies in the main text or move everything to the SI for consistency.

      We agree with the reviewer, all methods are now in main text. 

      Reviewer #2 (Recommendations for the authors):

      (1) Computational M&M evidence is strong (Figure 3) and is supported by SAXS (used as restraints). However, Kratky plots reported in the main MS Figure 1 show significant diHerences between the data and the structural model only for one protein, AL-55. It is hard for the general reader to see how these SAXS data support a clear diHerence between AL and non-AL proteins. If possible, please strengthen the evidence; if not, soften the conclusions.

      We thank the reviewer for the comments. The chi-square (Table 1) and the residuals (Figure 1) are a strong indication of the diNerence. To strengthen the evidence, following also the comment from reviewer 3 we calculated the p-value (<10<sup>-5</sup>) on the significance of the radius of gyration to discriminate AL and MM LCs. We agree that SAXS alone was not enough and this is indeed what prompted us to perform MD simulations.

      (2) HDX MS results are cursory and not very convincing as presented. The butterfly plots in Figure 5 are too small to read and are unlabeled so it is unclear which protein is which.  

      Figure 5 has been reworked for readability. More data have been added in SI. 

      (3) What labeling time was selected to construct these plots and why?

      The deuterium uptakes at 30 min HDX time showed the most pronounced diNerences between diNerent proteins, which were chosen to illustrate the key structural features in the main figure panel (Figure 5).

      How diHerent are the results at other labeling times? Showing uptake curves (with errors) for more than just two peptides in the supplement Figure S12 might be helpful. 

      We found a continuous increase in deuterium uptake as we increased the exchange time from 0.5 to 240 min, which reached saturation at 120 min. Therefore, the exchange follows the same pattern at all time points. Butterfly plots at diNerent HDX times of 0.5 to 240 min are shown in gradient of light blue to dark blue which clearly shows the pattern of deuterium uptake at increasing incubation times (Figure 5). The HDX uptake kinetics of selected peptides with corresponding error bars are shown in Figure S12.

      How redundant are the data, i.e. how good is the peptide coverage/resolution in key regions at the domain-domain interface that the authors deem important? Mapping the maximal deuterium uptake on the structures in Figure 5 is not very helpful. Perhaps mapping the whole range of uptake using a gradient color scheme would be more informative.

      Overall coverage and redundancy for all four proteins are> 90% and > 4.0, respectively, with an average error margin in fractional uptake among all peptides is 0.04-0.05 Da, which suggests that our data is reliable (Table S3). We modified the main panel figures showing the gradient of deuterium uptake in blue-white-red for 0 to 30% of deuterium uptake on the chain A of the dimeric LCs.

      (3) Is the conformational heterogeneity depicted in M&M simulations consistent with HDX results? The authors may want to address this by looking at the EX1/EX2 exchange kinetics for AL vs. non-AL proteins. Do AL proteins show more EX1?

      No, we don’t see any EX1 exchange kinetics in our analysis. This is compatible with the prediction of the H-state that is a native like state and not an unfolded/partially folded state. 

      (4) Perhaps the main conclusion could be softened given the small number of proteins (six), esp. since only four (3 AL and 1 non-AL) could be explored by HDX. Are other HDX MS data of AL LCs from the same Lambda6 family (e.g. PMID: 34678302) consistent with the conclusions that a particular domain-domain interface is weakened in AL vs. non-AL LCs?

      We thank the reviewer for this suggestions. A diNerence in HDX MS data is indeed visible between AL and MM proteins for peptide 33-47 in the suggested paper (Figures 4, S5 and S8). The diNerence is reduced by the mutation identified in the paper as driving the aggregation in that specific case. We now mention this in the discussion.

      (5) Please clarify if the H* state is the same for a covalent vs. non-covalent LC dimer.

      We do not know because our data are only for covalent dimers. But, interestingly, the state is very similar to what was observed for a model kappa light-chain in Weber, et al., we have better highlighted this point in the discussion.

      (6) Please try and better explain why a smaller distance between CL domains in H7 protein and a larger distance in other AL proteins both promote protein misfolding.

      We do not have elements to discuss this point in more detail.

      (7) Please comment on the Kratky plots data vs. model agreement (see comments above).

      Done.

      (8) Please find a better way to display, describe, and interpret the HD exchange MS data.

      We have generated new main text (new Figure 5) and SI figures that we think allow the reader to better appreciated our observations. Corresponding results sections have been also improved.

      Minor points:

      (9) Is the population of the H-state with perturbed CL-CL domain interface, which was obtained in M&M simulations, suHicient to be observable by HDX MS?

      While populations alone are not enough to determine what is observable by HDX MS, a 10% population correspond roughly to 6 kJ/mol of ΔG and is compatible with EX2 kinetics. Previous works suggested that HDX-MS data should be sensitive to subpopulations of the order of 10%, (https://doi.org/10.1016/j.bpj.2020.02.005, https://doi.org/10.1021/jacs.2c06148)

      (10) Typically, an excited intermediate in protein unfolding is a monomer, while here it is an LC dimer. Is this unusual?

      This is a good point, we think that intermediates have mostly been studied on monomeric proteins because these are more commonly used as model systems, but we do not feel like discussing this point.

      (11) Low deuterium uptake is consistent with a rigid structure but may also reflect buried structure and/or structure that moves on a time scale greater than the labeling time.

      We agree.

      Reviewer #3 (Recommendations for the authors):

      (1) The p-value (statistical significance) of Rg diHerence should be computed.

      We thank the reviewer for the suggestion, we calculated the p-value that resulted quite significant.

      (2) The significance of mutations (SHM?) at the interface, such as A40G should be compared with previous observations. (Garrofalo et al., 2021).

      We thank the reviewer for the suggestion, a sentence has been added in the discussion.

    2. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This important study identifies the "H-state" as a potential conformational marker distinguishing amyloidogenic from non-amyloidogenic light chains, addressing a critical problem in protein misfolding and amyloidosis. By combining advanced techniques such as small-angle X-ray scattering, molecular dynamics simulations, and H-D exchange mass spectrometry, the authors provide convincing evidence for their novel findings. However, incomplete experimental descriptions, limitations in SAXS data interpretation, and the way HDX MS data is presented aHect the strength and generalizability of the conclusions. Strengthening these aspects would enhance the impact of this work for researchers in amyloidosis and protein misfolding.

      We thank eLife editors and reviewers for their constructive feedback. The manuscript has been improved to provide a more complete description of the experiments and to strengthen the interpretation and presentation of all data. Updated Figures (Figure 2 and Figure 5) and a new Table (Table 2) in the main text provide a more complete and clearer comparison of the SAXS data with MD simulations as well as a clearer representation of the HDX MS data. Additional figures have been added in SI. The text has been extended accordingly and complete materials and methods are now included in the main text. Abstract, introduction and discussion have been revised to improve the overall readability of the manuscript.

      Public Reviews:

      Reviewer #1 (Public review):

      The study investigates light chains (LCs) using three distinct approaches, with a focus on identifying a conformational fingerprint to diHerentiate amyloidogenic light chains from multiple myeloma light chains. The study's major contribution is identifying a low-populated "H state," which the authors propose as a unique marker for AL-LCs. While this finding is promising, the review highlights several strengths and weaknesses. Strengths include the valuable contribution of identifying the H state and using multiple approaches, which provide a comprehensive understanding of LC structural dynamics. However, the study suHers from weaknesses, particularly in interpreting SAXS data, lack of clarity in presentation, and methodological inconsistencies. Critical concerns include high error margins between SAXS profiles and MD fits, unclear validation of oligomeric species in SAXS measurements, and insuHicient quantitative cross-validation between experimental (HDX) and computational data (MD). This reviewer calls for major revisions including clearer definitions, improved methodology, and additional validation, to strengthen the conclusions.

      We thank the reviewer for the supportive comments, in the revised version of the manuscript we have focused on improving the clarity and completeness of our work. We are sorry for example to not have made previously clear enough that the comparison of SAXS with MD simulation was not that shown in the main text in Figure 1 and Table 1 (this is the comparison with single structures) but that reported in the SI (previously Figure S1 and Table S2, showing very good fits). These data have been moved in the main text in the reworked Figure 2 and new Table 2. We have also improved the presentation of the HDX MS data in Figure 5 and in the text adding also additional analysis in SI. Materials and methods are now completely moved in the main text. We generally revised the manuscript for clarity.

      Reviewer #2 (Public review):

      Summary:

      This well-written manuscript addresses an important but recalcitrant problem - the molecular mechanism of protein misfolding in Ig light chain (LC) amyloidosis (AL), a major life-threatening form of systemic human amyloidosis. The authors use expertly recorded and analyzed smallangle X-ray scattering (SAXS) data as a restraint for molecular dynamics simulations (called M&M) and to explore six patient-based LC proteins. The authors report that a highly populated "H-state" determined computationally, wherein the two domains in an LC molecule acquire a straight rather than bent conformation, is what distinguishes AL from non-AL LCs. They then use H-D exchange mass spectrometry to verify this conclusion. If confirmed, this is a novel and interesting finding with potentially important translational implications.

      We thank the reviewer for the supportive comments.

      Strengths:

      Expertly recorded and analyzed SAXS data combined with clever M&M simulations lead to a novel and interesting conclusion. Regardless of whether or not the CL-CL domain interface is destabilized in AL LCs explored in this (Figure 6) and other studies, stabilization of this interface is an excellent idea that may help protect at least a subset of AL LCs from misfolding in amyloid. This idea increases the potential impact of this interesting study.

      We thank the reviewer for the supportive comments.

      Weaknesses:

      The HDX analysis could be strengthened.

      We have extended the analysis and improved the presentation of the HDX data. Figure 5 has been reworked, text has been improved accordingly and additional analysis have been reported in SI.

      Reviewer #3 (Public review):

      Summary:

      This study identifies conformational fingerprints of amyloidogenic light chains, that set them apart from the non-amyloidogenic ones.

      We thank the reviewer for the supportive comments.

      Strengths:

      The research employs a comprehensive combination of structural and dynamic analysis techniques, providing evidence that conformational dynamics at the VL-CL interface and structural expansion are distinguished features of amyloidogenic LCs.

      We thank the reviewer for the supportive comments.

      Weaknesses:

      The sample size is limited, which may aHect the generalizability of the findings. Additionally, the study could benefit from deeper analysis of specific mutations driving this unique conformation to further strengthen therapeutic relevance.

      We agree, we tried to maximise the size of the sample and this was the best we could do. With respect to the analysis of the mutations, while we tried to discuss some of them also in view of previous works, because our set covers multiple germlines instead than focusing on a single one, this limit our ability to discuss single point mutations systematically, at the same time the discussion of single points mutations has been the focus of many recent works, while our approach provide a diNerent point of view.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      This study provides an investigation of light chains (LCs) using three distinct approaches, focusing primarily on identifying a conformational fingerprint to distinguish amyloidogenic light chains (AL-LCs) from multiple myeloma light chains (MM-LCs). The authors propose that the presence of a low-populated "H state," characterized by an extended quaternary structure and a perturbed CL-CL interface, is unique to AL-LCs. This finding is validated through hydrogendeuterium exchange mass spectrometry (HDX-MS). The study makes a valuable contribution to understanding the structural dynamics of light chains, particularly with the identification of the H state in AL-LCs. However, significant concerns regarding the interpretation of the SAXS data, clarity in presentation, and methodological rigor must be addressed. I recommend major revisions and resubmission of the work.

      Major concerns:

      (1) A critical concern is how the authors ensure that the SAXS profiles represent only dimeric species, given the high propensity of LCs to aggregate. If higher-order aggregates or monomers were present, this would significantly impact the SAXS data and SAXS-MD integration. Some measurements are bulk SAXS, while others are SEC-SAXS, making the study questionable. The authors need to clarify how only dimeric species were measured for the SEC-SAXS analysis, and all assessments of the dimeric state should be shown in the SI. Additionally, complementary techniques such as DLS or SEC-MALS should be used to verify the oligomeric state of the samples. Without this validation, the SAXS profiles may not be reliable.

      We added SEC-MALS and SEC-SAXS data in the SI (Figures S20 and S21) as well the SAXS curves shown in log-log plot (Figure S1) that display a flat trend at low q that exclude aggregation. SAXS is very sensitive to oligomers and aggregates and our data do not indicate the presence of those species. When we had indication of possible aggregation in the sample we used SEC-SAXS.

      (2) A major problem with the paper is that the claim of the "H state," which is the novelty of the study and serves as a marker of aggregation, is derived from samples where the error between the SAXS profiles and MD fits is extremely high. This casts doubt on whether the structure is indeed resolved by MD. The main conclusion of the paper is derived from weak consistency between experiment and simulation. In AL55, the error between experiment and simulation is greater than 5; for H7, it is higher than 2.8. The residuals show significant error at mid-q values, suggesting that long-range distance correlations (20-10 Å, CL, VL positioning) are not consistent between simulation and experiment. Furthermore, the FES plots of two independent replicas show deviation in the existence of the H state. One shows a minimum in that region, while the other does not. So, how robust is this conclusion? What is the chi-squared value if each replica is used independently? A separate experimental cross-validation is necessary to claim the existence of the H state.

      We apologise for the misunderstanding underlying this reviewer comment. The poor agreement mentioned is not between the SAXS and MD simulations, but with the individual structures, and this disagreement led us to perform MD simulations that are in much better agreement with the data (previously Fig. S1 and Table S2). To avoid this misunderstanding, which would indeed weaken our work, we have now moved both the figure and the table in the main text to the updated Figure 2 and the new Table 2.

      Regarding the robustness of the sampling, we believe that Table 3 (previously Table 2) clearly shows the statistical convergence of the data, diNerences in the presentation of the free energy are purely interpolation issues. The chi-squares of each replicate are reported in Table 2 (previously Table S2).

      (3) There is insuHicient discussion about SAXS computations from MD trajectories. The accuracy of these calculations is crucial to deriving the existing conclusions, and the study's reliance on the PLUMED plugin, which is known to give inaccurate results for SAXS computations, raises concerns. How the solvent is treated in the SAXS computations needs to be explained. Alternative methods like WAXSiS or Crysol should be explored to check whether the SAXS profiles derived from the MD trajectory are consistent across other SAXS computation methods for the major conformers of the proteins.

      We have now clarified that while the SAXS calculation to perform Metainference MD were done using PLUMED (that to our knowledge is as accurate as crysol) SAXS curves used for analysis were calculated using crysol.

      (4) The HDX and MD results do not seem to correlate well, and there is a disconnect between Figure 2 (SAXS profiles) and Figure 5 (HDX structural interpretation). The authors should quantitatively assess residue-level dynamics by comparing HDX signals with MD-derived HDX signals for each protein. This would provide a cross-validation between the experimental and computational data.

      In our opinion our SAXS, MD and HDX MS data provide a consistent picture. Our HDX-MS do not provide per residue data, making a quantitative comparison out of scope. RMSF data do not necessarily need to correlate with the deuterium uptake.

      (5) MD simulations are only used to refine the structure of AlphaFold predictions, but the trajectories could help explain why these structures diHer, what stabilizes the dimer, or what leads to the conformational transition of the H state. A lack of analysis regarding the physical mechanism behind these structural changes is a weakness of the study. The authors should dedicate more eHort to analyzing their data and provide physical insights into why these changes are observed.

      Our aim was to identify a property that could discriminate between AL and MM LCs. We used MD simulations, not to refine structures, but to explore the conformational dynamics of LCs (starting from either X-ray structures, homology or AlphaFold models), because SAXS data suggested that conformational dynamics could discriminate between AL- and MM-LCs. Simulations allowed us to propose a hypothesis, which we tested by HDX MS. While more insight is always welcome, we believe that we have achieved our goal for now. In the discussion, we present additional analysis of the simulations to connect with previous literature, we agree that more analysis can be done, and also for this reason, all our data are publicly available.

      Minor concerns

      (6) The abstract leans heavily on describing the problem and methods but lacks a clear presentation of key results. Providing a concise summary of the main findings (e.g., the identification of the H state) would better balance the abstract.

      We agree with the reviewer and we rewrote the abstract.

      (7) In the abstract, the term "experimental structure" is used ambiguously. Since SAXS also provides an experimental structure, it is unclear what the authors are referring to. This should be clarified.

      We agree with the reviewer and we rewrote the abstract.

      (8) Abbreviations such as VL (variable domain) and CL (constant domain) are not defined, making it harder for readers unfamiliar with the field to follow. Abbreviations should be defined when first mentioned.

      We agree with the reviewer and we rewrote the abstract.

      (9) The introduction provides a good general context but fails to explicitly define the knowledge gap. Specifically, the structural and dynamic determinants of LC amyloidogenicity are not well established, and this study could be framed as addressing that gap.

      We thank the reviewer and we agree this could be better framed, we improved the introduction accordingly.

      (10) The introduction does not present the novel discovery of the H state early enough. The unique contribution of identifying this state as a marker for AL-LCs should be mentioned upfront to guide the reader through the significance of the study.

      We thank the reviewer and we have now made more explicit what we found.

      (11) The therapeutic implications of this research should be highlighted more clearly in the discussion. Examples of how these findings could be utilized in drug design or therapeutic approaches would enhance the study's impact.

      We thank the reviewer, but while we think that the H-state could be targeted for drug design, since we do not have data yet we do not want to stress this point more than what we are already doing.

      (12) There is an overwhelming use of abbreviations such as H3, H7, H18, M7, and M10 without proper introduction. This makes it diHicult for readers to follow the results, and the average reader may become lost in the details. An introductory figure summarizing the sequences under study, along with a schematic of the dimeric structure defining VL and CL domains, would significantly aid comprehension.

      We agree and we tried to better introduce the systems and simplify the language without adding a figure that we think would be redundant.

      (13) In Figure 1, add labels to each SAXS curve to indicate which protein they correspond to. Also, what does online SEC-SAXS mean?

      Done

      (14) The caption of Figure 3 is unclear, particularly with abbreviations like Lb, Ls, G, and H, which are not mentioned in the captions. The authors should define these terms for clarity.

      Done

      (15) The study claims that the dominant structure of the dimer changes between diHerent LCs. However, Figure 5 shows identical structures for all proteins, raising questions about the consistency between the SAXS and HDX data. This inconsistency is a general problem between the MD and HDX sections, where cross-communication and comparisons are not properly addressed.

      We do not claim that the dominant structure of the dimer changes between diNerent LCs, this would also be in contradiction with current literature. We claim a diNerence in a low-populated state. From this point of view using always the same structure is consistent and should simplify the representation of the results. We agree that the manuscript may be not always easy to follow and we thank the reviewer in helping us improving it.

      (16) The authors show I(q) vs q and residuals for each protein. The Kratky plots are not suHicient to compare the SAXS computations with the measured profile.

      Showing Kratky and residuals is a standard and complementary way to present and compare SAXS data to structures. Chi-square values are also reported. Log-log plots have been added to SI in response to previous comments.

      (17) The authors need to explain how they estimate the Rg values (from simulation or SAXS profiles). If they are using simulations, they should compute the Rg values from the simulations for comparison.

      Rg values reported in Table 1 are derived from SAXS. Rg from simulations have been added in Table 2.

      (18) The evolution of the sampling is unclear. The authors need to show the initial starting conformation in each case and the most likely conformation after M&M in the SI, to demonstrate that their approach indeed caused changes in the initial predictions.

      Our approach is not structure refinement and as such the proposed analysis would be misleading. Metainference is meant to generate a statistical ensemble representing the equilibrium conformations that as whole reproduce the data. DiNerences (or not) between initial and selected configurations will not be particularly informative in this context.

      (19) The authors should also provide a running average of chi-squared values over time to demonstrate that the conformational ensemble converged toward the SAXS profile.

      Our simulations are not driven to improve the agreement with SAXS over time, this is not structure refinement. Metainference is meant to generate a statistical ensemble representing the equilibrium conformations that as whole reproduce the data. The suggested analysis would be a misinterpretation of our simulations. The comparison with SAXS is provided in Figure 2 and Table 2 as mentioned above.

      (20) The aggregate simulation time of 120 microseconds is misleading, as each replica was only run for 2-3 microseconds. This should be clarified.

      The number reported in the text is accurate and represent the aggregated sampling. The number of replicas for each metainference simulation and their length is reported in Table 2 now moved for clarity from the SI to main text.

      (21) It is not clear how the replicas were weighted to compute the SAXS profiles and FES. There are two independent runs in each case, and each run has about 30 replicas. How these replicas are weighted needs to be discussed in the SI.

      Done

      (22) The methods section is unevenly distributed, with detailed explanations of LC production and purification, while other key methodologies like SAXS+MD integration and HDX are not even mentioned in the main text (they are in the Supporting Information). The authors should provide a brief overview of all methodologies in the main text or move everything to the SI for consistency.

      We agree with the reviewer, all methods are now in main text.

      Reviewer #2 (Recommendations for the authors):

      (1) Computational M&M evidence is strong (Figure 3) and is supported by SAXS (used as restraints). However, Kratky plots reported in the main MS Figure 1 show significant diHerences between the data and the structural model only for one protein, AL-55. It is hard for the general reader to see how these SAXS data support a clear diHerence between AL and non-AL proteins. If possible, please strengthen the evidence; if not, soften the conclusions.

      We thank the reviewer for the comments. The chi-square (Table 1) and the residuals (Figure 1) are a strong indication of the diNerence. To strengthen the evidence, following also the comment from reviewer 3 we calculated the p-value (<10<sup>-5</sup>) on the significance of the radius of gyration to discriminate AL and MM LCs. We agree that SAXS alone was not enough and this is indeed what prompted us to perform MD simulations.

      (2) HDX MS results are cursory and not very convincing as presented. The butterfly plots in Figure 5 are too small to read and are unlabeled so it is unclear which protein is which.

      Figure 5 has been reworked for readability. More data have been added in SI.

      (3) What labeling time was selected to construct these plots and why?

      The deuterium uptakes at 30 min HDX time showed the most pronounced diNerences between diNerent proteins, which were chosen to illustrate the key structural features in the main figure panel (Figure 5).

      How diHerent are the results at other labeling times? Showing uptake curves (with errors) for more than just two peptides in the supplement Figure S12 might be helpful.

      We found a continuous increase in deuterium uptake as we increased the exchange time from 0.5 to 240 min, which reached saturation at 120 min. Therefore, the exchange follows the same pattern at all time points. Butterfly plots at diNerent HDX times of 0.5 to 240 min are shown in gradient of light blue to dark blue which clearly shows the pattern of deuterium uptake at increasing incubation times (Figure 5). The HDX uptake kinetics of selected peptides with corresponding error bars are shown in Figure S12.

      How redundant are the data, i.e. how good is the peptide coverage/resolution in key regions at the domain-domain interface that the authors deem important? Mapping the maximal deuterium uptake on the structures in Figure 5 is not very helpful. Perhaps mapping the whole range of uptake using a gradient color scheme would be more informative.

      Overall coverage and redundancy for all four proteins are> 90% and > 4.0, respectively, with an average error margin in fractional uptake among all peptides is 0.04-0.05 Da, which suggests that our data is reliable (Table S3). We modified the main panel figures showing the gradient of deuterium uptake in blue-white-red for 0 to 30% of deuterium uptake on the chain A of the dimeric LCs.

      (3) Is the conformational heterogeneity depicted in M&M simulations consistent with HDX results? The authors may want to address this by looking at the EX1/EX2 exchange kinetics for AL vs. non-AL proteins. Do AL proteins show more EX1?

      No, we don’t see any EX1 exchange kinetics in our analysis. This is compatible with the prediction of the H-state that is a native like state and not an unfolded/partially folded state.

      (4) Perhaps the main conclusion could be softened given the small number of proteins (six), esp. since only four (3 AL and 1 non-AL) could be explored by HDX. Are other HDX MS data of AL LCs from the same Lambda6 family (e.g. PMID: 34678302) consistent with the conclusions that a particular domain-domain interface is weakened in AL vs. non-AL LCs?

      We thank the reviewer for this suggestions. A diNerence in HDX MS data is indeed visible between AL and MM proteins for peptide 33-47 in the suggested paper (Figures 4, S5 and S8). The diNerence is reduced by the mutation identified in the paper as driving the aggregation in that specific case. We now mention this in the discussion.

      (5) Please clarify if the H* state is the same for a covalent vs. non-covalent LC dimer.

      We do not know because our data are only for covalent dimers. But, interestingly, the state is very similar to what was observed for a model kappa light-chain in Weber, et al., we have better highlighted this point in the discussion.

      (6) Please try and better explain why a smaller distance between CL domains in H7 protein and a larger distance in other AL proteins both promote protein misfolding.

      We do not have elements to discuss this point in more detail.

      (7) Please comment on the Kratky plots data vs. model agreement (see comments above).

      Done.

      (8) Please find a better way to display, describe, and interpret the HD exchange MS data.

      We have generated new main text (new Figure 5) and SI figures that we think allow the reader to better appreciated our observations. Corresponding results sections have been also improved.

      Minor points:

      (9) Is the population of the H-state with perturbed CL-CL domain interface, which was obtained in M&M simulations, suHicient to be observable by HDX MS?

      While populations alone are not enough to determine what is observable by HDX MS, a 10% population correspond roughly to 6 kJ/mol of ΔG and is compatible with EX2 kinetics. Previous works suggested that HDX-MS data should be sensitive to subpopulations of the order of 10%, (https://doi.org/10.1016/j.bpj.2020.02.005, https://doi.org/10.1021/jacs.2c06148)

      (10) Typically, an excited intermediate in protein unfolding is a monomer, while here it is an LC dimer. Is this unusual?

      This is a good point, we think that intermediates have mostly been studied on monomeric proteins because these are more commonly used as model systems, but we do not feel like discussing this point.

      (11) Low deuterium uptake is consistent with a rigid structure but may also reflect buried structure and/or structure that moves on a time scale greater than the labeling time.

      We agree.

      Reviewer #3 (Recommendations for the authors):

      (1) The p-value (statistical significance) of Rg diHerence should be computed.

      We thank the reviewer for the suggestion, we calculated the p-value that resulted quite significant.

      (2) The significance of mutations (SHM?) at the interface, such as A40G should be compared with previous observations. (Garrofalo et al., 2021).

      We thank the reviewer for the suggestion, a sentence has been added in the discussion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this article the authors described mouse models presenting with backer muscular dystrophy, they created three transgenic models carrying three representative exon deletions: ex45-48 del., ex45-47 19 del., and ex45-49 del. This article is well written but needs improvement in some points.

      Strengths:

      This article is well written. The evidence supporting the authors' claims is robust, though further implementation is necessary. The experiments conducted align with the current state-of-the-art methodologies.

      Weaknesses:

      This article does not analyze atrophy in the various mouse models. Implementing this point would improve the impact of the work

      We thank the reviewer for their constructive suggestions and comments on this work. Muscle hypertrophy is shown with growth in dystrophin-deficient skeletal muscle in mdx mice; thus, we did not pay attention to the factors associated with muscle atrophy in BMD mice. As the reviewer suggested, the examination of the association between type IIa fiber reduction and muscle atrophy is important, and the result is considered to be helpful in resolving the cause of type IIa fiber reduction in BMD mice.

      In response, we reviewed the following.

      (1) The cross-sectional areas (CSAs) of muscles. We confirmed that the CSAs in BMD and mdx mice were rather high at 3 months, in accordance with muscle hypertrophy, compared with those of WT mice. The data is presented in Fig. 4–figure supplement 1B.

      (2) The mRNA expression levels of Murf1 and atrogin-1. We confirmed that these muscle atrophy inducing factors did not differ among WT, BMD, and mdx mice. The data is presented in Fig. 4–figure supplements 1C and 1D.

      Reviewer #2 (Public review):

      Summary:

      Miyazaki et al. established three distinct BMD mouse models by deleting different exon regions of the dystrophin gene, observed in human BMD. The authors demonstrated that these models exhibit pathophysiological changes, including variations in body weight, muscle force, muscle degeneration, and levels of fibrosis, alongside underlying molecular alterations such as changes in dystrophin and nNOS levels. Notably, these molecular and pathological changes progress at different rates depending on the specific exon deletions in the dystrophin gene. Additionally, the authors conducted extensive fiber typing, revealing a site-specific decline in type IIa fibers in BMD mice, which they suggest may be due to muscle degeneration and reduced capillary formation around these fibers.

      Strengths:

      The manuscript introduces three novel BMD mouse models with different dystrophin exon deletions, each demonstrating varying rates of disease progression similar to the human BMD phenotype. The authors also conducted extensive fiber typing across different muscles and regions within the muscles, effectively highlighting a site-specific decline in type IIa muscle fibers in BMD mice.

      Weaknesses:

      The authors have inadequate experiments to support their hypothesis that the decay of type IIa muscle fibers is likely due to muscle degeneration and reduced capillary formation. Further investigation into capillary density and histopathological changes across different muscle fibers is needed, which could clarify the mechanisms behind these observations.

      We thank the reviewer for these positive comments and the very important suggestion about type IIa fiber reduction and capillary change around muscle fibers in BMD mice. From the results of the cardiotoxin-induced muscle degeneration and regeneration model, type IIa and IIx fibers showed delayed recovery compared with that of type-IIb fibers. However, this delayed recovery of type IIa and IIx could not explain the cause of the selective muscle fiber reduction limited to type IIa fibers in BMD mice. Therefore, we considered vascular dysfunction as the reason for the selective type IIa fiber reduction, and we found morphological capillary changes from a “ring pattern” to a “dot pattern” around type IIa fibers in BMD mice. However, the association between selective type IIa fiber reduction and the capillary change around muscle fibers in BMD mice remains unclear due to the lack of information about capillaries around type IIx and IIb fibers. The reviewer pointed out this insufficient evaluation of capillaries around other muscle fibers (except for type IIa fibers), and this suggestion is very helpful for explaining the association between selective type IIa fiber reduction and vascular dysfunction in BMD mice.

      In response, we reviewed the following.

      (1) The capillary formation around type IIx, IIb, and I fibers, in addition to that around type IIa fibers. We found that capillaries contacting around type IIx, IIb, and I fibers were poor in WT mice compared with that around type IIa fibers, with ‘incomplete ring-patterns’ around type IIx fibers, and ‘dot-patterns’ around type IIb and I fibers in WT mice. Morphological capillary changes around muscle fibers from WT to d45-49 and mdx mice were ‘incomplete dot-pattern’ to ‘dot-pattern’ around type IIx fibers, and ‘dot-pattern’ to ‘dot-pattern’ around type IIb and I fibers. This was in contrast to those around type IIa fibers: remarkable ‘ring-pattern’ to ‘dot-pattern’. These data are presented in Fig. 6B.

      (2) The endothelial area in contact with type IIx, IIb, and I fibers, and additionally that in contact with type IIa fibers. The endothelial area in contact with both type IIa and IIx fibers was less in d45-49 and mdx mice than in WT mice, but the reduction was larger around type IIa fibers than around type IIx fibers, reflecting the difference between the ‘ring-pattern’ around the former and the ‘incomplete ring-pattern’ around the latter in WT mice. These data are presented in Fig. 6C.

      (3) Transversely interconnected branches and capillary loops, using longitudinal muscle sections. We confirmed that there were fewer interconnected capillaries in BMD and mdx mice than in WT mice. These data are presented in Fig. 6E.

      (4) The mRNA expression levels of neuronal nitric oxide synthase (nNOS). We confirmed that nNOS protein expression levels were decreased in BMD and mdx mice in spite of adequate levels of nNOS mRNA expression. The data on nNOS mRNA expression levels is presented in Fig. 3–figure supplement 1C.

      (5) We added a sentence in the Abstract about the potential utility of BMD mice in developing vascular targeted therapies.

      Recommendation for the authors:

      Reviewer #1 (Recommendation for the authors):

      Abstract:

      Abstract: more emphasis should be on the pathological implications of Becker muscular dystrophy (BMD). Furthermore, should be emphasized the findings made in this article and the conclusions. Abbreviations such as DMD and MDX should be written in full and only then with the acronym.

      We appreciate the reviewers’ comments, and we apologize for the confusion over abbreviations. DMD is the gene name encoding dystrophin, and mdx is the strain name of mouse lacking dystrophin.

      In the Abstract and the Figure legends we changed:

      (1) DMD to DMD;

      (2) mdx mice to mdx mice.

      Results:

      Line 95: in this line, authors evaluated serum creatinine kinase (CK) levels at 1, 3, 6 and 12 months in WT mice and mdx mice. Why did you decide to study it? This part should be described in more detail. Serum CK is one of the main markers of muscle necrosis; therefore, I would report this data alongside the description of the muscle histology and necrotic fibers.

      We thank the reviewers for the important remarks. In this study, serum creatine kinase (CK) levels were two-fold to four-fold higher in BMD mice than in WT mice, but its rate of increase was less than that of mdx mice. We consider that the lesser changes in serum CK levels in BMD mice may be due to the smaller area of muscle degeneration because of focal and uneven muscle degeneration compared with that in mdx mice, which showed diffuse muscle degeneration.

      In response, we have moved the description of serum CK levels in the Results, from the section about the establishment of BMD mice to the section about site-specific muscle degeneration in BMD mice.

      In addition, we added a description in the Discussion about the possible association between the lesser changes in serum CK levels in BMD mice and its uneven distribution of muscle degeneration.

      Line 192-202: In these lines, authors observed a decrease in type IIa fibers after 3 months in BMD mice. I suggest evaluating also atrophy through evaluating cross-sectional areas (CSA) and expression of Murf1 and Atrogin1

      We thank the reviewer for the point about the association between type IIa fiber reduction and muscle atrophy. We evaluated the CSAs and the mRNA expression levels of Murf1 and atrogin-1. We confirmed that the CSAs in BMD and mdx mice were rather high at 3 months, in accordance with muscle hypertrophy, compared with those of WT mice, and that Murf1 and atrogin-1 mRNA expression levels did not differ among WT, BMD, and mdx mice. These data are presented in Fig. 4–figure supplements 1B, 1C, and 1D. We added a sentence about the changes in CSA and muscle atrophy inducing factors in the Discussion.

      Methods and material

      Line 342-348: authors have described animals, but not specified sex and number of mice in each group. This part should be improved.

      We apologize for our insufficient information about the sex and number of mice in the Materials and methods.

      We added a sentence specifying the sex, number, and evaluation period of each mouse group in the section on the generation of BMD mice.

      Line 426-433: authors described qPCR. It is necessary that the authors also describe primer sequences.

      We apologize for any lack of information about the primer sequences used in qPCR analysis. Supplemental Table 1 lists the primer sequences.

      We also added a sentence about the information in the primer list in the section on RNA isolation and RT-PCR in the Materials and methods.

      Reviewer #2 (Recommendation for the authors):

      Miyazaki et al. established three distinct BMD mouse models by removing different exon regions of the dystrophin gene. The authors demonstrated that the pathophysiological and molecular changes in these models progress at varying rates. Additionally, they observed a site-specific decline in type IIa fibers in BMD mice, while the proportions of other fiber types, such as type I and type IIx, remained consistent with those in wild-type mice. They proposed that the selective decay of type IIa fibers in BMD mice could be due to two primary factors: 1) muscle degeneration and regeneration, supported by their findings in cardiotoxin-treated mouse models, and 2) reduced capillary formation around type IIa fibers. However, the authors also presented evidence that type IIx fibers exhibited delayed recovery, similar to type IIa fibers, as demonstrated in cardiotoxin-induced regeneration models. Additionally, dot-patterned capillary formations were observed around both type IIa and type IIx fibers. Despite these findings, BMD mice did not show any changes in the proportion of type IIx fibers in inner BMD muscles. The authors should consider adding further analysis to strengthen their hypothesis and to disclose any possible mechanisms that led to these discrepancies.

      If the authors hypothesize that reduced capillary density around type IIa fibers contribute to their site-specific decay in BMD mice, they should consider measuring and statistically analyzing the endothelial area around all fiber types. By plotting and comparing these measurements across different fiber types between wild-type, BMD, and mdx mice, the authors could provide more robust evidence to support their hypothesis. This approach would help clarify whether reduced capillary density is a contributing factor to the site-specific decay of type IIa fibers in BMD mice and the more diffuse, non-specific muscle changes observed in mdx mice.

      The authors reported in the first part of the manuscript that histopathological changes, including muscle degeneration in BMD mice, are predominantly restricted to the inner part of the muscles. In the second part, they noted a decline in type IIa fibers specifically in the inner muscle region. To strengthen the hypothesis that the decay of type IIa fibers in the inner muscle is linked to muscle degeneration, the authors should consider performing histopathological measurements across different fiber types within the inner muscle. Reporting the correlations between these measurements would provide more compelling evidence to support their hypothesis.

      We thank the reviewer for these important suggestions about the association between type IIa fiber reduction and capillary change around muscle fibers in BMD mice. We prepared an additional evaluation about the capillary formation (in Fig. 6B) and endothelial area (in Fig. 6C) around type IIx, IIb, and I fibers. We found that capillaries contacting around type IIx, IIb, and I fibers were poor in WT mice compared with those around type IIa fibers, and showed an ‘incomplete ring-pattern’ around type IIx fibers and a ‘dot-pattern’ around type IIb and I fibers in WT mice, in contrast with type IIa fibers, which showed remarkable ‘ring-pattern’ capillaries. Reflecting this, the changes in endothelial area around type IIx, IIb, and I fibers between WT and BMD mice were less than those around type IIa fibers. These results suggest that type IIa fibers may require numerous capillaries and maintained blood flow compared with type IIx, IIb, and I fibers, and this high requirement for blood flow might be associated with the type IIa fiber-specific decay in BMD mice.

      We added the following.

      (1) Sentences in the Results about the capillary changes around type IIx, IIb, and I fibers in WT, d45-49, and mdx mice.

      (2) Sentences in the Results about the changes in endothelial area around type IIx, IIb, and I fibers in WT, d45-49, and mdx mice.

      (3) Sentences in the Discussion about the association between the type IIa fiber-specific decay in BMD mice and the differences in capillary changes of each muscle fiber from WT to BMD mice.

      We changed a sentence in the Discussion about the delayed recovery of type IIa and IIx fibers after CTX injection, to make it clear that the recovery of type IIx fibers was slower than that of type IIa fibers after CTX injection, and that therefore the type IIa fiber-specific decay in BMD mice might not be explained by this vulnerability and delayed recovery during muscle degeneration and regeneration.

      Minor Issues:

      Line 103: The word "mice" is duplicated and should be corrected.

      We apologize that “mice” was duplicated. We have corrected it.

      Line 120: Revise for clarity: "The proportion of opaque fibers is significantly different between d45-48 mice and WT at 3 months, with an increased tendency observed only in 1-month-old mice."

      We apologize for the confusion about the proportion of opaque fibers. We revised this sentence as follows.

      “Opaque fibers, which are thought to be precursors of necrotic fibers, increased at an earlier age of 1 month in d45–49 mice compared with WT mice; in contrast, the proportion of opaque fibers differs significantly between d45–47 and WT mice at 3 months, with an increased tendency only in 1-month-old mice (Fig. 2C).”

      Line 152: Clarify the statement regarding utrophin levels, as it currently contradicts the Western blot data. The sentence reads: "The increased levels of utrophin are 8-fold higher at 1 month and 30-fold higher at 3 months." This should be verified against the data, as the band densities in the Western blots suggest otherwise.

      We apologize for the confusion about utrophin expression levels. We revised this sentence as follows.

      “By western blot analysis, the utrophin expression levels showed only an increased tendency in all BMD mice at 3 months, whereas there was a significant increase in mdx mice (8-fold at 1 month, and 30-fold at 3 months) compared to WT mice (Figs. 3C and F).”

      Line 235: Correct the sentence to accurately reflect the findings: "BMD mice showed reduced muscle weakness."

      We apologize for our incorrect wording. We have removed the word “reduced” in this sentence.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript by Dr. Shinkai and colleagues is about the posttranslational modification of a highly important protein, MT3, also known as the growth inhibitory factor. Authors postulate that MT3, or generally all MT isoforms, are sulfane sulfur binding proteins. The presence of sulfane sulfur at each Cys residue has, according to the authors, a critical impact on redox protein properties and almost does not affect zinc binding. They show a model in which 20 Cys residues with sulfane sulfur atoms can still bind seven zinc ions in the same clusters as unmodified protein. They also show that recombinant MT3 (but also MT1 and MT2) protein can react with HPE-IAM, an efficient trapping reagent of persulfides/polysulfides. This reaction performed in a new approach (high temperature and high reagent concentration) resulted in the formation of bis-S-HPE-AM product, which was quantitatively analyzed using LC-MS/MS. This analysis indicated that all Cys residues of MT proteins are modified by sulfane sulfur atoms. The authors performed a series of experiments showing that such protein can bind zinc, which dissociates in the reaction with hydrogen peroxide or SNAP. They also show that oxidized MT3 is reduced by thioredoxin. It gives a story about a new redox-dependent switching mechanism of zinc/persulfide cluster involving the formation of cystine tetrasulfide bridge.

      The whole story is hard to follow due to the lack of many essential explanations or full discussion. What needs to be clarified is the conclusion (or its lack) about MT3 modification proven by mass spectrometry. Figure 1B shows the FT-ICR-MALDI-TOF/MS spectrum of recombinant MT3. It clearly shows the presence of unmodified MT3 protein without zinc ions. Ions dissociate in acidic conditions used for MALDI sample preparation. If the protein contained all Cys residues modified, its molecular weight would be significantly higher. Then, they show the MS spectrum (low quality) of oxidized protein (Fig. 1C), in which new signals (besides reduced apo-MT3) are observed. They conclude that new signals come from protein oxidation and modification with one or two sulfur atoms. If the conclusion on Cys residue oxidation is reasonable, how this protein contains sulfur is unclear. What is the origin of the sulfur if apo-MT does not contain it? Oxidized protein was obtained by acidification of the protein, leading to zinc dissociation and subsequent neutralization and air oxidation. Authors should perform a detailed isotope analysis of the isotopic envelope to prove that sulfur is bound to the protein. They say that the +32 mass increase is not due to the appearance of two oxygen donors. They do not provide evidence. This protein is not a sulfane sulfur binding protein, or its minority is modified. Moreover, it is unacceptable to write that during MT3 oxidation are "released nine molecules of H2". How is hydrogen molecule produced? Moreover, zinc is not "released", it dissociates from protein in a chemical process.

      Thank you for your comment. According to your suggestion, we have rewritten the corresponding sentences below, together with addition of new Fig.1D.

      First, the sentence “which corresponded to the mass of zinc-free apo-GIF/MT3 and indicated that zinc was removed during MS analysis.” was changed to “which corresponded to the mass of zinc-free apo-GIF/MT3 and indicated that zinc dissociates from protein in acidic conditions used for MALDI sample preparation.” in the introduction section. Second, we have added the following sentence “However, FT-ICR-MALDI-TOF/MS analysis failed to detect sulfur modifications in GIF/MT-3 (Fig. 1B), suggesting that sulfur modifications in the protein were dissociated during laser desorption/ionization. Therefore, we postulate that the small amount of sulfur detected in oxidized apo-GIF/MT-3 is derived from the effect of laser desorption/ionization rather than any actual modification of the minority component.” in the discussion section. Third, we have added new Fig. 1D and the corresponding citation in the introduction. Fourth, the sentence “An increase in mass of 32 Da can also result from addition of two oxygen atoms, but we attributed it to one sulfur atom for reasons described later.” was changed to “Note that an increase in mass of 32 Da can also result from addition of two oxygen atoms.”.

      Another important point is a new approach to the HPE-IAM application. Zinc-binding MT3 was incubated with 5 mM reagent at 60°C for 36 h. Authors claim that high concentration was required because apoMT3 has stable conformation. Figure 2B shows that product concentration increases with higher temperature, but it is unclear why such a high temperature was used. Figure 1D shows that at 37°C, there is almost no reaction at 5 mM reagent. Changing parameters sounds reasonable only when the reaction is monitored by mass spectrometry. In conclusion, about 20 sulfane sulfur atoms present in MT3 would be clearly visible. Such evidence was not provided. Increased temperature and reagent concentration could cause modification of cysteinyl thiol/thiolates as well, not only persulfides/polysulfides. Therefore, it is highly possible that non-modified MT3 protein could react with HPE-IAM, giving false results. Besides mass spectrometry, which would clearly prove modifications of 20 Cys, authors should use very important control, which could be chemically synthesized beta- or alfa-domain of MT3 reconstituted with zinc (many protocols are present in the literature). Such models are commonly used to test any kind of chemistry of MTs. If a non-modified chemically obtained domain would undergo a reaction with HPE-IAM under such rigorous conditions, then my expectation would be right.

      Thank you for your comments. Although we have already confirmed that no false-positive results were observed using this method in Fig. 5 (previously Fig. 4), we have conducted additional experiments by preparing chemically synthesized α- and β-domains of GIF/MT-3, as well as recombinant α- and β-domains of GIF/MT-3. As shown in the new Fig. S2A, the chemically synthesized α- and β-domains of GIF/MT-3 detected almost no sulfane sulfur (less than 1 molecule per protein), whereas the recombinant α- and β-domains detected several molecules of sulfane sulfur (more than 5 molecules per protein) (Fig. S2A). Therefore, I would like to emphasize here that the cysteine residue itself cannot be the source of the bis-S-HPE-AM product (sulfane sulfur derivative).

      Accordingly, we have added the following sentence in the results section: “Because this assay was performed at relatively high temperatures (60°C), we also examined the sulfane sulfur levels of several mutant proteins using chemically synthesized α- and β-domains of GIF/MT-3 to eliminate false-positive results. As shown in Fig. S2A, sulfane sulfur (less than 1 molecule per protein) was undetectable in chemically synthesized α- and β-domains of GIF/MT-3, whereas several molecules of sulfane sulfur per protein were detected in recombinant α- and β-domains exhibited (Fig. S2B, left panel). These findings indicated that the sulfane sulfur detected in our assay was derived from biological processes executed during the production of GIF/MT-3 protein. We further analyzed mutant proteins with β-Cys-to-Ala and α-Cys-to-Ala substitutions and found that their sulfane sulfur levels were comparable with those of the α- and β-domains of GIF/MT-3, respectively (Fig. S2B, left panel). Additionally, Ser-to-Ala mutation did not affect the sulfane sulfur levels of GIF/MT-3. The zinc content of each mutant protein was also determined under these conditions (Fig. S2B, right panel).”

      - The remaining experiments provided in the manuscript can also be applied for non-modified protein (without sulfane sulfur modification) and do not provide worthwhile evidence. For instance, hydrogen peroxide or SNAP may interact with non-modified MTs. Zinc ions dissociate due to cysteine residue modification, and TCEP may reduce oxidized residue to rescue zinc binding. Again, mass spectrometry would provide nice evidence.

      Thank you for your comment. We understand that such experiments can also be applied to non-modified proteins (without sulfane sulfur modification). However, the experiments shown in Fig. 4 and Fig. 6 were conducted to investigate the role of sulfane sulfur under oxidative stress conditions, rather than to examine sulfur modification in the protein itself. As mentioned previously, it is difficult to detect sulfur modifications directly in the protein using MALDI-TOF/MS (Fig. 1), as sulfur modifications appear to dissociate during the laser desorption/ionization process.

      - The same is thioredoxin (Fig. 7) and its reaction with oxidized MT3. Nonmodified and oxidized MT3 would react as well.

      Thank you for your comment. We understand that such experiments can also be applied to non-modified MT-3 protein. However, to the best of our knowledge, this is the first report demonstrating that apo-MT-3 can serve as a good substrate for the Trx system. In fact, this experiment is not intended to prove that MT-3 is sulfane sulfur-binding protein. Rather, it demonstrates the novel finding that apo-MT3 serves as an excellent substrate for Trx and that the sulfane sulfur (persulfide structure) remains intact throughout the reduction process.

      - If HPE-IAM reacts with Cys residues with unmodified MT3, which is more likely the case under used conditions, the protein product of such reaction will not bind zinc. It could be an explanation of the cyanolysis experiment (Fig. 6).

      Thank you for your comment. As you pointed out, HPE-IAM reacts with cysteine residues in unmodified MT-3, thereby preventing zinc from binding to the protein. However, we did not use HPE-IAM prior to measuring zinc binding. Instead, HPE-IAM was used solely for determining the sulfane sulfur content in the protein, and thus it cannot explain the results of the cyanolysis experiment.

      - Figure 4 shows the reactivity of (pol)sulfides with TCEP and HPE-IAM. What are redox potentials? Do they correlate with the obtained results?

      Thank you for your comment. However, we must apologize as we do not fully understand the rationale behind determining redox potentials in this experiment. We believe the data itself to be very clear and presenting convincing results.

      - Raman spectroscopy experiments would illustrate the presence of sulfane sulfur in MT3 only if all Cys were modified.

      Yes, that is correct. Since approximately 20 sulfane sulfur atoms are detected in the protein with 20 cysteine residues, we believe that nearly all cysteine residues are modified by sulfane sulfur. Therefore, Raman spectroscopy is considered applicable to our current study.

      - The modeling presented in this study is very interesting and confirms the flexibility of metallothioneins. MT domains are known to bind various metal ions of different diameters. They adopt in this way to larger size the ions. The same mechanism could be present from the protein site. The presence of 9 or 11 sulfur atoms in the beta or alfa domain would increase the size of the domains without changing the cluster structure.

      We truly appreciate your positive evaluation of this work.

      - Comment to authors. Apo-MT is not present in the cell. It exists as a partially metallated species. The term "apo-MT" was introduced to explain that MTs are not fully saturated by metals and function as a metal buffer system. Apo-MT comes from old ages when MT was considered to be present only in two forms: apo-form and fully saturated forms.

      Thank you for your insightful comments. We find it reasonable to understand that apo-MT exists as a partially metallated species within the cell.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors reveal that GIF/MT-3 regulates zinc homeostasis depending on the cellular redox status. The manuscript technically sounds, and their data concretely suggest that the recombinant MTs, not only GIF/MT-3 but also canonical MTs such as MT-1 and MT-2, contain sulfane sulfur atoms for the Zn-binding. The scenario proposed by the authors seems to be reasonable to explain the Zn homeostasis by the cellular redox balance.

      Strengths:

      The data presented in the manuscript solidly reveal that recombinant GIF/MT-3 contains sulfane sulfur.

      Weaknesses:

      It is still unclear whether native MTs, in particular, induced MTs in vivo contain sulfane sulfur or not.

      Thank you for pointing out the strengths and weaknesses of this manuscript. Based on your suggestions, we have determined the sulfane sulfur content in the native GIF/MT-3 protein, as explained in our response to "Recommendations for the Authors #2."

      Reviewer #3 (Public Review):

      Summary:

      The authors were trying to show that a novel neuronal metallothionein of poorly defined function, GIF/MT3, is actually heavily persulfidated in both the Zn-bound and apo (metal-free) forms of the molecule as purified from a heterologous or native host. Evidence in support of this conclusion is compelling, with both spectroscopic and mass spectrometry evidence strongly consistent with this general conclusion. The authors would appear to have achieved their aims.

      Strengths:

      The analytical data are compelling in support of the author's primary conclusions are strong. The authors also provide some modeling evidence that strongly supports the contention that MT3 (and other MTs) can readily accommodate sulfane sulfur on each of the 20 cysteines in the Zn-bound structure, with little perturbation of the structure. This is not the case with Cys trisulfides, which suggests that the persulfide-metallated state is clearly positioned at lower energy relative to the immediately adjacent thiolate- or trisulfidated metal coordination complexes.

      Weaknesses:

      The biological significance of the findings is not entirely clear. On the one hand, the analytical data are clearly solid (albeit using a protein derived from a bacterial over-expression experiment), and yes, it's true that sulfane S can protect Cys from overoxidation, but everything shown in the summary figure (Fig. 8D) can be done with Zn release from a thiol by ROS, and subsequent reduction by the Trx/TR system. In addition, it's long been known that Zn itself can protect Cys from oxidation. I view this as a minor weakness that will motivate follow-up studies. Fig. 1 was incomplete in its discussion and only suggests that a few S atoms may be covalently bound to MT3 as isolated. This is in contrast to the sulfate S "release" experiment, which I find quite compelling.

      Impact:

      The impact will be high since the finding is potentially disruptive to the metals in the biology field in general and the MT field for sure. The sulfane sulfur counting experiment (the HPE-IAM electrophile trapping experiment) may well be widely adopted by the field. Those of us in the metals field always knew that this was a possibility, and it will interesting to see the extent to which metal-binding thiolates broadly incorporate sulfate sulfur into their first coordination shells.

      Thank you for pointing out the strengths and weaknesses of this manuscript. As you noted, the explanations and discussions regarding Fig. 1 were missing. To address this, we have added the following sentences to the discission section: “However, FT-ICR-MALDI-TOF/MS analysis failed to detect sulfur modifications in GIF/MT-3 (Fig. 1B), suggesting that sulfur modifications in the protein were dissociated during laser desorption/ionization. Therefore, we postulate that the small amount of sulfur detected in oxidized apo-GIF/MT-3 is derived from the effect of laser desorption/ionization rather than any actual modification of the minority component.”

      Reviewer #1 (Recommendations For The Authors):

      Overall, the topic of the study is interesting, but the provided evidence is insufficient to claim that MT3 is a sulfane sulfur-binding protein. Indeed, some recent studies showed that natural and recombinant MT proteins can be modified, but only one or a few cysteine residues were modified. Authors should follow my suggestion and apply mass spectrometry to all performed reactions and, first of all, to freshly obtained protein. I strongly suggest using chemically synthesized and reconstituted domains to test whether the home-developed approach is appropriate. Moreover, native MS and ICP-MS analysis of MT3 would support their claims.

      Thank you for your insightful comments. Following your suggestions, we have prepared chemically synthesized proteins of the α- and β-domains of GIF/MT-3 and conducted additional experiments, as explained in response comments to “Public Review #1”. Regarding the MS analysis, we have also added a discussion on the difficulty of detecting sulfur modifications in the protein.

      Reviewer #2 (Recommendations For The Authors):

      I have some minor points which should be considered by the authors.

      (1) Table 1: In the simulation by MOE, the authors speculated 7 atoms of metal bound to GIF/MT-3. Although a total of 7 atoms of Zn or Cd are actually bound to MTs as a divalent ion, the number of Cu and Hg bound to MTs as a monovalent ion is scientifically controversial. Several ideas have been proposed in the literature, however, "7 atoms of Cu or Hg" could be inappropriate as far as I know. The authors should simulate again using a more appropriate number of Cu or Hg in MTs.

      Thank you for providing this valuable information. We reviewed several papers by the Stillman group and found that the relative binding constants of Cu4-MT, Cu6-MT, and Cu10-MT were determined after the addition of Cu(I) to apo MT-1A, MT-2, and MT-3 (Melenbacher and Stillman, Metallomics, 2024). However, incorporating these copper numbers into our GIF/MT-3 simulation model proved challenging. Therefore, we decided to omit the score value for copper in Table 1.

      On the other hand, some researchers have reported that mercury binds to MT as a divalent ion, and the formation of Hg<sub>7</sub>MT is possible (not just other forms). Therefore, we decided to continue using the score value for mercury shown in Table 1.

      (2) If possible, native MT samples isolated from an experimental animal should be evaluated for the sulfane sulfur content. Canonical MTs, MT-1 and MT-2, are highly inducible by not only heavy metals but also oxidative stress. Under the oxidative stress condition such as the exposure of hydrogen peroxide, it is questionable whether the induced Zn-MTs contain sulfane sulfur or not.

      According to your suggestion, we evaluated the sulfane sulfur content in native GIF/MT-3 samples isolated from mouse brain cytosol (Fig. 10). The measured amount was 3.3 per protein. This suggests that sulfane sulfur in GIF/MT-3 could be consumed under oxidative conditions, as you anticipated. Another possible explanation for the discrepancy between the native form and recombinant protein is likely related to metal binding in the protein. It is generally understood that both zinc and copper bind to GIF/MT-3 in approximately equal proportions in vivo. When we prepared recombinant copper-binding GIF/MT-3 protein, the sulfane sulfur content in the protein was significantly different (approximately 4.0 per protein) compared to the Zn<sub>7</sub>GIF/MT-3 form. Further studies are needed to clarify the relationship between sulfane sulfur binding and the types of metals in the future.

      (3) The biological significance of sulfane sulfur in MTs is still unclear to me.

      Thank you for your comments. To address this question, we have added the following sentence to the discussion section: “The biological significance of sulfane sulfur in MTs lies in its ability to 1) contribute to metal binding affinity, 2) provide a sensing mechanism against oxidative stress, and 3) aid in the regeneration of the protein.”

      (4) According to the widely accepted nomenclature of MT, "MT3" should be amended to "MT-3".

      According to your suggestion, we have amended from MT3 to MT-3 throughout the manuscript.

      Reviewer #3 (Recommendations For The Authors):

      Most of my comments are editorial in nature, largely focused on what I perceive as overinterpretation or unnecessary speculation.

      The authors state in the abstract that the intersection of sulfane sulfur and Zn enzymes "has been overlooked." This is not actually true - please tone down to "under investigated" or something like this.

      Based on your suggestion, we have replaced the term “has been overlooked” with “has been under investigated” in the abstract.

      Line 228: The discussion of Fig. 6C involved too much speculation. I cannot see a quantitative experiment that supports this.

      Based on your suggestion, we have removed Fig. 6C (currently referred to as Fig. 7C). Additionally, we have revised the sentence from “implying that the sulfane sulfur is an essential zinc ligand in apo-GIF/MT3 and that an asymmetric SSH or SH ligand is insufficient for native zinc binding (Fig. 6C)” to “implying the contribution of sulfane sulfur to zinc binding in GIF/MT-3”.

      Line 247 "persulfide in apo-GIF/MT3 seems.." I think the authors mean that the Zn form of the protein is resistant to Trx or TCEP.

      Thank you for pointing this out. We realized that the term “persulfide in apo-GIF/MT3” might be confusing. Therefore, we have replaced it with “persulfide formation derived from apo-GIF/MT3” in the corresponding sentence.

      Molecular modeling: We need more details- were these structures energy-minimized in any way? Can the authors comment on the plethora of S-S dihedral angles in these structures, and whether they are consistent with expectations of covalent geometry? Please add text to explain or even a table that compiles these data.

      Thank you for your comment. Yes, energy minimization calculations for structural optimization were conducted during homology modeling in MOE. In fact, we have already stated in the Methods section that “Refinement of the model with the lowest generalized Born/volume integral (GBVI) score was achieved through energy minimization of outlier residues in Ramachandran plots generated within MOE.” In this model, covalent geometry, including the S-S dihedral angles, is also taken into consideration.

      What is a thermostability score? Perhaps a bit more discussion here and what relationship this has to an apparent (or macroscopic) metal affinity constant.

      The thermostability score is used to compare the thermal stability between the wild-type and mutant proteins. As shown in Equation (1) in the method section, it is calculated by subtracting the energy of the hypothetical unfolded state from the energy of the folded state. Since obtaining the structure of the unfolded state requires extensive computational effort, MOE employs an empirical formula based on two-dimensional structural features to estimate it. The ΔΔG values represent the difference between ΔGf(WT) and ΔGf(Mut). However, because it is difficult to directly determine ΔGf(Mut) and ΔGf(WT), MOE calculates ΔΔG using the thermodynamic cycle equivalence: ΔΔGs =ΔGsf (WT→Mut) - ΔGsu (WT→Mut), as expressed in Equation (1).

      On the other hand, the affinity score represents the interaction energy between the target ligand and the protein. In this study, we calculated the affinity score by selecting metal atoms as the ligands. The interaction energy (E int) is defined as:

      E int = E complex − E receptor − E ligand

      where each term is as follows:

      E complex : Potential energy of the complex.

      E receptor : Potential energy of the receptor alone.

      E ligand : Potential energy of the ligand alone.

      Each potential energy term includes contributions from bonded interactions such as bond lengths and bond angles. However, since there is no structural difference among E receptor, and E ligand, the bonded energy components cancel out. Consequently, E int is determined as:

      E int = ΔEele +ΔEvdW +ΔE sol

      Here, a negative E int indicates that the complex is more stable, while a positive E int implies that the receptor and ligand are more stable in their dissociated states.

      We have revised the sentence "The affinity score was also calculated using MOE software as the difference between the ΔΔGs values of the protein, free zinc, and metal–protein complex” to "The affinity score was also calculated using MOE software as the difference between the potential energy values of the protein, free zinc, and metal–protein complex” to correct the misdescription.

      Lines 278-280: The authors state that they observe a "marked enhancement of metal binding affinity, and rearrangement of zinc ions." I don't see support for this rather provocative conclusion. This is the expectation of course. I would love to see actual experimental data on this point, direct binding titrations with metals performed before and after the release of the sulfate sulfur atoms.

      Thank you for your comments. Although this statement is based on the 3D modeling simulation, we have also experimentally observed that the diminishment of sulfane sulfur in GIF/MT-3 resulted in a decrease in zinc binding levels, as shown in Fig. 7. However, conducting direct binding titration experiments was difficult for us due to the difficulty in preparing pure GIF/MT-3 protein with or without sulfane sulfur. Therefore, we have revised the sentence "marked enhancement of metal binding affinity, and rearrangement of zinc ions" to simply "enhancement of metal binding affinity" to avoid over-speculation.

      Table I- quantitatively lower stability for the Cu complex- the stoichiometry is clearly wrong in this simulation- please redo this simulation with the right stoichiometry or Cu to MT3- consult a Stillman paper.

      Thank you for providing this valuable information. We reviewed several papers by the Stillman group and found that the relative binding constants of Cu4-MT, Cu6-MT, and Cu10-MT were determined after the addition of Cu(I) to apo MT-1A, MT-2, and MT-3 (Melenbacher and Stillman, Metallomics, 2024). However, incorporating these copper numbers into our GIF/MT-3 simulation model proved challenging. Therefore, we decided to omit the score value for copper in Table 1.

      I like the model for reversible metal release mediated by the thioredoxin system (Fig. 8D)- but you can also do this with thiols- nothing really novel here. Has it been generally established that tetraulfides are better substrates for the Trx/TR system? The data shown in Fig. 7B seems to suggest this, but is this broadly true, from the literature?

      There are reports describing that persulfides and polysulfides are reduced by the thioredoxin system. However, it is not well-established that tetraulfides are better substrates for the Trx/TR system. To the best of our knowledge, this is the first report demonstrating that apo-MT-3 can serve as a good substrate for the Trx/TR system. Further research is required to compare the catalytic efficiency between proteins containing disulfide and those with tetraulfide moieties.

      Line 380: Many groups have reported that many proteins are per- or polysulfidated in a whole host of cells using mass spectrometry workflows, and that terminal persulfides can be readily reduced by general or specific Trx/TR systems. This work could be better acknowledged in the context of the authors' demonstration of the reduction of the tetrasulfides, which itself would appear to be novel (and exciting!).

      We truly appreciate your positive evaluation of this work.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This manuscript uses the eye lens as a model to investigate basic mechanisms in the Fgf signaling pathway. Understanding Fgf signaling is of broad importance to biologists as it is involved in the regulation of various developmental processes in different tissues/organs and is often misregulated in disease states. The Fgf pathway has been studied in embryonic lens development, namely with regards to its involvement in controlling events such as tissue invagination, vesicle formation, epithelium proliferation, and cellular differentiation, thus making the lens a good system to uncover the mechanistic basis of how the modulation of this pathway drives specific outcomes. Previous work has suggested that proteins, other than the ones currently known (e.g., the adaptor protein Frs2), are likely involved in Fgfr signaling. The present study focuses on the role of Shp2 and Shc1 proteins in the recruitment of Grb2 in the events downstream of Fgfr activation.

      Strengths:

      The findings reveal that the juxtamembrane region of the Fgf receptor is necessary for proper control of downstream events such as facilitating key changes in transcription and cytoskeleton during tissue morphogenesis. The authors conditionally deleted all four Fgfrs in the mouse lens that resulted in molecular and morphological lens defects, most importantly, preventing the upregulation of the lens induction markers Sox2 and Foxe3 and the apical localization of F-actin, thus demonstrating the importance of Fgfrs in early lens development, i.e. during lens induction. They also examined the impact of deleting Fgfr1 and 2, on the following stage, i.e. lens vesicle development, which could be rescued by expressing constitutively active KrasG12D. By using specific mutations (e.g. Fgfr1ΔFrs lacking the Frs2 binding domain and Fgfr2LR harboring mutations that prevent binding of Frs2), it is demonstrated that the Frs2 binding site on Fgfr is necessary for specific events such as morphogenesis of lens vesicle. Further, by studying Shp2 mutations and deletions, the authors present a case for Shp2 protein to function in a context-specific manner in the role of an adaptor protein and a phosphatase enzyme. Finally, the key surprising finding from this study is that downstream of Fgfr signaling, Shc1 is an important alternative pathway - in addition to Shp2 - involved in the recruitment of Grb2 and in the subsequent activation of Ras. The methodologies, namely, mouse genetics and state-of-the-art cell/molecular/biochemical assays are appropriately used to collect the data, which are soundly interpreted to reach these important conclusions. Overall, these findings reveal the flexibility of the Fgf signaling pathway and its downstream mediators in regulating cellular events. This work is expected to be of broad interest to molecular and developmental biologists.

      Weaknesses:

      A weakness that needs to be discussed is that Le-Cre depends on Pax6 activation, and hence its use in specific gene deletion will not allow evaluation of the requirement of Fgfrs in the expression of Pax6 itself. But since this is the earliest Cre available for deletion in the lens, mentioning this in the discussion would make the readers aware of this issue. Referring to Jag1 among "lens-specific markers" (page 5) is debatable, suggesting changing to the lines of "the expected upregulation of Jag1 in lens vesicle". The Abstract could be modified to clearly convey the existing knowledge gap and the key findings of the present study. As it stands now, it is a bit all over the place. Some typos in the manuscript need to be fixed, e.g. "...yet its molecular mechanism remains largely resolved" - unresolved? "...in the development lens" - in the developing lens? In Figure 4 legend, "(B) Grb2 mutants Grb2 mutants displayed...", etc.

      We thank the reviewer for the thoughtful and constructive feedback. We have added the caveat regarding the Le-Cre dependency on Pax6 expression to the discussion, removed the reference to Jag1 as a “lens-specific marker” and corrected the typographical errors noted by the reviewer.

      Reviewer #2 (Public review):

      Summary:

      I have reviewed a manuscript submitted by Wang et al., which is entitled "Shc1 cooperates with Frs2 and Shp2 to recruit Grb2 in FGF-induced lens development". In this paper, the authors first examined lens phenotypes in mice with Le-Cre-mediated knockdown (KD) of all four FGFR (FGFR1-4), and found that pERK signals, Jag1, and foxe3 expression are absent or drastically reduced, indicating that FGF signaling is essential for lens induction. Next, the authors examined lens phenotypes of FGFR1/2-KD mice and found that lens fiber differentiation is compromised and that proliferative activity and cell survival are also compromised in lens epithelium. Interestingly, Kras activation rescues defects in lens growth and lens fiber differentiation in FGFR1/2-KD mice, indicating that Ras activation is a key step for lens development. Next, the authors examined the role of Frs2, Shp2, and Grb2 in FGF signaling for lens development. They confirmed that lens fiber differentiation is compromised in FGFR1/3-KD mice combined with Frs2-dysfunctional FGFR2 mutants, which is similar to lens phenotypes of Grb2-KD mice. However, lens defects are milder in mice with Shp2YF/YF and Shp2CS mutant alleles, indicating that the involvement of Shp2 is limited for the Grb2 recruitment for lens fiber differentiation. Lastly, the authors showed new evidence on the possibility that another adapter protein, Shc1, promotes Grb2 recruitment independent of Frs2/Shp2-mediated Grb2 recruitment.

      Strengths:

      Overall, the manuscript provides valuable data on how FGFR activation leads to Ras activation through the adapter platform of Frs2/Shp2/Grb2, which advances our understanding of complex modification of the FGF signaling pathway. The authors applied a genetic approach using mice, whose methods and results are valid to support the conclusion. The discussion also well summarizes the significance of their findings.

      Weaknesses:

      The authors eventually found that the new adaptor protein Shc1 is involved in Grb2 recruitments in response to FGF receptor activation. however, the main data for Shc1 are histological sections and statistical evaluation of lens size. So, my major concern is that the authors need to provide more detailed data to support the involvement of Shc1 in Grb2 recruitment of FGF signaling for lens development.

      We thank the reviewer for the positive comments and valuable suggestions. We have addressed the concerns in detail in the response to the recommendation outlined below.

      Reviewer #3 (Public review):

      Summary:

      The manuscript entitled "Shc1 cooperates with Frs2 and Shp2 to recruit Grb2 in FGF-induced lens development" by Wang et al., investigates the molecular mechanism used by FGFR signaling to support lens development. The lens has long been known to depend on FGFR signaling for proper development. Previous investigations have demonstrated that FGFR signaling is required for embryonic lens cell survival and for lens fiber cell differentiation. The requirement of FGFR signaling for lens induction has remained more controversial as deletion of both Fgfr1 and Fgfr2 during lens placode formation does not prevent the induction of definitive lens markers such as FOXE3 or αA-crystallin. Here the authors have used the Le-Cre driver to delete all four FGFR genes from the developing lens placode demonstrating a definitive failure of lens induction in the absence of FGFR signaling. The authors focused on FGFR1 and FGFR2, the two primary FGFRs present during early lens development, and demonstrated that lens development could be significantly rescued in lenses lacking both FGFR1 and FGFR2 by expressing a constitutively active allele of KRAS. They also showed that the removal of pro-apoptotic genes Bax and Bak could also lead to a substantial rescue of lens development in lenses lacking both FGFR1 and FGFR2. In both cases, the lens rescue included both increased lens size and the expression of genes characteristic of lens cells.

      Significantly the authors concentrated on the juxtamembrane domain, a portion of the FGFRs associated with FRS2. Previous investigations have demonstrated the importance of FRS2 activation for mediating a sustained level of ERK activation. FRS2 is known to associate both with GRB2 and SHP2 to activate RAS. The authors utilized a mutant allele of Fgfr1, lacking the entire juxtamembrane domain (Fgfr1ΔFrs), and an allele of Fgfr2 containing two-point mutations essential for Frs2 binding (Fgfr2LR). When combining three floxed alleles and leaving only one functional allele (Fgfr1ΔFrs or Fgfr2LR) the authors got strikingly different phenotypes. When only the Fgfr1ΔFrs allele was retained, the lens phenotype matched that of deleting both Fgfr1 and Fgfr2. However, when only the Fgfr2LR allele was retained the phenotype was significantly milder, primarily affecting lens fiber cell differentiation, suggesting that something other than FRS2 might be interacting with the juxtamembrane domain to support FGFR signaling in the lens. The authors also deleted Grb2 in the lens and showed that the phenotype was similar to that of the lenses only retaining the Fgfr2LR allele, resulting in a failure of lens fiber cell differentiation and decreased lens cell survival. However, mutating the major tyrosine phosphorylation site of GRB2 did not affect lens development. The author additionally investigated the role of SHP2 lens development by making by either deleting SHP2 or by making mutations in the SHP2 catalytic domain. The deletion of the SHP2 phosphatase activity did not affect lens development as severely as the total loss of SHP2 protein, suggesting a function for SHP2 outside of its catalytic activity. Although the loss of Shc1 alone has only a slight effect on lens size and pERK activation in the lens, the authors showed that the loss of Shc1 exacerbated the lens phenotype in lenses lacking both Frs2 and Shp2. The authors suggest that SHC1 binds to the FGFR juxtamembrane domain allowing for the recruitment of GRB2 independently of FRS2.

      Strengths:

      (1) The authors used a variety of genetic tools to carefully dissect the essential signals downstream of FGFR signaling during lens development.

      (2) The authors made a convincing case that something other than FRS2 binding mediates FGFR signaling in the juxtamembrane domain.

      (3) The authors demonstrated that despite the requirement of both the adaptor function and phosphatase activity of SHP2 are required for embryonic survival, neither of these activities is absolutely required for lens development.

      (4) The authors provide more information as to why FGFR loss has a phenotype much more severe than the loss of FRS2 alone during lens development.

      (5) The authors followed up their work analyzing various signaling molecules in the context of lens development with biochemical analyses of FGF-induced phosphorylation in murine embryonic fibroblasts (MEFs).

      (6) In general, this manuscript represents a Herculean effort to dissect FGFR signaling in vivo with biochemical backing with cell culture experiments in vitro.

      We thank the reviewer for the thorough review of our paper and positive comments.

      Weaknesses:

      (1) The authors demonstrate that the loss of FGFR1 and FGFR2 can be compensated by a constitutive active KRAS allele in the lens and suggest that FGFRs largely support lens development only by driving ERK activation. However, the authors also saw that lens development was substantially rescued by preventing apoptosis through the deletion of BAK and BAX. To my knowledge, the deletion of BAK and BAX should not independently activate ERK. The authors do not show whether ERK activation is restored in the BAK/BAX deficient lenses. Do the authors suggest the FGFR3 and/or FGFR4 provide sufficient RAS and ERK activation for lens development when apoptosis is suppressed? Alternatively, is it the survival function of FGFR-signaling as much as a direct effect on lens differentiation?

      Our interpretation is that at the lens induction stage, where FGFR1 and FGFR2 are crucial, their primary function operates through Ras signaling to promote cell survival. Thus, either constitutively active KRAS or the direct suppression of apoptosis by deleting Bak and Bax is sufficient to rescue lens induction. This rescue enables the subsequent differentiation of lens progenitor cells, a process for which FGFR3 and FGFR4 are sufficient to support.

      (2) The authors make the argument that deleting all four FGFRs prevented lens induction but that the deletion of only FGFR1 and FGFR2 did not. Part of this argument is the retention of FOXE3 expression, αA-crystallin expression, and PROX1 expression in the FGFR1/2 double mutants. However, in Figure 1E, and Figure 1F, the staining of the double mutant lens tissue with FOXE3, αA-crystallin, and PROX1 is unconvincing. However, the retention of FOXE3 expression in the FGFR1/FGFR2 double mutants was previously demonstrated in Garcia et al 2011. Also, there needs to be an enlargement or inset to demonstrate the retention of pSMAD in the quadruple FGFR mutants in Figure 1D.

      We have updated Figure 1E with a clearer image of FOXE3 staining to better illustrate FOXE3 expression in the FGFR1/2 double mutants. It seems there may have been a misunderstanding regarding our claims about αA-crystallin and PROX1. To clarify, our observation is that both αA-crystallin and PROX1 are lost in the FGFR1/2 double mutants, which we believe is clearly demonstrated in Figure 1F. Additionally, we have added inserts to Figure 1D to highlight the retention of pSMAD.

      (3) Do the authors suggest that GRB2 is required for RAS activation and ultimately ERK activation? If so, do the authors suggest that ERK activation is not required for FGFR-signaling to mediate lens induction? This would follow considering that the GRB2 deficient lenses lack a problem with lens induction.

      We do believe that GRB2 is required for RAS-ERK signaling activation; however, ERK activation is not absolutely required for lens induction. This conclusion is consistent with our previous study, which showed that deletion of ERK1/2 did not prevent lens induction (Garg et al. eLife 2020;9:e51915), as well as with our current findings demonstrating that the GRB2-deficient mutant is still capable of supporting lens induction.

      (4) The increase in p-Shc is only slightly higher in the Cre FGFR1f/f FGFR2r/LR than in the FGFR1f/Δfrs FGFR2f/f. Can the authors provide quantification?

      pShc quantification is now provided in Fig. 7B.

      (5) The authors have not shown directly that Shc1 binds to the juxtamembrane region of either Fgfr1 or Fgfr2.

      It is not yet clear whether Shc1 directly binds to the juxtamembrane region of FGFR1 or FGFR2, as it may also be recruited indirectly. We acknowledge this as an important question that warrants further investigation in future studies.

      (6) The authors have used the Le-Cre strain for all of their lens deletion experiments. Previous work has documented that the Le-Cre transgene can cause lens defects independent of any floxed alleles in both homozygous and hemizygous states on some genetic backgrounds (Dora et al., 2014 PLoS One 9:e109193 and Lam et al., Human Genomics 2019 13(1):10. Are the controls used in these experiments Le-Cre hemizygotes?

      As stated in the Method section, Le-Cre only or Le-Cre and heterozygous flox mice were used as controls.  

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Weaknesses

      There are only a few minor weaknesses that need to be addressed.

      (1) The point could be made in the Discussion that since Le-Cre depends on Pax6 placodal expression, it is challenging to evaluate the impact of deletion of the four Fgfrs on the expression of Pax6 (since Pax6 needs to be activated prior to achieving Fgfr deletion). A different Cre line (e.g. a Cre which is expressed in the surface ectoderm prior to lens placode formation) could help partially address this question, although it may not be able to comment on the requirement of the Fgfrs specifically in the lens ectoderm. Thus, it will be prudent to mention this in the discussion.

      We have added the caveat regarding the Le-Cre dependency on Pax6 expression to the discussion.

      (2) Referring to Jag1 among "lens-specific markers" (page 5) is debatable, I suggest changing it along the lines of "the expected upregulation of Jag1 in lens vesicle".

      The wording has been changed as suggested.  

      (3) The Abstract could be modified to clearly convey the existing knowledge gap and the key findings of the present study. As it stands now, it is a bit all over the place.

      The abstract has been revised.  

      (4) Some typos in the manuscript need to be fixed.

      e.g. "...yet its molecular mechanism remains largely resolved" - unresolved?, "...in the development lens" - in the developing lens?, In Fig. 4 legend, "(B) Grb2 mutants Grb2 mutants displayed...", etc.

      These typos have been corrected.

      Reviewer #2 (Recommendations for the authors):

      My specific suggestions are shown below.

      (1) The authors need to describe the role of Shc1 in FGF signaling and vertebrate lens development, by citing previous publications in the introduction.

      We have detailed previous studies on the role of Shc in FGF signaling in the Introduction and discussed its function in the vertebrate lens in the Discussion section.

      (2) Figure 1B bottom panels: Inset images seem to be missing, although frames and arrowheads are there. Please check them.

      The inset images were correctly placed.

      (3) Results (page 5, line 13): The authors mentioned "Sox2 expression remained at basal levels". Since Figure 1B indicates that Sox2 expression fails to be upregulated in FGFR1/2 mutant lens placode in contrast to Pax6, it is better to clearly mention the failure in upregulation of Sox2 expression in the FGFR1/2 mutants.

      This sentence has been rewritten as suggested.  

      (4) Results (page 6, line 8): The authors mentioned "we observed .... expression of Foxe3 in ...mutant lens cells (Figure 1E, arrows). However, Foxe3-expressing lens cells are a very small population in Figure 1E. It is important to state the decreased number of Foxe3-expressing lens cells in FGFR1/2 mutants. In addition, I would like to request the authors to show histograms indicating sample size and statistical analysis for marker expression: Foxe3 (Figure 1E), Prox1 and aA-crystallin (Fig. 1F), cyclin D1 and TUNEL (Fig. 1G) and pmTOR and pS6 (Supplementary figure 1B).

      We added a statement indicating that the number of Foxe3-expressing cells is reduced in FGFR1/2 mutants, which is now quantified in Fig. 1H. Quantifications for Cyclin D1 and TUNEL are now shown in Fig. 1I and J, respectively. However, we chose not to quantify Prox1, αA-crystallin, pmTOR, and pS6, as the FGFR1/2 mutants showed no staining for these markers.

      (5) Results (page 6, line 19- page 7, line 6): The authors showed that inducible expression of constitutive active Kras, KrasG12D, using Le-Cre, recovered lens size to the half level of wild-type control. However, in the lens of mice with Le-Cre; FGFR1/2f/f; LSL-KrasG12D, pERK was detected in the most posterior edge of the lens fiber core, whereas pERK was detected in the broader area of the lens in control. Furthermore, pMEK was detected in the whole lens of mice with Le-Cre; FGFR1/2f/f; and LSL-KrasG12D, whereas pMEK was detected only in the lens epithelial cells at the equator. So, the spatial profile of pERK and pMEK expression was different from those of wild-type, although the authors observed that Prox1 and Crystallin expression are normally induced in the lens of mice with Le-Cre; FGFR1/2f/f; LSL-KrasG12D. I wonder whether the lens normally develops in mice with Le-Cre; LSL-KrasG12D? Is the lens growth enhanced in mice with Le-Cre; LSL-KrasG12D? Please add the panels of mice with Le-Cre; LSL-KrasG12D in Figure 2B and 2C. In addition, I wonder whether apoptosis is suppressed in the lens of mice with Le-Cre; FGFR1/2f/f; LSL-KrasG12D?

      As we previously reported (Developmental Biology 355, 2011, 12–20), Le-Cre; LSL-KrasG12D did not lead to enhanced lens growth. While we agree that including images of Le-Cre; LSL-KrasG12D as controls in Fig. 2B and C and evaluating apoptosis in Le-Cre; FGFR1/2f/f; LSL-KrasG12D mutants would be appropriate, we regretfully no longer have these animals available to conduct these experiments.

      (6) Results (page 11, line 15): the PCR genotyping image of Fig. 6C seems to be missing.

      The PCR genotyping image was correctly placed below Fig. 6B. 

      (7) Results (page 11, lines 15-20): there is no citation of Figure 6D in the results section.

      The citation for Fig. 6D is added in the results section.

      (8) Figures 5H, 6H, and 7A: Western blotting of some of the pERK, ERK lanes is missing.

      These western blots all have pERK/ERK overlay images.

      (9) Figure 7A, western blotting data on pShc levels are important to suggest the involvement of Shc1 in Frs2-independent Grb2 activation by FGF stimulation. Please provide the histogram for statistical analysis.

      pShc quantification is now provided in Fig. 7B.

      (10) There is no citation of Figure 7D, E, and F in the results section. Please add them.

      These citations have been added.

      (11) Figures 7E, and 7F: The authors showed that lens morphology and lens size evaluation in genetic combinations: control, Frs2/Shc1 KD, Frs2/Shp2 KD, and Frs2/Shp2/Shc1 KD. However, I would like to request the authors to show more detailed data in these genetic combinations, for example, pERK, foxe3, Maf, Prox1, Jag1, p57, cyclin D3, g-crystallin, and TUNEL.

      Unfortunately, we no longer have these mutant mice to perform these detailed staining.  

      Reviewer #3 (Recommendations for the authors):

      (1) The figure legend for Figure 2 lists (G) twice. The second (G) should be (H). Also, in Figures 2G and H there is no indication as to what stage lenses were used for the TUNEL and size analyses. I assume that it was E13.5, but it should be explicitly stated.

      The figure labeling has been corrected and the stage added to the figure legend.

      (2) In Figure 4 A the label should be gamma-crystallin rather than r-crystallin.

      The figure labeling has been corrected.

      (3) In Figure 6 D, I believe that the immunolabeling for Maf and Foxe3 are reversed. The Maf should be red as it is in the fibers and the Foxe3 should be green as it is epithelial.

      The figure labeling has been corrected.

      (4) In Figure 6C I believe that the labels for the WT and YF alleles on the western blot are reversed.

      The YF PCR band was designed to be larger than WT, so the labeling was correct as is.

      (5) In Figure 6F I believe that the labels for WT and CS on the western blot are reversed.

      The figure labeling has been corrected.

      (6) In Supplemental figure 2 there are no genotype labels for the TUNEL bar graph.

      The figure labeling has been added.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This manuscript investigates a mechanism between the histone reader protein YEATS2 and the metabolic enzyme GCDH, particularly in regulating epithelial-to-mesenchymal transition (EMT) in head and neck cancer (HNC).

      Strengths:

      Great detailing of the mechanistic aspect of the above axis is the primary strength of the manuscript.

      Weaknesses:

      Several critical points require clarification, including the rationale behind EMT marker selection, the inclusion of metastasis data, the role of key metabolic enzymes like ECHS1, and the molecular mechanisms governing p300 and YEATS2 interactions.

      We would like to sincerely thank the reviewer for the detailed, in-depth, and positive response. We are committed to implementing constructive revisions to the manuscript to address the reviewer’s concerns effectively.

      Major Comments:

      (1) The title, "Interplay of YEATS2 and GCDH mediates histone crotonylation and drives EMT in head and neck cancer," appears somewhat misleading, as it implies that YEATS2 directly drives histone crotonylation. However, YEATS2 functions as a reader of histone crotonylation rather than a writer or mediator of this modification. It cannot itself mediate the addition of crotonyl groups onto histones. Instead, the enzyme GCDH is the one responsible for generating crotonyl-CoA, which enables histone crotonylation. Therefore, while YEATS2 plays a role in recognizing crotonylation marks and may regulate gene expression through this mechanism, it does not directly catalyse or promote the crotonylation process.

      We thank the reviewer for raising this concern. As stated by the reviewer, YEATS2 functions as a reader protein, capable of recognizing histone crotonylation marks and assisting in the addition of this mark to nearby histone residues, possibly by assisting the recruitment of the writer protein for crotonylation. Our data indicates the involvement of YEATS2 in the recruitment of writer protein p300 on the promoter of the SPARC gene, making YEATS2 a regulatory factor responsible for the addition of crotonyl marks in an indirect manner. Thus, we have decided to make changes in the title by replacing the word “mediates” with “regulates”. Therefore, the updated title can be read as: “Interplay of YEATS2 and GCDH regulates histone crotonylation and drives EMT in head and neck cancer”.

      (2) The study suggests a link between YEATS2 and metastasis due to its role in EMT, but the lack of clinical or pre-clinical evidence of metastasis is concerning. Only primary tumor (PT) data is shown, but if the hypothesis is that YEATS2 promotes metastasis via EMT, then evidence from metastatic samples or in vivo models should be included to solidify this claim.

      We appreciate the reviewer’s suggestion. Here, we would like to state that the primary aim of this study was to delineate the molecular mechanisms behind the role of YEATS2 in maintaining histone crotonylation at the promoter of genes that favour EMT in head and neck cancer. We have dissected the importance of histone crotonylation in the regulation of gene expression in head and neck cancer in great detail, having investigated the upstream and downstream molecular players involved in this process that promote EMT. Moreover, with the help of multiple phenotypic assays, such as Matrigel invasion, wound healing, and 3D invasion assays, we have shown the functional importance of YEATS2 in promoting EMT in head and neck cancer cells. Since EMT is known to be a prerequisite process for cancer cells undergoing metastasis(1), the evidence of YEATS2 being associated with EMT demonstrates a potential correlation of YEATS2 with metastasis. However, as part of the revision, we will use publicly available patient data to investigate the direct association of YEATS2 with metastasis by checking the expression of YEATS2 between different grades of head and neck cancer, as an increase in tumor grade is often correlated with the incidence of metastasis(2).

      (3) There seems to be some discrepancy in the invasion data with BICR10 control cells (Figure 2C). BICR10 control cells with mock plasmids, specifically shControl and pEGFP-C3 show an unclear distinction between invasion capacities. Normally, we would expect the control cells to invade somewhat similarly, in terms of area covered, within the same time interval (24 hours here). But we clearly see more control cells invading when the invasion is done with KD and fewer control cells invading when the invasion is done with OE. Are these just plasmid-specific significant effects on normal cell invasion? This needs to be addressed.

      We appreciate the reviewer for the thorough evaluation of the manuscript. The figure panels in question, Figure 2B and 2C, represent two different experiments performed independently, the invasion assay performed after knockdown and overexpression of YEATS2, respectively. We would like to clarify that both panels represent results that are distinct and independent of each other and that the method used to knockdown or overexpress YEATS2 is also different. As stated in the Materials and Methods section, the knockdown is performed using lentivirus-mediated transfection (transduction) of cells, on the other hand, the overexpression is done using standard method of transfection by directly mixing transfection reagent and the respective plasmids, prior to the addition of this mix to the cells. The difference in the experimental conditions in these two experiments might have attributed to the differences seen in the controls as observed previously(3). Hence, we would like to state that the results of figure panels Figure 2B and Figure 2C should be evaluated independently of each other.

      (4) In Figure 3G, the Western blot shows an unclear band for YEATS2 in shSP1 cells with YEATS2 overexpression condition. The authors need to clearly identify which band corresponds to YEATS2 in this case.

      The two bands seen in the shSP1+pEGFP-C3-YEATS2 condition correspond to the endogenous YEATS2 band (lower band, indicated by * in the shControl lane) and YEATS2-GFP band (upper band, corresponding to overexpressed YEATS2-GFP fusion protein, which has a higher molecular weight). To avoid confusion, the endogenous band will be highlighted (marked by *) in the lane representing the shSP1+pEGFP-C3-YEATS2 condition in the revised version of the manuscript.

      (5) In ChIP assays with SP1, YEATS2 and p300 which promoter regions were selected for the respective genes? Please provide data for all the different promoter regions that must have been analysed, highlighting the region where enrichment/depletion was observed. Including data from negative control regions would improve the validity of the results.

      Throughout our study, we have performed ChIP-qPCR assays to check the binding of SP1 on YEATS2 and GCDH promoter, and to check YEATS2 and p300 binding on SPARC promoter. Using transcription factor binding prediction tools and luciferase assays, we selected multiple sites on the YEATS2 and GCDH promoter to check for SP1 binding. The results corresponding to the site that showed significant enrichment were provided in the manuscript. The region of SPARC promoter in YEATS2 and p300 ChIP assay was selected on the basis of YEATS2 enrichment found in the YEATS2 ChIP-seq data. We will provide data for all the promoter regions investigated (including negative controls) in the revised version of the manuscript.

      (6) The authors establish a link between H3K27Cr marks and GCDH expression, and this is an already well-known pathway. A critical missing piece is the level of ECSH1 in patient samples. This will clearly delineate if the balance shifted towards crotonylation.

      We thank the reviewer for their valuable suggestion. To support our claim, we had checked the expression of GCDH and ECHS1 in TCGA HNC RNA-seq data (provided in Figure 4—figure supplement 1A and B) and found that GCDH showed increase while ECHS1 showed decrease in tumor as compared to normal samples. We hypothesized that higher GCDH expression and decreased ECHS1 expression might lead to an increase in the levels of crotonylation in HNC. To further substantiate our claim, we will check the abundance of ECHS1 in HNC patient samples as part of the revision.

      (7) The p300 ChIP data on the SPARC promoter is confusing. The authors report reduced p300 occupancy in YEATS2-silenced cells, on SPARC promoter. However, this is paradoxical, as p300 is a writer, a histone acetyltransferase (HAT). The absence of a reader (YEATS2) shouldn't affect the writer (p300) unless a complex relationship between p300 and YEATS2 is present. The role of p300 should be further clarified in this case. Additionally, transcriptional regulation of SPARC expression in YEATS2 silenced cells could be analysed via downstream events, like Pol-II recruitment. Assays such as Pol-II ChIP-qPCR could help explain this.

      Using RNA-seq and ChIP-seq analyses, we have shown that YEATS2 affects the expression of several genes by regulating the level of histone crotonylation at gene promoters globally. The histone writer p300 is a promiscuous acyltransferase protein that has been shown to be involved in the addition of several non-acetyl marks on histone residues, including crotonylation(4). Our data provides evidence for the dependency of the writer p300 on YEATS2 in mediating histone crotonylation, as YEATS2 downregulation led to decreased occupancy of p300 on the SPARC promoter (Figure 5F). However, the exact mechanism of cooperativity between YEATS2 and p300 in maintaining histone crotonylation remains to be investigated. To address the reviewer’s concern, we will perform various experiments to delineate the molecular mechanism pertaining to the association of YEATS2 with p300 in regulating histone crotonylation. Following are the experiments that will be performed:

      (a) Co-immunoprecipitation experiments to check the physical interaction between YEATS2 and p300.

      (b) We will check H3K27cr levels on the SPARC promoter and SPARC expression in p300-depleted HNC cells.

      (c) Rescue experiments to check if the decrease in p300 occupancy on the SPARC promoter can be compensated by overexpressing YEATS2.

      (d) As suggested by the reviewer, Pol-II ChIP-qPCR at the promoter of SPARC will be performed in YEATS2-silenced cells to explain the mode of transcriptional regulation of SPARC expression by YEATS2.

      (8) The role of GCDH in producing crotonyl-CoA is already well-established in the literature. The authors' hypothesis that GCDH is essential for crotonyl-CoA production has been proven, and it's unclear why this is presented as a novel finding. It has been shown that YEATS2 KD leads to reduced H3K27cr, however, it remains unclear how the reader is affecting crotonylation levels. Are GCDH levels also reduced in the YEATS2 KD condition? Are YEATS2 levels regulating GCDH expression? One possible mechanism is YEATS2 occupancy on GCDH promoter and therefore reduced GCDH levels upon YEATS2 KD. This aspect is crucial to the study's proposed mechanism but is not addressed thoroughly.

      The source for histone crotonylation, crotonyl-CoA, can be produced by several enzymes in the cell, such as ACSS2, GCDH, ACOX3, etc(5). Since metabolic intermediates produced during several cellular pathways in the cell can act as substrates for epigenetic factors, we wanted to investigate if such an epigenetic-metabolism crosstalk existed in the context of YEATS2. As described in the manuscript, we performed GSEA using publicly available TCGA RNA-seq data and found that patients with higher YEATS2 expression also showed a high correlation with expression levels of genes involved in the lysine degradation pathway, including GCDH. Since the preferential binding of YEATS2 with H3K27cr and the role of GCDH in producing crotonyl-CoA was known(6,7), we hypothesized that higher H3K27cr in HNC could be a result of both YEATS2 and GCDH. We found that the presence of GCDH in the nucleus of HNC cells is correlated to higher H3K27cr abundance, which could be a result of excess levels of crotonyl-CoA produced via GCDH. We also found a correlation between H3K27cr levels and YEATS2 expression, which could arise due to YEATS2-mediated preferential maintenance of crotonylation. This states that although being a reader protein, YEATS2 is affecting the promoter H3K27cr levels, possibly by helping in the recruitment of p300 (as shown in Figure 5F). Thus, YEATS2 and GCDH are both responsible for the regulation of histone crotonylation-mediated gene expression in HNC.

      We did not find any evidence of YEATS2 regulating the expression of GCDH in HNC cells. However, we found that YEATS2 downregulation reduced the nuclear pool of GCDH in head and neck cancer cells (Figure 7F). This suggests that YEATS2 not only regulates histone crotonylation by affecting promoter H3K27cr levels (with p300), but also by affecting the nuclear localization of crotonyl-CoA producing GCDH. Also, we observed that the expression of YEATS2 and GCDH are regulated by the same transcription factor SP1 in HNC. We found that the transcription factor SP1 binds to the promoter of both genes, and its downregulation led to a decrease in their expression (Figure 3 and Figure 7).

      We would like to state that the relationship between YEATS2 and the nuclear localization of GCDH, as well as the underlying molecular mechanism, remains unexplored and presents an open question for future investigation.

      (9) The authors should provide IHC analysis of YEATS2, SPARC alongside H3K27cr and GCDH staining in normal vs. tumor tissues from HNC patients.

      We thank the reviewer for their suggestion. We are consulting our clinical collaborators to assess the feasibility of including this IHC analysis in our revision and will make every effort to incorporate it.

      Reviewer #2 (Public review):

      Summary:

      The manuscript emphasises the increased invasive potential of histone reader YEATS2 in an SP1-dependent manner. They report that YEATS2 maintains high H3K27cr levels at the promoter of EMT-promoting gene SPARC. These findings assigned a novel functional implication of histone acylation, crotonylation.

      We thank the reviewer for the constructive comments. We are committed to making beneficial changes to the manuscript in order to alleviate the reviewer’s concerns.

      Concerns:

      (1) The patient cohort is very small with just 10 patients. To establish a significant result the cohort size should be increased.

      We thank the reviewer for this suggestion. We will increase the number of patient samples to assess the levels of YEATS2 and H3K27cr in normal vs. tumor samples.

      (2) Figure 4D compares H3K27Cr levels in tumor and normal tissue samples. Figure 1G shows overexpression of YEATS2 in a tumor as compared to normal samples. The loading control is missing in both. Loading control is essential to eliminate any disparity in protein concentration that is loaded.

      In Figures 1G and 4D, we have used Ponceau S staining as a control for equal loading. Ponceau S staining is frequently used as an alternative for housekeeping genes like GAPDH as a control for protein loading(8). It avoids the potential for variability in housekeeping gene expression. However, it may be less quantitative than using housekeeping proteins. To address the reviewer’s concern, we will probe with an antibody against a house keeping gene as a loading control in the revised figures, provided its expression remains stable across the conditions tested.

      (3) Figure 4D only mentions 5 patient samples checked for the increased levels of crotonylation and hence forms the basis of their hypothesis (increased crotonylation in a tumor as compared to normal). The sample size should be more and patient details should be mentioned.

      A total of 9 samples were checked for H3K27cr levels (5 of them are included in Figure 4D and rest included in Figure 4—figure supplement 1D). However, as a part of the revision, we will check the H3K27cr levels in more patient samples.

      (4) YEATS2 maintains H3K27Cr levels at the SPARC promoter. The p300 is reported to be hyper-activated (hyperautoacetylated) in oral cancer. Probably, the activated p300 causes hyper-crotonylation, and other protein factors cause the functional translation of this modification. The authors need to clarify this with a suitable experiment.

      In our study, we have shown that p300 is dependent on YEATS2 for its recruitment on the SPARC promoter. As a part of the revision, we propose the following experiments to further substantiate the role of p300 in YEATS2-mediated gene regulation:

      (a) Co-immunoprecipitation experiments to check the physical interaction between YEATS2 and p300.

      (b) We will check H3K27cr levels on the SPARC promoter and SPARC expression in p300-depleted HNC cells.

      (c) Rescue experiments to check if the decrease in p300 occupancy on the SPARC promoter can be compensated by overexpressing YEATS2.

      (d) Pol-II ChIP-qPCR at the promoter of SPARC will be performed in YEATS2-silenced cells to explain the mode of transcriptional regulation of SPARC expression by YEATS2.

      (5) I do not entirely agree with using GAPDH as a control in the western blot experiment since GAPDH has been reported to be overexpressed in oral cancer.

      We would like to clarify that GAPDH was not used as a loading control for protein expression comparisons between normal and tumor samples. GAPDH was used as a loading control only in experiments using head and neck cancer cell lines where shRNA-mediated knockdown or overexpression was employed. These manipulations specifically target the genes of interest and are not expected to alter GAPDH expression, making it a suitable loading control in these instances.

      (6) The expression of EMT markers has been checked in shControl and shYEATS2 transfected cell lines (Figure 2A). However, their expression should first be checked directly in the patients' normal vs. tumor samples.

      We thank the reviewer for the suggestion. To address this, we will check the expression of EMT markers alongside YEATS2 expression in normal vs. tumor samples.

      (7) In Figure 3G, knockdown of SP1 led to the reduced expression of YEATS2 controlled gene Twist1. Ectopic expression of YEATS2 was able to rescue Twist1 partially. In order to establish that SP1 directly regulates YEATS2, SP1 should also be re-introduced upon the knockdown background along with YEATS2 for complete rescue of Twist1 expression.

      To address the reviewer’s concern regarding the partial rescue of Twist1 in SP1 depleted-YEATS2 overexpressed cells, we will perform the experiment as suggested by the reviewer. In brief, we will overexpress both SP1 and YEATS2 in SP1-depleted cells and then assess the expression of Twist1.

      (8) In Figure 7G, the expression of EMT genes should also be checked upon rescue of SPARC expression.

      We thank the reviewer for the suggestion. We will check the expression of EMT markers on YEATS2/ GCDH rescue and update Figure 7G in the revised version of the manuscript.

      References

      (1) T. Brabletz, R. Kalluri, M. A. Nieto and R. A. Weinberg, Nat Rev Cancer, 2018, 18, 128–134.

      (2) P. Pisani, M. Airoldi, A. Allais, P. Aluffi Valletti, M. Battista, M. Benazzo, R. Briatore, S. Cacciola, S. Cocuzza, A. Colombo, B. Conti, A. Costanzo, L. Della Vecchia, N. Denaro, C. Fantozzi, D. Galizia, M. Garzaro, I. Genta, G. A. Iasi, M. Krengli, V. Landolfo, G. V. Lanza, M. Magnano, M. Mancuso, R. Maroldi, L. Masini, M. C. Merlano, M. Piemonte, S. Pisani, A. Prina-Mello, L. Prioglio, M. G. Rugiu, F. Scasso, A. Serra, G. Valente, M. Zannetti and A. Zigliani, Acta Otorhinolaryngol Ital, 2020, 40, S1–S86.

      (3) J. Lin, P. Zhang, W. Liu, G. Liu, J. Zhang, M. Yan, Y. Duan and N. Yang, Elife, 2023, 12, RP87510.

      (4) X. Liu, W. Wei, Y. Liu, X. Yang, J. Wu, Y. Zhang, Q. Zhang, T. Shi, J. X. Du, Y. Zhao, M. Lei, J.-Q. Zhou, J. Li and J. Wong, Cell Discov, 2017, 3, 17016.

      (5) G. Jiang, C. Li, M. Lu, K. Lu and H. Li, Cell Death Dis, 2021, 12, 703.

      (6) D. Zhao, H. Guan, S. Zhao, W. Mi, H. Wen, Y. Li, Y. Zhao, C. D. Allis, X. Shi and H. Li, Cell Res, 2016, 26, 629–632.

      (7) H. Yuan, X. Wu, Q. Wu, A. Chatoff, E. Megill, J. Gao, T. Huang, T. Duan, K. Yang, C. Jin, F. Yuan, S. Wang, L. Zhao, P. O. Zinn, K. G. Abdullah, Y. Zhao, N. W. Snyder and J. N. Rich, Nature, 2023, 617, 818–826.

      (8) I. Romero-Calvo, B. Ocón, P. Martínez-Moya, M. D. Suárez, A. Zarzuelo, O. Martínez-Augustin and F. S. de Medina, Anal Biochem, 2010, 401, 318–320.

    1. Author response:

      We thank the reviewers for their careful evaluation of our manuscript and appreciate the suggestions for improvement. We will outline our planned revisions in response to these reviews.

      Reviewer 2:

      “The one exception is the claim that "maintenance of respiration is the only cellular target of chalkophore mediated copper acquisition." While under the in vitro conditions tested this does appear to be the case; however, it can't be ruled out that the chalkophore is important in other situations. In particular, for maintenance of the periplasmic superoxide dismutase, SodC, which is the other M. tuberculosis enzyme known to require copper.”

      And

      Reviewer 3:

      “Because the phenotype of M. tuberculosis lacking chalkophores is similar, if not identical, to using Q203, an inhibitor of cytochrome bcc:aa3, the authors propose that the copper-containing cytochrome bcc:aa3 is the only recipient of copper-uptake by chalkophores. A minor weakness of the work is that this latter conclusion is not verified under infection conditions and other copper-enzymes might still be functionally required during one or more stages of infection.

      Both comments concern the question of whether the bcc:aa3 respiratory oxidase supercomplex is the only target of chalkophore delivered copper. In culture, our experiments suggest that bcc:aa3 is the only target. The evidence for this claim is in Figure 2E and F. In 2E, we show that M. tuberculosis DctaD (a subunit of bcc:aa3) is growth impaired, copper chelation with TTM does not exacerbate that growth defect, and that a DctaDDnrp double mutant is no more sensitive to TTM than DctaD. These data indicate that role of the chalkophore in protecting against copper deprivation is absent when the bcc:aa3 oxidase is missing. Similar results were obtained with Q203 (Figure 2F). Q203 or TTM arrest growth of M. tuberculosis Dnrp, but the combination has no additional effect, indicating that when Q203 is inhibiting the bcc:aa3 oxidase, the chalkophore has no additional role. However, we agree with the reviewers that we cannot exclude the possibility that during infection, there is an additional target of chalkophore mediated Cu acquisition. We will add this caveat to the revised version of this manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In previous work, the authors described necrosis-induced apoptosis (NiA) as a consequence of induced necrosis. Specifically, experimentally induced necrosis in the distal pouch of larval wing imaginal discs triggers NiA in the lateral pouch. In this manuscript, the authors confirmed this observation and found that while necrosis can kill all areas of the disc, NiA is limited to the pouch and to some extent to the notum, but is excluded from the hinge region. Interestingly and unexpectedly, signaling by the Jak/Stat and Wg pathways inhibits NiA. Further characterization of NiA by the authors reveals that NiA also triggers regenerative proliferation which can last up to 64 hours following necrosis induction. This regenerative response to necrosis is significantly stronger compared to discs ablated by apoptosis. Furthermore, the regenerative proliferation induced by necrosis is dependent on the apoptotic pathway because RNAi targeting the RHG genes is sufficient to block proliferation. However, NiA does not promote proliferation through the previously described apoptosis-induced proliferation (AiP) pathway, although cells at the wound edge undergo AiP. Further examination of the caspase levels in NiA cells allowed the authors to group these cells into two clusters: some cells (NiA) undergo apoptosis and are removed, while others referred to as Necrosis-induced Caspase Positive (NiCP) cells survive despite caspase activity. It is the NiCP cells that repair cellular damage including DNA damage and that promote regenerative proliferation. Caspase sensors demonstrate that both groups of cells have initiator caspase activity, while only the NiA cells contain effector caspase activity. Under certain conditions, the authors were also able to visualize effector caspase activity in NiCP cells, but the level was low, likely below the threshold for apoptosis. Finally, the authors found that loss of the initiator caspase Dronc blocks regenerative proliferation, while inhibiting effector caspases by expression of p35 does not, suggesting that Dronc can induce regenerative proliferation following necrosis in a non- apoptotic manner. This last finding is very interesting as it implies that Dronc can induce proliferation in at least two ways in addition to its requirement in AiP.

      Strengths:

      This is a very interesting manuscript. The authors demonstrate that epithelial tissue that contains a significant number of necrotic cells is able to regenerate. This regenerative response is dependent on the apoptotic pathway which is induced at a distance from the necrotic cells. Although regenerative proliferation following necrosis requires the initiator caspase Dronc, Dronc does not induce a classical AiP response for this type of regenerative response. In future work, it will be very interesting to dissect this regenerative response pathway genetically.

      Weaknesses:

      No weaknesses were identified.

      We thank the reviewer for their positive evaluation and kind words.

      Reviewer #2 (Public Review):

      Summary / Strengths:

      In this manuscript, Klemm et al., build on past published findings (Klemm et al., 2021) to characterize caspase activation in distal cells following necrotic tissue damage within the Drosophila wing imaginal disc. Previously in Klemm et al., 2021, the authors describe necrosis-induced-apoptosis (NiA) following the development of a genetic system to study necrosis that is caused by the expression of a constitutive active GluR1 (Glutamate/Ca2+ channel), and they discovered that the appearance of NiA cells were important for promoting regeneration.

      In this manuscript, the authors aim to investigate how tissues regenerate following necrotic cell death. They find that the cells of the wing pouch are more likely to have non-autonomous caspase activation than other regions within the wing imaginal disc (hinge and notum),two signaling pathways that are known to be upregulated during regeneration, Wnt (wingless) and JAK/Stat signaling, act to prevent additional NiA in pouch cells, and may explain the region specificity, the presence of NiA cells promotes regenerative proliferation in late stages of regeneration, not all caspase-positive cells are cleared from the epithelium (these cells are then referred to as Necrosis-induced Caspase Positive (NiCP) cells), these NiCP cells continue to live and promote proliferation in adjacent cells, the caspase Dronc is important for creating NiA/NiCP cells and for these cells to promote proliferation. Animals heterozygous for a Dronc null allele show a decrease in regeneration following necrotic tissue damage.

      The study has the potential to be broadly interesting due to the insights into how tissues differentially respond to necrosis as compared to apoptosis to promote regeneration.

      Weaknesses:

      However, here are some of my current concerns for the manuscript in its current version:

      The presence of cells with activated caspase that don't die (NiCP cells) is an interesting biological phenomenon but is not described until Figure 5. How does the existence of NiCP cells impact the earlier findings presented? Is late proliferation due to NiA, NiCP, or both? Does Wg and JAK/STAT signaling act to prevent the formation of both NiA and NiCP cells or only NiA cells? Moreover, the authors are able to specifically manipulate the wound edge (WE) and lateral pouch cells (LP), but don't show how these manipulations within these distinct populations impact regeneration. The authors provide evidence that driving UAS-mir(RHG) throughout the pouch, in the LP or the WE all decrease the amount of NiA/NiCP in Figure 3G-O, but no data on final regenerative outcomes for these manipulations is presented (such as those presented for Dronc-/+ in Fig 7M). The manuscript would be greatly enhanced by quantification of more of the findings, especially in describing if the specific manipulations that impacted NiA /NiCP cells disrupt end-point regeneration phenotypes.

      We have added a line to the results to clarify that we believe the finding that some NiA likely persist as NiCP does not affect our conclusions up to this point.

      We have added a statement emphasizing the results from our first paper, which demonstrate that LP>miRHG expression reduces the overall capacity to regenerate.

      Quantification of the change in posterior NiA number have been added to Figure 2L to strengthen the evidence. Likewise, we have included quantification of the E2F time course presented in Figure 3A (Figure 3 – Figure supplement 1C), and quantification of the change in GC3Ai signal over time has been added to Figure 5 - Figure supplement 1D) to emphasize the perdurance of GC3Ai-positive NiA/NiCP.

      How fast does apoptosis take within the wing disc epithelium? How many of the caspase(+) cells are present for the whole 48 hours of regeneration? Are new cells also induced to activate caspase during this time window? The author presented a number of interesting experiments characterizing the NiCP cells. For the caspase sensor GC3Ai experiments in Figure 5, is there a way to differentiate between cells that have maintained fluorescent CG3Ai from cells that have newly activated caspase? What is the timeline for when NiA and NiCP are specified? In addition, what fraction of NiCP cells contribute to the regenerated epithelium? Additional information about the temporal dynamics of NiA and NiCP specification/commitment would be greatly appreciated.

      We have included more information concerning the kinetics of apoptotic cell removal, and how this compares to the observations we have made with NiA/NiCP in our GC3Ai experiments. Additionally, we have included a quantification of the percent of the whole wing pouch with GC3Ai signal over time (Figure 5F) as well as the distal wing pouch with GC3Ai signal over time (Figure 5 – Figure supplement 1D) to further support the idea that NiCP persist over time.

      We acknowledge that our GC3Ai time course unfortunately cannot confirm whether the increase in GC3Ai signal over time is due to cells with new caspase activity or proliferating NiCP and have included this point in the discussion.

      We attempted to track the lineage of NiA/NiCP into the pupal and adult wings with CasExpress and DBS, however the results of these experiments were inconsistent, and therefore we did not feel confident to include these data or draw conclusions in either direction. We are currently designing variations of these lineage trace tools in order to better track the lineage of these cells that we hope to include in a future paper.

      The notum also does not express developmental JAK/STAT, yet little NiA was observed within the notum. Do the authors have any additional insights into the differential response between the pouch and notum? What makes the pouch unique? Are NiA/NiCP cells created within other imaginal discs and other tissues? Are they similarly important for regenerative responses in other contexts?

      We have added a brief mention of these points to the appropriate results section to avoid further increasing the length of the discussion.

      Data on the necrosis of other imaginal discs through FLP/FRT clone formation in haltere and leg discs has been added to Figure 1 Figure supplement 1J, and described in the text.

      Reviewer #3 (Public Review):

      The manuscript "Regeneration following tissue necrosis is mediated by non- apoptotic caspase activity" by Klemm et al. is an exploration of what happens to a group of cells that experience caspase activation after necrosis occurs some distance away from the cells of interest. These experiments have been conducted in the Drosophila wing imaginal disc, which has been used extensively to study the response of a developing epithelium to damage and stress. The authors revise and refine their earlier discovery of apoptosis initiated by necrosis, here showing that many of those presumed apoptotic cells do not complete apoptosis. Thus, the most interesting aspect of the paper is the characterization of a group of cells that experience mild caspase activation in response to an unknown signal, followed by some effector caspase activation and DNA damage, but that then recover from the DNA damage, avoid apoptosis, and proliferate instead. Many questions remain unanswered, including the signal that stimulates the mild caspase activation, and the mechanism through which this activation stimulates enhanced proliferation.

      The authors should consider answering additional questions, clarifying some points, and making some minor corrections:

      Major concerns affecting the interpretation of experimental results:

      Expression of STAT92E RNAi had no apparent effect on the ability of hinge cells to undergo NiA, leading the authors to conclude that other protective signals must exist. However, the authors have not shown that this STAT92E RNAi is capable of eliminating JAK/STAT signaling in the hinge under these experimental conditions. Using a reporter for JAK/STAT signaling, such as the STAT-GFP, as a readout would confirm the reduction or elimination of signaling. This confirmation would be necessary to support the negative result as presented.

      We have included data demonstrating our ability to knock down JAK/STAT activity in the hinge with UAS-Stat92E<sup>RNAi</sup> (Figure 2 – Figure supplement 1E and F). Additionally, we have included a quantification of posterior NiA/NiCP with the Stat92E<sup>RNAi</sup> (as well as wg<sup>RNAi</sup> and Zfh-2<sup>RNAi</sup>, Figure 2L) to strengthen our conclusion that JAK/STAT and WNT signaling acts to regulate NiA formation within the pouch.

      Similarly, the authors should confirm that the Zfh2 RNAi is reducing or eliminating Zfh2 levels in the hinge under these experimental conditions, before concluding that Zfh2 does not play a role in stopping hinge cells from undergoing NiA.

      We have repeated this experiment with a longer knockdown using a GAL4 driver that expresses from early larval stages until our evaluation at L3, but were unable to demonstrate a loss of Zfh-2 with IF labeling. Additionally, we have quantified posterior NiA/NiCP with a Zfh-2RNAi (Figure 2L) and do find a slight increase in NiA/NiCP number, however this change is not significant. We have altered our conclusions to reflect these new data.

      EdU incorporation was quantified by measuring the fluorescence intensity of the pouch and normalizing it to the fluorescence intensity of the whole disc. However, the images show that EdU fluorescence intensity of other regions of the disc, especially the notum, varied substantially when comparing the different genetic backgrounds (for example, note the substantially reduced EdU in the notum of Figure 3 B' and B'). Indeed, it has been shown that tissue damage can lead to suppression of proliferation in the notum and elsewhere in the disc, unless the signaling that induces the suppression is altered. Therefore, the normalization may be skewing the results because the notum EdU is not consistent across samples, possibly because the damage-induced suppression of proliferation in the notum is different across the different genetic backgrounds.

      To more accurately reflect the observations that we have made with the EdU assay, we have changed our terminology to indicate that the EdU signal is more localized to the damaged tissue in ablated discs, thus taking into account the relative changes across the disc, rather than referring to it as an increase in the pouch. To further strengthen our observation that damage results in a localized proliferation, we have included a quantification of the E2F time course presented in Figure 3A (Figure 3 – Figure supplement 1C), which underscores the trend observed in our EdU experiments.

      The authors expressed p35 to attempt to generate "undead cells". They take an absence of mitogen secretion or increased proliferation as evidence that undead cells were not generated. However, there could be undead cells that do not stimulate proliferation non-autonomously, which could be detected by the persistence of caspase activity in cells that do not complete apoptosis. Indeed, expressing p35 and observing sustained effector caspase activation could help answer the later question of what percentage of this cell population would otherwise complete apoptosis (NiA, rescued by p35) vs reverse course and proliferate (NiCP, unaffected by p35).

      In our previous work, we showed that P35 expression impairs our ability to detect effector caspases with IF-based tools. This can also be seen in Figure 4 of this work (Figure 4C and F). Given that P35 expression precludes our ability to label and assay effector caspase activity visually, and thus address the concerns outlined above, we relied on other tools such as reporters of AiP mitogens (wg-lacZ & dpp-lacZ) to assay whether NiA participate in AiP. As a functional readout, we also paired P35 expression with the EdU assay to test whether proliferation was altered by the presence of undead cells. The results discussed in Figure 4 lead us to conclude that NiA likely do not participate in the canonical AiP feedforward loop, although it is possible that these experiments generate another type of undead cell – one that utilizes a different mechanism to promote proliferation.

      It is unclear if the authors' model is that the NiCP cells lead to autonomous or non-autonomous cell proliferation, or both. Could the lineage-tracing experiments and/or the experiments marking mitosis relative to caspase activity answer this question?

      We have added further details to the discussion on the potential for NiA/NiCP to induce cell autonomous/non-autonomous proliferation.

      Many of the conclusions rely on single images. Quantification of many samples should be included wherever possible.

      We have added quantification to strengthen the results of Figures 2, 3 and 5.

      Why does the reduction of Dronc appear to affect regenerative growth in females but not males?

      We have repeated this regeneration scoring experiments and have increased the N for control versus droncI29 mutant males, however the results of the analysis for male wing size remain not significant, although the general trend that droncI29 wings are slightly smaller. While there could be sex-specific differences in the capacity to regenerate that contribute to this observation, it is unclear what the underlying mechanism could be.

      Reviewer #1 (Recommendations for the authors):

      The work in this paper is already very complete and very well worked out. The conclusions are well supported by the data in this manuscript. I do not have any experimental requests, only a few minor and formal requests/questions.

      (1) Why does Diap1 overexpression not affect regenerative proliferation, whereas mir(RHG) and dronc[I29] do, given that Diap1 acts between RHG and Dronc?

      We speculate on this point in the discussion section but have adjusted some of the phrasing for clarity.

      (2) I assume that the authors used the cleaved Dcp-1 antibody from Cell Signaling Technologies. I recommend that the authors refer to this antibody as cDcp-1 in text and figures as this antibody specifically detects the cleaved, and thus activated form of Dcp-1, and not the uncleaved, inactive form of Dcp-1 which has a uniform expression in the discs.

      Changed to cDcp-1.

      (3) Line 299: Hay et al. 1994 did not show that p35 inhibits Drice and Dcp-1 (in fact, both genes were not even cloned yet). This was shown by Meier et al. 2000 and Hawkins et al. 2000. Please correct references.

      Corrected.

      (4) Line 574/575. Meier et al. 2000 did not show that Dronc is mono-ubiquitylated. This was shown by Kamber-Kaya et al., 2017. Please correct.

      Corrected.

      Reviewer #2 (Recommendations for the authors):

      (1) Does domeless knockdown cause apoptosis without tissue ablation (Figures 2C-E)? Currently, the non-ablation control is not shown.

      Domeless knockdown does not cause apoptosis in the absence of ablation (Added Figure 2 – Figure supplement 1A).

      (2) The supplemental experiment with zfh2-RNAi is hard to interpret because there is no evidence of RNAi knockdown based on the staining with the anti-Zfh2 antibody.

      As noted above, a longer zfh-2 knockdown does not appear to alter Zfh-2 protein levels. A quantification of posterior NiA/NiCP following knockdown shows a slight (non-significant) increase in posterior NiA/NiCP. Considering these new results, we have altered our interpretation within the appropriate results and discussion sections.

      (3) The authors should consider adding a diagram showing where mir(RHG) and DIAP1 are in the apoptotic/caspase activation pathway (Figure 7N).

      Completed, Figure 7N and 7O.

      Reviewer #3 (Recommendations for the authors):

      (1) Figure 2 I -The purported increase in NiA should be quantitated relative to the NiA in G across many discs.

      Completed (Figure 2L)

      (2) Figure 2 M - contrary to the conclusion drawn, the posterior Dcp1 does not appear different from that in the control (K). This conclusion that the NiA does not occur in the margin could be better supported with more images/quantification.

      We have exchanged the image for a representative one that more clearly shows the lack of margin NiA and highlighted with an arrowhead (Figure 2K)

      (3) Figure 2 supp 1 E - the "slight increase" in NiA in the pouch is relative to which control? Can this conclusion be supported by quantification?

      Figure 2L now quantifies this change.

      (4) Figure 2 Supp 1 D, E - these discs supposedly have Zfh2 RNAi expressed, but there appears to be no reduction in Zfh2.

      We were unable to demonstrate a reduction of Zfh2, even with a longer knockdown. Considering these new data, we have altered our conclusions from the Zfh2 experiments.

      (5) Figure 2 Supp 1 I - please quantitate the Dcp-1 across many discs to support the conclusion.

      This is the UAS-wg experiment, which we decided to remove from the quantification given the non-specific increase in cDcp-1 throughout the disc (likely as a result from ectopic Wg expression).

      (6) Figure 4 legend M - The authors conclude that the experiment indicates that "NiA promote proliferation independent of AiP". It would be more precise to say that NiA cells do not secrete AiP mitogens and do not increase the proliferation of surrounding cells when prevented from completing apoptosis. To say that the NiA-induced proliferation does not require AiP would require eliminating AiP, perhaps through reaper hid grim knockdown or mitogen knockdown.

      Corrected.

      Minor concerns and clarification needed:

      (7) Line 61 - consider the distinction between a feed-forward loop and a positive feedback loop.

      Corrected.

      (8) Line 338 - it would be helpful to have a brief explanation of what the GC3Ai consists of and how it reports caspase activity.

      Corrected.

      (9) Line 343 - the authors should clarify by what they mean when they state GC3Ai-positive cells are "associated with" mitotic cells. Are the GC3Ai cells undergoing mitosis? Or is the increase in mitosis non-autonomous?

      Adjusted. “associated with adjacent proliferative cells”.

      (10) Lines 392-394 - the authors should add brief descriptions of how the Drice-Based sensor and the CasExpress function, so the readers can better understand the distinctions between these sensors and the previously mentioned sensors (anti-Dcp1 and GC3Ai). In addition, please clarify how the Gal80ts modulates the sensitivity of the CasExpress.

      Descriptions of DBS and CasExpress and additional clarification provided.

      (11) Line 413: How does Gal80ts suppress the background developmental caspase signal, and how does this suppression lead to NiCP cells expressing GFP?

      This section has been reworded to clarify.

      (12) Line 417 - which GFP label is referred to here?

      This section has been reworded to clarify.

      (13) Line 445 is the first mention of the CARD domain - it could be introduced more fully and explained why the DroncDN's lack of effect on proliferation excludes the CARD domain as being important.

      Clarified. See also the discussion for the significance of the CARD domain as dispensable for regenerative proliferation following necrosis.

      (14) Line 452 - "As mentioned" - the manuscript has not previously mentioned DIAP1 modification of the CARD domain and what that modification does. Perhaps the previous explanatory text was inadvertently removed?

      Corrected.

      (15) The Discussion is a lengthy list of experiments that the authors did not do or observations they were unable to make. This section could benefit from a more in-depth discussion of necrosis and the possibility that NiCP cells contribute to repair after injury across contexts and species.

      We have made several changes to the discussion that elaborate on some of the points listed in the public reviews.

      (16) All figures: Consider making single-channel panels grayscale to aid visualization. Also consider using color combinations that can be distinguished by color-blind readers.

      We appreciate these suggestions and will consider them for future manuscripts.

      (17) All figure legends - are error bars SD or SEM?

      Standard deviation. Added to appropriate legends.

      (18) Figure 1A,C - it would be helpful in the diagrams to note when the necrosis occurs/completes.

      The endpoint of necrosis is not well defined, given the simultaneous changes that occur with regeneration. Thus, we opted to not include an indicator of when necrotic ablation ends.

      (19) Figure 1B - it would be helpful to name the GAL4 drivers whose expression domain is depicted to correlate with the terms used in the text.

      Completed.

      (20) Figure 1 legend- what do the different colors of the arrowheads denote? The dotted lines are in R' and S', not N' and O'.

      Completed.

      (21) Figure 2G - the yellow dashed line is not in the same place in the two images.

      Corrected.

      (22) Figure 2I - what is the open arrowhead?

      Completed (Figure 2I legend).

      (23) Figure 3 legend - please describe what the time course is observing (EdU).

      Completed.

      (24) Figure 4 - please include the yellow boxes in the Dcp-1 channels.

      Completed.

      (25) Figure 5 F' - add the arrowheads to all the panels. The yellow arrowhead appears to be pointing to nothing.

      Completed.

      (27) Figure 5 legend - what is a "cytoplasmic undisturbed cell"? What is the arrowhead in G? J and J' should show the same view at different time points or different views at the same time point.

      Figure legend has been corrected.

      (28) Figure 5 Supp 1 would be especially helped by having more single-channel panels in grayscale.

      For clarity and consistency, we chose to maintain the different color channels.

      (29) Figure 5 Supp 1 D and E - It would be helpful to have higher magnification and arrows pointing to the cells of interest. Why are there TUNEL+ cells that do not have caspase activation (green)?

      We have added arrowheads as suggested. We believe the disparity in TUNEL and GC3Ai signals are a result of the different sensitivities of the IF staining and the TUNEL assay.

      (30) Figure 5 Supp 1 F - perhaps the arrowheads should be in all panels - they point to empty spaces with no H2Av staining in the final panel. Perhaps a higher magnification image would make the "strong overlap" of the two signals more apparent?

      We have added arrowheads where appropriate.

      (31) Figure 6 D-E - does the widespread GFP lineage tracing signal suggest that most cells in the repaired tissue originated from cells that once had caspases activity?

      Possibly, however given that CasExpress leads to significant developmental labeling, we were unable to determine to what extent the signal in this experiment comes from NiA/NiCP activity versus developmental labeling. Note that tubGAL80ts is not present in this experiment.

      (32) Writing corrections:

      Line 343 "positive" is misspelled.

      Completed

      Line 429 - a word may be missing.

      Completed

      Line 639 - the word "day" may be missing.

      Completed

      Line 658 - what temperature was the recovery?

      Completed

      Lines 706-708 - were the discs incubated in 55 mL and 65 mL of liquid, or a smaller volume?

      Completed

    1. Author response:

      Reviewer #1:

      Overall I find the evidence very well presented and the study compelling. It offers an important new perspective on the key properties of neoblasts. I do have some comments to clarify the presentation and significance of the work.

      We thank the reviewer for the positive feedback and plan to improve the presentation of the work.

      Reviewer #2:

      However, the absence of a cell-cell feedback mechanism during colony growth and the likelihood of the difference needs to be clarified. Is there any difference in interpreting the results if this mechanism is considered?

      We will improve the description of the model assumptions and the interpretation of the data on the basis of these assumptions.

      Although hnf-4 and foxF have been silenced together to validate the model, a deeper understanding of the tgs-1+ cell type and the non-significant reduction of tgs-1+ neoblasts in zfp-1 RNAi colonies is necessary, considering a high neural lineage frequency.

      We will improve the analysis of this result in light of the experimentally determined frequency of the tgs-1+ neoblast population.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Cheng et al explore the utility of analyte ratios instead of relative abundance alone for biological interpretation of tissue in a MALDI MSI workflow. Utilizing the ratio of metabolites and lipids that have complimentary value in metabolic pathways, they show the ratio as a heat map which enhances the understanding of how multiple analytes relate to each other spatially. Normally, this is done by projecting each analyte as a unique color but using a ratio can help clarify visualization and add to biological interpretability. However, existing tools to perform this task are available in open-source repositories, and fundamental limitations inherent to MALDI MSI need to be made clear to the reader. The study lacks rigor and controls, i.e. without quantitative data from a variety of standards (internal isotopic or tissue mimetic models for example), the potential delta in ionization efficiencies of different species subtracts from the utility of pathway analysis using metabolite ratios.

      We thank the reviewer for comments on the availability of four other commercial and open-source tools for performing ratio imaging: ENVI® Geospatial Analysis Software, MATLAB image processing toolbox, Spectral Python (SPy) and QGIS. We now highlight these in the introduction (page 3 line 80-86). However, in contrast to these target ratio imaging methods, our approach uniquely enables the untargeted discovery of correlated (or anti-correlated) ratios of molecular features, whether the species are structurally known or unknown.

      ENVI® Geospatial Analysis Software and MATLAB image processing toolbox for hyperspectral imaging are both paid programs, limiting free access and software evaluation for the potential application of untargeted ratio-metric imaging. We are able to evaluate the application of MATLAB RatioImage since Weill Cornell Medicine has an institutional subscription for Mathwork-MATLAB. Notably, MATLAB RatioImage computes and displays an individual intensity modulated ratiometric image by choosing a numerator and denominator image. This software tool only images the ratios of selected metabolites from an input list of multiple species and does not allow for the possibility of untargeted ratiometric images of all metabolite pairs.

      While Spectral Python (SPy) and QGIS are both freely-available software packages, and both can perform individual metabolite ratio images, neither allows for untargeted ratiometric imaging of all pairs from a multiple metabolite input list. Table S1 (below) provides a comparison of the ratio imaging tool that we offer in comparison with other previously available tools.

      We appreciate the reviewer’s insightful comments on differential ionization efficiency among metabolites and the importance of using stable isotope internal standard to gain absolute quantification.

      A fundamental advantage of our ratiometric imaging tool is to provide better image contrast for tissue regions with differential ionization efficiency, with the potential to discover new “metabolic” regions that can be revealed by metabolite ratio. Note that comparison for ratio image abundance is limited to tissue groups in the equivalent region which is expected to have similar ionization efficiency for given metabolites. Furthermore, the power of our strategy is to provide untargeted (and targeted) ratio imaging as a hypothesis generation tool and this use does not require absolute quantification. If cost was not an issue, an extensive group of stable isotope standards could theoretically be used for absolute metabolite quantification of target metabolites with known identity.

      Using the tissue mimetic model, we generate calibration curve for stable isotope standards spiked in carboxymethylcellulose (CMC)-embedded brain homogenate cryosections and quantify the concentration of brain glucose, lactate and ascorbate concentrations. Similar ratio images among these metabolites are obtained from abundance data compared to quantified concentration data (Fig S3). While stable isotope standards are often used to obtain quantitative concentration of metabolite/lipid of interest, it is not applicable for untargeted metabolite ratios that include an assessment of structurally undefined species. Nevertheless, our data indicates that absolute quantification is not necessary for the targeted and untargeted ratio imaging described here (Page 6, line 196-205).

      Reviewer #2 (Public Review):

      Summary:

      In the article, "Untargeted Pixel-by-Pixel Imaging of Metabolite Ratio Pairs as a Novel Tool for Biomedical Discovery in Mass Spectrometry Imaging" the authors describe their software package in R for visualizing metabolite ratio pairs. I think the novelty of this manuscript is overstated and there are several notable issues with the figures that prevent detailed assessment but the work would be of interest to the mass spectrometry community.

      Strengths:

      The authors describe a software that would be of use to those performing MALDI MSI. This software would certainly add to the understanding of metabolomics data and enhance the identification of critical metabolites.

      Weaknesses:

      The authors are missing several references and discussion points, particularly about SIMS MSI, where ratio imaging has been previously performed.

      There are several misleading sentences about the novelty of the approach and the limitations of metabolite imaging.

      Several sentences lack rigor and are not quantitative enough.

      The figures are difficult to interpret/ analyze in their current state and lack some critical components, including labels and scale bars.

      We thank reviewer for very helpful comments. The tone of the manuscript has been adjusted to highlight the real novelty of this method in the ease of computing and application to MS specific projects (abstract line 26-30 ). All figures have been updated to include labels and scale bars with improved resolution. References for ratio imaging use of SIMS MSI has been added in the introduction (Page 3, line 80-89).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major Comments:

      In the Abstract it is stated that: "the research community lacks a discovery tool that images all metabolite abundance ratio pairs." However, the following tools exist that perform this fundamental task.

      A "pixel by pixel" data frame in .csv form has a very similar data structure to many instruments like satellite imaging or other hyperspectral tools. It is true this does not exist in the MALDI-specific context, but it would not be difficult to perform this task on the following programs. Highlight the novelty here is not ratios but the ease of computing them and the application in the specific project. Also, describe the available tools and what shortcomings others lack that this package provides. A supplemental table of MSI data analysis tools and the function of each would be a good addition.

      List of tools to perform band ratio computation with minimal modification:

      (1) ENVI IDL: geospatial imaging tool that allows ratio computation between spectral bands.

      (2) MATLAB image processing toolbox for hyperspectral imaging.

      (3) Spectral Python package (SPy).

      (4) QGIS with plugins can be used for hyperspectral image analysis with a ratio between bands.

      We revised the abstract and introduction to include novelty and comparison to other existing methods listed in Table S1.

      "untargeted R package workflow" - If there are functions used outside the SCiLS Lab API client then write it up and include a GitHub link for open access to fit the mission of eLife.

      As shown in Scheme I. We develop two types of codes for untargeted ratio imaging. The first type uses Scils lab API client to extend the function of targeted and targeted ratio imaging and all related spatial image analysis. This is suitable for Scils lab users. The second type does not require Scils lab API, it allows extracting pixel data from imzml file then proceed targeted and untargeted imaging and analysis. Both codes are now deposit in Github via public access (https://github.com/qic2005/Untargeted-massspectrometry-ratio-imaging.git).

      "across cells and tissue subregions" The value in reporting cell type and tissue type-specific differences in any metric is powerful, but not done in this paper. Only whole samples are compared such as "KO vs WT" and the annotations in Figure 3 are not leveraged for increased biological relevance. This paper treats each image as a homogenization experiment in a practical sense beyond just visually inspecting each image. Remove this claim or do the calculations on region/tissue/cell-type specific differences with the appropriate tools to show the data beyond simple heat map images.

      We have deleted the sentence containing across cells and tissue subregions from the abstract.

      "enhances spatial image resolution" Clarify. The resolution in MALDI is set by the raster size of the pixels which is an instrument parameter and cannot be changed post-acquisition. Image-specific methods to increase resolution exist, but dividing the value in one peak column by another does not change functional resolution in the context of the instruments here.

      We thank reviewer for pointing out this typo. We have changed it to enhance spatial image contrast in the abstract (line 34).

      "pixel-by-pixel imaging of the ratio of an enzyme's substrate to its derived product offers an opportunity to view the distribution of functional activity for a given metabolic pathway across tissue" - Appropriately calibrate the impact of this work and correct this statement to better reflect the capabilities of this approach. Do not oversell the exploration of pathway activity since the raw quantity reported as relative abundance does not provide biologically interpretable pathway information. This is due to unaccounted differences in ionization efficiencies between analytes in a pathway and lack of determination of rate. Without a calibration curve and more techniques on the analytical chemistry side of the project, it is possible a relative abundance of one analyte (like the product of a pathway) could be higher than the relative abundance of another analyte (a precursor), but due to structural differences, the actual quantity of the higher relative abundance species could be significantly different or even lower than its counterpart. Secondly, "functional activity" cannot be assessed in this manner without isotopic labeling or additional techniques. This does not subtract from the overall validity and impact of the work, but highlighting these shortcomings and slight alterations to the claim are important for a multidisciplinary audience.

      Although we show that abundance ratio results in similar image to concentration ratio for brain metabolites such as lactate, glucose and ascorbate, we agree with the reviewer that abundance ratio is different from the absolute concentration ratio in numerical value due to difference in ionization efficiency. We delete the sentence “pixel-by-pixel imaging of the ratio of an enzyme's substrate to its derived product offers an opportunity to view the distribution of functional activity for a given metabolic pathway across tissue" from the abstract. We apologize for not clarifying this application more clearly. We meant to compare pathway activity among the equivalent and similar pixel/regions of tissues from different biological groups, given the assumption that ionization efficiency is identical for equivalent pixel from different tissue sections ( i.e. same cell type and microenvironment), especially for metabolites with similar functional structure in the same pathway. For example, fatty acids with different chain length and phospholipid with same head groups are expected to have similar ionization efficiency in the same tissue pixel/region. We have thereby rewritten this section (Page 7, line 239-247).

      "We further show that ratio imaging minimizes systematic variations in MSI data by sample handling and instrument drift, improves image resolution, enables anatomical mapping of metabotype heterogeneity, facilitates biomarker discovery, and reveals new spatially resolved tissue regions of interest (ROIs) that are metabolically distinct but otherwise unrecognized."

      Instrument drift is not accounted for by ratios as it impacts the process before ratio computation. "metabotype" - spelling?

      Instrument drift here refers to individual ion abundance changes during long data acquisition. Ratio may offer a better read-out than individual metabolite abundance alone. However, for acquired data after total ion normalization, ratio data would not have difference from non-ratio data. Therefore, we delete instrument drift from the sentence (Page 2, line 33, and Page 3, line 99)

      Metabotype is a term widely used for metabolomics field. It is categorized by similar metabolic profiles, which are based on combinations of specific metabolites. https://nutritionandmetabolism.biomedcentral.com/articles/10.1186/s12986-020-00499-z

      Results 3: Justify the claim that the ratio reduces artifacts. A ratio is the value from one m/z area over another and would seem that the quality of the ratio would be always lower than the individually higher quality pixel signal of the two analytes that compose a ratio.

      Ratio images are indeed the heatmaps of pixel-by-pixel ratio data, set by the scale of all ratio values. For very abundant ion pairs, their individual image may not be better than the ratio image, depending on the abundance changes among pixels within tissue sections. Similarly, the quality of ratio image may not be higher than the individual image if distribution of ratios does not change much among pixels in tissue sections. For example, metabolite or lipids in Figures 2 and 5 are abundant, but non-ratio images do not have better quality than ratio images. Furthermore, ratio image provides additional information on how the ratio of the two metabolite pair changes pixel-by pixel in all tissue sections, such additional information could be useful for data interpretation.

      Results 4: The metabolite pairs are biologically sensible but should be clearly stated that they do not account for differences in ionization efficiency between metabolites and cannot provide quantitative pathway analysis with a high degree of biological confidence.

      We apologize for not clarifying this application more clearly. We meant to compare pathway activity among the equivalent and similar pixel/regions of tissues from different biological groups, given the assumption that ionization efficiency is identical for equivalent pixel from different tissue sections ( i.e. same cell type and microenvironment), especially for metabolites with similar functional structure in the same pathway. For example, fatty acids with different chain length and phospholipid with same head groups are expected to have similar ionization efficiency in the same tissue pixel/region. We have thereby rewritten this section (Page 7, 239-247, 254-255).

      Results 4: "cell-type specific metabolic activity at cellular (10 µm) spatial resolution" Prove the cell type differences with IHC coregistration or MALDI IHC if you want to make claims about them. Just visually determining a tissue type of a scan of a slide is inadequate to support this claim.

      We agree with reviewer’s comments. We meant to provide additional information on cellular level metabolic activity such as adenosine nucleotide phosphorylation status (ATP/AMP) ratio at 10µm resolution. Hippocampus neurons provide a good example for depicting this utility. We have rewritten the claim to highlight the role of ratio imaging in providing additional metabolic information (Page 8, line 288-290).

      Minor Comments:

      Table 2 "Aspartiate" spelling

      We have corrected it.

      Describe the process and mathematical background for ratio computation in the Methods section. As this paper introduces a package, describing its underlying functions has value.

      We have added R-script comments to illustrate the untargeted ratio calculation using the R-mathematical function of combination and division between any two metabolite pairs in a data matrix (Page 4, line 139-141)

      "we annotate missing values with 1/5 the minimum value quantified in all pixels in which it was detected" This is explicit (ie only values with exactly 1/5 the value are annotated" - make it clear this is a threshold.

      We apologize for misunderstanding. Missing values are either have no value or have solid zero in their abundance. We first calculate the minimum abundance of a particular m/z among all pixels with detectable abundance ( i.e. excluding non-missing values), then use 1/5 this minimum value as a threshold to annotate missing value (Page 4, 133-139).

      Figure 1: legend scils is branded SCiLS and EXCEL does not need caps lock (Excel).

      Figure 1 legend has been corrected.

      Conflicts of interest "None" - there are Bruker employees on a paper about MALDI method development in a field they dominate.

      We added Joshua Fischer as a Bruker employee.

      Figure 3: The legend does not describe the purple arrow in J.

      Purple arrow description is added to figure legend.

      Figure 5: Fix orientation inconsistencies in G, H, I, and J. Especially in J - they are opposite directions. This is arbitrary and determined in SCiLS lab with simple rotation.

      Orientation has been made consistent in G,H, I and J.

      Figure S8: Provide exact number of biological and technical replicates used to generate this figure.

      Figure S8, now Figure S9, was generated from 4 biological replicates of KO and 4 biological replicates of WT brain section in the ROI7 region. This information has been added to the figure legend.

      Figure S9: Make consistent orientation of all brains

      We have made brain orientations consistent.

      In addition to ionization efficiencies impacting the value of the numeric relative abundance where ratio computation originates from, it should be mentioned how different classes of metabolites are differentially impacted by the euthanasia and collection methods used for various tissue types. For example, it is well established the ATP/AMP ratio can change drastically from tissue collection.

      We have added this to page 8, line 315-319.

      Perform standards to adjust for ionization efficiency between different m/z features.

      Untargeted ratio imaging serves as an add-on MSI data analysis tool with primary use in comparing ratio among equivalent regions/pixels with similar ionization efficiencies. It is a hypothesis generation tool. Standards adjust for ionization efficiency would be a great idea for a more accurate assessment of ratio values. Due to the cost and availability of stable isotope standards for different m/z, we chose glucose, lactate and ascorbate to showcase that abundance ratio and concentration ratio result in similar images among example brain metabolite lactate, glucose and ascorbate (page 6, 196-205).

      Add more controls to support the claims.

      We have 4 biological replicates for each genotype of brain. We have added the number of controls in all figure legends.

      Significantly tone down the claims, it is unclear how knowledgeable the authors are about the current literature of SW regarding MALDI.

      The tone has been significantly tuned down throughout the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      Abstract:

      "relative abundance of structurally identified and yet-undefined metabolites across tissue cryosections" is misleading, since tandem MS can be performed in an imaging context and is often also compatible with the same instrument.

      We have deleted this sentence in the abstract.

      Intro:

      Paragraph 1: The authors mention MALDI and DESI, but I would argue that SIMS is more abundantly used than DESI within single-cell applications.

      We have added SIMS to the introduction Page 3, line 67.

      Paragraph 2: While it may not be all detected pairs, there are many examples of ratio imaging in the MALDI MSI and SIMS communities, particularly for bacterial signaling. These would be important examples to reference.

      We have added the application of SIMS ratio imaging to the introduction, page 3, line 74-75.

      Materials :

      Paragraph 1: More specificity on sample size is required. 3 or 4 per group is not specific. Which has four and which has three? Why are they different?

      We have corrected sample numbers for specific genotype in the text and figure legends. The number of sections per group is different due to the availability of fresh-frozen tissues (Page 4, line 115-117).

      Results:

      Paragraph 1: Am I correct in reading that an .imzml can't be used directly? Why not?

      Imaging Mass Spectrometry Markup Language (imzml) is a common data format for mass spectrometry imaging. It was developed to allow the flexible and efficient exchange of large MS imaging data between different instruments and data analysis software (Schramm et al, 2012). It contains two sets of data: the mass spectral data which is stored in a binary file (.ibd file) to ensure efficient storage and the XML metadata (.imzml file) which stores instrumental parameters, sample details. Therefore, it can’t be used directly. We have added this to result 1(Page 5, line 160-169).

      Paragraph 4: "Additionally, nonlipid small molecule metabolites suffer from smearing and/or diffusion during cryosection processing, including over the course of matrix deposition for MALDI-MSI." This is misleading. There are several examples of MALDI MSI of small metabolites that are nonlipids, where smearing or diffusion have not occurred. It would be beneficial to have a more accurate discussion of this instead. The authors should also provide some evidence of this, since they continue to focus on it for the full paragraph and don't provide references.

      We initially meant the poor image quality of small molecule metabolites is due to its interaction with aqueous phase of spraying solution, rapid degradation rate and matrix interference. We have deleted this sentence in the revised version.

      Section 5 Paragraph 2; "However, ratio imaging revealed a much greater aspartate to glutamate ratio in an unusual "moon arc" region across the amygdala and hypothalamus relative to the rest of the coronal brain." Much greater isn't scientifically accurate or descript. Use real numbers and be quantitative.

      We used pixel data from all 8 sections to obtain quantitative changes in the ratio-generated “moon arc” region compared to the rest of coronal brain (page 8, line 331-337). Ratio imaging revealed a average of 1.59-fold increase in aspartate to glutamate ratio in an unusual “moon arc” region across the amygdala and hypothalamus (mean abundance 0.563 in 6345 pixels) relative to the rest of the coronal brain (mean abundance 0.353 in 45742 pixels, Figure 5D). Similar but different arc-like structures are encompassed within the ventral thalamus and hypothalamus, wherein glutamate to glutamine ratio show a 1.63-fold increase in intensity compared to the rest of the brain (mean abundance of 0.695 in 7108 pixels vs 0.428 in 44979 pixels, Figure 5E).

      Section 8 Paragraph 2: "UMAPing" is not scientifically written.

      We have replaced UMAPing with UMAP.

      Figure 2 is difficult to interpret, given the small sizes of the images. Align the images, reduce the white space, clearly label the different tissues, add scale bars, increase size, etc. This applies to all figures, except for 3. This will make it possible to review.

      All figures have been resized by removing extra space between sections.

      Figure 3. There seems to be a change in tissue after section I, so a different diagram would be helpful. SCD has a high abundance in an area that seems to be off of the tissue. Can the authors explain this? Some of the images also appear to be low signal-to-noise. Example spectra in the SI would be helpful, so I can more accurately judge the quality of the data.

      We apologize for the discrepancy. All images are from the same sample. We initially cropped the individual image from multiple page PDF plot, then inserted it in Figure 3. Resizing and cropping inconsistency may lead to the small difference in image size. In the revised version, we plot all images in one page, which eliminates the inconsistency.

      Figure 3 example pixel data, ratio pixel data, mass spectra and ratio images can be downloaded below:

      https://wcm.box.com/s/2d5jch45ar8upjzytljnylt6doewcsqc

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):

      In this revised manuscript, the authors aim to elucidate the cytological mechanisms by which conjugated linoleic acids (CLAs) influence intramuscular fat deposition and muscle fiber transformation in pig models. They have utilized single-nucleus RNA sequencing (snRNA-seq) to explore the effects of CLA supplementation on cell populations, muscle fiber types, and adipocyte differentiation pathways in pig skeletal muscles. Notably, the authors have made significant efforts in addressing the previous concerns raised by the reviewers, clarifying key aspects of their methodology and data analysis.

      Strengths:

      (1) Thorough validation of key findings: The authors have addressed the need for further validation by including qPCR, immunofluorescence staining, and western blotting to verify changes in muscle fiber types and adipocyte populations, which strengthens their conclusions.

      (2) Improved figure presentation: The authors have enhanced figure quality, particularly for the Oil Red O and Nile Red staining images, which now better depict the organization of lipid droplets (Figure 7A). Statistical significance markers have also been clarified (Figure 7I and 7K).

      Thanks!

      Weaknesses:

      (1) Cross-species analysis and generalizability of the results: Although the authors could not perform a comparative analysis across species due to data limitations, they acknowledged this gap and focused on analyzing regulatory mechanisms specific to pigs. Their explanation is reasonable given the current availability of snRNA-seq datasets on muscle fat deposition in other human and mouse.

      Thanks for your suggestion!

      (2) Mechanistic depth in JNK signaling pathway: While the inclusion of additional experiments is a positive step, the exploration of the JNK signaling pathway could still benefit from deeper analysis of downstream transcriptional regulators. The current discussion acknowledges this limitation, but future studies should aim to address this gap fully.

      Thanks! As we discussed in discussion part, further studies should focus on the downstream transcriptional regulators of JNK signaling pathway on IMF deposition.

      (3) Limited exploration of other muscle groups: The authors did not expand their analysis to additional muscle groups, leaving some uncertainty regarding whether other muscle groups might respond differently to CLA supplementation. Further studies in this direction could enhance the understanding of muscle fiber dynamics across the organism.

      Thanks for your suggestion! In this study, we mainly focused on the adipocytes, muscles and FAPs subpopulations, which play important roles in lipid deposition. As you suggested, our further study will focus on other subpopulations such as endothelial cells and immune cells.

      Reviewer #2 (Public review):

      Summary:

      This study comprehensively presents data from single nuclei sequencing of Heigai pig skeletal muscle in response to conjugated linoleic acid supplementation. The authors identify changes in myofiber type and adipocyte subpopulations induced by linoleic acid at depth previously unobserved. The authors show that linoleic acid supplementation decreased the total myofiber count, specifically reducing type II muscle fiber types (IIB), myotendinous junctions, and neuromuscular junctions, whereas type I muscle fibers are increased. Moreover, the authors identify changes in adipocyte pools, specifically in a population marked by SCD1/DGAT2. To validate the skeletal muscle remodeling in response to linoleic acid supplementation, the authors compare transcriptomics data from Laiwu pigs, a model of high intramuscular fat, to Heigai pigs. The results verify changes in adipocyte subpopulations when pigs have higher intramuscular fat, either genetically or diet-induced. Targeted examination using cell-cell communication network analysis revealed associations with high intramuscular fat with fibro-adipogenic progenitors (FAPs). The authors then conclude that conjugated linoleic acid induces FAPs towards adipogenic commitment. Specifically, they show that linoleic acid stimulates FAPs to become SCD1/DGAT2+ adipocytes via JNK signaling. The authors conclude that their findings demonstrate the effects of conjugated linoleic acid on skeletal muscle fat formation in pigs, which could serve as a model for studying human skeletal muscle diseases.

      Strengths:

      The comprehensive data analysis provides information on conjugated linoleic acid effects on pig skeletal muscle and organ function. The notion that linoleic acid induces skeletal muscle composition and fat accumulation is considered a strength and demonstrates the effect of dietary interactions on organ remodeling. This could have implications for the pig farming industry to promote muscle marbling. Additionally, these data may inform the remodeling of human skeletal muscle under dietary behaviors, such as elimination and supplementation diets and chronic overnutrition of nutrient-poor diets. However, the biggest strength resides in thorough data collection at the single nuclei level, which was extrapolated to other types of Chinese pigs.

      Weaknesses:

      Although the authors compiled a substantial and comprehensive dataset, the scope of cellular and molecular-level validation still needs to be expanded. For instance, the single nuclei data suggest changes in myofiber type after linoleic acid supplementation, but these findings need more thorough validation. Further histological and physiological assessments are necessary to address fiber types and oxidative potential. Similarly, the authors propose that linoleic acid alters adipocyte populations, FAPs, and preadipocytes; however, there are limited cellular and molecular analyses to confirm these findings. The identified JNK signaling pathways require additional follow-ups on the molecular mechanism or transcriptional regulation. However, these issues are discussed as potential areas for future exploration. While various individual studies have been conducted on mouse/human skeletal muscle and adipose tissues, these have only been briefly discussed, and further investigation is warranted. Additionally, the authors incorporate two pig models into their results, but they only examine one muscle group. Exploring whether other muscle groups respond similarly or differently to linoleic acid supplementation would be valuable. Furthermore, the authors should discuss how their results translate to human and pig nutrition, such as the desirability and cost-effectiveness for pig farmers and human diets high in linoleic acid. Notably, while the single nuclei data is comprehensive, there needs to be a statement on data deposition and code availability, allowing others access to these datasets.

      Thanks for your suggestion!

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      The authors have discussed and provided some experimental evidence to address the related issues to help justify their conclusions. The reviewer believes that authors should deposit their single-cell sequencing data and code for the broader research community.

      Thank you! We have uploaded our raw dataset in the Genome Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids Res 2022), China National Center for Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences and data availability part has been updated (line 575-579).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study investigates the role of macrophage lipid metabolism in the intracellular growth of Mycobacterium tuberculosis. By using a CRISPR-Cas9 gene-editing approach, the authors knocked out key genes involved in fatty acid import, lipid droplet formation, and fatty acid oxidation in macrophages. Their results show that disrupting various stages of fatty acid metabolism significantly impairs the ability of Mtb to replicate inside macrophages. The mechanisms of growth restriction included increased glycolysis, oxidative stress, pro-inflammatory cytokine production, enhanced autophagy, and nutrient limitation. The study demonstrates that targeting fatty acid homeostasis at different stages of the lipid metabolic process could offer new strategies for host-directed therapies against tuberculosis.

      The work is convincing and methodologically strong, combining genetic, metabolic, and transcriptomic analyses to provide deep insights into how host lipid metabolism affects bacterial survival.

      Strengths:

      The study uses a multifaceted approach, including CRISPR-Cas9 gene knockouts, metabolic assays, and dual RNA sequencing, to assess how various stages of macrophage lipid metabolism affect Mtb growth. The use of CRISPR-Cas9 to selectively knock out key genes involved in fatty acid metabolism enables precise investigation of how each step-lipid import, lipid droplet formation, and fatty acid oxidation affect Mtb survival. The study offers mechanistic insights into how different impairments in lipid metabolism lead to diverse antimicrobial responses, including glycolysis, oxidative stress, and autophagy. This deepens the understanding of macrophage function in immune defense.

      The use of functional assays to validate findings (e.g., metabolic flux analyses, lipid droplet formation assays, and rescue experiments with fatty acid supplementation) strengthens the reliability and applicability of the results.

      By highlighting potential targets for HDT that exploit macrophage lipid metabolism to restrict Mtb growth, the work has significant implications for developing new tuberculosis treatments.

      Weaknesses:

      The experiments were primarily conducted in vitro using CRISPR-modified macrophages. While these provide valuable insights, they may not fully replicate the complexity of the in vivo environment where multiple cell types and factors influence Mtb infection and immune responses.

      We thank the reviewer for pointing this out. We acknowledge that our in vitro system may indeed not fully replicate the complex in vivo environment given of what is becoming to light of macrophage heterogenous responses to Mtb infection in whole animal models. We do believe, however, that the Hoxb8 in vitro model provides a powerful genetic tool to interrogate host-Mtb interactions using primary macrophages that represent the bone marrow-derived macrophage lineage.

      Reviewer #2 (Public review):

      Summary:

      Host-derived lipids are an important factor during Mtb infection. In this study, using CRISPR knockouts of genes involved in fatty acid uptake and metabolism, the authors claim that a compromised uptake, storage, or metabolism of fatty acid restricts Mtb growth upon infection. Further, the authors claim that the mechanism involves increased glycolysis, autophagy, oxidative stress, pro-inflammatory cytokines, and nutrient limitation. The authors also claim that impaired lipid droplet formation restricts Mtb growth. However, promoting lipid droplet biogenesis does not reverse/promote Mtb growth.

      Strengths:

      The strength of the study is the use of clean HOXB8-derived primary mouse macrophage lines for generating CRISPR knockouts.

      Weaknesses:

      There are many weaknesses of this study, they are clubbed into four categories below

      (1) Evidence and interpretations: The results shown in this study at several places do not support the interpretations made or are internally contradictory or inconsistent. There are several important observations, but none were taken forward for in-depth analysis.

      a) The phenotypes of PLIN2<sup>-/-</sup>, FATP1<sup>-/-</sup>, and CPT-/- are comparable in terms of bacterial growth restriction; however, their phenotype in terms of lipid body formation, IL1B expression, etc., are not consistent. These are interesting observations and suggest additional mechanisms specific to specific target genes; however, clubbing them all as altered fatty acid uptake or catabolism-dependent phenotypes takes away this important point.

      We thank the reviewer for highlighting this. Our focus was on assessing the impact of manipulating lipid homeostasis in macrophages at several stages and the consequences this has on the intracellular growth of Mtb. Throughout the manuscript (abstract, results and discussion), we have continuously emphasized that interfering with lipid handling at several stages in macrophages results in both conserved and divergent antimicrobial responses against intracellular Mtb.

      b) Finding the FATP1 transcript in the HOXB8-derived FATP1<sup>-/-</sup> CRISPR KO line is a bit confusing. There is less than a two-fold decrease in relative transcript abundance in the KO line compared to the WT line, leaving concerns regarding the robustness of other experiments as well using FATP1<sup>-/-</sup> cells.

      CRISPR-Cas9 targeting of genes with single sgRNAs as is the case with our mutants generates insertions and deletions (INDELs) at the CRISPR cut site. These INDELs do not block mRNA transcription totally, and this is widely reported in the field.  Because of this, quantitative RT-PCR or RNA-seq methods are not routinely used to verify CRISPR knockouts as they are not sensitive enough to identify INDELs. We provide INDEL quantification and knockout efficiencies by ICE analysis in supplemental file 1 for all the mutants used in the study. We also demonstrate protein depletion by western blot and flow cytometry for all the mutants (Figure 1 - figure supplement 1). Only mutants with greater than >90% protein depletion were used for subsequent characterization.

      c) No gene showing differential regulation in FATP<sup>-/-</sup> macrophages, which is very surprising.

      We assume the reviewer is referring to the Mtb transcriptome response in FATP1<sup>-/-</sup> macrophages, which we agree was unexpected.  However, we saw a significant compensatory response in the host cell (at transcriptional level) in FATP1<sup>-/-</sup> macrophages as evidenced by an upregulation of other fatty acid transporters (Figure 5 - figure supplement 1, now Figure 6 - figure supplement 1). We believe that these compensatory responses could, in part, alleviate the stresses the bacteria experience within the cell. We discuss this point in the manuscript.

      d) ROS measurements should be done using flow cytometry and not by microscopy to nail the actual pattern.

      We thank the reviewer for the suggestion. However, confocal imaging is also widely used to measure ROS with similar quantitative power and individual cell resolution (PMID: 32636249, 35737799).

      (2) Experimental design: For a few assays, the experimental design is inappropriate

      a) For autophagy flux assay, immunoblot of LC3II alone is not sufficient to make any interpretation regarding the state of autophagy. This assay must be done with BafA1 or CQ controls to assess the true state of autophagy.

      We would like to point out that monitoring LC3I to LC3II conversion by western blot, confocal imaging of LC3 puncta and qPCR analysis of autophagy related genes are all validated assays for monitoring autophagic flux in a wide variety of cells. We refer the reviewer to the latest extensive guidelines on the subject (PMID: 33634751). Furthermore, Bafilomycin A and chloroquine are not specific inhibitors of autophagy and therefore are of limited value as controls. BafA is an inhibitor of the proton-ATPase apparatus and can indirectly impact autophagy through activity on the Ca-P60A/SERCA pathway. Chloroquine impacts vacuole acidification, autophagosome/lysosome fusion and slows phagosome maturation. So, while BafA and chloroquine will reduce autophagy; their effects are pleotropic and their impact on Mtb is unknown.

      b) Similarly, qPCR analyses of autophagy-related gene expression do not reflect anything on the state of autophagy flux.

      See our response above.

      (3) Using correlative observations as evidence:

      a) Observations based on RNAseq analyses are presented as functional readouts, which is incorrect.

      We are not entirely sure where we used our RNA-seq data sets as functional readouts. We used our transcriptome data to provide a preliminary identification of anti-microbial responses in the mutant macrophages infected with Mtb and we mention this at the beginning of the RNA-seq results sections. Where applicable, we followed up and confirmed the more compelling RNA-seq data either by metabolic flux analyzes, qPCR, ROS measurements, and quantitative imaging.

      b) Claiming that the inability to generate lipid droplets in PLIN2<sup>-/-</sup> cells led to the upregulation of several pathways in the cells is purely correlative, and the causal relationship does not exist in the data presented.

      It was not our intention to infer causality. We have re-written the beginning of the sentence, and it now starts with “Meanwhile, Mtb infection of PLIN2<sup>-/-</sup> macrophages led to upregulation” which hopefully eliminates any association to causality.

      (4) Novelty: A few main observations described in this study were previously reported. That includes Mtb growth restriction in PLIN2 and FATP1 deficient cells. Similarly, the impact of Metformin and TMZ on intracellular Mtb growth is well-reported. While that validates these observations in this study, it takes away any novelty from the study.

      To the best of our knowledge, Mtb growth restrictions in PLIN2 and FATP1 deficient macrophages have not been reported elsewhere. To the contrary, PLIN2 knockout macrophages obtained from PLIN2 deficient mice have been reported to robustly support Mtb replication (PMID: 29370315). We extensively discuss these discrepancies in the manuscript. We also discuss and cite appropriate references where Mtb growth restriction for similar macrophage mutants have been reported (CD36<sup>-/-</sup> and CPT2<sup>-/-</sup>). Our aim was to carry out a systematic myeloid specific genetic interference of fatty acid import, storage and catabolism to assess the effect on Mtb growth at all stages of lipid handling instead of focusing on one target. In the chemical approach, we used TMZ and Metformin deliberately because they had already been reported as being active against intracellular Mtb and we wished to place our data in the context of existing literature.  These studies have been referenced extensively in the text.

      (5) Manuscript organisation: It will be very helpful to rearrange figures and supplementary figures.

      New figures have been added, and existing ones have been re-arranged where necessary. See our responses to recommendations for authors.

      Reviewer #3 (Public review):

      Summary:

      This study provides significant insights into how host metabolism, specifically lipids, influences the pathogenesis of Mycobacterium tuberculosis (Mtb). It builds on existing knowledge about Mtb's reliance on host lipids and emphasizes the potential of targeting fatty acid metabolism for therapeutic intervention.

      Strengths:

      To generate the data, the authors use CRISPR technology to precisely disrupt the genes involved in lipid import (CD36, FATP1), lipid droplet formation (PLIN2), and fatty acid oxidation (CPT1A, CPT2) in mouse primary macrophages. The Mtb Erdman strain is used to infect the macrophage mutants. The study, reveals specific roles of different lipid-related genes. Importantly, results challenge previous assumptions about lipid droplet formation and show that macrophage responses to lipid metabolism impairments are complex and multifaceted. The experiments are well-controlled and the data is convincing.

      Overall, this well-written paper makes a meaningful contribution to the field of tuberculosis research, particularly in the context of host-directed therapies (HDTs). It suggests that manipulating macrophage metabolism could be an effective strategy to limit Mtb growth.

      Weaknesses:

      None noted. The manuscript provides important new knowledge that will lead mpvel to host-directed therapies to control Mtb infections.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The study presents compelling and well-supported conclusions based on a solid body of evidence. However, the clarity of several figures could be improved for better understanding.

      (1) In Figure 1, panels B and C are referenced incorrectly in the text.

      We thank the reviewer for identifying the error. This has now been corrected

      (2) Figures 2 and S2 would benefit from being combined or reorganized to display the data related to infected and uninfected cells together, making it easier for the reader to interpret.

      We thank the reviewer for the suggestion. However, we believe that combining the two figures would further complicate the merged figure making it even more difficult to interpret. We decided to highlight the mutant macrophage’s responses upon Mtb infection in Figure 2 and put the uninfected data sets in supplementary information given that the OCR and ECAR trends were similar and as expected in both infected and uninfected states.

      (3) Figure 3 is mislabeled, with four panels shown in the figure, but only panels A and B are mentioned in both the text and the figure legend.

      We thank the reviewer for the observation. Figure 3 has been extensively revised. We have included new blots, statistical comparisons and a corresponding new supplementary figure (Figure 3 - figure supplement 1). We have verified that the figure panels are labelled correctly and appropriately referenced in the manuscript text.

      (4) Figure 5 is overly complex and difficult to interpret. Simplifying the figure, possibly by reducing the amount of data or breaking it into more digestible parts, would enhance its readability.

      We thank the reviewer for the suggestion. We have separated the figure into two parts which are now Figure 5 for the PCA and Venn diagrams and Figure 6 for the pathway enrichment figure panels. We have increased the resolution of both figures in the revised manuscript to improve readability.

      (5) Panel 6A is not particularly informative and could either be omitted with a more detailed explanation provided in the text, or replaced with a clearer visual representation, such as Venn diagrams, to improve data visualization.

      We thank the reviewer for the suggestion. We have removed Figure 6A given that detailed explanation of the panel is already available in the manuscript text.

      (6) Additionally, on line 309, the word "to" is missing before "generate".

      We thank the reviewer for identifying this. This sentence has now been re-written to address some unintended inferences of causation in line with recommendations from reviewer 2.

      Reviewer #2 (Recommendations for the authors):

      (1) Manuscript Organisations: The manuscript is very poorly organised. Supplemental figures are labelled very unconventionally, and that creates much confusion in following the manuscript. Some of the results in the supplementary figures could be easily kept in the main figures, as it is difficult to compare plots between the main figures and the supple figures. The results of RNAseq experiments are impossible to follow with very small fonts. Overall, the figures are very casually organised and can certainly be improved.

      We would like to clarify that supplemental figures are labelled and organized as is in line with the eLife formatting of supplemental figures. We deliberately put some redundant figures like Figure 2 - figure supplement 1 in supplementary information (see our response to reviewer 1 recommendations on the same). We have split the RNA-seq Figure 5 into two separate figures (now Figure 5 and 6) and increased their resolution to improve readability.

      (2) Figure 3: Among the KO lines, only PLIN2<sup>-/-</sup> had a higher HIF1a level before infection. Infection surely leads to higher levels across the three cases.

      We have generated replicate western blots and provide statistical quantitation for both HIF1a, AMPK and pAMPK. Figure 3 has now been revised extensively, replicate blots are in Figure 3 - figure supplement 1. We have updated the text to reflect the reviewer observation which was also consistent with our statistical quantification.

      (3) pAMPK blots are of very poor quality. Without quantification, the trend mentioned in the text is not clearly visible.

      We have provided two more replicate blots for AMPK/pAMPK and provide statistical quantification as described above.

      (4) Line 230: Regarding autophagy flux, neither the data suggest what is interpreted nor is this experiment correctly done. LC3 WB and autophagy gene qPCR: Unfortunately, LC3 WB, the way it was done, does not tell anything about the state of autophagy in these cells. A very mild LC3II increase is noted in CPT2<sup>-/-</sup> cells upon infection; the rest of the others do not show any change. This assay is not done correctly. To interpret LC3II WB, one needs to include the Bafilomycin A1 control, usually +Baf and -Baf run in the adjacent wells in the gel. Similarly, qPCR results are not indicative of any increase in autophagy. Regulation of ATG7, MAP1LC3B, and ULK1 is more at the post-translational level than the transcriptional level.

      We have provided an additional replicate blot together with statistical quantification of LC3II/LC3I ratios in the revised Figure 3 - figure supplement 2. Our quantifications remain consistent with our prior assertations in the manuscript text. See our response in the public review section concerning autophagy assays and the use of Baf or chloroquine as controls.

      (5) Exogenous oleate fails to rescue the Mtb icl1-deficient mutant in FATP1<sup>-/-</sup>, PLIN2<sup>-/-</sup> and CPT2<sup>-/-</sup> macrophages: this result is confusing. Lipid uptake and metabolism have been the central players so far; however, here, the phenotypes of FATP1 and CPT2 in terms of lipid body accumulation are very distinct. Therefore, the assessment that Mtb growth inhibition is due to factors other than limited access to fatty acid is not consistent with the theme of the study.

      Nutrient limitation is a distinct transcriptional signature of Mtb, at least in PLIN2<sup>-/-</sup> macrophages (Figure 7). We used the oleate supplementation assay with the Mtb Dicl1 mutant to assess whether nutrient restriction was the sole anti-microbial pathway against Mtb in the knockout macrophages. This would have been the case (to a certain extent) if the growth of the Mtb Dicl1 mutant was rescuable upon addition of exogenous oleate in the knockout macrophages. Our data clearly shows that this is not the case and that in addition to nutrient limitation, interference with lipid processing results in several other macrophage anti-microbial responses against the bacteria. We extensively discuss these points in the abstract, results and discussion sections of the manuscript.

      (6) Line 309: "Meanwhile, inability generate lipid droplets in Mtb infected PLIN2<sup>-/-</sup> macrophages led to upregulation in pathways involved in ribosomal biology, MHC class 1 antigen presentation, canonical glycolysis, ATP metabolic processes and type 1 interferon responses (Figure 5C, Supplementary file 3)." This is just a correlative observation. However, it is mentioned here as a causal mechanism.

      We have revised this sentence to remove any unintended inference of causation.

      (7) IL-1b is upregulated in FATP-/- macrophages, no effect in CPT2<sup>-/-</sup> macrophages, but downregulated in PLIN2<sup>-/-</sup> macrophages. Moreover, this effect is very transient, and by 24 hours, all these differences are lost. This suggests the mechanism of action, as their pro-bacterial function shown in Figure 1, is very distinct for different proteins, and FA metabolism is probably not the common denominator across these phenotypes.

      We agree with the reviewer, and we extensively discuss this in the manuscript text (results and discussion). Clearly, they are shared anti-microbial responses across the mutants, but they are also points of divergence. We would like to further clarify that pro-inflammatory responses (IL-1b or IFN-B) in Mtb infected macrophages show a biphasic early upregulation (up to 8 hours of infection) followed by a rapid resolution phase (24-48 hours post infection). This is well reported in the literature (PMID: 30914513). It is common for pro-inflammatory gene expression differences to be temporary lost during the resolution phase (PMID: 30914513, 39472457). IL-1b expression profiles return to the 4-hour equivalent profile in Mtb infected FATP1<sup>-/-</sup> and PLIN2<sup>-/-</sup> macrophages 4 days post infection (Figure 6A, Figure 6 - figure supplement 2B, Supplementary file 2)

      (8) It is very surprising that FATP-/- macrophages do not show any change in Mtb gene expression. The robustness of this experiment and analysis appears doubtful, given that the phenotype in terms of bacterial growth was clean.

      See our response to this comment in the public reviews section

      (9) Figure 5, Supplementary Figure 1: Among the FA transporters, authors also show data for FATP1. I am surprised to see FATP1 expression levels in the FATP1<sup>-/-</sup> cells. This puts into doubt every dataset using FATP-/- cells in this study.

      See our response to this comment in the public reviews section

      (10) Unfortunately, with the kind of evidence presented, it is far-fetched to claim that PLIN2<sup>-/-</sup> macrophages restrict Mtb growth by increasing ROS production. There is no evidence for this statement. The MFI units in Figure 6, Supplementary 1 are too small to extract meaningful interpretations. Moreover, the data appears to be arrived at by combining multiple technical replicates. Usually, flow cytometry data are more reliable for CellROX assays. Microscopy is not the technique of choice for this assay.

      We would like to point out that MFIs are arbitrary units set to predetermined reference points. In our case, the reference was background fluorescence in CellROX unstained cells and cells stained with CellROX equivalent fluorophore conjugated isotype antibodies. We are not entirely sure what the reviewer means by “small” in these contexts. And the data is not entirely from technical replicates. Reported MFIs are from three independent repeats with MFI reads of at least 30 cells per replicate. We have added this clarification in Figure 6 - figure supplement 1 legend, now Figure 7 - figure supplement 1. See our response in the public reviews section on the use of confocal microcopy to image and quantify ROS. Furthermore, the Mtb transcriptional response in PLIN2<sup>-/-</sup> and CPT2<sup>-/-</sup> macrophages is clearly indicative of increased oxidative stresses (Figure 7).

      (11) The CFU results with Metformin and TMZ are on the expected lines, as published earlier by others. FATP1 In data is good and aligned with the knockout phenotype.

      We thank the reviewer for the note.

      (12) Western blots, when interpreted for quantitative differences, must be quantified, and data should be represented as plots with statistical analysis.

      Replicate blots have been provided and statistical quantifications performed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public reviews

      Reviewer #1 (Public review):

      Overall I find the evidence very well presented and the study compelling. It offers an important new perspective on the key properties of neoblasts. I do have some comments to clarify the presentation and significance of the work.

      We thank the reviewer for the positive feedback and plan to improve the presentation of the work.

      Reviewer #2 (Public review):

      However, the absence of a cell-cell feedback mechanism during colony growth and the likelihood of the difference needs to be clarified. Is there any difference in interpreting the results if this mechanism is considered?

      We will improve the description of the model assumptions and the interpretation of the data on the basis of these assumptions.

      Although hnf-4 and foxF have been silenced together to validate the model, a deeper understanding of the tgs-1+ cell type and the non-significant reduction of tgs-1+ neoblasts in zfp-1 RNAi colonies is necessary, considering a high neural lineage frequency.

      We will improve the analysis of this result in light of the experimentally determined frequency of the tgs-1+ neoblast population.

      Recommendations for the authors

      Reviewing Editor Comments:

      After consultation, we have compiled a list of the key changes to be made to the manuscript, along with reviewer-specific recommendations to follow.

      (1) Include a section that explicitly describes the assumptions and limitations of the study, particularly with respect to the following assumptions:

      We thank the reviewers for the comment. We added a description of the model assumptions in the methods section “Assumptions underlying neoblast colony growth model”.

      a) All known types of specialized neoblasts cycle at the same rate (see points from Reviewer 1).

      We thank the reviewers for the comment. The current data used to estimate τ (Lei et al., Dev Cell, 2016) does not allow the direct estimation of individual cycling behaviors. Consequently, we assume that all specialized neoblasts cycle at the same average rate, a simplification supported by the model's accurate prediction of colony growth.

      b) The assumption that any FSTF-like gene would behave like zfp1 or foxF and hnfA genes. The manuscript does not mention that there may be fundamental differences among these different FSTFs that could be uncovered by future work. A strong addition to the paper would be to test other epithelial genes (e.g. p53, chd4, egr5) to show reproducible behavior within a single lineage.

      We thank the reviewers for the comment. Colony size reduction following inhibition of Smed-p53 and failure to produce epidermal progenitors is strongly supported by previous analysis (Wagner et al., Cell Stem Cell, 2012). We refer to this observation in the paper in the section titled: “Inhibition of zfp-1 does not induce overexpression of other lineages in homeostasis”. We added the following sentence to the discussion (Line 460-462): Interestingly, suppression of Smed-p53, a TF expressed in neoblasts and required for epidermal cell production, has resulted in a similar reduction in colony size (Wagner et al., Cell Stem Cell, 2012).

      Of note, Chd4 expression is not limited to specialized neoblasts or to a specific lineage (Scinome et al., Development, 2010), and therefore its inhibition likely has a more complex outcome than an effect on a single lineage. Furthermore, egr-5 is not expressed in neoblasts (Tu et al, eLife, 2015), making this experimental condition more challenging to examine in the context of neoblast colonies at the time points assessed in this study.

      c) The fact that the data used to feed the model relies on radiated animals which are likely to have altered cell cycle rates compared to unirradiated animals (see comment by Reviewer 1). Of note, the model predicts a steady increase in colony size, but colony size does not change between 9dpi and 12dpi.

      We thank the reviewers for the comment. The colony size in control animals increased between 9 and 12 dpi (Fig 3B), as predicted by the model. In zfp-1 (RNAi) animals, the median colony size has also increased over this period, at a slower rate, which we attribute to the increase in q. We attribute the unchanged average colony size to an increase in the frequency of cells failing to proliferate, because of selection of a fate they cannot fully differentiate into.

      d) In light of both reviewers' comments about colony expansion vs. feedback, the authors should discuss how predicted changes to division frequencies might change as homeostasis is reached, or explain how their model accounts for the predicted rate differences under homeostatic conditions in which overall neoblast numbers do not change. Can the model estimate when this transition might occur?

      We thank the reviewers for the comment. Our colony assays are constrained by the animals survival following sub-total irradiation (16 to 20 days). In this timeframe, the neoblast population is overwhelmingly smaller in comparison to non-irradiated animals. Therefore, the animals do not reach homeostasis during the experiment, and the model does not allow to estimate the time the system would need to return to homeostasis.

      (2) In Figure 2D, the assumption is that these adjacent smedwi-1+ cells are sisters. Previous data analyzing this relied on EdU or H3P staining to show a shared division history. When these images were collected is therefore extremely critical to include (the methods suggest 7, 9, or 12 days). The authors should justify why they believe that these adjacent cells are derived from a single neoblast that has divided only once.

      We thank the reviewers for the comment. The images were collected at 7 dpi. We modified the figure legend and the associated methods to include this information. At this early time point, smedwi-1+ cell dyads are spatially separated from other neighboring cells, suggesting that they are the product of a single cell division. Importantly, our data is in complete agreement with previous estimates of symmetric renewal division rate (Raz et al., Cell Stem Cell, 2021; Lei et al, Developmental Cell, 2016).

      (3) Clarify the wording 'pre-selected' in the abstract as described by Reviewer 1.

      We thank the reviewers for the comment, and for clarity we replaced the wording “pre-select” with “select”. 

      (4) Experimental details that are important to the interpretation should be added. For example, how is belonging to a colony defined? This is important because some of the data (e.g. Figure S1A: similar numbers of smedwi-1+ cells are observed at 2dpi and 4dpi, but 4dpi is considered a colony whereas 2dpi is not). The timing of quantification should be included in each figure (it is missing in Figure S2, and Figure 3C and 3D). How the authors distinguish biological vs technical replicates is not mentioned.

      We thank the reviewers for the comment. Subtotal irradiation may result in formation of a spatially-isolated cluster of neoblasts that is not distributed throughout the animal (Wagner et al., Science, 2011). This localized cluster of neoblasts is defined as a neoblast colony (Wagner et al., Science, 2011; Wagner et al., Cell Stem Cell, 2012). The small number of high smedwi-1+ cells observed at 4 dpi in our experiments aligns with this definition (Fig S1A). By contrast, the low smedwi-1 expression detected across the animal 2 dpi does not fit this definition and likely reflects remnants of dying neoblasts resulting from irradiation. The following text was added to the figure legend: “isolated cells expressing low levels of smedwi-1+ were scattered in the planarian parenchyma, likely reflecting remnants of dying neoblasts”.

      (5) Figure 5F appears to use SMEDWI-1 antibody (based on capital letters and increased signal in the brain). Is this the case? The methods do not mention the use of a SMEDWI-1 antibody, and the text indicates that these are progenitors, but SMEDWI-1 protein is well known to not mark neoblasts. If the antibody was used, the authors should not claim that these are neoblasts.

      We thank the reviewers for the comment. The SMEDWI-1 antibody used in the experiments described in Figure 5F indeed labels neoblasts and their progeny (Guo et al., Developmental cell, 2006). The methods section “Immunofluorescence combined with FISH” details the labeling procedure, which combines FISH and IF using this antibody.

      All microscopy images are difficult to see. Perhaps this is because they are formatted as CMYK images. They should be converted to RGB format to make them appear less dull.

      We thank the reviewer for the comment. Improved version of the figures has now been uploaded.

      The terminology used in Figure 5 to describe upregulation should not be "overexpression".  We thank the reviewers for the comment.

      We changed the terminology to “upregulated”.

      Reviewer #1 (Recommendations for the authors):

      I think the authors should include a section that explicitly lays out the assumptions and limitations of the study. For example, I believe that determining tau requires assuming that all different types of specialized neoblasts cycle at the same rates. Also there is the assumption that any FSTF-like gene would behave like zfp1 or foxF and hnfA genes. It seems to remain possible that a future study could find that a subset of FSTFs might indeed exert "either/or" decisions in fating, just not the particular genes under investigation here.

      We thank the reviewer for the comment. We added a description of the model assumptions in the methods section.

      In the abstract, the wording "pre-selected" is somewhat puzzling to me. I would interpret a preselection as a process that defines the next specified state prior to its manifestation. Instead, and as I understand the authors argue this as well, the study provides good evidence that the determination mechanism is random in that subsequent neoblast choices do not likely depend on prior states. So I would suggest changing that wording.

      We thank the reviewer for the comment. We replaced “pre-select” with “select”

      Is it possible to determine the uncertainty in measuring tau the cell cycle time and would this have an impact on subsequent modeling?

      We thank the reviewers for the comment. The current data that was used to estimate tau (Lei et al., Dev Cell, 2016) does not allow us to directly estimate the uncertainty in measuring τ.

      For lines 154-164 I would suggest doing a little more to explicitly write out the logic of determining the growth constants within the main text and not just in methods, for ease of reading.

      We thank the reviewer for the comment, and added explanations for how we determined the growth constant in the text. The text now reads (lines 160-166): “Considering an average cell cycle length of 29.7 hours, we calculated the value of q using the following approach: the probabilities of all cell division outcomes must sum to 1. Our experimental data showed that symmetric renewal (p) and asymmetric division (a) occur at equal rates (i.e., p = a). By fitting these parameters to the experimental data, we determined that the difference between the probabilities of symmetric renewal and symmetric differentiation (i.e., p - q) was = 0.345 (Fig 2E, S1D-E). Therefore, with these criteria, we estimated the probabilities of cell division outcomes in the colony as p = 0.45, a = 0.45, and q = 0.1 (Fig 2G; Methods).”

      Line 192 why does post-mitotic progeny number linearly relate to neoblast number? In clones, a change in q has an exponential effect. I feel like I am missing something.

      We thank the reviewer for the comment. In colonies, 50% of cell divisions result in the production of post-mitotic progeny (asymmetric division). Therefore, the number of produced progenitors in a given cell cycle is linearly correlated with the number of neoblasts. This statement is in line with previous analysis of planarian colony size (Wagner et al., Cell Stem Cell, 2012).

      Line103 it also seems possible, although less likely, that the specified state is not fixed within a given cell cycle and could be that cells that try to switch into zeta-neoblasts mid-cell cycle arrest in proliferation etc just for that time.

      We thank the reviewer for the comment and agree that this is a possibility. However, our observations suggest that incorporating this factor into the model is unnecessary for accurately predicting colony size.

      In terms of the feedback mechanism proposed to operate in homeostasis, I think in the case of zfp-1 it is quite likely that loss of epidermal differentiation results in wound responses (this phenomenon has been documented in egr-5 RNAi in Tu et al 2015 I believe). This could play out differently in the clone assay because the effects of sublethal irradiation on this process would predominate in both control versus zfp1(RNAi) conditions.

      We thank the reviewer for the comment. Our RNA-seq analysis following zfp-1 inhibition did not show overexpression of injury-induced genes at an early time point (6 days; Fig. 5B-C). However, an increase in cycling cells was detected much earlier via EdU labeling (3 days; Fig. 5D). In the case of egr-5 suppression, Tu et al. analyzed injury-induced gene expression at a later stage (21 days of RNAi), where they found significant epidermal defects (see Fig. 5C in Tu et al.). We agree that sublethal irradiation effects likely predominate in colony analysis for both control and zfp-1 (RNAi) animals. In homeostasis, additional factors likely influence cell proliferation and differentiation.

      It seems likely that some of the differences noted between homeostasis versus clone growth could ultimately arise from the different growth parameters under each setting. Could the rate parameters be estimated from prior data in homeostasis as well? It seems to me that with the framework the authors use, homeostasis must involve a net zero change to neoblast abundance (also shown by Wagner 2011 by the sigmoidal curve of neoblast abundance at the endpoint of clone expansion). Therefore, in these conditions p=q by definition. Experimental evidence from Lei 2016 (Figure S7M) suggests asymmetric divisions and symmetric renewing divisions are about equally abundant (5/12 41% sym renewing vs 7/12 69% asymmetric renewing). Therefore, under homeostasis, there would be an estimated p=q=0.3 and a=0.4. Compared to clone growth conditions then, in homeostasis, it seems that roughly the rate of symmetric renewal decreases and the rate of symmetric differentiation also increases. I wonder, could this kind of difference potentially account for the differences between homeostasis versus clone expansion settings? It is also worth noting that the clone expansion context has been used as a sensitized genetic background for identifying effects of gene inhibition on neoblast self-renewal, so perhaps the reason this works is that the rates of selfrenewal are relatively less in homeostasis so that clone expansion represents a case where there is greater demand for self-renewal.

      We thank the reviewer for the comment. We agree that under homeostatic conditions, where the population size remains stable, the average probability of symmetric renewal matches the average probability of symmetric differentiation or elimination. By contrast, during colony expansion, the probability of symmetric renewal exceeds that of symmetric differentiation or elimination. The differences in response to a lineage block between homeostasis and colony expansion can have multiple interpretations. However, data from homeostatic animals does not permit the analysis of individual neoblasts or their specific responses to a lineage block. Consequently, we cannot determine whether the proliferative response following the lineage block during homeostasis is a direct response to the lineage block or an indirect effect resulting from changes in other neoblasts. We discuss these possibilities further in lines 472 - 484.

      In terms of the memory effect, I recall some arguments presented in the Raz 2021 study that were consistent with a slight memory for neoblast specification being retained. I believe this was a minor point from detecting a slightly higher likelihood of identifying 2-cell clones that both took on prog1+ identity compared to the population average. If this is the case, it may be worth the authors commenting on reconciling those observations with their model.

      We thank the reviewer for their comment. Raz et al. (Cell Stem Cell, 2021) reported that in the asymmetric division of a zeta-neoblast, which generates a prog-2+ cell and a neoblast, there was a slightly higher observed frequency of zfp-1 expression in the neoblast compared to the expected rate (Expected: 32%, Observed: 44%). This small increase may reflect a mild memory effect, experimental variability, or both. However, statistical analysis using Fisher's exact test yielded a non-significant p-value (p = 0.1), suggesting that this difference could be attributed to experimental variability. Other data from Raz et al., such as lineage representation in early colonies, also did not show significant memory effects, indicating that any such effects, if present, are minimal and difficult to detect. Therefore, while we do not, and cannot, rule out the presence of minor memory effects, we expect that effects of this magnitude will have minimal impact on our model.

      Reviewer #2 (Recommendations for the authors):

      Figure 2C and 2D:

      Please provide the specific time points for the data presented.

      We thank the reviewer for the comment. The information was added to the figure legend.

      Colony growth and homeostasis:

      It would be beneficial to estimate a time point at which colony growth transitions to a model with a cell-cell feedback mechanism, similar to that observed in homeostasis. This would help in understanding the dynamics and timing of these processes.

      We thank the reviewers for the comment. Our colony assays were constrained by the animals survival following sub-total irradiation (16 to 20 days). Neoblast numbers are substantially reduced compared to unirradiated animals, preventing us from determining the time point at which homeostasis is achieved.

      Methods:

      μl should be μL  

      The text was changed accordingly.

      Line 526: H2O should be H2O

      The text was changed accordingly.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This manuscript describes the role of PRDM16 in modulating BMP response during choroid plexus (ChP) development. The authors combine PRDM16 knockout mice and cultured PRDM16 KO primary neural stem cells (NSCs) to determine the interactions between BMP signaling and PRDM16 in ChP differentiation.

      They show PRDM16 KO affects ChP development in vivo and BMP4 response in vitro. They determine genes regulated by BMP and PRDM16 by ChIP-seq or CUT&TAG for PRDM16, pSMAD1/5/8, and SMAD4. They then measure gene activity in primary NSCs through H3K4me3 and find more genes are co-repressed than co-activated by BMP signaling and PRDM16. They focus on the 31 genes found to be co-repressed by BMP and PRDM16. Wnt7b is in this set and the authors then provide evidence that PRDM16 and BMP signaling together repress Wnt activity in the developing choroid plexus.

      Strengths:

      Understanding context-dependent responses to cell signals during development is an important problem. The authors use a powerful combination of in vivo and in vitro systems to dissect how PRDM16 may modulate BMP response in early brain development.

      Main weaknesses of the experimental setup:

      (1) Because the authors state that primary NSCs cultured in vitro lose endogenous Prdm16 expression, they drive expression by a constitutive promoter. However, this means the expression levels are very different from endogenous levels (as explicitly shown in Supplementary Figure 2B) and the effect of many transcription factors is strongly dose-dependent, likely creating differences between the PRDM16-dependent transcriptional response in the in vitro system and in vivo.<br />

      We acknowledge that our in vitro experiments may not ideally replicate the in vivo situation, a common limitation of such experiments, our primary aim was to explore the molecular relationship between PRDM16 and BMP signaling in gene regulation. Such molecular investigations are challenging to conduct using in vivo tissues. In vitro NSCs treated with BMP4 has been used a model to investigate NSC proliferation and quiescence, drawing on previous studies (e.g., Helena Mira, 2010; Marlen Knobloch, 2017). Crucially, to ensure the relevance of our in vitro findings to the in vivo context, we confirmed that cultured cells could indeed be induced into quiescence by BMP4, and this induction necessitated the presence of PRDM16. Furthermore, upon identifying target genes co-regulated by PRDM16 and SMADs, we validated PRDM16's regulatory role on a subset of these genes in the developing Choroid Plexus (ChP) (Fig. 7 and Suppl.Fig7-8). Only by combining evidence from both in vitro and in vivo experiments could we confidently conclude that PRDM16 serves as an essential co-factor for BMP signaling in restricting NSC proliferation.

      (2) It seems that the authors compare Prdm16_KO cells to Prdm16 WT cells overexpressing flag_Prdm16. Aside from the possible expression of endogenous Prdm16, other cell differences may have arisen between these cell lines. A properly controlled experiment would compare Prdm16_KO ctrl (possibly infected with a control vector without Prdm16) to Prdm16_KO_E (i.e. the Prdm16_KO cells with and without Prdm16 overexpression.)

      We agree that Prdm16 KO cells carrying the Prdm16-expressing vector would be a good comparison with those with KO_vector. However, despite more than 10 attempts with various optimization conditions, we were unable to establish a viable cell line after infecting Prdm16 KO cells with the Prdm16-expressing vector. The overall survival rate for primary NSCs after viral infection is low, and we observed that KO cells were particularly sensitive to infection treatment when the viral vector was large (the Prdm16 ORF is more than 3kb).

      As an alternative oo assess vector effects, we instead included two other control cell lines, wt and KO cells infected with the 3xNLS_Flag-tag viral vector, and presented the results in supplementary Fig 2.  When we compared the responses of the four lines — wt, KO, wt infected with the Flag vector, KO infected with the Flag vector — to the addition and removal of BMP4, we confirmed that the viral infection itself has no significant impacts on the responses of these cells to these treatments regarding changes in cell proliferation and Ttr induction.

      Given that wt cells and the KO cells, with or without viral backbone infection behave quite similarly in terms of cell proliferation, we speculate that even if we were successful in obtaining a cell line with Prdm16-expressing vector in the KO cells, it may not exhibit substantial differences compared to wt cells infected with Prdm16-expressing vector.

      Other experimental weaknesses that make the evidence less convincing:

      (1) The authors show in Figure 2E that Ttr is not upregulated by BMP4 in PRDM16_KO NSCs. Does this appear inconsistent with the presence of Ttr expression in the PRDM16_KO brain in Figure1C?<br />

      The reviwer’s point is that there was no significant increase in Ttr expression in Prdm16_KO cells after BMP4 treatment (Fig. 2E), but there remained residule Ttr mRNA signals in the Prdm16 mutant ChP (Fig. 1C). We think the difference lies in the measuable level of Ttr expression between that induced by BMP4 in NSC culture and that in the ChP. This is based on our immunostaining expreriment in which we tried to detect Ttr using a Ttr antibody. This antibody could not detect the Ttr protein in BMP4-treated Prdm16_expressing NSCs but clearly showed Ttr signal in the wt ChP. This means that although Ttr expression can be significantly increased by BMP4 in vitro to a level measurable by RT-qPCR, its absolute quantity even in the Prdm16_expressing condition is much lower compared to that in vivo. Our results in Fig 1C and Fig 2E, as well as Fig 7B, all consistently showed that Prdm16 depletion significantly reduced Ttr expression in in vitro and in vivo.

      (2) Figure 3: The authors use H3K4me3 to measure gene activity. This is however, very indirect, with bulk RNA-seq providing the most direct readout and polymerase binding (ChIP-seq) another more direct readout. Transcription can be regulated without expected changes in histone methylation, see e.g. papers from Josh Brickman. They verify their H3K4me3 predictions with qPCR for a select number of genes, all related to the kinetochore, but it is not clear why these genes were picked, and one could worry whether these are representative.

      H3K4me3 has widely been used as an indicator of active transcription and is a mark for cell identity genes. And it has been demonstrated that H3K4me3 has a direct function in regulating transciption at the step of RNApolII pausing release. As stated in the text, there are advantages and disadvantages of using H3K4me3 compared to using RNA-seq. RNA-seq profiles all gene products, which are affected by transcription and RNA stability and turnover. In contrast, H3K4me3 levels at gene promoter reflects transcriptional activity. In our case, we aimed to identify differential gene expression between proliferation and quiescence states. The transition between these two states is fast and dynamic. RNA-seq may not be able to identify functionally relevant genes but more likely produces false positive and negative results. Therefore, we chose H3K4me3 profiling.

      We agree that transcription may change without histone methylation changes. This may cause an under-estimation of the number of changed genes between the conditions. 

      We validated 7 out of 31 genes (Wnt7b, Id3, Mybl2, Spc24, Spc25, Ndc80 and Nuf2). We chose these genes based on two critira: 1) their function is implicated in cell proliferation and cell-cycle regulation based on gene ontology analysis; 2) their gene products are detectable in the developing ChP based on the scRNA-seq data. Three of these genes (Wnt7b, Id3, Mybl2) are not related to the kinetochore. We now clarify this description in the revised text.

      (3) Line 256: The overlap of 31 genes between 184 BMP-repressed genes and 240 PRDM16-repressed genes seems quite small.

      This indicates that in addition to co-repressing cell-cycle genes, BMP and PRDM16 have independent fucntions. For example, it was reported that BMP regulates neuronal and astrocyte differentiation (Katada, S. 2021), while our previous work demonstrated that Prdm16 controls temporal identity of NSCs (He, L. 2021).

      (4) The Wnt7b H3K4me3 track in Fig. 3G is not discussed in the text but it shows H3K4me3 high in _KO and low in _E regardless of BMP4. This seems to contradict the heatmap of H3K4me3 in Figure 3E which shows H3K4me3 high in _E no BMP4 and low in _E BMP4 while omitting _KO no BMP4. Meanwhile CDKN1A, the other gene shown in 3G, is missing from 3E.

      The track in Fig 3G shows the absolute signal of H3K4me3 after mapping the sequencing reads to the genome and normaliz them to library size. Compare the signal in Prdm16_E with BMP4 and that in Prdm16_E without BMP4, the one with BMP4 has a lower peak. The same trend can be seen for the pair of Prdm16_KO cells with or without BMP4.  The heatmap in Fig. 3E shows the relative level of H3K4me3 in three conditions. The Prdm16_E cells with BMP4 has the lowest level, while the other two conditions (Prdm16_KO with BMP4 and Prdm16_E without BMP4) display a higher level. These two graphs show a consistent trend of H3K4me3 changes at the Wnt7b promoter across these conditions.

      (5) The authors use PRDM16 CUT&TAG on dissected dorsal midline tissues to determine if their 31 identified PRDM16-BMP4 co-repressed genes are regulated directly by PRDM16 in vivo. By manual inspection, they find that "most" of these show a PRDM16 peak. How many is most? If using the same parameters for determining peaks, how many genes in an appropriately chosen negative control set of genes would show peaks? Can the authors rigorously establish the statistical significance of this observation? And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.

      In our text, we indicated the genes containing PRDM16 binding peaks in the figures and described them as “Text in black in Fig. 6A and Supplementary Fig. 5A”. We will add the precise number “25 of these genes” in the main text to clarify it. To define a negative control set of genes, we will use BMP-only repressed 184-31 =153 genes (excluding PRDM16-BMP4 co-repressed), and of these 153 genes, we will determine how many have PRDM16 peaks in the E12.5 ChP data, say X. Then we will use binomial test to calculate p-value binom_test(25, 31, X/153, alternative=“greater).

      We are confused with the second part of the comment “And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.” If the reviewer meant why we didn’t sequence the material from sequential-ChIP or validate more taget genes, the reason is the limitation of the material. Sequential ChIP requires a large quantity of the antibodies, and yields little material barely sufficient for a few qPCR after the second round of IP. This yielded amount was far below the minimum required for library construction. The PRDM16 antibody was a gift, and the quantity we have was very limited. We made a lot of efforts to optimize all available commercial antibodies in ChIP and Cut&Tag, but none of them worked.

      (6) In comparing RNA in situ between WT and PRDM16 KO in Figure 7, the authors state they use the Wnt2b signal to identify the border between CH and neocortex. However, the Wnt2b signal is shown in grey and it is impossible for this reviewer to see clear Wnt2b expression or where the boundaries are in Figure 7A. The authors also do not show where they placed the boundaries in their analysis. Furthermore, Figure 7B only shows insets for one of the regions being compared making it difficult to see differences from the other region. Finally, the authors do not show an example of their spot segmentation to judge whether their spot counting is reliable. Overall, this makes it difficult to judge whether the quantification in Figure 7C can be trusted.

      To address these questions, in the revised manuscript we will include an individal channel of Wnt2b and mark the boundaries. We will also provide full-view images and examples of spot segmentation in supplementary figures as space limitation in the main figures.

      (7) The correlation between mKi67 and Axin2 in Figure 7 is interesting but does not convincingly show that Wnt downstream of PRDM16 and BMP is responsible for the increased proliferation in PRDM16 mutants.

      We agree that this result (the correlation between mKi67 and Axin2) alone only suggests that Wnt signaling is related to the proliferation defect in the Prdm16 mutant, and does not necessarily mean that Wnt is downstream of PRDM16 and BMP. Our concolusion is backed up by two additional lines of evidences:  the Cut&Tag data in which PRDM16 binds to regulatory regions of Wnt7b and Wnt3a; BMP and PRDM16 co-repress Wnt7b in vitro.

      An ideal result is that down-regulating Wnt signaling in Prdm16 mutant can rescue Prdm16 mutant phenotype. Such an experiment is technically challenging. Wnt plays diverse and essential roles in NSC regulation, and one would need to use a celltype-and stage-specific tool to down-regulate Wnt in the background of Prdm16 mutation. Moreover, Wnt genes are not the only targets regulated by PRDM16 in these cells, and downregulating Wnt may not be sufficient to rescue the phenotype. 

      Weaknesses of the presentation:

      Overall, the manuscript is not easy to read. This can cause confusion.

      We will revise the text to improve the clarity.

      Reviewer #2 (Public review):

      Summary:

      This article investigates the role of PRDM16 in regulating cell proliferation and differentiation during choroid plexus (ChP) development in mice. The study finds that PRDM16 acts as a corepressor in the BMP signaling pathway, which is crucial for ChP formation.

      The key findings of the study are:

      (1) PRDM16 promotes cell cycle exit in neural epithelial cells at the ChP primordium.

      (2) PRDM16 and BMP signaling work together to induce neural stem cell (NSC) quiescence in vitro.

      (3) BMP signaling and PRDM16 cooperatively repress proliferation genes.

      (4) PRDM16 assists genomic binding of SMAD4 and pSMAD1/5/8.

      (5) Genes co-regulated by SMADs and PRDM16 in NSCs are repressed in the developing ChP.

      (6) PRDM16 represses Wnt7b and Wnt activity in the developing ChP.

      (7) Levels of Wnt activity correlate with cell proliferation in the developing ChP and CH.

      In summary, this study identifies PRDM16 as a key regulator of the balance between BMP and Wnt signaling during ChP development. PRDM16 facilitates the repressive function of BMP signaling on cell proliferation while simultaneously suppressing Wnt signaling. This interplay between signaling pathways and PRDM16 is essential for the proper specification and differentiation of ChP epithelial cells. This study provides new insights into the molecular mechanisms governing ChP development and may have implications for understanding the pathogenesis of ChP tumors and other related diseases.

      Strengths:

      (1) Combining in vitro and in vivo experiments to provide a comprehensive understanding of PRDM16 function in ChP development.

      (2) Uses of a variety of techniques, including immunostaining, RNA in situ hybridization, RT-qPCR, CUT&Tag, ChIP-seq, and SCRINSHOT.

      (3) Identifying a novel role for PRDM16 in regulating the balance between BMP and Wnt signaling.

      (4) Providing a mechanistic explanation for how PRDM16 enhances the repressive function of BMP signaling. The identification of SMAD palindromic motifs as preferred binding sites for the SMAD/PRDM16 complex suggests a specific mechanism for PRDM16-mediated gene repression.

      (5) Highlighting the potential clinical relevance of PRDM16 in the context of ChP tumors and other related diseases. By demonstrating the crucial role of PRDM16 in controlling ChP development, the study suggests that dysregulation of PRDM16 may contribute to the pathogenesis of these conditions.

      Weaknesses:

      (1) Limited investigation of the mechanism controlling PRDM16 protein stability and nuclear localization in vivo. The study observed that PRDM16 protein became nearly undetectable in NSCs cultured in vitro, despite high mRNA levels. While the authors speculate that post-translational modifications might regulate PRDM16 in NSCs similar to brown adipocytes, further investigation is needed to confirm this and understand the precise mechanism controlling PRDM16 protein levels in vivo.

      While mechansims controlling PRDM16 protein stability and nuclear localization in the developing brain are interesting, the scope of this paper is revealing the function of PRDM16 in the choroid plexus and its interaction with BMP signaling. We will be happy to pursuit this direction in our next study.

      (2) Reliance on overexpression of PRDM16 in NSC cultures. To study PRDM16 function in vitro, the authors used a lentiviral construct to constitutively express PRDM16 in NSCs. While this approach allowed them to overcome the issue of low PRDM16 protein levels in vitro, it is important to consider that overexpressing PRDM16 may not fully recapitulate its physiological role in regulating gene expression and cell behavior.

      As stated above, we acknowledge that findings from cultured NSCs may not directly apply to ChP cells in vivo. We are cautious with our statements. The cell culture work was aimed to identify potential mechanisms by which PRDM16 and SMADs interact to regulate gene expression and target genes co-regulated by these factors. We expect that not all targets from cell culture are regulated by PRDM16 and SMADs in the ChP, so we validated expression changes of several target genes in the developing ChP and now included the new data in Fig. 7 and Supplementary Fig. 7. Out of the 31 genes identified from cultured cells, four cell cycle regulators including Wnt7b, Id3, Spc24/25/nuf2 and Mybl2, showed de-repression in Prdm16 mutant ChP. These genes can be relevant downstream genes in the ChP, and other target genes may be cortical NSC-specific or less dependent on Prdm16 in vivo.

      (3) Lack of direct evidence for AP1 as the co-factor responsible for SMAD relocation in the absence of PRDM16. While the study identified the AP1 motif as enriched in SMAD binding sites in Prdm16 knockout cells, they only provided ChIP-qPCR validation for c-FOS binding at two specific loci (Wnt7b and Id3). Further investigation is needed to confirm the direct interaction between AP1 and SMAD proteins in the absence of PRDM16 and to rule out other potential co-factors.

      We agree that the finding of the AP1 motif enriched at the PRDM16 and SMAD co-binding regions in Prdm16 KO cells can only indirectly suggest AP1 as a co-factor for SMAD relocation. That’s why we used ChIP-qPCR to examine the presence of C-fos at these sites. Although we only validated two targets, the result confirms that C-fos binds to the sites only in the Prdm16 KO cells but not Prdm16_expressing cells, suggesting AP1 is a co-factor.  We results cannot rule out the presence of other co-factors.

      Reviewer #3 (Public review):

      Summary:

      Bone morphogenetic protein (BMP) signaling instructs multiple processes during development including cell proliferation and differentiation. The authors set out to understand the role of PRDM16 in these various functions of BMP signaling. They find that PRDM16 and BMP co-operate to repress stem cell proliferation by regulating the genomic distribution of BMP pathway transcription factors. They additionally show that PRDM16 impacts choroid plexus epithelial cell specification. The authors provide evidence for a regulatory circuit (constituting of BMP, PRDM16, and Wnt) that influences stem cell proliferation/differentiation.

      Strengths:

      I find the topics studied by the authors in this study of general interest to the field, the experiments well-controlled and the analysis in the paper sound.

      Weaknesses:

      I have no major scientific concerns. I have some minor recommendations that will help improve the paper (regarding the discussion).

      We will revise the discussion according the suggestions.

    1. Author response:

      eLife Assessment 

      The authors utilize a valuable computational approach to exploring the mechanisms of memorydependent klinotaxis, with a hypothesis that is both plausible and testable. Although they provide a solid hypothesis of circuit function based on an established model, the model's lack of integration of newer experimental findings, its reliance on predefined synaptic states, and oversimplified sensory dynamics, make the investigation incomplete for both memory and internal-state modulation of taxis.  

      We would like to express our gratitude to the editor for the assessment of our work. However, we respectfully disagree with the assessment that our investigation is incomplete, if the negative assessment is primarily due to the impact of AIY interneuron ablation on the chemotaxis index (CI) which was reported in Reference [1]. It is crucial to acknowledge that the CI determined through experimental means incorporates contributions from both klinokinesis and klinotaxis [1]. It is plausible that the impact of AIY ablation was not adequately reflected in the CI value. Consequently, the experimental observation does not necessarily diminish the role of AIY in klinotaxis. Anatomical evidence provided by the database (http://ims.dse.ibaraki.ac.jp/ccep-tool/) substantiates that ASE sensory neurons and AIZ interneurons, which have been demonstrated to play a crucial role in klinotaxis [Matsumoto et al., PNAS 121 (5) e2310735121], have the highest number of synaptic connections with AIY interneurons. These findings provide substantial evidence supporting the validity of the presented minimal neural network responsible for salt klinotaxis.

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      This research focuses on C. elegans klinotaxis, a chemotactic behavior characterized by gradual turning, aiming to uncover the neural circuit mechanism responsible for the context-dependent reversal of salt concentration preference. The phenomenon observed is that the preferred salt concentration depends on the difference between the pre-assay cultivation conditions and the current environmental salt levels. 

      We would like to express our gratitude for the time and consideration you have dedicated to reviewing our manuscript.

      The authors propose that a synaptic-reversal plasticity mechanism at the primary sensory neuron, ASER, is critical for this memory- and context-dependent switching of preference. They build on prior findings regarding synaptic reversal between ASER and AIB, as well as the receptor composition of AIY neurons, to hypothesize that similar "plasticity" between ASER and AIY underpins salt preference behavior in klinotaxis. This plasticity differs conceptually from the classical one as it does not rely on any structural changes but rather synaptic transmission is modulated by the basal level of glutamate, and can switch from inhibitory to excitatory. 

      To test this hypothesis, the study employs a previously established neuroanatomically grounded model [4] and demonstrates that reversing the ASER-AIY synapse sign in the model agent reproduces the observed reversal in salt preference. The model is parameterized using a computational search technique (evolutionary algorithm) to optimize unknown electrophysiological parameters for chemotaxis performance. Experimental validity is ensured by incorporating constraints derived from published findings, confirming the plausibility of the proposed mechanism. 

      Finally. the circuit mechanism allowing C. elegans to switch behaviour to an exploration run when starved is also investigated. This extension highlights how internal states, such as hunger, can dynamically reshape sensory-motor programs to drive context-appropriate behaviors.  

      We would like to thank the reviewer for the appropriate summary of our work. 

      Strengths and weaknesses: 

      The authors' approach of integrating prior knowledge of receptor composition and synaptic reversal with the repurposing of a published neuroanatomical model [4] is a significant strength.

      This methodology not only ensures biological plausibility but also leverages a solid, reproducible modeling foundation to explore and test novel hypotheses effectively.

      The evidence produced that the original model has been successfully reproduced is convincing.

      The writing of the manuscript needs revision as it makes comprehension difficult.  

      We would like to thank the reviewer for recognizing the usefulness of our approach. In the revised version, we will improve the explanation.  

      One major weakness is that the model does not incorporate key findings that have emerged since the original model's publication in 2013, limiting the support for the proposed mechanism. In particular, ablation studies indicate that AIY is not critical for chemotaxis, and other interneurons may play partially overlapping roles in positive versus negative chemotaxis. These findings challenge the centrality of AIY and suggest the model oversimplifies the circuit involved in klinotaxis.

      We would like to express our gratitude for the constructive feedback we have received. We concur with some of your assertions. In fact, our model is the minimal network for salt klinotaxis, which includes solely the interneurons that are connected to each other via the highest number of synaptic connections. It is important to note that our model does not consider redundant interneurons that exhibit overlapping roles. Consequently, the model is not applicable to the study of the impact of interneuron ablation. In the reference [1], the influence of interneuron ablations on the chemotaxis index (CI) has been investigated. The experimentally determined CI value incorporates the contributions from both klinokinesis and klinotaxis. Consequently, it is plausible that the impact of AIY ablation was not significantly reflected in the CI value. The experimental observation does not necessarily diminish the role of AIY in klinotaxis. 

      Reference [1] also shows that ASER neurons exhibit complex, memory- and context-dependent responses, which are not accounted for in the model and may have a significant impact on chemotactic model behaviour. 

      As pointed out by the reviewer, our model does not incorporate the context-dependent response of the ASER. Instead, the salt concentration-dependent glutamate release from the ASRE [S. Hiroki et al. Nat Commun 13, 2928 (2022)] as the result of the ASER responses is considered in the present study.

      The hypothesis of synaptic reversal between ASER and AIY is not explicitly modeled in terms of receptor-specific dynamics or glutamate basal levels. Instead, the ASER-to-AIY connection is predefined as inhibitory or excitatory in separate models. This approach limits the model's ability to test the full range of mechanisms hypothesized to drive behavioral switching.  

      We would like to thank the reviewer for the helpful comments. In the revised version, we will mention the limitation.

      While the main results - such as response dependence on step inputs at different phases of the oscillator - are consistent with those observed in chemotaxis models with explicit neural dynamics (e.g., Reference [2]), the lack of richer neural dynamics could overlook critical effects. For example, the authors highlight the influence of gap junctions on turning sensitivity but do not sufficiently analyze the underlying mechanisms driving these effects. The role of gap junctions in the model may be oversimplified because, as in the original model [4], the oscillator dynamics are not intrinsically generated by an oscillator circuit but are instead externally imposed via $z_¥text{osc}$. This simplification should be carefully considered when interpreting the contributions of specific connections to network dynamics. Lastly, the complex and contextdependent responses of ASER [1] might interact with circuit dynamics in ways that are not captured by the current simplified implementation. These simplifications could limit the model's ability to account for the interplay between sensory encoding and motor responses in C. elegans chemotaxis. 

      We might not understand the substance of your assertions. However, we understand that the oscillator dynamics were not generated by an oscillator neural circuit in our modeling. On the other hand, the present study focuses on how the sensory input and resulting interneuron dynamics regulate the oscillatory activity of SMB motor neurons to generate klinotaxis. 

      Appraisal: 

      The authors show that their model can reproduce memory-dependent reversal of preference in klinotaxis, demonstrating that the ASER-to-AIY synapse plays a key role in switching chemotactic preferences. By switching the ASER-AIY connection from excitatory to inhibitory they indeed show that salt preference reverses. They also show that the curving/turn rate underlying the preference change is gradual and depends on the weight between ASER-AIY. They further support their claim by showing that curving rates also depend on cultivated (set-point).  

      We would like to thank the reviewer for assessing our work.

      Thus within the constraints of the hypothesis and the framework, the model operates as expected and aligns with some experimental findings. However, significant omissions of key experimental evidence raise questions on whether the proposed neural mechanisms are sufficient for reversal in salt-preference chemotaxis.  

      We agree with your opinion. The present hypothesis should be verified by experiments.

      Previous work [1] has shown that individually ablating the AIZ or AIY interneurons has essentially no effect on the Chemotactic Index (CI) toward the set point ([1] Figure 6). Furthermore, in [1] the authors report that different postsynaptic neurons are required for movement above or below the set point. The manuscript should address how this evidence fits with their model by attempting similar ablations. It is possible that the CI is rescued by klinokinesis but this needs to be tested on an extension of this model to provide a more compelling argument.  

      We would like to express our gratitude for the constructive feedback we have received. In the reference [1], the influence of interneuron ablations on the chemotaxis index (CI) has been investigated. It is important to acknowledge that the experimentally determined CI value encompasses the contributions of both klinokinesis and klinotaxis. It is plausible that the impact of AIY ablation was not reflected in the CI value. Consequently, these experimental observations do not necessarily diminish the role of AIY in klinotaxis. The neural circuit model employed in the present study constitutes a minimal network for salt klinotaxis, encompassing solely interneurons that are connected to each other via the highest number of synaptic connections. Anatomical evidence provided by the database (http://ims.dse.ibaraki.ac.jp/cceptool/) substantiates that ASE sensory neurons and AIZ interneurons, which have been demonstrated to play a crucial role in klinotaxis [Matsumoto et al., PNAS 121 (5) e2310735121], have the highest number of synaptic connections with AIY interneurons. Our model does not take into account redundant interneurons with overlapping roles, thus rendering it not applicable to the study of the effects of interneuron ablation.

      The investigation of dispersal behaviour in starved individuals is rather limited to testing by imposing inhibition of the SMB neurons. Although a circuit is proposed for how hunger states modulate taxis in the absence of food, this circuit hypothesis is not explicitly modelled to test the theory or provide novel insights.  

      As pointed out by the reviewer, the neural circuit that inhibits the SMB motor neurons was not explicitly incorporated in our model. We then examined whether our minimal network model could reproduce dispersal behavior under starvation conditions solely due to the experimentally identified inhibitory effect of SMB motor neurons.

      Impact : 

      This research underscores the value of an embodied approach to understanding chemotaxis, addressing an important memory mechanism that enables adaptive behavior in the sensorimotor circuits supporting C. elegans chemotaxis. The principle of operation - the dependence of motor responses to sensory inputs on the phase of oscillation - appears to be a convergent solution to taxis. Similar mechanisms have been proposed in Drosophila larvae chemotaxis [2], zebrafish phototaxis [3], and other systems. Consequently, the proposed mechanism has broader implications for understanding how adaptive behaviors are embedded within sensorimotor systems and how experience shapes these circuits across species.

      We would like to express our gratitude for useful suggestion. We will add the argument that the reviewer mentioned in the revised version.  

      Although the reported reversal of synaptic connection from excitatory to inhibitory is an exciting phenomenon of broad interest, it is not entirely new, as the authors acknowledge similar reversals have been reported in ASER-to-AIB signaling for klinokinesis ( Hiroki et al., 2022). The proposed reversal of the ASER-to-AIY synaptic connection from inhibitory to excitatory is a novel contribution in the specific context of klinotaxis. While the ASER's role in gradient sensing and memory encoding has been previously identified, the current paper mechanistically models these processes, introducing a hypothesis for synaptic plasticity as the basis for bidirectional salt preference in klinotaxis.  

      The research also highlights how internal states, such as hunger, can dynamically reshape sensory-motor programs to drive context-appropriate behaviors.  

      The methodology of parameter search on a neural model of a connectome used here yielded the valuable insight that connectome information alone does not provide enough constraints to reproduce the neural circuits for behaviour. It demonstrates that additional neurophysiological constraints are required.  

      We would like to acknowledge the appropriate recognition of our work.

      Additional Context 

      Oscillators with stimulus-driven perturbations appear to be a convergent solution for taxis and navigation across species. Similar mechanisms have been studied in zebrafish phototaxis [3],

      Drosophila larvae chemotaxis [2], and have even been proposed to underlie search runs in ants.

      The modulation of taxis by context and memory is a ubiquitous requirement, with parallels across species. For example, Drosophila larvae modulate taxis based on current food availability and predicted rewards associated with odors, though the underlying mechanism remains elusive. The synaptic reversal mechanism highlighted in this study offers a compelling framework for understanding how taxis circuits integrate context-related memory retrieval more broadly.  

      We would like to express our gratitude for the insightful commentary. In the revised version, we will incorporate the discussion that the similar oscillator mechanism with stimulus-driven perturbations has been observed for zebrafish phototaxis [3] and Drosophila larvae chemotaxis [2].

      As a side note, an interesting difference emerges when comparing C. elegans and Drosophila larvae chemotaxis. In Drosophila larvae, oscillatory mechanisms are hypothesized to underlie all chemotactic reorientations, ranging from large turns to smaller directional biases (weathervaning). By contrast, in C. elegans, weathervaning and pirouettes are treated as distinct strategies, often attributed to separate neural mechanisms. This raises the possibility that their motor execution could share a common oscillator-based framework. Re-examining their overlap might reveal deeper insights into the neural principles underlying these maneuvers. 

      We would like to acknowledge your thoughtfully articulated comment. As pointed out by the reviewer, from the anatomical database (http://ims.dse.ibaraki.ac.jp/ccep-tool/), we found that the neural circuits underlying weathervaning and pirouettes in C. elegans are predominantly distinct but exhibit partial overlap. When we restrict our search to the neurons that are connected to each other with the highest number of synaptic connections, we identify the projections from the neural circuit of weathervaning to the circuit of pirouettes; however we observed no reversal projections. This finding suggests that the neural circuit of weathervaning, namely, our minimal neural network, is not likely to be affected by that of pirouettes, which consists of AIB interneurons and interneurons and motor neurons the downstream. 

      (1) Luo, L., Wen, Q., Ren, J., Hendricks, M., Gershow, M., Qin, Y., Greenwood, J., Soucy, E.R., Klein, M., Smith-Parker, H.K., & Calvo, A.C. (2014). Dynamic encoding of perception, memory, and movement in a C. elegans chemotaxis circuit. Neuron, 82(5), 1115-1128. 

      (2) Antoine Wystrach, Konstantinos Lagogiannis, Barbara Webb (2016) Continuous lateral oscillations as a core mechanism for taxis in Drosophila larvae eLife 5:e15504. 

      (3) Wolf, S., Dubreuil, A.M., Bertoni, T. et al. Sensorimotor computation underlying phototaxis in zebrafish. Nat Commun 8, 651 (2017). 

      (4) Izquierdo, E.J. and Beer, R.D., 2013. Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis. PLoS computational biology, 9(2), p.e1002890. 

      Reviewer #2 (Public review): 

      Summary: 

      This study explores how a simple sensorimotor circuit in the nematode C. elegans enables it to navigate salt gradients based on past experiences. Using computational simulations and previously described neural connections, the study demonstrates how a single neuron, ASER, can change its signaling behavior in response to different salt conditions, with which the worm is able to "remember" prior environments and adjust its navigation toward "preferred" salinity accordingly.  

      We would like to express our gratitude for the time and consideration the reviewer has dedicated to reviewing our manuscript.

      Strengths: 

      The key novelty and strength of this paper is the explicit demonstration of computational neurobehavioral modeling and evolutionary algorithms to elucidate the synaptic plasticity in a minimal neural circuit that is sufficient to replicate memory-based chemotaxis. In particular, with changes in ASER's glutamate release and sensitivity of downstream neurons, the ASER neuron adjusts its output to be either excitatory or inhibitory depending on ambient salt concentration, enabling the worm to navigate toward or away from salt gradients based on prior exposure to salt concentration.

      We would like to thank the reviewer for appreciating our research. 

      Weaknesses: 

      While the model successfully replicates some behaviors observed in previous experiments, many key assumptions lack direct biological validation. As to the model output readouts, the model considers only endpoint behaviors (chemotaxis index) rather than the full dynamics of navigation, which limits its predictive power. Moreover, some results presented in the paper lack interpretation, and many descriptions in the main text are overly technical and require clearer definitions.  

      We would like to thank the reviewer for the constructive feedback. As the reviewer noted, the fundamental assumptions posited in the study have yet to be substantiated by biological validation. Consequently, these assumptions must be directly assessed by biological experimentation. The model performance for salt klinotaxis is evaluated by multiple factors, including not only a chemotaxis index but also the curving rate vs. bearing (Fig. 4a, the bearing is defined in Fig. A3) and the curving rate vs. normal gradient (Fig. 4c). The subsequent two parameters work to characterize the trajectory during salt klinotaxis. In the revised version, we will meticulously revise the manuscript according to the suggestions by the reviewer. We would like to express our sincere gratitude for your insightful review of our work.

    1. Author response:

      We thank all the reviewers for their detailed comments. In response, we will address the comments with further analysis, experiments and an expanded discussion.

      In terms of each specific reviewer's comments:

      Reviewer 1 was positive overall but had several suggestions and requested further rigorously controls. These are highly constructive technical concerns and will be addressed through additional experimentation and methods for quantification.

      Reviewer 2 summarised the strengths of the study as being largely confirmatory. They have perhaps not fully appreciated that this is the first published functional assessment of cerebral vascular permeability in a pericyte deficient zebrafish model.

      The reviewer has made a number of very helpful suggestions to improve technical aspects of the analysis. Many align with the suggestions of Reviewer 1. Additional experiments that include more rigorous controls and further methods to quantify vessel permeability will address these concerns in revision.

      We also note that the reviewer calls for a more nuanced and careful discussion section. We take the reviewers point and do appreciate their concerns. We were limited by wordcount in the initial submission in short report format, but in response will expand and provide a more thorough discussion.

      Reviewer 3 was positive overall but has suggested additional controls and experiments to further strengthen the findings and support our conclusions. Some align with the suggestions of Reviewers 1 and 2. We agree and aim to address them through additional work in revision.

    1. Author response:

      The following is the authors’ response to the current reviews.

      We thank Reviewers for highlighting the strengths of our work along with suggestions for future directions.

      We agree with the Reviewers that RPS26 depletion may impact not only RAN translation initiation and codon selection (as showed in the experiments in Figure 4G), but also other mechanisms, such as speed of PIC scanning, as we stated in the discussion. Although, we did provide the data showing that mRNA of exogenous FMR1-GFP does not change upon RPS26 depletion (Figure 3B&C), hence observed effect most likely stems from translation regulation. In addition, an experiment with ASO-ACG treatment (Figure 4G) suggests that near cognate start codon selection or speed of PIC scanning may be a part of the regulation of RAN translation sensitive to RPS26 depletion. In addition, our latest unpublished results (Niewiadomska D. et al., in revision), indicate that FMRpolyG in fusion with GFP is fairly stable, in particular, while derived from long repeats (>90xCGG), suggesting that the protein stability is not at play in RPS26-dependent regulation.

      We would like to stress that in order to avoid bias in result interpretation and to mimic the natural situation, the majority of experiments concerning levels of FMRpolyG were performed in cell models with stable expression of ACG-initiated FMRpolyG. Currently, we do not possess a cell model with stable expression of AUG-initiated FMRpolyG, and the experiments based on transient transfection system would not necessarily be comparable to the results obtained in stable expression system. However, we believe that the experiment presented in Figure 2B serves as a good control for overall translation level upon RPS26 depletion indicating that RPS26 insufficiency does not affect global translation and the observed regulation is specific to some mRNAs including the one encoding FMRpolyG frame. We also show that the level of ca. 80% of identified canonical proteins, including FMRP, did not change upon RPS26 silencing (SILAC-MS, Figure 4A). Indeed, we did not explore the ribosome composition upon RPS26 and TSR2 depletion, although, most likely the pool of functional ribosomes in the cell is sufficient enough to support the basal translation level (SUnSET assays, Figure 2B & 5C). However, we cannot exclude possibility that for some mRNAs, including one encoding for FMRpolyG, the observed effect can be partially caused by lowering the number of fully active ribosomes, especially in experiments with transient transfection experiments where transgene expression is hundreds times higher than for average native mRNA.

      Finally, we agree with the Reviewer that in vitro translation assay would provide the evidence of direct effect of RPS26 on FMRpolyG level, however, we did not manage to overcome technical difficulties in obtaining cellular lysate devoid of RPS26 from vendor companies.


      The following is the authors’ response to the original reviews.

      General Comments

      We thank Reviewers for the critical comments and experimental suggestions. We considered most of the advices in the revised version of the manuscript, which allowed for a more balanced interpretation of the results presented, and further supported major statement of the manuscript that insufficiency of the RPS26 and RPS25 plays a role in modulating the efficiency of noncanonical RAN translation from FMR1 mRNA, which results in the production of toxic polyglycine protein (FMRpolyG). Firstly, performing new experiments, we showed that silencing of the RPS26 and its chaperone protein TSR2, which regulates loading/exchange of RPS26 in maturing small ribosome subunit, did not elicit global translation inhibition. Secondly, we demonstrated that in contrary to RPS26 and RPS25 depletion, silencing the RPS6 protein, a core component of 40S subunit, did not affect FMRpolyG production, further supporting the specific effect of RPS26 and RPS25 on RAN translation regulation of mutant FMR1 mRNA. We also observed that depletion of RPS26, RPS25 and RPS6 had significant negative effect on cells proliferation which is in line with previously published results indicating that insufficiencies of ribosomal proteins negatively affect cell growth. Moreover, we showed that FMRpolyG production is significantly affected by RPS26 depletion while initiated at ACG, but not other near cognate start codons. Importantly, translation of FMRP initiated at canonical AUG codon of the same mRNA upstream the CGGexp was not affected by RPS26 silencing, similarly to vast majority of the human proteome. This implies that RAN translation of FMR1 mRNA mediated by RPS26 insufficiency is likely to be dependent on start codon selection/fidelity. In essence, we provide a series of evidences indicating that cellular amount of 40S ribosomal proteins RPS26 and RPS25 is important factor of CGGrelated RAN translation regulation. Finally, we also decided to tone down our claims. Now, we state that the RPS26/25/TSR2 insufficiency or depletion, affects RAN translation, rather than composition of 40S ribosomal subunit per se influences RAN translation. We have addressed all specific concerns below and made changes to the new version of manuscript.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Tutak et al use a combination of pulldowns, analyzed by mass spectrometry, reporter assays, and fluorescence experiments to decipher the mechanism of protein translation in fragile X-related diseases. The topic is interesting and important.

      Although a role for Rps26-deficient ribosomes in toxic protein translation is plausible based on already available data, the authors' data are not carefully controlled and thus do not support the conclusions of the paper.

      We sincerely appreciate your rigorous, insightful, and constructive feedback throughout the revision process. We believe your guidance has been instrumental in significantly enhancing the quality of our research. Below, we have addressed your comments pointby-point.

      Strengths:

      The topic is interesting and important.

      Weaknesses:

      In particular, there is very little data to support the notion that Rps26-deficient ribosomes are even produced under the circumstances. And no data that indicate that they are involved in the RAN translation. Essential controls (for ribosome numbers) are lacking, no information is presented on the viability of the cells (Rps26 is an essential protein), and the differences in protein levels could well arise from block in protein synthesis, and cell division coupled to differential stability of the proteins.

      We agree that data presented in the first version of the manuscript did not directly address the following processes: ribosome content, global translation rate and cell viability upon RPS26 depletion. Therefore we addressed some of the issues in the revised version of the manuscript. In particular, we showed that RPS26 and TSR2 knock down did not inhibit global translation (new Figure 2B & 4C), hence we concluded that the changes of FMRpolyG level did not arise from general translational shut down. On the other hand, RPS26, RPS25 and RPS6 depletion negatively affected cells proliferation (new Figure 2A,5D,6C), which is in line with a number of previously published researches (e.g. Cheng et al, 2019; Havkin-Solomon et al, 2023). However, the rate of proliferation abnormalities is limited. We agree that observed effects on RAN translation from mutant FMR1 mRNA may stem from the combination of altered protein synthesis, conditions of the cells but also cis-acting factors of mRNA sequence/structure. In new experiments we showed that single nucleotide substitution of ACG by other near cognate start codons change sensitivity of RAN translation to insufficiency of RPS26 (new Figure 4F). Also the inhibitory effect of antisense oligonucleotide binding to the region of 5’UTR containing ACG initiation codon (ASO_ACG) is different in cells differing in amount of RPS26 (new Figure 4G).

      We also agree that our data only partially supports the role of RPS26-defficient ribosomes in RAN translation. Therefore, we have toned down our claims. Now, we state that the RPS26/25/TSR2 insufficiency or depletion affects RAN translation. We also changed the title of the manuscript to: “Insufficiency of 40S ribosomal proteins, RPS26 and RPS25, negatively affects biosynthesis of polyglycine-containing proteins in fragile-X associated conditions” (Previously it was: “Ribosomal composition affects the noncanonical translation and toxicity of polyglycine-containing proteins in fragile X-associated conditions”.

      Specific points:

      (1) Analysis of the mass spec data in Supplemental Table S3 indicates that for many of the proteins that are differentially enriched in one sample, a single peptide is identified. So the difference is between 1 peptide and 0. I don't understand how one can do a statistical analysis on that, or how it would give out anything of significance. I certainly do not think it is significant. This is exacerbated by the fact that the contaminants in the assay (keratins) are many, many-fold more abundant, and so are proteins that are known to be mitochondrial or nuclear, and therefore likely not actual targets (e.g. MCCC1, PC, NPM1; this includes many proteins "of significance" in Table S1, including Rrp1B, NAF1, Top1, TCEPB, DHX16, etc...).

      The data in Table S6/Figure 3A suffer from the same problem.

      I am not convinced that the mass spec data is reliable.

      We thank Reviewer for the comment concerning MS data; however, we believe that it may stem from misunderstanding of the data presented in Table S3 and S6. Both tables represent the output from MaxQuant analysis (so-called ProteinGroup) of MS .raw files, without any filtering. As stated in the Material&Methods, we applied default parameters suggested by MaxQuant developers to analyze MS data, these include identification of proteins based on at least 1 unique peptide, and thus some of the proteins with only 1 unique peptide are shown in Tables S1 and S3. Reviewer is also right that in this output table common contaminants, such as keratins are included. However, these identifications are denoted as “CON_”, and are further filtered out during statistical analysis in Perseus software. During the statistical analysis we first filtered out irrelevant protein groups identifications, such as contaminants, or only identified by site modifications.

      We have changed the names of Supplementary Table files, giving more detailed description. We hope this will help to avoid misunderstanding for broader public. Secondly, when comparing the data presented in Table S3 and volcano plot presented in Figure 1B, one can notice that indeed the majority of identified proteins are not statistically significant (grey points), thus not selected for further stratification. Lack of significance of these proteins may be partially due to poor MS identification, however, they are not included in the following parts of the manuscript. Further, we selected only eight proteins (out of over 150) for stratification by orthogonal techniques, thus we argue that this step validates the biological relevance of chosen candidate RAN-translation modifiers. One should also keep in mind that pull down samples analyzed by MS often yield lower intensity and identification rates, when comparing to whole cell analysis, as a result of lower protein input or stringent washes used during sample preparation.

      Regarding the data presented in Table S6 (SILAC data), we argue that these data are of very good quality. More than 2,000 proteins were identified in a 125min gradient, with over 80% of proteins that were identified with at least 2 unique peptides. Each of three biological replicates was analyzed three times (technical replicates), giving total of 9 high resolution MS runs. Together, we strongly believe that this data is of high confidence.

      (2) The mass-spec data however claims to identify Rps26 as a factor binding the toxic RNA specifically. The rest of the paper seeks to develop a story of how Rps26-deficient ribosomes play a role in the translation of this RNA. I do not consider that this makes sense.

      Indeed, we identified RPS26 as a protein that co-precipitated with FMR1 containing expanded CGG repeats (Supplementary Figure 1G) and found that depletion of RPS26 hindered RAN translation of FMRpolyG, suggesting that RPS26 positively affects RAN translation. However, we did not state that RPS26 directly interacts with toxic RNA. In order to confirm the specificity of RAN translation regulation by RPS26 insufficiency, we tested whether depletion of other 40S ribosomal protein, RPS6, affects FMRpolyG synthesis. Our experiments showed that there was no any significant effect on RAN translation efficiency post RPS6 silencing (new Figure 5C). Importantly, we showed that RPS26 depletion did not inhibit global translation (new Figure 2B). In addition, mutagenesis of near-cognate start codon (new Figure 4F) and ASO_ACG treatment (new Figure 4G) provided the evidences that modulation of FMRpolyG biosynthesis by RPS26 level may depend on start codon selection. In essence, our data suggest that RPS26 depletion specifically affects synthesis of FMRpolyG, but not FMRP derived from the same FMR1 mRNA with CGGexp. However, we do not claim that the observed effect is the consequence of a direct interaction between RPS26 and 5’UTR of FMR1 mRNA. Downregulation of FMRpolyG biosynthesis could be an outcome of the alteration of ribosomal assembly, decrease of efficiency and fidelity of PIC scanning/initiation or impeded elongation or a combination of all these processes. In the manuscript we presented the results of experiments which tested many of these possibilities.

      (3) Rps26 is an essential gene, I am sure the same is true for DHX15. What happens to cell viability? Protein synthesis? The yeast experiments were carefully carried out under experiments where Rps26 was reduced, not fully depleted to give small growth defects.

      We agree with the Reviewer that RPS26 and DHX15 are essential proteins, similarly to all RNA binding proteins, and caution should be taken during experimental design. To address this, we titrated different concentrations of siRPS26, and found that administration of 5 nM siRPS26, which just partially silenced RPS26, decreased FMRpolyG by around 50% (new Figure 1D). This impact was even greater with 15 nM siRPS26, as we observed around 80% decrease of FMRpolyG.

      Havkin-Solomon et al. (2023), showed that proliferation rate is decreased in cells with mutated C-terminus of RPS26, which is required for contacting mRNA. In accordance with this study, we showed that cells with knocked down RPS26 proliferate less efficiently (new Figure 2A), but depletion of RPS26 did not impact the global translation (new Figure 2B). In addition, our SILAC-MS data indicates that ~80% of proteins with determined expression level were not affected by RPS26 insufficiency, and ~20% of the proteins turned out to be sensitive to RPS26 decrease. Although, these data do not take into account the protein stability.

      (4) Knockdown efficiency for all tested genes must be shown to evaluate knockdown efficiency.

      The current version of the manuscript contains representative western blots with validation of knock-down efficiency (for example in Figure 3B, C, E, Figure 6A) and we included knock-down validations where applicable (Figures 1D, 2B, 4G and 5C).

      (5) The data in Figure 1E have just one mock control, but two cell types (control si and Rps26 depletion).

      Mock control corresponds to the cells treated with lipofectamine reagent and was included in the study to determine the “background” signal from cells treated with delivery agent and reagents used to measure the apoptosis process. These cells were neither expressing FMRpolyG, nor siRNAs. Luminescence signals were normalized to the values obtained from mock control. We added more details describing this assay in the Figure 1 legend.

      (6) The authors' data indicate that the effects are not specific to Rps26 but indeed also observed upon Rps25 knockdown. This suggests strongly that the effects are from reduced ribosome content or blocked protein synthesis. Additional controls should deplete a core RP to ascertain this conclusion.

      We agree that observed effects may stem from reduced ribosome content, however, we argue that this is the only possibility and explanation. Previously, it was shown that RPS25 regulates G4C2-related RAN translation, but knock out of RPS25 does not affect global translation (Yamada S, 2019, Nat. Neuroscience). Similarly, we showed that KD of RPS26 or TSR2 did not reduce significantly global translation rate (SUnSET assay; new Figure 2B and 5C, respectively).

      Moreover, in a new version of manuscript we included a control experiment, where we silenced core ribosomal protein (RPS6) and found that RPS6 depletion did not affect RAN translation from mutant FMR1 mRNA (new Figure 5C), thus strengthening our conclusion about specific RAN translation regulation by the level of RPS26 and RPS25.

      Finally, our observation aligns well with current knowledge about how deficiency of different ribosomal proteins alters translation of some classes of mRNAs (Luan Y, 2022, Nucleic Acids Res; Cheng Z, 2019, Mol Cell). It was shown that depletion of RPS26 affects translation rate of different mRNAs compared to depletion of other proteins of small ribosomal subunit.

      (7) Supplemental Figure S3 demonstrates that the depletion of S26 does not affect the selection of the start codon context. Any other claim must be deleted. All the 5'-UTR logos are essentially identical, indicating that "picking" happens by abundance (background).

      Supplementary Figure 3D represents results indicating that the mutation in -4 position (from G to A) did not affect the RAN translation regardless of RPS26 presence or depletion. However, this result does not imply that RPS26 does not affect the selection of start codon of sequence- or RNA structure-context. We verified this particular -4 position, as it was suggested previously as important RPS26-sensitive site in yeasts (Ferretti M, 2017, Nat Struct Mol Biol). We agree with Reviewer that all 5’UTR logos presented in our paper did not show statistical significance for neither tested position for human mRNAs. On the contrary, we observed that regulation sensitive to RPS26 level depends on the selection of start codon of RAN translation, in particular ACG initiation (new Figure 4F&G). RPS26 depletion affected ACG-initiated but not GTG- or CTG-initiated RAN translation.

      In the previous version of the manuscript, we wrote that we did not identify any specific motifs or enrichment within analyzed transcripts in comparison to the background. On the other hand, we found that the GC-content among analyzed transcripts is higher within 5’UTRs and in close proximity to ATG in coding sequences (Figure 4D), what suggests the importance of RNA stable structures in this region. In addition, we showed that mRNAs encoding proteins responding to RPS26 depletion have shorter than average 5’UTRs (new Figure 4E).

      (8) Mechanism is lacking entirely. There are many ways in which ribosomes could have mRNA-specific effects. The authors tried to find an effect from the Kozak sequence, unsuccessfully (however, they also did not do the experiment correctly, as they failed to recognize that the Kozak sequence differs between yeast, where it is A-rich, and mammalian cells, where it is GGCGCC). Collisions could be another mechanism.

      Indeed, collisions as well as other mechanisms such as skewed start codon fidelity may have an effect on efficiency of FMRpolyG biosynthesis. In the current version of the manuscript, we show that RPS26 amount-sensitive regulation seems to be start codonselection dependent (new Figure 4F&G).

      Reviewer #2 (Public Review):

      Summary:

      Translation of CGG repeats leads to the accumulation of poly G, which is associated with neurological disorders. This is a valuable paper in which the authors sought out proteins that modulate RAN translation. They determined which proteins in Hela cells bound to CGG repeats and affected levels of polyG encoded in the 5'UTR of the FMR1 mRNA. They then showed that siRNA depletion of ribosomal protein RPS26 results in less production of FMR1polyG than in control. There are data supporting the claim that RPS26 depletion modulates RAN translation in this RNA, although for some results, the Western results are not strong. The data to support increased aggregation by polyG expression upon S26 KD are incomplete.

      We thank the Reviewer for critical comments and suggestions. We sincerely appreciate your rigorous, insightful, and constructive feedback throughout the revision process.

      Below each specific point, we addressed the mentioned issues.

      Strengths:

      The authors have proteomics data that show the enrichment of a set of proteins on FMR1 RNA but not a related RNA.

      We thank Reviewer for appreciation of provided MS-screening results, which identified proteins enriched on FMR1 RNA with expanded CGG repeats.

      Weaknesses:

      - It is insinuated that RPS26 binds the RNA to enhance CGG-containing protein expression. However, RPS26 reduction was also shown previously to affect ribosome levels, and reduced ribosome levels can result in ribosomes translating very different RNA pools.

      In previous version of the manuscript we did not state that RPS26 binds directly to RNA with expanded CGG repeats and we did not show the experiment indicating direct interaction between studied RNA and RPS26. What we showed is that RPS26 was enriched on FMR1 RNA MS samples, however, we did not verify whether it is direct or indirect interaction. We also tried to test hypothesis that lack of RPS26 in PIC complex may affect efficiency of RAN translation initiation via specific, previously described in yeast Kozak context (Ferretti M, 2017, Nat Struct Mol Biol). As we described this hypothesis was negatively validated. However, we showed that other features of 5’UTR sequences (e.g. higher GC-content or shorter leader sequence) are potentially important for translation efficiency in cells with depleted RPS26.

      Indeed, RPS26 is involved in 40S maturation steps (Plassart L, 2021, eLife) and its insufficiency or mutations or blocking its inclusion to 40S ribosome may result in incomplete 40S maturation, which subsequently might negatively affect translation per se. However, we did not observe global translation inhibition after RPS26 depletion or depletion of TSR2, the chaperon involved in incorporation/exchange RPS26 to small ribosomal subunit (new Figure 2B and 5C). In addition, our SILAC-MS data indicates that majority of studied proteins (including FMRP, the main product of FMR1 gene) were not affected by RPS26 depletion which can be carefully extrapolated to global translation. In revised manuscript we also showed that relatively low silencing of RPS26 also decreased FMRpolyG production in model cells (new Figure 1D).

      We agree that reduced ribosome levels can result in different efficiency of translation of different RNA pools. We enhance this statement in revised manuscript. However, we also showed that the same mRNA containing different near cognate start codons (single/two nucleotide substitution) specific to RAN translation, or targeting this codon with antisense oligonucleotides resulted in altered sensitivity of FMR1 mRNA translation to RPS26 depletion (new Figure 4F).

      - A significant claim is that RPS26 KD alleviates the effects of FMRpolyG expression, but those data aren't presented well.

      We thank the Reviewer for this comment. In the new version of the manuscript, we have added new microscopic images and improved the explanation of Figure 1E. We have also completed the interpretation of Figure 1F in the main text, figure image as well as figure legend, and we hope that these changes will ameliorate understanding of our data.

      Recommendations For The Authors:

      - A significant claim is that RPS26 KD alleviates the effects of FMR polyG expression, but those data aren't presented well:

      Figure 1D (supporting data in S2) and 2D - the authors need to show representative images of a control that has aggregation and indicate aggregates being counted on an image. The legend states that there are no aggregates, but the quantification of aggregates/nucleus is ~1, suggesting there are at least 1 per cell. It is preferred to show at least a representative of what is quantified in the main figure instead of a bar graph.

      The representative images of control and siRPS26-treated cells are now shown in revised version of Figure 1E. Additionally, we completed the Figure legend concerning this part, as well as extended description of the experiment in Materials&Methods section.

      Figure 1E - it is unclear what luminescence signal is being measured. Is this a dye for an apoptotic marker? More information is needed in the legend.

      This information was added to the legend of modified Figure 1F (previously 1E) as suggested.

      - Some of the Western blots are not very convincing. Better evidence for the changes in bar graphs would improve how convincing the data are:

      Fig 2B. The western for FMR95G in the first model is not very convincing. The difference by eye for the second siRNA seems to give a larger effect than the first for 95G construct but they appear almost the same on the graph. More supporting information for the quantification is needed.

      We provided better explanation for WB quantification in M&M section in the manuscript. Alos, we provided additional blot demonstrating independent biological replicate of the mentioned experiment in supplementary materials (Supplementary Figure S2E).

      Figure 4A, the blots for RPS26 and FMR95G are not convincing. They are quite smeary compared to all of the others shown for these proteins in other figures. Could a different replicate be shown?

      We provided additional blot demonstrating the effect on transiently expressed FMRpolyG affected by depletion of TSR2 in COS7 cell line (Supplementary Figure S4A).

      Figure 5A and 5B blots are not ideal. Could a different replicate be shown? Or show multiple replicates in the supplemental figure?

      We provided additional blots from the same experiment, although data is not statistically significant, most likely due to low quality of normalization factor, which is Vinculin (Supplementary Figure S5A). Nevertheless, the level of FMRpolyG is decreased by ~70% after RPS25 silencing in SH-SY5Y cells.

      Figure 2C. Please use the same y axes for all four Westerns in B and C. One would like to compare 95 and 15 repeats, but it is difficult when the y axes are different.

      Thank you for this comment. The y axis was adjusted as suggested by the Reviewer.

      Figure 3D-The text suggests a significant difference between positive and negative responders that is not clear in the figure.

      In the main body of the manuscript we state that: “We did not observe any significant differences in the frequency of individual nucleotide positions in the 20-nucleotide vicinity of the start codon relative to the expected distribution in the BG”, which is in line with the graph showed in Figure 4D (previously 3D).

      Reviewer #3 (Public Review):

      Tutak et al provide interesting data showing that RPS26 and relevant proteins such as TSR2 and RPS25 affect RAN translation from CGG repeat RNA in fragile X-associated conditions. They identified RPS26 as a potential regulator of RAN translation by RNAtagging system and mass spectrometry-based screening for proteins binding to CGG repeat RNA and confirmed its regulatory effects on RAN translation by siRNA-based knockdown experiments in multiple cellular disease models and patient-derived fibroblasts. Quantitative mass spectrometry analysis found that the expressions of some ribosomal proteins are sensitive to RPS26 depletion while approximately 80% of proteins including FMRP were not influenced. Since the roles of ribosomal proteins in RAN translation regulation have not been fully examined, this study provides novel insights into this research field. However, some data presented in this manuscript are limited and preliminary, and their conclusions are not fully supported.

      (1) While the authors emphasized the importance of ribosomal composition for RAN translation regulation in the title and the article body, the association between RAN translation and ribosomal composition is apparently not evaluated in this work. They found that specific ribosomal proteins (RPS26 and RPS25) can have regulatory effects on RAN translation (Figures 1C, 2B, 2C, 2E, 4A, 5A, and 5B), and that the expression levels of some ribosomal proteins can be changed by RPS26 knockdown (Figure 3B, however, the change of the ribosome compositions involved in the actual translation has not been elucidated). Therefore, their conclusive statement, that is, "ribosome composition affects RAN translation" is not fully supported by the presented data and is misleading.

      We thank the Reviewer for critical comments and suggestions. We agree that the initial title and some statements in the text were misleading and the presented data did not fully support the aforementioned statement regarding ribosomal composition affecting FMRpolyG synthesis. Therefore, in the revised version of the manuscript we included a control experiment indicating that depletion of another core 40S ribosomal protein (RPS6) did not impact the FMRpolyG synthesis (new Figure 5C), which supports our hypothesis that RPS26 and RPS25 are specific CGG-related RAN translation modifiers. To precisely deliver a main message of our work, we changed the title that will indicate the specific effect of RPS26 and RPS25 insufficiency on RAN translation of FMRpolyG. Proposed title: “Insufficiency of 40S ribosomal proteins, RPS26 and RPS25 negatively affects biosynthesis of polyglycine-containing proteins in fragile-X associated conditions”. We also changed all statements regarding “ribosomal composition” in main text of the new version of manuscript.

      (2) The study provides insufficient data on the mechanisms of how RPS26 regulates RAN translation. Although authors speculate that RPS26 may affect initiation codon fidelity and regulate RAN translation in a CGG repeat sequence-independent manner (Page 9 and Page 11), what they really have shown is just identification of this protein by the screening for proteins binding to CGG repeat RNA (Figure 1A, 1B), and effects of this protein on CGG repeat-RAN translation. It is essential to clarify whether the regulatory effect of RPS26 on RAN translation is dependent on CGG repeat sequence or near-cognate initiation codons like ACG and GUG in the 5' upstream sequence of the repeat. It would be better to validate the effects of RPS26 on translation from control constructs, such as one composed of the 5' upstream sequence of FMR1 with no CGG repeat, and one with an ATG substitution in the 5' upstream sequence of FMR1 instead of near-cognate initiation codons.

      We agree that the data presented in the manuscript implies that insufficiency of RPS26 plays a pivotal role in the regulation of CGG-related RAN translation and in the revised version of the manuscript we included a series of experiments indicating that ACG codon selection seems to be an important part of RPS26 level-dependent regulation of polyglycine production (new Figure 4F&G; see point 3 below for more details). Importantly, in the luciferase assay showed on Figure 4F we used the AUG-initiated firefly luciferase reporter as normalization control.

      Moreover, to verify if FMRpolyG response to RPS26 deficiency depends on the type of reporter used, we repeated many experiments using FMRpolyG fused with different tags. The luciferase-based assays were in line with experiments conducted on constructs with GFP tag (new Figure 1D), thus strengthening our previous data. Moreover, in the series of experiments, we show that FMRP synthesis which is initiated from ATG codon located in FMR1 exon 1, was not affected by RPS26 depletion (Figure 3E & 4C), even though its translation occurs on the same mRNA as FMRpolyG. This indicates a specific RPS26 regulation of polyglycine frame initiated from ACG near cognate codon.

      (3) The regulatory effects of RPS26 and other molecules on RAN translation have all been investigated as effects on the expression levels of FMRpolyG-GFP proteins in cellular models expressing CGG repeat sequences Figures 1C, 2B, 2C, 2E, 4A, 5A, and 5B). In these cellular experiments, there are multiple confounding factors affecting the expression levels of FMRpolyG-GFP proteins other than RAN translation, including template RNA expression, template RNA distribution, and FMRpolyG-GFP protein degradation. Although authors evaluated the effect on the expression levels of template CGG repeat RNA, it would be better to confirm the effect of these regulators on RAN translation by other experiments such as in vitro translation assay that can directly evaluate RAN translation.

      We agree that there are multiple factors affecting final levels of FMRpolyG-GFP proteins including aforementioned processes. We evaluated the level of FMR1 mRNA, which turned out not to be decreased upon RPS26 depletion (Figure 3B&C), therefore, we assumed that what we observed, was the regulation on translation level, especially that RPS26 is a ribosomal protein contacting mRNA in E-site. We believe that direct assays such as in vitro translation may be beneficial, however, depletion of RPS26 from cellular lysate provided by the vendor seems technically challenging, if not completely impossible. Instead, we focused on sequence/structure specific regulation of RAN translation with the emphasis on start-codon initiation selection. It resulted in generating the valuable results pointing out the RPS26 role in start codon fidelity (Figure 4F&G). These new results showed that translation from mRNAs differing just in single or two nucleotide substitution in near cognate start codon (ACG to GUG or ACG to CUG), although results in exactly the same protein, is differently sensitive to RPS26 silencing (new Figure 4F). Similar differences were observed for translation efficiency from the same mRNA targeted or not with antisense oligonucleotide complementary to the region of RAN translation initiation codon (new Figure 4G). These results also suggest that stability of FMRpolyG is not affected in cells with decreased level of RPS26.

      (4) While the authors state that RPS26 modulated the FMRpolyG-mediated toxicity, they presented limited data on apoptotic markers, not cellular viability (Figure 1E), not fully supporting this conclusion. Since previous work showed that FMRpolyG protein reduces cellular viability (Hoem G, 2019,Front Genet), additional evaluations for cellular viability would strengthen this conclusion.

      We thank the Reviewer for this suggestion. We addressed the apoptotic process in order to determine the effect of RPS26 depletion on RAN translation related toxicity (Figure 1F). In revised version of the manuscript, we also added the evaluation on how cells proliferation was affected by RPS26, RPS25, RPS6 and TSR2 depletion. Our data indicate that TSR2 silencing slightly impacted the cellular fitness (new Figure 5D), whereas insufficiencies of RPS26, RPS25 and RPS6 had a much stronger negative effect on proliferation (new Figure 2A, 5D, 6C), which is in line with previous data (Cheng Z 2019, Mol Cell; Luan Y, 2022, Nucleic Acids Res). The difference in proliferation rate after treatment with siRPS26 makes proper interpretation of cellular viability assessment very difficult.

      Recommendations For The Authors:

      (1) It would be nice to validate the effects of overexpression of RPS26 and other regulators on RAN translation, not limited to knockdown experiments, to support the conclusion.

      We did not performed such experiments because we believed that RPS26 overexpression may have no or marginal effect on translation or RAN translation. It is likely impossible to efficiently incorporate overexpressed RPS26 into 40S subunits, because the concentration of all ribosomal proteins in the cells is very high.

      (2) It would be better to explain how authors selected 8 proteins for siRNA-based validation (Figure 1C, 1D, S1D) from 32 proteins enriched in CGG repeat RNA in the first screening.

      We selected those candidates based on their functions connected to translation, structured RNA unwinding or mRNA processing. For example, we tested few RNA helicases because of their known function in RAN translation regulation described by other researchers. This explanation was added to the revised version of the manuscript.

      (3) Original image data showing nuclear FMRpolyG-GFP aggregates should be presented in Figure 1D.

      The representative images of control and siRPS26-treated cells are now shown in modified version of Figure 1E and described with more details in the legend.

      (4) Image data in Figure 2A and 2D have poor signal/noise ratio and the resolution should be improved. In addition, aggregates should be clearly indicated in Figure 2D in an appropriate manner.

      The stable S-FMR95xG cellular model is characterized by very low expression of RANtranslated FMR95xG, therefore, it is challenging to obtain microscopic images of better quality with higher GFP signal. In the L-99xCGG model expression of transgene is higher. Therefore, we provided new image in the new version of Figure 3D (former 2D). Moreover, we showed aggregates on the image obtained using confocal microscopy (new Supplementary Figure 2D).

      (5) The detailed information on patient-derived fibroblast (age and sex of the patient, the number of CGG repeats, etc.) in Figure 2F needed to be presented.

      This information was added to the figure legend (Figure 3F; previously 2F) and in the Material and Methods section as suggested.

      (6) It would be better to normalize RNA expression levels of FMR1 and FMR1-GFP by the housekeeping gene in Figure S2C, like other RT-qPCR experimental data such as Figure 2B.

      Normalization of FMR1-GFP to GAPDH is now shown in modified version of Figure S2C (right graph) as requested by the Reviewer.

      (7) It would be better to add information on molecular weight on all Western blotting data.

      (8) Marks corresponding to molecular weight ladder were added to all images.

      Full blots, including protein ladders were deposited in Zenodo repository, under doi: 10.5281/zenodo.13860370

      References

      Cheng Z, Mugler CF, Keskin A, Hodapp S, Chan LYL, Weis K, Mertins P, Regev A, Jovanovic M & Brar GA (2019) Small and Large Ribosomal Subunit Deficiencies Lead to Distinct Gene Expression Signatures that Reflect Cellular Growth Rate. Mol Cell 73: 36-47.e10

      Havkin-Solomon T, Fraticelli D, Bahat A, Hayat D, Reuven N, Shaul Y & Dikstein R (2023) Translation regulation of specific mRNAs by RPS26 C-terminal RNA-binding tail integrates energy metabolism and AMPK-mTOR signaling. Nucleic Acids Res 51: 4415–4428

      Hoem,G., Larsen,K.B., Øvervatn,A., Brech,A., Lamark,T., Sjøttem,E. and Johansen,T. (2019) The FMRpolyGlycine protein mediates aggregate formation and toxicity independent of the CGG mRNA hairpin in a cellular model for FXTAS. Front. Genet., 10, 1–18.

      Luan Y, Tang N, Yang J, Liu S, Cheng C, Wang Y, Chen C, Guo YN, Wang H, Zhao W, et al (2022) Deficiency of ribosomal proteins reshapes the transcriptional and translational landscape in human cells. Nucleic Acids Res 50: 6601–6617

      Plassart L, Shayan R, Montellese C, Rinaldi D, Larburu N, Pichereaux C, Froment C, Lebaron S, O’donohue MF, Kutay U, et al (2021) The final step of 40s ribosomal subunit maturation is controlled by a dual key lock. Elife 10

    1. Author response:

      The following is the authors’ response to the original reviews.

      It would be great if the authors could add clarification about the NMDS analyses and the associated results (Fig. 1, Table 1 and Tables S2-4). The overall aim of these analyses was to see how plot characteristics (e.g. canopy cover) and composition of one taxonomic group were related to the composition of another taxonomic group. The authors quantified species composition by two axes from NMDS. (1) This analysis may yield an interpretation problem: if we only find one of the axes, but not the other, was significantly related to one variable, it would be difficult to determine whether that specific variable is important to the species composition because the composition is co-determined by two axes. (2) It is unclear how the authors did the correlation analyses for Tables S2-4. If correlation coefficients were presented in these tables, then these coefficients should be the same or very similar if we switch the positions of y vs. x. That is, the correlation between host vs. parasite phylogenetic composition would be very close to the correlation between parasite vs. phylogenetic composition, but not as the author found that these two relationships were quite different, leading to the interpretation of bottom-up or top-down processes. It is also unclear which correlation coefficient was significant or not because only one P value was provided per row in these tables. (3) In addition to the issues of multiple axes (point 1), NMDS axes simply define the relative positions of the objects in multi-dimensional space, but not the actual dissimilarities. Other methods, such as generalized dissimilarity modeling, redundancy analysis and MANOVA, can be better alternatives.

      Thank you for the thorough and constructive review. We have taken the concerns and questions raised by the editors and reviewers into account and provided clarification about the NMDS analyses as well as additional analyses to confirm our results. First, we have now added a brief explanation in the manuscript regarding the interpretation of the two NMDS axes and how they relate to species composition. Specifically, we clarified that while NMDS defines the relative positions of objects in multi-dimensional space, the two axes together provide a more comprehensive representation of the community composition, which is not solely determined by either axis independently. Second, we acknowledge that alternative approaches could help further strengthen our conclusions. To address this, we incorporated Mantel tests and PERMANOVA (with ‘adonis2’) as additional validation methods. These analyses allowed us to summarize compositional patterns while testing our hypotheses within the framework of the plot characteristics and taxonomic relationships. We have added these analyses and their results in the manuscript to reinforce our findings.

      In methods: L478-481 “To strengthen the robustness of our findings based on NMDS, we further validated the results using Mantel test and PERMANOVA (with ‘adonis2’) for correlation between communities and relationships between communities and environmental variables.”

      L469-475 “NMDS was used to summarize the variation in species composition across plots. The two axes extracted from the NMDS represent gradients in community composition, where each axis reflects a subset of the compositional variation. These axes should not be interpreted in isolation, as the overall species composition is co-determined by their combined variation. For clarity, results were interpreted based on the relationships of variables with the compositional gradients captured by both axes together."

      In results: L172-177 “The PERMANOVA analysis also highlighted the important role of canopy cover for host and parasitoid community (Table S6-9). The Mantel test revealed a consistent pattern with the NMDS analysis, highlighting a pronounced relationship between the species composition of hosts and parasitoids (Table S10). However, the correlation between the phylogenetic composition of hosts and parasitoids was not significant.”

      In discussion: L257-261 “However, this significant pattern was observed only in the NMDS analysis and not in the Mantel test, suggesting that the non-random interactions between hosts and parasitoids could not be simply predicted by their community similarity and associations between the phylogenetic composition of hosts and parasitoids are more complex and require further investigation in the future.”

      -- One additional minor point: "site" would be better set as a fixed rather than random term in the linear mixed-effects models, because the site number (2) is too small to make a proper estimate of random component.

      Now we treated “site” as a fixed factor in our models, interacting with tree species richness/tree MPD and tree functional diversity to reflect the variation of spatial and tree composition between the two sites. We found the main results did not change, as both sites showed consistent patterns for effects of tree richness/MPD on network metrics, which is more pronounced in one site.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors analyzed how biotic and abiotic factors impact antagonistic host-parasitoid interaction systems in a large BEF experiment. They found the linkage between the tree community and host-parasitoid community from the perspective of the multi-dimensionality of biodiversity. Their results revealed that the structure of the tree community (habitat) and canopy cover influence host-parasitoid compositions and their interaction pattern. This interaction pattern is also determined by phylogenetic associations among species. This paper provides a nice framework for detecting the determinants of network topological structures.

      Strengths:

      This study was conducted using a five-year sampling in a well-designed BEF experiment. The effects of the multi-dimensional diversity of tree communities have been well explained in a forest ecosystem with an antagonistic host-parasitoid interaction.

      The network analysis has been well conducted. The combination of phylogenetic analysis and network analysis is uncommon among similar studies, especially for studies of trophic cascades. Still, this study has discussed the effect of phylogenetic features on interacting networks in depth.

      Weaknesses:

      (1) The authors should examine species and interaction completeness in this study to confirm that their sampling efforts are sufficient.

      (2) The authors only used Rao's Q to assess the functional diversity of tree communities. However, multiple metrics of functional diversity exist (e.g., functional evenness, functional dispersion, and functional divergence). It is better to check the results from other metrics and confirm whether these results further support the authors' results.

      (3) The authors did not elaborate on which extinction sequence was used in robustness analysis. The authors should consider interaction abundance in calculating robustness. In this case, the author may use another null model for binary networks to get random distributions.

      (4) The causal relationship between host and parasitoid communities is unclear. Normally, it is easy to understand that host community composition (low trophic level) could influence parasitoid community composition (high trophic level). I suggest using the 'correlation' between host and parasitoid communities unless there is strong evidence of causation.

      Thank you very much for your thoughtful and constructive review of our manuscript. We have carefully addressed your comments and made several revisions to improve the clarity and robustness of our work.1) We appreciate your suggestion regarding species and interaction completeness. To confirm that our sampling efforts were sufficient, we have now included a figure (Fig. S1) showing the species accumulation curve and the coverage of interactions in our study. This ensures that the data collected provide a comprehensive representation of the system. 2) Regarding the use of only Rao’s Q to assess functional diversity, we acknowledge that multiple metrics of functional diversity exist. However, due to the large number of predictors in our analysis, we decided to streamline our approach and focus on Rao’s Q as it provides a robust measure for our research objectives. We have discussed this decision in the revised manuscript and clarified that, while additional metrics could be informative, we believe Rao’s Q sufficiently captures the key aspects of functional diversity in our study. 3) We have elaborated on the robustness analysis and the null model used in our study. Specifically, we now clarified which extinction sequence (random extinction) was used in our manuscript, and explained interaction abundance was incorporated into the robustness calculations (networklevel function, weighted=TURE; see L506). 4) We have revised the text to clarify the relationship between host and parasitoid communities. As you correctly pointed out, while it is intuitive that host community composition influences parasitoid community composition, we have reframed our analysis to emphasize the correlation between the two communities rather than implying causation without strong evidence. We have revised the manuscript to reflect this distinction.

      Reviewer #2 (Public Review):

      Summary:

      In their manuscript, Multi-dimensionality of tree communities structure host-parasitoid networks and their phylogenetic composition, Wang et al. examine the effects of tree diversity and environmental variables on communities of reed-nesting insects and their parasitoids. Additionally, they look for the correlations in community composition and network properties of the two interacting insect guilds. They use a data set collected in a subtropical tree biodiversity experiment over five years of sampling. The authors find that the tree species, functional, and phylogenetic diversity as well as some of the environmental factors have varying impacts on both host and parasitoid communities. Additionally, the communities of the host and parasitoid showed correlations in their structures. Also, the network metrices of the host-parasitoid network showed patterns against environmental variables.

      Strengths:

      The main strength of the manuscript lies in the massive long-term data set collected on host-parasitoid interactions. The data provides interesting opportunities to advance our knowledge on the effects of environmental diversity (tree diversity) on the network and community structure of insect hosts and their parasitoids in a relatively poorly known system.

      Weaknesses:

      To me, there are no major issues regarding the manuscript, though sometimes I disagree with the interpretation of the results and some of the conclusions might be too far-fetched given the analyses and the results (namely the top-down control in the system). Additionally, the methods section (especially statistics) was lacking some details, but I would not consider it too concerning. Sometimes, the logic of the text could be improved to better support the studied hypotheses throughout the text. Also, the results section cannot be understood as a stand-alone without reading the methods first. The study design and the rationale of the analyses should be described somewhere in the intro or presented with the results.

      Thank you very much for your valuable comments and suggestions on our manuscript! We appreciate your feedback and have made revisions accordingly. Specifically, we have rephrased the interpretation of the results and conclusions to better align with the analyses and avoid overstatements, particularly concerning the top-down control in the system. In addition, we have expanded the methods section by providing more details, especially regarding the statistical approaches, to address the points you raised. To enhance the clarity of the manuscript, we have also ensured that the logic of the text better supports the hypotheses throughout. Please see our point-by-point responses below for additional clarifications.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Line 120: "... and large ecosystems susceptible to global change (add citation here)": Citation(s)?

      Now we provided the missed citations.

      Line 141: Add sampling completeness information.

      Now we provide a new figure about sampling completeness (Fig. S1) in the supplementary materials, showing the adequate sampling effort for our study.

      Line 151: use more metrics in the evaluation of functional diversity

      We used tree functional diversity Rao’s Q, which is an integrated and wildly used metric to represent functional dissimilarity of trees. As our study focus on multiple diversity indices of trees, it would be better to do not pay more attention to one type of diversity. Thank you for your suggestion!

      Line 164: host vulnerability. Although generality and vulnerability are commonly used in network analysis, it is better to link these metrics with the trophic level, like the 'host vulnerability' you used. Thus, you can use 'parasitoid generality' instead of 'generality'.

      Thanks for your suggestion. Now the metrics were labeled with the trophic levels in the full text.

      Line 169: two'.'

      Corrected.

      Line 173: 'parasitoid robustness' Or 'robustness of parasitoids'?

      Now changed it to ‘robustness of parasitoid’.

      Lines 173, 468: For the robustness estimations, maybe use null model for binary networks to get random distributions?

      Thanks for the suggestion. Actually, we have used Patefield null models to compare the randomized robustness and observed, helping to assess whether the robustness of the observed network is significantly different compared to expected by chance. All robustness indices across plots were significantly different from a random distribution, See results section L197-201.

      Line 184: modulating interacting communities of hosts and parasitoids.

      Changed accordingly.

      Line 186: determined host-parasitoid interaction patterns

      Changed accordingly.

      Line 191: Biodiversity loss in this study refers to low trophic levels.

      Now we clarified this point.

      Line 190: understand

      Changed accordingly.

      Lines 215-216: Reorganize these sentences

      Line 227: indirectly influenced by...

      Changed accordingly.

      Line 238: Be more specific. Which type of further study?

      Rephased it more specific.

      Lines 297-299: rewrite this sentence to make it more transparent.

      Now we rewrote the sentence accordingly.

      Line 302: Certain

      Changed accordingly.

      Line 453: effective

      Changed accordingly.

      Finally, the authors should check the text carefully to avoid grammatical errors.

      Thanks, now we have checked the full text to avoid grammatical errors.

      Reviewer #2 (Recommendations For The Authors):

      I feel that the authors have very interesting data and have a solid set of analyses. I do not have major issues regarding the manuscript, though sometimes I disagree with the interpretation of the results and some of the conclusions might be too far-fetched given the analyses and the results. Additionally, the methods section (especially statistics) was lacking some details, but I would not consider it too concerning at this point.

      I feel that the largest caveat of the manuscript remains in the representation of the rationale of the study. I felt the introduction could be more concise and be better focused to back up the study questions and hypotheses. Many times, the sentences were too vague and unspecific, and thus, it was difficult to understand what was meant to be said. The authors could mention something more about how community composition of hosts and parasitoids are expected to change with the studied experimental design regarding the metrices you mention in the introduction (stronger hypotheses). The results section cannot be understood as a stand-alone without reading the methods first. The study design and the rationale of the analyses must be described somewhere in the intro or results, if the journal/authors want to keep the methods last structure. Also, the results and discussion could be more focused around the hypotheses. Naturally, these things can be easily fixed.

      I also disagree with the interpretation of results finding top-down control in the system (it might well be there, but I do not think that the current methods and tests are suitable in finding it). First, the used methodology cannot distinguish parasitoids if the hosts are not there and the probability to detect parasitoid likely depends on the abundance of the host. Thus, the top-down regulation is difficult to prove (is it the parasitoids that have driven the host population down). Secondly, I would be hesitant to say anything about the top-down and bottom-up control in the systems as the data in the manuscript is pooled across five years while the top-down/bottom-up regulation in insect systems usually spans only one season/generation in time (much shorter than five years). Consequently, the analyses are comparing the communities of species that some of most likely do not co-exist (they were found in the same space but not during the same time). Luckily, the top-down/bottom-up effects could potentially be explored by using separately the time steps of the now pooled community data: e.g., does the population of the host decrease in t if the parasitoids are abundant in t-1? There are also other statistical tests to explore these patterns.

      In the manuscript "Phylogenetic composition" refers to Mean Pairwise Distance. I would use "phylogenetic diversity" instead throughout the text. Also, to my understanding, in trees both "phylogenetic composition" and "phylogenetic diversity" are used even though based on their descriptions, they are the same.

      Detailed comments:

      Punctuation needs to be checked and edited at some point (I think copy-pasting had left things in the wrong places). Please check that "-" instead of "-" is used in host-parasitoid.

      1-2 The title is not very matching with the content. "Multi-dimensionality" is not mentioned in the text. "phylogenetic composition" -> "phylogenetic diversity"

      We didn’t find the role of functional diversity of trees in host-parasitoid interactions, but we still have tree richness and phylogenetic diversity. I also disagree with that using phylogenetic diversity to replace phylogenetic composition, because diversity highlights higher or lower phylogenetic distance among communities, while the later highlights the phylogenetic dissimilarity across communities.

      53-57 This sentence is quite vague and because of it, difficult to follow. Consider rephrasing and avoiding unspecified terms such as "tree identity", "genetic diversity", and "overall community composition of higher trophic levels" (at least, I was not sure what taxa/level you meant with them).

      Rephased.

      L58-61 “Especially, we lack a comprehensive understanding of the ways that biotic factors, including plant richness, overall community phylogenetic and functional composition of consumers, and abiotic factors such as microclimate, determining host–parasitoid network structure and host–parasitoid community dynamics.”

      56 I would remove "interact" as no interactions were tested.

      Removed accordingly.

      59-60 This needs rephrasing. I feel "taxonomic and phylogenetic composition should be just "species composition". To better match, what was done: "taxonomic, phylogenetic, and network composition of both host and parasitoid communities" -> "species and phylogenetic diversity of both host and parasitoid communities and the composition their interaction networks"

      Changed accordingly.

      62 Remove "tree composition".

      Done.

      62 Replace "taxonomic" with "species". Throughout the text.

      Done.

      63-64 "Generally, top-down control was stronger than bottom-up control via phylogenetic association between hosts and parasitoids" I disagree, see my comments elsewhere.

      Now we rephased the sentence.

      L68-70 “Generally, phylogenetic associations between hosts and parasitoids reflect non-randomly structured interactions between phylogenetic trees of hosts and parasitoids.”

      68 "habitat structure and heterogeneity" This is too strong and general of a statement based on the results. You did not really measure habitat structure or heterogeneity.

      Now we rephased the statement to avoid strong and general description.

      L71-73 “Our study indicates that the composition of higher trophic levels and corresponding interaction networks are determined by plant diversity and canopy cover especially via trophic phylogenetic links in species-rich ecosystems.”

      69 Specify "phylogenetic links". Trophic links?

      Specified to “trophic phylogenetic links”.

      75-77 The sentence is a bit difficult to follow. Consider rephrasing.

      Now we rephased it.

      L79-82 “Changes in network structure of higher trophic levels usually coincide with variations in their diversity and community, which could be in turn affected by the changes in producers via trophic cascades”

      76 Be more specific about what you mean by "community of trophic levels".

      Specified to “community composition”.

      79 Remove "basal changes of", it only makes the sentence heavier.

      Done.

      81 What is "species codependence"?

      We sim to describe the species co-occurrence depending on their closely relationships. For clarity, now we changed to “species coexistence”

      82 What do you mean by "complex dynamics"?

      Rephased to “mechanisms on dynamics of networks”.

      83 onward: I would not focus so much on top-down/bottom-up as I feel that your current analyses cannot really say anything too strong about these causalities but are rather correlative.

      Thanks, we now removed the relevant contents from the discussion. However, we kept one sentence in the Introduction, because it should be highlighted to make reviewers aware of this (the other text on about this were removed).

      89 Remove "environmental".

      Done.

      90 Specify what you mean by "these forces".

      Done.

      98-99 I have difficulties following the logic here "potential specialization of their hosts may cascade up to impact the parasitoids' presence or absence". Consider rephrasing.

      Now we rephased it.

      L101-102 “…and their host fluctuations may cascade up to impact the parasitoids’ presence or absence.”

      100 Be more specific with "habitat-level changes".

      Specified to “community-level changes”

      100 I do not see why host-parasitoid systems would be ideal to study "species interactions". There are much simpler and easier systems available.

      Changed to “… one of ideal…”

      101-103 "influence of" on what?

      Now we rephased the sentence.

      L104-105 “Previous studies mainly focused on the influence of abiotic factors on host-parasitoid interactions”

      104 Be more specific in "the role of multiple components of plant diversity".

      Now we specified "the role of multiple components of plant diversity".

      L107-108 “…the role of multiple components of plant diversity (i.e. taxonomic, functional and phylogenetic diversity)…”

      106 "diversity associations" of what?

      “diversity associations between host and parasitoids”.

      108 Specify the "direct and indirect effects".

      Now we specified it to “…direct and indirect effects (i.e. one pathway and more pathways via other variables)…”

      110-113 A bit heavy sentence to follow. Consider rephrasing.

      Now we rephased the sentence to make it more readable.

      114 Give an example of "phylogenetic dependences".

      Done. Phylogenetic dependences (e.g. phylogenetic diversity)

      117 Move the "e.g. taxonomic, phylogenetic, functional" within brackets in 117 after "dimensions of biodiversity".

      Done.

      120 "(add citation here)" Yes please!

      Done.

      120-121 Specify "such relationships".

      Done. Specified to “multiple dimensions of biodiversity”

      128-130 This is difficult to follow. Please rephrase.

      Now we rephased the sentence.

      L135-137 “We aimed to discern the primary components of the diversity and composition of tree communities that affect higher trophic level interactions via quantifying the strength and complexity of associations between hosts and parasitoid.”

      131-132 Remove "phylogenetic and". It is redundant to phylogenetic diversity.

      Done.

      128 Tested robustness does not really capture "stability of associations".

      Yes, we agree. Now we rephased the sentence and exclude the “stability” description.

      133 Specify "phylogenetic processes".

      Now we specified “phylogenetic processes”.

      L140-141 “…especially via phylogenetic processes (e.g. lineages of trophic levels diverge and evolve over time)…”

      141 I would like to have more details on the data set somewhere in the results. How many individuals and species were found in each plot (on average)? Was there a lot of temporal variation (e.g. between the seasons)? On how many sites were the insect species found?

      Thanks for your suggestion. Now we provide more details on the data set in the results (L153-156), including mean values of individuals and species in each plot. However, the temporal variation should be studied for another relative independent topic, as our study focus on the general patter of interactions between hosts and parasitoids. Therefore, we would not put more information on temporal changes to make readers get lost in the text.

      153-156 “Among them, we found 56 host species (12 bees and 44 wasps, mean abundance and richness are 400.05 and 45.14, respectively, for each plot) and 50 parasitoid species (38 Hymenoptera and 12 Diptera, mean abundance and richness are 14.07 and 9.05, respectively, for each plot).”

      149 tree -> trees

      Done.

      149 Should there read also some else than "NMDS scores"?

      Thanks! Now we provided more details about “NMDS scores”.

      L161-162 “(NMDS axis scores; i.e. preserving the rank order of pairwise dissimilarities between samples)”

      149 You could mention the amount of variation explained by the first two axes of the NMDSs. Now it is difficult to estimate how much the models actually explain.

      Thanks for your comments! However, we could not directly provide the explanatory power of the two axes, because NMDS is based on rank-order distances rather than linear relationships like in PCA. However, the goodness of fit for the NMDS solution is typically evaluated using the stress value. We provide the stress value in the figure caption.

      150 "tree MPD" is mentioned for the first time. Spell it out.

      Done.

      150 Explain "eastness".

      Done.

      L163-164 “…eastness (sine-transformed radian values of aspect) )”

      151 How was "tree functional diversity" quantified?

      Please see methods. L437-L438.

      160 Specify that you talk about phylogenetic compositions of the host and parasitoid communities here.

      We would keep it refined here, keeping consistent with species composition here. Phylogenetic composition just represents the dissimilarities of phylogenetic linages within a community.

      161 Describe "parafit" test here when first mentioned.

      Done, see methods L485-487.

      182 Keep on referring to tables and figures in the discussion! Also, more clearly discuss your hypotheses. There are lots of discussions on top-down/bottom-up control. It could be good to form a hypothesis on them and predict what kind of patterns would suggest either one and what would you expect to find regarding them.

      Now we referred figures and tables in the discussion. As the contents on top-down and bottom-up control were not fit very well with our study (as also suggested by reviewers), so we rephased the discussion and also clearly discuss our hypotheses in the discussion. See L218, L226, and L237 etc.

      186 "partly determined host-parasitoid networks" Be more specific.

      Done.

      L206-207 “…partly determined host-parasitoid network indices, including vulnerability, linkage density, and interaction evenness.”

      195 Tell what you mean by "other biotic factors".

      Specified it: “…other biotic factors such as elevation and slope…”

      197-198 "It seems likely that these results are based on bee linkages to pollen resources" I would be hesitant to conclude this as the bees most likely forage way beyond the borders of the 30m by 30m study plots.

      Thanks for your concern about this problem. While it is true that bees can forage beyond 30 x 30m, the study focuses on their nesting behavior and activity within this defined area, rather than their entire foraging range. Existing literature shows bees often forage locally when resources are available (e.g. Ebeling et al., 2012 Oecologia; Guo et al., year, Basic and Applied Ecology). Therefore, we are confident that this pattern could be associated with the resources around the trap nests.

      223 "This could be further tested by collecting the food directly used by the wasps (caterpillars)" A bit unnecessary addition.

      Thanks for your suggestion. Yes, this definitely is a good point, but currently we don’t have enough data of caterpillars, but we will follow this in the future.

      232-238 I disagree with the authors on the interpretation of the causality of the results here. I think that the community of parasitoids simply indicates which host species are available, while the host community does not have an as strong effect on parasitoid community as parasitoids do not utilise the whole species pool of the hosts. (Presence of parasitoid tells that the host is around while the presence of the host does not necessarily tell about the presence of the parasitoid.) To me, this would rather indicate a bottom-up than top-down regulation. Similar patterns are also visible in species communities of hosts and parasites.

      Thank you for your suggestion. We agree with you that parasitoids are more depended on hosts, as host could not be always attacked by parasitoids. Now we rephased our explanation to follow this argument.

      L254-256 “Such pattern could be further confirmed by the significant association between host phylogenetic composition and parasitoid phylogenetic composition (Fig. 1c), which suggested that their interactions are phylogenetically structured to some extent.”

      247-266 The logic in this section is difficult to follow. Try rephrasing.

      Now we rephased the section for a clearer logic.

      L270-287 “Tree community species richness did not significantly influence the diversity of hosts targeted by parasitoids (parasitoid generality), but caused a significant increase in the diversity of parasitoids per host species (host vulnerability) (Fig. 3a; Table 2). This is likely because niche differentiation often influences network specialization via potential higher resource diversity in plots with higher tree diversity (Lopez-Carretero et al. 2014). Such positive relationship between host vulnerability and tree species richness suggested that host-parasitoid interactions could be driven through bottom-up effects via benefit from tree diversity. For example, parasitoid species increases more than host diversity with increasing tree species richness (Guo et al. 2021), resulting increasing of host vulnerability at community level. According to the enemies hypothesis (Root 1973), which posits a positive effects of plant richness on natural enemies, the higher trophic levels in our study (e.g. predators and parasitoids) would benefit from tree diversity and regulate herbivores thereby (Staab and Schuldt 2020). Indeed, previous studies at the same site found that bee parasitoid richness and abundance were positively related to tree species richness, but not their bee hosts (Fornoff et al. 2021, Guo et al. 2021). Because our dataset considered all hosts and reflects an overall pattern of host-parasitoid interactions, the effects of tree species richness on parasitoid generality might be more complex and difficult to predict, as we found that neither tree species richness nor tree MPD were related to parasitoid generality.”

      249 "This is likely because niche differentiation often influences network specialization via potential higher resource diversity in plots with higher tree diversity" This is a bit contradicting your vulnerability results as niche differentiation should increase specialization and diversity and specialization should decrease vulnerability (less host per parasitoid).

      Thanks! We understand that the concepts of “generality” and “vulnerability” can be a bit confusing. To clarify, “fewer hosts per parasitoid” actually corresponds to lower generality at the community level.

      332-337 How did you select the species growing on your plots? Or was only species number considered? What was the pool of tree species growing on the selected plots? Was the selection similar at both sites?

      Now we provided more information on the experiment design.

      L354-356 “The species pools of the two plots are nonoverlapping (16 species for each site). The composition of tree species within the study plots is based on a “broken-stick” design (see Bruelheide et al. 2014).”

      342 Remove "centrally per plot"?

      Done.

      346-347 Was the selection of different reed diameters similar in all the plots?

      Diameters and the relative distribution of diameters was similar in all trap nests.

      399 & 432 Are "phylogenetic diversity of the tree communities" and "phylogenetic composition of trees" the same? They are both described as mean pairwise distance.

      These two are actually different, as we use this to distinguish the phylogenetic diversity with communities and rank order of dissimilarities between tree communities. Here, the phylogenetic diversity of the tree communities is mean pairwise phylogenetic distance of species for tree communities. Tree phylogenetic composition is the rank order of pairwise dissimilarities between tree communities based on NMDS.

      400 Do you think that MPD makes any sense with the monocultures (value is always 0)? Does this have a potential to bias your analyses and result?

      We agree your point. However, we do not think that this is a major problem in the analyses. We followed the experimental design and considered low phylogenetic relatedness of tree species in a plot (Likewise in monocultures, the tree species richness is always 1).

      402-405 MNTD is not mentioned before or after this. Consider removing this section.

      We tested the potential effects of MNTD in our models. Now we mentioned it in our results.

      L194-195 “Tree mean nearest taxon distance (MNTD) was unrelated to any network indices.”

      405 "Phylogenetic metrics of trees" Which ones?

      Both tree MPD and MNTD. Now we have noted it in the manuscript. (L432)

      410 Further details on "Rao's Q" and how the functional diversity of the communities was calculated are needed.

      Now more details were provided.

      L435-438 “Specifically, seven leaf traits were used for calculation of tree functional diversity, which was calculated as the mean pairwise distance in trait values among tree species, weighted by tree wood volume, and expressed as Rao's Q”

      413 Specify "higher trophic levels".

      Now we specified the trophic levels.

      L440-441 “…higher trophic levels in our study area, such as herbivores and predators”

      417-424 What about the position of the plots within study sites? Is there potential for edge effects (e.g. bees finding easier the trap nest close to the edge of the experimental forest)? Were there any differences between the two sites? What is the elevation range of the plots?

      Thanks for concerning the details of our study. First, all the plots were randomly distributed within the study sites (see Fig. S2). Admittedly, there are several plots are located in the edges of the site. However, we did not consider the potential edge effects in our analysis. Of course, this will be a good point in our future studies. Moreover, the biggest difference between the two is the non-overlapping tree species pool, and the two study sites are apart from 5 km in the same town. Finally, there is not too distinct elevation gradient across the plots (112 m - 260 m).

      432-434 "The species and phylogenetic composition of trees, hosts, and parasitoids were quantified at each plot with nonmetric multidimensional scaling (NMDS) analysis based on Morisita-Horn distances" This section needs to be more specific and detailed. Did you do the NMDS separately for each plot as suggested in the text?

      We provided more details of the section.

      L462-465 “The minimum number of required dimensions in the NMDS based on the reduction in stress value was determined in the analysis (k = 2 in our case). We centred the results to acquire maximum variance on the first dimension, and used the principal components rotation in the analysis.”

      435 Specify how picante was used (function and arguments)!

      Now we specified the function.

      L465-467 “The phylogenetic composition was calculated by mean pairwise distance among the host or parasitoid communities per plot with the R package “picante” with ‘mpd’ function.”

      436 "standardized values" Of what? How was the standardisation done?

      Now we citied a supplementary table (Table S2) to specify it (see L469). For the standardization, we used ‘scale’ function in R, which standardizes data by centering and scaling data. Specifically, it subtracts the mean and divides by the standard deviation for each variable.

      443 Provide more details on parafit.

      Actually, we have provided the reason why we use the parafit test and the usage.

      L483-486 “We used a parafit test (9,999 permutations) with the R package “ape” to test whether the associations were non-random between hosts and parasitoids. This is widely used to assess host-parasite co-phylogeny by analyzing the congruence between host and parasite phylogenies using a distance-based matrix approach.”

      449-451 Rephrase the sentence.

      Rephased.

      L490-491 “We constructed quantitative host-parasitoid networks at community level with the R package “bipartite” for each plot of the two sites.”

      451 "six" Should this be five?

      Yes, should be five, thanks.

      470-481 What package and function were used for the LMMs?

      As we now used linear models, we do no longer use a R package for LMMs.

      470 "mix" -> mixed

      Changed to linear models.

      472 "six" Should this be five?

      Again, we changed it to five.

      479-481 How did you treat the variables from the two different sites when testing for the correlations to avoid two geographic clusters of data points?

      Now we considered the two study sites as fixed factor in our linear models. Moreover, tree-based variables were additionally included as interaction terms with the study sites.

      501 "mix" -> mixed

      Changed to linear models.

      The panel selection for figures 3 and 4 seems random. Justify it!

      Thank you. To avoid including too many figures in the main text, which could potentially confuse readers, we have selected the key results that are of primary interest. The remaining figures are provided in the appendix for reference.

      533 "Note that axes are on a log scale for tree species richness." Why the log-scale if the analyses were performed with linear fit? Also, the drawn regression lines do not match the model description (non-linear, while a linear model is described in the text). The models should probably be described in more detail.

      We used log-transformed to promote the normality of the data. The drawn regression lines are linear lines, which fit our models.

      539 "Values were adjusted for covariates of the final regression model." How?

      We used residual plot to directly visualizes the relationship between the predictor and the response variable with the fitted regression line, making it easier to assess the model's fit.

      Fig. S4 text does not match the figure.

      Thanks! We now deleted the unmatched text in the figure.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      In this work, Noorman and colleagues test the predictions of the "four-stage model" of consciousness by combining psychophysics and scalp EEG in humans. The study relies on an elegant experimental design to investigate the respective impact of attentional and perceptual blindness on visual processing. 

      The study is very well summarised, the text is clear and the methods seem sound. Overall, a very solid piece of work. I haven't identified any major weaknesses. Below I raise a few questions of interpretation that may possibly be the subject of a revision of the text. 

      We thank the reviewer for their positive assessment of our work and for their extremely helpful and constructive comments that helped to significantly improve the quality of our manuscript.

      (1) The perceptual performance on Fig1D appears to show huge variation across participants, with some participants at chance levels and others with performance > 90% in the attentional blink and/or masked conditions. This seems to reveal that the procedure to match performance across participants was not very successful. Could this impact the results? The authors highlight the fact that they did not resort to postselection or exclusion of participants, but at the same time do not discuss this equally important point. 

      Performance was indeed highly variable between observers, as is commonly found in attentional-blink (AB) and masking studies. For some observers, the AB pushes performance almost to chance level, whereas for others it has almost no effect. A similar effect can be seen in masking. We did our best to match accuracy over participants, while also matching accuracy within participants as well as possible, adjusting mask contrast manually during the experimental session. Naturally, those that are strongly affected by masking need not be the same participants as those that are strongly affected by the AB, given the fact that they rely on different mechanisms (which is also one of the main points of the manuscript). To answer the research question, what mattered most was that at the group-level, performance was well matched between the two key conditions. As all our statistical inferences, both for behavior and EEG decoding, rest on this group level. We do not think that variability at the individualsubject level detracts from this general approach.  

      In the Results, we added that our goal was to match performance across participants:

      “Importantly, mask contrast in the masked condition was adjusted using a staircasing procedure to match performance in the AB condition, ensuring comparable perceptual performance in the masked and the AB condition across participants (see Methods for more details).”

      In the Methods, we added:

      “Second, during the experimental session, after every 32 masked trials, mask contrast could be manually updated in accordance with our goal to match accuracy over participants, while also matching accuracy within participants as well as possible.”

      (2) In the analysis on collinearity and illusion-specific processing, the authors conclude that the absence of a significant effect of training set demonstrates collinearity-only processing. I don't think that this conclusion is warranted: as the illusory and nonillusory share the same shape, so more elaborate object processing could also be occurring. Please discuss. 

      We agree with this qualification of our interpretation, and included the reviewer’s account as an alternative explanation in the Discussion section:  

      “It should be noted that not all neurophysiological evidence unequivocally links processing of collinearity and of the Kanizsa illusion to lateral and feedback processing, respectively (Angelucci et al., 2002; Bair et al., 2003; Chen et al., 2014), so that overlap in decoding the illusory and non-illusory triangle may reflect other mechanisms, for example feedback processes representing the triangular shapes as well.”

      (3) Discussion, lines 426-429: It is stated that the results align with the notion that processes of perceptual segmentation and organization represent the mechanism of conscious experience. My interpretation of the results is that they show the contrary: for the same visibility level in the attentional blind or masking conditions, these processes can be implicated or not, which suggests a role during unconscious processing instead. 

      We agree with the reviewer that the interpretation of this result depends on the definition of consciousness that one adheres to. If one takes report as the leading metric for consciousness (=conscious access), one can indeed conclude that perceptual segmentation/organization can also occur unconsciously. However, if the processing that results in the qualitative nature of an image (rather than whether it is reported) is taken as leading – such as the processing that results in the formation of an illusory percept – (=phenomenal) the conclusion can be quite different. This speaks to the still ongoing debate regarding the existence of phenomenal vs access consciousness, and the literature on no-report paradigms amongst others (see last paragraph of the discussion). Because the current data do not speak directly to this debate, we decided to remove  the sentence about “conscious experience”, and edited this part of the manuscript (also addressing a comment about preserved unconscious processing during masking by Reviewer 2) by limiting the interpretation of unconscious processing to those aspects that are uncontroversial:

      “Such deep feedforward processing can be sufficient for unconscious high-level processing, as indicated by a rich literature demonstrating high-level (e.g., semantic) processing during masking (Kouider & Dehaene, 2007; Van den Bussche et al., 2009; van Gaal & Lamme, 2012). Thus, rather than enabling deep unconscious processing, preserved local recurrency during inattention may afford other processing advantages linked to its proposed role in perceptual integration (Lamme, 2020), such as integration of stimulus elements over space or time.”

      (4) The two paradigms developed here could be used jointly to highlight nonidiosyncratic NCCs, i.e. EEG markers of visibility or confidence that generalise regardless of the method used. Have the authors attempted to train the classifier on one method and apply it to another (e.g. AB to masking and vice versa)? What perceptual level is assumed to transfer? 

      To avoid issues with post-hoc selection of (visible vs. invisible) trials (discussed in the Introduction), we did not divide our trials into conscious and unconscious trials, and thus did not attempt to reveal NCCs, or NCCs generalizing across the two paradigms. Note also that this approach alone would not resolve the debate regarding the ‘true’ NCC as it hinges on the operational definition of consciousness one adheres to; also see our response to the previous point the reviewer raised. Our main analysis revealed that the illusory triangle could be decoded with above-chance accuracy during both masking and the AB over extended periods of time with similar topographies (Fig. 2B), so that significant cross-decoding would be expected over roughly the same extended period of time (except for the heightened 200-250 ms peak). However, as our focus was on differences between the two manipulations and because we did not use post-hoc sorting of trials, we did not add these analyses.

      (5) How can the results be integrated with the attentional literature showing that attentional filters can be applied early in the processing hierarchy? 

      Compared to certain manipulations of spatial attention, the AB phenomenon is generally considered to represent an instance of  “late” attentional filtering. In the Discussion section we included a paragraph on classic load theory, where early and late filtering depend on perceptual and attentional load. Just preceding this paragraph, we added this:  

      “Clearly, these findings do not imply that unconscious high-level (e.g., semantic) processing can only occur during inattention, nor do they necessarily generalize to other forms of inattention. Indeed, while the AB represents a prime example of late attentional filtering, other ways of inducing inattention or distraction (e.g., by manipulating spatial attention) may filter information earlier in the processing hierarchy (e.g., Luck & Hillyard, 1994 vs. Vogel et al., 1998).”

      Reviewer #2 (Public Review): 

      Summary: 

      This is a very elegant and important EEG study that unifies within a single set of behaviorally equated experimental conditions conscious access (and therefore also conscious access failures) during visual masking and attentional blink (AB) paradigms in humans. By a systematic and clever use of multivariate pattern classifiers across conditions, they could dissect, confirm, and extend a key distinction (initially framed within the GNWT framework) between 'subliminal' and 'pre-conscious' unconscious levels of processing. In particular, the authors could provide strong evidence to distinguish here within the same paradigm these two levels of unconscious processing that precede conscious access : (i) an early (< 80ms) bottom-up and local (in brain) stage of perceptual processing ('local contrast processing') that was preserved in both unconscious conditions, (ii) a later stage and more integrated processing (200-250ms) that was impaired by masking but preserved during AB. On the basis of preexisting studies and theoretical arguments, they suggest that this later stage could correspond to lateral and local recurrent feedback processes. Then, the late conscious access stage appeared as a P3b-like event. 

      Strengths: 

      The methodology and analyses are strong and valid. This work adds an important piece in the current scientific debate about levels of unconscious processing and specificities of conscious access in relation to feed-forward, lateral, and late brain-scale top-down recurrent processing. 

      Weaknesses: 

      - The authors could improve clarity of the rich set of decoding analyses across conditions. 

      - They could also enrich their Introduction and Discussion sections by taking into account the importance of conscious influences on some unconscious cognitive processes (revision of traditional concept of 'automaticity'), that may introduce some complexity in Results interpretation 

      - They should discuss the rich literature reporting high-level unconscious processing in masking paradigms (culminating in semantic processing of digits, words or even small group of words, and pictures) in the light of their proposal (deeper unconscious processing during AB than during masking). 

      We thank the reviewer for their positive assessment of our study and for their insightful comments and helpful suggestions that helped to significantly strengthen our paper. We provide a more detailed point-by-point response in the “recommendations for the authors” section below. In brief, we followed the reviewer’s suggestions and revised the Results/Discussion to include references to influences on unconscious processes and expanded our discussion of unconscious effects during masking vs. AB.  

      Reviewer #3 (Public Review): 

      Summary: 

      This work aims to investigate how perceptual and attentional processes affect conscious access in humans. By using multivariate decoding analysis of electroencephalography (EEG) data, the authors explored the neural temporal dynamics of visual processing across different levels of complexity (local contrast, collinearity, and illusory perception). This is achieved by comparing the decidability of an illusory percept in matched conditions of perceptual (i.e., degrading the strength of sensory input using visual masking) and attentional impairment (i.e., impairing topdown attention using attentional blink, AB). The decoding results reveal three distinct temporal responses associated with the three levels of visual processing. Interestingly, the early stage of local contrast processing remains unaffected by both masking and AB. However, the later stage of collinearity and illusory percept processing are impaired by the perceptual manipulation but remain unaffected by the attentional manipulation. These findings contribute to the understanding of the unique neural dynamics of perceptual and attentional functions and how they interact with the different stages of conscious access. 

      Strengths: 

      The study investigates perceptual and attentional impairments across multiple levels of visual processing in a single experiment. Local contrast, collinearity, and illusory perception were manipulated using different configurations of the same visual stimuli. This clever design allows for the investigation of different levels of visual processing under similar low-level conditions. 

      Moreover, behavioural performance was matched between perceptual and attentional manipulations. One of the main problems when comparing perceptual and attentional manipulations on conscious access is that they tend to impact performance at different levels, with perceptual manipulations like masking producing larger effects. The study utilizes a staircasing procedure to find the optimal contrast of the mask stimuli to produce a performance impairment to the illusory perception comparable to the attentional condition, both in terms of perceptual performance (i.e., indicating whether the target contained the Kanizsa illusion) and metacognition (i.e., confidence in the response). 

      The results show a clear dissociation between the three levels of visual processing in terms of temporal dynamics. Local contrast was represented at an early stage (~80 ms), while collinearity and illusory perception were associated with later stages (~200-250 ms). Furthermore, the results provide clear evidence in support of a dissociation between the effects of perceptual and attentional processes on conscious access: while the former affected both neuronal correlates of collinearity and illusory perception, the latter did not have any effect on the processing of the more complex visual features involved in the illusion perception. 

      Weaknesses: 

      The design of the study and the results presented are very similar to those in Fahrenfort et al. (2017), reducing its novelty. Similar to the current study, Fahrenfort et al. (2017) tested the idea that if both masking and AB impact perceptual integration, they should affect the neural markers of perceptual integration in a similar way. They found that behavioural performance (hit/false alarm rate) was affected by both masking and AB, even though only the latter was significant in the unmasked condition. An early classification peak was instead only affected by masking. However, a late classification peak showed a pattern similar to the behavioural results, with classification affected by both masking and AB. 

      The interpretation of the results mainly centres on the theoretical framework of the recurrent processing theory of consciousness (Lamme, 2020), which lead to the assumption that local contrast, collinearity, and the illusory perception reflect feedforward, local recurrent, and global recurrent connections, respectively. It should be mentioned, however, that this theoretical prediction is not directly tested in the study. Moreover, the evidence for the dissociation between illusion and collinearity in terms of lateral and feedback connections seems at least limited. For instance, Kok et al. (2016) found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers. Lee & Nguyen (2001), instead, found that V1 neurons respond to illusory contours of the Kanizsa figures, particularly in the superficial layers. They all mention feedback connections, but none seem to point to lateral connections. 

      Moreover, the evidence in favour of primarily lateral connections driving collinearity seems mixed as well. On one hand, Liang et al. (2017) showed that feedback and lateral connections closely interact to mediate image grouping and segmentation. On the other hand, Stettler et al. (2002) showed that, whereas the intrinsic connections link similarly oriented domains in V1, V2 to V1 feedback displays no such specificity. Furthermore, the other studies mentioned in the manuscript did not investigate feedback connections but only lateral ones, making it difficult to draw any clear conclusions. 

      We thank the reviewer for their careful review and positive assessment of our study, as well as for their constructive criticism and helpful suggestions. We provide a more detailed point-by-point response in the “recommendations for the authors” section below. In brief, we addressed the reviewer’s comments and suggestions by better relating our study to Fahrenfort et al.’s (2017) paper and by highlighting the limitations inherent in linking our findings to distinct neural mechanisms (in particular, to lateral vs. feedback connections).

      Recommendations for the authors:  

      Reviewer #1 (Recommendations For The Authors): 

      -  Methods: it states that "The distance between the three Pac-Man stimuli as well as between the three aligned two-legged white circles was 2.8 degrees of visual angle". It is unclear what this distance refers to. Is it the shortest distance between the edges of the objects? 

      It is indeed the shortest distance between the edges of the objects. This is now included in the Methods.

      -  Methods: It's unclear to me if the mask updating procedure during the experimental session was based on detection rate or on the perceptual performance index reported on Fig1D. Please clarify. 

      It was based on accuracy calculated over 32 trials. We have included this information in the Methods.

      -  Methods and Results: I did not understand why the described procedure used to ensure that confidence ratings are not contaminated by differences in perceptual performance was necessary. To me, it just seems to make the "no manipulations" and "both manipulations" less comparable to the other 2 conditions. 

      To calculate accurate estimates of metacognitive sensitivity for the two matched conditions, we wanted participants to make use of the full confidence scale (asking them to distribute their responses evenly over all ratings within a block). By mixing all conditions in the same block, we would have run the risk of participants anchoring their confidence ratings to the unmatched very easy and very difficult conditions (no and both manipulations condition). We made this point explicit in the Results section and in the Methods section:

      “To ensure that the distribution of confidence ratings in the performancematched masked and AB condition was not influenced by participants anchoring their confidence ratings to the unmatched very easy and very difficult conditions (no and both manipulations condition, respectively), the masked and AB condition were presented in the same experimental block, while the other block type included the no and both manipulations condition.”

      “To ensure that confidence ratings for these matched conditions (masked, long lag and unmasked, short lag) were not influenced by participants anchoring their confidence ratings to the very easy and very difficult unmatched conditions (no and both manipulations, respectively), one type of block only contained the matched conditions, while the other block type contained the two remaining, unmatched conditions (masked, short lag and unmasked, long lag).”

      - Methods: what priors were used for Bayesian analyses? 

      Bayesian statistics were calculated in JASP (JASP Team, 2024) with default prior scales (Cauchy distribution, scale 0.707). This is now added to the Methods.

      - Results, line 162: It states that classifiers were applied on "raw EEG activity" but the Methods specify preprocessing steps. "Preprocessed EEG activity" seems more appropriate. 

      We changed the term to “preprocessed EEG activity” in the Methods and to “(minimally) preprocessed EEG activity (see Methods)” in the  Results, respectively.

      - Results, line 173: The effect of masking on local contrast decoding is reported as "marginal". If the alpha is set at 0.05, it seems that this effect is significant and should not be reported as marginal. 

      We changed the wording from “marginal” to “small but significant.”  

      - Fig1: The fixation cross is not displayed. 

      Because adding the fixation cross would have made the figure of the trial design look crowded and less clear, we decided to exclude it from this schematic trial representation. We are now stating this also in the legend of figure 1.  

      - Fig 3A: In the upper left panel, isn't there a missing significant effect of the "local contrast training and testing" condition in the first window? If not, this condition seems oddly underpowered compared to the other two conditions. 

      Thanks for the catch! The highlighting in bold and the significance bar were indeed lacking for this condition in the upper left panel (blue line). We corrected the figure in our revision.

      - Supplementary text and Fig S6: It is unclear to me why the two control analyses (the black lines vs. the green and purple lines) are pooled together in the same figure. They seem to test for different, non-comparable contrasts (they share neither training nor testing sets), and I find it confusing to find them on the same figure. 

      We agree that this may be confusing, and deleted the results from one control analysis from the figure (black line, i.e., training on contrast, testing on illusion), as the reviewer correctly pointed out that it displayed a non-comparable analysis. Given that this control analysis did not reveal any significant decoding, we now report its results only in the Supplementary text.  

      - Fig S6: I think the title of the legend should say testing on the non-illusory triangle instead of testing on the illusory triangle to match the supplementary text. 

      This was a typo – thank you! Corrected.  

      Reviewer #2 (Recommendations For The Authors): 

      Issue #1: One key asymmetry between the three levels of T2 attributes (i.e.: local contrast; non-illusory triangle; illusory Kanisza triangle) is related to the top-down conscious posture driven by the task that was exclusively focusing on the last attribute (illusory Kanisza triangle). Therefore, any difference in EEG decoding performance across these three levels could also depend to this asymmetry. For instance, if participants were engaged to report local contrast or non-illusory triangle, one could wonder if decoding performance could differ from the one used here. This potential confound was addressed by the authors by using decoders trained in different datasets in which the main task was to report one the two other attributes. They could then test how classifiers trained on the task-related attribute behave on the main dataset. However, this part of the study is crucial but not 100% clear, and the links with the results of these control experiments are not fully explicit. Could the author better clarity this important point (see also Issue #1 and #3). 

      The reviewer raises an important point, alluding to potential differences between decoded features regarding task relevance. There are two separate sets of analyses where task relevance may have been a factor, our main analyses comparing illusion to contrast decoding, and our comparison of collinearity vs. illusion-specific processing.  

      In our main analysis, we are indeed reporting decoding of a task-relevant feature (illusion) and of a task-irrelevant feature (local contrast, i.e., rotation of the Pac-Man inducers). Note, however, that the Pac-Man inducers were always task-relevant, as they needed to be processed to perceive illusory triangles, so that local contrast decoding was based on task-relevant stimulus elements, even though participants did not respond to local contrast differences in the main experiment. However, we also ran control analyses testing the effect of task-relevance on local contrast decoding in our independent training data set and in another (independent) study, where local contrast was, in separate experimental blocks, task-relevant or task-irrelevant. The results are reported in the Supplementary Text and in Figure S5. In brief, task-relevance did not improve early (70–95 ms) decoding of local contrast. We are thus confident that the comparison of local contrast to illusion decoding in our main analysis was not substantially affected by differences in task relevance. In our previous manuscript version, we referred to these control analyses only in the collinearity-vs-illusion section of the Results. In our revision, we added the following in the Results section comparing illusion to contrast decoding:

      “In the light of evidence showing that unconscious processing is susceptible to conscious top-down influences (Kentridge et al., 2004; Kiefer & Brendel, 2006; Naccache et al., 2002), we ran control analyses showing that early local contrast decoding was not improved by rendering contrast task-relevant (see Supplementary Information and Fig. S5), indicating that these differences between illusion and contrast decoding did not reflect differences in task-relevance.”

      In addition to our main analysis, there is the concern that our comparison of collinearity vs. illusion-specific processing may have been affected by differences in task-relevance between the stimuli inducing the non-illusory triangle (the “two-legged white circles”, collinearity-only) and the stimuli inducing the Kanizsa illusion (the PacMan inducers, collinearity-plus-illusion). We would like to emphasize that in our main analysis classifiers were always used to decode T2 illusion presence vs. absence (collinearity-plus-illusion), and never to decode T2 collinearity-only. To distinguish collinearity-only from collinearity-plus-illusion processing, we only varied the training data (training classifiers on collinearity-only or collinearity-plus-illusion), using the independent training data set, where collinearity-only and collinearity-plus-illusion (and rotation) were task-relevant (in separate blocks). As discussed in the Supplementary Information, for this analysis approach to be valid, collinearity-only processing should be similar for the illusory and the non-illusory triangle, and this is what control analyses demonstrated (Fig. S7). In any case, general task-relevance was equated for the collinearity-only and the collinearity-plus-illusion classifiers.  

      Finally, in supplementary Figure 6 we also show that our main results reported in Figure 2 (discussed at the top of this response) were very similar when the classifiers were trained on the independent localizer dataset in which each stimulus feature could be task-relevant.  

      Together, for the reasons described above, we believe that differences in EEG decoding performance across these three stimulus levels did  are unlikely to depend also depend on a “task-relevance” asymmetry.

      Issue #2: Following on my previous point the authors should better mention the concept of conscious influences on unconscious processing that led to a full revision of the notion of automaticity in cognitive science [1 , 2 , 3 , 4]. For instance, the discovery that conscious endogenous temporal and spatial attention modulate unconscious subliminal processing paved the way to this revision. This concept raises the importance of Issue#1: equating performance on the main task across AB and masking is not enough to guarantee that differences of neural processing of the unattended attributes of T2 (i.e.: task-unrelated attributes) are not, in part, due to this asymmetry rather than to a systematic difference of unconscious processing strengtsh [5 , 6-8]. Obviously, the reported differences for real-triangle decoding between AB and masking cannot be totally explained by such a factor (because this is a task-unrelated attribute for both AB and masking conditions), but still this issue should be better introduced, addressed, clarified (Issue #1 and #3) and discussed. 

      We would like to refer to our response to the previous point: Control analyses for local contrast decoding showed that task relevance had no influence on our marker for feedforward processing. Most importantly, as outlined above, we did not perform real-triangle decoding – all our decoding analyses focused on comparing collinearity-only vs. collinearity-plus-illusion were run on the task-relevant T2 illusion (decoding its presence vs. absence). The key difference was solely the training set, where the collinearity-only classifier was trained on the (task-relevant) real triangle and the collinearity-plus-illusion classifier was trained on the (task-relevant) Kanizsa triangle. Thus, overall task relevance was controlled in these analyses.  

      In our revision, we are now also citing the studies proposed by the reviewer, when discussing the control analyses testing for an effect of task-relevance on local contrast decoding:

      “In the light of evidence showing that unconscious processing is susceptible to conscious top-down influences (Kentridge et al., 2004; Kiefer & Brendel, 2006; Naccache et al., 2002), we ran control analyses showing that early local contrast decoding was not improved by rendering contrast task-relevant (see Supplementary Information and Fig. S5), indicating that these differences between illusion and contrast decoding did not reflect differences in task-relevance.”

      Issue #3: In terms of clarity, I would suggest the authors to add a synthetic figure providing an overall view of all pairs of intra and cross-conditions decoding analyses and mentioning main task for training and testing sets for each analysis (see my previous and related points). Indeed, at one point, the reader can get lost and this would not only strengthen accessibility to the detailed picture of results, but also pinpoint the limits of the work (see previous point). 

      We understand the point the reviewer is raising and acknowledge that some of our analyses, in particular those using different training and testing sets, may be difficult to grasp. But given the variety of different analyses using different training and testing sets, different temporal windows, as well as different stimulus features, it was not possible to design an intuitive synthetic figure summarizing the key results. We hope that the added text in the Results and Discussion section will be sufficient to guide the reader through our set of analyses.  

      In our revision, we are now more clearly highlighting that, in addition to presenting the key results in our main text that were based on training classifiers on the T1 data, “we replicated all key findings when training the classifiers on an independent training set where individual stimuli were presented in isolation (Fig. 3A, results in the Supplementary Information and Fig. S6).” For this, we added a schematic showing the procedure of the independent training set to Figure 3, more clearly pointing the reader to the use of a separate training data set.  

      Issue #4: In the light of these findings the authors should discuss more thoroughly the question of unconscious high-level representations in masking versus AB: in particular, a longstanding issue relates to unconscious semantic processing of words, numbers or pictures. According to their findings, they tend to suggest that semantic processing should be more enabled in AB than in masking. However, a rich literature provided a substantial number of results (including results from the last authors Simon Van Gaal) that tend to support the notion of unconscious semantic processing in subliminal processing (see in particular: [9 , 10 , 11 , 12 , 13]). So, and as mentioned by the authors, while there is evidence for semantic processing during AB they should better discuss how they would explain unconscious semantic subliminal processing. While a possibility could be to question the unconscious attribute of several subliminal results, the same argument also holds for AB studies. Another possible track of discussion would be to differentiate AB and subliminal perception in terms of strength and durability of the corresponding unconscious representations, but not necessarily in terms of cognitive richness. Indeed, one may discuss that semantic processing of stimuli that do not need complex spatial integration (e.g.: words or digits as compared to illusory Kanisza tested here) can still be observed under subliminal conditions. 

      We thank the reviewer for pointing us to this shortcoming of our previous Discussion. Note that our data does not directly speak to the question of high-level unconscious representations in masking vs AB, because such conclusions would hinge on the operational definition of consciousness one adheres to (also see response to Reviewer 1). Nevertheless, we do follow the reviewer’s suggestions and added the following in the Discussion (also addressing a point about other forms of attention raised by Reviewer 1):

      “Clearly, these findings do not imply that unconscious high-level (e.g., semantic) processing can only occur during inattention, nor do they necessarily generalize to other forms of inattention. Indeed, while the AB represents a prime example of late attentional filtering, other ways of inducing inattention or distraction (e.g., by manipulating spatial attention) may filter information earlier in the processing hierarchy (e.g., Luck & Hillyard, 1994 vs. Vogel et al., 1998).”

      And, in a following paragraph in the Discussion:

      “Such deep feedforward processing can be sufficient for unconscious high-level processing, as indicated by a rich literature demonstrating high-level (e.g., semantic) processing during masking (Kouider & Dehaene, 2007; Van den Bussche et al., 2009; van Gaal & Lamme, 2012). Thus, rather than enabling high-level unconscious processing, preserved local recurrency during inattention may afford other processing advantages linked to its proposed role in perceptual integration (Lamme, 2020), such as integration of stimulus elements over space or time.  

      Reviewer #3 (Recommendations For The Authors): 

      (1) The objective of Fahrenfort et al., 2017 seems very similar to that of the current study. What are the main differences between the two studies? Moreover, Fahrenfort et al., 2017 conducted similar decoding analyses to those performed in the current study.

      Which results were replicated in the current study, and which ones are novel? Highlighting these differences in the manuscript would be beneficial. 

      We now provide a more comprehensive coverage of the study by Fahrenfort et al., 2017. In the Introduction, we added a brief summary of the key findings, highlighting that this study’s findings could have reflected differences in task performance rather than differences between masking and AB:

      “For example, Fahrenfort and colleagues (2017) found that illusory surfaces could be decoded from electroencephalogram (EEG) data during the AB but not during masking. This was taken as evidence that local recurrent interactions, supporting perceptual integration, were preserved during inattention but fully abolished by masking. However, masking had a much stronger behavioral effect than the AB, effectively reducing task performance to chance level. Indeed, a control experiment using weaker masking, which resulted in behavioral performance well above chance similar to the main experiment’s AB condition, revealed some evidence for preserved local recurrent interactions also during masking. However, these conditions were tested in separate experiments with small samples, precluding a direct comparison of perceptual vs. attentional blindness at matched levels of behavioral performance. To test …”

      In the Results , we are now also highlighting this key advancement by directly referencing the previous study:

      “Thus, whereas in previous studies task performance was considerably higher during the AB than during masking (e.g., Fahrenfort et al., 2017), in the present study the masked and the AB condition were matched in both measures of conscious access.” When reporting the EEG decoding results in the Results section, we continuously cite the Fahrenfort et al. (2017) study to highlight similarities in the study’s findings. We also added a few sentences explicitly relating the key findings of the two studies:

      “This suggests that the AB allowed for greater local recurrent processing than masking, replicating the key finding by Fahrenfort and colleagues (2017). Importantly, the present result demonstrates that this effect reflects the difference between the perceptual vs. attentional manipulation rather than differences in behavior, as the masked and the AB condition were matched for perceptual performance and metacognition.”

      “This similarity between behavior and EEG decoding replicates the findings of Fahrenfort and colleagues  (2017) who also found a striking similarity between late Kanizsa decoding (at 406 ms) and behavioral Kanizsa detection. These results indicate that global recurrent processing at these later points in time reflected conscious access to the Kanizsa illusion.”  

      We also more clearly highlighted where our study goes beyond Fahrenfort et al.’s (2017), e.g., in the Results:

      “The addition of this element of collinearity to our stimuli was a key difference to the study by Fahrenfort and colleagues (2017), allowing us to compare non-illusory triangle decoding to illusory triangle decoding in order to distinguish between collinearity and illusion-specific processing.”

      And in the Discussion:

      “Furthermore, the addition of line segments forming a non-illusory triangle to the stimulus employed in the present study allowed us to distinguish between collinearity and illusion-specific processing.”

      Also, in the Discussion, we added a paragraph “summarizing which results were replicated in the current study, and which ones are novel”, as suggested by the reviewer:

      “This pattern of results is consistent with a previous study that used EEG to decode Kanizsa-like illusory surfaces during masking and the AB (Fahrenfort et al., 2017). However, the present study also revealed some effects where Fahrenfort and colleagues (2017) failed to obtain statistical significance, likely reflecting the present study’s considerably larger sample size and greater statistical power. For example, in the present study the marker for feedforward processing was weakly but significantly impaired by masking, and the marker for local recurrency was significantly impaired not only by masking but also by the AB, although to a lesser extent. Most importantly, however, we replicated the key findings that local recurrent processing was more strongly impaired by masking than by the AB, and that global recurrent processing was similarly impaired by masking and the AB and closely linked to task performance, reflecting conscious access. Crucially, having matched the key conditions behaviorally, the present finding of greater local recurrency during the AB can now unequivocally be attributed to the attentional vs. perceptual manipulation of consciousness.”

      Finally, we changed the title to “Distinct neural mechanisms underlying perceptual and attentional impairments of conscious access despite equal task performance” to highlight one of the crucial differences between the Fahrenfort et al., study and this study, namely the fact that we equalized task performance between the two critical conditions (AB and masking).

      (2) It is not clear from the text the link between the current study and the literature on the role of lateral and feedback connections in consciousness (Lamme, 2020). A better explanation is needed. 

      To our knowledge, consciousness theories such as recurrent processing theory by Lamme make currently no distinction between the role of lateral and feedback connections for consciousness. The principled distinction lies between unconscious feedforward processing and phenomenally conscious or “preconscious” local recurrent processing, where local recurrency refers to both lateral (or horizontal) and feedback connections. We added a sentence in the Discussion:

      “As current theories do not distinguish between the roles of lateral vs. feedback connections for consciousness, the present findings may enrich empirical and theoretical work on perceptual vs. attentional mechanisms of consciousness …”

      (3) When training on T1 and testing on T2, EEG data showed an early peak in local contrast classification at 75-95 ms over posterior electrodes. The authors stated that this modulation was only marginally affected by masking (and not at all by AB); however, the main effect of masking is significant. Why was this effect interpreted as nonrelevant? 

      Following this and Reviewer 1’s comment, we changed the wording from “marginal” to “weak but significant.” We considered this effect “weak” and of lesser relevance, because its Bayes factor indicated that the alternative hypothesis was only 1.31 times more likely than the null hypothesis of no effect, representing only “anecdotal” evidence, which is in sharp contrast to the robust effects of the consciousness manipulations on illusion decoding reported later. Furthermore, later ANOVAs comparing the effect of masking on contrast vs. illusion decoding revealed much stronger effects on illusion decoding than on contrast decoding (BFs>3.59×10<sup>4</sup>).

      (4) The decoding analysis on the illusory percept yielded two separate peaks of decoding, one from 200 to 250 ms and another from 275 to 475 ms. The early component was localized occipitally and interpreted as local sensory processing, while the late peak was described as a marker for global recurrent processing. This latter peak was localized in the parietal cortex and associated with the P300. Can the authors show the topography of the P300 evoked response obtained from the current study as a comparison? Moreover, source reconstruction analysis would probably provide a better understanding of the cortical localization of the two peaks. 

      Figure S4 now shows the P300 from electrode Pz, demonstrating a stronger positivity between 375 and 475 ms when the illusory triangle was present than when it was absent. We did not run a source reconstruction analysis.  

      (5) The authors mention that the behavioural results closely resembled the pattern of the second decoding peak results. However, they did not show any evidence for this relationship. For instance, is there a correlation between the two measures across or within participants? Does this relationship differ between the illusion report and the confidence rating? 

      This relationship became evident from simply eyeballing the results figures: Both in behavior and EEG decoding performance dropped from the both-manipulations condition to the AB and masked conditions, while these conditions did not differ significantly. Following a similar observation of a close similarity between behavior and the second/late illusion decoding peak in the study by Fahrenfort et al. (2017), we adopted their analysis approach and ran two additional ANOVAs, adding “measure” (behavior vs. EEG) as a factor. For this analysis, we dropped the both-manipulations condition due to scale restrictions (as noted in footnote 1: “We excluded the bothmanipulations condition from this analysis due to scale restrictions: in this condition, EEG decoding at the second peak was at chance, while behavioral performance was above chance, leaving more room for behavior to drop from the masked and AB condition.”). The analysis revealed that there were no interactions with condition:

      “The pattern of behavioral results, both for perceptual performance and metacognitive sensitivity, closely resembled the second decoding peak: sensitivity in all three metrics dropped from the no-manipulations condition to the masked and AB conditions, while sensitivity did not differ significantly between these performancematched conditions (Fig. 2C). Two additional rm ANOVAs with the factors measure (behavior, second EEG decoding peak) and condition (no-manipulations, masked, AB)<sup>1</sup> for perceptual performance and metacognitive sensitivity revealed no significant interaction (performance: F</iv><sub>2,58</sub>=0.27, P\=0.762, BF<sub>01</sub>=8.47; metacognition: F</iv><sub>2,58</sub=0.54, P\=0.586, BF<sub>2,58</sub>=6.04). This similarity between behavior and EEG decoding replicates the findings of Fahrenfort and colleagues  (2017) who also found a striking similarity between late Kanizsa decoding (at 406 ms) and behavioral Kanizsa detection. These results indicate that global recurrent processing at these later points in time reflected conscious access to the Kanizsa illusion.”

      (6) The marker for illusion-specific processing emerged later (200-250 ms), with the nomanipulation decoding performing better after training on the illusion than the nonillusory triangle. This difference emerged only in the AB condition, and it was fully abolished by masking. The authors confirmed that the illusion-specific processing was not affected by the AB manipulations by running a rm ANOVA which did not result in a significant interaction between condition and training set. However, unlike the other non-significant results, a Bayes Factor is missing here. 

      We added Bayes factors to all (significant and non-significant) rm ANOVAs.

      (7) The same analysis yielded a second illusion decoding peak at 375-475 ms. This effect was impaired by both masking and AB, with no significant differences between the two conditions. The authors stated that this result was directly linked to behavioural performance. However, it is not clear to me what they mean (see point 5). 

      We added analyses comparing behavior and EEG decoding directly (see our response to point 5).

      (8) The introduction starts by stating that perceptual and attentional processes differently affect consciousness access. This differentiation has been studied thoroughly in the consciousness literature, with a focus on how attention differs from consciousness (e.g., Koch & Tsuchiya, TiCS, 2007; Pitts, Lutsyshyna & Hillyard, Phil. Trans. Roy. Soc. B Biol. Sci., 2018). The authors stated that "these findings confirm and enrich empirical and theoretical work on perceptual vs. attentional mechanisms of consciousness clearly distinguishing and specifying the neural profiles of each processing stage of the influential four-stage model of conscious experience". I found it surprising that this aspect was not discussed further. What was the state of the art before this study was conducted? What are the mentioned neural profiles? How did the current results enrich the literature on this topic? 

      We would like to point out that our study is not primarily concerned with the conceptual distinction between consciousness and attention, which has been the central focus of e.g., Koch and Tsuchiuya (2007). While this literature was concerned with ways to dissociate consciousness and attention, we tacitly assumed that attention and consciousness are now generally considered as different constructs. Our study is thus not dealing with dissociations between attention and consciousness, nor with the distinction between phenomenal consciousness and conscious access, but is concerned with different ways of impairing conscious access (defined as the ability to report about a stimulus), either via perceptual or via attentional manipulations. For the state of the art before the study was conducted, we would like to refer to the motivation of our study in the Introduction, e.g., previous studies’ difficulties in unequivocally linking greater local recurrency during attentional than perceptual blindness to the consciousness manipulation, given performance confounds (we expanded this Introduction section). We also expanded a paragraph in the discussion to remind the reader of the neural profiles of the 4-stage model and to highlight the novelty of our findings related to the distinction between lateral and feedback processes:

      “As current theories do not distinguish between the roles of lateral vs. feedback connections for consciousness, the present findings may enrich empirical and theoretical work on perceptual vs. attentional mechanisms of consciousness (Block, 2005; Dehaene et al., 2006; Hatamimajoumerd et al., 2022; Lamme, 2010; Pitts et al., 2018; Sergent & Dehaene, 2004), clearly distinguishing the neural profiles of each processing stage of the influential four-stage model of conscious experience (Fig. 1A). Along with the distinct temporal and spatial EEG decoding patterns associated with lateral and feedback processing, our findings suggest a processing sequence from feedforward processing to local recurrent interactions encompassing lateral-tofeedback connections, ultimately leading to global recurrency and conscious report.”  

      (9) When stating that this is the first study in which behavioural measures of conscious perception were matched between the attentional blink and masking, it would be beneficial to highlight the main differences between the current study and the one from Fahrenfort et al., 2017, with which the current study shares many similarities in the experimental design (see point 1). 

      We would like to refer the reviewer to our response to point 1), where we detail how we expanded the discussion of similarities and differences between our present study and Fahrenfort et al. (2017).

      (10) The discussion emphasizes how the current study "suggests a processing sequence from feedforward processing to local recurrent interactions encompassing lateral-to-feedback connections, ultimately leading to global recurrency and conscious report". For transparency, it is though important to highlight that one limit of the current study is that it does not provide direct evidence for the specified types of connections (see point 6). 

      We added a qualification in the Discussion section:

      “Although the present EEG decoding measures cannot provide direct evidence for feedback vs. lateral processes, based on neurophysiological evidence, …”

      Furthermore, we added this qualification in the Discussion section:

      “It should be noted that the not all neurophysiological evidence unequivocally links processing of collinearity and of the Kanizsa illusion to lateral and feedback processing, respectively (Angelucci et al., 2002; Bair et al., 2003; Chen et al., 2014), so that overlap in decoding the illusory and non-illusory triangle may reflect other mechanisms, for example feedback processing as well.”

      References

      Angelucci, A., Levitt, J. B., Walton, E. J. S., Hupe, J.-M., Bullier, J., & Lund, J. S. (2002). Circuits for local and global signal integration in primary visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(19), 8633–8646.

      Bair, W., Cavanaugh, J. R., & Movshon, J. A. (2003). Time course and time-distance relationships for surround suppression in macaque V1 neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(20), 7690–7701.

      Block, N. (2005). Two neural correlates of consciousness. Trends in Cognitive Sciences, 9(2), 46–52.

      Chen, M., Yan, Y., Gong, X., Gilbert, C. D., Liang, H., & Li, W. (2014). Incremental integration of global contours through interplay between visual cortical areas. Neuron, 82(3), 682–694.

      Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends in Cognitive Sciences, 10(5), 204–211.

      Hatamimajoumerd, E., Ratan Murty, N. A., Pitts, M., & Cohen, M. A. (2022). Decoding perceptual awareness across the brain with a no-report fMRI masking paradigm. Current Biology: CB. https://doi.org/10.1016/j.cub.2022.07.068

      JASP Team. (2024). JASP (Version 0.19.0)[Computer software]. https://jasp-stats.org/ Kentridge, R. W., Heywood, C. A., & Weiskrantz, L. (2004). Spatial attention speeds discrimination without awareness in blindsight. Neuropsychologia, 42(6), 831– 835.

      Kiefer, M., & Brendel, D. (2006). Attentional Modulation of Unconscious “Automatic” Processes: Evidence from Event-related Potentials in a Masked Priming Paradigm. Journal of Cognitive Neuroscience, 18(2), 184–198.

      Kouider, S., & Dehaene, S. (2007). Levels of processing during non-conscious perception: a critical review of visual masking. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 857–875.

      Lamme, V. A. F. (2010). How neuroscience will change our view on consciousness. Cognitive Neuroscience, 1(3), 204–220.

      Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291–308.

      Naccache, L., Blandin, E., & Dehaene, S. (2002). Unconscious masked priming depends on temporal attention. Psychological Science, 13(5), 416–424.

      Pitts, M. A., Lutsyshyna, L. A., & Hillyard, S. A. (2018). The relationship between attention and consciousness: an expanded taxonomy and implications for ‘noreport’ paradigms. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1755), 20170348.

      Sergent, C., & Dehaene, S. (2004). Is consciousness a gradual phenomenon? Evidence for an all-or-none bifurcation during the attentional blink. Psychological Science, 15(11), 720–728.

      Van den Bussche, E., Van den Noortgate, W., & Reynvoet, B. (2009). Mechanisms of masked priming: a meta-analysis. Psychological Bulletin, 135(3), 452–477. van Gaal, S., & Lamme, V. A. F. (2012). Unconscious high-level information processing: implication for neurobiological theories of consciousness: Implication for neurobiological theories of consciousness. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 18(3), 287–301.

      Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology. Human Perception and Performance, 24(6), 1656– 1674.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Weaknesses:<br /> (1) While the overall results are interesting, I am somewhat left confused about how to interpret the difference in the scores derived from different conditions. For example, the authors stated "Comparing the weights for in-group and out-group distractors, the effect of proximity was larger than that of aggression and grooming" in p.8. Does this mean that the proximity is indeed the type of behavior most affected in the out-group condition compared to the in-group condition? The out-group effects are difficult to examine with actual behavioral data, but some in-group effects such as those involving OT can be tested, which possibly provides good insights into interpreting the differences of the weights observed across the experimental conditions.

      Thank you for your thoughtful comments and for highlighting an important aspect of our findings. The statement in page 8 refers to the relative impact of different social behaviors—proximity, aggression, and grooming—on the derived weights for in-group and out-group distractors. Specifically, the data suggest that proximity exerts a stronger influence than aggression or grooming in differentiating the effects of out-group versus in-group distractors. Regarding the out-group condition, we acknowledge that it presents challenges for direct behavioral observation, as interactions involving out-group members are often more difficult to quantify in naturalistic settings. However, we agree with you about the suggestion to test certain in-group effects, particularly those influenced by oxytocin (OT), as they offer a more controlled framework to validate and interpret the observed differences in weights across experimental conditions. In line with this, we examined specific in-group behaviors under OT administration to disentangle their contributions to attentional dynamics (Fig. 4 and Fig. 5 e to h). By integrating controlled experimental manipulations, we think these results could provide deeper insights into how social relationships shape the observed patterns of attention.

      (2) I think it is important to provide how variable spontaneous social interactions were across sessions and how impactful the variability of the interactions is on the SEI and IEI, as it helps to understand how meaningful the differences of weights are across the conditions, but such data are missing. In line with this point, although the conclusions still hold as those data were obtained during the same experimental periods, shouldn't the weights in Fig. 3f and Figs. 4g and 4h (saline) be expected to be similar, if not the same?

      Thank you for your insightful comments. As highlighted, we utilized the entire experimental period as the dataset to evaluate the monkeys' social interactions. The experiments presented in Figures 3 and 4 were designed to examine how social relationships correlate with patterns of social attention under two distinct conditions: without manipulation (Fig. 3) and with nebulized exposure to oxytocin and saline (Fig. 4). Theoretically, the weights observed in the unmanipulated condition and the nebulized saline condition should be similar. However, our results indicate that distractor biases shifted significantly following nebulized saline exposure (Fig. 4) compared to the unmanipulated condition (Fig. 3) (MK: p = 9.3×10<sup>-3</sup>, ML: p = 9.77×10<sup>-4</sup>, MC: p = 9.77×10<sup>-4</sup>, MA: p = 0.09; n<sub>1</sub> = n<sub>2</sub> = 12 experimental days; Two-sided Wilcoxon signed-rank test). This suggests that the nebulization process itself, despite acclimating the monkeys to saline exposure for approximately two weeks prior to the experiments, still influenced their attentional behaviors.

      While the primary goal of nebulization was to assess the effects of oxytocin on social attention, our main conclusions remain robust, even considering the impact of nebulization on distractor biases. We acknowledge that variability in spontaneous social interactions across days or experimental sessions could be an important factor influencing the SEI and IEI. The dynamic nature of social interactions within the colony is likely affected by numerous variables. Future research will aim to integrate these factors into a more comprehensive and dynamic framework to better interpret their influence on social attention metrics.

      Reviewer #2 (Public review):

      Weaknesses:<br /> (1) The study's conclusions are based on observations of only four monkeys, which limits the generalizability of the findings. Larger sample sizes could strengthen the validity of the results.

      Thank you for your valuable comment. We acknowledge that the relatively small sample size could influence the generalizability of the findings.  However, despite this limitation, our work systematically examined multifaceted social relationships among monkeys and their attentional strategies within a well-controlled experimental setup. We reported results across sessions and conditions (e.g., in-group vs. out-group; saline vs. Oxytocin), which strengthens the reliability of the observed effects of social networks within this context. We agree that increasing the sample size would improve the generalizability of the results. Future studies with a larger cohort will be critical for confirming the robustness of our findings and expanding their broader applicability. We have acknowledged this limitation in the revised manuscript and highlighted the potential for further research with larger sample sizes to validate and extend our conclusions.

      (2) The limited set of stimulus images (in-group and out-group faces) may introduce unintended biases. This could be addressed by increasing the diversity of stimuli or incorporating a broader range of out-group members.

      Thank you for your thoughtful comment. We acknowledge that the use of a limited set of six monkey faces as stimuli for in-group and out-group conditions could potentially introduce biases. To address this concern, we conducted an additional analysis to minimize the potential impact of individual images on our findings using the current dataset. Specifically, we randomly excluded one in-group and one out-group image and reanalyzed distractor biases using the remaining two images (Supplementary Fig. 3a). For each subject, this approach generated three sets of two distractors per group, resulting in 81(3<sup>4</sup>) combinations across four monkey subjects, and a total of 81 × 81 subject-distractor pairings. We statistically compared distractor biases between in-group and out-group faces for each combination (Supplementary Fig. 3b). As shown in Supplementary Fig. 3c, 99.30% of the 6,561 combinations demonstrated significantly lower distractor biases towards in-group faces compared to out-group faces (two-sided Wilcoxon signed-rank test, p < 0.05). These results suggest that the observed differences in social attention between in-group and out-group monkeys are unlikely to be driven by specific images within the stimulus set. That said, we agree that increasing the diversity of stimulus images or incorporating a broader range of out-group members would improve the generalizability of the results. We have acknowledged this limitation in the revised manuscript and highlighted the potential for further research to incorporate a more diverse stimulus set to validate and extend our findings.

      “However, these conclusions may be constrained by the relatively small sample size and the homogeneity of stimulus set in the study. Future research focusing on larger, more diverse cohorts and incorporating a broader range of stimuli will enhance the generalizability and applicability of the findings.”

      Reviewer #1 (Recommendations for the authors):

      It is difficult to distinguish "Getting fighted" and "Fighting partner" in Fig. 1b (esp. when printed). I thought Actor showed "Fighting partner" several times in Session 2, but it seems to be "Getting fighted" judging from Figs. 1c and 1d. Is this correct? If so, I would suggest to change the color to improve visibility.

      Thank you for your valuable comment. We apologize for the confusion in the previous version. To improve clarity, we have both terms to “begin fighting” and “being fought”. As shown in Figure 1b, we now explicitly define the identities of the two monkeys as the actor (K) and the partner (L), with all behaviors described from the perspective of the actor. For example, when the actor (K) initiates the fight, it is marked as “begin fighting”, whereas when the partner (L) initiates the fight, the actor (K) is the recipient and labeled as “being fought”. Additionally, we have implemented your suggestion by changing the colors to enhance visibility, especially for the terms “begin fighting” and “being fought”.

      Reviewer #2 (Recommendations for the authors): 

      I have some minor concerns:

      (1) Figure1B, caption for x axis is missing, 4 means 4 days?

      Thank you so much for the comment. We have clarified the x-axis in Figure 1B, where the label "4" corresponds to 4 hours of video typing on each experimental day. The revised figure now includes the appropriate label for better clarity. We appreciate your careful attention to this detail.

      (2) I am slightly concerned about animal safety. How do the experimenters ensure the animals' safety and well-being in cases of aggressive interactions or attacks?

      Thank you for your comment. We share your concern regarding animal safety and take re the well-being of the monkeys in the study. All experimental procedures were reviewed and approved by the Institutional Animal Care and Use Committee at the Institute of Biophysics, Chinese Academy of Sciences (IBP-NHP-002(22)). The monkeys were housed together in the same colony room for over four years, in interconnected cages that allowed for direct physical interaction. Animal behaviors in cages were closely monitored via a live video system to ensure their safety. To prevent potential injuries, a sliding partition system was in place, enabling the isolation of individual animals when necessary, minimizing risks to their well-being.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      his study shows a new mechanism of GS regulation in the archaean Methanosarcina mazei and clarifies the direct activation of GS activity by 2-oxoglutarate, thus featuring another way in which 2-oxoglutarate acts as a central status reporter of C/N sensing.

      Mass photometry and single particle cryoEM structure analysis convincingly show the direct regulation of GS activity by 2-OG promoted formation of the dodecameric structure of GS. The previously recognized small proteins GlnK1 and Sp26 seem to play a subordinate role in GS regulation, which is in good agreement with previous data. Although these data are quite clear now, there remains one major open question: how does 2-OG further increase GS activity once the full dodecameric state is achieved (at 5 mM)? This point needs to be reconsidered.

      Weaknesses:

      It is not entirely clear, how very high 2-OG concentrations activate GS beyond dodecamer formation.

      The data presented in this work are in stark contrast to the previously reported structure of M. mazei GS by the Schumacher lab. This is very confusing for the scientific community and requires clarification. The discussion should consider possible reasons for the contradictory results.

      Importantly, it is puzzling how Schumacher could achieve an apo-structire of dodecameric GS? If 2-OG is necessary for dodecameric formation, this should be discussed. If GlnK1 doesn't form a complex with the dodecameric GS, how could such a complex be resolved there?

      In addition, the text is in principle clear but could be improved by professional editing. Most obviously there is insufficient comma placement.

      We thank Reviewer #1 for the professional evaluation and raising important points. We will address those comments in the updated manuscript and especially improve the discussion in respect to the two points of concern.

      (1) How can GlnA1 activity further be stimulated with further increasing 2-OG after the dodecamer is already fully assembled at 5 mM 2-OG.

      We assume a two-step requirement for 2-OG, the dodecameric assembly and the priming of the active sites. The assembly step is based on cooperative effects of 2-OG and does not require the presence of 2-OG in all 2-OG-binding pockets: 2-OG-binding to one binding pocket also causes a domino effect of conformational changes in the adjacent 2-OG-unbound subunit, as also described for Methanothermococcus thermolithotrophicus GS in Müller et al. 2023. Due to the introduction of these conformational changes, the dodecameric form becomes more favourable even without all 2-OG binding sites being occupied. With higher 2-OG concentrations present (> 5mM), the activity increased further until finally all 2-OG-binding pockets were occupied, resulting in the priming of all active sites (all subunits) and thereby reaching the maximal activity.

      (2) The contradictory results with previously published data on the structure of M. mazei by Schumacher et al. 2023.

      We certainly agree that it is confusing that Schumacher et al. 2023 obtained a dodecameric structure without the addition of 2-OG, which we claim to be essential for the dodecameric form. 2-OG is a cellular metabolite that is naturally present in E. coli, the heterologous expression host both groups used. Since our main question focused on analysing the 2-OG effect on GS, we have performed thorough dialysis of the purified protein to remove all 2-OG before performing MP experiments. In the absence of 2-OG we never observed significant enzyme activity and always detected a fast disassembly after incubation on ice. We thus assume that a dodecamer without 2-OG in Schumacher et al. 2023 is an inactive oligomer of a once 2-OG-bound form, stabilized e.g. by the presence of 5 mM MgCl2.

      The GlnA1-GlnK1-structure (crystallography) by Schumacher et al. 2023 is in stark contrast to our findings that GlnK1 and GlnA1 do not interact as shown by mass photometry with purified proteins. A possible reason for this discrepancy might be that at the high protein concentrations used in the crystallization assay, complexes are formed based on hydrophobic or ionic protein interactions, which would not form under physiological concentrations.

      Reviewer #2 (Public Review):

      Summary:

      Herdering et al. introduced research on an archaeal glutamine synthetase (GS) from Methanosarcina mazei, which exhibits sensitivity to the environmental presence of 2-oxoglutarate (2-OG). While previous studies have indicated 2-OG's ability to enhance GS activity, the precise underlying mechanism remains unclear. Initially, the authors utilized biophysical characterization, primarily employing a nanomolar-scale detection method called mass photometry, to explore the molecular assembly of Methanosarcina mazei GS (M. mazei GS) in the absence or presence of 2-OG. Similar to other GS enzymes, the target M. mazei GS forms a stable dodecamer, with two hexameric rings stacked in tail-to-tail interactions. Despite approximately 40% of M. mazei GS existing as monomeric or dimeric entities in the detectable solution, the majority spontaneously assemble into a dodecameric state. Upon mixing 2-OG with M. mazei GS, the population of the dodecameric form increases proportionally with the concentration of 2-OG, indicating that 2-OG either promotes or stabilizes the assembly process. The cryo-electron microscopy (cryo-EM) structure reveals that 2-OG is positioned near the interface of two hexameric rings. At a resolution of 2.39 Å, the cryo-EM map vividly illustrates 2-OG forming hydrogen bonds with two individual GS subunits as well as with solvent water molecules. Moreover, local side-chain reorientation and conformational changes of loops in response to 2-OG further delineate the 2-OG-stabilized assembly of M. mazei GS.

      Strengths & Weaknesses:

      The investigation studies the impact of 2-oxoglutarate (2-OG) on the assembly of Methanosarcina mazei glutamine synthetase (M mazei GS). Utilizing cutting-edge mass photometry, the authors scrutinized the population dynamics of GS assembly in response to varying concentrations of 2-OG. Notably, the findings demonstrate a promising and straightforward correlation, revealing that dodecamer formation can be stimulated by 2-OG concentrations of up to 10 mM, although GS assembly never reaches 100% dodecamerization in this study. Furthermore, catalytic activities showed a remarkable enhancement, escalating from 0.0 U/mg to 7.8 U/mg with increasing concentrations of 2-OG, peaking at 12.5 mM. However, an intriguing gap arises between the incomplete dodecameric formation observed at 10 mM 2-OG, as revealed by mass photometry, and the continued increase in activity from 5 mM to 10 mM 2-OG for M mazei GS. This prompts questions regarding the inability of M mazei GS to achieve complete dodecamer formation and the underlying factors that further enhance GS activity within this concentration range of 2-OG.

      Moreover, the cryo-electron microscopy (cryo-EM) analysis provides additional support for the biophysical and biochemical characterization, elucidating the precise localization of 2-OG at the interface of two GS subunits within two hexameric rings. The observed correlation between GS assembly facilitated by 2-OG and its catalytic activity is substantiated by structural reorientations at the GS-GS interface, confirming the previously reported phenomenon of "funnel activation" in GS. However, the authors did not present the cryo-EM structure of M. mazei GS in complex with ATP and glutamate in the presence of 2-OG, which could have shed light on the differences in glutamine biosynthesis between previously reported GS enzymes and the 2-OG-bound M. mazei GS.

      Furthermore, besides revealing the cryo-EM structure of 2-OG-bound GS, the study also observed the filamentous form of GS, suggesting that filament formation may be a universal stacking mechanism across archaeal and bacterial species. However, efforts to enhance resolution to investigate whether the stacked polymer is induced by 2-OG or other factors such as ions or metabolites were not undertaken by the authors, leaving room for further exploration into the mechanisms underlying filament formation in GS.

      We thank Reviewer #2 for the detailed assessment and valuable input. We will address those comments in the updated manuscript and clarify the message.

      (1) The discrepancy of the dodecamer formation (max. at 5 mM 2-OG) and the enzyme activity (max. at 12.5 mM 2-OG). We assume that there are two effects caused by 2-OG: 1. cooperativity of binding (less 2-OG needed to facilitate dodecamer formation) and 2. priming of each active site. See also Reviewer #1 R.1). We assume this is the reason why the activity of dodecameric GlnA1 can be further enhanced by increased 2-OG concentration until all catalytic sites are primed.

      (2) The lack of the structure of a 2-OG and ATP-bound GlnA1. Although we strongly agree that this would be a highly interesting structure, it seems out of the scope of a typical revision to request new cryo-EM structures. We evaluate the findings of our present study concerning the 2-OG effects as important insights into the strongly discussed field of glutamine synthetase regulation, even without the requested additional structures.

      (3) The observed GlnA1-filaments are an interesting finding. We certainly agree with the referee on that point, that the stacked polymers are potentially induced by 2-OG or ions. However, it is out of the main focus of this manuscript to further explore those filaments. Nevertheless, this observation could serve as an interesting starting point for future experiments.

      Reviewer #3 (Public Review):

      Summary:

      The current manuscript investigates the effect of 2-oxoglutarate and the Glk1 protein as modulators of the enzymatic reactivity of glutamine synthetase. To do this, the authors rely on mass photometry, specific activity measurements, and single-particle cryo-EM data.

      From the results obtained, the authors convey that glutamine synthetase from Methanosarcina mazei exists in a non-active monomeric/dimeric form under low concentrations of 2-oxoglutarate, and its oligomerization into a dodecameric complex is triggered by higher concentration of 2-oxoglutarate, also resulting in the enhancement of the enzyme activity.

      Strengths:

      Glutamine synthetase is a crucial enzyme in all domains of life. The dodecameric fold of GS is recurrent amongst prokaryotic and archaea organisms, while the enzyme activity can be regulated in distinct ways. This is a very interesting work combining protein biochemistry with structural biology.

      The role of 2-OG is here highlighted as a crucial effector for enzyme oligomerization and full reactivity.

      Weaknesses:

      Various opportunities to enhance the current state-of-the-art were missed. In particular, omissions of the ligand-bound state of GnK1 leave unexplained the lack of its interaction with GS (in contradiction with previous results from the authors). A finer dissection of the effect and role of 2-oxoglurate are missing and important questions remain unanswered (e.g. are dimers relevant during early stages of the interaction or why previous GS dodecameric structures do not show 2-oxoglutarate).

      We thank Reviewer #3 for the expert evaluation and inspiring criticism.

      (1) Encouragement to examine ligand-bound states of GlnK1. We agree and plan to perform the suggested experiments exploring the conditions under which GlnA1 and GlnK1 might interact. We will perform the MP experiments in the presence of ATP. In GlnA1 activity test assays when evaluating the presence/effects of GlnK1 on GlnA1 activity, however, ATP was always present in high concentrations and still we did not observe a significant effect of GlnK1 on the GlnA1 activity.

      (2) The exact role of 2-OG could have been dissected much better. We agree on that point and will improve the clarity of the manuscript. See also Reviewer #1 R.1.

      (3) The lack of studies on dimers. This is actually an interesting point, which we did not consider during writing the manuscript. Now, re-analysing all our MP data in this respect, GlnA1 is likely a dimer as smallest species. Consequently, we will add more supplementary data which supports this observation and change the text accordingly.

      (4) Previous studies and structures did not show the 2-OG. We assume that for other structures, no additional 2-OG was added, and the groups did not specifically analyse for this metabolite either. All methanoarchaea perform methanogenesis and contain the oxidative part of the TCA cycle exclusively for the generation of glutamate (anabolism) but not a closed TCA cycle enabling them to use internal 2-OG concentration as internal signal for nitrogen availability. In the case of bacterial GS from organisms with a closed TCA cycle used for energy metabolism (oxidation of acetyl CoA) like e.g. E. coli, the formation of an active dodecameric GS form underlies another mechanism independent of 2-OG. In case of the recent M. mazei GS structures published by Schumacher et al. 2023, the dodecameric structure is probably a result from the heterologous expression and purification from E. coli. (See also Reviewer #1 R.2). One example of methanoarchaeal glutamine synthetases that do in fact contain the 2-OG in the structure, is Müller et al. 2023.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Specific issues:

      L 141: 2-OG levels increase due to slowing GOGAT reaction (due to Gln limitation as a consequence of N-starvation).... (2-OG also increases in bacteria that lack GDH...)

      As the GS-GOGAT cycle is the major route of ammonium assimilation, consumption of 2-OG by GDH is probably only relevant under high ammonium concentrations.

      In Methanoarchaea, GS is strictly regulated and expression strongly repressed under nitrogen sufficiency - thus glutamate for anabolism is mainly generated by GDH under N sufficiency consuming 2-OG delivered by the oxidative part of the TCA cycle (Methanogenesis is the energy metabolism in methanoarchaea, a closed TCA cycle is not present) thus 2-OG is increasing under nitrogen limitation, when no NH3 is available for GDH.

      L148: it is not clear what is meant by: "and due to the indirect GS activity assay"

      We apologize for not being clear here. The GS activity assay used is the classical assay by Sahpiro & Stadtman 1970 and is a coupled optical test assay (coupling the ATP consumption of the GS activity to the oxidation of NADH by lactate dehydrogenase). Based on the coupled test assay the measurements of low activities show a high deviation. We now added this information in the revised MS respectively.

      L: 177: arguing about 2-OG affinities: more precisely, the 0.75 mM 2-OG is the EC50 concentration of 2-OG for triggering dodecameric formation; it might not directly reflect the total 2-OG affinity, since the affinity may be modulated by (anti)cooperative effects, or by additional sites... as there may be different 2-OG binding sites involved... (same in line 201)

      Thank you for the valuable input. We changed KD to EC50 within the entire manuscript. Concerning possible additional 2-OG binding sites: we did not see any other 2-OG in the cryo-EM structure aside from the described one and we therefore assume that the one described in the manuscript is the main and only one. Considering the high amounts of 2-OG (12.5 mM) used in the structure, it is quite unlikely that additional 2-OG sites exist since they would have unphysiologically low affinities.

      In this respect, instead of the rather poor assay shown in Figure 1D, a more detailed determination of catalytic activation by different 2-OG concentrations should be done (similar to 1A)... This would allow a direct comparison between dodecamerization and enzymatic activation.

      We agree and performed the respective experiments, which are now presented in revised Fig. 1D

      Discussion: the role of 2-OG as a direct activator, comparison with other prokaryotic GS: in other cases, 2-OG affects GS indirectly by being sensed by PII proteins or other 2-OG sensing mechanisms (like 2OG-NtcA-mediated repression of IF factors in cyanobacteria)

      We agree and have added that information in the discussion as suggested.

      290. Unclear: As a second step of activation, the allosteric binding of 2-OG causes a series of conformational.... where is this site located? According to the catalytic effects (compare 1A and 1D) this site should have a lower affinity …

      Thank you very much for pointing this out. Binding of 2-OG only occurs in one specific allosteric binding-site. Binding however, has two effects on the GlnA1: dodecamer assembly and priming of the active site (with two specific EC50, which are now shown in Fig. 1A and D).

      See also public comment #1 (1).

      Reviewer #2 (Recommendations For The Authors):

      The primary concern for me is that mass photometry might lead to incorrect conclusions. The differences in the forms of GS seen in SEC and MP suggest that GS can indeed form a stable dodecamer when the concentration of GS is high enough, as shown in Figure S1B. I strongly suggest using an additional biophysical method to explore the connection between GS and 2-OG in terms of both assembly and activity, to truly understand 2-OG's role in the process of assembly and catalysis.

      We apologize if we did not present this clear enough, however the MP analysis of GlnA1 in the absence of 2-OG showed always (monomers/) dimers, dodecamers were only present in the presence of 2-OG. The SEC analysis in Fig. S1B has been performed in the presence of 12.5 mM 2-OG, we realized this information is missing in the figure legend - we now added this in the revised version. The 2-OG is in addition visible in the Cryo EM structure. Thus, we do not agree to perform additional biophysical methods.

      As for the other experimental findings, they appear satisfactory to me, and I have no reservations regarding the cryoEM data.

      (1) Mass photometry is a fancy technique that uses only a tiny amount of protein to study how they come together. However, the concentration of the protein used in the experiment might be lower than what's needed for them to stick together properly. So, the authors saw a lot of single proteins or pairs instead of bigger groups. They showed in Figure S1B that the M. mazei GS came out earlier than a 440-kDa reference protein, indicating it's actually a dodecamer. But when they looked at the dodecamer fraction using mass photometry, they found smaller bits, suggesting the GS was breaking apart because the concentration used was too low. To fix this, they could try using a technique called analytic ultracentrifuge (AUC) with different amounts of 2-OG to see if they can spot single proteins or pairs when they use a bit more GS. They could also try another technique called SEC-MALS to do similar tests. If they do this, they could replace Figure 1A with new data showing fully formed GS dodecamers when they use the right amount of 2-OG.

      Thank you for this input. In MP we looked at dodecamer formation after removing the 2-OG entirely and re-adding it in the respective concentration. We think that GlnA1 is much more unstable in its monomeric/dimeric fraction and that the complete and harsh removal of 2-OG results in some dysfunctional protein which does not recover the dodecameric conformation after dialysis and re-addition of 2-OG. Looking at the dodecamer-peak right after SEC however, we exclusively see dodecamers, which is now included as an additional supplementary figure (suppl. Fig. 1C). Consequently, we did not perform additional experiments.

      (2) Building on the last point, the estimated binding strength (Kd) between 2-OG and GS might be lower than it really is, because the GS often breaks apart from its dodecameric form in this experiment, even though 2-OG helps keep the pairs together, as seen with cryoEM. What if they used 5-10 times more GS in the mass photometry experiment? Would the estimated bond strength stay the same? Could they use AUC or other techniques like ITC to find out the real, not just estimated, strength of the bond?

      We agree that the term KD is not suitable. We have changed the term KD to EC50 as suggested by reviewer #1, which describes the effective concentration required for 50 % dodecamer assembly. Furthermore, we disagree that the dodecamer breaks apart when the concentrations are as low as in MP experiments. The actual reason for the breaking is rather the harsh dialysis to remove all 2-OG before MP experiments. Right after SEC, the we exclusively see dodecamer in MP (suppl. Fig. S1C). See also #2 (1).

      (3) The fact that the GS hardly works without 2-OG is interesting. I tried to understand the experiment setup, but it wasn't clear as the protocol mentioned in the author's 2021 FEBS paper referred to an old paper from 1970. The "coupled optical test assay" they talked about wasn't explained well. I found other papers that used phosphometry assays to see how much ATP was used up. I suggest the authors give a better, more detailed explanation of their experiments in the methods section. Also, it's unclear why the GS activity keeps going up from 5 to 12.5 mM 2-OG, even though they said it's saturated. They suggested there might be another change happening from 5 to 12.5 mM 2-OG. If that's the case, they should try to get a cryo-EM picture of the GS with lots of 2-OG, both with and without ATP/glutamate (or the Met-Sox-P-ADP inhibitor), to see what's happening at a structural level during this change caused by 2-OG.

      We agree with the reviewer that the GS assay was not explained in detail (since published and known for several years). However, we now added the more detailed description of the assay in the revised MS, which also measures the ATP used up by GS, but couples the generation of ADP to an optical test assay producing pyruvate from PEP with the generated ADP catalysed by pyruvate kinase present in the assay. This generated pyruvate is finally reduced to lactate by the present lactate dehydrogenase consuming NADH, the reduction of which is monitored at 340 nm.

      The still increasing activity of GS after dodecamer formation (max. at 5 mM 2-OG) and the continuously increasing enzyme activity (max. at 12.5 mM 2-OG): See also public reviews, we assume that there are two effects caused by 2-OG: 1. cooperativity of binding (less 2-OG needed to facilitate dodecamer formation) and 2. priming of each active site.

      The suggested additional experiments with and without ATP/Glutamate: Although we strongly agree that this would be a highly interesting structure, it seems out of the scope of a typical revision to request new cryo-EM structures. We evaluate the findings of our present study concerning the 2-OG effects as important insights into the strongly discussed field of glutamine synthetase regulation, even without the requested additional structures.

      (4) Please remake Figure S2, the panels are too small to read the words. At least I have difficulty doing so.

      We assume the reviewer is pointing to Suppl. Fig S3, we now changed this figure accordingly.

      Line 153, the reference Schumacher et al. 23, should be 2023?

      Yes, thank you. We corrected that.

      Line 497. I believe it's UCSF ChimeraX, not Chimera.

      We apologize and corrected accordingly.

      Reviewer #3 (Recommendations For The Authors):

      Recent studies on the Methanothermococcus thermolithotrophicus glutamine synthetase, published by Müller et al., 2024, have identified the binding site for 2-oxoglutarate as well as the conformational changes that were induced in the protein by its presence. In the present study, the authors confirm these observations and additionally establish a link between the presence of 2-oxoglutarate and the dodecameric fold and full activation of GS.

      Curiously, here, the authors could not confirm their own findings that the dodecameric GS can directly interact with the PII-like GlnK1 protein and the small peptide sP26. However, the lack of mention of the GlnK-bound state in these studies is very alarming since it certainly is highly relevant here.

      We agree with the reviewer that we have not observed the interaction with GlnK1 and sP26 in the recent study. Consequently, we speculate that yet unknown cellular factor(s) might be required for an interaction of GlnA1 with GlnK1 and sP26, which were not present in the in vitro experiments using purified proteins, however they were present in the previous pull-down approaches (Ehlers et al. 2005, Gutt et al. 2021). Another reason might be that post-translational modifications occur in M. mazei, which might be important for the interaction, which are also not present in purified proteins expressed in E. coli.

      The manuscript interest could have been substantially increased if the authors had done finer biochemical and enzymatic analyses on the oligomerization process of GS, used GlnK1 bound to known effectors in their assays and would have done some more efforts to extrapolate their findings (even if a small niche) of related glutamine synthetases.

      We thank the reviewer for their valuable encouragement to explore ligand-bound-states of GlnK1. However, in this manuscript we mainly focused on 2-OG as activator of GlnA1 and decided to dedicate future experiments to the exploration of conditions that possibly favor GlnK1-binding.

      In principle, we have explored the ATP bound GlnK1 effects on GlnA1 activity in the activity assays (Fig. 2E) since ATP (3.6 mM) is present. GlnK1 however showed no effects on GlnA1 activity.

      In general, the manuscript is poorly written, with grammatically incorrect sentences that at times, which stands in the way of passing on the message of the manuscript.

      Particular points:

      (1) It is mentioned that 2-OG induces the active oligomeric (dodecamer, 12-mer) state of GlnA1 without detectable intermediates. However, only 62 % of the starting inactive enzyme yields active 12-mers. Note that this is contradicted in line 212.

      Thanks for pointing out this discrepancy. After removing all 2-OG as we did before MP-experiments, GlnA1 doesn’t reach full dodecamers anymore when 2-OG is re-added. This is not because the 2-OG amount is not enough to trigger full assembly, but because the protein is much more unstable in the absence of 2-OG, so we predict that some GlnA1 breaks during dialysis. See also answer reviewer #2 (1) and supplementary figure S1C.

      Is there any protein precipitation upon the addition of 2-OG? Is all protein being detected in the assay, meaning, is monomer/dimer + dodecamer yields close to 100% of the total enzyme in the assay?

      There is no protein precipitation upon the addition of 2-OG, indeed, GlnA1 is much more stable in the presence of 2-OG. In the mass photometry experiments, all particles are measured, precipitated protein would be visible as big entities in the MP.

      Please add to Figure 1 the amount of monomer/dimer during titration. Some debate why there is no full conversion should be tentatively provided.

      We agree with the reviewer and included the amount of monomer/dimer in the figure, as well as some discussion on why it is not fully converted again. GlnA1 is unstable without 2-OG and it was dialysed against buffer without 2-OG before MP measurements. This sample mistreatment resulted in no full re-assembly after re-adding 2-OG (although full dodecamers before dialysis (suppl. Fig. S1C).

      (2) Figure 1B reflects an exemplary result. Here, the addition of 0.1 mM 2-OG seems to promote monomer to dimer transition. Why was this not studied in further detail? It seems highly relevant to know from which species the dodecamer is assembled.

      We thank the reviewer for their comment. However, we would like to point out that, although not shown in the figure, GlnA1 is always mainly present as dimers as the smallest entity. As suggested earlier, we have added the amount of monomers/dimers to Figure 1A, which shows low monomer-counts at all 2-OG concentrations (Fig.1A). Although not depicted in the graph starting at 0.01 mM OG, we also see mainly dimers at 0 mM 2-OG.

      How does the y-axis compare to the number and percentage of counts assigned to the peaks? In line 713, it is written that the percentage of dodecamer considers the total number of counts, and this was plotted against the 2-OG concentration.

      We thank the reviewer for addressing this unclarity. Line 713 corresponds to Figure 1A, where we indeed plotted the percentage of dodecamer against the 2-OG-concentration. Thereby, the percentage of dodecamer corresponds to the percentage calculated from the Gaussian Fit of the MP-dodecamer-peak. In Figure 1 B, however, the y-axis displays the relative amount of counts per mass, multiple similar masses then add up to the percentage of the respective peak (Gaussian Fit above similar masses).

      (3) Lines 714 and 721 (and elsewhere): Why only partial data is used for statistical purposes?

      We in general only show one exemplary biological replicate, since the quality of the respective GlnA1 purification sometimes varied (maximum activity ranging from 5 - 10 U/mg). Therefore, we only compared activities within the same protein purification. For the EC50 calculations of all measurements, we refer to the supplement.

      (4) Lines 192-193: It is claimed that GlnK1 was previously shown to both regulate the activity of GlnA1 and form a complex with GlnA1. Please mention the ratio between GlnK1 and GlnA1 in this complex.

      We now included the requested information (GlnA1:GlnK1 1:1, (Ehlers et al. 2005); His6-GlnA1 (0.95 μM), His6-GlnK1 (0.65 μM); 2:1,4, Gutt et al. 2021).

      It is also known that PII proteins such as GlnK1 can bind ADP, ATP, and 2-OG. Interestingly, however, for various described PII proteins, 2-OG can only bind after the binding of ATP.

      So, the crucial question here is what is the binding state of GlnK1? 

      Were these assays performed in the absence of ATP? This is key to fully understand and connect the results to the previous observations. For example, if the GlnK1 used was bound to ADP but not to ATP, then the added 2-OG might indeed only be able to affect GlnA1 (leading to its activation/oligomerization). If this were true and according to the data reported, ADP would prevent GlnK1 from interacting with any oligomeric form of GlnA1. However, if GlnK1 bound to ATP is the form that interacts with GlnA1 (potentially validating previous results?) then, 2-OG would first bind to GlnK1 (assuming a higher affinity of 2-OG to GlnK1), eventually causing its release from GlnA1 followed by binding and activation of GlnA1.

      These experiments need to be done as they are essential to further understand the process. Given the ability of the authors to produce the protein and run such assays, it is unclear why they were not done here. As written in line 203, in this case, "under the conditions tested" is not a good enough statement, considering what is known in the field and how many more conclusions could easily be taken from such a setup.

      Thanks for the encouragement to investigate the ligand-bound states of GlnK1. We agree and plan to perform the suggested mass photometry experiments exploring the conditions under which GlnA1 and GlnK1 might interact in future work. In GlnA1 activity test assays, when evaluating the presence/effects of GlnK1 on GlnA1 activity, however, ATP was always present in high concentrations and still we did not observe a significant effect of GlnK1 on the GlnA1 activity.

      (5) Figure 2D legend claims that the graphic shows the percentage of dodecameric GlnA1 as a function of the concentration of 2-OG. This is not what the figure shows; Figure 2D shows the dodecamer/dimer (although legend claims monomer was used, in line 732) ratio as a function of 2-OG (stated in line 736!). If this is true, a ratio of 1 means 50 % of dodecamers and dimers co-exist. This appears to be the case when GlnK1 was added, while in the absence of GlnK1 higher ratios are shown for higher 2-OG concentration implying that about 3 times more dodecamers were formed than dimers. However, wouldn´t a 50 % ratio be physiologically significant?

      We apologize for the partially incorrect and also misleading figure legend and corrected it. Indeed, the ratio of dodecamers and dimers is shown. Furthermore, we did not use monomeric GlnA1 (the smallest entity is mainly a dimer, see Fig 1A), however, the molarity was calculated based on the monomer-mass. Concerning the significance of the difference between the maximum ratio of GlnA1 and GlnK1: The ratio does appear higher, but this is mostly because adding large quantities of GlnK1 broadens all peaks at low molecular weight. This happens because the GlnK1 signal starts overlapping with the signal from GlnA1, leading to inflated GlnA1 dimer counts. We therefore do not think that this is biologically significant, especially as the activities do not differ under these conditions.

      (6) Is it possible that the uncleaved GlnA1 tag is preventing interaction with GlnK1? This should be discussed.

      This is of course a very important point. We however realized that Schumacher et al. also used an N-terminal His-tag, so we assume that the N-terminal tag is not hampering the interaction.

      (7) Line 228: Please detail the reported discrepancies in rmsd between the current protein and the gram-negative enzymes.

      The differences in rmsd between our M.mazei GlnA1 structure and the structure of gram-negative enzymes is caused by a) sequence similarity: E.g. M.mazei GlnA1 compared to B.subtilis GlnA have a sequence percent identity of 58.47; b) ligands in the structure: The B.Subtilis structure contains L-Methionine-S-sulfoximine phosphate, a transition state inhibitor, while the M. mazei  structure contains 2OG; c) Methodology: The structural determination methods also contribute to these differences. B. subtilis GlnA was determined using X-ray crystallography, while the M. mazei GlnA1 structure was resolved using Cryo-EM, where the protein behaves differently in ice compared to a crystal.

      (8) Line 747: The figure title claims "dimeric interface" although the manuscript body only refers to "hexameric interface" or "inter-hexamer interface" (line 224). Moreover, the figure 4 legend uses terms such as vertical and horizontal dimers and this too should be uniformized within the manuscript.

      Thank you for your valuable feedback. We have updated both the figure title and the figure legend as well in the main text to ensure consistency in the description.

      (9) Line 752: The description of the color scheme used here is somehow unclear.

      Thanks for pointing this out. We changed the description to make it more comprehensive.

      (10) Please label H14/15 and H14´/H15´in Fig 4C zoom.

      We agree that this has not been very clear. We added helix labels.

      (11) In Figure 4D legend, make sure to note that the binding sites for the substrate are based on homologies with another enzyme poised with these molecules.

      The same should be clear in the text: sites are not known, they are assumed to be, based on homologies (paragraph starting at line 239).

      Concerning this comment we want to point out that we studied the exact same enzyme as the Schumacher group, except that we used 2-OG in our experiments, which they did not.

      (12) Figure 3 appears redundant in light of Figure 4. 

      (13) Line 235: When mentioning F24, please refer to Figure 5.

      Thank you, we changed that accordingly.

      (14) Please provide the distances for the bonds depicted in Figure 4B.

      Thanks for pointing this out, we added distance labels to Figure 4B. For reasons of clarity only to three H-bonds.

      (15) Line 241: D57 is likely serving to abstract a proton from ammonium, what is residue Glu307 potentially doing? The information seems missing in light of how the sentence is built.

      Thanks for pointing this out. According to previous studies both residues are likely involved in proton abstraction - first from ammonium, and then from the formed gamma-ammonium group. Additionally, they contribute in shielding the active site from bulk solvent to prevent hydrolysis of the formed phospho-glutamate.

      (16) Why do the authors assume that increased concentrations of 2-OG are a signal for N starvation only in M. mazei and not in all prokaryotic equivalent systems (line 288)?

      In line 288, we did not claim that this is a unique signal for M. mazei. It is also the central N-starvation signal in Cyanobacteria but not directly perceived by the cyanobacterial GS through binding directly to GS.

      The authors should look into the residues that bind 2-OG and check if they are conserved in other GS. The results of this sequence analysis should be discussed in line with the variable prokaryotic glutamine synthetase types of activity modulation that were exposed in the introduction and Figure 7.

      Please refer to supplementary figure S5, where we already aligned the mentioned glutamine synthetase sequences. Since this was also already discussed in Müller et al. 2024, we did not want to repeat their observations and refer to our supplementary figure in too much detail.

      (17) Figure 5 title: Replace TS by transition state structures of homology enzymes, or alike.

      Thank you for this suggestion. We did not change the title however, since it is not a homologue but the exact same glutamine synthetase from Methanosarcina mazei.

      (18) Line 249: D170 is not shown in Figure 5A or elsewhere in Figure 5.

      Thank you for pointing this out. We added D170 to figure 5A.

      (19) Representative density for the residues binding 2-OG should be provided, maybe in a supplemental figure.

      Thank you for the suggestion. We added the densities of 2-OG-binding residues to figure 4B

      (20) Line 260: Please add a reference when describing the phosphoryl transfer.

      We thank the reviewer for this important point and added that accordingly.

      (21) Line 296: The binding of 2-OG indeed appears to be cooperative, such that at concentrations above its binding affinity to the protein, only dodecamers are seen (under experimental conditions). However, claiming that the oligomerization is fast is not correct when the experimental setup includes 10 minutes of incubation before measurements are done. Please correct this within the entire manuscript.

      A (fast) continuous kinetic assay could have confirmed this point and revealed the oligomerization steps and the intermediaries in the process (maybe monomer/dimers, then dimers/hexamers, and then hexamers/dodecamers). Such assays would have been highly valuable to this study.

      We thank the reviewer for this suggestion, but disagree. It is indeed a rather fast regulation (as activity assays without pre-incubation only takes 1 min longer to reach full activity, see the newly included suppl. Fig S6). Considering other regulation mechanisms like e.g. transcription or translation regulation, an activation that takes only 60 s is actually quite quick.

      (22) Line 305 (and elsewhere in the manuscript): the authors state that 2-OG primes the active site for a transition state. This appears incorrect. The transition state is the highest energy state in an enzymatic reaction progressing from substrate to product. Meaning, the transition state is a state that has a more or less modified form of the original substrate bound to the active site. This is not the case.

      In line 366 an "active open state" appears much more adequate to use. 

      We agree and changed accordingly throughout the manuscript.

      (23) Line 330: Please delete "found". Eventually replace it with "confirmed": As the authors write, others have described this residue as a ligand to glutamine.

      Thanks, we changed that accordingly, although previous descriptions were just based on homologies without the experimental validation.

      (24) The discussion in at various points summarizing again the results. It should be trimmed and improved.

      (25) Line 381: replace "two fast" with "fast"?

      We thank the reviewer for this suggestion, but disagree on this point. We especially wanted to highlight that there are two central nitrogen-metabolites involved in the direct regulation of GlnA1, that means TWO fast direct processes mediated by 2-OG and glutamine.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This manuscript describes an important study of the giant virus Jyvaskylavirus. The characterisation presented is solid, although, in the current form, it is not clear to what extent these findings change our perception of how giant viruses, especially those isolated from a cold environment, function. The work will be of interest to virologists working on giant viruses as well as those working with other members of the PRD1/Adenoviridae lineage.

      Thank you for the revision and positive comments. We decided to submit our revised version of the manuscript with changes made in light of the comments made by the editorial team and the reviewers. We hope that now the manuscript is in a better shape and satisfies all comments received. Major changes made were:

      - We changed the author order considering reviewer 2 comments (point 11). Note that no author was added or removed, we just rearranged the order of authorship.

      - We included a new supplementary table with the Jyvaskylavirus genome annotation. This is now supplementary table 2.

      - We included a supplementary figure 9 to support our changes based on reviewer 2 comments (point 6).

      - Figures 2,5,6,7 and the supplementary figure 2 were updated to accommodate our answers to different reviewer comments.

      - Three new references were added to support some of our changes.

      Below you will find our responses to each specific point raised by the reviewers.

      Public Reviews:

      Reviewer #1 (Public review):

      This study presents Jyvaskylavirus, a new member of the Marseilleviridae family, infecting Acanthamoeba castellanii. The study provides a detailed and comprehensive genomic and structural analysis of Jyvaskylavirus. The authors identified ORF142 as the capsid penton protein and additional structural proteins that comprise the virion. Using a combination of imaging techniques the authors provide new insights into the giant virus architecture and lifecycle. The study could be improved by providing atomic coordinates and refinement statistics, comparisons with available giant virus structures could be expanded, and the novelty in terms of the first isolated example of a giant virus from Finland could be expounded upon.

      The study contributes new structural and genomic diversity to the Marseilleviridae family, hinting at a broader distribution and ecological significance of giant viruses than previously thought.

      Thank you for your constructive comments. We have addressed each point raised in our rebuttal letter and revised the manuscript accordingly. By following your specific comments, we improved the manuscript regarding atomic coordinates, refinement statistics and novelty of finding a Finnish marseillevirus. Details are provided in the specific answers to your points.

      Reviewer #2 (Public review):

      Summary:

      This paper describes the molecular characterisation of a new isolate of the giant virus Jyvaskylavirus, a member of the Marseilleviridae family infecting Acanthamoeba castellanii. The isolate comes from a boreal environment in Finland, showcasing that giant viruses can thrive in this ecological niche. The authors came up with a non-trivial isolation procedure that can be applied to characterise other members of the family and will be beneficial for the virology field. The genome shows typical Marseilleviridae features and phylogenetically belongs to their clade B. The structural characterisation was performed on the level of isolated virion morphology by negative stain EM, virions associated with cells either during the attachment or release by helium microscopy, the visualisation of the virus assembly inside cells using stained thin sections, and lastly on the protein secondary structure level by reconstructing ~6 A icosahedral map of the massive virion using cryoEM. The cryoEM density combined with gene product structure prediction enabled the identification and functional assessment of various virion proteins.

      Strengths:

      The detailed description of the virus isolation protocol is the largest strength of the paper and this reviewer believes it can be modified for isolating various viruses infecting small eukaryotes. The cryoEM map allows us to understand how exceptionally large virions of these viruses are stabilised by minor capsid proteins and nicely demonstrates the integration of medium-resolution cryoEM with protein structure prediction in deciphering virion protein function. The visualisation of ongoing virus assembly inside virus factories brings interesting hypotheses about the process that; however, needs to be verified in the next studies.

      Weaknesses:

      The conclusions from helium microscopy images are overinterpreted, as the native membrane structure cannot be preserved in a fixed and dehydrated sample. In the image, there are many other parts of the curved membrane and a lot of virions, to me it seems the specific position of the highlighted virion could arise by a random chance. The claim that the cells were imaged in the near-original state by this method should be therefore omitted. Also, no mass spectrometry data are presented that would supplement and confirm the identity of virion proteins which predicted models were fitted into the cryoEM density. For a general virology reader outside of the giant virus field, the results presented in the current state might not have enough influence and the section should be rewritten to better showcase the novelty of findings.

      Thank you for your constructive comments. We thank reviewer #2 for highlighting these weaknesses, giving us the opportunity to improve our study. We have removed the claim that the cells were imaged in a near-original state. Additionally, we agree that the positions of the virions on the cell surface could result from a random distribution. However, the specific virion in panel 3C is situated halfway into a crevice, and it cannot be ruled out that this particular one could be in the process of being endocytotically uptaken. This is why we used the term "probably" while referring to this finding. Regarding the mass spectrometry data, while we understand that MS data would provide an additional layer of evidence to validate the specific proteins present in the virion, they would not confirm the precise location or role of these proteins within the virion.

      We have addressed each point raised in our rebuttal letter and revised the manuscript accordingly.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I have only minor comments which should be relatively simple to address:

      (1) Atomic coordinates should be deposited in the PDB, and refinement statistics for the models provided, for example by expanding Table S2.

      We thank reviewer #1 for the suggestion. In the original submission in the ‘Data availability’ statement we stated that ‘Predicted Jyvaskylavirus PDB models using ModelAngelo and Alphafold have been deposited at BioStudies under the accession number S-BSST1654’. So, atomic coordinates of all predicted models are publicly available at the https://www.ebi.ac.uk/biostudies/ ; for additional clarity we also added the link in the ‘Data availability’ statement in the revised version.

      Our reasoning of not depositing them in the Protein Data Bank associated to our EMD-51613 entry is because they remain predicted models rigid-body fitted into the Jyvaskylavirus density map of 6.3 Å resolution. However, we have added into our BioStudies deposition (BSST1654) the whole Jyvaskylavirus pentameric assembly model (including all identified and predicted major and minor capsid proteins) rigid-body fitted into the Jyvaskylavirus map, and it can be easily downloaded.

      We did not to perform the real-space ‘minimization_global’ refinement of the predicted models corresponding to the ORFs of Melbournevirus (or Jyvaskylavirus) into the corresponding Melbournevirus available densities with entries EMD-37188, 37189, 37190 at ~ 3.5 Å resolution (by block-based reconstruction methods) as these maps were generated and deposited by other authors. Instead, we performed the rigid-body fit-into-map procedure of the individual predicted Jyvaskylavirus models into the previously deposited Melbournevirus maps using ChimeraX, demonstrating a fold-map alignment and assignment (see for example the individual stereo views in Supplementary Figure 6).

      In the revised version, we now provide the refinement statistics for the complete Jyvaskylavirus pentameric assembly (inclusive of peripentonal major capsid and minor capsid proteins) rigid-body fitted as a whole into the Melbournevirus 5-block reconstruction map using PHENIX, resulting into a CC<sub>mask</sub> of 57.3% (this is also stated in Supplementary Figure 7). The same pentameric assembly model was then placed into our lower-resolution 6.3 Å Jyvaskylavirus 3D density map in ChimeraX and rigid-body refined as a whole in PHENIX, yielding a predictably lower CC<sub>mask</sub> of 33%. This pentameric assembly model has now also been included into BioStudies entry.

      The procedure for this rigid body fitting and refinement has been clarified and added to the 'Materials and Methods' section as follows:

      “Then, the corresponding full 3D models were predicted using AlphaFold3 and fitted into the Melbournevirus and Jyvaskylavirus cryoEM density using the fit-into-map routine in ChimeraX together with the peripentonal capsomers (Meng et al 2023). To assess the metric of this fitting (Supplementary Figure 7), the 3.5 Å five-fold Melbournevirus block 3D density (EMDB-37190) was boxed around the pentameric assembly model and refined as a whole using rigid-body refinement in PHENIX, yielding a CC<sub>mask</sub> of 57.3%. The same pentameric model was subsequently fitted into the 6.3 Å Jyvaskylavirus 3D cryo-EM density (previously boxed around the model), resulting in a lower CC<sub>mask</sub> of 33%, consistent with the limited resolution of the capsid map and below regions.”

      (2) The results section 'Jyvaskylavirus three-dimensional architecture' could be expanded to compare and contrast with other giant virus structures, in terms of T-number, diameter, and features on and inside the capsid. This is not essential but would help focus claims of novelty with regard to structure.

      We have added a few lines as indicated by reviewer#1 to contextualize in morphological terms Jyvaskylavirus with other NCLDV viruses as follows:

      “Both the capsid organization and virion size are similar to those of other Marseilleviruses, such as Melbournevirus and Tokyovirus. Pacmanvirus, considered to be at the crossroads between Asfarviridae and Faustoviruses, also possesses the same T number (309) and a comparable diameter to Jyvaskylavirus. In contrast, other giant viruses, such as African swine fever virus (ASFV), representative of the Asfarviridae family, have a T number of 277 and a diameter of approximately 2,100 Å, while PBCV-1, a member of the Phycodnaviridae family, has a T number of 169 and an average diameter of 1,900 Å. All of the above-mentioned viruses have been shown to possess a major capsid protein with a vertical double jelly-roll fold that composes the capsid shell, along with an internal membrane bilayer. Minor capsid proteins have been identified and structurally modelled for the smaller virions ASFV and PBCV-1 (Wang et al. 2019; Shao et al. 2022).”

      (3) The authors highlight one of the main novelties of the virus as being the first to be isolated from Finland. The first isolation of a giant virus from the region is indeed a success but reported isolation experiments for giant viruses are still relatively few. To help shed light on the likely distribution of Jyvaskylavirus-like viruses in the region, and further afield, the genome of Jyvaskylavirus could be searched against relevant available metagenomes.

      In the last decade the interest on finding giant viruses by metagenomics has increased. However, the focus has been on marine environments, where these viruses are shown to be prevalent. Besides the few isolates from the Northern hemisphere mentioned in the manuscript, northern giant viruses were detected in metagenome datasets from glacier samples, epishelf lakes, the permafrost, the Nordic seas and in a deep-sea hydrothermal vent. Most of the genomic hits are for mimivirus-like or phycodnavirus-like sequences. A few marseilleviruses were found in the Loki’s castle deep sea vent, and we have already included these sequences in the analysis shown by the supplementary figure 3. In this case the deep-sea vent viruses clusters outside the conventional clades of the marseilleviridae family, evidencing their uniqueness.

      In response to the suggestion of exploring the distribution of Jyvaskylavirus, we utilized the MGnify-database to search for DNA polymerase (DNApol) and major capsid protein (MCP) sequences. Our findings revealed multiple hits with significantly low E-values (< 1e-80), where both DNApol and MCP were detected from the same studies, indicating the presence of similar virus-like particles (VLPs) globally. Of particular interest was the detection of similar sequences in metagenomes and transcriptomes obtained from drinking water distribution systems of ground and surface waterworks in central and eastern Finland (https://www.ebi.ac.uk/metagenomics/studies/MGYS00005650#overview). We have acknowledged this in the manuscript and cited the appropriated references, as follows:

      Results: “Searching the Jyvaskylavirus major capsid protein and DNA polymerase sequences in the MGnify-database (Richardson et al 2023) yields multiple hits with significantly low E-values (< 1e-80), as expected from the apparent ubiquity of marseilleviruses. Of note was the detection of similar sequences in metagenomes and transcriptomes obtained from drinking water distribution systems of ground and surface waterworks in central and eastern Finland, evidencing that marseilleviruses are prevalent but still unexplored in this region (Tiwari et al 2022)”.

      Discussion: “Marseillevirus DNA polymerase sequences are present in metagenomes from Finnish drinking water distribution systems (Tiwari et al 2022), hinting to a wide distribution of these viruses and still unknown ecological role in Central and Eastern Finland.”

      Reviewer #2 (Recommendations for the authors):

      Apart from the major comments in the weaknesses section, I have these additional minor comments to the authors:

      (1) I do not understand why the authors emphasized the uniqueness of isolating a giant virus from Finland. I think the manuscript would benefit if they rather emphasize that the virus comes from a boreal environment.

      The first giant virus, APMV, was described in 2003. In the following years the apparent ubiquity of these viruses was evidenced by two fronts. Metagenomics made clear that giant viruses are found almost everywhere, biased towards the oceans. Isolation efforts brought new virus groups in evidence but has been so far biased towards central Europe and South America samples. The closest isolated giant viruses to Jyvaskylavirus would be either an uncharacterized Swedish cedratvirus or a few microalgae-infecting mimivirus-like and phycodnaviruses-like isolates from Norway. Among marseilleviruses, Jyvaskylavirus is the northernmost isolate so far. Other marseilleviruses from the northern hemisphere were found in France, India, Japan and Algeria only.

      We still believe that finding a giant virus in Finland is relevant, considering that no other is known to date, be as an isolate or detected by genomics. We have made these observations clearer in the manuscript, giving emphasis to the boreal environment as well.

      (2) All discussed AlphaFold models should be added as Supplementary PDB data.

      We thank reviewer #2 for the suggestion. In the original submission in the ‘Data availability’ statement we stated that ‘Predicted Jyvaskylavirus PDB models using ModelAngelo and Alphafold have been deposited at BioStudies under the accession number S-BSST1654’. So, atomic coordinates of all predicted models are publicly available at the https://www.ebi.ac.uk/biostudies/ ; for additional clarity we also added the link in the ‘Data availability’ statement in the revised version.

      Our reasoning of not depositing them in the Protein Data Bank associated to our EMD-51613 entry is because they remain predicted models rigid-body fitted into the Jyvaskylavirus density map of 6.3 Å resolution. However, we have added into our BioStudies deposition (BSST1654) the whole Jyvaskylavirus pentameric assembly model (including all identified and predicted major and minor capsid proteins) rigid-body fitted into the Jyvaskylavirus map, and it can be easily downloaded.

      We did not to perform the real-space ‘minimization_global’ refinement of the predicted models corresponding to the ORFs of Melbournevirus (or Jyvaskylavirus) into the corresponding Melbournevirus available densities with entries EMD-37188, 37189, 37190 at ~ 3.5 Å resolution (by block-based reconstruction methods) as these maps were generated and deposited by other authors. Instead, we performed the rigid-body fit-into-map procedure of the individual predicted Jyvaskylavirus models into the previously deposited Melbournevirus maps using ChimeraX, demonstrating a fold-map alignment and assignment (see for example the individual stereo views in Supplementary Figure 6).

      In the revised version, we now provide the refinement statistics for the complete Jyvaskylavirus pentameric assembly (inclusive of peripentonal major capsid and minor capsid proteins) rigid-body fitted as a whole into the Melbournevirus 5-block reconstruction map using PHENIX, resulting into a CC<sub>mask</sub> of 57.3% (this is also stated in Supplementary Figure 7).

      The same pentameric assembly model was then placed into our lower-resolution 6.3 Å Jyvaskylavirus 3D density map in ChimeraX and rigid-body refined as a whole in PHENIX, yielding a predictably lower CC<sub>mask</sub> of 33%. This pentameric assembly model has now also been included into BioStudies entry.

      The procedure for this rigid body fitting and refinement has been clarified and added to the 'Materials and Methods' section as follows:

      “Then, the corresponding full 3D models were predicted using AlphaFold3 and fitted into the Melbournevirus and Jyvaskylavirus cryoEM density using the fit-into-map routine in ChimeraX together with the peripentonal capsomers (Meng et al 2023). To assess the metric of this fitting (Supplementary Figure 7), the 3.5 Å five-fold Melbournevirus block 3D density (EMDB-37190) was boxed around the pentameric assembly model and refined as a whole using rigid-body refinement in PHENIX, yielding a CC<sub>mask</sub> of 57.3%. The same pentameric model was subsequently fitted into the 6.3 Å Jyvaskylavirus 3D cryo-EM density (previously boxed around the model), resulting in a lower CC<sub>mask</sub> of 33%, consistent with the limited resolution of the capsid map and below regions.”

      (3) Figure 2A: Could ORFs that encode structural proteins discussed in the paper, be somehow highlighted?

      We have updated Figure2A to include this information.

      (4) Figure 2C: Could be somehow highlighted from these members on which there was conducted structural characterisation (e.g. by some symbol next to the name)?

      We have updated Figure2C to include this information.

      (5) Figure 5A: Could the central bid be shown in a lower threshold (you can retain the threshold for the protein shell)? It would be interesting to see some details of the interior, rather than a massive blob.

      We have decreased the threshold level of the map as suggested.

      (6) Figure 6: the density corresponding to MCPs, minor capsid, and penton proteins respectively could be colour-zoned in Chimera(X). This would better visualise where each entity lies.

      About ORF142 - what other virus protein possesses this fold? Is it similar to the penton protein in other PRD1/Adenoviridae viruses? Maybe some comparison could be presented?

      We have incorporated the feedback from reviewer_#_2 by modifying the corresponding panel A in Figure 6. We have colour-zoned the penton (ORF142), some of the density region corresponding to the MCPs (ORF184) and to the minor cap proteins (ORF121). We have kept in grey the density corresponding to other minor proteins, and those we were able to identify are logically introduced later and shown as individual coloured cartoon tube models fitted into the density in panel A of Figure 7.

      Regarding ORF142, we have included a reference in the Discussion section to a new Supplementary Figure 9, where we provide a side-by-side comparison of the predicted Jyvaskylavirus penton protein model with experimentally derived penton protein models of PRD1 and HCIV-1. In light of this comparison, we have also added a brief clarification in the Discussion as follows:

      “However, in ORF142, the CHEF strands are predicted to be tilted relative to the BIDG strands, with an estimated angle of approximately 60° based on visual inspection (Supplementary Figure 9).”

      (7) Figure 7B: Could the density around the protein be zoned (rather than side view clipped), as this would better showcase how it fits the density?

      Initially, we presented a side view of the clipped surface to highlight the correspondence between the wall-shaped density, characteristic of a low-resolution beta-barrel, and the beta-barrel of the predicted model. Following the Reviewer’s suggestion, we have now surface-zoned the density and provided a stereo view of the density with the model fitted into the map using ChimeraX. While we recognize that stereo views are no longer commonly used in main text figures, we believe they remain valuable for visually assessing the overall match in low-resolution 3D density maps.

      (8) The authors did not try to reconstruct the asymmetric feature of the virion by classifying pentons, which may have identified a special vertex, one they claim might be required for genome packaging in "open particles". I understand the number of particles is low, but even low-resolution classification in C5 might be of interest in the field.

      We thank reviewer #2 for this valuable comment. The potential existence of a unique vertex in Marseilleviruses remains an open and intriguing question. Further investigations, including a significant increase in the number of particles, may help clarify this issue, and we plan to explore this topic in future structural studies.

      (9) Supplementary Figure 2: It would be interesting how the titre changes after the 12 hours, will it plateau? Could you add a bar showing the original titre to the chart showing stability after 109 days? I like the data in this figure and think it should be transferred to the main text.

      The titre at the 12h time point is very close to the titre we often get in our stocks, indicating that indeed it is close to peaking. For comparison: the titre of the 12-hour time point was 10<sup>11.55</sup> TCID50/ml, whereas our stock has a titre of 10<sup>11.66</sup> TCID50/ml. Our growth curve had more time points up to 48h and we lost the later time points due to a higher viral load than predicted, which led to us not being able to count these time points with the dilutions used. Showing the first 12 hours was enough for our initial purpose, which was to show a quick replication cycle for Jyvaskylavirus, in accordance with the other marseilleviruses in which the timing of the replication cycle was observed (see the answer for point 10 below).

      We have added a bar representing the original titre of the stock used for the stability experiment as suggested.

      While preparing the draft we were divided into having the growth and stability figure in the main text or in the supplementary material. Our decision was to move this data to the supplementary material and keep the focus of the main text on the discovery, genome analysis and structural data, as these are the main findings of our work. The specifics regarding stability, growth and other uncharacterized VLPs went to the supplementary material for those in the field who are interested in looking deeper. That being said, we will decide to keep this data as supplementary material if you and the editor agrees.

      (10) In the Discussion, the authors should focus on how our perception of giant viruses changes by this study - compare with other growth curves, stability assays, and structures of giant viruses, showcasing how prevalent those stabilising minor capsid proteins are, etc. My impression is that in the current form, it is just not clear if/how substantial these findings are and such a comparison and putting the results in a bigger picture would considerably increase the impact of the paper.

      Our comparisons with other marseilleviruses were based on genomic and structural characteristics, the two fronts we had data from the literature and databases to compare to. Sadly there is not too much information regarding stability and growth of other isolates that could be used for an in-depth comparison. For example: although marseilleviruses are known to have a fast replication cycle, this has been measured by DAPI staining of DNA inside infected cells to evaluate viral factory formation (Boyer et al 2009), or by time-series observations of viral cycle stages by electron microscopy (Fabre et al 2017), and not by viral titration as done here. We included a mention to these references in the results:

      “A fast replication cycle is a feature also shown for other marseilleviruses (Boyer et al 2009 ; Fabre et al 2017).”

      The literature also does not show virion stability of other isolates, making it impossible to have a comparison with jyvaskylavirus. A comparative study testing different isolates side by side is definitely of relevance and interest, but this would be difficult to be done in a short time due to obtaining other isolates. We believe the results in this manuscript might set some parameters to be used for comparing with other marseilleviruses, by our groups and others, in the future.

      Regarding the prevalence of the minor capsid proteins, we have expanded and clarified the identification of ORFs in Melbournevirus in the ‘Results’ and ‘Discussion’ sections. The revised Supplementary Table 4 has been updated accordingly and referenced in the results to clarify that the identification of Melbourne ORFs was carried out in BLASTp by querying the Jyvaskylavirus minor protein sequences exclusively against the Melbournevirus isolate 1 (NCBI Reference Sequence: NC_025412.1). BLASTp was then performed against the full sequence database, and homologous sequences were primarily retrieved from other marseillaviruses. These results have been compiled in a new Supplementary Table 5.

      However, Supplementary Table 5 also shows that the hits for Melbournevirus are not ranked at the top, and in some cases, they do not appear among the top hits.

      The ‘Results’ section now contains the following text:

      “To this end, we identified the corresponding Jyvaskylavirus ORFs in Melbournevirus through sequence comparison with Melbournevirus isolate 1 (NCBI Reference Sequence: NC_025412.1) (Supplementary Table 34). However, when the identified Jyvaskylavirus ORF sequences were analyzed using BLASTp without restricting the search to the Melbournevirus reference, many hits were observed in other giant viruses, primarily marseillevirus. Remarkably, some of these hits scored higher than those for Melbournevirus, supporting the presence of homologous proteins in these viruses (Supplementary Table 5).”

      The ‘Discussion’ section now contains the following text:

      “Additionally, the observation that the identified Jyvaskylavirus minor capsid protein sequences are shared across other marseillaviruses supports their essential structural and stabilizing roles in these viruses.”

      At the same time, we have modified the ‘Materials and Methods’ section to include a reference to Supplementary Figure 5, where the use of ModelAngelo is mentioned. Additionally, a new Supplementary Figure 10 has been included to clarify how the residues built into the Melbournevirus density using ModelAngelo (without prior knowledge of any sequence) are subsequently matched with the Jyvaskylavirus sequences.

      (11) Based on the author's statement, Iker Arriaga did all the cryoEM experiments. It is strange to me they are not placed higher on the author's list.

      We thank you for this observation and agree with your comment. This manuscript has been in preparation for a few years, and the first draft had the author order defined before the structural data collection and analyses were completed. Iker participation was indeed important and substantial from the first draft to the submitted version and he definitely deserves a better author placement. We have modified the author order to accommodate this. Note that only the author order changed and that no author has been included or removed.

    1. Author response:

      We thank the reviewers and editors for these careful and constructive comments. Based on these comments, we plan to perform new experiments and revised analysis, summarized as follows:

      (1) A more thorough analysis and experimental test of the effects of YW->SR variants on baseline AP excitability in neurons in the absence of any pharmacology.

      (2) More details on modeling of selective block of Na<sub>V</sub>1.2 and Na<sub>V</sub>1.6.

      (3) Revisions to text, figure contents, and figure order to better convey key points and better frame these findings in the context of current clinically available anti-seizure medications that interact with sodium channels.

    1. Author response:

      We thank both reviewers for their comments on our manuscript. We are pleased that the value of this research has been communicated effectively, and that the reviewers agree that whilst our sample size of individuals is relatively small, it offers a unique perspective for understanding the effects of aging for wild chimpanzees’ technological behaviors. Whilst only yielding data on a few individuals, the Bossou archive is the only available data source with which we can currently address these questions over extended timescales, and is key for understanding longitudinal effects of aging for specific individuals. This is particularly true if we are to understand the life-long dynamics of chimpanzees’ technical skills during tasks which require the organization of multiple movable elements. Bossou is the only community where chimpanzees both perform nut cracking with moveable hammer and anvil stones, and have been systematically studied over a period of decades. Moreover, given the dwindling population at Bossou (N = 3 as of 2025), we must make every effort to understand these effects with existing data. We agree that this work will likely form a valuable foundation for future studies, which may aim to either replicate our results, or use our findings to design more specific research questions and approaches.

      In the next iteration of the manuscript, we will elaborate on our choice of field seasons more clearly. However, this was a logistical tradeoff between needing to sample across a long lifespan using fine-granularity behavior coding, versus the time constraints for our project and the likely yield of data collection. We sampled from the middle of individuals’ prime age, up until the oldest recorded ages of individuals lifespans (17 years). Where possible we aimed to use consistent time intervals (approximately 4 years); however, this was not always possible, as in some years data was not collected by researchers at Bossou (for example, during years where there were Ebola outbreaks affecting the region). In such instances, we sampled the closest available year that offered sufficient data to meet our sampling requirements).

      Reviewer 2 raises that there may be a disconnect between how human observers and chimpanzees conceive of efficiency when nut cracking, and support this idea with a citation to previous work on efficiency of Oldowan stone knapping. We agree that knowing precisely how chimpanzees perceive their own efficiency during tool use is not available through observation alone, nor can we assess the true extent to which chimpanzees are concerned about the efficiency of their nut-cracking. However, following previous studies, it is reasonable to assume that adult chimpanzees embody some level of efficiency, given that adults often select tools which aid efficient nut cracking (Braun et al. 2025, J. Hum. Evol.; Carvalho et al. 2008, J. Hum. Evol.; Sirianni et al. 2015, Animal Behav.); perform nut cracking using more streamlined combinations of actions than less experienced individuals (Howard-Spink et al. 2024, Peer J; Inoue-Nakamura & Matsuzawa 1997, J. Comp. Psychol.), and consequently end up cracking nuts using fewer hammer strikes, indicating a higher level of skill (Biro et al. 2003, Animal Cogn.; Boesch et al. 2019, Sci. Rep.). Ultimately, these factors suggest that across adulthood, experienced chimpanzees perform nut cracking with a level of efficiency which exceeds novice individuals, including across the chaine operatoire.

      To account for the multiple ways in which reduced efficiency may manifest later in life, we provide one of the most flexible measures of efficiency in wild chimpanzee tool use to date, which incorporates more classical measures of time and hammer strikes (see previous examples of Biro et al. 2003, Animal Cogn.; Boesch et al. 2019 Sci. Rep.) as well as additional variables which aim to characterize how streamlined behavioral sequences are (tool rotations, tool swaps, nut replacements, etc. see Berdugo et al. 2024 Nat. Hum. Behav for other analyses using similar metrics). In the case of swapping out tools, Reviewer 2 suggests that some of these tool swaps may in fact be to aid nut cracking, by maintaining kernel integrity (a key result relating to Yo’s coula nut cracking efficiency). This however seems unlikely, given that these behaviors were performed extremely rarely by chimpanzees in early field seasons, and were not performed more frequently by other individuals with aging. We will provide additional information behind our metrics for measuring efficiency, with reference to earlier work, and also will incorporate the points raised by Reviewer 2 concerning the limitations with which we can infer chimpanzees’ goals, and how efficiently they meet them.

      Reviewer 1 questioned why we did not sample efficiency data for younger individuals, and compare this data with older individuals to detect the effects of aging. Throughout our manuscript, we compared aging individuals’ nut-cracking efficiency with their efficiency in previous years (thus, at younger ages). This offered each individual personalized benchmark of efficiency in early life, and allowed us to identify aging effects whilst controlling for long-term interindividual variation in skill levels. Indeed, previous analyses at Bossou find that across the majority of adulthood, efficiency varies between individuals, but is relatively stable within individuals (see Berdugo et al. 2024, Nat. Hum. Behav.). As focal aging chimpanzees cracked multiple nuts each field season (and each encounter), we had ample data to fit models that examine individuals’ efficiency over field seasons, using random slopes to model correlations for each individual. By taking this approach, our paper offers a novel perspective by being able to report the longitudinal effects of aging on tool-using efficiency, rather than averaged cross-sectional effects between young and old cohorts. As random slope models (and not just random intercept models) offered the best explanation for variation in aging individuals’ efficiency over our sample period, this implies that focal chimpanzees were experiencing individual-level changes in efficiency over time, thus giving us key evidence that interindividual variation in tool-using efficiency can be compounded by aging.

      We argue that the reductions in efficiency observed for some individuals (e.g. Yo & Velu) are unlikely to be due to environmental changes (e.g. nuts becoming harder in later field seasons), as if this was the case, these effects would be detected across the behaviors of all individuals (which was not observed). Additionally, in the specific case of the hardness of nuts, nuts used in our experiment were sourced from local communities, and were moderately aged. This avoided the use of young nuts which are harder to crack, or older nuts which are often worm-eaten or can be empty (Sakura & Matsuzawa, 1991; Ethology). We will update our manuscript with this information.

      Whilst other factors may introduce general variation into our efficiency data (such as different stones used on different encounters, or more general variation in nut hardness across encounters), very few of these factors predict directional long-term changes in efficiency. Rather, if these factors were driving the majority of variation in our data, we would expect them to lead to variation across visits during earlier field seasons (such as 1999-2008) and later field seasons (2011 onwards) equally, and in a way which does not necessarily correlate with age. This does not match the pattern we observed in our data, where for some individuals (e.g. Yo & Velu), efficiency in nut cracking reduced in later field seasons only, and was relatively consistent across field seasons prior to 2011. Moreover, for Yo – the individual who exhibited the greatest reductions in tool-using efficiency - efficiency continued to decrease across the three of the latest sampled field seasons. Thus, it is more likely Yo was experiencing deleterious effects of aging. We do however agree that additional data on these variables would help us to remove the possibility of compounding factors more rigorously – we will include recommendations for this data to be collected in future studies.

      When modelling the effect of aging on attendance at the outdoor laboratory, we could not use the same approach we used when modelling tool-using efficiency, as we could only acquire one datapoint (attendance rate) per individual for each field season. We therefore had to adapt our analysis, and introduce attendance rates for younger individuals as a baseline to compare against the attendance rates of older individuals across years. We observed a significant interaction effect, where across field seasons, attendance dropped significantly more rapidly for older individuals than younger ones. Reviewer 2 has asked why we do not consider inter-annual variability across this time period, and suggested that we ignored intervening years. This is not the case. When fitting models that examined the effects of aging on attendance, we used all data across all field seasons. We reported an approximate effect size for this significant correlation using a digestible comparison of the attendance rates in the initial and final field seasons sampled. We will ensure that this is clear in the next iteration of our manuscript.

      Reviewer 2 noted that many factors may have influenced the decision for chimpanzees to attend the outdoor laboratory in older field seasons, and the current data may not be used to make strong arguments for changes in attendance rates being due to dietary preferences. We agree that many factors may have influenced these attendance rates, and that is what we have aimed to transparently report within our discussion where we raise an extensive, non-exhaustive list of hypotheses for why we have observed this age-related change in our data. We will aim to ensure that this is exceptionally clear prior to resubmission, and where relevant, will further emphasize points raised by Reviewer 2. We consider some points raised by Reviewer 2 to be unlikely to apply for our study; for example, it is unlikely neophobia has influenced the behaviors of chimpanzees, as these chimpanzees habitually attended the outdoor laboratory at their own accord for over a decade prior to the earliest year we sampled in this study (reflecting extremely high levels of habituation to the experimental set up). Previous studies at Bossou have surveyed the ecology of stone tool use across the home range, and confirm that the outdoor laboratory is visited by chimpanzees during ranging as a food patch (Almeida-Warren et al. 2022 Int. J. Primatol.).

      Reviewer 2 suggested that it would be helpful to have additional data on variables such as hand grip, as this may reveal further information about how cognitive and physiological senescence influences reductions in tool-using efficiency. We agree that whilst further data on hand grips are not required to detect reductions in efficiency per say per se, it would be profitable for future analyses to collect similar data – we will add this as a recommendation to our discussion.

      Finally, Reviewer 2 commented that they found our discussion of coula-nut cracking disruptive to the flow of the manuscript, given that we could not compare with coula-nut cracking in earlier years. We reported the coula nut cracking of Yo in 2011 as it was part of our sampled data, and we felt that the comparison with other individuals in the same year was an interesting discussion point, however we acknowledge this limitation. We will move all data and discussion of coula-nut cracking to the Supplementary Materials, which we will present as an interesting additional observation which may warrant further investigation using additional data from the Bossou archive. Data collection for this future project could include collecting data on the additional variables raised by both reviewers (e.g. hand grips).

      We thank both reviewers for their comments. We believe that their feedback will improve the quality of our reporting, and the validity of our interpretations.

    1. Author response:

      eLife Assessment

      The conclusions of this work are based on valuable simulations of a detailed model of striatal dopamine dynamics. Establishing that a lower dopamine uptake rate can lead to a 'tonic' level of dopamine in the ventral but not dorsal striatum, and that dopamine concentration changes at short delays can be tracked by D1 but not D2 receptor activation, is of value and will be of interest to dopamine aficionados. However, the simulations are incomplete, providing only partial support for the key claims. Several things can be done to strengthen the conclusions, including, for example, but not exclusively, a demonstration of how the results would change as a function of changes in D2 affinity.

      We sincerely thank the Editors and Reviewers for their insightful comments on our manuscript. We are pleased that our simulations are recognized as interesting, sophisticated and valuable. Moreover, we fully agree that many of the findings will be of particular interest to dopamine aficionados. While we maintain that our simulations provide a solid basis for the key claims, we acknowledge that the conclusions can be further strengthened by the revisions suggested below.

      Reviewer #1 (Public review):

      Ejdrup, Gether, and colleagues present a sophisticated simulation of dopamine (DA) dynamics based on a substantial volume of striatum with many DA release sites. The key observation is that a reduced DA uptake rate in the ventral striatum (VS) compared to the dorsal striatum (DS) can produce an appreciable "tonic" level of DA in VS and not DS. In both areas they find that a large proportion of D2 receptors are occupied at "baseline"; this proportion increases with simulated DA cell phasic bursts but has little sensitivity to simulated DA cell pauses. They also examine, in a separate model, the effects of clustering dopamine transporters (DAT) into nanoclusters and say this may be a way of regulating tonic DA levels in VS. I found this work of interest and I think it will be useful to the community. At the same time, there are a number of weaknesses that should be addressed, and the authors need to more carefully explain how their conclusions are distinct from those based on prior models.

      (1) The conclusion that even an unrealistically long (1s) and complete pause in DA firing has little effect on DA receptor occupancy is potentially important. The ability to respond to DA pauses has been thought to be a key reason why D2 receptors (may) have high affinity. This simulation instead finds evidence that DA pauses may be useless. This result should be highlighted in the abstract and discussed more.

      We appreciate that the reviewer finds our work interesting and useful to the community. However, we acknowledge that in the revised version we to need to better describe how our conclusions are different from those reached based on previous models.

      We will also carry out new simulations across a range of D2R affinities to assess how this will affect the finding that even a long pause in DA firing has little effect on DR2 receptor occupancy. As also suggested, the results will be highlighted and further discussed.

      (2) The claim of "DAT nanoclustering as a way to shape tonic levels of DA" is not very well supported at present. None of the panels in Figure 4 simply show mean steady-state extracellular DA as a function of clustering. Perhaps mean DA is not the relevant measure, but then the authors need to better define what is and why. This issue may be linked to the fact that DAT clustering is modeled separately (Figure 4) to the main model of DA dynamics (Figures 1-3) which per the Methods assumes even distribution of uptake. Presumably, this is because the spatial resolution of the main model is too coarse to incorporate DAT nanoclusters, but it is still a limitation.

      We will improve our definitions and descriptions relating to nanoclustering of DAT in the revised version of the manuscript. We fully agree that the spatial resolution of the main model is a limitation and, ideally, that the nanoclustering should be combined with the large-scale release simulations. Unfortunately, this would require many orders of magnitude more computational power than currently available.

      As it stands it is convincing (but too obvious) that DAT clustering will increase DA away from clusters, while decreasing it near clusters. I.e. clustering increases heterogeneity, but how this could be relevant to striatal function is not made clear, especially given the different spatial scales of the models.

      Thank you for raising this important point. While it is true that DAT clustering increases heterogeneity in DA distribution at the microscopic level, the diffusion rate is, in most circumstances, too fast to permit concentration differences on a spatial scale relevant for nearby receptors. Accordingly, we propose that the primary effect of DAT nanoclustering is to decrease the overall uptake capacity, which in turn increases overall extracellular DA concentrations. Thus, homogeneous changes in extracellular DA concentrations can arise from regulating heterogenous DAT distribution. An exception to this would be the circumstance where the receptor is located directly next to a dense cluster – i.e. within nanometers. In such cases, local DA availability may be more directly influenced by clustering effects. This will be further discussed in the revised manuscript.

      (3) I question how reasonable the "12/40" simulated burst firing condition is, since to my knowledge this is well outside the range of firing patterns actually observed for dopamine cells. It would be better to base key results on more realistic values (in particular, fewer action potentials than 12).

      We fully agree that this typically is outside the physiological range. The values are included to showcase what extreme situations would look like.

      (4) There is a need to better explain why "focality" is important, and justify the measure used.

      We will expand on the intention of this measure in the revised manuscript. Thank you for pointing out this lack of clarification.

      (5) Line 191: " D1 receptors (-Rs) were assumed to have a half maximal effective concentration (EC50) of 1000 nM" The assumptions about receptor EC50s are critical to this work and need to be better justified. It would also be good to show what happens if these EC50 numbers are changed by an order of magnitude up or down.

      We agree that these assumptions are critical. Simulations on effective off-rates across a range of EC50 values will be included in the revised version.

      (6) Line 459: "we based our receptor kinetics on newer pharmacological experiments in live cells (Agren et al., 2021) and properties of the recently developed DA receptor-based biosensors (Labouesse & Patriarchi, 2021). Indeed, these sensors are mutated receptors but only on the intracellular domains with no changes of the binding site (Labouesse & Patriarchi, 2021)”

      This argument is diminished by the observation that different sensors based on the same binding site have different affinities (e.g. in Patriarchi et al. 2018, dLight1.1 has Kd of 330nM while dlight1.3b has Kd of 1600nM).

      We sincerely thank the reviewer for highlighting this important point. We fully recognize the fundamental importance of absolute and relative DA receptor kinetics for modeling DA actions and acknowledge that differences in affinity estimates from sensor-based measurements highlight the inherent uncertainty in selecting receptor kinetics parameters. While we have based our modeling decisions on what we believe to be the most relevant available data, we acknowledge that the choice of receptor kinetics is a topic of ongoing debate. Importantly, we are making our model available to the research community, allowing others to test their own estimates of receptor kinetics and assess their impact on the model’s behavior. In our revised manuscript, we will further discuss the rationale behind our parameter choices, including: Our selection of a Kd value of 1000 nM for D1R (based on the observed affinities for D1R sensors) and an extrapolated Koff of 19.5 s<sup>-1</sup> (Labouesse & Patriarchi, 2021). Our use of a Kd value of 7 nM and an extrapolated Koff of 0.2 s<sup>-1</sup> for D2R, consistent with recent binding studies (Ågren et al., 2021).

      (7) Estimates of Vmax for DA uptake are entirely based on prior fast-scan voltammetry studies (Table S2). But FSCV likely produces distorted measures of uptake rate due to the kinetics of DA adsorption and release on the carbon fiber surface.

      We fully agree that this is a limitation of FSCV. However, most of the cited papers attempt to correct for this by way of fitting the output to a multi-parameter model for DA kinetics. If newer literature brings the Vmax values estimated into question, we have made the model publicly available to rerun the simulations with new parameters.

      (8) It is assumed that tortuosity is the same in DS and VS - is this a safe assumption?

      The original paper cited does not specify which region the values are measured in. However, a separate paper estimates the rat cerebellum has a comparable tortuosity index (Nicholson and Phillips, J Physiol. (1981)), suggesting it may be a rather uniform value across brain regions.

      (9) More discussion is needed about how the conclusions derived from this more elaborate model of DA dynamics are the same, and different, to conclusions drawn from prior relevant models (including those cited, e.g. from Hunger et al. 2020, etc).

      As part of our revision, we will expand the current discussion of our finding in the context of previous models in the manuscript

      Reviewer #2 (Public review):

      The work presents a model of dopamine release, diffusion, and reuptake in a small (100 micrometer^2 maximum) volume of striatum. This extends previous work by this group and others by comparing dopamine dynamics in the dorsal and ventral striatum and by using a model of immediate dopamine-receptor activation inferred from recent dopamine sensor data. From their simulations, the authors report two main conclusions. The first is that the dorsal striatum does not appear to have a sustained, relatively uniform concentration of dopamine driven by the constant 4Hz firing of dopamine neurons; rather that constant firing appears to create hotspots of dopamine. By contrast, the lower density of release sites and lower rate of reuptake in the ventral striatum creates a sustained concentration of dopamine. The second main conclusion is that D1 receptor (D1R) activation is able to track dopamine concentration changes at short delays but D2 receptor activation cannot.

      The simulations of the dorsal striatum will be of interest to dopamine aficionados as they throw some doubt on the classic model of "tonic" and "phasic" dopamine actions, further show the disconnect between dopamine neuron firing and consequent release, and thus raise issues for the reward-prediction error theory of dopamine.

      There is some careful work here checking the dependence of results on the spatial volume and its discretisation. The simulations of dopamine concentration are checked over a range of values for key parameters. The model is good, the simulations are well done, and the evidence for robust differences between dorsal and ventral striatum dopamine concentration is good.

      However, the main weakness here is that neither of the main conclusions is strongly evidenced as yet. The claim that the dorsal striatum has no "tonic" dopamine concentration is based on the single example simulation of Figure 1 not the extensive simulations over a range of parameters. Some of those later simulations seem to show that the dorsal striatum can have a "tonic" dopamine concentration, though the measurement of this is indirect. It is not clear why the reader should believe the example simulation over those in the robustness checks, for example by identifying which range of parameter values is more realistic.

      We appreciate that the reviewer finds our work interesting and carefully performed. The reviewer is correct that DA dynamics, including the presence and level of tonic DA, are parameter-dependent in both the dorsal striatum (DS) and ventral striatum (VS). Indeed, our simulations across a broad range of biological parameters were intended to help readers understand how such variation would impact the model’s outcomes, particularly since many of the parameters remain contested. Naturally, altering these parameters results in changes to the observed dynamics. However, to derive possible conclusions, we selected a subset of parameters that we believe best reflect the physiological conditions, as elaborated in the manuscript. This is eventually required in computational modelling of biological systems. In response to the reviewer’s comment, we will place greater emphasis on clarifying which parameter regimes produce a "tonic" versus "non-tonic" DA state in the DS. Additionally, we will underscore that the distinction between tonic and non-tonic states is not a binary outcome but a parameter-dependent continuum—one that our model now allows researchers to explore systematically. Finally, we will highlight how our simulations across parameter space not only capture this continuum but also identify the regimes that produce the most heterogeneous DA signaling, both within and across striatal regions.

      The claim that D1Rs can track rapid changes in dopamine is not well supported. It is based on a single simulation in Figure 1 (DS) and 2 (VS) by visual inspection of simulated dopamine concentration traces - and even then it is unclear that D1Rs actually track dynamics because they clearly do not track rapid changes in dopamine that are almost as large as those driven by bursts (cf Figure 1i).

      We would like to draw the attention also to Fig. S1, where the claim that D1R track rapid changes is supported in more depth. According to this figure, upon coordinated burst firing, the D1R occupancy rapidly increased as diffusion no longer equilibrated the extracellular concentrations on a timescale faster than the receptors – and D1R receptor occupancy closely tracked extracellular DA with a delay on the order of tens of milliseconds. Note that the brief increases in [DA] from uncoordinated stochastic release events from tonic firing in Fig. 1i are too brief to drive D1 signaling, as the DA concentration diffuses into the remaining extracellular space on a timescale of 1-5 ms. This is faster than the receptors response rate, and does not lead to any downstream signaling according to our simulations. This means D1 kinetics are rapid enough to track coordinated signaling on a ~50 ms timescale and slower, but not fast enough to respond to individual release events from tonic activity. In our revised manuscript we will expand the discussion of this topic to provide greater clarity.

      The claim also depends on two things that are poorly explained. First, the model of binding here is missing from the text. It seems to be a simple bound-fraction model, simulating a single D1 or D2 receptor. It is unclear whether more complex models would show the same thing.

      We realize that this is not made clear in the methods and, accordingly, we will update the method section to elaborate on how we model receptor binding. The model simulates occupied fraction of D1R and D2R in every single voxel of the simulation space.

      Second, crucial to the receptor model here is the inference that D1 receptor unbinding is rapid; but this inference is made based on the kinetics of dopamine sensors and is superficially explained - it is unclear why sensor kinetics should let us extrapolate to receptor kinetics, and unclear how safe is the extrapolation of the linear regression by an order of magnitude to get the D1 unbinding rate.

      We chose to use the sensors because it was possible to estimate precise affinities/off-rates from the fluorescent measurements. Although there might some variation in affinities that could be attributable to the mutations introduced in the sensors, the data clearly separated D1R and D2R with a D1R affinity of ~1000 nM and a D1R affinity of ~7 nM (Labouesse & Patriarchi, 2021) consistent with earlier predictions of receptor affinities. From our assessment of the literature we found that this was the most reasonable way to estimate affinities and thereby off-rates. Importantly, the model has been made publicly available, so should new measurements arise, the simulations can be rerun with tweaks to the input parameters.

    1. Author response:

      We thank the reviewers for their thoughtful feedback. Below we provide an initial response to the central concerns that they have raised. In general, as part of our revisions, we plan to perform additional analyses to strengthen our conclusions, tone down more speculative interpretations, and clarify the novel contributions of our work. A full, point-by-point reply will follow alongside the revised manuscript.

      Briefly, the reviewers’ central concerns are that some of the conclusions are not sufficiently supported by the experimental evidence, specifically (1) the involvement of sharp-wave ripple (SWR)-unmodulated PFC neurons in signaling upcoming choice and (2) the absence of SWR time-locking of PFC non-local representations. They further suggest that (3) the spatial tuning in the PFC may reflect other cognitive processes rather than encoding spatial information; and (4) the manuscript is ambiguous as to which results are novel or corroborating previous work.

      (1) SWR-unmodulated PFC neurons signaling upcoming choice

      Reviewer 1 suggests that our finding that SWR-modulated neurons relate to hippocampal non-local representations contradicts the manuscript’s main conclusion. However, in our view, there is no contradiction and the finding highlights the distinction between the two sub-populations, namely the SWR-modulated neurons linked to hippocampal non-local representations, and the SWR-unmodulated neurons that are more active during prefrontal non-local representations.

      We do agree with the reviewer that the observation of higher firing rates of SWR-unmodulated neurons in the expression of non-local representations does not mean that these neurons are the sole or even main contributors to the non-local decoding. To address both comments, we will perform additional analyses to further disentangle the contributions of SWR-modulated and SWR-unmodulated PFC neurons to the non-local representations of upcoming choice.

      (2) Time-locking of PFC non-local representations to hippocampal SWRs

      Reviewer 1 comments that in the analysis of time-locking to hippocampal SWRs and theta phase, the behavior of the animals needs to be taken into account (i.e., immobility or running). We confirm that this was indeed done in our analysis and we will clarify this point in the revised manuscript.

      The reviewer further requested that PFC decoding during SWRs be performed at shorter timescales as in previous studies. We like to point out that (1) we found no increase in non-local decoding in the PFC around SWR onset (see Fig 5a), and (2) most of the non-local representations in the PFC occurred during the expression of local representations in the hippocampus (see Fig 4d). These data suggest that the non-local representations in both brain regions are expressed independently. To further strengthen this idea, we plan to (1) include the result of decoding PFC activity during SWRs at fine timescales as the reviewer suggested, and (2) look at the firing rates of PFC neurons during non-local representations exclusively when the hippocampus is encoding the actual (local) position.

      Following a suggestion by reviewer 2, we will also add a statistical assessment of how strongly the data supports the absence of time-locking.

      (3) Spatial tuning in the mPFC

      Reviewer 2 points out that the spatial tuning in the prefrontal cortex may be related to cognitive processes (e.g., attention or decision-making) rather than spatial encoding. However, our results show that decoded mPFC activity reliably differentiates between the two start and goal arms (Fig 4a), rate maps show little evidence of mirroring (Fig 3a), and the activity predicts turns in the cue-based task during which goal arms switch pseudo-randomly (meaning that the non-local representations encode the North and South arm alternatingly and correctly, rather than encoding a general rewarded goal arm; Fig. 4b). While it is likely that mPFC encodes several task-related variables, our data suggest that it also encodes distinct locations.

      The reviewer further claims that the results of Jadhav et al. (2016) contradict our findings because they supposedly showed that mPFC neurons unmodulated by SWRs are less tuned to space. However, this is incorrect, as Jadhav et al. (2016) showed that SWR-unmodulated PFC neurons have lower spatial coverage and consequentially are more spatially selective, which is consistent with our observations. We will rephrase this in the text to improve clarity.

      (4) Novelty

      We thank reviewer 2 for pointing out the significance of several novel findings in our work that deserve to be highlighted. This includes the dorsal-ventral profile of SWR-modulation and theta phase locking in the PFC and our observation that the neural representations in the PFC precede the behavioral switch in reversal learning. In our revised manuscript, we will rewrite the text to better emphasize our novel contributions, clearly distinguish new findings from confirmatory observations, and add missing citations where appropriate.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer 1 (Public Review):

      O’Neill et al. have developed a software analysis application, miniML, that enables the quantification of electrophysiological events. They utilize a supervised deep learned-based method to optimize the software. miniML is able to quantify and standardize the analyses of miniature events, using both voltage and current clamp electrophysiology, as well as optically driven events using iGluSnFR3, in a variety of preparations, including in the cerebellum, calyx of held, Golgi cell, human iPSC cultures, zebrafish, and Drosophila. The software appears to be flexible, in that users are able to hone and adapt the software to new preparations and events. Importantly, miniML is an open-source software free for researchers to use and enables users to adapt new features using Python.

      Overall this new software has the potential to become widely used in the field and an asset to researchers. However, the authors fail to discuss or even cite a similar analysis tool recently developed (SimplyFire), and determine how miniML performs relative to this platform. There are a handful of additional suggestions to make miniML more user-friendly, and of broad utility to a variety of researchers, as well as some suggestions to further validate and strengthen areas of the manuscript:

      (1) miniML relative to existing analysis methods: There is a major omission in this study, in that a similar open source, Python-based software package for event detection of synaptic events appears to be completely ignored. Earlier this year, another group published SimplyFire in eNeuro (Mori et al., 2024; doi: 10.1523/eneuro.0326-23.2023). Obviously, this previous study needs to be discussed and ideally compared to miniML to determine if SimplyFire is superior or similar in utility, and to underscore differences in approach and accuracy.

      We thank the reviewer for bringing this interesting publication to our attention. We have included SimplyFire in our benchmarking for comprehensive comparison with miniML. The approach taken by SimplyFire differs from miniML in a number of ways. Our results show that miniML provides higher recall and precision than SimplyFire (revised Figure 3). We appreciate that SimplyFire provides a user-interface similar to the commonly used MiniAnalysis software. In addition, the peak-finding-based approach of SimplyFire makes it relatively robust to event shape, which facilitates analysis of diverse data. However, we noted a strong threshold-dependence and long run time of SimplyFire (revised Figure 3 and Figure 3—figure supplement 1). In addition, SimplyFire is not robust against various types of noise typically encountered in electrophysiological recordings. Our extended benchmark analysis thus indicates that AI-based event detection is superior to existing algorithmic approaches, including SimplyFire.

      (2) The manuscript should comment on whether miniML works equally well to quantify current clamp events (voltage; e.g. EPSP/mEPSPs) compared to voltage clamp (currents, EPSC/mEPSCs), which the manuscript highlights. Are rise and decay time constants calculated for each event similarly?

      miniML works equally well for current- and voltage events (Figure 5, Figure 9). In general, events of opposite polarity can be analyzed by simply inverting the data. Transfer learning models may further improve the detection.

      For each detected event, independent of data/recording type, rise times are calculated as 10–90% times (baseline–peak), and decay times are calculated as time to 50% of the peak. In addition, event decay time constants are calculated from a fit to the event average. With miniML being open-source, researchers can adapt the calculations of event statistics to their needs, if desired. In the revised manuscript, we have expanded the Methods section that describes the quantification of event statistics (Methods, Quantification).

      (3) The interface and capabilities of miniML appear quite similar to Mini Analysis, the free software that many in the field currently use. While the ability and flexibility for users to adapt and adjust miniML for their own uses/needs using Python programming is a clear potential advantage, can the authors comment, or better yet, demonstrate, whether there is any advantage for researchers to use miniML over Mini Analysis or SimplyFire if they just need the standard analyses?

      Following the reviewer’s suggestion, we developed a graphical user interface (GUI) for miniML to enhance its usability (Figure 2—figure supplement 2), which is provided on the GitHub repository. Our comprehensive benchmark analysis demonstrated that miniML outperforms existing tools such as MiniAnalysis and SimplyFire. The main advantages are (i) increased reliability of results, which eliminates the need for visual inspection; (ii) fast runtime and easy automation; (iii) superior detection performance as demonstrated by higher recall in both synthetic and real data; (iv) open-source Python-based design. We believe that these advantages make miniML a valuable tool for researchers recording various types of synaptic events, offering a more efficient and reliable solution compared to existing methods.

      (4) Additional utilities for miniML: The authors show miniML can quantify miniature electrophysiological events both current and voltage clamp, as well as optical glutamate transients using iGluSnFR. As the authors mention in the discussion, the same approach could, in principle, be used to quantify evoked (EPSC/EPSP) events using electrophysiology, Ca2+ events (using GCaMP), and AP waveforms using voltage indicators like ASAP4. While I don’t think it is reasonable to ask the authors to generate any new experimental data, it would be great to see how miniML performs when analysing data from these approaches, particularly to quantify evoked synaptic events and/or Ca2+ (ideally postsynaptic Ca2+ signals from miniature events, as the Drosophila NMJ have developed nice approaches).

      In the revised manuscript, we have extended the application examples of miniML. We applied miniML to detect mEPSPs recorded with the novel voltage-sensitive indicator ASAP5 (Figure 9 and Figure 9—figure supplement 1). We performed simultaneous recordings of membrane voltage through electrophysiology and ASAP5 voltage imaging in rat cultured neurons at physiological temperature. Data were analyzed using miniML, with electrophysiology data being used as ground-truth for assessing detection performance in imaging data. Our results demonstrate that miniML robustly detects mEPSPs in current-clamp, and can localize corresponding transients in imaging data. Furthermore, we observed that miniML performs better than template matching and deconvolution on ASAP5 imaging data (Figure 9 and Figure 9—figure supplement 2).

      Reviewer 2 (Public Review):

      This paper presents miniML as a supervised method for the detection of spontaneous synaptic events. Recordings of such events are typically of low SNR, where state-of-the-art methods are prone to high false positive rates. Unlike current methods, training miniML requires neither prior knowledge of the kinetics of events nor the tuning of parameters/thresholds.

      The proposed method comprises four convolutional networks, followed by a bi-directional LSTM and a final fully connected layer which outputs a decision event/no event per time window. A sliding window is used when applying miniML to a temporal signal, followed by an additional estimation of events’ time stamps. miniML outperforms current methods for simulated events superimposed on real data (with no events) and presents compelling results for real data across experimental paradigms and species. Strengths:

      The authors present a pipeline for benchmarking based on simulated events superimposed on real data (with no events). Compared to five other state-of-the-art methods, miniML leads to the highest detection rates and is most robust to specific choices of threshold values for fast or slow kinetics. A major strength of miniML is the ability to use it for different datasets. For this purpose, the CNN part of the model is held fixed and the subsequent networks are trained to adapt to the new data. This Transfer Learning (TL) strategy reduces computation time significantly and more importantly, it allows for using a substantially smaller data set (compared to training a full model) which is crucial as training is supervised (i.e. uses labeled examples).

      Weaknesses:

      The authors do not indicate how the specific configuration of miniML was set, i.e. number of CNNs, units, LSTM, etc. Please provide further information regarding these design choices, whether they were based on similar models or if chosen based on performance.

      The data for the benchmark system was augmented with equal amounts of segments with/without events. Data augmentation was undoubtedly crucial for successful training.

      (1) Does a balanced dataset reflect the natural occurrence of events in real data? Could the authors provide more information regarding this matter?

      In a given recording, the event frequency determines the ratio of event-containing vs. nonevent-containing data segments. Whereas many synapses have a skew towards non-events, high event frequencies as observed, e.g., in pyramidal cells or Purkinje neurons, can shift the ratio towards event-containing data.

      For model training, we extracted data segments from mEPSC recordings in cerebellar granule cells, which have a low mEPSC frequency (about 0.2 Hz, Delvendahl et al. 2019). Unbalanced training data may complicate model training (Drummond and Holte 2003; Prati et al. 2009; Tyagi and Mittal 2020). We therefore decided to balance the training dataset for miniML by down-sampling the majority class (i.e., non-event segments), so that the final datasets for model training contained roughly equal amounts of events and non-events.

      (2) Please provide a more detailed description of this process as it would serve users aiming to use this method for other sub-fields.

      We thank the reviewer for raising this point. In the revised manuscript, we present a systematic analysis of the impact of imbalanced training data on model training (Figure 1—figure supplement 2). In addition, we have revised the description of model training and data augmentation in the Methods section (Methods, Training data and annotation).

      The benchmarking pipeline is indeed valuable and the results are compelling. However, the authors do not provide comparative results for miniML for real data (Figures 4-8). TL does not apply to the other methods. In my opinion, presenting the performance of other methods, trained using the smaller dataset would be convincing of the modularity and applicability of the proposed approach.

      Quantitative comparison of synaptic detection methods on real-world data is challenging because the lack of ground-truth data prevents robust, quantitative analyses. Nevertheless, we compared miniML to common template-based and finite-threshold based methods on four different types of synapses. We noted that miniML generally detects more events, whereas other methods are susceptible to false-positives (Figure 4—figure supplement 1). In addition, we analyzed the performance of miniML on voltage imaging data (Figure 9). Simultaneous recordings of electrophysiological and imaging data allowed a quantitative comparison of detection methods in this dataset. Our results demonstrate that miniML provides higher recall for optical minis recorded using ASAP5 (Figure 9 and Figure 9—figure supplement 2; F1 score, Cohen’s d 1.35 vs. template matching and 5.1 vs. deconvolution).

      Impact:

      Accurate detection of synaptic events is crucial for the study of neural function. miniML has a great potential to become a valuable tool for this purpose as it yields highly accurate detection rates, it is robust, and is relatively easily adaptable to different experimental setups.

      Additional comments:

      Line 73: the authors describe miniML as "parameter-free". Indeed, miniML does not require the selection of pulse shape, rise/fall time, or tuning of a threshold value. Still, I would not call it "parameter-free" as there are many parameters to tune, starting with the number of CNNs, and number of units through the parameters of the NNs. A more accurate description would be that as an AI-based method, the parameters of miniML are learned via training rather than tuned by the user.

      We agree that a deep learning model is not parameter-free, and this term may be misleading. We have therefore changed this sentence in the introduction as follows: "The method is fast, robust to threshold choice, and generalizable across diverse data types [...]"

      Line 302: the authors describe miniML as "threshold-independent". The output trace of the model has an extremely high SNR so a threshold of 0.5 typically works. Since a threshold is needed to determine the time stamps of events, I think a better description would be "robust to threshold choice".

      To detect event localizations, a peak search is performed on the model output, which uses a minimum peak height parameter (or threshold). Extreme values for this parameter do indeed have a small impact on detection performance (Figure 3J). We have changed the description in the introduction and discussion according to the reviewer’s suggestion.

      Reviewer 3 (Public Review):

      miniML as a novel supervised deep learning-based method for detecting and analyzing spontaneous synaptic events. The authors demonstrate the advantages of using their methods in comparison with previous approaches. The possibility to train the architecture on different tasks using transfer learning approaches is also an added value of the work. There are some technical aspects that would be worth clarifying in the manuscript:

      (1) LSTM Layer Justification: Please provide a detailed explanation for the inclusion of the LSTM layer in the miniML architecture. What specific benefits does the LSTM layer offer in the context of synaptic event detection?

      Our model design choice was inspired by similar approaches in the literature (Donahue et al. 2017; Islam et al. 2020; Passricha and Aggarwal 2019; Tasdelen and Sen 2021; Wang et al. 2020). Convolutional and recurrent neural networks are often combined for time-series classification problems as they allow learning spatial and temporal features, respectively. Combining the strengths of both network architectures can thus help improve the classification performance. Indeed, a CNN-LSTM architecture proved to be superior in both training accuracy and detection performance (Figure 1—figure supplement 2). Further, this architecture requires fewer free parameters than comparable model designs using fully connected layers instead. The revised manuscript shows a comparison of different model architectures (Figure 1—figure supplement 2), and we added the following description to the text (Methods, Deep learning model architecture):

      "The combination of convolutional and recurrent neural network layers helps to improve the classification performance for time-series data. In particular, LSTM layers allow learning temporal features."

      (2) Temporal Resolution: Can you elaborate on the reasons behind the lower temporal resolution of the output? Understanding whether this is due to specific design choices in the model, data preprocessing, or post-processing will clarify the nature of this limitation and its impact on the analysis.

      When running inference on a continuous recording, we choose to use a sliding window approach with stride. Therefore, the model output has a lower temporal resolution than the raw data, which is determined by the stride length (i.e., how many samples to advance the sliding window). While using a stride is not required, it significantly reduces inference time (cf. Figure 2—figure supplement 1). We recommend a stride of 20 samples, which does not impact the detection of events. Any subsequent quantification of events (amplitude, area, risetimes, etc.) is performed on raw data. Based on the reviewer’s comment, we have adapted the code to resample the prediction trace to the sampling rate of the original data. This maintains temporal precision and avoids confusion.

      The Methods now include the following statement:

      "To maintain temporal precision, the prediction trace is resampled to the sampling frequency of the raw data."

      (3) Architecture optimization: how was the architecture CNN+LSTM optimized in terms of a number of CNN layers and size?

      We performed a Bayesian optimization over a defined range of hyperparameters in combination with empirical hyperparameter tuning. We now describe this in the Methods section as follows:

      "To optimise the model architecture, we performed a Bayesian optimisation of hyperparameters. Hyperparameter ranges were chosen for the free parameters of all layers. Optimisation was then performed with a maximum number of trials of 50. Models were evaluated using the validation dataset. Because higher number of free parameters tended to increase inference times, we then empirically tuned the chosen hyperparameter combination to achieve a trade-off between number of free parameters and accuracy."

      Recommendations For The Authors

      Reviewing Editor (Recommendations For The Authors):

      Overall suggestions to the authors:

      (1) Directly compare miniML with SimplyFire (which was not cited or discussed in the original manuscript), with both idealized and actual data. Discuss the pros/cons of each software.

      We have conducted an extensive comparison between miniML and SimplyFire using both simulated and actual experimental data. This analysis is now presented in the revised Figure 3, Figure 3—figure supplement 1, and Figure 4—figure supplement 1. In addition, we have included relevant citations for SimplyFire in our manuscript. These additions provide a more comprehensive and balanced view of the available tools in the field, positioning our work within the broader context of existing solutions.

      (2) Generate a better user interface akin to MiniAnalysis or SimplyFire.

      We thank the editor and reviewers for the suggestion to improve the user interface. We have created a user-friendly graphical user interface (GUI) for miniML that is available on our GitHub repository. This GUI is now showcased in Figure 2—figure supplement 2 of the manuscript. The new interface allows users to load and analyze data through an intuitive point-and-click system, visualize results in real-time, and adjust parameters easily without coding knowledge. We have incorporated user feedback to refine the interface and improve user experience. These improvements significantly enhance the accessibility of miniML, making it more user-friendly for researchers with varying levels of programming expertise.

      Reviewer 1 (Recommendations For The Authors):

      Related to point (1) of the Public Review, we have taken the liberty to compare electrophysiological data using miniAnalysis, SimiplyFire, and miniML. In our comparison, we note the following in our experience:

      (1.1) In contrast to both SimplyFire and miniAnalysis, miniML does not currently have a user-friendly interface where the user can directly control or change the parameters of interest, nor does miniML have a user control center, so the user cannot simply type or select the mini manually. Rather, if any parameter needs to be changed, the user needs to read, understand, and change the original source code to generate the preferred change. This level of "activation energy" and required user coding expertise in computer science, which many researchers do not have, renders miniML much less accessible when directly compared to SimplyFire and miniAnalysis. Hence, unless miniML’s interface can be made more user-friendly, this is a major disadvantage, especially when compared to SimplyFire, which has many of the same features as miniML but with a much easier interface and user controls.

      As suggested by the reviewer, we have created a graphical user interface (GUI) for miniML. The GUI allows easy data loading, filtering, analysis, event inspection, and saving of results without the need for writing Python code. Figure 2—figure supplement 2 illustrates the typical workflow for event analysis with miniML using the GUI and a screenshot of the user interface. Code to use miniML via the GUI is now included in the project’s GitHub repository. The GUI provides a simple and intuitive way to analyze synaptic events, whereas running miniML as Python script allows for more customization and a high degree of automatization.

      (1.2) We compared electrophysiological miniature events between miniML, SimplyFire, and miniAnalysis. All three achieved similar mean amplitudes in "wild type" conditions, and conditions in which mini events were enhanced and diminished, so the overall means and utilities are similar, with miniML and SimplyFire being preferred given the flexibility and much faster analysis. We did note a few differences, however. SimplyFire tends to capture a high number of mini-events over miniML, especially in conditions of diminished mini amplitude (e.g., miniML found 76 events, while SimplyFire 587). The mean amplitudes, however, were similar. It seems that in data with low SNR, SimplyFire captures many more events as real minis that are probably noise, while miniML is more selective, which might be an advantage in miniML. That being said, we found SimplyFire to be superior in many respects, not least of which the user interface and experience.

      We appreciate the reviewer’s thorough comparison of miniML, SimplyFire, and MiniAnalysis. While we acknowledge SimplyFire’s user-friendly interface, our study highlights several advantages of AI-based event analysis over conventional algorithmic approaches. Our updated benchmark analysis revealed better detection performance of miniML compared with SimplyFire (revised Figure 3), which had similar performance to deconvolution. As already noted by the reviewer, high false positive rates are a major issue of the SimplyFire approach. Although a minimum amplitude cutoff can partially resolve this problem, detection performance is highly sensitive to threshold setting (revised Figure 3). Another apparent disadvantage of SimplyFire is its relatively slow runtime (Figure 3—figure supplement 1). Finally, we have enhanced miniML’s accessibility by providing a graphical user interface that is easy to use and provides additional functionality.

      Some technical comments:

      (1) Improvements to the dependence version of miniML: There is a need to clarify the dependence version of the python and tensor flow used in this study and in the GitHub. We used Python version 3.8.19 to load the miniML model. However, if Python versions >=3.9, as described on the GitHub provided, it is difficult to have a matched h5py version installed. It is also inaccurate to say using Python >=3.9, because tensor flow version for this framework needs to be around 2.13. However, if using Python >=3.10, it will only allow 2.16 version tensor flow to be the download choice. Therefore, as a Python framework, the dependency version needs to be specified on GitHub to allow researchers to access the model using the entire work.

      Thank you for highlighting this issue. We have now included specific version numbers in the requirements to avoid version conflicts and to ensure proper functioning of the code.

      (2) Due to the intrinsic characteristics of the trained model, every model is only suitable for analyzing data with similar attributes. It is hard for researchers without a strong computer science background to train a new model themselves for their specific data. Therefore, it would be preferred if there were more available transfer learning models on GitHub accessible for researchers to adapt to their data.

      We would like to thank the reviewer for this feedback. Trained models (such as the default model) can often be used on different data (see, e.g., Figure 4, where data from four distinct synaptic preparations were analyzed with the base model, and Figure 5—figure supplement 1). However, changes in event waveform and/or noise characteristics may necessitate transfer learning to obtain optimal results with miniML. We have revised the description and tutorial for model training on the project’s GitHub repository to provide more guidance in this process. In addition, we now provide a tutorial on how to use existing models on out-of-sample data with distinct kinetics, using resampling. We hope these updates to the miniML GitHub repository will facilitate the use of the method.

      Following the suggestion by the reviewer, we have provided the transfer learning models used for the manuscript on the project’s GitHub repository to increase the number of available machine learning models for event detection. In addition, users of miniML are encouraged to supply their custom models. We hope that this will facilitate model exchange between laboratories in the future.

      Reviewer 3:

      I congratulate all authors for the convincing demonstration of their methodology, I do not have additional recommendations.

      We would like to thank the reviewer for the positive assessment of our manuscript.

      References

      Delvendahl, I., Kita, K., & Müller, M. (2019). Rapid and sustained homeostatic control of presynaptic exocytosis at a central synapse. Proceedings of the National Academy of Sciences, 116(47), 23783–23789. https://doi.org/10.1073/pnas.1909675116

      Donahue, J., Hendricks, L. A., Rohrbach, M., Venugopalan, S., Guadarrama, S., Saenko, K., & Darrell, T. (2017). Long-term recurrent convolutional networks for visual recognition and description. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 677–691. https://doi.org/10.1109/tpami.2016.2599174

      Drummond, C., & Holte, R. C. (2003). C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling. https: //api.semanticscholar.org/CorpusID:204083391

      Islam, M. Z., Islam, M. M., & Asraf, A. (2020). A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using x-ray images. Informatics in Medicine Unlocked, 20, 100412. https://doi.org/10.1016/j.imu.2020.100412

      Passricha, V., & Aggarwal, R. K. (2019). A hybrid of deep CNN and bidirectional LSTM for automatic speech recognition. Journal of Intelligent Systems, 29(1), 1261–1274. https://doi.org/10.1515/jisys-2018-0372

      Prati, R. C., Batista, G. E. A. P. A., & Monard, M. C. (2009). Data mining with imbalanced class distributions: Concepts and methods. Indian International Conference on Artificial Intelligence. https://api.semanticscholar.org/CorpusID:16651273

      Tasdelen, A., & Sen, B. (2021). A hybrid CNN-LSTM model for pre-miRNA classification. Scientific Reports, 11(1). https://doi.org/10. 1038/s41598-021-93656-0

      Tyagi, S., & Mittal, S. (2020). Sampling approaches for imbalanced data classification problem in machine learning. In P. K. Singh, A. K. Kar, Y. Singh, M. H. Kolekar, & S. Tanwar (Eds.), Proceedings of icric 2019 (pp. 209–221). Springer International Publishing.

      Wang, H., Zhao, J., Li, J., Tian, L., Tu, P., Cao, T., An, Y., Wang, K., & Li, S. (2020). Wearable sensor-based human activity recognition using hybrid deep learning techniques. Security and Communication Networks, 2020, 1–12. https://doi.org/10.1155/2020/ 2132138

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This is a new and important system that can efficiently train mice to perform a variety of cognitive tasks in a flexible manner. It is innovative and opens the door to important experiments in the neurobiology of learning and memory.

      Strengths:

      Strengths include: high n's, a robust system, task flexibility, comparison of manual-like training vs constant training, circadian analysis, comparison of varying cue types, long-term measurement, and machine teaching.

      Weaknesses:

      I find no major problems with this report.

      (1) Line 219: Water consumption per day remained the same, but number of trails triggered was more as training continued. First, is this related to manual-type training? Also, I'm trying to understand this result quantitatively, since it seems counter-intuitive: I would assume that with more trials, more water would be consumed since accuracy should go up over training (so more water per average trial). Am I understanding this right? Can the authors give more detail or understanding to how more trials can be triggered but no more water is consumed despite training?

      Thanks for the thoughtful comment. We would like to clarify the phenomenon described in Line 219: As the training advanced, the number of trials triggered by mice per day decreased (rather than increased as you mentioned in the comment) gradually for both manual and autonomous groups of mice (Fig. 2H left). The performance as you mentioned, improved over time, leading to an increased probability of obtaining water and thus relatively stable daily water intake (Fig. 2H left). We believe the stable daily intake is the minimum amount of water required by the mice under circumstance of autonomous behavioral training.

      (2) Figure 2J: The X-axis should have some label: at least "training type". Ideally, a legend with colors can be included, although I see the colors elsewhere in the figure. If a legend cannot be added, then the color scheme should be explained in the caption.

      (3) Figure 2K: What is the purple line? I encourage a legend here. The same legend could apply to 2J.

      (4) Supplementary Figure S2 D: I do not think the phrase "relying on" is correct. Instead, I think "predicted by" or "correlating with" might be better.

      We thank the reviewer for the valuable suggestion. We will address all these points and make the necessary revisions in the next version of our manuscript.

      Reviewer #2 (Public review):

      Summary:

      The manuscript by Yu et al. describes a novel approach for collecting complex and different cognitive phenotypes in individually housed mice in their home cage. The authors report a simple yet elegant design that they developed for assessing a variety of complex and novel behavioral paradigms autonomously in mice.

      Strengths:

      The data are strong, the arguments are convincing, and I think the manuscript will be highly cited given the complexity of behavioral phenotypes one can collect using this relatively inexpensive ($100/box) and high throughput procedure (without the need for human interaction). Additionally, the authors include a machine learning algorithm to correct for erroneous strategies that mice develop which is incredibly elegant and important for this approach as mice will develop odd strategies when given complete freedom.

      Weaknesses:

      (1) A limitation of this approach is that it requires mice to be individually housed for days to months. This should be discussed in depth.

      Thank you for raising this important point. We agree that the requirement for individual housing of mice during the training period is a limitation of our approach, and we appreciate the opportunity to discuss this in more depth. In the revised manuscript, we will add a dedicated section to the Discussion to address this limitation, including the potential impact of individual housing on the mice, the rationale for individual housing in our study, and efforts or alternatives made to mitigate the effects of individual housing.

      (2) A major issue with continuous self-paced tasks such as the autonomous d2AFC used by the authors is that the inter-trial intervals can vary significantly. Mice may do a few trials, lose interest, and disengage from the task for several hours. This is problematic for data analysis that relies on trial duration to be similar between trials (e.g., reinforcement learning algorithms). It would be useful to see the task engagement of the mice across a 24-hour cycle (e.g., trials started, trials finished across a 24-hour period) and approaches for overcoming this issue of varying inter-trial intervals.

      Thank you for your insightful comment regarding the variability in inter-trial intervals and its potential impact on data analysis. We agree that this is an important consideration for continuous self-paced tasks like the autonomous d2AFC paradigm used in our study. In the original manuscript, we have showed the general task engagement across 24-hour cycle (Fig. 2K). The distribution of inter-trial interval was also illustrated (Fig. S3H), which actually shows that most of trials have short intervals (though with extreme long ones). We will include more detailed analysis and discuss the challenges for data analysis.

      Regarding the approaches to mitigate the issue of varying inter-trial interval, we will also discuss strategies to account for and mitigate the effects, including: trial selection, incorporating engagement period (e.g., open only during a fixed 2-hour period each day), etc.

      (3) Movies - it would be beneficial for the authors to add commentary to the video (hit, miss trials). It was interesting watching the mice but not clear whether they were doing the task correctly or not.

      Thanks for the reminder. We will add subtitles to the videos in the next version.

      (4) The strength of this paper (from my perspective) is the potential utility it has for other investigators trying to get mice to do behavioral tasks. However, not enough information was provided about the construction of the boxes, interface, and code for running the boxes. If the authors are not willing to provide this information through eLife, GitHub, or their own website then my evaluation of the impact and significance of this paper would go down significantly.

      Thanks for this important comment. We would like to clarify that the construction methods, GUI, code for our system, PCB and CAD files (newly uploaded) have already been made publicly available on https://github.com/Yaoyao-Hao/HABITS. Additionally, we have open-sourced all the codes and raw data for all training protocols (https://doi.org/10.6084/m9.figshare.27192897). We will continue to maintain these resources in the future.

      Minor concerns:

      Learning rate is confusing for Figure 3 results as it actually refers to trials to reach the criterion, and not the actual rate of learning (e.g., slope).

      Thanks for pointing this out. We will make the revision in the next version.

      Reviewer #3 (Public review):

      Summary:

      In this set of experiments, the authors describe a novel research tool for studying complex cognitive tasks in mice, the HABITS automated training apparatus, and a novel "machine teaching" approach they use to accelerate training by algorithmically providing trials to animals that provide the most information about the current rule state for a given task.

      Strengths:

      There is much to be celebrated in an inexpensively constructed, replicable training environment that can be used with mice, which have rapidly become the model species of choice for understanding the roles of distinct circuits and genetic factors in cognition. Lingering challenges in developing and testing cognitive tasks in mice remain, however, and these are often chalked up to cognitive limitations in the species. The authors' findings, however, suggest that instead, we may need to work creatively to meet mice where they live. In some cases, it may be that mice may require durations of training far longer than laboratories are able to invest with manual training (up to over 100k trials, over months of daily testing) but the tasks are achievable. The "machine teaching" approach further suggests that this duration could be substantially reduced by algorithmically optimizing each trial presented during training to maximize learning.

      Weaknesses:

      (1) Cognitive training and testing in rodent models fill a number of roles. Sometimes, investigators are interested in within-subjects questions - querying a specific circuit, genetically defined neuron population, or molecule/drug candidate, by interrogating or manipulating its function in a highly trained animal. In this scenario, a cohort of highly trained animals that have been trained via a method that aims to make their behavior as similar as possible is a strength.

      However, often investigators are interested in between-subjects questions - querying a source of individual differences that can have long-term and/or developmental impacts, such as sex differences or gene variants. This is likely to often be the case in mouse models especially, because of their genetic tractability. In scenarios where investigators have examined cognitive processes between subjects in mice who vary across these sources of individual difference, the process of learning a task has been repeatedly shown to be different. The authors do not appear to have considered individual differences except perhaps as an obstacle to be overcome.

      The authors have perhaps shown that their main focus is highly-controlled within-subjects questions, as their dataset is almost exclusively made up of several hundred young adult male mice, with the exception of 6 females in a supplemental figure. It is notable that these female mice do appear to learn the two-alternative forced-choice task somewhat more rapidly than the males in their cohort.

      Thank you for your insightful comments and for highlighting the importance of considering both within-subject and between-subject questions in cognitive training and testing in rodent models.

      We acknowledge that our study primarily focused on highly controlled within-subject questions. However, the datasets we provided have showed some evidences for the ‘between-subject’ questions. For example, the large variability in learning rates among mice observed in Fig. 2I, the overall learning rate difference between male and female subjects (Fig. 2D vs. Fig. S2G, as the reviewer already mentioned), the varying nocturnal behavioral patterns (Fig. 2K), etc. While our primary focus was on highly controlled within-subjects questions, we recognize the value of exploring between-subjects differences. In the revised version, we will discuss these points more systematically.

      (2) Considering the implications for mice modeling relevant genetic variants, it is unclear to what extent the training protocols and especially the algorithmic machine teaching approach would be able to inform investigators about the differences between their groups during training. For investigators examining genetic models, it is unclear whether this extensive training experience would mitigate the ability to observe cognitive differences, or select the animals best able to overcome them - eliminating the animals of interest. Likewise, the algorithmic approach aims to mitigate features of training such as side biases, but it is worth noting that the strategic uses of side biases in mice, as in primates, can benefit learning, rather than side biases solely being a problem. However, the investigators may be able to highlight variables selected by the algorithm that are associated with individual strategies in performing their tasks, and this would be a significant contribution.

      Thank you for the insightful comments. We acknowledge that the extensive training experience, particularly through the algorithmic machine teaching approach, could potentially influence the ability to observe cognitive differences between groups of mice with relevant genetic variants. However, our study design and findings suggest that this approach can still provide valuable insights into individual differences and strategies used by the animals during training. First, the behavioral readout (including learning rate, engagement pattern, etc.) as mentioned above, could tell certain number of differences among mice. Second, detailed modelling analysis (with logistical regression modelling) could further dissect the strategy that mouse use along the training process (Fig. S2B). We have actually highlighted some variables selected by the regression that are associated with individual strategies in performing their tasks (Fig. S2C) and these strategies could be different between manual and autonomous training groups (Fig. S2D). We will discuss these points more in the next version of the manuscript.

      (3) A final, intriguing finding in this manuscript is that animal self-paced training led to much slower learning than "manual" training, by having the experimenter introduce the animal to the apparatus for a few hours each day. Manual training resulted in significantly faster learning, in almost half the number of trials on average, and with significantly fewer omitted trials. This finding does not necessarily argue that manual training is universally a better choice because it leads to more limited water consumption. However, it suggests that there is a distinct contribution of experimenter interactions and/or switching contexts in cognitive training, for example by activating an "occasion setting" process to accelerate learning for a distinct period of time. Limiting experimenter interactions with mice may be a labor-saving intervention, but may not necessarily improve performance. This could be an interesting topic of future investigation, of relevance to understanding how animals of all species learn.

      Thank you for your insightful comments. We agree that the finding that manual training led to significantly faster learning compared to self-paced training is both intriguing and important. One of the possible reasons we think is due to the limited duration of engagement provided by the experimenter in the manual training case, which forced the mice to concentrate more on the trails (thus with fewer omitting trials) than in autonomous training. Your suggestion that experimenter interactions might activate an "occasion setting" process is particularly interesting. In the context of our study, we could actually introduce, for example, a light, serving as the cue that prompt the animals to engage; and when the light is off, the engagement was not accessible any more for the mice to simulate the manual training situation. We agree that this could be an interesting topic for future investigation that might create a more conducive environment for learning, thereby accelerating the learning rate.

    1. Author response:

      Reviewer #1:

      Summary:

      The authors aim to predict ecological suitability for the transmission of highly pathogenic avian influenza (HPAI) using ecological niche models. This class of models identify correlations between the locations of species or disease detections and the environment. These correlations are then used to predict habitat suitability (in this work, ecological suitability for disease transmission) in locations where surveillance of the species or disease has not been conducted. The authors fit separate models for HPAI detections in wild birds and farmed birds, for two strains of HPAI (H5N1 and H5Nx) and for two time periods, pre- and post-2020. The authors also validate models fitted to disease occurrence data from pre-2020 using post-2020 occurrence data.

      Strengths:

      The authors follow the established methods of Dhingra et al., 2016 to provide an updated spatial assessment of HPAI transmission suitability for two time periods, pre- and post-2020. They explore further methods of model cross-validation and consider the diversity of the bird species that HPAI has been detected in.

      Weaknesses:

      The precise ecological niche that the authors are modelling here is ambiguous: if we treat the transmission of HPAI in the wild bird population and in poultry populations as separate transmission cycles, linked by spillover events, then these transmission cycles are likely to have fundamentally different ecological niches.

      We apologise if this aspect was not clear enough in the previous version of our manuscript but our analyses do not treat or make the assumption of distinct transmission cycles between wild and domestic bird species; those transmission cycles being indeed interconnected by frequent spillover events. Yet, we indeed conduct independent ecological niche modelling analyses to estimate both the ecological suitability for the risk of local circulation in domestic birds as well as the ecological suitability for the risk of local circulation in wild birds. This distinction does not imply that the virus circulates exclusively within one of these populations but rather allows us to identify potential differences in the environmental conditions associated with virus occurrences in each context.

      Our results indicate that these two ecological niche models capture distinct environmental patterns. Virus occurrences in wild birds were primarily associated with factors such as open water and proximity to urban areas, while occurrences in domestic birds were more strongly linked to variables like poultry density and cultivated vegetation. This finding supports the existence of two distinct ecological niches for the virus, corresponding to virus circulation in wild and domestic bird populations. We thank the Reviewer for their feedback and we will take this opportunity to further clarify this aspect in the text.

      While an "index case" in farmed poultry is relevant to the wildlife transmission cycle, further within-farm and farm-to-farm transmission is likely to be contingent on anthropogenic factors, rather than the environment. Similarly, we would expect "index cases" in outbreaks of HPAI in mammals to be relevant to transmission risk in wild birds - this data is not included in this manuscript. Such "index cases" in farmed poultry occur under separate ecological conditions to subsequent transmission in farmed poultry, so should be separated if possible. Some careful editing of the language used in the manuscript may elucidate some of my questions related to model conceptualisation.

      We agree, but index cases are particularly difficult to separate from secondary spread in the absence of field investigation. Identification of index cases based on space-time filtering have been previously investigated but are strongly dependent on the quality of the surveillance, i.e. an “apparent” primary case can be a secondary case of previously undetected ones, and constant surveillance quality cannot be assumed to be homogeneous across countries. Our ecological niche modelling approach is based on HPAI cases reported in the EMPRES-i database, which includes all documented outbreaks without distinguishing primary introductions from subsequent farm-to-farm transmissions. Thus, our ecological niche models are trained on confirmed cases that result from a combination of different transmission dynamics, including introduction events in poultry populations (which can be impacted by ecological factors) and persistence within and between poultry populations (which can be impacted by anthropogenic factors).

      For clarity, we will revise the manuscript to clarify that, while our study primarily aims to assess the environmental suitability for HPAI occurrences, the dataset does not exclude cases resulting from farm-to-farm spread. This means that our models can capture the environmental variables associated with the risk of cases associated with both primary introductions (e.g., spillover from wild birds) and secondary transmission events within poultry systems, although the latter is also influenced by anthropogenic factors such as biosecurity practices and poultry trade networks. These latter factors are not included in our models, which will be highlighted in the limitations (Discussion section) of the revised manuscript.

      In addition, we note the Reviewer's comment regarding the relevance of “index cases” in mammalian outbreaks to understanding the risk of HPAI transmission in wild birds. Although these data are not included in our current study, we will highlight the potential value of incorporating these cases into future models in order to refine risk predictions, provided that they can be identified with some reasonable level of certainty.

      The authors' handling of sampling bias in disease detection data in poultry is possibly inappropriate: one would expect the true spatial distribution of disease surveillance in poultry to be more closely correlated with poultry farming density, in contrast to human population density. This shortcoming in the modelling workflow possibly dilutes a key finding of the Results, that the transmission risk of HPAI in poultry is greatest in areas where poultry farming density is high.

      The Reviewer raises a valid point that poultry surveillance efforts can also be considered as correlated with poultry farm density than with human population density. While human population density can serve as a reasonable proxy for surveillance intensity — given that disease detection is often more active in areas with stronger veterinary notification systems — we acknowledge that poultry disease surveillance can also be influenced by the spatial distribution of poultry farms, as high-density poultry areas could be prioritised for monitoring. Please note that in our study, we followed a previously established approach (Dhingra et al. 2016) and weighted pseudo-absence sampling based on human population density to account for general surveillance biases. However, we do not agree with the Reviewer’s point. In fact, assuming a sampling bias correlated with poultry density would result in reducing its effect as a risk factor. The current approach does not.

      Reviewer #2:

      Summary:

      This study aimed to determine which spatial factors (conceived broadly as environmental, agronomic and socio-economic) explain greater avian influenza case numbers reported since 2020 (2020--2022) by comparing similar models built with data from the period 2015--2020. The authors have chosen an environmental niche modelling approach, where detected infections are modelled as a function of spatial covariates extracted at the location of each case. These covariates are available over the entire world so that the predictions can be projected back to space in the form of a continuous map.

      Strengths:

      The authors use boosted regression trees as the main analytical tool, which always feature among the best-performing models for environmental niche models (also known as habitat suitability models). They run replicate sets of the analysis for each of their model targets (wild/domestic x pathogen variant), which can help produce stable predictions. The authors take steps to ameliorate some forms of expected bias in the detection of cases, such as geographic variation in surveillance efforts, and in general more detections near areas of higher human population density.

      Weaknesses:

      The study is not altogether coherent with respect to time. Data sets for the response (N5H1 or N5Hx case data in domestic or wild birds) are divided into two periods; 2015-2020, and 2020-2022. Each set is modelled using a common suite of covariates that are not time-varying. That suggests that causation is inferred by virtue of cases being in different geographic areas in those two time periods. Furthermore, important predictors such as chicken density appear to be informed (in the areas of high risk) from census data from before 2010. The possibility for increased surveillance effort *through time* is overlooked, as is the possibility that previously high-burden locations may implement practice changes to reduce vulnerability.

      We acknowledge the Reviewer's comments regarding the consistency of time periods in our study. Our approach is to divide the HPAI case data into two time periods (2015-2020 and 2020-2022) and ecological niche models using a common set of covariates that do not explicitly account for temporal variation. We will further clarify these aspects in the revised version of our manuscript:

      (1) Our primary objective is to assess changes in ecological suitability over time rather than infer direct causation. By comparing models trained on pre-2020 data with post-2020 occurrences, we evaluate whether pre-2020 environmental conditions can predict recent HPAI suitability. However, we acknowledge that this does not capture dynamic changes in surveillance efforts, biosecurity measures, or host-pathogen interactions over time.

      (2) Regarding predictor variables, we used poultry density data from 2015, rather than pre-2010 data. However, this dataset is not based on a single census year; instead, it represents a median estimate derived from subnational poultry census data collected between 2000 and 2019. This median year approach provides a more stable representation of poultry density than any single-year snapshot. Furthermore, while poultry production systems may exhibit some temporal variation, these changes are generally minor compared to the inter-annual variability observed in HPAI occurrence, which is largely driven by epidemic dynamics. Given the current limitations of global poultry data, distinguishing distributions from different years is not feasible with the available GLW dataset. We will clarify these points in the manuscript.

      (3) We recognise that increased surveillance efforts and adaptive changes in poultry farming practices could influence the observed HPAI case distribution. While our current models do not incorporate time-varying surveillance intensity or biosecurity policies, we will address this limitation in the Discussion section and suggest that future work integrates dynamic surveillance data to improve risk assessments.

    1. Author response:

      Reviewer #1 (Public review):

      Wang et al. investigated how sexual failure influences sweet taste perception in male Drosophila. The study revealed that courtship failure leads to decreased sweet sensitivity and feeding behavior via dopaminergic signaling. Specifically, the authors identified a group of dopaminergic neurons projecting to the suboesophageal zone that interacts with sweet-sensing Gr5a+ neurons. These dopaminergic neurons positively regulate the sweet sensitivity of Gr5a+ neurons via DopR1 and Dop2R receptors. Sexual failure diminishes the activity of these dopaminergic neurons, leading to reduced sweet-taste sensitivity and sugar-feeding behavior in male flies. These findings highlight the role of dopaminergic neurons in integrating reproductive experiences to modulate appetitive sensory responses.

      Previous studies have explored the dopaminergic-to-Gr5a+ neuronal pathways in regulating sugar feeding under hunger conditions. Starvation has been shown to increase dopamine release from a subset of TH-GAL4 labeled neurons, known as TH-VUM, in the suboesophageal zone. This enhanced dopamine release activates dopamine receptors in Gr5a+ neurons, heightening their sensitivity to sugar and promoting sucrose acceptance in flies. Since the function of the dopaminergic-to-Gr5a+ circuit motif has been well established, the primary contribution of Wang et al. is to show that mating failure in male flies can also engage this circuit to modulate sugar-feeding behavior. This contribution is valuable because it highlights the role of dopaminergic neurons in integrating diverse internal state signals to inform behavioral decisions.

      An intriguing discrepancy between Wang et al. and earlier studies lies in the involvement of dopamine receptors in Gr5a+ neurons. Prior research has shown that Dop2R and DopEcR, but not DopR1, mediate starvation-induced enhancement of sugar sensitivity in Gr5a+ neurons. In contrast, Wang et al. found that DopR1 and Dop2R, but not DopEcR, are involved in the sexual failure-induced decrease in sugar sensitivity in these neurons. I wish the authors had further explored or discussed this discrepancy, as it is unclear how dopamine release selectively engages different receptors to modulate neuronal sensitivity in a context-dependent manner.

      Our immunostaining experiments showed that three dopamine receptors, DopR1, Dop2R, and DopEcR were expressed in Gr5a<sup>+</sup> neurons in the proboscis, which was consistent with previous findings by using RT-PCR (Inagaki et al 2012). As the reviewer pointed out, we found that DopR1 and Dop2R were required for courtship failure-induced suppression of sugar sensitivity, whereas Marella et al 2012 and Inagaki et al 2012 found that Dop2R and DopEcR were required for starvation-induced enhancement of sugar sensitivity. These results may suggest different internal states (courtship failure vs. starvation) modulate peripheral sensory system via different signaling pathways (e.g. different subsets of dopaminergic neurons; different dopamine release mechanisms; and different dopamine receptors). We will further discuss these possibilities in the revised manuscript.

      The data presented by Wang et al. are solid and effectively support their conclusions. However, certain aspects of their experimental design, data analysis, and interpretation warrant further review, as outlined below.

      (1) The authors did not explicitly indicate the feeding status of the flies, but it appears they were not starved. However, the naive and satisfied flies in this study displayed high feeding and PER baselines, similar to those observed in starved flies in other studies. This raises the concern that sexually failed flies may have consumed additional food during the 4.5-hour conditioning period, potentially lowering their baseline hunger levels and subsequently reducing PER responses. This alternative explanation is worth considering, as an earlier study demonstrated that sexually deprived males consumed more alcohol, and both alcohol and food are known rewards for flies. To address this concern, the authors could remove food during the conditioning phase to rule out its influence on the results.

      We think this is a valid concern. We will conduct courtship conditioning in the absence of food and test if courtship failure can still suppress sugar sensitivity in the revised manuscript.

      (2) Figure 1B reveals that approximately half of the males in the Failed group did not consume sucrose yet Figure 1-S1A suggests that the total volume consumed remained unchanged. Were the flies that did not consume sucrose omitted from the dataset presented in Figure 1-S1A? If so, does this imply that only half of the male flies experience sexual failure, or that sexual failure affects only half of males while the others remain unaffected? The authors should clarify this point.

      Here is a brief clarification of our experimental design and we will further clarify the details in the revised manuscript:

      After the behavioral conditioning, male flies were divided for two assays. On the one hand, we quantified PER responses of individual flies. As shown in Figure 1C, Failed males exhibited decreased sweet sensitivity (as demonstrated by the right shift of the response curve).

      On the other hand, we sought to quantify food consumption of individual flies by using the MAFE assay (Qi et al 2005). When presented with 400 mM sucrose, approximately 100% of the flies in the Naïve and Satisfied groups, and 50% of the flies in the Failed group, extended their proboscis and started feeding (Figure 1B). For these flies, we could quantify the consumed volumes and found there was no change (Figure 1, S1A). We should also note the consistency of these two experiments, e.g. in Figure 1C, only 50-60% of Failed males responded to 400 mM stimulation.  

      These two experiments in combination suggest that sexual failure suppressed sweet sensitivity of the Failed males. Meanwhile, as long as they still initiated feeding, the volume of food consumption remained unchanged. These results led us to focus on the modulatory effect of sexual failure on the sensory system, the main topic of this present study.

      In addition, to further clarify the potential misunderstanding, we plan to examine food consumption by using 800 mM sucrose in the revised manuscript. As shown in Figure 1C, 800 mM sucrose was adequate to induce feeding in ~100% of the flies.

      (3) The evidence linking TH-GAL4 labeled dopaminergic neurons to reduced sugar sensitivity in Gr5a+ neurons in sexually failed males could be further strengthened. Ideally, the authors would have activated TH-GAL4 neurons and observed whether this restored GCaMP responses in Gr5a+ neurons in sexually failed males. Instead, the authors performed a less direct experiment, shown in Figures 3-S1C and D. The manuscript does not describe the condition of the flies used in this experiment, but it appears that they were not sexually conditioned. I have two concerns with this experiment. First, no statistical analysis was provided to support the enhancement of sucrose responses following activation of TH-GAL4 neurons. Second, without performing this experiment in sexually failed males, the authors lack direct evidence to confirm that the dampened response of Gr5a+ neurons to sucrose results from decreased activity in TH-GAL4 neurons.

      We think this is also a valid suggestion. We will directly examine whether activating TH<sup>+</sup> neurons in sexually conditioned males would enhance sugar responses of Gr5a<sup>+</sup> neurons in sexually failed males. We will also add in statistical analysis.

      Nevertheless, we would still argue our current experiments using Naive males (Figure 3, S1C-D) are adequate to show a functional link between TH<sup>+</sup> neurons and Gr5a<sup>+</sup> neurons. Combining with the results that these neurons form active synapses (Figure 3, S1B) and that the activity of TH<sup>+</sup> neurons was dampened in sexually failed males (Figure 3G-I), our current data support the notion that sexual failure suppresses sweet sensitivity via TH-Gr5a circuity.

      (4) The statistical methods used in this study are poorly described, making it unclear which method was used for each experiment. I suggest that the authors include a clear description of the statistical methods used for each experiment in the figure legends. Furthermore, as I have pointed out, there is a lack of statistical comparisons in Figures 3-S1C and D, a similar problem exists for Figures 6E and F.

      We will add detailed information of statistical analysis in each figure legend.

      (5) The experiments in Figure 5 lack specificity. The target neurons in this study are Gr5a+ neurons, which are directly involved in sugar sensing. However, the authors used the less specific Dop1R1- and Dop2R-GAL4 lines for their manipulations. Using Gr5a-GAL4 to specifically target Gr5a+ neurons would provide greater precision and ensure that the observed effects are directly attributable to the modulation of Gr5a+ neurons, rather than being influenced by potential off-target effects from other neuronal populations expressing these dopamine receptors.

      We agree with the reviewer that manipulating Dop1R1 and Dop2R genes (Figure 4) and the neurons expressing them (Figure 5) might have broader impacts. In fact, we have also tested the role of Dop1R1 and Dop2R in Gr5a<sup>+</sup> neurons by RNAi experiments (Figure 6). As shown by both behavioral and calcium imaging experiments, knocking down Dop1R1 and Dop2R in Gr5a<sup>+</sup> neurons both eliminated the effect of sexual failure to dampen sweet sensitivity, further confirming the role of these two receptors in Gr5a<sup>+</sup> neurons.

      (6) I found the results presented in Fig. 6F puzzling. The knockdown of Dop2R in Gr5a+ neurons would be expected to decrease sucrose responses in naive and satisfied flies, given the role of Dop2R in enhancing sweet sensitivity. However, the figure shows an apparent increase in responses across all three groups, which contradicts this expectation. The authors may want to provide an explanation for this unexpected result.

      We agree that there might be some potential discrepancies. However, our current data are not adequate for the clarification given the experiments shown in Figure 6E-F and the apparent control (Figure 3C) were not conducted under identical settings at the same (that’s why we did not directly compare these results). One way to address the issues is to conduct these calcium imaging experiments again with a head-to-head comparison with the control group (Gr5a-GCaMP, +/- Dop1R1 and Dop2R RNAi). We will conduct the experiments and present the data in the revised manuscript.

      (7) In several instances in the manuscript, the authors described the effects of silencing dopamine signaling pathways or knocking down dopamine receptors in Gr5a neurons with phrases such as 'no longer exhibited reduced sweet sensitivity' (e.g., L269 and L288), 'prevent the reduction of sweet sensitivity' (e.g., L292), or 'this suppression was reversed' (e.g. L299). I found these descriptions misleading, as they suggest that sweet sensitivity in naive and satisfied groups remains normal while the reduction in failed flies is specifically prevented or reversed. However, this is not the case. The data indicate that these manipulations result in an overall decrease in sweet sensitivity across all groups, such that a further reduction in failed flies is not observed. I recommend revising these descriptions to accurately reflect the observed phenotypes and avoid any confusion regarding the effects of these manipulations.

      We will change our expressions in the revised manuscript. In brief, we think that these manipulations (suppressing Dop1R1<sup>+</sup> and Dop2R<sup>+</sup> neurons) have two consequences: suppressing the overall sweet sensitivity and eliminating the effect of sexual failure.

      Reviewer #2 (Public review):

      Summary:

      The authors exposed naïve male flies to different groups of females, either mated or virgin. Male flies can successfully copulate with virgin females; however, they are rejected by mated females. This rejection reduces sugar preference and sensitivity in males. Investigating the underlying neural circuits, the authors show that dopamine signaling onto GR5a sensory neurons is required for reduced sugar preference. GR5a sensory neurons respond less to sugar exposure when they lack dopamine receptors.

      Strengths:

      The findings add another strong phenotype to the existing dataset about brain-wide neuromodulatory effects of mating. The authors use several state-of-the-art methods, such as activity-dependent GRASP to decipher the underlying neural circuitry. They further perform rigorous behavioral tests and provide convincing evidence for the local labellar circuit.

      Weaknesses:

      The authors focus on the circuit connection between dopamine and gustatory sensory neurons in the male SEZ. Therefore, it is still unknown how mating modulates dopamine signaling and what possible implications on other behaviors might result from a reduced sugar preference.

      We agree with the reviewer that in the current study, we did not examine how mating experience suppressed the activity of dopaminergic neurons in the SEZ. The current study mainly focused on the behavioral characterization (sexual failure suppresses sweet sensitivity) and the downstream mechanism (TH-Gr5a pathway). We think that examining the upstream modulatory mechanism may be more suitable for a separate future study.

      We believe that a sustained reduction in sweet sensitivity (not limited to sucrose but extend to other sweet compounds, Figure 1, S1B-C) upon sexual failure suggests a generalized and sustained consequence on reward-related behaviors. Sexual failure may thus resemble a state of “primitive emotion” in fruit flies. We will further discuss this possibility in the revised manuscript.

      Reviewer #3 (Public review):

      Summary

      In this work, the authors asked how mating experience impacts reward perception and processing. For this, they employ fruit flies as a model, with a combination of behavioral, immunostaining, and live calcium imaging approaches.

      Their study allowed them to demonstrate that courtship failure decreases the fraction of flies motivated to eat sweet compounds, revealing a link between reproductive stress and reward-related behaviors. This effect is mediated by a small group of dopaminergic neurons projecting to the SEZ. After courtship failure, these dopaminergic neurons exhibit reduced activity, leading to decreased Gr5a+ neuron activity via Dop1R1 and Dop2R signaling, and leading to reduced sweet sensitivity. The authors therefore showed how mating failure influences broader behavioral outputs through suppression of the dopamine-mediated reward system and underscores the interactions between reproductive and reward pathways.

      Concern

      My main concern regarding this study lies in the way the authors chose to present their results. If I understood correctly, they provided evidence that mating failure induces a decrease in the fraction of flies exhibiting PER. However, they also showed that food consumption was not affected (Fig. 1, supplement), suggesting that individuals who did eat consumed more. This raises questions about the analysis and interpretation of the results. Should we consider the group as a whole, with a reduced sensitivity to sweetness, or should we focus on individuals, with each one eating more? I am also concerned about how this could influence the results obtained using live imaging approaches, as the flies being imaged might or might not have been motivated to eat during the feeding assays. I would like the authors to clarify their choice of analysis and discuss this critical point, as the interpretation of the results could potentially be the opposite of what is presented in the manuscript.

      Here is a brief clarification of our experimental design and we will further clarify the details in the revised manuscript:

      After the behavioral conditioning, male flies were divided for two assays. On the one hand, we quantified PER responses of individual flies. As shown in Figure 1C, Failed males exhibited decreased sweet sensitivity (as demonstrated by the right shift of the response curve).

      On the other hand, we sought to quantify food consumption of individual flies by using the MAFE assay (Qi et al 2005). When presented with 400 mM sucrose, approximately 100% of the flies in the Naïve and Satisfied groups, and 50% of the flies in the Failed group, extended their proboscis and started feeding (Figure 1B). For these flies, we could quantify the consumed volumes and found there was no change (Figure 1, S1A). We should also note the consistency of these two experiments, e.g. in Figure 1C, only 50-60% of Failed males responded to 400 mM stimulation.  

      These two experiments in combination suggest that sexual failure suppressed sweet sensitivity of the Failed males. Meanwhile, as long as they still initiated feeding, the volume of food consumption remained unchanged. These results led us to focus on the modulatory effect of sexual failure on the sensory system, the main topic of this present study.

      In addition, to further clarify the potential misunderstanding, we plan to examine food consumption by using 800 mM sucrose instead. As shown in Figure 1C, 800 mM sucrose was adequate to induce feeding in ~100% of the flies.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This valuable study combined whole-head magnetoencephalography (MEG) and subthalamic (STN) local field potential (LFP) recordings in patients with Parkinson's disease undergoing deep brain stimulation surgery. The paper provides solid evidence that cortical and STN beta oscillations are sensitive to movement context and may play a role in the coordination of movement redirection.

      We are grateful for the expert assessment by the editor and the reviewers. Below we provide pointby-point replies to both public and private reviews. We have tried to keep the answers in the public section short and concise, not citing the changed passages unless the point does not re-appear in the recommendations. There, we did include all of the changes to the manuscript, such that the reviewers need not go back and forth between replies and manuscript.

      The reviewer comments have not only led to numerous improvements of the text, but also to new analyses, such as Granger causality analysis, and to methodological improvements e.g. including numerous covariates in the statistical analyses. We believe that the article improved substantially through the feedback, and we thank the reviewers and the editor for their effort.

      Public Reviews

      Reviewer #1 (Public review):

      Summary:

      Winkler et al. present brain activity patterns related to complex motor behaviour by combining wholehead magnetoencephalography (MEG) with subthalamic local field potential (LFP) recordings from people with Parkinson's disease. The motor task involved repetitive circular movements with stops or reversals associated with either predictable or unpredictable cues. Beta and gamma frequency oscillations are described, and the authors found complex interactions between recording sites and task conditions. For example, they observed stronger modulation of connectivity in unpredictable conditions. Moreover, STN power varied across patients during reversals, which differed from stopping movements. The authors conclude that cortex-STN beta modulation is sensitive to movement context, with potential relevance for movement redirection.

      Strengths:

      This study employs a unique methodology, leveraging the rare opportunity to simultaneously record both invasive and non-invasive brain activity to explore oscillatory networks.

      Weaknesses:

      It is difficult to interpret the role of the STN in the context of reversals because no consistent activity pattern emerged.

      We thank the reviewer for the valuable feedback to our study. We agree that the interpretation of the role of the STN during reversals is rather difficult, because reversal-related STN activity was highly variable across patients. Although there seem to be consistent patterns in sub-groups of the current cohort, with some patients showing event-related increases (Fig. 3b) and others showing decreases, the current dataset is not large enough to substantiate or even explain the existence of such clusters. Thus, we limit ourselves to acknowledging this limitation and discussing potential reasons for the high variability, namely variability in electrode placement and insufficient spatial resolution for the separation of specialized cell ensembles within the STN (see Discussion, section Limitations and future directions).

      Reviewer #2 (Public review):

      Summary:

      This study examines the role of beta oscillations in motor control, particularly during rapid changes in movement direction among patients with Parkinson's disease. The researchers utilized magnetoencephalography (MEG) and local field potential (LFP) recordings from the subthalamic nucleus to investigate variations in beta band activity within the cortex and STN during the initiation, cessation, and reversal of movements, as well as the impact of external cue predictability on these dynamics. The primary finding indicates that beta oscillations more effectively signify the start and end of motor sequences than transitions within those sequences. The article is well-written, clear, and concise.

      Strengths:

      The use of a continuous motion paradigm with rapid reversals extends the understanding of beta oscillations in motor control beyond simple tasks. It offers a comprehensive perspective on subthalamocortical interactions by combining MEG and LFP.

      Weaknesses:

      (1) The small and clinically diverse sample size may limit the robustness and generalizability of the findings. Additionally, the limited exploration of causal mechanisms reduces the depth of its conclusions and focusing solely on Parkinson's disease patients might restrict the applicability of the results to broader populations.

      We thank the reviewer for the insightful feedback. We address these issues one by one in our responses to points 2, 4 and 6, respectively.

      (2) The small sample size and variability in clinical characteristics among patients may limit the robustness of the study's conclusions. It would be beneficial for the authors to acknowledge this limitation and propose strategies for addressing it in future research. Additionally, incorporating patient-specific factors as covariates in the ANOVA could help mitigate the confounding effects of heterogeneity.

      Thank you for this comment. The challenges associated with recording brain activity peri-operatively can be a limiting factor when it comes to sample size and cohort stratification. We now acknowledge this in the revised discussion (section Limitations and future directions). Furthermore, we suggest using sensing-capable devices in the future as a measure to increase sample sizes (Discussion, section Limitations and future directions). Lastly, we appreciate the idea of adding patient-specific factors as covariates to the ANOVAs and have thus included age, disease duration and pre-surgical UPDRS score into our models. This did not lead to any qualitative changes of statistical effects.

      (3) The author may consider using standardized statistics, such as effect size, that would provide a clearer picture of the observed effect magnitude and improve comparability.

      Thanks for the suggestion. As measures of effect size, we have added partial eta squared (η<sub>p</sub><sup2</sup>) to the results of all ANOVAs and Cohen’s d to all follow-up t-tests.

      (4) Although the study identifies relevance between beta activity and motor events, it lacks causal analysis and discussion of potential causal mechanisms. Given the valuable datasets collected, exploring or discussing causal mechanisms would enhance the depth of the study.

      We appreciate this idea and have conducted Granger causality analyses in response to this comment. This new analysis reveals that there is a strong cortical drive to the STN for all movements of interest and predictability conditions in the beta band. The detailed results can be viewed on p. 16 in the section on Granger causality. For statistical testing, we conducted an rmANCOVA, similar to those for power and coherence (see p. 46-48 and 54-56 for the corresponding tables), as well as t-tests assessing directionality (Figure 6-figure supplement 2 on p. 35). In the discussion section, we connect these results with prior findings suggesting that the frontal cortex drives the STN in the beta band, likely through hyperdirect pathway fibers (p. 17).

      (5) The study cohort focused on senior adults, who may exhibit age-related cortical responses during movement planning in neural mechanisms. These aspects were not discussed in the study.

      We appreciate the comment and agree that age may have impacted neural oscillatory activity of patients in the present study. We now acknowledge this in the limitations section, and point out that our approach to handling these effects was including age as a covariate in the statistical analyses.

      (6) Including a control group of patients with other movement disorders who also undergo DBS surgery would be beneficial. Because we cannot exclude the possibility that the observed findings are specific to PD or can be generalized. Additionally, the current title and the article, which are oriented toward understanding human motor control, may not be appropriate.

      We thank the reviewer for this comment and fully agree that it cannot be ruled out that the present findings are, in part, specific to PD. We acknowledge this limitation in the Limitations and future directions section (p. 20-21). Indeed, including a control group of patients with other disorders would be ideal, but the scarcity of patients with diseases other than PD who receive STN DBS in our centre makes this an unfeasible option in practical terms. We do suggest that future research may address this issue by extending our approach to different disorders or healthy participants on the cortical level (p. 21). Lastly, we appreciate the idea to adjust the title of the present article. The adjusted title is: “Context-Dependent Modulations of Subthalamo-Cortical Synchronization during Rapid Reversals of Movement Direction in Parkinson’s Disease”.

      That being said, we do believe that our findings at least approximate healthy functioning and are not solely related to PD. For one, patients were on their usual dopaminergic medication and dopamine has been found to normalize pathological alterations of beta activity. Further, the general pattern of movement-related beta and gamma oscillations reported here has been observed in numerous diseases and brain structures, including cortical beta oscillations measured non-invasively in healthy participants.

      Reviewer #3 (Public review):

      Summary:

      The study highlights how the initiation, reversal, and cessation of movements are linked to changes in beta synchronization within the basal ganglia-cortex loops. It was observed that different movement phases, such as starting, stopping briefly, and stopping completely, affect beta oscillations in the motor system.

      It was found that unpredictable cues lead to stronger changes in STN-cortex beta coherence. Additionally, specific patterns of beta and gamma oscillations related to different movement actions and contexts were observed. Stopping movements was associated with a lack of the expected beta rebound during brief pauses within a movement sequence.

      Overall, the results underline the complex and context-dependent nature of motor-control and emphasize the role of beta oscillations in managing movement according to changing external cues.

      Strengths:

      The paper is very well written, clear, and appears methodologically sound.

      Although the use of continuous movement (turning) with reversals is more naturalistic than many previous button push paradigms.

      Weaknesses:

      The generalizability of the findings is somewhat curtailed by the fact that this was performed perioperatively during the period of the microlesion effect. Given the availability of sensing-enabled DBS devices now and HD-EEG, does MEG offer a significant enough gain in spatial localizability to offset the fact that it has to be done shortly postoperatively with externalized leads, with an attendant stun effect? Specifically, for paradigms that are not asking very spatially localized questions as a primary hypothesis?

      We appreciate the reviewer’s feedback and acknowledge the valid point raised on the timing of our measurements. Indeed, sensing-enabled devices offer a valid alternative to peri-operative recordings, circumventing the stun effect. We acknowledge this in the revised discussion, section Limitations and future directions (p. 23): “Additionally, future research could capitalize on sensingcapable devices to circumvent the necessity to record brain activity peri-operatively, facilitating larger sample sizes and circumventing the stun effect, an immediate improvement in motor symptoms arising as a consequence of electrode implantation (Mann et al., 2009).” This alternative strategy, however, was not an option here because we did not have a sufficient number of patients implanted with sensing-enabled devices at the time when the data collection was initialized.

      That being said, we would like to highlight that in the present study, our goal was not to study pathology related to Parkinson’s disease. Rather, we aimed to learn about motor control in general. The stun effect may have facilitated motor performance in our patients, which is actually beneficial to the research goals at hand.

      Further investigation of the gamma signal seems warranted, even though it has a slightly lower proportional change in amplitude in beta. Given that the changes in gamma here are relatively wide band, this could represent a marker of neural firing that could be interestingly contrasted against the rhythm account presented.

      We appreciate the reviewer’s interest and we have extended the investigation of gamma oscillations. We now provide statistics regarding the influence of predictability on gamma power and gamma coherence (no significant effects) and explore Granger causality in the gamma (and beta) band (see comment 4 of reviewer 2). Unfortunately, we cannot measure spiking via the DBS electrode, and therefore we cannot investigate correlations between gamma oscillatory activity and action potentials. We do agree with the reviewer, however, that action potentials rather than oscillations form the basis of motor control in the brain. This view of ours is now reflected in the revised discussion, section Limitations and future directions (p. 21): “Lastly, given the present study’s focus on understanding movement-related rhythms, particularly in the beta range, future research could further explore the role of gamma oscillations in continuous movement and their relation to action potentials in motor areas (Fischer et al., 2020; Igarashi, Isomura, Arai, Harukuni, & Fukai, 2013), which form the basis of movement encoding in the brain.”

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      This is a well-conducted study and overall the results are clear. I only have one minor suggestion for improvement of the manuscript. I found the order of appearance of the results somewhat confusing, switching from predictability-related behavioral effects to primarily stopping and reversal-related neurophysiological effects, back to predictability but starting with coherence. I would suggest that the authors try to follow a systematic order focused on the questions at hand. E.g. perhaps readability could be improved if the results section is split into reversal vs. stopping related effects, reporting behavior, power, and coherence in this order, followed by a predictability section, again reporting behavior, power, and coherence. Obviously, this is an optional suggestion. Apart from that, I just missed a more direct message related to the absence of statistical significance related to STN power changes during reversal. I think this could be made more clear in the text.

      We thank the reviewer for the feedback to our study. In order to ease reading, we modified the order and further added additional sub-titles to the results section. We start with Behavior (p. 4) and then move on to Power (general movement effects on power – movement effects on STN power – movement effects on cortical power – predictability effects on power). Next, we move on to Connectivity (movement effects on connectivity – predictability effects on connectivity – Granger causality). We hope that these adaptations will help guide the reader.

      Additionally, we thank the reviewer for noting that we did not explicitly mention the lack of statistical significance of reversal-related beta power modulations in the STN. We have adapted the section on modulation of STN beta power associated with reversals (p. 8) to: “In the STN, reversals were associated with a brief modulation of beta power, which was weak in the group-average spectrum and did not reach significance (Fig. 3a).”

      Reviewer #2 (Recommendations for the authors):

      (1) The small sample size and variability in clinical characteristics among patients may limit the robustness of the study's conclusions. It would be beneficial for the authors to acknowledge this limitation and propose strategies for addressing it in future research. Additionally, incorporating patient-specific factors as covariates in the ANOVA could help mitigate the confounding effects of heterogeneity.

      Thank you for this comment. The challenges associated with recording brain activity peri-operatively can be a limiting factor when it comes to sample size. We now acknowledge this in the revised discussion, section Limitations and future directions (p. 20):

      “Invasive measurements of STN activity are only possible in patients who are undergoing or have undergone brain surgery. Studies drawing from this limited pool of candidate participants are typically limited in terms of sample size and cohort stratification, particularly when carried out in a peri-operative setting. Here, we had a sample size of 20, which is rather high for a peri-operative study, but still low in terms of absolute numbers.”

      Furthermore, we suggest using sensing-capable devices in the future as a measure to increase sample sizes (p. 21):

      “Additionally, future research could capitalize on sensing-capable devices to circumvent the necessity to record brain activity peri-operatively, facilitating larger sample sizes and circumventing the stun effect, an immediate improvement in motor symptoms arising as a consequence of electrode implantation (Mann et al., 2009).”

      Lastly, we appreciate the idea of adding patient-specific factors as covariates to the ANOVAs and have thus included age, disease duration and pre-surgical UPDRS score into our models. This did not lead to any qualitative changes of statistical effects.

      Revised article

      Methods, Statistical analysis:

      “To account for their potential influence on brain activity, we added age, pre-operative UPDRS score, and disease duration as covariates to all ANOVAs. Covariates were standardized by means of zscoring.”

      (2) The author may consider using standardized statistics, such as effect size, that would provide a clearer picture of the observed effect magnitude and improve comparability.

      Thanks for this useful suggestion. As measures of effect size, we have added partial eta squared (η<sub>p</sub><sup2</sup>) to the results of all ANOVAs and Cohen’s d to all follow-up _t-_tests.

      (3) Although the study identifies relevance between beta activity and motor events, it lacks causal analysis and discussion of potential causal mechanisms. Given the valuable datasets collected, exploring or discussing causal mechanisms would enhance the depth of the study.

      We appreciate this idea and have conducted Granger causality analyses in response to this comment. This new analysis reveals that there is a strong cortical drive to the STN for all movements of interest and predictability conditions in the beta band, but no directed interactions in the gamma band. For statistical testing, we conducted an rmANCOVA, similar to the analysis of power and coherence (see p. 46-48 and 54-56 for the corresponding tables), as well as t-tests assessing directionality (Figure 6 figure supplement 2 on p. 35). In the discussion section, we connect these results with prior findings suggesting that the frontal cortex drives the STN in the beta band, likely through hyperdirect pathway fibers (p. 17).

      Revised article

      Methods Section, Granger Causality Analysis

      “We computed beta and gamma band non-parametric Granger causality (Dhamala, Rangarajan, & Ding, 2008) between cortical ROIs and the STN in the hemisphere contralateral to movement for the post-event time windows (0 – 2 s with respect to start, reversal, and stop). Because estimates of Granger causality are often biased, we compared the original data to time-reversed data to suppress non-causal interactions. True directional influence is reflected by a higher causality measure in the original data than in its time-reversed version, resulting in a positive difference between the two, the opposite being the case for a signal that is “Granger-caused” by the other. Directionality is thus reflected by the sign of the estimate (Haufe, Nikulin, Müller, & Nolte, 2013). Because rmANCOVA results indicated no significant effects for predictability and movement type, and post-hoc tests did not detect significant differences between hemispheres, we averaged Granger causality estimates over movement types, hemispheres and predictability conditions in Figure 6-figure supplement 2.”

      Results, Granger causality

      “In general, cortex appeared to drive the STN in the beta band, regardless of the movement type and predictability condition. This was reflected in a main effect of ROI on Granger causality estimates (F<sub>ROI</sub>(7,9) = 3.443, p<sub>ROI</sub> = 0.044, η<sub>p</sub><sup2</sup> = 0.728; refer to Supplementary File 4 for the full results of the ANOVA). In the hemisphere contralateral to movement, follow-up t-tests revealed significantly higher Granger causality estimates from M1 to the STN (t = 3.609, one-sided p < 0.001, d = 0.807) and from MSMC to the STN (t = 2.051, one-sided p < 0.027, d = 0.459) than the other way around. The same picture emerged in the hemisphere ipsilateral to movement (M1 to STN: t = 3.082, one-sided p = 0.003, d = 0.689; MSMC to STN: t \= 1.833, one-sided p < 0.041, d = 0.410). In the gamma band, we did not detect a significant drive from one area to the other (F<sub>ROI</sub>(7,9) = 0.338, p<sub>ROI</sub> = 0.917, η<sub>p</sub><sup2</sup> = 0.208, Supplementary File 6). Figure 6-figure supplement 2 demonstrates the differences in Granger causality between original and time-reversed data for the beta and gamma band.”

      Discussion, The dynamics of STN-cortex coherence

      “Considering the timing of the increase observed here, the STN’s role in movement inhibition (Benis et al., 2014; Ray et al., 2012) and the fact that frontal and prefrontal cortical areas are believed to drive subthalamic beta activity via the hyperdirect pathway (Chen et al., 2020; Oswal et al., 2021) it seems plausible that the increase of beta coherence reflects feedback of sensorimotor cortex to the STN in the course of post-movement processing. In line with this idea, we observed a cortical drive of subthalamic activity in the beta band.”

      (4) The study cohort focused on senior adults, who may exhibit age-related cortical responses during movement planning in neural mechanisms. These aspects were not discussed in the study.

      We appreciate the comment and agree that age may have impacted neural oscillatory activity of patients in the present study. We now acknowledge this in the limitations section, and point out that our approach to handling these effects was including age as a covariate in the statistical analyses.

      Revised article

      Discussion, Limitations and Future Directions

      “Further, most of our participants were older than 60 years. To diminish any confounding effects of age on movement-related modulations of neural oscillations, such as beta suppression and rebound (Bardouille & Bailey, 2019; Espenhahn et al., 2019), we included age as a covariate in the statistical analyses.”

      (5) Including a control group of patients with other movement disorders who also undergo DBS surgery would be beneficial. Because we cannot exclude the possibility that the observed findings are specific to PD or can be generalized. Additionally, the current title and the article, which are oriented toward understanding human motor control, may not be appropriate.

      We thank the reviewer for this comment and fully agree that it cannot be ruled out that the present findings are, in part, specific to PD. We acknowledge this limitation in the Limitations and future directions section (p. 20-21). Indeed, including a control group of patients with other disorders would be ideal, but the scarcity of patients with diseases other than PD who receive STN DBS makes this an unfeasible option. We do suggest that future research may address this issue by extending our approach to different disorders or healthy participants on the cortical level (p. 21). Lastly, we appreciate the idea to adjust the title of the present article. The adjusted title is: “Context-Dependent Modulations of Subthalamo-Cortical Synchronization during Rapid Reversals of Movement Direction in Parkinson’s Disease”.

      That being said, we do believe that our findings at least approximate healthy functioning and are not solely related to PD. For one, patients were on their usual dopaminergic medication for the study and dopamine has been found to normalize pathological alterations of beta activity. More importantly, the general pattern of movement-related beta and gamma oscillations has been observed in numerous diseases and brain structures, including cortical beta oscillations measured non-invasively in healthy participants. Thus, it is not unlikely that the new aspects discovered here are also general features of motor processing.

      Revised article

      Discussion, Limitations and future directions

      “Furthermore, we cannot be sure to what extent the present study’s findings relate to PD pathology rather than general motor processing. We suggest that our approach at least approximates healthy brain functioning as patients were on their usual dopaminergic medication. Dopaminergic medication has been demonstrated to normalize power within the STN and globus pallidus internus, as well as STN-globus pallidus internus and STN-cortex coherence (Brown et al., 2001; Hirschmann et al., 2013). Additionally, several of our findings match observations made in other patient populations and healthy participants, who exhibit the same beta power dynamics at movement start and stop (Alegre et al., 2004) that we observed here. Notably, our finding of enhanced cortical involvement in face of uncertainty aligns well with established theories of cognitive processing, given the cortex' prominent role in managing higher cognitive functions (Altamura et al., 2010). Yet, transferring our approach and task to patients with different disorders, e.g. obsessive compulsive disorder, or examining young and healthy participants solely at the cortical level, could contribute to elucidating whether the synchronization dynamics reported here are indeed independent of PD and age.”

      Reviewer #3 (Recommendations for the authors):

      Despite the strengths of the "rhythm" account of cognitive processes, the paper could possibly be improved by making it less skewed to rhythms explaining all of the movement encoding.

      Thank you for this comment - the point is well taken. There is a large body of literature relating neural oscillations to spiking in larger neural populations, which itself is likely the most relevant signal with respect to motor control. In our eyes, it is this link that justifies the rhythm account, i.e. we agree with the reviewer that action potentials are the basis of movement encoding in the brain, not oscillations. Unfortunately, we cannot measure spiking with the method at hand.

      To better integrate this view into the current manuscript, we make the following suggestion for future research in the Limitations and future directions section (p. 21): “Lastly, given the present study’s focus on understanding movement-related rhythms, particularly in the beta range, future research could further explore the role of gamma oscillations in continuous movement and their relation to action potentials in motor areas (Fischer et al., 2020; Igarashi, Isomura, Arai, Harukuni, & Fukai, 2013), which form the basis of movement encoding in the brain.”

      In Figure 5 - is the legend correct? Is it really just a 0.2% change in power only? That would be a very surprisingly small effect size.

      We thank the reviewer for noting this. Indeed, the numbers on the scale quantify relative change (post - pre)/pre and should be multiplied by 100 to obtain %-change. We have adjusted the color bars accordingly.

      The dissociation between the effects of unpredictable cues in coherence versus raw power is interesting and could potentially be directly contrasted further in the discussion (here they are presented separately with separate discussions, but this seems like a pretty important and novel finding as beta coherence and power usually go in the same direction).

      We appreciate the reviewer’s interest in our findings on the predictability of movement instructions. In case of coherence, the difference between pre- and post-event was generally more positive in the unpredictable condition, meaning that suppressions (negative pre-post difference) were diminished whereas increases (positive pre-post difference) were enhanced. With respect to power, we also observed less suppression in the unpredictable condition at movement start. Therefore, the direction of change is in fact the same. We made this clearer in the revised version by adapting the corresponding sections of the abstract, results and discussion (see below).

      The only instance of coherence and power diverging (on a qualitative level) was observed during reversals: here, we noted post-event increases in coherence and post-event decreases in M1 power in the group-average spectra. However, when comparing the pre- and post-event epochs statistically by means of permutation testing, the coherence increase did not reach significance. Hence, we did not highlight this aspect.

      Revised version

      Abstract

      “… Event-related increases of STN-cortex beta coherence were generally stronger in the unpredictable than in the predictable condition. … “

      Results, Effects of predictability on beta power  

      “With respect to the effect of predictability of movement instructions on beta power dynamics (research aim 2), we observed an interaction between movement type and condition (F<sub>cond*mov</sub> (2,14) = 4.206, p<sub>cond*mov</sub> = 0.037, η<sub>p</sub><sup2</sup> = 0.375), such that the beta power suppression at movement start was generally stronger in the predictable (M = -0.170, SD = 0.065) than in the unpredictable (M \= -0.154, SD = 0.070) condition across ROIs (t = -1.888, one-sided p \= 0.037, d = -0.422). We did not observe any modulation of gamma power by the predictability of movement instructions (F<sub>cond</sub> (1,15) = 0.792, p<sub>cond</sub> = 0.388, η<sub>p</sub><sup2</sup> = 0.050, Supplementary File 5).”

      Effects of predictability on STN-cortex coherence

      “With respect to the effect of predictability of movement instructions on beta coherence (research aim 2), we found that the pre-post event differences were generally more positive in the unpredictable condition (main effect of predictability condition; F<sub>cond</sub>(1,15) = 8.684, p<sub>cond</sub> = 0.010, η<sub>p</sub><sup2</sup> = 0.367; Supplementary File 3), meaning that the suppression following movement start was diminished and the increases following stop and reversal were enhanced in the unpredictable condition (Fig. 6a). This effect was most pronounced in the MSMC (Fig. 6b). When comparing regionaverage TFRs between the unpredictable and the predictable condition, we observed a significant difference only for stopping (t<sub>clustersum</sub> = 142.8, p = 0.023), suggesting that the predictability effect was mostly carried by increased beta coherence following stops. When repeating the rmANCOVA for preevent coherence, we did not observe an effect of predictability (F<sub>cond</sub>(1,15) = 0.163, p<sub>cond</sub> = 0.692, η<sub>p</sub><sup2</sup> = 0.011), i.e. the effect was most likely not due to a shift of baseline levels. The increased tendency for upward modulations and decreased tendency for downward modulations rather suggests that the inability to predict the next cue prompted intensified event-related interaction between STN and cortex. STN-cortex gamma coherence was not modulated by predictability (F<sub>cond</sub>(1,15) = 0.005, p<sub>cond</sub> = 0.944, η<sub>p</sub><sup2</sup> = 0.000, Supplementary File 5).”

      Discussion, Beta coherence and beta power are modulated by predictability

      “In the present paradigm, patients were presented with cues that were either temporally predictable or unpredictable. We found that unpredictable movement prompts were associated with stronger upward modulations and weaker downward modulations of STN-cortex beta coherence, likely reflecting the patients adopting a more cautious approach, paying greater attention to instructive cues. Enhanced STN-cortex interactions might thus indicate the recruitment of additional neural resources, which might have allowed patients to maintain the same movement speed in both conditions. […]”

      With respect to power, we observed reduced beta suppression in the unpredictable condition at movement start, consistent with the effect on coherence, likely demonstrating a lower level of motor preparation.

      Given that you have a nice continuous data task here - the turning of the wheel, it might be interesting to cross-correlate the circular position (and separately - velocity) of the turning with the envelope of the beta signal. This would be a nice finding if you could also show that the beta is modulated continuously by the continuous movements. In the natural world, we rarely do a continuous movement with a sudden reversal, or stop, most of the time we are in continuous movement. Look at this might also be a strength of your dataset.

      We could not agree more. In fact, having a continuous behavioral output was a major motivation for choosing this particular task. We are very interested in state space models such as preferential subspace identification (Sani et al., 2021), for example. These models relate continuous brain signals to continuous behavioral target variables and should be of great help for questions such as: do oscillations relate to moment-by-moment adaptations of continuous movement? Which frequency bands and brain areas are important? Is angular position encoded by different brain areas/frequency bands than angular speed? These analyses are in fact ongoing. This project, however, is too large to fit into the current article.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study is an important follow-up to their prior work - Wong et al. (2019), starting with clear questions and hypotheses, followed by a series of thoughtful and organized experiments. The method and results are convincing. Experiment 1 demonstrated the sensory preconditioned fear with few (8) or many (32) sound-light pairings. Experiments 2A and 2B showed the role of PRh NMDA receptors during conditioning for online integration, revealing that this contribution is present only after a few sound-light pairings, not after many sound-light pairings. Experiments 3A and 3B showed the contribution of PRh-BLA communication to online integration, again only after a few but not after many. Contrary to Experiments 3A and 3B, Experiments 4A and 4B showed the contribution of PRh-BLA communication to integration at test only after many but not few sound-light pairings.

      Strengths:

      Throughout the manuscript, the methods and results are clearly organized and described, and the use of statistics is solid, all contributing to the overall clarity of the research. The discussion section was also well-written, effectively comparing the current research with the prior work and offering insightful interpretations and potential future directions for this line of research. I have only a limited amount of concerns about some results and some details of experiments/statistics.

      We thank the reviewer for their positive assessment.

      Weaknesses:

      Could you provide further interpretation regarding line 171: the observation that sensory preconditioned fear increased with the number of sound-light pairings? Was this increase due to better sound-light association learning during Stage 1? Additionally, were there any experimental differences between Experiment 1 and the other experiments that might explain why freezing was higher in the P32 group compared to the P8 group? This pattern seemed to be absent in the other experiments. If we consider the hypothesis that the online integration mechanism is more active with fewer pairings and the chaining mechanism at the test is more prominent with many pairings, we wouldn't expect a difference between the P8 and P32 groups. Given the relatively small sample size in Experiment 1, the authors might consider conducting a cross-experiment analysis or something similar to investigate this further.

      We appreciate the reviewer’s point and thank them for the question. The heightened level of sensory preconditioned fear among rats that received many sound-light pairings in the initial control experiment (Group P32) may reflect the combined effects of both mediated learning and chaining at test. We are, however, reluctant to offer a strong interpretation of this result as it was not replicated in the subsequent experiments: i.e., the levels of freezing to the sensory preconditioned stimulus at test were almost identical among vehicle-injected controls that received either few (8) or many (32) sound-light pairings in Experiments 2A and 2B; and this was also true in Experiments 3A and 3B, and again in Experiments 4A and 4B. A key difference between the initial and subsequent experiments is that, in contrast to the initial experiment, rats in subsequent experiments underwent surgery for one reason or another (implantation of cannulas, lesion of the perirhinal cortex). The implication is that surgical interventions in the perirhinal cortex and/or basolateral amygdala might affect the way that rats integrate the sound-light and light-shock associations in sensory preconditioning: i.e., they may force rats to rely on one type of integration strategy or the other. This is, of course, purely speculative – it will be addressed in future research.

      Reviewer #2 (Public review):

      This manuscript builds on the authors' earlier work, most recently Wong et al. 2019, in which they showed the importance of the perirhinal cortex (PRh) during the first-order conditioning stage of sensory preconditioning. Sensory preconditioning requires learning between two neutral stimuli (S2-S1) and subsequent development of a conditioned response to one of the neutral stimuli after pairing of the other stimulus with a motivationally relevant unconditioned stimulus (S1-US). One highly debated question regarding the mechanisms of learning of sensory preconditioning has been whether conditioned responses evoked by the indirectly trained stimulus (S2) occur through a mediated representation at the time of the first-order US training, or whether the conditioned responses develop through a chained evoked representation (S2--> S1 --> US) at the time of test. The authors' prior findings provided strong evidence for PRh being involved in mediated learning during the first-order training. They showed that protein synthesis was required during the first-order S1-US learning to support the conditioned response to the indirectly trained stimulus (S2) at the test.

      One question remaining following the previous paper was whether certain conditions may promote a chaining mechanism over mediated learning, as there is some evidence for chained representations at the time of the test. In this paper, the authors directly address this important question and find unambiguous results that the extent of training during the preconditioning stage impacts the involvement of PRh during the first-order conditioning or stage 2. They show that putative blockade of synaptic changes in PRh, using an NMDA antagonist, disrupts responding to the preconditioned cue at test during shorter duration preconditioning training (8 trials), but not during extended training (32 trials). They also show that this is the case for communication between the PRh and BLA during the same stage of training using a contralateral inactivation approach. This confirms their previous findings in 2019 of connectivity between these regions for the short-duration training, while they observe here for the first time that this is not the case for extended training. Finally, they show that with extended training, communication between BLA and the PRh is required at the final test of the preconditioned stimulus, but not for the short duration training.

      The results are clear and extremely consistent across experiments within this paper as well as with earlier work. The experiments here are thorough, and well-conceived, and address an important and highly debated question in the field regarding the neural and psychological mechanisms underlying sensory preconditioning. This work is highly impactful for the field as the debate over mediated versus chaining mechanisms has been an important topic for more than 70 years.

      We thank the reviewer for their kind assessment.

      Reviewer #3 (Public review):

      The authors tested whether the number of stimulus-stimulus pairings alters whether preconditioned fear depends on online integration during the formation of the stimulus-outcome memory or during the probe test/mobilization phase, when the original stimulus, which was never paired with aversive events, elicits fear via chaining of stimulus-stimulus and stimulus-outcome memories. They found that sensory preconditioning was successful with either 8 or 32 stimulus-stimulus pairings. Perirhinal cortex NMDA receptor blockade during stimulus-outcome learning impaired preconditioning following 8 but not 32 pairings during preconditioning. Therefore, perirhinal cortex NMDA activity is required for online integration or mediated learning. Perirhinal-basolateral amygdala had nearly identical effects with the same interpretation: these areas communicate during stimulus-outcome learning, and this online communication is required for later expressing preconditioned fear. Disconnection prior to the probe test, when chaining might occur, had different effects: it impaired the expression of preconditioned fear in rats that received 32, but not 8, pairings during preconditioning. The study has several strengths and provides a thoughtful discussion of future experiments. The study is highly impactful and significant; the authors were successful in describing the behavioral and neurobiological mechanisms of mediated learning versus chaining in sensory preconditioning, which is often debated in the learning field. Therefore this study will have a significant impact on the behavioral neurobiology and learning fields.

      Strengths:

      Careful, rigorous experimental design and statistics.

      The discussion leaves open questions that are very much worth exploring. For example - why did perirhinal-amygdala disconnection prior to the probe have no effect in the 8-pairing group, when bilateral perirhinal inactivation did (in Wong et al, 2019)? The authors propose that perirhinal cortex outputs bypass the amygdala during the probe test, which is an excellent hypothesis to test.

      The authors provide evidence that both mediated learning and chaining occur.

      Thank you for the positive assessment – we fully intend to identify the circuitry that regulates retrieval/expression of sensory preconditioned fear when it is based on mediated learning in stage 2.

      Weaknesses:

      This is inherent to all neural interference and behavioral experiments: biological/psychological functions do not typically operate binarily. There is no single clear number or parameter at which mediated learning or chaining happens, and both probably happen to some extent. Addressing this is even more difficult given behavioral variability across subjects, implant sites, etc. Thus, this is not so much a weakness particular to this study as much as an existential problem, which the authors were able to work around with careful experimental design and appropriate controls.

      We completely agree with the point raised here and thank the reviewer for their assessment.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) It appears that the method description for Sensory Preconditioning was copied from their previous Wong et al. (2019) paper, which is fine, but in the current research, the authors use 8 or 32 presentations, which is not reflected in the description.

      Thank you for bringing this to our attention. This is now addressed in the method section on page 27 (beginning at line 655):

      “Rats received either eight presentations of the sound and eight of the light in a single session, or 32 presentations of the sound and 32 of the light across four daily sessions. On Day 3, all rats received eight presentations of the sound and eight of the light. Each presentation of the sound was 30 s in duration and each presentation of the light was 10 s in duration. The first stimulus presentation occurred five min after rats were placed into the chambers. The offset of one stimulus co-occurred with the onset of the other stimulus for groups that received paired presentations of the sound and the light, while these stimuli were presented separately for groups that received explicitly unpaired presentations. The interval between each paired presentation was five min while the interval between each separately presented stimulus was 150 s. After the last stimulus presentation, rats remained in the chambers for an additional one min. They were then returned to their home cages. This training was repeated on Days 4-6 for rats that received 32 presentations of the sound and 32 of the light. All rats proceeded to first-order conditioning (details below) the day after their final session of sound and light exposures, which was Day 4 for rats exposed to eight presentations of the sound and light and Day 7 for rats exposed to 32 presentations of the sound and light.”

      (2) Line 148: Could the authors clarify how the "significant linear increase" was assessed? From similar descriptions in later experiments, it seems it was based on a comparison of freezing across the four presentations, but the F(1,26) statistic suggests there seemed to be a half-split test. The same questions exist in all the experiments. Please clarify.

      Conditioning data were analysed using contrasts with repeated measures in ANOVA. The repeated measures (or within-subject) factor was “trial” as all rats were exposed to four light-shock pairings in this stage of training. We examined whether there was a significant linear increase in freezing across trials using a standard within-subject contrast. The specific coefficients for this contrast, given the four trials, were -3, -1, 1, and 3. The reason that the degrees of freedom remain 1 and 26 in this analysis is because the within-subject contrast is part of a set of planned orthogonal contrasts. That is, in any planned analysis of the sort conducted here, the df1 will always be 1, indicating the very nature of the analysis. There was no splitting of the data, or comparisons between the split halves.

      (3) Line 154: Could the authors clarify what is meant by "other main effects and their interactions"? It is not clearly inferable from the context.

      Apologies for the confusion here. “Other main effects” refer to the two between-subject factors in isolation: i.e., the overall comparison of freezing to the light (averaged across the four trials) between groups that received either paired or unpaired stimulus presentations in stage 1 (factor 1 à main effect 1), and between groups that received either eight or 32 sound and light exposures in stage 1 (factor 2 à main effect 2). “Their interaction” refers to the assessment of whether the overall difference in freezing to the light (averaged across the four trials) between Groups P8 and U8 differs from the overall difference in freezing to the light (averaged across the four trials) between Groups P32 and U32. We have edited the text near line 153 to indicate that:

      “The overall comparisons of freezing to the light (averaged across the four conditioning trials) between groups that received either paired or unpaired stimulus presentations in stage 1 (factor 1), and between groups that received either eight or 32 sound and light exposures in stage 1 (factor 2), were not significant (Fs < .45, p > .508). The interaction between these two between-subject factors was also not significant (F < .45, p > .508).”

      (4) The use of sound and light as preconditioned and conditioned cues are counterbalanced. Was there any difference in the increase of freezing during conditioning depending on the type of conditioned cues? Was there any difference in the preconditioned fear? While it is hard to assess statistical significance due to the sample size limit, even observing a trend could be interesting.

      We examined whether the levels of freezing to the conditioned and preconditioned stimuli depend on their physical identity. In general, there was a slight trend towards more freezing to the preconditioned stimulus when it was a tone, and less freezing to the conditioned stimulus when it was a tone. These are, however, simply indications. None of the statistical comparisons between rats for which the preconditioned stimulus was the tone (and, thereby, conditioned stimulus was the light) and rats for which the preconditioned stimulus was the light (and, thereby, conditioned stimulus was the tone) reached the conventional level of significance.

      (5) General suggestion on reporting non-significant statistics: the authors reported a small F statistic value a few times to suggest non-significance. But without clearly specifying degrees of freedom, it is hard to get a sense of statistical significance (e.g. Line 227, largest F<3.10). I recommend adding p values alongside the F statistics and reporting exact statistics whenever possible.

      Apologies for the omission. The p values have now been included alongside all non-significant F statistics.

      (6) Another general suggestion is to use non-parametric statistical testing with such small sample sizes. I recommend using the Kruskal-Wallis H test (the non-parametric equivalent of F-statistic) to replace the ANOVA result. Also, given many tests only involve comparing two independent groups, using Mann-Whitney U test (the non-parametric equivalent of independent t-test) would be sufficient.

      We understand that small sample sizes can occasionally lead to unequal variances between groups, which necessitates the use of non-parametric statistics. However, as non-parametric statistics raise a different set of issues for data analysis (e.g., power) and interpretation, our general view for the type of data collected in this study is that parametric analyses are appropriate and should be retained (particularly in the absence of unequal variances between groups). We hold this view for two reasons. First, the hypotheses tested in the present series were derived from past work in which parametric analyses revealed meaningful patterns of results at the same level of statistical power. Second, the application of these analyses then yielded results consistent with our hypotheses: for the most part, we observed between-group differences where we expected there to be such differences and did not observe between-group differences where we did not expect there to be such differences. As such, we have not switched from a parametric to non-parametric analysis strategy. We do, however, appreciate the suggestion and will apply a non-parametric approach where it is warranted in our future work.

      Reviewer #2 (Recommendations for the authors):

      I have a few very minor comments for the authors regarding the discussion and interpretation of the very nice experimental results.

      (1) In Figures 4 and 5, the authors provide a schematic of the experiment. It's very clearly indicated whether the BLA inactivation is ipsi- or contralateral, but the unilateral PRh lesion isn't mentioned. I'd recommend including that here so that someone reading through the figures can more easily understand the experiment. The hypothesis is clear and the experiment is so well designed that a read through of the figures can relay most information to an experienced reader.

      Thank you for this suggestion – we have included information about the unilateral PRh lesion in the schematic for Figures 4 and 5.

      (2) The authors have an extended description of backward conditioning in the discussion. It seems like the authors are suggesting this as an important future direction, but they never explicitly say this, resulting in a bit of confusion as to what this section refers to. Also, Ward-Robinson and Hall 1996 showed backward sensory preconditioning using a serial auditory-visual association and argued for a mediated solution based on their results. It may be worth citing that paper here.

      Apologies for the lack of clarity. We have revised this point in the discussion (page 18, beginning line 434) and referenced Ward-Robinson and Hall (1996):

      “Why does increasing the number of sound-light pairings change the way that rats integrate the sound-light and light-shock memories? One possibility is that increasing the number of sound-light pairings in stage 1 reduces the ability of each stimulus to activate the memory of the other. This is consistent with findings by Holland (1998), who showed that the likelihood of mediated learning in rats decreases with the amount of training (see also Holland, 2005); but inconsistent with our findings that, after extended training, rats continue to integrate the sound-light and light-shock associations through chaining at the time of testing (as chaining is predicated on the sound activating the memory of the light after extended training). Instead, we propose that the change in integration occurs because the increased number of sound-light pairings allows the rats to learn about the order in which the sound and light are presented (Figure 1; for evidence that rats acquire order information in sensory preconditioning, see Barnet et al., 1997; Hart et al., 2022; Leising et al., 2007; Miller & Barnet, 1993). This order hypothesis is consistent with evidence showing that the way in which animals represent an audio-visual compound changes across repeated compound exposures (e.g., Bellingham & Gillette, 1981; Holmes & Harris, 2009). It can be tested using a so-called “backward” sensory preconditioning protocol, which reverses the order of stimulus presentations in stage 1 (e.g., Ward-Robinson & Hall, 1996). That is, rather than rats being exposed to the “forward” sound-light pairings used here and by Wong et al. (2019), rats in a backward protocol are exposed to light-sound pairings. Increasing the number of light-sound pairings in this protocol should result in rats learning that the light is followed by the sound (light→sound) and that the sound is followed by nothing (sound→nothing). Hence, during the session of light-shock pairings in stage 2, the light should continue to activate the memory of the sound, resulting in formation of the mediated sound-shock association (e.g., Ward-Robinson & Hall, 1996). That is, if our order hypothesis is correct, increasing the number of light-sound pairings in the backward protocol should preserve the likelihood of mediated learning in stage 2 and, if anything, diminish the likelihood of chaining at test in stage 3 (as the sound is never followed by a light). Hence, PRh manipulations that fail to affect fear of the sound when administered after many sound-light pairings (e.g., infusion of DAP5) should disrupt that fear when administered after many light-sound pairings in the backward protocol. This will be assessed in future work.”

      (3) Line 467 in the discussion suggests that the results are surprising that PRh-BLA communication is not needed at test when learning putatively occurs through a mediated mechanism during first-order conditioning. I was a bit surprised by this comment since I was under the assumption that only BLA was required at this point after consolidation of the mediated learning. Holmes et al., 2013 showed that BLA is required for extinction to S2 after first-order conditioning. In that experiment they inactivated BLA during S2- presentations (typically considered the extinction test), and showed that reduction to S2 did not occur the subsequent day, indicating the memory was stored in BLA and may not necessarily require PRh-BLA communication.

      The result noted here was somewhat surprising as our past studies showed that silencing activity in the PRh prior to testing attenuates freezing to a sensory preconditioned stimulus (i.e., an S2). We took this to mean that the PRh is necessary for retrieval/expression of fear to S2 and supposed that this retrieval/expression would be achieved through communication between the PRh and BLA. However, the results of the PRh-BLA disconnection at test show that this communication is not required, leaving us to speculate that retrieval/expression of fear to S2 may be achieved through communication between the PRh and CeA.

      We have edited the opening of the relevant paragraph to clarify why the result noted here was surprising (page 20, beginning line 485):

      “While the PRh and BLA clearly communicate to support mediated learning about the sound, this communication is not required for retrieval/expression of the mediated sound-shock association at the time of testing. This result is somewhat surprising as activity in the PRh is needed for expression of fear to the sound (Holmes et al., 2013; Wong et al., 2019) and raises the question: how does the PRh-dependent sound-shock association come to be expressed in fear responses?”

      (4) The authors reference Holland 1981 and 1998, yet there's not much discussion of these findings. I think there should be a bit more emphasis on these studies since they show how mediated learning greatly depends on the extent of training. Also, it may be worth considering Holland's theory of why mediated conditioning is more effective with shorter training. His theory may be consistent with the authors, but I believe he suggests that early in training a stronger mediated representation is evoked which tends to dissipate with time. I think this is a valid hypothesis to consider in this paper.

      The Holland papers show that rats form mediated associations (Holland, 1981) and that the likelihood of them doing so decreases with the amount of training (Holland, 1998). These findings are paralleled by those reported in the present series of experiments. However, the protocols used by Holland were very different to those used in the present study; and the explanation for his 1998 findings (which is the more relevant of the two papers) simply does not apply to the case of sensory preconditioning.

      To be clear: Holland (1998) exposed rats to either “few” or “many” tone-food pairings in stage 1, tone-lithium chloride pairings in stage 2 and, finally, tested rats with the food alone in stage 3. He predicted and showed that those exposed to few tone-food pairings showed an aversion to the food at test (i.e., they consumed less of the food than controls) whereas those exposed to many tone-food pairings showed no such aversion (i.e., they consumed the same amount of food as the controls). This was taken to mean that, across the series of tone-lithium pairings, the tone activated the memory of food among rats in the few condition, resulting in a mediated food-lithium association; but failed to do so among rats in the many condition, resulting in no food-lithium association. According to Holland, the tone failed to activate the memory of food in the many condition because, by the end of training in stage 1, it was not needed for them to know what to do when the tone was presented: they simply had to run to the magazine to collect the food when delivered. That is, the tone eventually associated with the responses that rats emitted in the training situation, thereby obviating any need for activation of the food memory.

      While this explanation is both elegant and interesting, it cannot be applied to the results obtained in the present study where the initial stage of training involved few or many sound-light pairings. That is, unlike in the Holland study where rats in the many condition eventually learned a stimulus-“run to magazine” association that maintained performance in the absence of any mental image of food, in the present study, any stimulus-response association acquired in stage 1 (e.g., orienting responses towards the sources of the auditory and visual stimuli) cannot have contributed to the expression of sensory preconditioned fear at test. Hence, stimulus-response learning in the many condition cannot be invoked to explain the pattern of results in the present study, even if it adequately explains what-appears-to-be a similar finding in the Holland study.

      Nonetheless, we have included a reference to the general style of explanation that was considered and rejected by Holland in his 1998 and 2005 papers. This appears on page 18 (beginning line 434) and reads:

      “Why does increasing the number of sound-light pairings change the way that rats integrate the sound-light and light-shock memories? One possibility is that increasing the number of sound-light pairings in stage 1 reduces the ability of each stimulus to activate the memory of the other. This is consistent with findings by Holland (1998), who showed that the likelihood of mediated learning in rats decreases with the amount of training (see also Holland, 2005); but inconsistent with our findings that, after extended training, rats continue to integrate the sound-light and light-shock associations through chaining at the time of testing (as chaining is predicated on the sound activating the memory of the light after extended training). Instead, we propose that the change in integration occurs because the increased number of sound-light pairings allows the rats to learn about the order in which the sound and light are presented (Figure 1; for evidence that rats acquire order information in sensory preconditioning, see Barnet et al., 1997; Hart et al., 2022; Leising et al., 2007; Miller & Barnet, 1993)…”

      (5) There is also a Holland 2005 paper in which he tests whether extended training of the initial stimulus associations may result in a reduced associability of those stimuli. This would potentially result in lower mediated learning due to a decreased associability of the mediated representation, thereby explaining why extended training reductions in mediated learning occur. Using a probabilistic design, Holland shows that this reduction in mediated learning is likely not due to a change in associability.

      We appreciate the note re Holland (2005) and have included a reference to it in our General Discussion. We agree with Holland that the reduction in mediated learning across extended training is not due to reduced associability of the retrieved stimulus representation. If this were the case, it would remain to explain why stimulus representations continue to be activated at test, which must occur for successful chaining of the sound-light and light-shock associations upon presentations of the sound alone. This is included in the modified text on page 18 (beginning line 434), which is part of our response to point 4.

      Reviewer #3 (Recommendations for the authors):

      (1) I think the 4th intro paragraph is essentially saying that more pairings during preconditioning encourage chaining as opposed to mediated learning - I might recommend clarifying this a bit. It took me a while to put it together.

      Apologies for the confusion. We have clarified the argument at this point in the Introduction with the following insertion on page 4 (beginning line 84):

      “That is, increasing the number of sound-light pairings may allow rats to encode information about stimulus order in stage 1 and, thereby, shift the locus of integration from mediated conditioning in stage 2 to chaining at test in stage 3 (Holmes et al., 2022).”

      (2) In analyzing test data I am assuming percent freezing is the average of the entire 30s or 10s CS period - could this be clarified?

      This is correct and has been clarified in the section for ‘Scoring and Statistics’ on page 29 (beginning line 708):

      “Freezing data were collected using a time-sampling procedure in which each rat was scored as either ‘freezing’ or ‘not freezing’ every two seconds by an observer blind to the rat’s group allocation. A percentage score was then calculated by dividing the number of samples scored as freezing by the total number of samples. The baseline level of freezing was established by scoring the first two min at the start of each experimental session: i.e., we divided the total number of samples scored as freezing by the total number of observed samples, which was 60. The levels of freezing to the 10 s conditioned stimulus and 30 s preconditioned stimulus were established in a similar manner: we scored the entire period of each stimulus presentation and divided the number of samples scored as freezing by the total number of observed samples, which was 5 for each presentation of the conditioned stimulus and 15 for each presentation of the preconditioned stimulus.”

      (3) Complementary to the above - during the probe test is there a difference during the first/last 2s of the CS? This would be interesting with respect to understanding the associative structure encoded.

      We have previously examined whether freezing responses change across the duration of a 30 s preconditioned stimulus and a 10 s conditioned stimulus. We have never seen any such changes: in our past work and in the present series of experiments, the expression of freezing is largely uniform across each presentation of a preconditioned or conditioned stimulus.

      (4) It is sort of unclear to me why more CS-CS pairings produced stronger preconditioned fear - is it that both mediated learning and chaining occur and giving 32 pairings permits both processes more than 8 pairings?

      This is a very reasonable explanation for the heightened level of sensory preconditioned fear among rats that received many sound-light pairings in the initial control experiment. We are, however, reluctant to offer a strong interpretation of this result as it was not replicated across subsequent experiments in the series: i.e., the levels of freezing to the sensory preconditioned stimulus at test were largely the same among vehicle-injected controls that received either few (8) or many (32) sound-light pairings in Experiments 2A and 2B, and again in Experiments 3A and 3B as well as Experiments 4A and 4B.

      (5) I would suggest individual data points overlaid on the bars, violin plots, or box and whisker plots to provide a better visualization of the data.

      We appreciate the suggestion – these have been included overlaid on bars in each histogram_._

      (6) There are other citations that would strengthen arguments for the idea that unidirectional/temporal associative structure can be acquired during (appetitive) sensory preconditioning: Leising 2007 Learning and Behavior, Hart 2022 Current Biology, for example.

      Thank you for these citations. We have included references to the Leising et al (2007) and Hart et al (2022) papers in our discussion on page 18-19 (beginning line 442):

      “Instead, we propose that the change in integration occurs because the increased number of sound-light pairings allows the rats to learn about the order in which the sound and light are presented (Figure 1; for evidence that rats acquire order information in sensory preconditioning, see Barnet et al., 1997; Hart et al., 2022; Leising et al., 2007; Miller & Barnet, 1993)…”

      Editor's note:

      We agree with the suggestions about full statistical reporting for non-significant results and about putting individual data points, perhaps coded to identify sex, on top of the bar graphs. Both will increase the transparency of the rigor of the work for readers.

      We thank the editors and authors for their suggestions. We have included full statistical reporting for non-significant results and overlaid individual data points on the bars in each histogram.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Joint Public Review:

      Summary:

      The behavioral switch between foraging and mating is important for resource allocation in insects. This study investigated the role of the neuropeptide, sulfakinin, and of its receptor, the sulfakinin receptor 1 (SkR1), in mediating this switch in the oriental fruit fly, Bactrocera dorsalis. The authors use genetic disruption of sulfakinin and of SkR1 to provide strong evidence that changes in sulfakinin signaling alter odorant receptor expression profiles and antennal responses and that these changes mediate the behavioral switch. The combination of molecular and physiological data is a strength of the study. Additional work would be needed to determine whether the physiological and molecular changes observed account for the behavioral changes observed.

      Strengths:

      (1) The authors show that sulfakinin signaling in the olfactory organ mediates the switch between foraging and mating, thereby providing evidence that peripheral sensory inputs contribute to this important change in behavior.

      (2) The authors' development of an assay to investigate the behavioral switch and their use of different approaches to demonstrate the role of sulfakinin and SkR1 in this process provides strong support for their hypothesis.

      (3) The manuscript is overall well-organized and documented.

      Weaknesses:

      (1) The authors claim that sulfakinin acts directly on SkR1-positive neurons to modulate the foraging and mating behaviors in B. dorsalis. The authors also indicated in the schematic that satiation suppresses SkR1 expression. Additional experiments and more a detailed discussion of the results would help support these claims.

      (2) The findings reported could be strengthened with additional experimental details regarding time of day versus duration of starvation effects and additional genetic controls, amongst others.

      Recommendations for the authors:

      Major issues

      (1) As written the introduction is somewhat fragmented and does not lay out a clear rationale for the current study in the species used by the authors. Others, including Guo et al. (2021) and Wang et al. (2022), have previously shown that sulfakinin signaling pathways are important for feeding and receptivity regulation in D. melanogaster. Thus, the novelty of this study should be more clearly articulated.

      The introduction in the revision is significantly changed to improve the description for the rationale of study (lines 60-66 in the revision).

      (2) In addition, the Introduction should provide more specific background information on the pheromonal activity of oriental fruit fly body extract, the odor-preferences, and the sex pheromone of this species compared to that of model insects such as Drosophila melanogaster.

      The revision contains a paragraph of introduction for chemical ecology of oriental fruit fly that is related to this study (lines 67-75).

      (3) It isn't clear what the first image in Figure 1C represents - is this a schematic of the area or does it represent data?

      The Fig 1C and the associated figure caption are revised. The figure is more visible by changing the track colors. The figure caption is revised as “Representative foraging trajectories in the 100 mm diameter arenas within a 15-min observation period of flies starved for different durations.”

      (4) The authors should include examples of the EAG recordings following the stimulation with food volatiles or pheromones, not only the results of their analyses. This could be included in the main figures or even in supporting information.

      As suggested, we added the examples of the EAG recordings following the stimulation with food odors and body extracts in the Figure 1 and Figure 3.

      (5) The demonstration that removal of the antennae severely impairs mating is dispensable because the antennae are required for other functions in addition to olfaction.

      We agree that the roles of the antennae are likely more than the olfactory function. As suggested, we removed the data.

      (6) It is currently difficult to understand how the authors measured successful rates of foraging. Please provide more details.

      In the revision, we added a sentence describing the method for measuring in detail. See line 269-273.

      (7) The expression of sulfakinin does not change significantly in the antennae following starvation (Figure 2A). Do the authors know whether they change in the central nervous system under these conditions? Have the authors (or has anyone else) checked the expression pattern of sulfakinin in the antennae? This information would help determine whether the sulfakinin signal that acts on SkR1 is released from neurons in the central nervous system (Figure S4C) or whether it is also released from the neurons in the olfactory organs. Based on the immunochemistry results shown in Figure S4C, it would also be interesting to determine whether the intensity of anti-sulfakinin immunoreactivity changes before versus after starvation. This could help establish whether sulfakinin is released during starvation.

      We added the expression data showing the the mRNA level of Sk in the head that is higher after refeeding in Fig. S3. The change in the expression of Sk is also added in the text (lines 107-110). We were unable to identify the Sk neurons in the antennae suggesting possibility of the direct action of humoral Sk on the antennae.

      (8) In Figure 2A, the authors show that the expression levels of some neuropeptides system components change during starvation. However, it would be helpful if the authors could include more detailed information on how the results are shown in the figure legends (e.g., the expression level of each candidate in fed flies was set as 1, etc).

      We revised the figure caption to explain the Figure 2 with the expression values in the figure legend.

      (9) In Figure 2D, null mutant males of sulfakinin and SkR1 consume more food at all times compared to the wild type. However, the corresponding mutant females consume more food only at night. Is this because the wild-type female flies eat more food during the day? In a related issue, Figure 2D shows differences in food consumption measured at different times of day, however, this is not directly addressed in the text, which instead mentions that "the amount of excess food consumed by the mutants was dependent on the duration of the starvation period in both sexes".

      Thank you for the important suggestions. We speculate that the difference of feeding amounts of females occurring only at night is due to the high basal feeding rate of females during the daytime, masking the increase in feeding in the knockout of Sk signaling. As suggested, we have added a relevant description of the difference in food consumption. In addition, we changed the Y-axis scale in the figure for a justified comparison between males and females. See line 123-128.

      (10) It isn't clear how the time of day relates to the duration of starvation. This suggests that mutant females only consume more at 21:00 (presumably at night) whereas males consume more throughout the day. Does this suggest an interaction with the circadian system? What is the duration of starvation in Figure 3A? In a related issue, in Figure 4 it would be useful to know what time of day the EAG analysis was done because the data shown in Figure 2D suggests that the time of day significantly impacts behavioral responses. And does the red versus blue color scheme of the OR subunits represent up/downregulated levels in wild-type animals? Please define this for the reader.

      In addition to the response to the point 9, responding to the issue of feeding amount in females. As the reviewer noted, there was indeed a diurnal difference in food amount consumed by B. dorsalis. However, whether this is related to circadian rhythms is something we haven't studied for further in-depth. Measuring food intake at these 3 times of day, we all ensured that the duration of starvation was the same 12 h. The duration of starvation in Figure 3A is 12h. We have mentioned this in the manuscript. See line 267-268.

      The EAG for sex pheromones and body surface extracts were measured form 21:00-23:00, and food odor was measured from 9:00-11:00. The times of the experiments are described in the revision. See line 309-311.

      Accordingly, we made a revision of the figure caption for explaining the colored fonts. Red color represents a set of ORs related with foraging and blue color is for a set of ORs related with mating. Therefore, the ORs with red color were upregulated in starved wild-type animals and the ORs with blue color were downregulated in starved wild-type flies. We have defined this in the revised manuscript. See line 672-673.

      (11) The authors convincingly show that SKR1 is present in the antennae and is co-expressed with orco. It would be useful to discuss whether this receptor is also expressed in other tissues where there may be additional sites of action of this pathway.

      Indeed, SkR1 is also expressed in the Drosophila brain. We added the discussion on the expression and additional sites of action of SKR1 within the central nervous system. See line 200-205.

      (12) It isn't clear what the dotted arrows in the model shown in Figure 5 represent.

      Dashed arrows represent the additional possible pathways that have not been tested in this study, but not excluded in the model. Please see the discussion for details of additional possible factors modulating odorant sensitivity relevant to satiety. See line 210-229.

      (13) In Figure 5, the authors indicate that satiation suppresses SkR1 expression. It would be helpful if the authors tested the expression level of SkR1 in re-fed flies (by feeding the flies after 12h starvation) to see whether levels of expression are rapidly restored to the levels seen in satiated animals. Such a result could further support the claims made by the authors.

      Thank for your suggestions. Indeed, refeeding after 12h starvation significantly decreased SkR1. We added the result in supporting information (Fig. S3). See line 713. Results see line 107-110.

      (14) The authors show that locomotor activity is unaffected in the mutants but body size comparison would be more useful here since this could also contribute to baseline differences in meal size.

      In the revision, we provided a comparison between WT and Sk-/- in the supplementary data. Results showed that mutant flies have the same body size as the WT flies. (Fig. S7) See line 742. Results see line 120-121.

      (15) Have the authors tested the behavioral phenotypes of heterozygotes mutant of both Sk and SkR1 flies? This may reveal whether a reduced expression of Sk-SkR1 will also cause significant changes in the foraging and mating behaviors seen during starvation.

      We tested the behavioral phenotypes of heterozygous mutant of Sk knockout flies. The results showed that foraging and mating behaviors of Sk heterozygous mutants were unaffected during starvation, suggesting the mutants are completely recessive. We have added the results in supporting information (Fig. S8). See line 746. Results see line 132-135.

      (16) It would be useful to provide information about which SK peptide is detected by the antibody used in Figure S4C. In Figures S4C and S5D, it would be useful to include a counterstain to show that the general morphology is unaffected in the mutants.

      As suggested, we added a detailed description for rabbit anti-BdSk antibody. See line 362-363. We have improved the background image to be available to show the general structure. So counter staining would not be essential.

      (17) The figure legends for supporting figures need to be improved as they are currently difficult to understand. For example, in S2: what is the meaning of "different removal of antennae"? In S3: it isn't clear how the authors evaluated the responses in EAG experiments; in S4A: there are several DNA sequences that do not appear in the main text of the manuscript; in S4C: the meaning of the boxes and the dots is unclear, as is the figure to the left; in S5D, the authors explain only the suppression of SKR1, yet the figure indicates some images for SKR IHC. These are only a few examples; we ask that the authors revise and improve the legends for supporting figures.

      For S2, we removed the data as suggested. For S3, we added a sentence describing the method for measuring in detail. See line 707-709. For S4, the figure in the revision is significantly changed and added a detailed description in the legend (lines 717-724 in the revision). For S5, we have improved our description. See line 731-734. In addition, we have checked all the figure legends of our manuscript and changes were displayed in track version.

      Minor issues

      (1) It isn't clear what the meaning of "the complexity of sulfakinin pathways" is. Please explain.

      We have rewritten the sentence in the revised manuscript by adding the description as “…complexity of Sk pathways, special and temporal dynamics and multiple ligands and receptors, is…”. See line 61-65.

      (2) Please double-check the calls to the various figures in the text.

      We have double-checked the calls to all the figures in the text to make sure they were correct.

      (3) L125: What is the meaning of "olfactory reprogramming"? Please explain.

      We rephrased it to “alteration of olfactory sensitivities”. See line 145.

      (4) L135: After mentioning qRT-PCR the authors should include a call to a figure that shows these results.

      Thank you for your suggestion, the qRT-PCR results are shown in Figure 4B, and we have added it as suggested. See line 154.

      (5) L270: Details are provided for the extraction of the pheromone. However, more details are needed on how the EAG and other functional assays were done.

      We have described the assay procedures in detail in the materials and method part. See line 298-311.

      (6) Figure 2B. Please remove the period(".") at the C-terminal end of WT sk.

      We are sorry for our mistake. We have corrected it.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #3 (Public review):

      Human and simian immunodeficiency viruses (HIV and SIV, respectively) evolved numerous mechanisms to compromise effective immune responses but the underlying mechanisms remain incompletely understood. Here, Yamamoto and Matano examined the humoral immune response in a large number of rhesus macaques infected with the difficult-to-neutralize SIVmac239 strain and identified a subgroup of animals showing significant neutralizing Ab responses. Sequence analyses revealed that in most of these animals (7/9) but only a minority in the control group (2/19) SIVmac variants containing a CD8+ T-cell escape mutation of G63E/R in the viral Nef gene emerged. Functional analyses revealed that this change attenuates the ability of Nef to stimulate PI3K/Akt/mTORC2 signalling. The authors propose that this improved induction of SIVmac239 nAb is reciprocal to antibody dysregulation caused by a previously identified human PI3K gain-of-function mutation associated with impaired anti-viral B-cell responses. Altogether, the results suggest that PI3K signalling plays a role in B-cell maturation and generation of effective nAb responses. Preliminary data indicate that Nef might be transferred from infected T cells to B cells by direct contact. However, the exact mechanism and the relevance for vaccine development requires further studies

      Strengths of the study are that the authors analyzed a large number of SIVmac-infected macaques to unravel the biological significance of the known effect of the interaction of Nef with PI3K/Akt/mTORC2 signaling. This is interesting and may provide a novel means to improve humoral immune responses to HIV. In the revised version the authors made an effort to address previous concerns. Especially, they provide data supporting that Nef might be transferred to B cells by direct cell-cell contact. In addition, the provide some evidence that G63R that also emerged in most animals does not share the disruptive effect of G63G although experimental examination and discussion why G63R might emerge remains poor. Another weakness that remains is that some effects of the G63E mutation are modest and effects were not compared to SIVmac constructs lacking Nef entirely. The evidence for a role of Nef G63E mutation on PI3K and the association with improved nAb responses was largely convincing and it is appreciated that the authors provide additional evidence for a potential impact of "soluble" Nef on neighboring B cells. However, the experimental set-up and the results are difficult to comprehend. It seems that direct cell-cell contact is required and membranes are exchanged. Since Nef is associated with cellular membranes this might lead to some transfer of Nef to B cells. However, the immunological and functional consequences of this remain largely elusive. Alternatively, Nef-mediated manipulation of helper CD4 T cells might also impact B cell function and effective humoral immune responses. As previously noted, the presentation of the results and conclusions was in part very convoluted and difficult to comprehend. While the authors made attempts to improve the writing parts of the manuscript are still challenging to follow. This applies even more to the rebuttal (complex words combined with poor grammar), which made it difficult to assess which concerns have been satisfactory addressed.

      We are grateful for the visionary comments. Based on suggestion, we have edited the writing throughout and appended remarks on certain points raised in the Discussion section. For points that need experimentation, we would like to address them in a follow-up study now under preparation.

      Reviewer #3 (Recommendations for the authors):

      Additional editing of the manuscript is highly recommended to make the results accessible for a broad readership.

      We are grateful for the important suggestion. Accordingly, we have made editing of the manuscript aimed for a broad readership.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Corso-Diaz et al, focus on the NRL transcription factor (TF), which is critical for retinal rod photoreceptor development and function. The authors profile NRL's protein interactome, revealing several RNA-binding proteins (RBPs) among its components. Notably, many of these RBPs are associated with R-loop biology, including DHX9 helicase, which is the primary focus of this study. R-loops are three-stranded nucleic acid structures that frequently form during transcription. The authors demonstrate that R-loop levels increase during photoreceptor maturation and establish an interaction between NRL TF and DHX9 helicase. The association between NRL and RBPs like DHX9 suggests a cooperative regulation of gene expression in a cell-type-specific manner, an intriguing discovery relevant to photoreceptor health. Since DHX9 is a key regulator of R-loop homeostasis, the study proposes a potential mechanism where a cell-type-specific TF controls the expression of certain genes by modulating R-loop homeostasis. This study also presents the first data on R-loop mapping in mammalian retinas and shows the enrichment of R-loops over intergenic regions as well as genes encoding neuronal function factors. While the research topic is very important, there is some concern regarding the data presented: there are substantial data supporting the interaction between NRL and DHX9, including pull-down experiments and proximity labeling assay (PLA), however, the data showing an interaction between NRL and DDX5, another R-loop-associated helicase, are inadequate. Importantly, the data supporting the claim that NRL interacts with R-loops are absolutely insufficient and at best, correlative. The next concerns are regarding the R-loop mapping data analysis and visualization.

      Strengths:

      There is compelling evidence that the NRL transcription factor interacts with several RNA binding proteins, and specifically, sufficient data supporting the interaction of NRL with DHX9 helicase.

      A major strength is the use of the single-stranded R-loop mapping method in the mouse retina.

      Weaknesses:

      (1) Figure S1A: There is a strong band in GST-IP (control IP) for either HNRNPUI1 or HNRNPU, although the authors state in their results that there is a strong interaction of these two RBPs with NRL.

      Under our experimental conditions, most RNA-binding proteins displayed higher binding to glutathione beads (Fig. S1A). However, GST-NRL purifications showed much stronger signals for respective RBPs. In the case of HNRNPU and HNRNPUl1, white bands that are indicative of substrate depletion due to higher protein levels are observed in GST-NRL lanes. Additionally, in Figures 1B and 1C, there is a clear enrichment of HNRNPU and HNRNPUl1 above the background signal. We added this to the text. See page 5.

      Both DHX9 and DDX5 samples have a faint band in the GST-IP.

      RNA-binding proteins may display some background as observed in other studies (e.g. PMID: 32704541). We think that showing the raw data without decreasing the exposure time is useful and that there is a clear enrichment compared to controls.  In addition, we tested the interaction in multiple systems.

      There is an extremely faint band for HNRNPA2B1 in the GST-NRL IP lane. Given this is a pull-down with added benzonase treatment to remove all nucleic acids, these data suggest, that previously observed NRL interactions with these particular RBPs are mediated via nucleic acids. Similarly, there is a loss of band signal for HNRNM in this assay, although it was identified as an NRL-interacting protein in three assays, which again suggests that nucleic acids mediate the interaction.

      Thank you for highlighting this point. We mention in the manuscript that the interaction between HNRNPM and A1 depends on nucleic acids, as noted by the reviewer, since there is no obvious band after the pull-down. We have now added that the interaction of NRL with HNRNPA1B1 is likely dependent on nucleic acids as well, given its weak signal. See page 5.

      (2) The data supporting NRL-DDX5 interaction in rod photoreceptor nuclei is very weak. In Figure 2D, the PLA signal for DDX5-NRL is very weak in the adult mouse retina and is absent in the human retina, as shown in Figure 2H.

      We agree with the reviewer. We think that the signal for DDX5 is weak, and we addressed this in the text. We noted on page 7: “Taken together, these findings suggest a strong interaction between NRL and DHX9 throughout the nuclear compartment in the retina and that a transient and/or more regulated interaction of NRL with DDX5 may require additional protein partners.”  We have modified this sentence to add that the data also suggest transient interaction or the requirement of additional protein partners for stable interaction. See page 7.

      Given that there is no NRL-KO available for the human PLA assay, the control experiments using single-protein antibodies should be included in the assay. Similarly, the single-protein antibody control PLA experiments should be included in the experimental data presented in Figure 2J.

      Thank you for the suggestion. We performed PLAs using both DHX9 and IgG in the human retina and observed no specific amplification signal. Some background is observed outside the nucleus and in the extracellular space. We added these results to the text and to the supplementary information. See page 7 and Fig.S2B.

      (3) The EMSA experiment using a probe containing NRL binding motif within the DHX9 promoter should include incubation with retina nuclear extracts depleted for NRL as a control.

      In EMSA experiments, we used bovine retina to obtain enough protein quantities. As suggested by the reviewer, using NRL depleted extract would increase the specificity of observed gel shift and complement our pre-immune serum as a negative control. However, removal of all the NRL protein using the antibodies available was not feasible. In the future, we will use enough mice to obtain large quantities of protein for this experiment and will collect retinas from Nrl knockout as negative control.

      (4) There is a reduced amount of DHX9 pulled down in NRL-IP in HEK293 cells, but there is no statistically significant difference in the reciprocal IP (DHX9-IP and blotting for NRL) (Figure 4C).

      We believe the reviewer is referring to the data in Figure 4C showing that RNase H treatment led to significantly reduced pulldown of DHX9 as compared to control, but the reciprocal IP in Figure 4D showed no statistical significance between control and RNase H treatment. In Figure 4D, we hypothesize that NRL may account for only a small proportion of DHX9’s interactome, so the change in NRL levels could not be detected due to the sensitivity of our assay. DHX9 likely constitutes a large proportion of NRL’s interactome in HEK293 cells, hence the change in DHX9 level was more obvious when pulling down with NRL. We added this information to the results. See page 8.

      (5) The only data supporting the claim that NRL interacts with R-loops are presented in Figure 5A.

      Additional evidence that NRL interacts with R-loops comes from DRIP-Seq experiments where signals from R-loops overlap with NRL ChIP-Seq signals (Figure 7A). This shows that R-loops and NRL co-occur on multiple genomic regions. In addition, indirect evidence of NRL and R-loops’ interaction is shown in pull down experiments and PLA assays where R-loops influence DHX9 and NRL binding. We clarified this in the discussion. See page 14.

      This is a co-IP of R-loops and then blotting for NRL, DHX9, and DDX5. Here, there is no signal for DDX5, quantification of DHX9 signal shows no statistically significant difference between RNase H treated and untreated samples, while NRL shows a signal in RNase H treated sample. These data are not sufficient to make the statement regarding the interaction of NRL with R-loops.

      Thank you for this comment. We respectfully disagree as we observe statistically significant enrichment for both NRL and DHX9 in these experiments (See Fig5A). Some NRL continues to bind to DNA that is pulled down nonspecifically, which may be expected since NRL is a transcription factor. See for example R-loop binding by the transcription factor Sox2 (PMID: 32704541). However, binding to R-loops is evidenced by an enrichment compared to RNase H-treated sample. We clarified this in Results section (See page 9).

      (6) Regarding R-loop mapping, the data analysis is quite confusing. The authors perform two different types of analyses: either overall narrow and broad peak analysis or strand-specific analysis. Given that the authors used ssDRIP-seq, which is a method designed to map R-loops strand specifically, it is confusing to perform different types of analyses.

      Thank you for highlighting this point. This has enhanced the clarity of the methods and enriched the discussion. We aimed to identify R-loops as accurately as possible. We conducted two types of analyses to capture different aspects of R-loops: one that looks at overall patterns (narrow and broad peaks) and another that focuses on specific strands of DNA.

      Using ssDRIP-seq, which is designed to map R-loops on specific strands, allowed us to examine R-loops formed in only one strand and those formed on both strands. To identify strand-specific R-loops, we filtered our RNase-H enriched peaks for those enriched on one strand compared to the opposite strand. We clarified the analysis in the results section, and Figure 6B. See page 10 and methods section page 25.

      Next, the peak analysis is usually performed based on the RNase H treated R-loop mapping; what does it mean then to have a pool of "Not R-loops", see Figure 6B?

      The “Not R-loop” group refers to peaks called using the opposite strand that are not observed when calling peaks using RNase H as control. We modified this figure for clarity (Figure 6B).

      In that regard, what does the term "unstranded" R-loops mean? Based on the authors' definition, these are R-loops that do not fall within the group of strand-specific R-loops. The authors should explain the reasons behind these types of analyses and explain, what the biological relevance of these different types of R-loops is.

      Thank you for helping us clarify this point. Unstranded R-loops are DNA regions containing DNA:RNA hybrids on both plus and minus strands and possibly representing bidirectional transcription by Pol II. We observed that unstranded R-loops are enriched only in intergenic regions, H3K9me3 regions, and downstream of the transcriptional termination site (TTS). We added to the discussion the possible implications of these enrichments, including regulation of Pol II termination and transcription of long genes.  See Page 13.

      (7) It would be more useful to show the percent distribution of R-loops over the different genomic regions, instead of showing p-value enrichment, see Figure 6C.

      Since most of the genome is non-coding, plotting the distribution as a proportion was not informative since the vast proportion of the data falls in intergenic regions. However, we created a new figure showing observed vs. expected ratio that seems to be more informative and moved the current p-value figure to the supplement in revised version. See Figure 6C and S6D.

      (8) Based on the model presented, NRL regulates R-loop biology via interaction with RBPs, such as DHX9, a known R-loop resolution helicase. Given that the gene targets of NRL TF are known, it would be useful to then analyze the R-loop mapping data across this gene set.

      Thank you for this suggestion. We performed an analysis of R-loops on NRL-regulated genes. Interestingly, NRL target genes have an enrichment of stranded R-loops at the promoter/TSS and unstranded R-loops on the gene body compared to all Ensembl genes (Figure S7B). We added a table containing all NRL-regulated genes we used for this analysis (table S5) and a figure showing this result (Fig. S7B).

      Reviewer #2 (Public review):

      Summary:

      The authors utilize biochemical approaches to determine and validate NRL protein-protein interactions to further understand the mechanisms by which the NRL transcription factor controls rod photoreceptor gene regulatory networks. Observations that NRL displays numerous protein-protein interactions with RNA-binding proteins, many of which are involved in R-loop biology, led the authors to investigate the role of RNA and R-loops in mediating protein-protein interactions and profile the co-localization of R-loops with NRL genomic occupancy.

      Strengths:

      Overall, the manuscript is very well written, providing succinct explanations of the observed results and potential implications. Additionally, the authors use multiple orthogonal techniques and tissue samples to reproduce and validate that NRL interacts with DHX9 and DDX5. Experiments also utilize specific assays to understand the influence of RNA and R-loops on protein-protein interactions. The authors also use state-of-the-art techniques to profile R-loop localization within the retina and integrate multiple previously established datasets to correlate R-loop presence with transcription factor binding and chromatin marks in an attempt to understand the significance of R-loops in the retina.

      Weaknesses:

      In general, the authors provide superficial interpretations of the data that fit a narrative but fail to provide alternative explanations or address caveats of the results. Specifically, many bands are present in interaction studies either in control lanes (GST controls) of Westerns or large amounts of background in PLA experiments.

      We have added additional information to the text regarding the presence of background signals in pull downs. We wish to note that experimental samples always exceeded background signals.  We believe that reporting these raw findings (rather than showing shorter exposures) is valuable for the scientific community. We did not observe any background in the proximity ligation assay (PLA) that exceeded what is typically expected, and the signals were clearly discernible. Cases where signals are weaker, such as with DDX5, have been highlighted. In addition, we added a DHX9-IgG negative control for the human PLA experiment. See page 5 and Fig. S2B.

      Additionally, the lack of experiments testing the functional significance of Nrl interactions or R-loops within the developing retina fails to provide novel biological insights into the regulation of gene regulatory networks other than, 'This could be a potentially important new mechanism'.

      We agree that functional experiments are necessary to understand the molecular mechanisms behind R-loop regulation in the retina; however, we believe it goes beyond the scope of this initial characterization (as this is the first report on R-loops in the retina). We are currently pursuing these studies.

      We performed new analysis on NRL-regulated genes as suggested by reviewer 1. We show that NRL target genes have an enrichment of stranded R-loops at the promoter/TSS and unstranded R-loops on the gene body compared to all Ensembl genes (Figure S7B), providing further evidence of the functional  interaction between NRL and R-loops. See table S5 and Fig. S7B, and discussion.

      Additionally, the authors test the necessity of RNA for NRL/DHX9 interactions but don't show RNA binding of NRL or DHX9 or the sufficiency of RNA to interfere/mediate protein-protein interactions. Recent work has highlighted the prevalence of RNA binding by transcription factors through Arginine Rich Motifs that are located near the DNA binding domains of transcription factors.

      We agree that the role of RNA in these complexes is very exciting, and we are currently pursuing these studies. However, we believe that they fall outside the scope of this initial report on R-loops in the retina.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      There are a couple of minor comments:

      (1) Unfinished sentence; page 11, the end of the first paragraph.

      Thank you for catching this error. We removed the unfinished text.

      (2) Page 6: Figure S2A should be Figure S2.

      In general, the manuscript would benefit from a deeper explanation of the biological relevance of R-loop formation and the connection to NRL TF and the expression of genes regulated by NRL. In this regard, a more substantial description of the model would be useful.

      We have modified the discussion for clarity and included new ideas on possible roles of R-loops in gene regulation of photoreceptors.

      Reviewer #2 (Recommendations for the authors):

      (1) The specificity of interactions needs to be addressed:

      - Figure 1B - HNRNPUI1 bands present in GST control.

      - Figure 1C - Bands present in the Empty Vector control IP for HNRNPU and DHX9.

      - Supplemental Figure 1A - most proteins are present in GST control suggesting prevalent binding to GST and lack of specificity for other interactions.

      Thank you for your comment. RNA-binding proteins can have more background as observed in other studies (e.g. PMID: 32704541) but there is always a higher signal in experimental samples compared to controls. While we agree that we can enhance the conditions for immunoprecipitation (IP) by optimizing washing buffers, exposure and other parameters, we believe the current methods tell the story. We have added additional text explaining this. See page 5.

      (2) Use of the term 'Strongest' interaction - IPs don't directly address the strength of interaction, but depend on levels of expression AND affinity. The strength of interaction should be tested using techniques like an OCTET or SPR assay. One can also quantify the effect that RNA would have in such an assay.

      Thank you for your suggestion. We replaced the term 'stronger' with “higher signal” and “robust” at most places. The source of protein lysates is the same for experiments and controls, thus the amount of protein is consistent in both conditions, and not dependent on level of gene expression.

      (3) In supplemental tables, please use the proper gene names, not the UniProt peptide name. For example, there are no genes named ELAV1-ELAV4. These should be ELAVL1-ELAVL4. A short glance identifies >10 gene name errors.

      Thank you for the suggestion. We updated current gene names in all tables.

      (4) Please provide the rationale for the choice of DNA sequence for the DHX9 nucleotide sequence used for EMSA assays. In the human DHX9 locus, the NRL ChIP-seq peak looks to be contained in Intron1 whereas the NRL ChIP-seq peak in mouse DHX9 looks to be in the proximal upstream promoter. Did the authors choose an evolutionarily conserved sequence in the promoter region that contained the NRL motif or does the probe sequence arise from the sequence that has known NRL binding as assayed by NRL ChIP-seq? A zoomed-in image of the NRL ChIP-seq pile-ups in the DHX9 locus in each species would be beneficial.

      Thank you for this suggestion. The probe was chosen by scanning for NRL binding motifs on the Chip-Seq peak at the human DHX9 promoter. We added a Zoom-in image of the ChIP-Seq or CUT&RUN reads for NRL on both human and mouse retinas. Figure 3D shows NRL binding in both species in regions containing the homologous motif. The sequence is partially conserved and shown in the figure.

      (5) Normalization in RNaseH/RNaseA Co-IP experiments. Why does RNAseH treatment result in increased NRL IP (increased NRL expression?) or does RNaseA treatment cause reduced IP of DHX9? These differences seem to cause a 'denominator' effect, leading the Authors to conclude decreased co-IP of DHX9 with NRL when R-loops are inhibited or increased co-IP of NRL with DHX9 when RNA is degraded. An alternate interpretation would be that inhibiting the R-loop binding of NRL unmasks the epitope for antibody recognition. The authors should test NRL binding to RNA and determine if RNA binding affects the co-IP of NRL with DHX9.

      We agree that removing total RNA by RNase A or R-loops by RNase H may alter the accessibility of our antibodies to the epitopes, resulting in the differences in the level of total protein pulled down. However, we quantified the relative level of the associating protein to the total protein and confirmed, in reciprocal assays, that RNase A treatment led to increased interaction between NRL and DHX9. However, the quantification was not consistent between the reciprocal IPs upon RNase H treatment. We reason that in Figure 4D, as NRL may account for only a small proportion of DHX9’s interactome, the change in NRL level could not be detected due to the sensitivity of our assay. However reciprocally, DHX9 can constitute a larger proportion of NRL’s interactome in HEK293 cells, hence the change in DHX9 level was more obvious. We added this information to the text. See page 8.

      (6) Figure 7 - Malat1 - there doesn't seem to be an overlap of NRL with Stranded R-loop peaks in this image. Nrl seems to flank the region of R-loops.

      We changed Malat1 for Mplkip that shows a direct overlap of Nrl binding and R-loops. See Figure 7C.

      (7) Results end with 'A Model'. Seems like some concluding remarks and references to Figure 8 were mistakenly left out.

      Thank you for catching this typo. We removed the misplaced text.

      (8) Model and Discussion - authors should show raw data for RHO with respect to NRL binding and R-loops. No evidence was provided regarding R-loops (or lack thereof) in the Rhodopsin locus. Additionally, conclusions stating that "R-loops... are specifically depleted from genes, such as Rhodopsin, with high expression levels" go against Figures 7B and 7C. Malat1 is one of the highest expressed genes in the retina and contains R-loops.

      Thank you for helping us clarify our hypothesis. We added a genome browser view of Rhodopsin showing the absence of R-loops (Fig. S8). We hypothesize that R-loops could interfere with achieving higher rates of transcription, however we did not mean to say that all high expressed genes lack R-loops. We have rephrased the discussion to clarify this point.

      (9) Neuronal genes, particularly those involved in synaptic transmission are known to be, on average, longer than most genes (Gabel, 2015; PMID: 25762136). Is it possible that R-loops are detected at genes involved in synaptic function/structure solely because of transcript length, as it takes longer for transcription termination to resolve in genes that are longer? A plot showing R-loop enrichment and transcript length would address this.

      We added a plot showing gene length in relation to R-loops and expression levels. We observed that R-loops are more common over long genes regardless of their expression levels. We also observed that the concomitant presence of stranded and unstranded R-loops is restricted to the longest genes in most cases. We added this to Figure 7D.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for valuable feedback and comments. Based on the feedback we revised the manuscript and believe that we addressed most of the reviewers' raised points. Below we include a summary of key revisions and point-by-point responses to reviewers comments.

      Abstract/Introduction

      We further emphasized EP-GAN strength in parameter inference of detailed neuron parameters vs specialized models with reduced parameters.

      Results

      We further elaborated on the method of training EP-GAN on synthetic neurons and validating on both synthetic and experimental neurons.

      We added a new section Statistical Analysis and Loss Extension which includes:

      - Statistical evaluation of baseline EP-GAN and other methods on neurons with multi recording membrane potential responses/steady-state currents data: AWB, URX, HSN

      - Evaluation of EP-GAN with added resting potential loss + longer simulations to ensure stability of membrane potential (EP-GAN-E)

      Methods

      We added a detailed explanation on "inverse gradient process"

      We added detailed current/voltage-clamp protocols for both synthetic and experimental validation and prediction scenarios (table 6)

      Supplementary

      We added error distribution and representative samples for synthetic neuron validations (Fig S1)

      We added membrane potential response statistical analysis plots for existing methods for AWB, URX, HSN (Fig S6)

      We added steady-state currents statistical analysis plots on EP-GAN + existing methods for AWB, URX, HSN (Fig S7)

      We added mean membrane potential errors for AWB, URX, HSN normalized by empirical standard deviations for all methods (Table S4)

      Please see our point-by-point responses to specific feedback and comment below.

      Reviewer 1:

      First, at the methodological level, the authors should explain the inverse gradient operation in more detail, as the reconstructed voltage will not only depend on the evaluation of the right-hand side of the HH-equations, as they write but also on the initial state of the system. Why did the authors not simply simulate the responses?

      We thank the reviewer for the feedback regarding the need for further explanation. We have revised the Methods section to provide a more detailed description of the inverse gradient process. The process uses a discrete integration method, similar to Euler’s formula, which takes systems’ initial conditions into account. For the EP-GAN baseline, the initial states were picked soon after the start of the stimulus to reconstruct the voltage during the stimulation period. For EP-GAN with extended loss (EP-GAN-E), introduced in this revision in sub-section Statistical Analysis and Loss Extension, initial states before/after stimulations were also taken into account to incorporate resting voltage states into target loss.

      Since EP-GAN is a neural network and we want the inverse gradient process to be part of the training process (i.e., making EP-GAN a “model informed network”), the process is expected to be implemented as a differentiable function of generated parameter p. This enables the derivatives from reconstructed voltages to be traced back to all network components via back-propagation algorithm.

      Computationally, this requires the implementation of the process as a combination of discrete array operations with “auto-differentiation”, which allows automatic computation of derivatives for each operation. While explicit simulation of the responses using ODE solvers provides more accurate solutions, the algorithms used by these solvers typically do not support such specialized arrays nor are they compatible with neural network training. We thus utilized PyTorch tensors [54], which support both auto-differentiation and vectorization to implement the process.

      The authors did not allow the models time to equilibrate before starting their reconstruction simulations, as testified by the large transients observed before stimulation onset in their plots. To get a sense of whether the models reproduce the equilibria of the measured responses to a reasonable degree, the authors should allow sufficient time for the models to equilibrate before starting their stimulation protocol.

      In the added Statistical Analysis and Loss Extension under the Results section, we added results for EP-GAN-E where we simulate the voltage responses with 5 seconds of added stabilization period in the beginning of simulations. The added period mitigates voltage fluctuations observed during the initial simulation phase and we observe that simulated voltage responses indeed reach stable equilibrium for both prior stimulations and for the zero stimulus current-clamp protocol (Figure 5 bottom, Column 3).

      In fact, why did the authors not explicitly include the equilibrium voltage as a target loss in their set of loss functions? This would be an important quantity that determines the opening level of all the ion channels and therefore would influence the associated parameter values.

      EP-GAN baseline does include equilibrium voltage as a target loss since all current-clamp protocols used in the study (both synthetic and experimental) include a membrane potential trace where the stimulus amplitude is zero throughout the entire recording duration (see added Table 6 for current clamp protocols), thus enforcing EP-GAN to optimize resting membrane potential alongside with other non-zero stimulus current-clamp scenarios.

      To further study EP-GAN’s accuracy in resting potential, we evaluated EP-GAN with supplemental resting potential target loss and evaluated its performance in the sub-section Statistical Analysis and Loss Extension. The added loss, combined with 5 seconds of additional stabilization period, improved accuracy in predicting resting potentials by mitigating voltage fluctuations during the early simulation phase and made significant improvements to predicting AWB membrane potential responses where EP-GAN baseline resulted in overshoot of the resting potential.

      The authors should provide a more detailed evaluation of the models. They should explicitly provide the IV curves (this should be easy enough, as they compute them anyway), and clearly describe the time-point at which they compute them, as their current figures suggest there might be strong transient changes in them.

      We included predicted IV-curve vs ground truth plots in addition to the voltages in the supplementary materials (Figure S2, S5) in the original submitted version of the manuscript. In this revision, we added additional IV-curve plots with statistical analysis for the neurons with multi-recording data (AWB, URX, HSN) in the supplementary materials (Figure S7).

      For the evaluation of predicted membrane potential responses, we added further details in Validation Scenarios (Synthetic) under Results section such that it clearly explains on the current-clamp protocols used for both synthetic and experimental neurons and which time interval the RMSE evaluations were performed.

      In the sub-section Statistical Analysis and Loss Extension, we introduced a new statistical metric in addition to RMSE, applied for neurons AWB, URX, HSN which evaluates the percentage of predicted voltages that fall within the empirical range (i.e., mean +- 2 std) and voltage error normalized by empirical standard deviations (Table S4).

      The authors should assess the stability of the models. Some of the models exhibit responses that look as if they might be unstable if simulated for sufficiently long periods of time. Therefore, the authors should investigate whether all obtained parameter sets lead to stable models.

      In the sub-section Statistical Analysis and Loss Extension, we included individual voltage traces generated by both EP-GAN baseline and EP-GAN-E (extended) with longer simulation (+5 seconds) to ensure stability. EP-GAN-E is able to produce equilibrium voltages that are indeed stable and within empirical bounds throughout the simulations for the zero-stimulus current-clamp scenario (column 3) for the 3 tested neurons (AWB, URX, HSN).

      Minor:

      The authors should provide a description of the model, and it's trainable parameters. At the moment, it is unclear which parameter of the ion channels are actually trained by the methodology.

      The detailed description of the model and its ion channels can be found in [7]. Supplementary materials also include an excel table predicted parameters which lists all EP-GAN fitted parameters for 9 neurons (+3 new parameter sets for AWB, URX, HSN using EP-GAN-E) included in the study, the labels for trainability, and their respective lower/upper bounds used during training data generation. In the revised manuscript, we further elaborated on the above information in the second paragraph of the Results section.

      Reviewer 2:

      Major 1: While the models generated with EP-GAN reproduce the average voltage during current injections reasonably well, the dynamics of the response are not well captured. For example, for the neuron labeled RIM (Figure 2), the most depolarized voltage traces show an initial 'overshoot' of depolarization, i.e. they depolarize strongly within the first few hundred milliseconds but then fall back to a less depolarized membrane potential. In contrast, the empirical recording shows no such overshoot. Similarly, for the neuron labeled AFD, all empirically recorded traces slowly ramp up over time. In contrast, the simulated traces are mostly flat. Furthermore, all empirical traces return to the pre-stimulus membrane potential, but many of the simulated voltage traces remain significantly depolarized, far outside of the ranges of empirically observed membrane potentials. While these deviations may appear small in the Root mean Square Error (RMSE), the only metric used in the study to assess the quality of the models, they likely indicate a large mismatch between the model and the electrophysiological properties of the biological neuron.

      EP-GAN main contribution is targeted towards parameter inference of detailed neuron model parameters, in a compute efficient manner. This is a difficult problem to address even with current state-of-the-art fitting algorithms. While EP-GAN is not perfect in capturing the dynamics of the responses and RMSE does not fully reflect the quality of predicted electrophysiological properties, it’s a generic error metric for time series that is easily interpretable and applicable for all methods. Using such a metric, our studies show that EP-GAN overall prediction quality exceeds those of existing methods when given identical optimization goals in a compute normalized setup.

      In our revised manuscript, we included a new section Statistical Analysis and Loss Extension under Results section where we performed additional statistical evaluations (e.g., % of predicted responses within empirical range) of EP-GAN’s predictions for neurons with multi recording data. The results show that predicted voltage responses from EP-GAN baseline (introduced in original manuscript) are in general, within the empirical range with ~80% of its responses falling within +- 2 empirical standard deviations, which were higher than existing methods: DEMO (57.9%), GDE3 (37.9%), NSDE (38%), NSGA2 (60.2%).

      Major 2: Other metrics than the RMSE should be incorporated to validate simulated responses against electrophysiological data. A common approach is to extract multiple biologically meaningful features from the voltage traces before, during and after the stimulus, and compare the simulated responses to the experimentally observed distribution of these features. Typically, a model is only accepted if all features fall within the empirically observed ranges (see e.g. https://doi.org/10.1371/journal.pcbi.1002107). However, based on the deviations in resting membrane potential and the return to the resting membrane potential alone, most if not all the models shown in this study would not be accepted.

      In our original manuscript, due to all of our neurons’ recordings having a single set of recording data, RMSE was chosen to be the most generic and interpretable error metric. We conducted additional electrophysiological recordings for 3 neurons in prediction scenarios (AWB, URX, HSN) and performed statistical analysis of generated models in the sub-section Statistical Analysis and Loss Extension. Specifically, we evaluated the percentage of predicted voltage responses that fall within the empirical range (empirical mean +- 2 std, p ~ 0.05) that encompass the responses before, during and after stimulus (Figure 5, Table 5) and mean membrane potential error normalized by empirical standard deviations (Table S4).

      The results show that EP-GAN baseline achieves average of ~80% of its predicted responses falling within the empirical range, which is higher than the other methods: DEMO (57.9%), GDE3 (37.9%), NSDE (38%), NSGA2 (60.2%). Supplementing EP-GAN with additional resting potential loss (EPGAN-E) increased the percentage to ~85% with noticeable improvements in reproducing dynamical features for AWB (Figure 5). Evaluations of membrane potential errors normalized by empirical standard deviations also showed similar results where EP-GAN baseline and EP-GAN-E have average error of 1.0 std and 0.7 std respectively, outperforming DEMO (1.7 std), GDE3 (2.0 std), NSDE (3.0 std) and NSGA (1.5 std) (Table S4).

      Major 3: Abstract and introduction imply that the 'ElectroPhysiome' refers to models that incorporate both the connectome and individual neuron physiology. However, the work presented in this study does not make use of any connectomics data. To make the claim that ElectroPhysiomeGAN can jointly capture both 'network interaction and cellular dynamics', the generated models would need to be evaluated for network inputs, for example by exposing them to naturalistic stimuli of synaptic inputs. It seems likely that dynamics that are currently poorly captured, like slow ramps, or the ability of the neuron to return to its resting membrane potential, will critically affect network computations.

      In the paper, EP-GAN is introduced as a parameter estimation method that can aid the development of ElectroPhysiome, which is a network model - these are two different method types and we do not claim EP-GAN is a model that can capture network dynamics. To avoid possible confusion, we made further clarifications in the abstract/introduction that EP-GAN is a machine learning approach for neuron HH-parameter estimation.

      I find it hard to believe that the methods EP-GAN is compared to could not perform any better. For example, multi-objective optimization algorithms are often successful in generating models that match empirical observations very well, but features used as target of the optimization need to be carefully selected for the optimization to succeed. Likely, each method requires extensive trial and error to achieve the best performance for a given problem. It is therefore hard to do a fair comparison. Given these complications, I would like to encourage the authors to rethink the framing of the story as a benchmark of EP-GAN vs. other methods. Also, the number of parameters does not seem that relevant to me, as long as the resulting models faithfully reproduce empirical data. What I find most interesting is that EP-GAN learns general relationships between electrophysiological responses and biophysical parameters, and likely could also be used to inspect the distribution of parameters that are consistent with a given empirical observation.

      We thank the reviewer for providing this perspective. While it is indeed difficult to have a completely fair comparison between existing optimization methods vs EP-GAN due to the fundamental differences in their algorithms, we believe that the current comparisons with other methods are justified as they provide baseline performance metrics to test EP-GAN for its intended use cases.

      The main strength of EP-GAN, as previously mentioned, is in its ability to efficiently navigate large detailed HH-models with many parameters so that it can aid in the development of nervous system models such as ElectroPhysiome, potentially fitting hundreds of neurons in a time efficient manner.

      While EP-GAN’s ability to learn the general relationship between electrophysiological responses and parameter distribution are indeed interesting and warrant a more careful examination, this is not the main focus of the paper since in this work we focus on introducing EP-GAN as a methodology for parameter inference.

      In this context, we believe the comparisons with other methods conducted in a compute normalized manner (i.e., each method is given the same # of simulations) and identical optimization targets provides an adequate framework for evaluating the aforementioned EP-GAN aim. Indeed, while EPGAN excels with larger HH-models, it performs slightly worse than DE for smaller models such as the one used by [16] despite it being more compute efficient (Table S2).

      To emphasize the EP-GAN aim, we revised the main manuscript description to focus on its intended use in parameter inference of detailed neuron parameters vs specialized models with reduced parameters.

      I could not find important aspects of the methods. What are the 176 parameters that were targeted as trainable parameters? What are the parameter bounds? What are the remaining parameters that have been excluded? What are the Hodgkin-Huxley models used? Which channels do they represent? What are the stimulus protocols?

      The detailed description and development of the HH-model that we use and its ion channel list can be found in [7]. Supplementary materials also include an excel table predicted parameters which lists all EP-GAN fitted parameters for 9 neurons (+3 new parameter sets for AWB, URX, HSN using EPGAN-E), the labels for trainability, and parameter bounds used for parameters during the generation of training data.

      We also added a new Table which details the current/voltage clamp protocols used for 9 neurons including the ones used for evaluating EP-GAN-E, which was supplemented with longer simulation time to ensure voltage stability (please see Table 6).

      I could not assess the validation of the EP-GAN by modeling 200 synthetic neurons based on the data presented in the manuscript since the only reported metric is the RMSE (5.84mV and 5.81mV for neurons sampled from training data and testing data respectively) averaged over all 200 synthetic neurons. Please report the distribution of RMSEs, include other biologically more relevant metrics, and show representative examples. The responses should be carefully investigated for the types of mismatches that occur, and their biological relevance should be discussed. For example, is the EP-GAN biased to generate responses with certain characteristics, like the 'overshoot' discussed in Major 1? Is it generally poor at fitting the resting potential?

      We thank the reviewer for the feedback regarding the need for additional supporting data for synthetic neuron validations. In the revised supplementary materials Figure S1, we included the distribution of RMSE errors for both groups of synthetic neuron validations (validation/test set) and representative samples for both EP-GAN baseline and EP-GAN-E. Notably, the inaccuracies observed during the experimental neuron predictions (e.g., resting potential, voltage overshoot) do not necessarily generalize to synthetic neurons, indicating that such mismatches could stem from the differences between synthetic neurons used for training and experimental neurons for predictions. While synthetic neurons are generated according to empirically determined parameter bounds, some experimental neuron types are rarer than the others and may also involve other channels that have not been recorded or modeled in [7], which can affect the quality of predicted parameters (see 2nd and 4th paragraphs of Discussions section for more detail). Also, properties such as recording error/noise that are often present in experimental neurons are not fully accounted for in synthetic neurons.

      To further study how these mismatches can be mitigated, in the revision we added an extended version of EP-GAN where target loss was supplemented with additional resting potential and 5 seconds of stabilization period during simulations (EP-GAN-E described in Statistical Analysis and Loss Extension). With such extensions, EP-GAN-E was able to improve its accuracies on both resting potentials and dynamical features with the most notable improvements on AWB where predicted voltage responses closely match slowly rising voltage response during stimulation. EPGAN-E is an example of further extensions to loss function that account for additional experimental features.

      Furthermore, the conclusion of the ablation study ('EP-GAN preserves reasonable accuracy up to a 25% reduction in membrane potential responses') does not seem to be justified given the voltage traces shown in Figure 3. For example, for RIM, the resting membrane potential stays around 0 mV, but all empirical traces are around -40mV. For AFD, all simulated traces have a negative slope during the depolarizing stimuli, but a positive slope in all empirically observed traces. For AIY, the shape of hyperpolarized traces is off.

      Since EP-GAN baseline optimizes voltage responses during the stimulation period, RMSE was also evaluated with respect to this period. From these errors, we evaluated whether the predicted voltage error for each ablation scenario fell within the 2 standard deviations from the mean error obtained from synthetic neuron test data (i.e. the baseline performance). We found that for input ablation for voltage responses, the error was within such range up to 25% reduction whereas for steady-state current input ablation, all 25%, 50% and 75% reductions resulted in errors within the range.

      We extended the “Ablation Studies” sub-section so that the above reasoning is better communicated to the readers.

      Additionally, I found a number of minor issues:

      Minor 1: Table 1 lists the number of HH simulations as '32k (11k · 3)'. Should it be 33k, since 11.000 times 3 is 33.000? Please specify the exact number of samples.

      Minor 2: x- and y-ticks are missing in Fig 2, Fig 3, Fig S1, Fig S2, Fig S3 and Fig S4.

      Minor 3: All files in the supplementary zip file should be listed and described.

      Minor 4: Code for training the GAN, generation of training datasets and for reproducing the figures should be provided.

      Minor 5: In the reference (Figure 3A, Table 1 Row 2): should this refer to Table 2?

      Minor 6: 'the ablation is done on stimulus space where a 50% reduction corresponds to removing half of the membrane potential responses traces each associated with a stimulus.' - which half is removed?

      We thank the reviewer for pointing out these errors in the original manuscript. The revised manuscript includes corrections for these items. We will publish the python code reproducing the results in the public repository in the near future.